1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
92 using namespace PatternMatch
;
94 #define DEBUG_TYPE "simplifycfg"
96 cl::opt
<bool> llvm::RequireAndPreserveDomTree(
97 "simplifycfg-require-and-preserve-domtree", cl::Hidden
, cl::ZeroOrMore
,
99 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100 "into preserving DomTree,"));
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt
<unsigned> PHINodeFoldingThreshold(
107 "phi-node-folding-threshold", cl::Hidden
, cl::init(2),
109 "Control the amount of phi node folding to perform (default = 2)"));
111 static cl::opt
<unsigned> TwoEntryPHINodeFoldingThreshold(
112 "two-entry-phi-node-folding-threshold", cl::Hidden
, cl::init(4),
113 cl::desc("Control the maximal total instruction cost that we are willing "
114 "to speculatively execute to fold a 2-entry PHI node into a "
115 "select (default = 4)"));
118 HoistCommon("simplifycfg-hoist-common", cl::Hidden
, cl::init(true),
119 cl::desc("Hoist common instructions up to the parent block"));
122 SinkCommon("simplifycfg-sink-common", cl::Hidden
, cl::init(true),
123 cl::desc("Sink common instructions down to the end block"));
125 static cl::opt
<bool> HoistCondStores(
126 "simplifycfg-hoist-cond-stores", cl::Hidden
, cl::init(true),
127 cl::desc("Hoist conditional stores if an unconditional store precedes"));
129 static cl::opt
<bool> MergeCondStores(
130 "simplifycfg-merge-cond-stores", cl::Hidden
, cl::init(true),
131 cl::desc("Hoist conditional stores even if an unconditional store does not "
132 "precede - hoist multiple conditional stores into a single "
133 "predicated store"));
135 static cl::opt
<bool> MergeCondStoresAggressively(
136 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden
, cl::init(false),
137 cl::desc("When merging conditional stores, do so even if the resultant "
138 "basic blocks are unlikely to be if-converted as a result"));
140 static cl::opt
<bool> SpeculateOneExpensiveInst(
141 "speculate-one-expensive-inst", cl::Hidden
, cl::init(true),
142 cl::desc("Allow exactly one expensive instruction to be speculatively "
145 static cl::opt
<unsigned> MaxSpeculationDepth(
146 "max-speculation-depth", cl::Hidden
, cl::init(10),
147 cl::desc("Limit maximum recursion depth when calculating costs of "
148 "speculatively executed instructions"));
151 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden
,
153 cl::desc("Max size of a block which is still considered "
154 "small enough to thread through"));
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt
<unsigned>
158 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden
,
160 cl::desc("Maximum cost of combining conditions when "
161 "folding branches"));
163 STATISTIC(NumBitMaps
, "Number of switch instructions turned into bitmaps");
164 STATISTIC(NumLinearMaps
,
165 "Number of switch instructions turned into linear mapping");
166 STATISTIC(NumLookupTables
,
167 "Number of switch instructions turned into lookup tables");
169 NumLookupTablesHoles
,
170 "Number of switch instructions turned into lookup tables (holes checked)");
171 STATISTIC(NumTableCmpReuses
, "Number of reused switch table lookup compares");
172 STATISTIC(NumFoldValueComparisonIntoPredecessors
,
173 "Number of value comparisons folded into predecessor basic blocks");
174 STATISTIC(NumFoldBranchToCommonDest
,
175 "Number of branches folded into predecessor basic block");
178 "Number of common instruction 'blocks' hoisted up to the begin block");
179 STATISTIC(NumHoistCommonInstrs
,
180 "Number of common instructions hoisted up to the begin block");
181 STATISTIC(NumSinkCommonCode
,
182 "Number of common instruction 'blocks' sunk down to the end block");
183 STATISTIC(NumSinkCommonInstrs
,
184 "Number of common instructions sunk down to the end block");
185 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
186 STATISTIC(NumInvokes
,
187 "Number of invokes with empty resume blocks simplified into calls");
191 // The first field contains the value that the switch produces when a certain
192 // case group is selected, and the second field is a vector containing the
193 // cases composing the case group.
194 using SwitchCaseResultVectorTy
=
195 SmallVector
<std::pair
<Constant
*, SmallVector
<ConstantInt
*, 4>>, 2>;
197 // The first field contains the phi node that generates a result of the switch
198 // and the second field contains the value generated for a certain case in the
199 // switch for that PHI.
200 using SwitchCaseResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
202 /// ValueEqualityComparisonCase - Represents a case of a switch.
203 struct ValueEqualityComparisonCase
{
207 ValueEqualityComparisonCase(ConstantInt
*Value
, BasicBlock
*Dest
)
208 : Value(Value
), Dest(Dest
) {}
210 bool operator<(ValueEqualityComparisonCase RHS
) const {
211 // Comparing pointers is ok as we only rely on the order for uniquing.
212 return Value
< RHS
.Value
;
215 bool operator==(BasicBlock
*RHSDest
) const { return Dest
== RHSDest
; }
218 class SimplifyCFGOpt
{
219 const TargetTransformInfo
&TTI
;
221 const DataLayout
&DL
;
222 ArrayRef
<WeakVH
> LoopHeaders
;
223 const SimplifyCFGOptions
&Options
;
226 Value
*isValueEqualityComparison(Instruction
*TI
);
227 BasicBlock
*GetValueEqualityComparisonCases(
228 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
);
229 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction
*TI
,
231 IRBuilder
<> &Builder
);
232 bool PerformValueComparisonIntoPredecessorFolding(Instruction
*TI
, Value
*&CV
,
234 IRBuilder
<> &Builder
);
235 bool FoldValueComparisonIntoPredecessors(Instruction
*TI
,
236 IRBuilder
<> &Builder
);
238 bool simplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
);
239 bool simplifySingleResume(ResumeInst
*RI
);
240 bool simplifyCommonResume(ResumeInst
*RI
);
241 bool simplifyCleanupReturn(CleanupReturnInst
*RI
);
242 bool simplifyUnreachable(UnreachableInst
*UI
);
243 bool simplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
);
244 bool simplifyIndirectBr(IndirectBrInst
*IBI
);
245 bool simplifyBranch(BranchInst
*Branch
, IRBuilder
<> &Builder
);
246 bool simplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
247 bool simplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
249 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
250 IRBuilder
<> &Builder
);
252 bool HoistThenElseCodeToIf(BranchInst
*BI
, const TargetTransformInfo
&TTI
,
254 bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
255 const TargetTransformInfo
&TTI
);
256 bool SimplifyTerminatorOnSelect(Instruction
*OldTerm
, Value
*Cond
,
257 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
,
258 uint32_t TrueWeight
, uint32_t FalseWeight
);
259 bool SimplifyBranchOnICmpChain(BranchInst
*BI
, IRBuilder
<> &Builder
,
260 const DataLayout
&DL
);
261 bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
);
262 bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
);
263 bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
, IRBuilder
<> &Builder
);
266 SimplifyCFGOpt(const TargetTransformInfo
&TTI
, DomTreeUpdater
*DTU
,
267 const DataLayout
&DL
, ArrayRef
<WeakVH
> LoopHeaders
,
268 const SimplifyCFGOptions
&Opts
)
269 : TTI(TTI
), DTU(DTU
), DL(DL
), LoopHeaders(LoopHeaders
), Options(Opts
) {
270 assert((!DTU
|| !DTU
->hasPostDomTree()) &&
271 "SimplifyCFG is not yet capable of maintaining validity of a "
272 "PostDomTree, so don't ask for it.");
275 bool simplifyOnce(BasicBlock
*BB
);
276 bool simplifyOnceImpl(BasicBlock
*BB
);
277 bool run(BasicBlock
*BB
);
279 // Helper to set Resimplify and return change indication.
280 bool requestResimplify() {
286 } // end anonymous namespace
288 /// Return true if it is safe to merge these two
289 /// terminator instructions together.
291 SafeToMergeTerminators(Instruction
*SI1
, Instruction
*SI2
,
292 SmallSetVector
<BasicBlock
*, 4> *FailBlocks
= nullptr) {
294 return false; // Can't merge with self!
296 // It is not safe to merge these two switch instructions if they have a common
297 // successor, and if that successor has a PHI node, and if *that* PHI node has
298 // conflicting incoming values from the two switch blocks.
299 BasicBlock
*SI1BB
= SI1
->getParent();
300 BasicBlock
*SI2BB
= SI2
->getParent();
302 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
304 for (BasicBlock
*Succ
: successors(SI2BB
))
305 if (SI1Succs
.count(Succ
))
306 for (BasicBlock::iterator BBI
= Succ
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
307 PHINode
*PN
= cast
<PHINode
>(BBI
);
308 if (PN
->getIncomingValueForBlock(SI1BB
) !=
309 PN
->getIncomingValueForBlock(SI2BB
)) {
311 FailBlocks
->insert(Succ
);
319 /// Update PHI nodes in Succ to indicate that there will now be entries in it
320 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
321 /// will be the same as those coming in from ExistPred, an existing predecessor
323 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
324 BasicBlock
*ExistPred
,
325 MemorySSAUpdater
*MSSAU
= nullptr) {
326 for (PHINode
&PN
: Succ
->phis())
327 PN
.addIncoming(PN
.getIncomingValueForBlock(ExistPred
), NewPred
);
329 if (auto *MPhi
= MSSAU
->getMemorySSA()->getMemoryAccess(Succ
))
330 MPhi
->addIncoming(MPhi
->getIncomingValueForBlock(ExistPred
), NewPred
);
333 /// Compute an abstract "cost" of speculating the given instruction,
334 /// which is assumed to be safe to speculate. TCC_Free means cheap,
335 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
337 static InstructionCost
computeSpeculationCost(const User
*I
,
338 const TargetTransformInfo
&TTI
) {
339 assert(isSafeToSpeculativelyExecute(I
) &&
340 "Instruction is not safe to speculatively execute!");
341 return TTI
.getUserCost(I
, TargetTransformInfo::TCK_SizeAndLatency
);
344 /// If we have a merge point of an "if condition" as accepted above,
345 /// return true if the specified value dominates the block. We
346 /// don't handle the true generality of domination here, just a special case
347 /// which works well enough for us.
349 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
350 /// see if V (which must be an instruction) and its recursive operands
351 /// that do not dominate BB have a combined cost lower than Budget and
352 /// are non-trapping. If both are true, the instruction is inserted into the
353 /// set and true is returned.
355 /// The cost for most non-trapping instructions is defined as 1 except for
356 /// Select whose cost is 2.
358 /// After this function returns, Cost is increased by the cost of
359 /// V plus its non-dominating operands. If that cost is greater than
360 /// Budget, false is returned and Cost is undefined.
361 static bool dominatesMergePoint(Value
*V
, BasicBlock
*BB
,
362 SmallPtrSetImpl
<Instruction
*> &AggressiveInsts
,
363 InstructionCost
&Cost
,
364 InstructionCost Budget
,
365 const TargetTransformInfo
&TTI
,
366 unsigned Depth
= 0) {
367 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
368 // so limit the recursion depth.
369 // TODO: While this recursion limit does prevent pathological behavior, it
370 // would be better to track visited instructions to avoid cycles.
371 if (Depth
== MaxSpeculationDepth
)
374 Instruction
*I
= dyn_cast
<Instruction
>(V
);
376 // Non-instructions all dominate instructions, but not all constantexprs
377 // can be executed unconditionally.
378 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
383 BasicBlock
*PBB
= I
->getParent();
385 // We don't want to allow weird loops that might have the "if condition" in
386 // the bottom of this block.
390 // If this instruction is defined in a block that contains an unconditional
391 // branch to BB, then it must be in the 'conditional' part of the "if
392 // statement". If not, it definitely dominates the region.
393 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
394 if (!BI
|| BI
->isConditional() || BI
->getSuccessor(0) != BB
)
397 // If we have seen this instruction before, don't count it again.
398 if (AggressiveInsts
.count(I
))
401 // Okay, it looks like the instruction IS in the "condition". Check to
402 // see if it's a cheap instruction to unconditionally compute, and if it
403 // only uses stuff defined outside of the condition. If so, hoist it out.
404 if (!isSafeToSpeculativelyExecute(I
))
407 Cost
+= computeSpeculationCost(I
, TTI
);
409 // Allow exactly one instruction to be speculated regardless of its cost
410 // (as long as it is safe to do so).
411 // This is intended to flatten the CFG even if the instruction is a division
412 // or other expensive operation. The speculation of an expensive instruction
413 // is expected to be undone in CodeGenPrepare if the speculation has not
414 // enabled further IR optimizations.
416 (!SpeculateOneExpensiveInst
|| !AggressiveInsts
.empty() || Depth
> 0 ||
420 // Okay, we can only really hoist these out if their operands do
421 // not take us over the cost threshold.
422 for (Use
&Op
: I
->operands())
423 if (!dominatesMergePoint(Op
, BB
, AggressiveInsts
, Cost
, Budget
, TTI
,
426 // Okay, it's safe to do this! Remember this instruction.
427 AggressiveInsts
.insert(I
);
431 /// Extract ConstantInt from value, looking through IntToPtr
432 /// and PointerNullValue. Return NULL if value is not a constant int.
433 static ConstantInt
*GetConstantInt(Value
*V
, const DataLayout
&DL
) {
434 // Normal constant int.
435 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
436 if (CI
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy())
439 // This is some kind of pointer constant. Turn it into a pointer-sized
440 // ConstantInt if possible.
441 IntegerType
*PtrTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
443 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
444 if (isa
<ConstantPointerNull
>(V
))
445 return ConstantInt::get(PtrTy
, 0);
447 // IntToPtr const int.
448 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
449 if (CE
->getOpcode() == Instruction::IntToPtr
)
450 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
451 // The constant is very likely to have the right type already.
452 if (CI
->getType() == PtrTy
)
455 return cast
<ConstantInt
>(
456 ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
463 /// Given a chain of or (||) or and (&&) comparison of a value against a
464 /// constant, this will try to recover the information required for a switch
466 /// It will depth-first traverse the chain of comparison, seeking for patterns
467 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
468 /// representing the different cases for the switch.
469 /// Note that if the chain is composed of '||' it will build the set of elements
470 /// that matches the comparisons (i.e. any of this value validate the chain)
471 /// while for a chain of '&&' it will build the set elements that make the test
473 struct ConstantComparesGatherer
{
474 const DataLayout
&DL
;
476 /// Value found for the switch comparison
477 Value
*CompValue
= nullptr;
479 /// Extra clause to be checked before the switch
480 Value
*Extra
= nullptr;
482 /// Set of integers to match in switch
483 SmallVector
<ConstantInt
*, 8> Vals
;
485 /// Number of comparisons matched in the and/or chain
486 unsigned UsedICmps
= 0;
488 /// Construct and compute the result for the comparison instruction Cond
489 ConstantComparesGatherer(Instruction
*Cond
, const DataLayout
&DL
) : DL(DL
) {
493 ConstantComparesGatherer(const ConstantComparesGatherer
&) = delete;
494 ConstantComparesGatherer
&
495 operator=(const ConstantComparesGatherer
&) = delete;
498 /// Try to set the current value used for the comparison, it succeeds only if
499 /// it wasn't set before or if the new value is the same as the old one
500 bool setValueOnce(Value
*NewVal
) {
501 if (CompValue
&& CompValue
!= NewVal
)
504 return (CompValue
!= nullptr);
507 /// Try to match Instruction "I" as a comparison against a constant and
508 /// populates the array Vals with the set of values that match (or do not
509 /// match depending on isEQ).
510 /// Return false on failure. On success, the Value the comparison matched
511 /// against is placed in CompValue.
512 /// If CompValue is already set, the function is expected to fail if a match
513 /// is found but the value compared to is different.
514 bool matchInstruction(Instruction
*I
, bool isEQ
) {
515 // If this is an icmp against a constant, handle this as one of the cases.
518 if (!((ICI
= dyn_cast
<ICmpInst
>(I
)) &&
519 (C
= GetConstantInt(I
->getOperand(1), DL
)))) {
526 // Pattern match a special case
527 // (x & ~2^z) == y --> x == y || x == y|2^z
528 // This undoes a transformation done by instcombine to fuse 2 compares.
529 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
)) {
530 // It's a little bit hard to see why the following transformations are
531 // correct. Here is a CVC3 program to verify them for 64-bit values:
534 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
538 mask : BITVECTOR(64) = BVSHL(ONE, z);
539 QUERY( (y & ~mask = y) =>
540 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
542 QUERY( (y | mask = y) =>
543 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
547 // Please note that each pattern must be a dual implication (<--> or
548 // iff). One directional implication can create spurious matches. If the
549 // implication is only one-way, an unsatisfiable condition on the left
550 // side can imply a satisfiable condition on the right side. Dual
551 // implication ensures that satisfiable conditions are transformed to
552 // other satisfiable conditions and unsatisfiable conditions are
553 // transformed to other unsatisfiable conditions.
555 // Here is a concrete example of a unsatisfiable condition on the left
556 // implying a satisfiable condition on the right:
559 // (x & ~mask) == y --> (x == y || x == (y | mask))
561 // Substituting y = 3, z = 0 yields:
562 // (x & -2) == 3 --> (x == 3 || x == 2)
564 // Pattern match a special case:
566 QUERY( (y & ~mask = y) =>
567 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
570 if (match(ICI
->getOperand(0),
571 m_And(m_Value(RHSVal
), m_APInt(RHSC
)))) {
573 if (Mask
.isPowerOf2() && (C
->getValue() & ~Mask
) == C
->getValue()) {
574 // If we already have a value for the switch, it has to match!
575 if (!setValueOnce(RHSVal
))
580 ConstantInt::get(C
->getContext(),
581 C
->getValue() | Mask
));
587 // Pattern match a special case:
589 QUERY( (y | mask = y) =>
590 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
593 if (match(ICI
->getOperand(0),
594 m_Or(m_Value(RHSVal
), m_APInt(RHSC
)))) {
596 if (Mask
.isPowerOf2() && (C
->getValue() | Mask
) == C
->getValue()) {
597 // If we already have a value for the switch, it has to match!
598 if (!setValueOnce(RHSVal
))
602 Vals
.push_back(ConstantInt::get(C
->getContext(),
603 C
->getValue() & ~Mask
));
609 // If we already have a value for the switch, it has to match!
610 if (!setValueOnce(ICI
->getOperand(0)))
615 return ICI
->getOperand(0);
618 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
620 ConstantRange::makeExactICmpRegion(ICI
->getPredicate(), C
->getValue());
622 // Shift the range if the compare is fed by an add. This is the range
623 // compare idiom as emitted by instcombine.
624 Value
*CandidateVal
= I
->getOperand(0);
625 if (match(I
->getOperand(0), m_Add(m_Value(RHSVal
), m_APInt(RHSC
)))) {
626 Span
= Span
.subtract(*RHSC
);
627 CandidateVal
= RHSVal
;
630 // If this is an and/!= check, then we are looking to build the set of
631 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
634 Span
= Span
.inverse();
636 // If there are a ton of values, we don't want to make a ginormous switch.
