1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SSAUpdater class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
38 #define DEBUG_TYPE "ssaupdater"
40 using AvailableValsTy
= DenseMap
<BasicBlock
*, Value
*>;
42 static AvailableValsTy
&getAvailableVals(void *AV
) {
43 return *static_cast<AvailableValsTy
*>(AV
);
46 SSAUpdater::SSAUpdater(SmallVectorImpl
<PHINode
*> *NewPHI
)
47 : InsertedPHIs(NewPHI
) {}
49 SSAUpdater::~SSAUpdater() {
50 delete static_cast<AvailableValsTy
*>(AV
);
53 void SSAUpdater::Initialize(Type
*Ty
, StringRef Name
) {
55 AV
= new AvailableValsTy();
57 getAvailableVals(AV
).clear();
59 ProtoName
= std::string(Name
);
62 bool SSAUpdater::HasValueForBlock(BasicBlock
*BB
) const {
63 return getAvailableVals(AV
).count(BB
);
66 Value
*SSAUpdater::FindValueForBlock(BasicBlock
*BB
) const {
67 return getAvailableVals(AV
).lookup(BB
);
70 void SSAUpdater::AddAvailableValue(BasicBlock
*BB
, Value
*V
) {
71 assert(ProtoType
&& "Need to initialize SSAUpdater");
72 assert(ProtoType
== V
->getType() &&
73 "All rewritten values must have the same type");
74 getAvailableVals(AV
)[BB
] = V
;
77 static bool IsEquivalentPHI(PHINode
*PHI
,
78 SmallDenseMap
<BasicBlock
*, Value
*, 8> &ValueMapping
) {
79 unsigned PHINumValues
= PHI
->getNumIncomingValues();
80 if (PHINumValues
!= ValueMapping
.size())
83 // Scan the phi to see if it matches.
84 for (unsigned i
= 0, e
= PHINumValues
; i
!= e
; ++i
)
85 if (ValueMapping
[PHI
->getIncomingBlock(i
)] !=
86 PHI
->getIncomingValue(i
)) {
93 Value
*SSAUpdater::GetValueAtEndOfBlock(BasicBlock
*BB
) {
94 Value
*Res
= GetValueAtEndOfBlockInternal(BB
);
98 Value
*SSAUpdater::GetValueInMiddleOfBlock(BasicBlock
*BB
) {
99 // If there is no definition of the renamed variable in this block, just use
100 // GetValueAtEndOfBlock to do our work.
101 if (!HasValueForBlock(BB
))
102 return GetValueAtEndOfBlock(BB
);
104 // Otherwise, we have the hard case. Get the live-in values for each
106 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> PredValues
;
107 Value
*SingularValue
= nullptr;
109 // We can get our predecessor info by walking the pred_iterator list, but it
110 // is relatively slow. If we already have PHI nodes in this block, walk one
111 // of them to get the predecessor list instead.
112 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin())) {
113 for (unsigned i
= 0, e
= SomePhi
->getNumIncomingValues(); i
!= e
; ++i
) {
114 BasicBlock
*PredBB
= SomePhi
->getIncomingBlock(i
);
115 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
116 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
118 // Compute SingularValue.
120 SingularValue
= PredVal
;
121 else if (PredVal
!= SingularValue
)
122 SingularValue
= nullptr;
125 bool isFirstPred
= true;
126 for (BasicBlock
*PredBB
: predecessors(BB
)) {
127 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
128 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
130 // Compute SingularValue.
132 SingularValue
= PredVal
;
134 } else if (PredVal
!= SingularValue
)
135 SingularValue
= nullptr;
139 // If there are no predecessors, just return undef.
140 if (PredValues
.empty())
141 return UndefValue::get(ProtoType
);
143 // Otherwise, if all the merged values are the same, just use it.
145 return SingularValue
;
147 // Otherwise, we do need a PHI: check to see if we already have one available
148 // in this block that produces the right value.
