[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / SSAUpdater.cpp
blob5893ce15b129ce1c03c2f5b0edd2a97888742e31
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
33 #include <cassert>
34 #include <utility>
36 using namespace llvm;
38 #define DEBUG_TYPE "ssaupdater"
40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
42 static AvailableValsTy &getAvailableVals(void *AV) {
43 return *static_cast<AvailableValsTy*>(AV);
46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
47 : InsertedPHIs(NewPHI) {}
49 SSAUpdater::~SSAUpdater() {
50 delete static_cast<AvailableValsTy*>(AV);
53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
54 if (!AV)
55 AV = new AvailableValsTy();
56 else
57 getAvailableVals(AV).clear();
58 ProtoType = Ty;
59 ProtoName = std::string(Name);
62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
63 return getAvailableVals(AV).count(BB);
66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
67 return getAvailableVals(AV).lookup(BB);
70 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
71 assert(ProtoType && "Need to initialize SSAUpdater");
72 assert(ProtoType == V->getType() &&
73 "All rewritten values must have the same type");
74 getAvailableVals(AV)[BB] = V;
77 static bool IsEquivalentPHI(PHINode *PHI,
78 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
79 unsigned PHINumValues = PHI->getNumIncomingValues();
80 if (PHINumValues != ValueMapping.size())
81 return false;
83 // Scan the phi to see if it matches.
84 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
85 if (ValueMapping[PHI->getIncomingBlock(i)] !=
86 PHI->getIncomingValue(i)) {
87 return false;
90 return true;
93 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
94 Value *Res = GetValueAtEndOfBlockInternal(BB);
95 return Res;
98 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
99 // If there is no definition of the renamed variable in this block, just use
100 // GetValueAtEndOfBlock to do our work.
101 if (!HasValueForBlock(BB))
102 return GetValueAtEndOfBlock(BB);
104 // Otherwise, we have the hard case. Get the live-in values for each
105 // predecessor.
106 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
107 Value *SingularValue = nullptr;
109 // We can get our predecessor info by walking the pred_iterator list, but it
110 // is relatively slow. If we already have PHI nodes in this block, walk one
111 // of them to get the predecessor list instead.
112 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
113 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
114 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
115 Value *PredVal = GetValueAtEndOfBlock(PredBB);
116 PredValues.push_back(std::make_pair(PredBB, PredVal));
118 // Compute SingularValue.
119 if (i == 0)
120 SingularValue = PredVal;
121 else if (PredVal != SingularValue)
122 SingularValue = nullptr;
124 } else {
125 bool isFirstPred = true;
126 for (BasicBlock *PredBB : predecessors(BB)) {
127 Value *PredVal = GetValueAtEndOfBlock(PredBB);
128 PredValues.push_back(std::make_pair(PredBB, PredVal));
130 // Compute SingularValue.
131 if (isFirstPred) {
132 SingularValue = PredVal;
133 isFirstPred = false;
134 } else if (PredVal != SingularValue)
135 SingularValue = nullptr;
139 // If there are no predecessors, just return undef.
140 if (PredValues.empty())
141 return UndefValue::get(ProtoType);
143 // Otherwise, if all the merged values are the same, just use it.
144 if (SingularValue)
145 return SingularValue;
147 // Otherwise, we do need a PHI: check to see if we already have one available
148 // in this block that produces the right value.
149 if (isa<PHINode>(BB->begin())) {
150 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
151 PredValues.end());
152 for (PHINode &SomePHI : BB->phis()) {
153 if (IsEquivalentPHI(&SomePHI, ValueMapping))
154 return &SomePHI;
158 // Ok, we have no way out, insert a new one now.
159 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
160 ProtoName, &BB->front());
162 // Fill in all the predecessors of the PHI.
163 for (const auto &PredValue : PredValues)
164 InsertedPHI->addIncoming(PredValue.second, PredValue.first);
166 // See if the PHI node can be merged to a single value. This can happen in
167 // loop cases when we get a PHI of itself and one other value.
168 if (Value *V =
169 SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
170 InsertedPHI->eraseFromParent();
171 return V;
174 // Set the DebugLoc of the inserted PHI, if available.
175 DebugLoc DL;
176 if (const Instruction *I = BB->getFirstNonPHI())
177 DL = I->getDebugLoc();
178 InsertedPHI->setDebugLoc(DL);
180 // If the client wants to know about all new instructions, tell it.