637 if (Span
.isSizeLargerThan(8) || Span
.isEmptySet()) {
641 // If we already have a value for the switch, it has to match!
642 if (!setValueOnce(CandidateVal
))
645 // Add all values from the range to the set
646 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
647 Vals
.push_back(ConstantInt::get(I
->getContext(), Tmp
));
653 /// Given a potentially 'or'd or 'and'd together collection of icmp
654 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
655 /// the value being compared, and stick the list constants into the Vals
657 /// One "Extra" case is allowed to differ from the other.
658 void gather(Value
*V
) {
659 bool isEQ
= match(V
, m_LogicalOr(m_Value(), m_Value()));
661 // Keep a stack (SmallVector for efficiency) for depth-first traversal
662 SmallVector
<Value
*, 8> DFT
;
663 SmallPtrSet
<Value
*, 8> Visited
;
669 while (!DFT
.empty()) {
670 V
= DFT
.pop_back_val();
672 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
673 // If it is a || (or && depending on isEQ), process the operands.
675 if (isEQ
? match(I
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
)))
676 : match(I
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
677 if (Visited
.insert(Op1
).second
)
679 if (Visited
.insert(Op0
).second
)
685 // Try to match the current instruction
686 if (matchInstruction(I
, isEQ
))
687 // Match succeed, continue the loop
691 // One element of the sequence of || (or &&) could not be match as a
692 // comparison against the same value as the others.
693 // We allow only one "Extra" case to be checked before the switch
698 // Failed to parse a proper sequence, abort now
705 } // end anonymous namespace
707 static void EraseTerminatorAndDCECond(Instruction
*TI
,
708 MemorySSAUpdater
*MSSAU
= nullptr) {
709 Instruction
*Cond
= nullptr;
710 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
711 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
712 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
713 if (BI
->isConditional())
714 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
715 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
716 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
719 TI
->eraseFromParent();
721 RecursivelyDeleteTriviallyDeadInstructions(Cond
, nullptr, MSSAU
);
724 /// Return true if the specified terminator checks
725 /// to see if a value is equal to constant integer value.
726 Value
*SimplifyCFGOpt::isValueEqualityComparison(Instruction
*TI
) {
728 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
729 // Do not permit merging of large switch instructions into their
730 // predecessors unless there is only one predecessor.
731 if (!SI
->getParent()->hasNPredecessorsOrMore(128 / SI
->getNumSuccessors()))
732 CV
= SI
->getCondition();
733 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
734 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
735 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
736 if (ICI
->isEquality() && GetConstantInt(ICI
->getOperand(1), DL
))
737 CV
= ICI
->getOperand(0);
740 // Unwrap any lossless ptrtoint cast.
742 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
)) {
743 Value
*Ptr
= PTII
->getPointerOperand();
744 if (PTII
->getType() == DL
.getIntPtrType(Ptr
->getType()))
751 /// Given a value comparison instruction,
752 /// decode all of the 'cases' that it represents and return the 'default' block.
753 BasicBlock
*SimplifyCFGOpt::GetValueEqualityComparisonCases(
754 Instruction
*TI
, std::vector
<ValueEqualityComparisonCase
> &Cases
) {
755 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
756 Cases
.reserve(SI
->getNumCases());
757 for (auto Case
: SI
->cases())
758 Cases
.push_back(ValueEqualityComparisonCase(Case
.getCaseValue(),
759 Case
.getCaseSuccessor()));
760 return SI
->getDefaultDest();
763 BranchInst
*BI
= cast
<BranchInst
>(TI
);
764 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
765 BasicBlock
*Succ
= BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_NE
);
766 Cases
.push_back(ValueEqualityComparisonCase(
767 GetConstantInt(ICI
->getOperand(1), DL
), Succ
));
768 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
771 /// Given a vector of bb/value pairs, remove any entries
772 /// in the list that match the specified block.
774 EliminateBlockCases(BasicBlock
*BB
,
775 std::vector
<ValueEqualityComparisonCase
> &Cases
) {
776 llvm::erase_value(Cases
, BB
);
779 /// Return true if there are any keys in C1 that exist in C2 as well.
780 static bool ValuesOverlap(std::vector
<ValueEqualityComparisonCase
> &C1
,
781 std::vector
<ValueEqualityComparisonCase
> &C2
) {
782 std::vector
<ValueEqualityComparisonCase
> *V1
= &C1
, *V2
= &C2
;
784 // Make V1 be smaller than V2.
785 if (V1
->size() > V2
->size())
790 if (V1
->size() == 1) {
792 ConstantInt
*TheVal
= (*V1
)[0].Value
;
793 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
794 if (TheVal
== (*V2
)[i
].Value
)
798 // Otherwise, just sort both lists and compare element by element.
799 array_pod_sort(V1
->begin(), V1
->end());
800 array_pod_sort(V2
->begin(), V2
->end());
801 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
802 while (i1
!= e1
&& i2
!= e2
) {
803 if ((*V1
)[i1
].Value
== (*V2
)[i2
].Value
)
805 if ((*V1
)[i1
].Value
< (*V2
)[i2
].Value
)
813 // Set branch weights on SwitchInst. This sets the metadata if there is at
814 // least one non-zero weight.
815 static void setBranchWeights(SwitchInst
*SI
, ArrayRef
<uint32_t> Weights
) {
816 // Check that there is at least one non-zero weight. Otherwise, pass
817 // nullptr to setMetadata which will erase the existing metadata.
819 if (llvm::any_of(Weights
, [](uint32_t W
) { return W
!= 0; }))
820 N
= MDBuilder(SI
->getParent()->getContext()).createBranchWeights(Weights
);
821 SI
->setMetadata(LLVMContext::MD_prof
, N
);
824 // Similar to the above, but for branch and select instructions that take
825 // exactly 2 weights.
826 static void setBranchWeights(Instruction
*I
, uint32_t TrueWeight
,
827 uint32_t FalseWeight
) {
828 assert(isa
<BranchInst
>(I
) || isa
<SelectInst
>(I
));
829 // Check that there is at least one non-zero weight. Otherwise, pass
830 // nullptr to setMetadata which will erase the existing metadata.
832 if (TrueWeight
|| FalseWeight
)
833 N
= MDBuilder(I
->getParent()->getContext())
834 .createBranchWeights(TrueWeight
, FalseWeight
);
835 I
->setMetadata(LLVMContext::MD_prof
, N
);
838 /// If TI is known to be a terminator instruction and its block is known to
839 /// only have a single predecessor block, check to see if that predecessor is
840 /// also a value comparison with the same value, and if that comparison
841 /// determines the outcome of this comparison. If so, simplify TI. This does a
842 /// very limited form of jump threading.
843 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
844 Instruction
*TI
, BasicBlock
*Pred
, IRBuilder
<> &Builder
) {
845 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
847 return false; // Not a value comparison in predecessor.
849 Value
*ThisVal
= isValueEqualityComparison(TI
);
850 assert(ThisVal
&& "This isn't a value comparison!!");
851 if (ThisVal
!= PredVal
)
852 return false; // Different predicates.
854 // TODO: Preserve branch weight metadata, similarly to how
855 // FoldValueComparisonIntoPredecessors preserves it.
857 // Find out information about when control will move from Pred to TI's block.
858 std::vector
<ValueEqualityComparisonCase
> PredCases
;
859 BasicBlock
*PredDef
=
860 GetValueEqualityComparisonCases(Pred
->getTerminator(), PredCases
);
861 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
863 // Find information about how control leaves this block.
864 std::vector
<ValueEqualityComparisonCase
> ThisCases
;
865 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
866 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
868 // If TI's block is the default block from Pred's comparison, potentially
869 // simplify TI based on this knowledge.
870 if (PredDef
== TI
->getParent()) {
871 // If we are here, we know that the value is none of those cases listed in
872 // PredCases. If there are any cases in ThisCases that are in PredCases, we
874 if (!ValuesOverlap(PredCases
, ThisCases
))
877 if (isa
<BranchInst
>(TI
)) {
878 // Okay, one of the successors of this condbr is dead. Convert it to a
880 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
881 // Insert the new branch.
882 Instruction
*NI
= Builder
.CreateBr(ThisDef
);
885 // Remove PHI node entries for the dead edge.
886 ThisCases
[0].Dest
->removePredecessor(PredDef
);
888 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
889 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
892 EraseTerminatorAndDCECond(TI
);
896 {{DominatorTree::Delete
, PredDef
, ThisCases
[0].Dest
}});
901 SwitchInstProfUpdateWrapper SI
= *cast
<SwitchInst
>(TI
);
902 // Okay, TI has cases that are statically dead, prune them away.
903 SmallPtrSet
<Constant
*, 16> DeadCases
;
904 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
905 DeadCases
.insert(PredCases
[i
].Value
);
907 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
908 << "Through successor TI: " << *TI
);
910 SmallDenseMap
<BasicBlock
*, int, 8> NumPerSuccessorCases
;
911 for (SwitchInst::CaseIt i
= SI
->case_end(), e
= SI
->case_begin(); i
!= e
;) {
913 auto *Successor
= i
->getCaseSuccessor();
915 ++NumPerSuccessorCases
[Successor
];
916 if (DeadCases
.count(i
->getCaseValue())) {
917 Successor
->removePredecessor(PredDef
);
920 --NumPerSuccessorCases
[Successor
];
925 std::vector
<DominatorTree::UpdateType
> Updates
;
926 for (const std::pair
<BasicBlock
*, int> &I
: NumPerSuccessorCases
)
928 Updates
.push_back({DominatorTree::Delete
, PredDef
, I
.first
});
929 DTU
->applyUpdates(Updates
);
932 LLVM_DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
936 // Otherwise, TI's block must correspond to some matched value. Find out
937 // which value (or set of values) this is.
938 ConstantInt
*TIV
= nullptr;
939 BasicBlock
*TIBB
= TI
->getParent();
940 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
941 if (PredCases
[i
].Dest
== TIBB
) {
943 return false; // Cannot handle multiple values coming to this block.
944 TIV
= PredCases
[i
].Value
;
946 assert(TIV
&& "No edge from pred to succ?");
948 // Okay, we found the one constant that our value can be if we get into TI's
949 // BB. Find out which successor will unconditionally be branched to.
950 BasicBlock
*TheRealDest
= nullptr;
951 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
952 if (ThisCases
[i
].Value
== TIV
) {
953 TheRealDest
= ThisCases
[i
].Dest
;
957 // If not handled by any explicit cases, it is handled by the default case.
959 TheRealDest
= ThisDef
;
961 SmallPtrSet
<BasicBlock
*, 2> RemovedSuccs
;
963 // Remove PHI node entries for dead edges.
964 BasicBlock
*CheckEdge
= TheRealDest
;
965 for (BasicBlock
*Succ
: successors(TIBB
))
966 if (Succ
!= CheckEdge
) {
967 if (Succ
!= TheRealDest
)
968 RemovedSuccs
.insert(Succ
);
969 Succ
->removePredecessor(TIBB
);
973 // Insert the new branch.
974 Instruction
*NI
= Builder
.CreateBr(TheRealDest
);
977 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
978 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
981 EraseTerminatorAndDCECond(TI
);
983 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
984 Updates
.reserve(RemovedSuccs
.size());
985 for (auto *RemovedSucc
: RemovedSuccs
)
986 Updates
.push_back({DominatorTree::Delete
, TIBB
, RemovedSucc
});
987 DTU
->applyUpdates(Updates
);
994 /// This class implements a stable ordering of constant
995 /// integers that does not depend on their address. This is important for
996 /// applications that sort ConstantInt's to ensure uniqueness.
997 struct ConstantIntOrdering
{
998 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
999 return LHS
->getValue().ult(RHS
->getValue());
1003 } // end anonymous namespace
1005 static int ConstantIntSortPredicate(ConstantInt
*const *P1
,
1006 ConstantInt
*const *P2
) {
1007 const ConstantInt
*LHS
= *P1
;
1008 const ConstantInt
*RHS
= *P2
;
1011 return LHS
->getValue().ult(RHS
->getValue()) ? 1 : -1;
1014 static inline bool HasBranchWeights(const Instruction
*I
) {
1015 MDNode
*ProfMD
= I
->getMetadata(LLVMContext::MD_prof
);
1016 if (ProfMD
&& ProfMD
->getOperand(0))
1017 if (MDString
*MDS
= dyn_cast
<MDString
>(ProfMD
->getOperand(0)))
1018 return MDS
->getString().equals("branch_weights");
1023 /// Get Weights of a given terminator, the default weight is at the front
1024 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1026 static void GetBranchWeights(Instruction
*TI
,
1027 SmallVectorImpl
<uint64_t> &Weights
) {
1028 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_prof
);
1030 for (unsigned i
= 1, e
= MD
->getNumOperands(); i
< e
; ++i
) {
1031 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(i
));
1032 Weights
.push_back(CI
->getValue().getZExtValue());
1035 // If TI is a conditional eq, the default case is the false case,
1036 // and the corresponding branch-weight data is at index 2. We swap the
1037 // default weight to be the first entry.
1038 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1039 assert(Weights
.size() == 2);
1040 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
1041 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
1042 std::swap(Weights
.front(), Weights
.back());
1046 /// Keep halving the weights until all can fit in uint32_t.
1047 static void FitWeights(MutableArrayRef
<uint64_t> Weights
) {
1048 uint64_t Max
= *std::max_element(Weights
.begin(), Weights
.end());
1049 if (Max
> UINT_MAX
) {
1050 unsigned Offset
= 32 - countLeadingZeros(Max
);
1051 for (uint64_t &I
: Weights
)
1056 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1057 BasicBlock
*BB
, BasicBlock
*PredBlock
, ValueToValueMapTy
&VMap
) {
1058 Instruction
*PTI
= PredBlock
->getTerminator();
1060 // If we have bonus instructions, clone them into the predecessor block.
1061 // Note that there may be multiple predecessor blocks, so we cannot move
1062 // bonus instructions to a predecessor block.
1063 for (Instruction
&BonusInst
: *BB
) {
1064 if (isa
<DbgInfoIntrinsic
>(BonusInst
) || BonusInst
.isTerminator())
1067 Instruction
*NewBonusInst
= BonusInst
.clone();
1069 if (PTI
->getDebugLoc() != NewBonusInst
->getDebugLoc()) {
1070 // Unless the instruction has the same !dbg location as the original
1071 // branch, drop it. When we fold the bonus instructions we want to make
1072 // sure we reset their debug locations in order to avoid stepping on
1073 // dead code caused by folding dead branches.
1074 NewBonusInst
->setDebugLoc(DebugLoc());
1077 RemapInstruction(NewBonusInst
, VMap
,
1078 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1079 VMap
[&BonusInst
] = NewBonusInst
;
1081 // If we moved a load, we cannot any longer claim any knowledge about
1082 // its potential value. The previous information might have been valid
1083 // only given the branch precondition.
1084 // For an analogous reason, we must also drop all the metadata whose
1085 // semantics we don't understand. We *can* preserve !annotation, because
1086 // it is tied to the instruction itself, not the value or position.
1087 // Similarly strip attributes on call parameters that may cause UB in
1088 // location the call is moved to.
1089 NewBonusInst
->dropUndefImplyingAttrsAndUnknownMetadata(
1090 LLVMContext::MD_annotation
);
1092 PredBlock
->getInstList().insert(PTI
->getIterator(), NewBonusInst
);
1093 NewBonusInst
->takeName(&BonusInst
);
1094 BonusInst
.setName(NewBonusInst
->getName() + ".old");
1096 // Update (liveout) uses of bonus instructions,
1097 // now that the bonus instruction has been cloned into predecessor.
1098 SSAUpdater SSAUpdate
;
1099 SSAUpdate
.Initialize(BonusInst
.getType(),
1100 (NewBonusInst
->getName() + ".merge").str());
1101 SSAUpdate
.AddAvailableValue(BB
, &BonusInst
);
1102 SSAUpdate
.AddAvailableValue(PredBlock
, NewBonusInst
);
1103 for (Use
&U
: make_early_inc_range(BonusInst
.uses())) {
1104 auto *UI
= cast
<Instruction
>(U
.getUser());
1105 if (UI
->getParent() != PredBlock
)
1106 SSAUpdate
.RewriteUseAfterInsertions(U
);
1107 else // Use is in the same block as, and comes before, NewBonusInst.
1108 SSAUpdate
.RewriteUse(U
);
1113 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1114 Instruction
*TI
, Value
*&CV
, Instruction
*PTI
, IRBuilder
<> &Builder
) {
1115 BasicBlock
*BB
= TI
->getParent();
1116 BasicBlock
*Pred
= PTI
->getParent();
1118 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
1120 // Figure out which 'cases' to copy from SI to PSI.
1121 std::vector
<ValueEqualityComparisonCase
> BBCases
;
1122 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
1124 std::vector
<ValueEqualityComparisonCase
> PredCases
;
1125 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
1127 // Based on whether the default edge from PTI goes to BB or not, fill in
1128 // PredCases and PredDefault with the new switch cases we would like to
1130 SmallMapVector
<BasicBlock
*, int, 8> NewSuccessors
;
1132 // Update the branch weight metadata along the way
1133 SmallVector
<uint64_t, 8> Weights
;
1134 bool PredHasWeights
= HasBranchWeights(PTI
);
1135 bool SuccHasWeights
= HasBranchWeights(TI
);
1137 if (PredHasWeights
) {
1138 GetBranchWeights(PTI
, Weights
);
1139 // branch-weight metadata is inconsistent here.
1140 if (Weights
.size() != 1 + PredCases
.size())
1141 PredHasWeights
= SuccHasWeights
= false;
1142 } else if (SuccHasWeights
)
1143 // If there are no predecessor weights but there are successor weights,
1144 // populate Weights with 1, which will later be scaled to the sum of
1145 // successor's weights
1146 Weights
.assign(1 + PredCases
.size(), 1);
1148 SmallVector
<uint64_t, 8> SuccWeights
;
1149 if (SuccHasWeights
) {
1150 GetBranchWeights(TI
, SuccWeights
);
1151 // branch-weight metadata is inconsistent here.
1152 if (SuccWeights
.size() != 1 + BBCases
.size())
1153 PredHasWeights
= SuccHasWeights
= false;
1154 } else if (PredHasWeights
)
1155 SuccWeights
.assign(1 + BBCases
.size(), 1);
1157 if (PredDefault
== BB
) {
1158 // If this is the default destination from PTI, only the edges in TI
1159 // that don't occur in PTI, or that branch to BB will be activated.
1160 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1161 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1162 if (PredCases
[i
].Dest
!= BB
)
1163 PTIHandled
.insert(PredCases
[i
].Value
);
1165 // The default destination is BB, we don't need explicit targets.
1166 std::swap(PredCases
[i
], PredCases
.back());
1168 if (PredHasWeights
|| SuccHasWeights
) {
1169 // Increase weight for the default case.
1170 Weights
[0] += Weights
[i
+ 1];
1171 std::swap(Weights
[i
+ 1], Weights
.back());
1175 PredCases
.pop_back();
1180 // Reconstruct the new switch statement we will be building.