149 if (isa
<PHINode
>(BB
->begin())) {
150 SmallDenseMap
<BasicBlock
*, Value
*, 8> ValueMapping(PredValues
.begin(),
152 for (PHINode
&SomePHI
: BB
->phis()) {
153 if (IsEquivalentPHI(&SomePHI
, ValueMapping
))
158 // Ok, we have no way out, insert a new one now.
159 PHINode
*InsertedPHI
= PHINode::Create(ProtoType
, PredValues
.size(),
160 ProtoName
, &BB
->front());
162 // Fill in all the predecessors of the PHI.
163 for (const auto &PredValue
: PredValues
)
164 InsertedPHI
->addIncoming(PredValue
.second
, PredValue
.first
);
166 // See if the PHI node can be merged to a single value. This can happen in
167 // loop cases when we get a PHI of itself and one other value.
169 SimplifyInstruction(InsertedPHI
, BB
->getModule()->getDataLayout())) {
170 InsertedPHI
->eraseFromParent();
174 // Set the DebugLoc of the inserted PHI, if available.
176 if (const Instruction
*I
= BB
->getFirstNonPHI())
177 DL
= I
->getDebugLoc();
178 InsertedPHI
->setDebugLoc(DL
);
180 // If the client wants to know about all new instructions, tell it.
181 if (InsertedPHIs
) InsertedPHIs
->push_back(InsertedPHI
);
183 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI
<< "\n");
187 void SSAUpdater::RewriteUse(Use
&U
) {
188 Instruction
*User
= cast
<Instruction
>(U
.getUser());
191 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
192 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
194 V
= GetValueInMiddleOfBlock(User
->getParent());
199 void SSAUpdater::RewriteUseAfterInsertions(Use
&U
) {
200 Instruction
*User
= cast
<Instruction
>(U
.getUser());
203 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
204 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
206 V
= GetValueAtEndOfBlock(User
->getParent());
214 class SSAUpdaterTraits
<SSAUpdater
> {
216 using BlkT
= BasicBlock
;
217 using ValT
= Value
*;
218 using PhiT
= PHINode
;
219 using BlkSucc_iterator
= succ_iterator
;
221 static BlkSucc_iterator
BlkSucc_begin(BlkT
*BB
) { return succ_begin(BB
); }
222 static BlkSucc_iterator
BlkSucc_end(BlkT
*BB
) { return succ_end(BB
); }
230 explicit PHI_iterator(PHINode
*P
) // begin iterator
232 PHI_iterator(PHINode
*P
, bool) // end iterator
233 : PHI(P
), idx(PHI
->getNumIncomingValues()) {}
235 PHI_iterator
&operator++() { ++idx
; return *this; }
236 bool operator==(const PHI_iterator
& x
) const { return idx
== x
.idx
; }
237 bool operator!=(const PHI_iterator
& x
) const { return !operator==(x
); }
239 Value
*getIncomingValue() { return PHI
->getIncomingValue(idx
); }
240 BasicBlock
*getIncomingBlock() { return PHI
->getIncomingBlock(idx
); }
243 static PHI_iterator
PHI_begin(PhiT
*PHI
) { return PHI_iterator(PHI
); }
244 static PHI_iterator
PHI_end(PhiT
*PHI
) {
245 return PHI_iterator(PHI
, true);
248 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
249 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
250 static void FindPredecessorBlocks(BasicBlock
*BB
,
251 SmallVectorImpl
<BasicBlock
*> *Preds
) {
252 // We can get our predecessor info by walking the pred_iterator list,
253 // but it is relatively slow. If we already have PHI nodes in this
254 // block, walk one of them to get the predecessor list instead.
255 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin()))
256 append_range(*Preds
, SomePhi
->blocks());
258 append_range(*Preds
, predecessors(BB
));
261 /// GetUndefVal - Get an undefined value of the same type as the value
263 static Value
*GetUndefVal(BasicBlock
*BB
, SSAUpdater
*Updater
) {
264 return UndefValue::get(Updater
->ProtoType
);
267 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
268 /// Reserve space for the operands but do not fill them in yet.