181 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
183 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
184 return InsertedPHI;
187 void SSAUpdater::RewriteUse(Use &U) {
188 Instruction *User = cast<Instruction>(U.getUser());
190 Value *V;
191 if (PHINode *UserPN = dyn_cast<PHINode>(User))
192 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
193 else
194 V = GetValueInMiddleOfBlock(User->getParent());
196 U.set(V);
199 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
200 Instruction *User = cast<Instruction>(U.getUser());
202 Value *V;
203 if (PHINode *UserPN = dyn_cast<PHINode>(User))
204 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
205 else
206 V = GetValueAtEndOfBlock(User->getParent());
208 U.set(V);
211 namespace llvm {
213 template<>
214 class SSAUpdaterTraits<SSAUpdater> {
215 public:
216 using BlkT = BasicBlock;
217 using ValT = Value *;
218 using PhiT = PHINode;
219 using BlkSucc_iterator = succ_iterator;
221 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
222 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
224 class PHI_iterator {
225 private:
226 PHINode *PHI;
227 unsigned idx;
229 public:
230 explicit PHI_iterator(PHINode *P) // begin iterator
231 : PHI(P), idx(0) {}
232 PHI_iterator(PHINode *P, bool) // end iterator
233 : PHI(P), idx(PHI->getNumIncomingValues()) {}
235 PHI_iterator &operator++() { ++idx; return *this; }
236 bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
237 bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
239 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
240 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
243 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
244 static PHI_iterator PHI_end(PhiT *PHI) {
245 return PHI_iterator(PHI, true);
248 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
249 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
250 static void FindPredecessorBlocks(BasicBlock *BB,
251 SmallVectorImpl<BasicBlock *> *Preds) {
252 // We can get our predecessor info by walking the pred_iterator list,
253 // but it is relatively slow. If we already have PHI nodes in this
254 // block, walk one of them to get the predecessor list instead.
255 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin()))
256 append_range(*Preds, SomePhi->blocks());
257 else
258 append_range(*Preds, predecessors(BB));
261 /// GetUndefVal - Get an undefined value of the same type as the value
262 /// being handled.
263 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
264 return UndefValue::get(Updater->ProtoType);
267 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
268 /// Reserve space for the operands but do not fill them in yet.
269 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
270 SSAUpdater *Updater) {
271 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
272 Updater->ProtoName, &BB->front());
273 return PHI;
276 /// AddPHIOperand - Add the specified value as an operand of the PHI for
277 /// the specified predecessor block.
278 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
279 PHI->addIncoming(Val, Pred);
282 /// ValueIsPHI - Check if a value is a PHI.
283 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
284 return dyn_cast<PHINode>(Val);
287 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
288 /// operands, i.e., it was just added.
289 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
290 PHINode *PHI = ValueIsPHI(Val, Updater);
291 if (PHI && PHI->getNumIncomingValues() == 0)
292 return PHI;
293 return nullptr;
296 /// GetPHIValue - For the specified PHI instruction, return the value
297 /// that it defines.
298 static Value *GetPHIValue(PHINode *PHI) {
299 return PHI;
303 } // end namespace llvm
305 /// Check to see if AvailableVals has an entry for the specified BB and if so,
306 /// return it. If not, construct SSA form by first calculating the required
307 /// placement of PHIs and then inserting new PHIs where needed.
308 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
309 AvailableValsTy &AvailableVals = getAvailableVals(AV);
310 if (Value *V = AvailableVals[BB])
311 return V;
313 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
314 return Impl.GetValue(BB);
317 //===----------------------------------------------------------------------===//
318 // LoadAndStorePromoter Implementation
319 //===----------------------------------------------------------------------===//
321 LoadAndStorePromoter::
322 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
323 SSAUpdater &S, StringRef BaseName) : SSA(S) {
324 if (Insts.empty()) return;
326 const Value *SomeVal;
327 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
328 SomeVal = LI;
329 else
330 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
332 if (BaseName.empty())
333 BaseName = SomeVal->getName();
334 SSA.Initialize(SomeVal->getType(), BaseName);
337 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
338 // First step: bucket up uses of the alloca by the block they occur in.
339 // This is important because we have to handle multiple defs/uses in a block
340 // ourselves: SSAUpdater is purely for cross-block references.
341 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
343 for (Instruction *User : Insts)
344 UsesByBlock[User->getParent()].push_back(User);
346 // Okay, now we can iterate over all the blocks in the function with uses,
347 // processing them. Keep track of which loads are loading a live-in value.