1181 if (PredDefault
!= BBDefault
) {
1182 PredDefault
->removePredecessor(Pred
);
1183 if (DTU
&& PredDefault
!= BB
)
1184 Updates
.push_back({DominatorTree::Delete
, Pred
, PredDefault
});
1185 PredDefault
= BBDefault
;
1186 ++NewSuccessors
[BBDefault
];
1189 unsigned CasesFromPred
= Weights
.size();
1190 uint64_t ValidTotalSuccWeight
= 0;
1191 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1192 if (!PTIHandled
.count(BBCases
[i
].Value
) && BBCases
[i
].Dest
!= BBDefault
) {
1193 PredCases
.push_back(BBCases
[i
]);
1194 ++NewSuccessors
[BBCases
[i
].Dest
];
1195 if (SuccHasWeights
|| PredHasWeights
) {
1196 // The default weight is at index 0, so weight for the ith case
1197 // should be at index i+1. Scale the cases from successor by
1198 // PredDefaultWeight (Weights[0]).
1199 Weights
.push_back(Weights
[0] * SuccWeights
[i
+ 1]);
1200 ValidTotalSuccWeight
+= SuccWeights
[i
+ 1];
1204 if (SuccHasWeights
|| PredHasWeights
) {
1205 ValidTotalSuccWeight
+= SuccWeights
[0];
1206 // Scale the cases from predecessor by ValidTotalSuccWeight.
1207 for (unsigned i
= 1; i
< CasesFromPred
; ++i
)
1208 Weights
[i
] *= ValidTotalSuccWeight
;
1209 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1210 Weights
[0] *= SuccWeights
[0];
1213 // If this is not the default destination from PSI, only the edges
1214 // in SI that occur in PSI with a destination of BB will be
1216 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
1217 std::map
<ConstantInt
*, uint64_t> WeightsForHandled
;
1218 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
1219 if (PredCases
[i
].Dest
== BB
) {
1220 PTIHandled
.insert(PredCases
[i
].Value
);
1222 if (PredHasWeights
|| SuccHasWeights
) {
1223 WeightsForHandled
[PredCases
[i
].Value
] = Weights
[i
+ 1];
1224 std::swap(Weights
[i
+ 1], Weights
.back());
1228 std::swap(PredCases
[i
], PredCases
.back());
1229 PredCases
.pop_back();
1234 // Okay, now we know which constants were sent to BB from the
1235 // predecessor. Figure out where they will all go now.
1236 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
1237 if (PTIHandled
.count(BBCases
[i
].Value
)) {
1238 // If this is one we are capable of getting...
1239 if (PredHasWeights
|| SuccHasWeights
)
1240 Weights
.push_back(WeightsForHandled
[BBCases
[i
].Value
]);
1241 PredCases
.push_back(BBCases
[i
]);
1242 ++NewSuccessors
[BBCases
[i
].Dest
];
1243 PTIHandled
.erase(BBCases
[i
].Value
); // This constant is taken care of
1246 // If there are any constants vectored to BB that TI doesn't handle,
1247 // they must go to the default destination of TI.
1248 for (ConstantInt
*I
: PTIHandled
) {
1249 if (PredHasWeights
|| SuccHasWeights
)
1250 Weights
.push_back(WeightsForHandled
[I
]);
1251 PredCases
.push_back(ValueEqualityComparisonCase(I
, BBDefault
));
1252 ++NewSuccessors
[BBDefault
];
1256 // Okay, at this point, we know which new successor Pred will get. Make
1257 // sure we update the number of entries in the PHI nodes for these
1259 SmallPtrSet
<BasicBlock
*, 2> SuccsOfPred
;
1261 SuccsOfPred
= {succ_begin(Pred
), succ_end(Pred
)};
1262 Updates
.reserve(Updates
.size() + NewSuccessors
.size());
1264 for (const std::pair
<BasicBlock
*, int /*Num*/> &NewSuccessor
:
1266 for (auto I
: seq(0, NewSuccessor
.second
)) {
1268 AddPredecessorToBlock(NewSuccessor
.first
, Pred
, BB
);
1270 if (DTU
&& !SuccsOfPred
.contains(NewSuccessor
.first
))
1271 Updates
.push_back({DominatorTree::Insert
, Pred
, NewSuccessor
.first
});
1274 Builder
.SetInsertPoint(PTI
);
1275 // Convert pointer to int before we switch.
1276 if (CV
->getType()->isPointerTy()) {
1278 Builder
.CreatePtrToInt(CV
, DL
.getIntPtrType(CV
->getType()), "magicptr");
1281 // Now that the successors are updated, create the new Switch instruction.
1282 SwitchInst
*NewSI
= Builder
.CreateSwitch(CV
, PredDefault
, PredCases
.size());
1283 NewSI
->setDebugLoc(PTI
->getDebugLoc());
1284 for (ValueEqualityComparisonCase
&V
: PredCases
)
1285 NewSI
->addCase(V
.Value
, V
.Dest
);
1287 if (PredHasWeights
|| SuccHasWeights
) {
1288 // Halve the weights if any of them cannot fit in an uint32_t
1289 FitWeights(Weights
);
1291 SmallVector
<uint32_t, 8> MDWeights(Weights
.begin(), Weights
.end());
1293 setBranchWeights(NewSI
, MDWeights
);
1296 EraseTerminatorAndDCECond(PTI
);
1298 // Okay, last check. If BB is still a successor of PSI, then we must
1299 // have an infinite loop case. If so, add an infinitely looping block
1300 // to handle the case to preserve the behavior of the code.
1301 BasicBlock
*InfLoopBlock
= nullptr;
1302 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
1303 if (NewSI
->getSuccessor(i
) == BB
) {
1304 if (!InfLoopBlock
) {
1305 // Insert it at the end of the function, because it's either code,
1306 // or it won't matter if it's hot. :)
1308 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
1309 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1312 {DominatorTree::Insert
, InfLoopBlock
, InfLoopBlock
});
1314 NewSI
->setSuccessor(i
, InfLoopBlock
);
1319 Updates
.push_back({DominatorTree::Insert
, Pred
, InfLoopBlock
});
1321 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
1323 DTU
->applyUpdates(Updates
);
1326 ++NumFoldValueComparisonIntoPredecessors
;
1330 /// The specified terminator is a value equality comparison instruction
1331 /// (either a switch or a branch on "X == c").
1332 /// See if any of the predecessors of the terminator block are value comparisons
1333 /// on the same value. If so, and if safe to do so, fold them together.
1334 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction
*TI
,
1335 IRBuilder
<> &Builder
) {
1336 BasicBlock
*BB
= TI
->getParent();
1337 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
1338 assert(CV
&& "Not a comparison?");
1340 bool Changed
= false;
1342 SmallSetVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
1343 while (!Preds
.empty()) {
1344 BasicBlock
*Pred
= Preds
.pop_back_val();
1345 Instruction
*PTI
= Pred
->getTerminator();
1347 // Don't try to fold into itself.
1351 // See if the predecessor is a comparison with the same value.
1352 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
1356 SmallSetVector
<BasicBlock
*, 4> FailBlocks
;
1357 if (!SafeToMergeTerminators(TI
, PTI
, &FailBlocks
)) {
1358 for (auto *Succ
: FailBlocks
) {
1359 if (!SplitBlockPredecessors(Succ
, TI
->getParent(), ".fold.split", DTU
))
1364 PerformValueComparisonIntoPredecessorFolding(TI
, CV
, PTI
, Builder
);
1370 // If we would need to insert a select that uses the value of this invoke
1371 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1372 // can't hoist the invoke, as there is nowhere to put the select in this case.
1373 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
1374 Instruction
*I1
, Instruction
*I2
) {
1375 for (BasicBlock
*Succ
: successors(BB1
)) {
1376 for (const PHINode
&PN
: Succ
->phis()) {
1377 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1378 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1379 if (BB1V
!= BB2V
&& (BB1V
== I1
|| BB2V
== I2
)) {
1387 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
, bool PtrValueMayBeModified
= false);
1389 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1390 /// in the two blocks up into the branch block. The caller of this function
1391 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1392 /// only perform hoisting in case both blocks only contain a terminator. In that
1393 /// case, only the original BI will be replaced and selects for PHIs are added.
1394 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst
*BI
,
1395 const TargetTransformInfo
&TTI
,
1397 // This does very trivial matching, with limited scanning, to find identical
1398 // instructions in the two blocks. In particular, we don't want to get into
1399 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1400 // such, we currently just scan for obviously identical instructions in an
1402 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
1403 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
1405 // If either of the blocks has it's address taken, then we can't do this fold,
1406 // because the code we'd hoist would no longer run when we jump into the block
1408 if (BB1
->hasAddressTaken() || BB2
->hasAddressTaken())
1411 BasicBlock::iterator BB1_Itr
= BB1
->begin();
1412 BasicBlock::iterator BB2_Itr
= BB2
->begin();
1414 Instruction
*I1
= &*BB1_Itr
++, *I2
= &*BB2_Itr
++;
1415 // Skip debug info if it is not identical.
1416 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1417 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1418 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1419 while (isa
<DbgInfoIntrinsic
>(I1
))
1421 while (isa
<DbgInfoIntrinsic
>(I2
))
1424 // FIXME: Can we define a safety predicate for CallBr?
1425 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
) ||
1426 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)) ||
1427 isa
<CallBrInst
>(I1
))
1430 BasicBlock
*BIParent
= BI
->getParent();
1432 bool Changed
= false;
1434 auto _
= make_scope_exit([&]() {
1436 ++NumHoistCommonCode
;
1439 // Check if only hoisting terminators is allowed. This does not add new
1440 // instructions to the hoist location.
1442 // Skip any debug intrinsics, as they are free to hoist.
1443 auto *I1NonDbg
= &*skipDebugIntrinsics(I1
->getIterator());
1444 auto *I2NonDbg
= &*skipDebugIntrinsics(I2
->getIterator());
1445 if (!I1NonDbg
->isIdenticalToWhenDefined(I2NonDbg
))
1447 if (!I1NonDbg
->isTerminator())
1449 // Now we know that we only need to hoist debug instrinsics and the
1450 // terminator. Let the loop below handle those 2 cases.
1454 // If we are hoisting the terminator instruction, don't move one (making a
1455 // broken BB), instead clone it, and remove BI.
1456 if (I1
->isTerminator())
1457 goto HoistTerminator
;
1459 // If we're going to hoist a call, make sure that the two instructions we're
1460 // commoning/hoisting are both marked with musttail, or neither of them is
1461 // marked as such. Otherwise, we might end up in a situation where we hoist
1462 // from a block where the terminator is a `ret` to a block where the terminator
1463 // is a `br`, and `musttail` calls expect to be followed by a return.
1464 auto *C1
= dyn_cast
<CallInst
>(I1
);
1465 auto *C2
= dyn_cast
<CallInst
>(I2
);
1467 if (C1
->isMustTailCall() != C2
->isMustTailCall())
1470 if (!TTI
.isProfitableToHoist(I1
) || !TTI
.isProfitableToHoist(I2
))
1473 // If any of the two call sites has nomerge attribute, stop hoisting.
1474 if (const auto *CB1
= dyn_cast
<CallBase
>(I1
))
1475 if (CB1
->cannotMerge())
1477 if (const auto *CB2
= dyn_cast
<CallBase
>(I2
))
1478 if (CB2
->cannotMerge())
1481 if (isa
<DbgInfoIntrinsic
>(I1
) || isa
<DbgInfoIntrinsic
>(I2
)) {
1482 assert (isa
<DbgInfoIntrinsic
>(I1
) && isa
<DbgInfoIntrinsic
>(I2
));
1483 // The debug location is an integral part of a debug info intrinsic
1484 // and can't be separated from it or replaced. Instead of attempting
1485 // to merge locations, simply hoist both copies of the intrinsic.
1486 BIParent
->getInstList().splice(BI
->getIterator(),
1487 BB1
->getInstList(), I1
);
1488 BIParent
->getInstList().splice(BI
->getIterator(),
1489 BB2
->getInstList(), I2
);
1492 // For a normal instruction, we just move one to right before the branch,
1493 // then replace all uses of the other with the first. Finally, we remove
1494 // the now redundant second instruction.
1495 BIParent
->getInstList().splice(BI
->getIterator(),
1496 BB1
->getInstList(), I1
);
1497 if (!I2
->use_empty())
1498 I2
->replaceAllUsesWith(I1
);
1500 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
,
1501 LLVMContext::MD_range
,
1502 LLVMContext::MD_fpmath
,
1503 LLVMContext::MD_invariant_load
,
1504 LLVMContext::MD_nonnull
,
1505 LLVMContext::MD_invariant_group
,
1506 LLVMContext::MD_align
,
1507 LLVMContext::MD_dereferenceable
,
1508 LLVMContext::MD_dereferenceable_or_null
,
1509 LLVMContext::MD_mem_parallel_loop_access
,
1510 LLVMContext::MD_access_group
,
1511 LLVMContext::MD_preserve_access_index
};
1512 combineMetadata(I1
, I2
, KnownIDs
, true);
1514 // I1 and I2 are being combined into a single instruction. Its debug
1515 // location is the merged locations of the original instructions.
1516 I1
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1518 I2
->eraseFromParent();
1521 ++NumHoistCommonInstrs
;
1525 // Skip debug info if it is not identical.
1526 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
1527 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
1528 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
1529 while (isa
<DbgInfoIntrinsic
>(I1
))
1531 while (isa
<DbgInfoIntrinsic
>(I2
))
1534 } while (I1
->isIdenticalToWhenDefined(I2
));
1539 // It may not be possible to hoist an invoke.
1540 // FIXME: Can we define a safety predicate for CallBr?
1541 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
1544 // TODO: callbr hoisting currently disabled pending further study.
1545 if (isa
<CallBrInst
>(I1
))
1548 for (BasicBlock
*Succ
: successors(BB1
)) {
1549 for (PHINode
&PN
: Succ
->phis()) {
1550 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1551 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1555 // Check for passingValueIsAlwaysUndefined here because we would rather
1556 // eliminate undefined control flow then converting it to a select.
1557 if (passingValueIsAlwaysUndefined(BB1V
, &PN
) ||
1558 passingValueIsAlwaysUndefined(BB2V
, &PN
))
1561 if (isa
<ConstantExpr
>(BB1V
) && !isSafeToSpeculativelyExecute(BB1V
))
1563 if (isa
<ConstantExpr
>(BB2V
) && !isSafeToSpeculativelyExecute(BB2V
))
1568 // Okay, it is safe to hoist the terminator.
1569 Instruction
*NT
= I1
->clone();
1570 BIParent
->getInstList().insert(BI
->getIterator(), NT
);
1571 if (!NT
->getType()->isVoidTy()) {
1572 I1
->replaceAllUsesWith(NT
);
1573 I2
->replaceAllUsesWith(NT
);
1577 ++NumHoistCommonInstrs
;
1579 // Ensure terminator gets a debug location, even an unknown one, in case
1580 // it involves inlinable calls.
1581 NT
->applyMergedLocation(I1
->getDebugLoc(), I2
->getDebugLoc());
1583 // PHIs created below will adopt NT's merged DebugLoc.
1584 IRBuilder
<NoFolder
> Builder(NT
);
1586 // Hoisting one of the terminators from our successor is a great thing.
1587 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1588 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1589 // nodes, so we insert select instruction to compute the final result.
1590 std::map
<std::pair
<Value
*, Value
*>, SelectInst
*> InsertedSelects
;
1591 for (BasicBlock
*Succ
: successors(BB1
)) {
1592 for (PHINode
&PN
: Succ
->phis()) {
1593 Value
*BB1V
= PN
.getIncomingValueForBlock(BB1
);
1594 Value
*BB2V
= PN
.getIncomingValueForBlock(BB2
);
1598 // These values do not agree. Insert a select instruction before NT
1599 // that determines the right value.
1600 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
1602 // Propagate fast-math-flags from phi node to its replacement select.
1603 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
1604 if (isa
<FPMathOperator
>(PN
))
1605 Builder
.setFastMathFlags(PN
.getFastMathFlags());
1607 SI
= cast
<SelectInst
>(
1608 Builder
.CreateSelect(BI
->getCondition(), BB1V
, BB2V
,
1609 BB1V
->getName() + "." + BB2V
->getName(), BI
));
1612 // Make the PHI node use the select for all incoming values for BB1/BB2
1613 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
1614 if (PN
.getIncomingBlock(i
) == BB1
|| PN
.getIncomingBlock(i
) == BB2
)
1615 PN
.setIncomingValue(i
, SI
);
1619 SmallVector
<DominatorTree::UpdateType
, 4> Updates
;
1621 // Update any PHI nodes in our new successors.
1622 for (BasicBlock
*Succ
: successors(BB1
)) {
1623 AddPredecessorToBlock(Succ
, BIParent
, BB1
);
1625 Updates
.push_back({DominatorTree::Insert
, BIParent
, Succ
});
1629 for (BasicBlock
*Succ
: successors(BI
))
1630 Updates
.push_back({DominatorTree::Delete
, BIParent
, Succ
});
1632 EraseTerminatorAndDCECond(BI
);
1634 DTU
->applyUpdates(Updates
);
1638 // Check lifetime markers.
1639 static bool isLifeTimeMarker(const Instruction
*I
) {
1640 if (auto II
= dyn_cast
<IntrinsicInst
>(I
)) {
1641 switch (II
->getIntrinsicID()) {
1644 case Intrinsic::lifetime_start
:
1645 case Intrinsic::lifetime_end
:
1652 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1654 static bool replacingOperandWithVariableIsCheap(const Instruction
*I
,
1656 return !isa
<IntrinsicInst
>(I
);
1659 // All instructions in Insts belong to different blocks that all unconditionally
1660 // branch to a common successor. Analyze each instruction and return true if it
1661 // would be possible to sink them into their successor, creating one common
1662 // instruction instead. For every value that would be required to be provided by
1663 // PHI node (because an operand varies in each input block), add to PHIOperands.
1664 static bool canSinkInstructions(
1665 ArrayRef
<Instruction
*> Insts
,
1666 DenseMap
<Instruction
*, SmallVector
<Value
*, 4>> &PHIOperands
) {
1667 // Prune out obviously bad instructions to move. Each instruction must have
1668 // exactly zero or one use, and we check later that use is by a single, common
1669 // PHI instruction in the successor.
1670 bool HasUse
= !Insts
.front()->user_empty();
1671 for (auto *I
: Insts
) {
1672 // These instructions may change or break semantics if moved.
1673 if (isa
<PHINode
>(I
) || I
->isEHPad() || isa
<AllocaInst
>(I
) ||
1674 I
->getType()->isTokenTy())
1677 // Do not try to sink an instruction in an infinite loop - it can cause
1678 // this algorithm to infinite loop.
1679 if (I
->getParent()->getSingleSuccessor() == I
->getParent())
1682 // Conservatively return false if I is an inline-asm instruction. Sinking
1683 // and merging inline-asm instructions can potentially create arguments
1684 // that cannot satisfy the inline-asm constraints.