269 static Value
*CreateEmptyPHI(BasicBlock
*BB
, unsigned NumPreds
,
270 SSAUpdater
*Updater
) {
271 PHINode
*PHI
= PHINode::Create(Updater
->ProtoType
, NumPreds
,
272 Updater
->ProtoName
, &BB
->front());
276 /// AddPHIOperand - Add the specified value as an operand of the PHI for
277 /// the specified predecessor block.
278 static void AddPHIOperand(PHINode
*PHI
, Value
*Val
, BasicBlock
*Pred
) {
279 PHI
->addIncoming(Val
, Pred
);
282 /// ValueIsPHI - Check if a value is a PHI.
283 static PHINode
*ValueIsPHI(Value
*Val
, SSAUpdater
*Updater
) {
284 return dyn_cast
<PHINode
>(Val
);
287 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
288 /// operands, i.e., it was just added.
289 static PHINode
*ValueIsNewPHI(Value
*Val
, SSAUpdater
*Updater
) {
290 PHINode
*PHI
= ValueIsPHI(Val
, Updater
);
291 if (PHI
&& PHI
->getNumIncomingValues() == 0)
296 /// GetPHIValue - For the specified PHI instruction, return the value
298 static Value
*GetPHIValue(PHINode
*PHI
) {
303 } // end namespace llvm
305 /// Check to see if AvailableVals has an entry for the specified BB and if so,
306 /// return it. If not, construct SSA form by first calculating the required
307 /// placement of PHIs and then inserting new PHIs where needed.
308 Value
*SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock
*BB
) {
309 AvailableValsTy
&AvailableVals
= getAvailableVals(AV
);
310 if (Value
*V
= AvailableVals
[BB
])
313 SSAUpdaterImpl
<SSAUpdater
> Impl(this, &AvailableVals
, InsertedPHIs
);
314 return Impl
.GetValue(BB
);
317 //===----------------------------------------------------------------------===//
318 // LoadAndStorePromoter Implementation
319 //===----------------------------------------------------------------------===//
321 LoadAndStorePromoter::
322 LoadAndStorePromoter(ArrayRef
<const Instruction
*> Insts
,
323 SSAUpdater
&S
, StringRef BaseName
) : SSA(S
) {
324 if (Insts
.empty()) return;
326 const Value
*SomeVal
;
327 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Insts
[0]))
330 SomeVal
= cast
<StoreInst
>(Insts
[0])->getOperand(0);
332 if (BaseName
.empty())
333 BaseName
= SomeVal
->getName();
334 SSA
.Initialize(SomeVal
->getType(), BaseName
);
337 void LoadAndStorePromoter::run(const SmallVectorImpl
<Instruction
*> &Insts
) {
338 // First step: bucket up uses of the alloca by the block they occur in.
339 // This is important because we have to handle multiple defs/uses in a block
340 // ourselves: SSAUpdater is purely for cross-block references.
341 DenseMap
<BasicBlock
*, TinyPtrVector
<Instruction
*>> UsesByBlock
;
343 for (Instruction
*User
: Insts
)
344 UsesByBlock
[User
->getParent()].push_back(User
);
346 // Okay, now we can iterate over all the blocks in the function with uses,
347 // processing them. Keep track of which loads are loading a live-in value.
348 // Walk the uses in the use-list order to be determinstic.
349 SmallVector
<LoadInst
*, 32> LiveInLoads
;
350 DenseMap
<Value
*, Value
*> ReplacedLoads
;
352 for (Instruction
*User
: Insts
) {
353 BasicBlock
*BB
= User
->getParent();
354 TinyPtrVector
<Instruction
*> &BlockUses
= UsesByBlock
[BB
];
356 // If this block has already been processed, ignore this repeat use.
357 if (BlockUses
.empty()) continue;
359 // Okay, this is the first use in the block. If this block just has a
360 // single user in it, we can rewrite it trivially.
361 if (BlockUses
.size() == 1) {
362 // If it is a store, it is a trivial def of the value in the block.
363 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
365 SSA
.AddAvailableValue(BB
, SI
->getOperand(0));
367 // Otherwise it is a load, queue it to rewrite as a live-in load.