348 // Walk the uses in the use-list order to be determinstic.
349 SmallVector<LoadInst *, 32> LiveInLoads;
350 DenseMap<Value *, Value *> ReplacedLoads;
352 for (Instruction *User : Insts) {
353 BasicBlock *BB = User->getParent();
354 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
356 // If this block has already been processed, ignore this repeat use.
357 if (BlockUses.empty()) continue;
359 // Okay, this is the first use in the block. If this block just has a
360 // single user in it, we can rewrite it trivially.
361 if (BlockUses.size() == 1) {
362 // If it is a store, it is a trivial def of the value in the block.
363 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
364 updateDebugInfo(SI);
365 SSA.AddAvailableValue(BB, SI->getOperand(0));
366 } else
367 // Otherwise it is a load, queue it to rewrite as a live-in load.
368 LiveInLoads.push_back(cast<LoadInst>(User));
369 BlockUses.clear();
370 continue;
373 // Otherwise, check to see if this block is all loads.
374 bool HasStore = false;
375 for (Instruction *I : BlockUses) {
376 if (isa<StoreInst>(I)) {
377 HasStore = true;
378 break;
382 // If so, we can queue them all as live in loads. We don't have an
383 // efficient way to tell which on is first in the block and don't want to
384 // scan large blocks, so just add all loads as live ins.
385 if (!HasStore) {
386 for (Instruction *I : BlockUses)
387 LiveInLoads.push_back(cast<LoadInst>(I));
388 BlockUses.clear();
389 continue;
392 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
393 // Since SSAUpdater is purely for cross-block values, we need to determine
394 // the order of these instructions in the block. If the first use in the
395 // block is a load, then it uses the live in value. The last store defines
396 // the live out value. We handle this by doing a linear scan of the block.
397 Value *StoredValue = nullptr;
398 for (Instruction &I : *BB) {
399 if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
400 // If this is a load from an unrelated pointer, ignore it.
401 if (!isInstInList(L, Insts)) continue;
403 // If we haven't seen a store yet, this is a live in use, otherwise
404 // use the stored value.
405 if (StoredValue) {
406 replaceLoadWithValue(L, StoredValue);
407 L->replaceAllUsesWith(StoredValue);
408 ReplacedLoads[L] = StoredValue;
409 } else {
410 LiveInLoads.push_back(L);
412 continue;
415 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
416 // If this is a store to an unrelated pointer, ignore it.
417 if (!isInstInList(SI, Insts)) continue;
418 updateDebugInfo(SI);
420 // Remember that this is the active value in the block.
421 StoredValue = SI->getOperand(0);
425 // The last stored value that happened is the live-out for the block.
426 assert(StoredValue && "Already checked that there is a store in block");
427 SSA.AddAvailableValue(BB, StoredValue);
428 BlockUses.clear();
431 // Okay, now we rewrite all loads that use live-in values in the loop,
432 // inserting PHI nodes as necessary.
433 for (LoadInst *ALoad : LiveInLoads) {
434 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
435 replaceLoadWithValue(ALoad, NewVal);
437 // Avoid assertions in unreachable code.
438 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
439 ALoad->replaceAllUsesWith(NewVal);
440 ReplacedLoads[ALoad] = NewVal;
443 // Allow the client to do stuff before we start nuking things.
444 doExtraRewritesBeforeFinalDeletion();
446 // Now that everything is rewritten, delete the old instructions from the
447 // function. They should all be dead now.
448 for (Instruction *User : Insts) {
449 // If this is a load that still has uses, then the load must have been added
450 // as a live value in the SSAUpdate data structure for a block (e.g. because
451 // the loaded value was stored later). In this case, we need to recursively
452 // propagate the updates until we get to the real value.
453 if (!User->use_empty()) {
454 Value *NewVal = ReplacedLoads[User];
455 assert(NewVal && "not a replaced load?");
457 // Propagate down to the ultimate replacee. The intermediately loads
458 // could theoretically already have been deleted, so we don't want to
459 // dereference the Value*'s.
460 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
461 while (RLI != ReplacedLoads.end()) {
462 NewVal = RLI->second;
463 RLI = ReplacedLoads.find(NewVal);
466 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
467 User->replaceAllUsesWith(NewVal);
470 instructionDeleted(User);
471 User->eraseFromParent();
475 bool
476 LoadAndStorePromoter::isInstInList(Instruction *I,
477 const SmallVectorImpl<Instruction *> &Insts)
478 const {
479 return is_contained(Insts, I);