1685 // If the instruction has nomerge attribute, return false.
1686 if (const auto *C
= dyn_cast
<CallBase
>(I
))
1687 if (C
->isInlineAsm() || C
->cannotMerge())
1690 // Each instruction must have zero or one use.
1691 if (HasUse
&& !I
->hasOneUse())
1693 if (!HasUse
&& !I
->user_empty())
1697 const Instruction
*I0
= Insts
.front();
1698 for (auto *I
: Insts
)
1699 if (!I
->isSameOperationAs(I0
))
1702 // All instructions in Insts are known to be the same opcode. If they have a
1703 // use, check that the only user is a PHI or in the same block as the
1704 // instruction, because if a user is in the same block as an instruction we're
1705 // contemplating sinking, it must already be determined to be sinkable.
1707 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1708 auto *Succ
= I0
->getParent()->getTerminator()->getSuccessor(0);
1709 if (!all_of(Insts
, [&PNUse
,&Succ
](const Instruction
*I
) -> bool {
1710 auto *U
= cast
<Instruction
>(*I
->user_begin());
1712 PNUse
->getParent() == Succ
&&
1713 PNUse
->getIncomingValueForBlock(I
->getParent()) == I
) ||
1714 U
->getParent() == I
->getParent();
1719 // Because SROA can't handle speculating stores of selects, try not to sink
1720 // loads, stores or lifetime markers of allocas when we'd have to create a
1721 // PHI for the address operand. Also, because it is likely that loads or
1722 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1724 // This can cause code churn which can have unintended consequences down
1725 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1726 // FIXME: This is a workaround for a deficiency in SROA - see
1727 // https://llvm.org/bugs/show_bug.cgi?id=30188
1728 if (isa
<StoreInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1729 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1732 if (isa
<LoadInst
>(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1733 return isa
<AllocaInst
>(I
->getOperand(0)->stripPointerCasts());
1736 if (isLifeTimeMarker(I0
) && any_of(Insts
, [](const Instruction
*I
) {
1737 return isa
<AllocaInst
>(I
->getOperand(1)->stripPointerCasts());
1741 // For calls to be sinkable, they must all be indirect, or have same callee.
1742 // I.e. if we have two direct calls to different callees, we don't want to
1743 // turn that into an indirect call. Likewise, if we have an indirect call,
1744 // and a direct call, we don't actually want to have a single indirect call.
1745 if (isa
<CallBase
>(I0
)) {
1746 auto IsIndirectCall
= [](const Instruction
*I
) {
1747 return cast
<CallBase
>(I
)->isIndirectCall();
1749 bool HaveIndirectCalls
= any_of(Insts
, IsIndirectCall
);
1750 bool AllCallsAreIndirect
= all_of(Insts
, IsIndirectCall
);
1751 if (HaveIndirectCalls
) {
1752 if (!AllCallsAreIndirect
)
1755 // All callees must be identical.
1756 Value
*Callee
= nullptr;
1757 for (const Instruction
*I
: Insts
) {
1758 Value
*CurrCallee
= cast
<CallBase
>(I
)->getCalledOperand();
1760 Callee
= CurrCallee
;
1761 else if (Callee
!= CurrCallee
)
1767 for (unsigned OI
= 0, OE
= I0
->getNumOperands(); OI
!= OE
; ++OI
) {
1768 Value
*Op
= I0
->getOperand(OI
);
1769 if (Op
->getType()->isTokenTy())
1770 // Don't touch any operand of token type.
1773 auto SameAsI0
= [&I0
, OI
](const Instruction
*I
) {
1774 assert(I
->getNumOperands() == I0
->getNumOperands());
1775 return I
->getOperand(OI
) == I0
->getOperand(OI
);
1777 if (!all_of(Insts
, SameAsI0
)) {
1778 if ((isa
<Constant
>(Op
) && !replacingOperandWithVariableIsCheap(I0
, OI
)) ||
1779 !canReplaceOperandWithVariable(I0
, OI
))
1780 // We can't create a PHI from this GEP.
1782 for (auto *I
: Insts
)
1783 PHIOperands
[I
].push_back(I
->getOperand(OI
));
1789 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1790 // instruction of every block in Blocks to their common successor, commoning
1791 // into one instruction.
1792 static bool sinkLastInstruction(ArrayRef
<BasicBlock
*> Blocks
) {
1793 auto *BBEnd
= Blocks
[0]->getTerminator()->getSuccessor(0);
1795 // canSinkInstructions returning true guarantees that every block has at
1796 // least one non-terminator instruction.
1797 SmallVector
<Instruction
*,4> Insts
;
1798 for (auto *BB
: Blocks
) {
1799 Instruction
*I
= BB
->getTerminator();
1801 I
= I
->getPrevNode();
1802 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= &BB
->front());
1803 if (!isa
<DbgInfoIntrinsic
>(I
))
1807 // The only checking we need to do now is that all users of all instructions
1808 // are the same PHI node. canSinkInstructions should have checked this but
1809 // it is slightly over-aggressive - it gets confused by commutative
1810 // instructions so double-check it here.
1811 Instruction
*I0
= Insts
.front();
1812 if (!I0
->user_empty()) {
1813 auto *PNUse
= dyn_cast
<PHINode
>(*I0
->user_begin());
1814 if (!all_of(Insts
, [&PNUse
](const Instruction
*I
) -> bool {
1815 auto *U
= cast
<Instruction
>(*I
->user_begin());
1821 // We don't need to do any more checking here; canSinkInstructions should
1822 // have done it all for us.
1823 SmallVector
<Value
*, 4> NewOperands
;
1824 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
) {
1825 // This check is different to that in canSinkInstructions. There, we
1826 // cared about the global view once simplifycfg (and instcombine) have
1827 // completed - it takes into account PHIs that become trivially
1828 // simplifiable. However here we need a more local view; if an operand
1829 // differs we create a PHI and rely on instcombine to clean up the very
1830 // small mess we may make.
1831 bool NeedPHI
= any_of(Insts
, [&I0
, O
](const Instruction
*I
) {
1832 return I
->getOperand(O
) != I0
->getOperand(O
);
1835 NewOperands
.push_back(I0
->getOperand(O
));
1839 // Create a new PHI in the successor block and populate it.
1840 auto *Op
= I0
->getOperand(O
);
1841 assert(!Op
->getType()->isTokenTy() && "Can't PHI tokens!");
1842 auto *PN
= PHINode::Create(Op
->getType(), Insts
.size(),
1843 Op
->getName() + ".sink", &BBEnd
->front());
1844 for (auto *I
: Insts
)
1845 PN
->addIncoming(I
->getOperand(O
), I
->getParent());
1846 NewOperands
.push_back(PN
);
1849 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1850 // and move it to the start of the successor block.
1851 for (unsigned O
= 0, E
= I0
->getNumOperands(); O
!= E
; ++O
)
1852 I0
->getOperandUse(O
).set(NewOperands
[O
]);
1853 I0
->moveBefore(&*BBEnd
->getFirstInsertionPt());
1855 // Update metadata and IR flags, and merge debug locations.
1856 for (auto *I
: Insts
)
1858 // The debug location for the "common" instruction is the merged locations
1859 // of all the commoned instructions. We start with the original location
1860 // of the "common" instruction and iteratively merge each location in the
1862 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1863 // However, as N-way merge for CallInst is rare, so we use simplified API
1864 // instead of using complex API for N-way merge.
1865 I0
->applyMergedLocation(I0
->getDebugLoc(), I
->getDebugLoc());
1866 combineMetadataForCSE(I0
, I
, true);
1870 if (!I0
->user_empty()) {
1871 // canSinkLastInstruction checked that all instructions were used by
1872 // one and only one PHI node. Find that now, RAUW it to our common
1873 // instruction and nuke it.
1874 auto *PN
= cast
<PHINode
>(*I0
->user_begin());
1875 PN
->replaceAllUsesWith(I0
);
1876 PN
->eraseFromParent();
1879 // Finally nuke all instructions apart from the common instruction.
1880 for (auto *I
: Insts
)
1882 I
->eraseFromParent();
1889 // LockstepReverseIterator - Iterates through instructions
1890 // in a set of blocks in reverse order from the first non-terminator.
1891 // For example (assume all blocks have size n):
1892 // LockstepReverseIterator I([B1, B2, B3]);
1893 // *I-- = [B1[n], B2[n], B3[n]];
1894 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1895 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1897 class LockstepReverseIterator
{
1898 ArrayRef
<BasicBlock
*> Blocks
;
1899 SmallVector
<Instruction
*,4> Insts
;
1903 LockstepReverseIterator(ArrayRef
<BasicBlock
*> Blocks
) : Blocks(Blocks
) {
1910 for (auto *BB
: Blocks
) {
1911 Instruction
*Inst
= BB
->getTerminator();
1912 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1913 Inst
= Inst
->getPrevNode();
1915 // Block wasn't big enough.
1919 Insts
.push_back(Inst
);
1923 bool isValid() const {
1930 for (auto *&Inst
: Insts
) {
1931 for (Inst
= Inst
->getPrevNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1932 Inst
= Inst
->getPrevNode();
1933 // Already at beginning of block.
1944 for (auto *&Inst
: Insts
) {
1945 for (Inst
= Inst
->getNextNode(); Inst
&& isa
<DbgInfoIntrinsic
>(Inst
);)
1946 Inst
= Inst
->getNextNode();
1947 // Already at end of block.
1955 ArrayRef
<Instruction
*> operator * () const {
1960 } // end anonymous namespace
1962 /// Check whether BB's predecessors end with unconditional branches. If it is
1963 /// true, sink any common code from the predecessors to BB.
1964 static bool SinkCommonCodeFromPredecessors(BasicBlock
*BB
,
1965 DomTreeUpdater
*DTU
) {
1966 // We support two situations:
1967 // (1) all incoming arcs are unconditional
1968 // (2) there are non-unconditional incoming arcs
1970 // (2) is very common in switch defaults and
1971 // else-if patterns;
1974 // else if (b) f(2);
1987 // [end] has two unconditional predecessor arcs and one conditional. The
1988 // conditional refers to the implicit empty 'else' arc. This conditional
1989 // arc can also be caused by an empty default block in a switch.
1991 // In this case, we attempt to sink code from all *unconditional* arcs.
1992 // If we can sink instructions from these arcs (determined during the scan
1993 // phase below) we insert a common successor for all unconditional arcs and
1994 // connect that to [end], to enable sinking:
2007 SmallVector
<BasicBlock
*,4> UnconditionalPreds
;
2008 bool HaveNonUnconditionalPredecessors
= false;
2009 for (auto *PredBB
: predecessors(BB
)) {
2010 auto *PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2011 if (PredBr
&& PredBr
->isUnconditional())
2012 UnconditionalPreds
.push_back(PredBB
);
2014 HaveNonUnconditionalPredecessors
= true;
2016 if (UnconditionalPreds
.size() < 2)
2019 // We take a two-step approach to tail sinking. First we scan from the end of
2020 // each block upwards in lockstep. If the n'th instruction from the end of each
2021 // block can be sunk, those instructions are added to ValuesToSink and we
2022 // carry on. If we can sink an instruction but need to PHI-merge some operands
2023 // (because they're not identical in each instruction) we add these to
2026 SmallPtrSet
<Value
*,4> InstructionsToSink
;
2027 DenseMap
<Instruction
*, SmallVector
<Value
*,4>> PHIOperands
;
2028 LockstepReverseIterator
LRI(UnconditionalPreds
);
2029 while (LRI
.isValid() &&
2030 canSinkInstructions(*LRI
, PHIOperands
)) {
2031 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI
)[0]
2033 InstructionsToSink
.insert((*LRI
).begin(), (*LRI
).end());
2038 // If no instructions can be sunk, early-return.
2042 // Okay, we *could* sink last ScanIdx instructions. But how many can we
2043 // actually sink before encountering instruction that is unprofitable to sink?
2044 auto ProfitableToSinkInstruction
= [&](LockstepReverseIterator
&LRI
) {
2045 unsigned NumPHIdValues
= 0;
2046 for (auto *I
: *LRI
)
2047 for (auto *V
: PHIOperands
[I
]) {
2048 if (InstructionsToSink
.count(V
) == 0)
2050 // FIXME: this check is overly optimistic. We may end up not sinking
2051 // said instruction, due to the very same profitability check.
2052 // See @creating_too_many_phis in sink-common-code.ll.
2054 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues
<< "\n");
2055 unsigned NumPHIInsts
= NumPHIdValues
/ UnconditionalPreds
.size();
2056 if ((NumPHIdValues
% UnconditionalPreds
.size()) != 0)
2059 return NumPHIInsts
<= 1;
2062 // We've determined that we are going to sink last ScanIdx instructions,
2063 // and recorded them in InstructionsToSink. Now, some instructions may be
2064 // unprofitable to sink. But that determination depends on the instructions
2065 // that we are going to sink.
2067 // First, forward scan: find the first instruction unprofitable to sink,
2068 // recording all the ones that are profitable to sink.
2069 // FIXME: would it be better, after we detect that not all are profitable.
2070 // to either record the profitable ones, or erase the unprofitable ones?
2071 // Maybe we need to choose (at runtime) the one that will touch least instrs?
2074 SmallPtrSet
<Value
*, 4> InstructionsProfitableToSink
;
2075 while (Idx
< ScanIdx
) {
2076 if (!ProfitableToSinkInstruction(LRI
)) {
2077 // Too many PHIs would be created.
2079 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2082 InstructionsProfitableToSink
.insert((*LRI
).begin(), (*LRI
).end());
2087 // If no instructions can be sunk, early-return.
2091 // Did we determine that (only) some instructions are unprofitable to sink?
2092 if (Idx
< ScanIdx
) {
2093 // Okay, some instructions are unprofitable.
2095 InstructionsToSink
= InstructionsProfitableToSink
;
2097 // But, that may make other instructions unprofitable, too.
2098 // So, do a backward scan, do any earlier instructions become unprofitable?
2099 assert(!ProfitableToSinkInstruction(LRI
) &&
2100 "We already know that the last instruction is unprofitable to sink");
2104 // If we detect that an instruction becomes unprofitable to sink,
2105 // all earlier instructions won't be sunk either,
2106 // so preemptively keep InstructionsProfitableToSink in sync.
2107 // FIXME: is this the most performant approach?
2108 for (auto *I
: *LRI
)
2109 InstructionsProfitableToSink
.erase(I
);
2110 if (!ProfitableToSinkInstruction(LRI
)) {
2111 // Everything starting with this instruction won't be sunk.
2113 InstructionsToSink
= InstructionsProfitableToSink
;
2120 // If no instructions can be sunk, early-return.
2124 bool Changed
= false;
2126 if (HaveNonUnconditionalPredecessors
) {
2127 // It is always legal to sink common instructions from unconditional
2128 // predecessors. However, if not all predecessors are unconditional,
2129 // this transformation might be pessimizing. So as a rule of thumb,
2130 // don't do it unless we'd sink at least one non-speculatable instruction.
2131 // See https://bugs.llvm.org/show_bug.cgi?id=30244
2134 bool Profitable
= false;
2135 while (Idx
< ScanIdx
) {
2136 if (!isSafeToSpeculativelyExecute((*LRI
)[0])) {
2146 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2147 // We have a conditional edge and we're going to sink some instructions.
2148 // Insert a new block postdominating all blocks we're going to sink from.
2149 if (!SplitBlockPredecessors(BB
, UnconditionalPreds
, ".sink.split", DTU
))
2150 // Edges couldn't be split.
2155 // Now that we've analyzed all potential sinking candidates, perform the
2156 // actual sink. We iteratively sink the last non-terminator of the source
2157 // blocks into their common successor unless doing so would require too
2158 // many PHI instructions to be generated (currently only one PHI is allowed
2159 // per sunk instruction).
2161 // We can use InstructionsToSink to discount values needing PHI-merging that will
2162 // actually be sunk in a later iteration. This allows us to be more
2163 // aggressive in what we sink. This does allow a false positive where we
2164 // sink presuming a later value will also be sunk, but stop half way through
2165 // and never actually sink it which means we produce more PHIs than intended.
2166 // This is unlikely in practice though.
2168 for (; SinkIdx
!= ScanIdx
; ++SinkIdx
) {
2169 LLVM_DEBUG(dbgs() << "SINK: Sink: "
2170 << *UnconditionalPreds
[0]->getTerminator()->getPrevNode()
2173 // Because we've sunk every instruction in turn, the current instruction to
2174 // sink is always at index 0.
2177 if (!sinkLastInstruction(UnconditionalPreds
)) {
2180 << "SINK: stopping here, failed to actually sink instruction!\n");
2184 NumSinkCommonInstrs
++;
2188 ++NumSinkCommonCode
;
2192 /// Determine if we can hoist sink a sole store instruction out of a
2193 /// conditional block.
2195 /// We are looking for code like the following:
2197 /// store i32 %add, i32* %arrayidx2
2198 /// ... // No other stores or function calls (we could be calling a memory
2199 /// ... // function).
2200 /// %cmp = icmp ult %x, %y
2201 /// br i1 %cmp, label %EndBB, label %ThenBB
2203 /// store i32 %add5, i32* %arrayidx2
2207 /// We are going to transform this into:
2209 /// store i32 %add, i32* %arrayidx2
2211 /// %cmp = icmp ult %x, %y
2212 /// %add.add5 = select i1 %cmp, i32 %add, %add5
2213 /// store i32 %add.add5, i32* %arrayidx2
2216 /// \return The pointer to the value of the previous store if the store can be
2217 /// hoisted into the predecessor block. 0 otherwise.
2218 static Value
*isSafeToSpeculateStore(Instruction
*I
, BasicBlock
*BrBB
,
2219 BasicBlock
*StoreBB
, BasicBlock
*EndBB
) {
2220 StoreInst
*StoreToHoist
= dyn_cast
<StoreInst
>(I
);
2224 // Volatile or atomic.
2225 if (!StoreToHoist
->isSimple())
2228 Value
*StorePtr
= StoreToHoist
->getPointerOperand();
2229 Type
*StoreTy
= StoreToHoist
->getValueOperand()->getType();
2231 // Look for a store to the same pointer in BrBB.
2232 unsigned MaxNumInstToLookAt
= 9;
2233 // Skip pseudo probe intrinsic calls which are not really killing any memory
2235 for (Instruction
&CurI
: reverse(BrBB
->instructionsWithoutDebug(true))) {
2236 if (!MaxNumInstToLookAt
)
2238 --MaxNumInstToLookAt
;
2240 // Could be calling an instruction that affects memory like free().
2241 if (CurI
.mayWriteToMemory() && !isa
<StoreInst
>(CurI
))
2244 if (auto *SI
= dyn_cast
<StoreInst
>(&CurI
)) {
2245 // Found the previous store to same location and type. Make sure it is
2246 // simple, to avoid introducing a spurious non-atomic write after an
2248 if (SI
->getPointerOperand() == StorePtr
&&
2249 SI
->getValueOperand()->getType() == StoreTy
&& SI
->isSimple())
2250 // Found the previous store, return its value operand.