368 LiveInLoads
.push_back(cast
<LoadInst
>(User
));
373 // Otherwise, check to see if this block is all loads.
374 bool HasStore
= false;
375 for (Instruction
*I
: BlockUses
) {
376 if (isa
<StoreInst
>(I
)) {
382 // If so, we can queue them all as live in loads. We don't have an
383 // efficient way to tell which on is first in the block and don't want to
384 // scan large blocks, so just add all loads as live ins.
386 for (Instruction
*I
: BlockUses
)
387 LiveInLoads
.push_back(cast
<LoadInst
>(I
));
392 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
393 // Since SSAUpdater is purely for cross-block values, we need to determine
394 // the order of these instructions in the block. If the first use in the
395 // block is a load, then it uses the live in value. The last store defines
396 // the live out value. We handle this by doing a linear scan of the block.
397 Value
*StoredValue
= nullptr;
398 for (Instruction
&I
: *BB
) {
399 if (LoadInst
*L
= dyn_cast
<LoadInst
>(&I
)) {
400 // If this is a load from an unrelated pointer, ignore it.
401 if (!isInstInList(L
, Insts
)) continue;
403 // If we haven't seen a store yet, this is a live in use, otherwise
404 // use the stored value.
406 replaceLoadWithValue(L
, StoredValue
);
407 L
->replaceAllUsesWith(StoredValue
);
408 ReplacedLoads
[L
] = StoredValue
;
410 LiveInLoads
.push_back(L
);
415 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
)) {
416 // If this is a store to an unrelated pointer, ignore it.
417 if (!isInstInList(SI
, Insts
)) continue;
420 // Remember that this is the active value in the block.
421 StoredValue
= SI
->getOperand(0);
425 // The last stored value that happened is the live-out for the block.
426 assert(StoredValue
&& "Already checked that there is a store in block");
427 SSA
.AddAvailableValue(BB
, StoredValue
);
431 // Okay, now we rewrite all loads that use live-in values in the loop,
432 // inserting PHI nodes as necessary.
433 for (LoadInst
*ALoad
: LiveInLoads
) {
434 Value
*NewVal
= SSA
.GetValueInMiddleOfBlock(ALoad
->getParent());
435 replaceLoadWithValue(ALoad
, NewVal
);
437 // Avoid assertions in unreachable code.
438 if (NewVal
== ALoad
) NewVal
= UndefValue::get(NewVal
->getType());
439 ALoad
->replaceAllUsesWith(NewVal
);
440 ReplacedLoads
[ALoad
] = NewVal
;
443 // Allow the client to do stuff before we start nuking things.
444 doExtraRewritesBeforeFinalDeletion();
446 // Now that everything is rewritten, delete the old instructions from the
447 // function. They should all be dead now.
448 for (Instruction
*User
: Insts
) {
449 // If this is a load that still has uses, then the load must have been added
450 // as a live value in the SSAUpdate data structure for a block (e.g. because
451 // the loaded value was stored later). In this case, we need to recursively
452 // propagate the updates until we get to the real value.
453 if (!User
->use_empty()) {
454 Value
*NewVal
= ReplacedLoads
[User
];
455 assert(NewVal
&& "not a replaced load?");
457 // Propagate down to the ultimate replacee. The intermediately loads
458 // could theoretically already have been deleted, so we don't want to
459 // dereference the Value*'s.
460 DenseMap
<Value
*, Value
*>::iterator RLI
= ReplacedLoads
.find(NewVal
);
461 while (RLI
!= ReplacedLoads
.end()) {
462 NewVal
= RLI
->second
;
463 RLI
= ReplacedLoads
.find(NewVal
);
466 replaceLoadWithValue(cast
<LoadInst
>(User
), NewVal
);
467 User
->replaceAllUsesWith(NewVal
);
470 instructionDeleted(User
);
471 User
->eraseFromParent();
476 LoadAndStorePromoter::isInstInList(Instruction
*I
,
477 const SmallVectorImpl
<Instruction
*> &Insts
)
479 return is_contained(Insts
, I
);