2251 return SI
->getValueOperand();
2252 return nullptr; // Unknown store.
2255 if (auto *LI
= dyn_cast
<LoadInst
>(&CurI
)) {
2256 if (LI
->getPointerOperand() == StorePtr
&& LI
->getType() == StoreTy
&&
2258 // Local objects (created by an `alloca` instruction) are always
2259 // writable, so once we are past a read from a location it is valid to
2260 // also write to that same location.
2261 // If the address of the local object never escapes the function, that
2262 // means it's never concurrently read or written, hence moving the store
2263 // from under the condition will not introduce a data race.
2264 auto *AI
= dyn_cast
<AllocaInst
>(getUnderlyingObject(StorePtr
));
2265 if (AI
&& !PointerMayBeCaptured(AI
, false, true))
2266 // Found a previous load, return it.
2269 // The load didn't work out, but we may still find a store.
2276 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2277 /// converted to selects.
2278 static bool validateAndCostRequiredSelects(BasicBlock
*BB
, BasicBlock
*ThenBB
,
2280 unsigned &SpeculatedInstructions
,
2281 InstructionCost
&Cost
,
2282 const TargetTransformInfo
&TTI
) {
2283 TargetTransformInfo::TargetCostKind CostKind
=
2284 BB
->getParent()->hasMinSize()
2285 ? TargetTransformInfo::TCK_CodeSize
2286 : TargetTransformInfo::TCK_SizeAndLatency
;
2288 bool HaveRewritablePHIs
= false;
2289 for (PHINode
&PN
: EndBB
->phis()) {
2290 Value
*OrigV
= PN
.getIncomingValueForBlock(BB
);
2291 Value
*ThenV
= PN
.getIncomingValueForBlock(ThenBB
);
2293 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2294 // Skip PHIs which are trivial.
2298 Cost
+= TTI
.getCmpSelInstrCost(Instruction::Select
, PN
.getType(), nullptr,
2299 CmpInst::BAD_ICMP_PREDICATE
, CostKind
);
2301 // Don't convert to selects if we could remove undefined behavior instead.
2302 if (passingValueIsAlwaysUndefined(OrigV
, &PN
) ||
2303 passingValueIsAlwaysUndefined(ThenV
, &PN
))
2306 HaveRewritablePHIs
= true;
2307 ConstantExpr
*OrigCE
= dyn_cast
<ConstantExpr
>(OrigV
);
2308 ConstantExpr
*ThenCE
= dyn_cast
<ConstantExpr
>(ThenV
);
2309 if (!OrigCE
&& !ThenCE
)
2310 continue; // Known safe and cheap.
2312 if ((ThenCE
&& !isSafeToSpeculativelyExecute(ThenCE
)) ||
2313 (OrigCE
&& !isSafeToSpeculativelyExecute(OrigCE
)))
2315 InstructionCost OrigCost
= OrigCE
? computeSpeculationCost(OrigCE
, TTI
) : 0;
2316 InstructionCost ThenCost
= ThenCE
? computeSpeculationCost(ThenCE
, TTI
) : 0;
2317 InstructionCost MaxCost
=
2318 2 * PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2319 if (OrigCost
+ ThenCost
> MaxCost
)
2322 // Account for the cost of an unfolded ConstantExpr which could end up
2323 // getting expanded into Instructions.
2324 // FIXME: This doesn't account for how many operations are combined in the
2325 // constant expression.
2326 ++SpeculatedInstructions
;
2327 if (SpeculatedInstructions
> 1)
2331 return HaveRewritablePHIs
;
2334 /// Speculate a conditional basic block flattening the CFG.
2336 /// Note that this is a very risky transform currently. Speculating
2337 /// instructions like this is most often not desirable. Instead, there is an MI
2338 /// pass which can do it with full awareness of the resource constraints.
2339 /// However, some cases are "obvious" and we should do directly. An example of
2340 /// this is speculating a single, reasonably cheap instruction.
2342 /// There is only one distinct advantage to flattening the CFG at the IR level:
2343 /// it makes very common but simplistic optimizations such as are common in
2344 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2345 /// modeling their effects with easier to reason about SSA value graphs.
2348 /// An illustration of this transform is turning this IR:
2351 /// %cmp = icmp ult %x, %y
2352 /// br i1 %cmp, label %EndBB, label %ThenBB
2354 /// %sub = sub %x, %y
2357 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2364 /// %cmp = icmp ult %x, %y
2365 /// %sub = sub %x, %y
2366 /// %cond = select i1 %cmp, 0, %sub
2370 /// \returns true if the conditional block is removed.
2371 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*ThenBB
,
2372 const TargetTransformInfo
&TTI
) {
2373 // Be conservative for now. FP select instruction can often be expensive.
2374 Value
*BrCond
= BI
->getCondition();
2375 if (isa
<FCmpInst
>(BrCond
))
2378 BasicBlock
*BB
= BI
->getParent();
2379 BasicBlock
*EndBB
= ThenBB
->getTerminator()->getSuccessor(0);
2380 InstructionCost Budget
=
2381 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2383 // If ThenBB is actually on the false edge of the conditional branch, remember
2384 // to swap the select operands later.
2385 bool Invert
= false;
2386 if (ThenBB
!= BI
->getSuccessor(0)) {
2387 assert(ThenBB
== BI
->getSuccessor(1) && "No edge from 'if' block?");
2390 assert(EndBB
== BI
->getSuccessor(!Invert
) && "No edge from to end block");
2392 // If the branch is non-unpredictable, and is predicted to *not* branch to
2393 // the `then` block, then avoid speculating it.
2394 if (!BI
->getMetadata(LLVMContext::MD_unpredictable
)) {
2395 uint64_t TWeight
, FWeight
;
2396 if (BI
->extractProfMetadata(TWeight
, FWeight
) && (TWeight
+ FWeight
) != 0) {
2397 uint64_t EndWeight
= Invert
? TWeight
: FWeight
;
2398 BranchProbability BIEndProb
=
2399 BranchProbability::getBranchProbability(EndWeight
, TWeight
+ FWeight
);
2400 BranchProbability Likely
= TTI
.getPredictableBranchThreshold();
2401 if (BIEndProb
>= Likely
)
2406 // Keep a count of how many times instructions are used within ThenBB when
2407 // they are candidates for sinking into ThenBB. Specifically:
2408 // - They are defined in BB, and
2409 // - They have no side effects, and
2410 // - All of their uses are in ThenBB.
2411 SmallDenseMap
<Instruction
*, unsigned, 4> SinkCandidateUseCounts
;
2413 SmallVector
<Instruction
*, 4> SpeculatedDbgIntrinsics
;
2415 unsigned SpeculatedInstructions
= 0;
2416 Value
*SpeculatedStoreValue
= nullptr;
2417 StoreInst
*SpeculatedStore
= nullptr;
2418 for (BasicBlock::iterator BBI
= ThenBB
->begin(),
2419 BBE
= std::prev(ThenBB
->end());
2420 BBI
!= BBE
; ++BBI
) {
2421 Instruction
*I
= &*BBI
;
2423 if (isa
<DbgInfoIntrinsic
>(I
)) {
2424 SpeculatedDbgIntrinsics
.push_back(I
);
2428 // Skip pseudo probes. The consequence is we lose track of the branch
2429 // probability for ThenBB, which is fine since the optimization here takes
2430 // place regardless of the branch probability.
2431 if (isa
<PseudoProbeInst
>(I
)) {
2432 // The probe should be deleted so that it will not be over-counted when
2433 // the samples collected on the non-conditional path are counted towards
2434 // the conditional path. We leave it for the counts inference algorithm to
2435 // figure out a proper count for an unknown probe.
2436 SpeculatedDbgIntrinsics
.push_back(I
);
2440 // Only speculatively execute a single instruction (not counting the
2441 // terminator) for now.
2442 ++SpeculatedInstructions
;
2443 if (SpeculatedInstructions
> 1)
2446 // Don't hoist the instruction if it's unsafe or expensive.
2447 if (!isSafeToSpeculativelyExecute(I
) &&
2448 !(HoistCondStores
&& (SpeculatedStoreValue
= isSafeToSpeculateStore(
2449 I
, BB
, ThenBB
, EndBB
))))
2451 if (!SpeculatedStoreValue
&&
2452 computeSpeculationCost(I
, TTI
) >
2453 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
)
2456 // Store the store speculation candidate.
2457 if (SpeculatedStoreValue
)
2458 SpeculatedStore
= cast
<StoreInst
>(I
);
2460 // Do not hoist the instruction if any of its operands are defined but not
2461 // used in BB. The transformation will prevent the operand from
2462 // being sunk into the use block.
2463 for (Use
&Op
: I
->operands()) {
2464 Instruction
*OpI
= dyn_cast
<Instruction
>(Op
);
2465 if (!OpI
|| OpI
->getParent() != BB
|| OpI
->mayHaveSideEffects())
2466 continue; // Not a candidate for sinking.
2468 ++SinkCandidateUseCounts
[OpI
];
2472 // Consider any sink candidates which are only used in ThenBB as costs for
2473 // speculation. Note, while we iterate over a DenseMap here, we are summing
2474 // and so iteration order isn't significant.
2475 for (SmallDenseMap
<Instruction
*, unsigned, 4>::iterator
2476 I
= SinkCandidateUseCounts
.begin(),
2477 E
= SinkCandidateUseCounts
.end();
2479 if (I
->first
->hasNUses(I
->second
)) {
2480 ++SpeculatedInstructions
;
2481 if (SpeculatedInstructions
> 1)
2485 // Check that we can insert the selects and that it's not too expensive to do
2487 bool Convert
= SpeculatedStore
!= nullptr;
2488 InstructionCost Cost
= 0;
2489 Convert
|= validateAndCostRequiredSelects(BB
, ThenBB
, EndBB
,
2490 SpeculatedInstructions
,
2492 if (!Convert
|| Cost
> Budget
)
2495 // If we get here, we can hoist the instruction and if-convert.
2496 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB
<< "\n";);
2498 // Insert a select of the value of the speculated store.
2499 if (SpeculatedStoreValue
) {
2500 IRBuilder
<NoFolder
> Builder(BI
);
2501 Value
*TrueV
= SpeculatedStore
->getValueOperand();
2502 Value
*FalseV
= SpeculatedStoreValue
;
2504 std::swap(TrueV
, FalseV
);
2505 Value
*S
= Builder
.CreateSelect(
2506 BrCond
, TrueV
, FalseV
, "spec.store.select", BI
);
2507 SpeculatedStore
->setOperand(0, S
);
2508 SpeculatedStore
->applyMergedLocation(BI
->getDebugLoc(),
2509 SpeculatedStore
->getDebugLoc());
2512 // Metadata can be dependent on the condition we are hoisting above.
2513 // Conservatively strip all metadata on the instruction. Drop the debug loc
2514 // to avoid making it appear as if the condition is a constant, which would
2515 // be misleading while debugging.
2516 // Similarly strip attributes that maybe dependent on condition we are
2518 for (auto &I
: *ThenBB
) {
2519 if (!SpeculatedStoreValue
|| &I
!= SpeculatedStore
)
2520 I
.setDebugLoc(DebugLoc());
2521 I
.dropUndefImplyingAttrsAndUnknownMetadata();
2524 // Hoist the instructions.
2525 BB
->getInstList().splice(BI
->getIterator(), ThenBB
->getInstList(),
2526 ThenBB
->begin(), std::prev(ThenBB
->end()));
2528 // Insert selects and rewrite the PHI operands.
2529 IRBuilder
<NoFolder
> Builder(BI
);
2530 for (PHINode
&PN
: EndBB
->phis()) {
2531 unsigned OrigI
= PN
.getBasicBlockIndex(BB
);
2532 unsigned ThenI
= PN
.getBasicBlockIndex(ThenBB
);
2533 Value
*OrigV
= PN
.getIncomingValue(OrigI
);
2534 Value
*ThenV
= PN
.getIncomingValue(ThenI
);
2536 // Skip PHIs which are trivial.
2540 // Create a select whose true value is the speculatively executed value and
2541 // false value is the pre-existing value. Swap them if the branch
2542 // destinations were inverted.
2543 Value
*TrueV
= ThenV
, *FalseV
= OrigV
;
2545 std::swap(TrueV
, FalseV
);
2546 Value
*V
= Builder
.CreateSelect(BrCond
, TrueV
, FalseV
, "spec.select", BI
);
2547 PN
.setIncomingValue(OrigI
, V
);
2548 PN
.setIncomingValue(ThenI
, V
);
2551 // Remove speculated dbg intrinsics.
2552 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2553 // dbg value for the different flows and inserting it after the select.
2554 for (Instruction
*I
: SpeculatedDbgIntrinsics
)
2555 I
->eraseFromParent();
2561 /// Return true if we can thread a branch across this block.
2562 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
2565 SmallPtrSet
<const Value
*, 32> EphValues
;
2566 auto IsEphemeral
= [&](const Value
*V
) {
2567 if (isa
<AssumeInst
>(V
))
2569 return isSafeToSpeculativelyExecute(V
) &&
2571 [&](const User
*U
) { return EphValues
.count(U
); });
2574 // Walk the loop in reverse so that we can identify ephemeral values properly
2575 // (values only feeding assumes).
2576 for (Instruction
&I
: reverse(BB
->instructionsWithoutDebug())) {
2577 // Can't fold blocks that contain noduplicate or convergent calls.
2578 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
2579 if (CI
->cannotDuplicate() || CI
->isConvergent())
2582 // Ignore ephemeral values which are deleted during codegen.
2583 if (IsEphemeral(&I
))
2584 EphValues
.insert(&I
);
2585 // We will delete Phis while threading, so Phis should not be accounted in
2587 else if (!isa
<PHINode
>(I
)) {
2588 if (Size
++ > MaxSmallBlockSize
)
2589 return false; // Don't clone large BB's.
2592 // We can only support instructions that do not define values that are
2593 // live outside of the current basic block.
2594 for (User
*U
: I
.users()) {
2595 Instruction
*UI
= cast
<Instruction
>(U
);
2596 if (UI
->getParent() != BB
|| isa
<PHINode
>(UI
))
2600 // Looks ok, continue checking.
2606 /// If we have a conditional branch on a PHI node value that is defined in the
2607 /// same block as the branch and if any PHI entries are constants, thread edges
2608 /// corresponding to that entry to be branches to their ultimate destination.
2609 static Optional
<bool> FoldCondBranchOnPHIImpl(BranchInst
*BI
,
2610 DomTreeUpdater
*DTU
,
2611 const DataLayout
&DL
,
2612 AssumptionCache
*AC
) {
2613 BasicBlock
*BB
= BI
->getParent();
2614 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
2615 // NOTE: we currently cannot transform this case if the PHI node is used
2616 // outside of the block.
2617 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
2620 // Degenerate case of a single entry PHI.
2621 if (PN
->getNumIncomingValues() == 1) {
2622 FoldSingleEntryPHINodes(PN
->getParent());
2626 // Now we know that this block has multiple preds and two succs.
2627 if (!BlockIsSimpleEnoughToThreadThrough(BB
))
2630 // Okay, this is a simple enough basic block. See if any phi values are
2632 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
2633 ConstantInt
*CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
));
2634 if (!CB
|| !CB
->getType()->isIntegerTy(1))
2637 // Okay, we now know that all edges from PredBB should be revectored to
2638 // branch to RealDest.
2639 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
2640 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
2643 continue; // Skip self loops.
2644 // Skip if the predecessor's terminator is an indirect branch.
2645 if (isa
<IndirectBrInst
>(PredBB
->getTerminator()))
2648 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
2650 // The dest block might have PHI nodes, other predecessors and other
2651 // difficult cases. Instead of being smart about this, just insert a new
2652 // block that jumps to the destination block, effectively splitting
2653 // the edge we are about to create.
2654 BasicBlock
*EdgeBB
=
2655 BasicBlock::Create(BB
->getContext(), RealDest
->getName() + ".critedge",
2656 RealDest
->getParent(), RealDest
);
2657 BranchInst
*CritEdgeBranch
= BranchInst::Create(RealDest
, EdgeBB
);
2659 Updates
.push_back({DominatorTree::Insert
, EdgeBB
, RealDest
});
2660 CritEdgeBranch
->setDebugLoc(BI
->getDebugLoc());
2662 // Update PHI nodes.
2663 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
2665 // BB may have instructions that are being threaded over. Clone these
2666 // instructions into EdgeBB. We know that there will be no uses of the
2667 // cloned instructions outside of EdgeBB.
2668 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
2669 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
2670 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
2671 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
2672 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2675 // Clone the instruction.
2676 Instruction
*N
= BBI
->clone();
2678 N
->setName(BBI
->getName() + ".c");
2680 // Update operands due to translation.
2681 for (Use
&Op
: N
->operands()) {
2682 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(Op
);
2683 if (PI
!= TranslateMap
.end())
2687 // Check for trivial simplification.
2688 if (Value
*V
= SimplifyInstruction(N
, {DL
, nullptr, nullptr, AC
})) {
2689 if (!BBI
->use_empty())
2690 TranslateMap
[&*BBI
] = V
;
2691 if (!N
->mayHaveSideEffects()) {
2692 N
->deleteValue(); // Instruction folded away, don't need actual inst
2696 if (!BBI
->use_empty())
2697 TranslateMap
[&*BBI
] = N
;
2700 // Insert the new instruction into its new home.
2701 EdgeBB
->getInstList().insert(InsertPt
, N
);
2703 // Register the new instruction with the assumption cache if necessary.
2704 if (auto *Assume
= dyn_cast
<AssumeInst
>(N
))
2706 AC
->registerAssumption(Assume
);
2710 // Loop over all of the edges from PredBB to BB, changing them to branch
2711 // to EdgeBB instead.
2712 Instruction
*PredBBTI
= PredBB
->getTerminator();
2713 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
2714 if (PredBBTI
->getSuccessor(i
) == BB
) {
2715 BB
->removePredecessor(PredBB
);
2716 PredBBTI
->setSuccessor(i
, EdgeBB
);
2720 Updates
.push_back({DominatorTree::Insert
, PredBB
, EdgeBB
});
2721 Updates
.push_back({DominatorTree::Delete
, PredBB
, BB
});
2723 DTU
->applyUpdates(Updates
);
2726 // Signal repeat, simplifying any other constants.
2733 static bool FoldCondBranchOnPHI(BranchInst
*BI
, DomTreeUpdater
*DTU
,
2734 const DataLayout
&DL
, AssumptionCache
*AC
) {
2735 Optional
<bool> Result
;
2736 bool EverChanged
= false;
2738 // Note that None means "we changed things, but recurse further."
2739 Result
= FoldCondBranchOnPHIImpl(BI
, DTU
, DL
, AC
);
2740 EverChanged
|= Result
== None
|| *Result
;
2741 } while (Result
== None
);
2745 /// Given a BB that starts with the specified two-entry PHI node,
2746 /// see if we can eliminate it.
2747 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetTransformInfo
&TTI
,
2748 DomTreeUpdater
*DTU
, const DataLayout
&DL
) {
2749 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2750 // statement", which has a very simple dominance structure. Basically, we
2751 // are trying to find the condition that is being branched on, which
2752 // subsequently causes this merge to happen. We really want control
2753 // dependence information for this check, but simplifycfg can't keep it up
2754 // to date, and this catches most of the cases we care about anyway.
2755 BasicBlock
*BB
= PN
->getParent();
2757 BasicBlock
*IfTrue
, *IfFalse
;
2758 BranchInst
*DomBI
= GetIfCondition(BB
, IfTrue
, IfFalse
);
2761 Value
*IfCond
= DomBI
->getCondition();
2762 // Don't bother if the branch will be constant folded trivially.
2763 if (isa
<ConstantInt
>(IfCond
))
2766 BasicBlock
*DomBlock
= DomBI
->getParent();
2767 SmallVector
<BasicBlock
*, 2> IfBlocks
;
2769 PN
->blocks(), std::back_inserter(IfBlocks
), [](BasicBlock
*IfBlock
) {
2770 return cast
<BranchInst
>(IfBlock
->getTerminator())->isUnconditional();
2772 assert((IfBlocks
.size() == 1 || IfBlocks
.size() == 2) &&
2773 "Will have either one or two blocks to speculate.");
2775 // If the branch is non-unpredictable, see if we either predictably jump to
2776 // the merge bb (if we have only a single 'then' block), or if we predictably
2777 // jump to one specific 'then' block (if we have two of them).
2778 // It isn't beneficial to speculatively execute the code
2779 // from the block that we know is predictably not entered.
2780 if (!DomBI
->getMetadata(LLVMContext::MD_unpredictable
)) {
2781 uint64_t TWeight
, FWeight
;
2782 if (DomBI
->extractProfMetadata(TWeight
, FWeight
) &&
2783 (TWeight
+ FWeight
) != 0) {
2784 BranchProbability BITrueProb
=
2785 BranchProbability::getBranchProbability(TWeight
, TWeight
+ FWeight
);
2786 BranchProbability Likely
= TTI
.getPredictableBranchThreshold();
2787 BranchProbability BIFalseProb
= BITrueProb
.getCompl();
2788 if (IfBlocks
.size() == 1) {
2789 BranchProbability BIBBProb
=
2790 DomBI
->getSuccessor(0) == BB
? BITrueProb
: BIFalseProb
;
2791 if (BIBBProb
>= Likely
)
2794 if (BITrueProb
>= Likely
|| BIFalseProb
>= Likely
)
2800 // Don't try to fold an unreachable block. For example, the phi node itself
2801 // can't be the candidate if-condition for a select that we want to form.
2802 if (auto *IfCondPhiInst
= dyn_cast
<PHINode
>(IfCond
))
2803 if (IfCondPhiInst
->getParent() == BB
)
2806 // Okay, we found that we can merge this two-entry phi node into a select.
2807 // Doing so would require us to fold *all* two entry phi nodes in this block.
2808 // At some point this becomes non-profitable (particularly if the target
2809 // doesn't support cmov's). Only do this transformation if there are two or
2810 // fewer PHI nodes in this block.
2811 unsigned NumPhis
= 0;
2812 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
2816 // Loop over the PHI's seeing if we can promote them all to select
2817 // instructions. While we are at it, keep track of the instructions
2818 // that need to be moved to the dominating block.
2819 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
2820 InstructionCost Cost
= 0;
2821 InstructionCost Budget
=
2822 TwoEntryPHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
2824 bool Changed
= false;
2825 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
2826 PHINode
*PN
= cast
<PHINode
>(II
++);
2827 if (Value
*V
= SimplifyInstruction(PN
, {DL
, PN
})) {
2828 PN
->replaceAllUsesWith(V
);
2829 PN
->eraseFromParent();
2834 if (!dominatesMergePoint(PN
->getIncomingValue(0), BB
, AggressiveInsts
,
2835 Cost
, Budget
, TTI
) ||
2836 !dominatesMergePoint(PN
->getIncomingValue(1), BB
, AggressiveInsts
,
2841 // If we folded the first phi, PN dangles at this point. Refresh it. If
2842 // we ran out of PHIs then we simplified them all.
2843 PN
= dyn_cast
<PHINode
>(BB
->begin());
2847 // Return true if at least one of these is a 'not', and another is either
2848 // a 'not' too, or a constant.
2849 auto CanHoistNotFromBothValues
= [](Value
*V0
, Value
*V1
) {
2850 if (!match(V0
, m_Not(m_Value())))
2852 auto Invertible
= m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2853 return match(V0
, m_Not(m_Value())) && match(V1
, Invertible
);
2856 // Don't fold i1 branches on PHIs which contain binary operators or
2857 // (possibly inverted) select form of or/ands, unless one of
2858 // the incoming values is an 'not' and another one is freely invertible.
2859 // These can often be turned into switches and other things.
2860 auto IsBinOpOrAnd
= [](Value
*V
) {
2864 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2865 m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2867 if (PN
->getType()->isIntegerTy(1) &&
2868 (IsBinOpOrAnd(PN
->getIncomingValue(0)) ||
2869 IsBinOpOrAnd(PN
->getIncomingValue(1)) || IsBinOpOrAnd(IfCond
)) &&
2870 !CanHoistNotFromBothValues(PN
->getIncomingValue(0),
2871 PN
->getIncomingValue(1)))
2874 // If all PHI nodes are promotable, check to make sure that all instructions
2875 // in the predecessor blocks can be promoted as well. If not, we won't be able
2876 // to get rid of the control flow, so it's not worth promoting to select
2878 for (BasicBlock
*IfBlock
: IfBlocks
)
2879 for (BasicBlock::iterator I
= IfBlock
->begin(); !I
->isTerminator(); ++I
)
2880 if (!AggressiveInsts
.count(&*I
) && !isa
<DbgInfoIntrinsic
>(I
) &&
2881 !isa
<PseudoProbeInst
>(I
)) {
2882 // This is not an aggressive instruction that we can promote.
2883 // Because of this, we won't be able to get rid of the control flow, so
2884 // the xform is not worth it.
2888 // If either of the blocks has it's address taken, we can't do this fold.
2889 if (any_of(IfBlocks
,
2890 [](BasicBlock
*IfBlock
) { return IfBlock
->hasAddressTaken(); }))
2893 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2894 << " T: " << IfTrue
->getName()
2895 << " F: " << IfFalse
->getName() << "\n");
2897 // If we can still promote the PHI nodes after this gauntlet of tests,
2898 // do all of the PHI's now.
2900 // Move all 'aggressive' instructions, which are defined in the
2901 // conditional parts of the if's up to the dominating block.
2902 for (BasicBlock
*IfBlock
: IfBlocks
)
2903 hoistAllInstructionsInto(DomBlock
, DomBI
, IfBlock
);
2905 IRBuilder
<NoFolder
> Builder(DomBI
);
2906 // Propagate fast-math-flags from phi nodes to replacement selects.
2907 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
2908 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
2909 if (isa
<FPMathOperator
>(PN
))
2910 Builder
.setFastMathFlags(PN
->getFastMathFlags());
2912 // Change the PHI node into a select instruction.
2913 Value
*TrueVal
= PN
->getIncomingValueForBlock(IfTrue
);
2914 Value
*FalseVal
= PN
->getIncomingValueForBlock(IfFalse
);
2916 Value
*Sel
= Builder
.CreateSelect(IfCond
, TrueVal
, FalseVal
, "", DomBI
);
2917 PN
->replaceAllUsesWith(Sel
);
2919 PN
->eraseFromParent();
2922 // At this point, all IfBlocks are empty, so our if statement
2923 // has been flattened. Change DomBlock to jump directly to our new block to
2924 // avoid other simplifycfg's kicking in on the diamond.
2925 Builder
.CreateBr(BB
);
2927 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
2929 Updates
.push_back({DominatorTree::Insert
, DomBlock
, BB
});
2930 for (auto *Successor
: successors(DomBlock
))
2931 Updates
.push_back({DominatorTree::Delete
, DomBlock
, Successor
});
2934 DomBI
->eraseFromParent();
2936 DTU
->applyUpdates(Updates
);
2941 static Value
*createLogicalOp(IRBuilderBase
&Builder
,
2942 Instruction::BinaryOps Opc
, Value
*LHS
,
2943 Value
*RHS
, const Twine
&Name
= "") {
2944 // Try to relax logical op to binary op.
2945 if (impliesPoison(RHS
, LHS
))
2946 return Builder
.CreateBinOp(Opc
, LHS
, RHS
, Name
);
2947 if (Opc
== Instruction::And
)
2948 return Builder
.CreateLogicalAnd(LHS
, RHS
, Name
);
2949 if (Opc
== Instruction::Or
)
2950 return Builder
.CreateLogicalOr(LHS
, RHS
, Name
);
2951 llvm_unreachable("Invalid logical opcode");
2954 /// Return true if either PBI or BI has branch weight available, and store
2955 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2956 /// not have branch weight, use 1:1 as its weight.
2957 static bool extractPredSuccWeights(BranchInst
*PBI
, BranchInst
*BI
,
2958 uint64_t &PredTrueWeight
,
2959 uint64_t &PredFalseWeight
,
2960 uint64_t &SuccTrueWeight
,
2961 uint64_t &SuccFalseWeight
) {
2962 bool PredHasWeights
=
2963 PBI
->extractProfMetadata(PredTrueWeight
, PredFalseWeight
);
2964 bool SuccHasWeights
=
2965 BI
->extractProfMetadata(SuccTrueWeight
, SuccFalseWeight
);
2966 if (PredHasWeights
|| SuccHasWeights
) {
2967 if (!PredHasWeights
)
2968 PredTrueWeight
= PredFalseWeight
= 1;
2969 if (!SuccHasWeights
)
2970 SuccTrueWeight
= SuccFalseWeight
= 1;
2977 /// Determine if the two branches share a common destination and deduce a glue
2978 /// that joins the branches' conditions to arrive at the common destination if
2979 /// that would be profitable.
2980 static Optional
<std::pair
<Instruction::BinaryOps
, bool>>
2981 shouldFoldCondBranchesToCommonDestination(BranchInst
*BI
, BranchInst
*PBI
,
2982 const TargetTransformInfo
*TTI
) {
2983 assert(BI
&& PBI
&& BI
->isConditional() && PBI
->isConditional() &&
2984 "Both blocks must end with a conditional branches.");
2985 assert(is_contained(predecessors(BI
->getParent()), PBI
->getParent()) &&
2986 "PredBB must be a predecessor of BB.");
2988 // We have the potential to fold the conditions together, but if the
2989 // predecessor branch is predictable, we may not want to merge them.
2990 uint64_t PTWeight
, PFWeight
;
2991 BranchProbability PBITrueProb
, Likely
;
2992 if (TTI
&& !PBI
->getMetadata(LLVMContext::MD_unpredictable
) &&
2993 PBI
->extractProfMetadata(PTWeight
, PFWeight
) &&
2994 (PTWeight
+ PFWeight
) != 0) {
2996 BranchProbability::getBranchProbability(PTWeight
, PTWeight
+ PFWeight
);
2997 Likely
= TTI
->getPredictableBranchThreshold();
3000 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
3001 // Speculate the 2nd condition unless the 1st is probably true.
3002 if (PBITrueProb
.isUnknown() || PBITrueProb
< Likely
)
3003 return {{Instruction::Or
, false}};
3004 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
3005 // Speculate the 2nd condition unless the 1st is probably false.
3006 if (PBITrueProb
.isUnknown() || PBITrueProb
.getCompl() < Likely
)
3007 return {{Instruction::And
, false}};
3008 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
3009 // Speculate the 2nd condition unless the 1st is probably true.
3010 if (PBITrueProb
.isUnknown() || PBITrueProb
< Likely
)
3011 return {{Instruction::And
, true}};
3012 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
3013 // Speculate the 2nd condition unless the 1st is probably false.
3014 if (PBITrueProb
.isUnknown() || PBITrueProb
.getCompl() < Likely
)
3015 return {{Instruction::Or
, true}};
3020 static bool performBranchToCommonDestFolding(BranchInst
*BI
, BranchInst
*PBI
,
3021 DomTreeUpdater
*DTU
,
3022 MemorySSAUpdater
*MSSAU
,
3023 const TargetTransformInfo
*TTI
) {
3024 BasicBlock
*BB
= BI
->getParent();
3025 BasicBlock
*PredBlock
= PBI
->getParent();
3027 // Determine if the two branches share a common destination.
3028 Instruction::BinaryOps Opc
;
3029 bool InvertPredCond
;
3030 std::tie(Opc
, InvertPredCond
) =
3031 *shouldFoldCondBranchesToCommonDestination(BI
, PBI
, TTI
);
3033 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
3035 IRBuilder
<> Builder(PBI
);
3036 // The builder is used to create instructions to eliminate the branch in BB.
3037 // If BB's terminator has !annotation metadata, add it to the new
3039 Builder
.CollectMetadataToCopy(BB
->getTerminator(),
3040 {LLVMContext::MD_annotation
});
3042 // If we need to invert the condition in the pred block to match, do so now.
3043 if (InvertPredCond
) {
3044 Value
*NewCond
= PBI
->getCondition();
3045 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
3046 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
3047 CI
->setPredicate(CI
->getInversePredicate());
3050 Builder
.CreateNot(NewCond
, PBI
->getCondition()->getName() + ".not");
3053 PBI
->setCondition(NewCond
);
3054 PBI
->swapSuccessors();
3057 BasicBlock
*UniqueSucc
=
3058 PBI
->getSuccessor(0) == BB
? BI
->getSuccessor(0) : BI
->getSuccessor(1);
3060 // Before cloning instructions, notify the successor basic block that it
3061 // is about to have a new predecessor. This will update PHI nodes,
3062 // which will allow us to update live-out uses of bonus instructions.
3063 AddPredecessorToBlock(UniqueSucc
, PredBlock
, BB
, MSSAU
);
3065 // Try to update branch weights.
3066 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
3067 if (extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
3068 SuccTrueWeight
, SuccFalseWeight
)) {
3069 SmallVector
<uint64_t, 8> NewWeights
;
3071 if (PBI
->getSuccessor(0) == BB
) {
3072 // PBI: br i1 %x, BB, FalseDest
3073 // BI: br i1 %y, UniqueSucc, FalseDest
3074 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3075 NewWeights
.push_back(PredTrueWeight
* SuccTrueWeight
);
3076 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3077 // TrueWeight for PBI * FalseWeight for BI.
3078 // We assume that total weights of a BranchInst can fit into 32 bits.
3079 // Therefore, we will not have overflow using 64-bit arithmetic.
3080 NewWeights
.push_back(PredFalseWeight
*
3081 (SuccFalseWeight
+ SuccTrueWeight
) +
3082 PredTrueWeight
* SuccFalseWeight
);
3084 // PBI: br i1 %x, TrueDest, BB
3085 // BI: br i1 %y, TrueDest, UniqueSucc
3086 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3087 // FalseWeight for PBI * TrueWeight for BI.
3088 NewWeights
.push_back(PredTrueWeight
* (SuccFalseWeight
+ SuccTrueWeight
) +
3089 PredFalseWeight
* SuccTrueWeight
);
3090 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3091 NewWeights
.push_back(PredFalseWeight
* SuccFalseWeight
);
3094 // Halve the weights if any of them cannot fit in an uint32_t
3095 FitWeights(NewWeights
);
3097 SmallVector
<uint32_t, 8> MDWeights(NewWeights
.begin(), NewWeights
.end());
3098 setBranchWeights(PBI
, MDWeights
[0], MDWeights
[1]);
3100 // TODO: If BB is reachable from all paths through PredBlock, then we
3101 // could replace PBI's branch probabilities with BI's.
3103 PBI
->setMetadata(LLVMContext::MD_prof
, nullptr);
3105 // Now, update the CFG.
3106 PBI
->setSuccessor(PBI
->getSuccessor(0) != BB
, UniqueSucc
);
3109 DTU
->applyUpdates({{DominatorTree::Insert
, PredBlock
, UniqueSucc
},
3110 {DominatorTree::Delete
, PredBlock
, BB
}});
3112 // If BI was a loop latch, it may have had associated loop metadata.
3113 // We need to copy it to the new latch, that is, PBI.
3114 if (MDNode
*LoopMD
= BI
->getMetadata(LLVMContext::MD_loop
))
3115 PBI
->setMetadata(LLVMContext::MD_loop
, LoopMD
);
3117 ValueToValueMapTy VMap
; // maps original values to cloned values
3118 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB
, PredBlock
, VMap
);
3120 // Now that the Cond was cloned into the predecessor basic block,
3121 // or/and the two conditions together.
3122 Value
*BICond
= VMap
[BI
->getCondition()];
3124 createLogicalOp(Builder
, Opc
, PBI
->getCondition(), BICond
, "or.cond"));
3126 // Copy any debug value intrinsics into the end of PredBlock.
3127 for (Instruction
&I
: *BB
) {
3128 if (isa
<DbgInfoIntrinsic
>(I
)) {
3129 Instruction
*NewI
= I
.clone();
3130 RemapInstruction(NewI
, VMap
,
3131 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
3132 NewI
->insertBefore(PBI
);
3136 ++NumFoldBranchToCommonDest
;
3140 /// If this basic block is simple enough, and if a predecessor branches to us
3141 /// and one of our successors, fold the block into the predecessor and use
3142 /// logical operations to pick the right destination.
3143 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
, DomTreeUpdater
*DTU
,
3144 MemorySSAUpdater
*MSSAU
,
3145 const TargetTransformInfo
*TTI
,
3146 unsigned BonusInstThreshold
) {
3147 // If this block ends with an unconditional branch,
3148 // let SpeculativelyExecuteBB() deal with it.
3149 if (!BI
->isConditional())
3152 BasicBlock
*BB
= BI
->getParent();
3153 TargetTransformInfo::TargetCostKind CostKind
=
3154 BB
->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3155 : TargetTransformInfo::TCK_SizeAndLatency
;
3157 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
3159 if (!Cond
|| (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
3160 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
3163 // Cond is known to be a compare or binary operator. Check to make sure that
3164 // neither operand is a potentially-trapping constant expression.
3165 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
3168 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
3172 // Finally, don't infinitely unroll conditional loops.
3173 if (is_contained(successors(BB
), BB
))
3176 // With which predecessors will we want to deal with?
3177 SmallVector
<BasicBlock
*, 8> Preds
;
3178 for (BasicBlock
*PredBlock
: predecessors(BB
)) {
3179 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
3181 // Check that we have two conditional branches. If there is a PHI node in
3182 // the common successor, verify that the same value flows in from both
3184 if (!PBI
|| PBI
->isUnconditional() || !SafeToMergeTerminators(BI
, PBI
))
3187 // Determine if the two branches share a common destination.
3188 Instruction::BinaryOps Opc
;
3189 bool InvertPredCond
;
3190 if (auto Recipe
= shouldFoldCondBranchesToCommonDestination(BI
, PBI
, TTI
))
3191 std::tie(Opc
, InvertPredCond
) = *Recipe
;
3195 // Check the cost of inserting the necessary logic before performing the
3198 Type
*Ty
= BI
->getCondition()->getType();
3199 InstructionCost Cost
= TTI
->getArithmeticInstrCost(Opc
, Ty
, CostKind
);
3200 if (InvertPredCond
&& (!PBI
->getCondition()->hasOneUse() ||
3201 !isa
<CmpInst
>(PBI
->getCondition())))
3202 Cost
+= TTI
->getArithmeticInstrCost(Instruction::Xor
, Ty
, CostKind
);
3204 if (Cost
> BranchFoldThreshold
)
3208 // Ok, we do want to deal with this predecessor. Record it.
3209 Preds
.emplace_back(PredBlock
);
3212 // If there aren't any predecessors into which we can fold,
3213 // don't bother checking the cost.
3217 // Only allow this transformation if computing the condition doesn't involve
3218 // too many instructions and these involved instructions can be executed
3219 // unconditionally. We denote all involved instructions except the condition
3220 // as "bonus instructions", and only allow this transformation when the
3221 // number of the bonus instructions we'll need to create when cloning into
3222 // each predecessor does not exceed a certain threshold.
3223 unsigned NumBonusInsts
= 0;
3224 const unsigned PredCount
= Preds
.size();
3225 for (Instruction
&I
: *BB
) {
3226 // Don't check the branch condition comparison itself.
3229 // Ignore dbg intrinsics, and the terminator.
3230 if (isa
<DbgInfoIntrinsic
>(I
) || isa
<BranchInst
>(I
))
3232 // I must be safe to execute unconditionally.
3233 if (!isSafeToSpeculativelyExecute(&I
))
3236 // Account for the cost of duplicating this instruction into each
3238 NumBonusInsts
+= PredCount
;
3239 // Early exits once we reach the limit.
3240 if (NumBonusInsts
> BonusInstThreshold
)
3244 // Ok, we have the budget. Perform the transformation.
3245 for (BasicBlock
*PredBlock
: Preds
) {
3246 auto *PBI
= cast
<BranchInst
>(PredBlock
->getTerminator());
3247 return performBranchToCommonDestFolding(BI
, PBI
, DTU
, MSSAU
, TTI
);
3252 // If there is only one store in BB1 and BB2, return it, otherwise return
3254 static StoreInst
*findUniqueStoreInBlocks(BasicBlock
*BB1
, BasicBlock
*BB2
) {
3255 StoreInst
*S
= nullptr;
3256 for (auto *BB
: {BB1
, BB2
}) {
3260 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
3262 // Multiple stores seen.
3271 static Value
*ensureValueAvailableInSuccessor(Value
*V
, BasicBlock
*BB
,
3272 Value
*AlternativeV
= nullptr) {
3273 // PHI is going to be a PHI node that allows the value V that is defined in
3274 // BB to be referenced in BB's only successor.
3276 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3277 // doesn't matter to us what the other operand is (it'll never get used). We
3278 // could just create a new PHI with an undef incoming value, but that could
3279 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3280 // other PHI. So here we directly look for some PHI in BB's successor with V
3281 // as an incoming operand. If we find one, we use it, else we create a new
3284 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3285 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3286 // where OtherBB is the single other predecessor of BB's only successor.
3287 PHINode
*PHI
= nullptr;
3288 BasicBlock
*Succ
= BB
->getSingleSuccessor();
3290 for (auto I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
)
3291 if (cast
<PHINode
>(I
)->getIncomingValueForBlock(BB
) == V
) {
3292 PHI
= cast
<PHINode
>(I
);
3296 assert(Succ
->hasNPredecessors(2));
3297 auto PredI
= pred_begin(Succ
);
3298 BasicBlock
*OtherPredBB
= *PredI
== BB
? *++PredI
: *PredI
;
3299 if (PHI
->getIncomingValueForBlock(OtherPredBB
) == AlternativeV
)
3306 // If V is not an instruction defined in BB, just return it.
3307 if (!AlternativeV
&&
3308 (!isa
<Instruction
>(V
) || cast
<Instruction
>(V
)->getParent() != BB
))
3311 PHI
= PHINode::Create(V
->getType(), 2, "simplifycfg.merge", &Succ
->front());
3312 PHI
->addIncoming(V
, BB
);
3313 for (BasicBlock
*PredBB
: predecessors(Succ
))
3316 AlternativeV
? AlternativeV
: UndefValue::get(V
->getType()), PredBB
);
3320 static bool mergeConditionalStoreToAddress(
3321 BasicBlock
*PTB
, BasicBlock
*PFB
, BasicBlock
*QTB
, BasicBlock
*QFB
,
3322 BasicBlock
*PostBB
, Value
*Address
, bool InvertPCond
, bool InvertQCond
,
3323 DomTreeUpdater
*DTU
, const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
3324 // For every pointer, there must be exactly two stores, one coming from
3325 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3326 // store (to any address) in PTB,PFB or QTB,QFB.
3327 // FIXME: We could relax this restriction with a bit more work and performance
3329 StoreInst
*PStore
= findUniqueStoreInBlocks(PTB
, PFB
);
3330 StoreInst
*QStore
= findUniqueStoreInBlocks(QTB
, QFB
);
3331 if (!PStore
|| !QStore
)
3334 // Now check the stores are compatible.
3335 if (!QStore
->isUnordered() || !PStore
->isUnordered())
3338 // Check that sinking the store won't cause program behavior changes. Sinking
3339 // the store out of the Q blocks won't change any behavior as we're sinking
3340 // from a block to its unconditional successor. But we're moving a store from
3341 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3342 // So we need to check that there are no aliasing loads or stores in
3343 // QBI, QTB and QFB. We also need to check there are no conflicting memory
3344 // operations between PStore and the end of its parent block.
3346 // The ideal way to do this is to query AliasAnalysis, but we don't
3347 // preserve AA currently so that is dangerous. Be super safe and just
3348 // check there are no other memory operations at all.
3349 for (auto &I
: *QFB
->getSinglePredecessor())
3350 if (I
.mayReadOrWriteMemory())
3352 for (auto &I
: *QFB
)
3353 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
3356 for (auto &I
: *QTB
)
3357 if (&I
!= QStore
&& I
.mayReadOrWriteMemory())
3359 for (auto I
= BasicBlock::iterator(PStore
), E
= PStore
->getParent()->end();
3361 if (&*I
!= PStore
&& I
->mayReadOrWriteMemory())
3364 // If we're not in aggressive mode, we only optimize if we have some
3365 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3366 auto IsWorthwhile
= [&](BasicBlock
*BB
, ArrayRef
<StoreInst
*> FreeStores
) {
3369 // Heuristic: if the block can be if-converted/phi-folded and the
3370 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3371 // thread this store.
3372 InstructionCost Cost
= 0;
3373 InstructionCost Budget
=
3374 PHINodeFoldingThreshold
* TargetTransformInfo::TCC_Basic
;
3375 for (auto &I
: BB
->instructionsWithoutDebug()) {
3376 // Consider terminator instruction to be free.
3377 if (I
.isTerminator())
3379 // If this is one the stores that we want to speculate out of this BB,
3380 // then don't count it's cost, consider it to be free.
3381 if (auto *S
= dyn_cast
<StoreInst
>(&I
))
3382 if (llvm::find(FreeStores
, S
))
3384 // Else, we have a white-list of instructions that we are ak speculating.
3385 if (!isa
<BinaryOperator
>(I
) && !isa
<GetElementPtrInst
>(I
))
3386 return false; // Not in white-list - not worthwhile folding.
3387 // And finally, if this is a non-free instruction that we are okay
3388 // speculating, ensure that we consider the speculation budget.
3389 Cost
+= TTI
.getUserCost(&I
, TargetTransformInfo::TCK_SizeAndLatency
);
3391 return false; // Eagerly refuse to fold as soon as we're out of budget.
3393 assert(Cost
<= Budget
&&
3394 "When we run out of budget we will eagerly return from within the "
3395 "per-instruction loop.");
3399 const std::array
<StoreInst
*, 2> FreeStores
= {PStore
, QStore
};
3400 if (!MergeCondStoresAggressively
&&
3401 (!IsWorthwhile(PTB
, FreeStores
) || !IsWorthwhile(PFB
, FreeStores
) ||
3402 !IsWorthwhile(QTB
, FreeStores
) || !IsWorthwhile(QFB
, FreeStores
)))
3405 // If PostBB has more than two predecessors, we need to split it so we can
3407 if (std::next(pred_begin(PostBB
), 2) != pred_end(PostBB
)) {
3408 // We know that QFB's only successor is PostBB. And QFB has a single
3409 // predecessor. If QTB exists, then its only successor is also PostBB.
3410 // If QTB does not exist, then QFB's only predecessor has a conditional
3411 // branch to QFB and PostBB.
3412 BasicBlock
*TruePred
= QTB
? QTB
: QFB
->getSinglePredecessor();
3414 SplitBlockPredecessors(PostBB
, {QFB
, TruePred
}, "condstore.split", DTU
);
3420 // OK, we're going to sink the stores to PostBB. The store has to be
3421 // conditional though, so first create the predicate.
3422 Value
*PCond
= cast
<BranchInst
>(PFB
->getSinglePredecessor()->getTerminator())
3424 Value
*QCond
= cast
<BranchInst
>(QFB
->getSinglePredecessor()->getTerminator())
3427 Value
*PPHI
= ensureValueAvailableInSuccessor(PStore
->getValueOperand(),
3428 PStore
->getParent());
3429 Value
*QPHI
= ensureValueAvailableInSuccessor(QStore
->getValueOperand(),
3430 QStore
->getParent(), PPHI
);
3432 IRBuilder
<> QB(&*PostBB
->getFirstInsertionPt());
3434 Value
*PPred
= PStore
->getParent() == PTB
? PCond
: QB
.CreateNot(PCond
);
3435 Value
*QPred
= QStore
->getParent() == QTB
? QCond
: QB
.CreateNot(QCond
);
3438 PPred
= QB
.CreateNot(PPred
);
3440 QPred
= QB
.CreateNot(QPred
);
3441 Value
*CombinedPred
= QB
.CreateOr(PPred
, QPred
);
3443 auto *T
= SplitBlockAndInsertIfThen(CombinedPred
, &*QB
.GetInsertPoint(),
3444 /*Unreachable=*/false,
3445 /*BranchWeights=*/nullptr, DTU
);
3446 QB
.SetInsertPoint(T
);
3447 StoreInst
*SI
= cast
<StoreInst
>(QB
.CreateStore(QPHI
, Address
));
3449 PStore
->getAAMetadata(AAMD
, /*Merge=*/false);
3450 PStore
->getAAMetadata(AAMD
, /*Merge=*/true);
3451 SI
->setAAMetadata(AAMD
);
3452 // Choose the minimum alignment. If we could prove both stores execute, we
3453 // could use biggest one. In this case, though, we only know that one of the
3454 // stores executes. And we don't know it's safe to take the alignment from a
3455 // store that doesn't execute.
3456 SI
->setAlignment(std::min(PStore
->getAlign(), QStore
->getAlign()));
3458 QStore
->eraseFromParent();
3459 PStore
->eraseFromParent();
3464 static bool mergeConditionalStores(BranchInst
*PBI
, BranchInst
*QBI
,
3465 DomTreeUpdater
*DTU
, const DataLayout
&DL
,
3466 const TargetTransformInfo
&TTI
) {
3467 // The intention here is to find diamonds or triangles (see below) where each
3468 // conditional block contains a store to the same address. Both of these
3469 // stores are conditional, so they can't be unconditionally sunk. But it may
3470 // be profitable to speculatively sink the stores into one merged store at the
3471 // end, and predicate the merged store on the union of the two conditions of
3474 // This can reduce the number of stores executed if both of the conditions are
3475 // true, and can allow the blocks to become small enough to be if-converted.
3476 // This optimization will also chain, so that ladders of test-and-set
3477 // sequences can be if-converted away.
3479 // We only deal with simple diamonds or triangles:
3481 // PBI or PBI or a combination of the two
3491 // We model triangles as a type of diamond with a nullptr "true" block.
3492 // Triangles are canonicalized so that the fallthrough edge is represented by
3493 // a true condition, as in the diagram above.
3494 BasicBlock
*PTB
= PBI
->getSuccessor(0);
3495 BasicBlock
*PFB
= PBI
->getSuccessor(1);
3496 BasicBlock
*QTB
= QBI
->getSuccessor(0);
3497 BasicBlock
*QFB
= QBI
->getSuccessor(1);
3498 BasicBlock
*PostBB
= QFB
->getSingleSuccessor();
3500 // Make sure we have a good guess for PostBB. If QTB's only successor is
3501 // QFB, then QFB is a better PostBB.
3502 if (QTB
->getSingleSuccessor() == QFB
)
3505 // If we couldn't find a good PostBB, stop.
3509 bool InvertPCond
= false, InvertQCond
= false;
3510 // Canonicalize fallthroughs to the true branches.
3511 if (PFB
== QBI
->getParent()) {
3512 std::swap(PFB
, PTB
);
3515 if (QFB
== PostBB
) {
3516 std::swap(QFB
, QTB
);
3520 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3521 // and QFB may not. Model fallthroughs as a nullptr block.
3522 if (PTB
== QBI
->getParent())
3527 // Legality bailouts. We must have at least the non-fallthrough blocks and
3528 // the post-dominating block, and the non-fallthroughs must only have one
3530 auto HasOnePredAndOneSucc
= [](BasicBlock
*BB
, BasicBlock
*P
, BasicBlock
*S
) {
3531 return BB
->getSinglePredecessor() == P
&& BB
->getSingleSuccessor() == S
;
3533 if (!HasOnePredAndOneSucc(PFB
, PBI
->getParent(), QBI
->getParent()) ||
3534 !HasOnePredAndOneSucc(QFB
, QBI
->getParent(), PostBB
))
3536 if ((PTB
&& !HasOnePredAndOneSucc(PTB
, PBI
->getParent(), QBI
->getParent())) ||
3537 (QTB
&& !HasOnePredAndOneSucc(QTB
, QBI
->getParent(), PostBB
)))
3539 if (!QBI
->getParent()->hasNUses(2))
3542 // OK, this is a sequence of two diamonds or triangles.
3543 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3544 SmallPtrSet
<Value
*, 4> PStoreAddresses
, QStoreAddresses
;
3545 for (auto *BB
: {PTB
, PFB
}) {
3549 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3550 PStoreAddresses
.insert(SI
->getPointerOperand());
3552 for (auto *BB
: {QTB
, QFB
}) {
3556 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(&I
))
3557 QStoreAddresses
.insert(SI
->getPointerOperand());
3560 set_intersect(PStoreAddresses
, QStoreAddresses
);
3561 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3562 // clear what it contains.
3563 auto &CommonAddresses
= PStoreAddresses
;
3565 bool Changed
= false;
3566 for (auto *Address
: CommonAddresses
)
3568 mergeConditionalStoreToAddress(PTB
, PFB
, QTB
, QFB
, PostBB
, Address
,
3569 InvertPCond
, InvertQCond
, DTU
, DL
, TTI
);
3573 /// If the previous block ended with a widenable branch, determine if reusing
3574 /// the target block is profitable and legal. This will have the effect of
3575 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3576 static bool tryWidenCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
3577 DomTreeUpdater
*DTU
) {
3578 // TODO: This can be generalized in two important ways:
3579 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3580 // values from the PBI edge.
3581 // 2) We can sink side effecting instructions into BI's fallthrough
3582 // successor provided they doesn't contribute to computation of
3585 BasicBlock
*IfTrueBB
, *IfFalseBB
;
3586 if (!parseWidenableBranch(PBI
, CondWB
, WC
, IfTrueBB
, IfFalseBB
) ||
3587 IfTrueBB
!= BI
->getParent() || !BI
->getParent()->getSinglePredecessor())
3589 if (!IfFalseBB
->phis().empty())
3590 return false; // TODO
3591 // Use lambda to lazily compute expensive condition after cheap ones.
3592 auto NoSideEffects
= [](BasicBlock
&BB
) {
3593 return !llvm::any_of(BB
, [](const Instruction
&I
) {
3594 return I
.mayWriteToMemory() || I
.mayHaveSideEffects();
3597 if (BI
->getSuccessor(1) != IfFalseBB
&& // no inf looping
3598 BI
->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3599 NoSideEffects(*BI
->getParent())) {
3600 auto *OldSuccessor
= BI
->getSuccessor(1);
3601 OldSuccessor
->removePredecessor(BI
->getParent());
3602 BI
->setSuccessor(1, IfFalseBB
);
3605 {{DominatorTree::Insert
, BI
->getParent(), IfFalseBB
},
3606 {DominatorTree::Delete
, BI
->getParent(), OldSuccessor
}});
3609 if (BI
->getSuccessor(0) != IfFalseBB
&& // no inf looping
3610 BI
->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3611 NoSideEffects(*BI
->getParent())) {
3612 auto *OldSuccessor
= BI
->getSuccessor(0);
3613 OldSuccessor
->removePredecessor(BI
->getParent());
3614 BI
->setSuccessor(0, IfFalseBB
);
3617 {{DominatorTree::Insert
, BI
->getParent(), IfFalseBB
},
3618 {DominatorTree::Delete
, BI
->getParent(), OldSuccessor
}});
3624 /// If we have a conditional branch as a predecessor of another block,
3625 /// this function tries to simplify it. We know
3626 /// that PBI and BI are both conditional branches, and BI is in one of the
3627 /// successor blocks of PBI - PBI branches to BI.
3628 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
,
3629 DomTreeUpdater
*DTU
,
3630 const DataLayout
&DL
,
3631 const TargetTransformInfo
&TTI
) {
3632 assert(PBI
->isConditional() && BI
->isConditional());
3633 BasicBlock
*BB
= BI
->getParent();
3635 // If this block ends with a branch instruction, and if there is a
3636 // predecessor that ends on a branch of the same condition, make
3637 // this conditional branch redundant.
3638 if (PBI
->getCondition() == BI
->getCondition() &&
3639 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3640 // Okay, the outcome of this conditional branch is statically
3641 // knowable. If this block had a single pred, handle specially.
3642 if (BB
->getSinglePredecessor()) {
3643 // Turn this into a branch on constant.
3644 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3646 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
));
3647 return true; // Nuke the branch on constant.
3650 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3651 // in the constant and simplify the block result. Subsequent passes of
3652 // simplifycfg will thread the block.
3653 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
3654 pred_iterator PB
= pred_begin(BB
), PE
= pred_end(BB
);
3655 PHINode
*NewPN
= PHINode::Create(
3656 Type::getInt1Ty(BB
->getContext()), std::distance(PB
, PE
),
3657 BI
->getCondition()->getName() + ".pr", &BB
->front());
3658 // Okay, we're going to insert the PHI node. Since PBI is not the only
3659 // predecessor, compute the PHI'd conditional value for all of the preds.
3660 // Any predecessor where the condition is not computable we keep symbolic.
3661 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
3662 BasicBlock
*P
= *PI
;
3663 if ((PBI
= dyn_cast
<BranchInst
>(P
->getTerminator())) && PBI
!= BI
&&
3664 PBI
->isConditional() && PBI
->getCondition() == BI
->getCondition() &&
3665 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
3666 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
3668 ConstantInt::get(Type::getInt1Ty(BB
->getContext()), CondIsTrue
),
3671 NewPN
->addIncoming(BI
->getCondition(), P
);
3675 BI
->setCondition(NewPN
);
3680 // If the previous block ended with a widenable branch, determine if reusing
3681 // the target block is profitable and legal. This will have the effect of
3682 // "widening" PBI, but doesn't require us to reason about hosting safety.
3683 if (tryWidenCondBranchToCondBranch(PBI
, BI
, DTU
))
3686 if (auto *CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
3690 // If both branches are conditional and both contain stores to the same
3691 // address, remove the stores from the conditionals and create a conditional
3692 // merged store at the end.
3693 if (MergeCondStores
&& mergeConditionalStores(PBI
, BI
, DTU
, DL
, TTI
))
3696 // If this is a conditional branch in an empty block, and if any
3697 // predecessors are a conditional branch to one of our destinations,
3698 // fold the conditions into logical ops and one cond br.
3700 // Ignore dbg intrinsics.
3701 if (&*BB
->instructionsWithoutDebug().begin() != BI
)
3705 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0)) {
3708 } else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1)) {
3711 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0)) {
3714 } else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1)) {
3721 // Check to make sure that the other destination of this branch
3722 // isn't BB itself. If so, this is an infinite loop that will
3723 // keep getting unwound.
3724 if (PBI
->getSuccessor(PBIOp
) == BB
)
3727 // Do not perform this transformation if it would require
3728 // insertion of a large number of select instructions. For targets
3729 // without predication/cmovs, this is a big pessimization.
3731 // Also do not perform this transformation if any phi node in the common
3732 // destination block can trap when reached by BB or PBB (PR17073). In that
3733 // case, it would be unsafe to hoist the operation into a select instruction.
3735 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
3736 BasicBlock
*RemovedDest
= PBI
->getSuccessor(PBIOp
^ 1);
3737 unsigned NumPhis
= 0;
3738 for (BasicBlock::iterator II
= CommonDest
->begin(); isa
<PHINode
>(II
);
3740 if (NumPhis
> 2) // Disable this xform.
3743 PHINode
*PN
= cast
<PHINode
>(II
);
3744 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
3745 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BIV
))
3749 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
3750 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
3751 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PBIV
))
3756 // Finally, if everything is ok, fold the branches to logical ops.
3757 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
3759 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
3760 << "AND: " << *BI
->getParent());
3762 SmallVector
<DominatorTree::UpdateType
, 5> Updates
;
3764 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3765 // branch in it, where one edge (OtherDest) goes back to itself but the other
3766 // exits. We don't *know* that the program avoids the infinite loop
3767 // (even though that seems likely). If we do this xform naively, we'll end up
3768 // recursively unpeeling the loop. Since we know that (after the xform is
3769 // done) that the block *is* infinite if reached, we just make it an obviously
3770 // infinite loop with no cond branch.
3771 if (OtherDest
== BB
) {
3772 // Insert it at the end of the function, because it's either code,
3773 // or it won't matter if it's hot. :)
3774 BasicBlock
*InfLoopBlock
=
3775 BasicBlock::Create(BB
->getContext(), "infloop", BB
->getParent());
3776 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
3778 Updates
.push_back({DominatorTree::Insert
, InfLoopBlock
, InfLoopBlock
});
3779 OtherDest
= InfLoopBlock
;
3782 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3784 // BI may have other predecessors. Because of this, we leave
3785 // it alone, but modify PBI.
3787 // Make sure we get to CommonDest on True&True directions.
3788 Value
*PBICond
= PBI
->getCondition();
3789 IRBuilder
<NoFolder
> Builder(PBI
);
3791 PBICond
= Builder
.CreateNot(PBICond
, PBICond
->getName() + ".not");
3793 Value
*BICond
= BI
->getCondition();
3795 BICond
= Builder
.CreateNot(BICond
, BICond
->getName() + ".not");
3797 // Merge the conditions.
3799 createLogicalOp(Builder
, Instruction::Or
, PBICond
, BICond
, "brmerge");
3801 // Modify PBI to branch on the new condition to the new dests.
3802 PBI
->setCondition(Cond
);
3803 PBI
->setSuccessor(0, CommonDest
);
3804 PBI
->setSuccessor(1, OtherDest
);
3807 Updates
.push_back({DominatorTree::Insert
, PBI
->getParent(), OtherDest
});
3808 Updates
.push_back({DominatorTree::Delete
, PBI
->getParent(), RemovedDest
});
3810 DTU
->applyUpdates(Updates
);
3813 // Update branch weight for PBI.
3814 uint64_t PredTrueWeight
, PredFalseWeight
, SuccTrueWeight
, SuccFalseWeight
;
3815 uint64_t PredCommon
, PredOther
, SuccCommon
, SuccOther
;
3817 extractPredSuccWeights(PBI
, BI
, PredTrueWeight
, PredFalseWeight
,
3818 SuccTrueWeight
, SuccFalseWeight
);
3820 PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3821 PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3822 SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3823 SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3824 // The weight to CommonDest should be PredCommon * SuccTotal +
3825 // PredOther * SuccCommon.
3826 // The weight to OtherDest should be PredOther * SuccOther.
3827 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
) +
3828 PredOther
* SuccCommon
,
3829 PredOther
* SuccOther
};
3830 // Halve the weights if any of them cannot fit in an uint32_t
3831 FitWeights(NewWeights
);
3833 setBranchWeights(PBI
, NewWeights
[0], NewWeights
[1]);
3836 // OtherDest may have phi nodes. If so, add an entry from PBI's
3837 // block that are identical to the entries for BI's block.
3838 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
3840 // We know that the CommonDest already had an edge from PBI to
3841 // it. If it has PHIs though, the PHIs may have different
3842 // entries for BB and PBI's BB. If so, insert a select to make
3844 for (PHINode
&PN
: CommonDest
->phis()) {
3845 Value
*BIV
= PN
.getIncomingValueForBlock(BB
);
3846 unsigned PBBIdx
= PN
.getBasicBlockIndex(PBI
->getParent());
3847 Value
*PBIV
= PN
.getIncomingValue(PBBIdx
);
3849 // Insert a select in PBI to pick the right value.
3850 SelectInst
*NV
= cast
<SelectInst
>(
3851 Builder
.CreateSelect(PBICond
, PBIV
, BIV
, PBIV
->getName() + ".mux"));
3852 PN
.setIncomingValue(PBBIdx
, NV
);
3853 // Although the select has the same condition as PBI, the original branch
3854 // weights for PBI do not apply to the new select because the select's
3855 // 'logical' edges are incoming edges of the phi that is eliminated, not
3856 // the outgoing edges of PBI.
3858 uint64_t PredCommon
= PBIOp
? PredFalseWeight
: PredTrueWeight
;
3859 uint64_t PredOther
= PBIOp
? PredTrueWeight
: PredFalseWeight
;
3860 uint64_t SuccCommon
= BIOp
? SuccFalseWeight
: SuccTrueWeight
;
3861 uint64_t SuccOther
= BIOp
? SuccTrueWeight
: SuccFalseWeight
;
3862 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3863 // The weight to PredOtherDest should be PredOther * SuccCommon.
3864 uint64_t NewWeights
[2] = {PredCommon
* (SuccCommon
+ SuccOther
),
3865 PredOther
* SuccCommon
};
3867 FitWeights(NewWeights
);
3869 setBranchWeights(NV
, NewWeights
[0], NewWeights
[1]);
3874 LLVM_DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
3875 LLVM_DEBUG(dbgs() << *PBI
->getParent()->getParent());
3877 // This basic block is probably dead. We know it has at least
3878 // one fewer predecessor.
3882 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3883 // true or to FalseBB if Cond is false.
3884 // Takes care of updating the successors and removing the old terminator.
3885 // Also makes sure not to introduce new successors by assuming that edges to
3886 // non-successor TrueBBs and FalseBBs aren't reachable.
3887 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction
*OldTerm
,
3888 Value
*Cond
, BasicBlock
*TrueBB
,
3889 BasicBlock
*FalseBB
,
3890 uint32_t TrueWeight
,
3891 uint32_t FalseWeight
) {
3892 auto *BB
= OldTerm
->getParent();
3893 // Remove any superfluous successor edges from the CFG.
3894 // First, figure out which successors to preserve.
3895 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3897 BasicBlock
*KeepEdge1
= TrueBB
;
3898 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: nullptr;
3900 SmallPtrSet
<BasicBlock
*, 2> RemovedSuccessors
;
3902 // Then remove the rest.
3903 for (BasicBlock
*Succ
: successors(OldTerm
)) {
3904 // Make sure only to keep exactly one copy of each edge.
3905 if (Succ
== KeepEdge1
)
3906 KeepEdge1
= nullptr;
3907 else if (Succ
== KeepEdge2
)
3908 KeepEdge2
= nullptr;
3910 Succ
->removePredecessor(BB
,
3911 /*KeepOneInputPHIs=*/true);
3913 if (Succ
!= TrueBB
&& Succ
!= FalseBB
)
3914 RemovedSuccessors
.insert(Succ
);
3918 IRBuilder
<> Builder(OldTerm
);
3919 Builder
.SetCurrentDebugLocation(OldTerm
->getDebugLoc());
3921 // Insert an appropriate new terminator.
3922 if (!KeepEdge1
&& !KeepEdge2
) {
3923 if (TrueBB
== FalseBB
) {
3924 // We were only looking for one successor, and it was present.
3925 // Create an unconditional branch to it.
3926 Builder
.CreateBr(TrueBB
);
3928 // We found both of the successors we were looking for.
3929 // Create a conditional branch sharing the condition of the select.
3930 BranchInst
*NewBI
= Builder
.CreateCondBr(Cond
, TrueBB
, FalseBB
);
3931 if (TrueWeight
!= FalseWeight
)
3932 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
3934 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
3935 // Neither of the selected blocks were successors, so this
3936 // terminator must be unreachable.
3937 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
3939 // One of the selected values was a successor, but the other wasn't.
3940 // Insert an unconditional branch to the one that was found;
3941 // the edge to the one that wasn't must be unreachable.
3943 // Only TrueBB was found.
3944 Builder
.CreateBr(TrueBB
);
3946 // Only FalseBB was found.
3947 Builder
.CreateBr(FalseBB
);
3951 EraseTerminatorAndDCECond(OldTerm
);
3954 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
3955 Updates
.reserve(RemovedSuccessors
.size());
3956 for (auto *RemovedSuccessor
: RemovedSuccessors
)
3957 Updates
.push_back({DominatorTree::Delete
, BB
, RemovedSuccessor
});
3958 DTU
->applyUpdates(Updates
);
3965 // (switch (select cond, X, Y)) on constant X, Y
3966 // with a branch - conditional if X and Y lead to distinct BBs,
3967 // unconditional otherwise.
3968 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst
*SI
,
3969 SelectInst
*Select
) {
3970 // Check for constant integer values in the select.
3971 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
3972 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
3973 if (!TrueVal
|| !FalseVal
)
3976 // Find the relevant condition and destinations.
3977 Value
*Condition
= Select
->getCondition();
3978 BasicBlock
*TrueBB
= SI
->findCaseValue(TrueVal
)->getCaseSuccessor();
3979 BasicBlock
*FalseBB
= SI
->findCaseValue(FalseVal
)->getCaseSuccessor();
3981 // Get weight for TrueBB and FalseBB.
3982 uint32_t TrueWeight
= 0, FalseWeight
= 0;
3983 SmallVector
<uint64_t, 8> Weights
;
3984 bool HasWeights
= HasBranchWeights(SI
);
3986 GetBranchWeights(SI
, Weights
);
3987 if (Weights
.size() == 1 + SI
->getNumCases()) {
3989 (uint32_t)Weights
[SI
->findCaseValue(TrueVal
)->getSuccessorIndex()];
3991 (uint32_t)Weights
[SI
->findCaseValue(FalseVal
)->getSuccessorIndex()];
3995 // Perform the actual simplification.
3996 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
, TrueWeight
,
4001 // (indirectbr (select cond, blockaddress(@fn, BlockA),
4002 // blockaddress(@fn, BlockB)))
4004 // (br cond, BlockA, BlockB).
4005 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
,
4007 // Check that both operands of the select are block addresses.
4008 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
4009 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
4013 // Extract the actual blocks.
4014 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
4015 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
4017 // Perform the actual simplification.
4018 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
, 0,
4022 /// This is called when we find an icmp instruction
4023 /// (a seteq/setne with a constant) as the only instruction in a
4024 /// block that ends with an uncond branch. We are looking for a very specific
4025 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
4026 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4027 /// default value goes to an uncond block with a seteq in it, we get something
4030 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
4032 /// %tmp = icmp eq i8 %A, 92
4035 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4037 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4038 /// the PHI, merging the third icmp into the switch.
4039 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4040 ICmpInst
*ICI
, IRBuilder
<> &Builder
) {
4041 BasicBlock
*BB
= ICI
->getParent();
4043 // If the block has any PHIs in it or the icmp has multiple uses, it is too
4045 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse())
4048 Value
*V
= ICI
->getOperand(0);
4049 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
4051 // The pattern we're looking for is where our only predecessor is a switch on
4052 // 'V' and this block is the default case for the switch. In this case we can
4053 // fold the compared value into the switch to simplify things.
4054 BasicBlock
*Pred
= BB
->getSinglePredecessor();
4055 if (!Pred
|| !isa
<SwitchInst
>(Pred
->getTerminator()))
4058 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
4059 if (SI
->getCondition() != V
)
4062 // If BB is reachable on a non-default case, then we simply know the value of
4063 // V in this block. Substitute it and constant fold the icmp instruction
4065 if (SI
->getDefaultDest() != BB
) {
4066 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
4067 assert(VVal
&& "Should have a unique destination value");
4068 ICI
->setOperand(0, VVal
);
4070 if (Value
*V
= SimplifyInstruction(ICI
, {DL
, ICI
})) {
4071 ICI
->replaceAllUsesWith(V
);
4072 ICI
->eraseFromParent();
4074 // BB is now empty, so it is likely to simplify away.
4075 return requestResimplify();
4078 // Ok, the block is reachable from the default dest. If the constant we're
4079 // comparing exists in one of the other edges, then we can constant fold ICI
4081 if (SI
->findCaseValue(Cst
) != SI
->case_default()) {
4083 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
4084 V
= ConstantInt::getFalse(BB
->getContext());
4086 V
= ConstantInt::getTrue(BB
->getContext());
4088 ICI
->replaceAllUsesWith(V
);
4089 ICI
->eraseFromParent();
4090 // BB is now empty, so it is likely to simplify away.
4091 return requestResimplify();
4094 // The use of the icmp has to be in the 'end' block, by the only PHI node in
4096 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
4097 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->user_back());
4098 if (PHIUse
== nullptr || PHIUse
!= &SuccBlock
->front() ||
4099 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
4102 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4104 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
4105 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
4107 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
4108 std::swap(DefaultCst
, NewCst
);
4110 // Replace ICI (which is used by the PHI for the default value) with true or
4111 // false depending on if it is EQ or NE.
4112 ICI
->replaceAllUsesWith(DefaultCst
);
4113 ICI
->eraseFromParent();
4115 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
4117 // Okay, the switch goes to this block on a default value. Add an edge from
4118 // the switch to the merge point on the compared value.
4120 BasicBlock::Create(BB
->getContext(), "switch.edge", BB
->getParent(), BB
);
4122 SwitchInstProfUpdateWrapper
SIW(*SI
);
4123 auto W0
= SIW
.getSuccessorWeight(0);
4124 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW
;
4126 NewW
= ((uint64_t(*W0
) + 1) >> 1);
4127 SIW
.setSuccessorWeight(0, *NewW
);
4129 SIW
.addCase(Cst
, NewBB
, NewW
);
4131 Updates
.push_back({DominatorTree::Insert
, Pred
, NewBB
});
4134 // NewBB branches to the phi block, add the uncond branch and the phi entry.
4135 Builder
.SetInsertPoint(NewBB
);
4136 Builder
.SetCurrentDebugLocation(SI
->getDebugLoc());
4137 Builder
.CreateBr(SuccBlock
);
4138 PHIUse
->addIncoming(NewCst
, NewBB
);
4140 Updates
.push_back({DominatorTree::Insert
, NewBB
, SuccBlock
});
4141 DTU
->applyUpdates(Updates
);
4146 /// The specified branch is a conditional branch.
4147 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4148 /// fold it into a switch instruction if so.
4149 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst
*BI
,
4150 IRBuilder
<> &Builder
,
4151 const DataLayout
&DL
) {
4152 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
4156 // Change br (X == 0 | X == 1), T, F into a switch instruction.
4157 // If this is a bunch of seteq's or'd together, or if it's a bunch of
4158 // 'setne's and'ed together, collect them.
4160 // Try to gather values from a chain of and/or to be turned into a switch
4161 ConstantComparesGatherer
ConstantCompare(Cond
, DL
);
4162 // Unpack the result
4163 SmallVectorImpl
<ConstantInt
*> &Values
= ConstantCompare
.Vals
;
4164 Value
*CompVal
= ConstantCompare
.CompValue
;
4165 unsigned UsedICmps
= ConstantCompare
.UsedICmps
;
4166 Value
*ExtraCase
= ConstantCompare
.Extra
;
4168 // If we didn't have a multiply compared value, fail.
4172 // Avoid turning single icmps into a switch.
4176 bool TrueWhenEqual
= match(Cond
, m_LogicalOr(m_Value(), m_Value()));
4178 // There might be duplicate constants in the list, which the switch
4179 // instruction can't handle, remove them now.
4180 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
4181 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
4183 // If Extra was used, we require at least two switch values to do the
4184 // transformation. A switch with one value is just a conditional branch.
4185 if (ExtraCase
&& Values
.size() < 2)
4188 // TODO: Preserve branch weight metadata, similarly to how
4189 // FoldValueComparisonIntoPredecessors preserves it.
4191 // Figure out which block is which destination.
4192 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
4193 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
4195 std::swap(DefaultBB
, EdgeBB
);
4197 BasicBlock
*BB
= BI
->getParent();
4199 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
4200 << " cases into SWITCH. BB is:\n"
4203 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
4205 // If there are any extra values that couldn't be folded into the switch
4206 // then we evaluate them with an explicit branch first. Split the block
4207 // right before the condbr to handle it.
4209 BasicBlock
*NewBB
= SplitBlock(BB
, BI
, DTU
, /*LI=*/nullptr,
4210 /*MSSAU=*/nullptr, "switch.early.test");
4212 // Remove the uncond branch added to the old block.
4213 Instruction
*OldTI
= BB
->getTerminator();
4214 Builder
.SetInsertPoint(OldTI
);
4216 // There can be an unintended UB if extra values are Poison. Before the
4217 // transformation, extra values may not be evaluated according to the
4218 // condition, and it will not raise UB. But after transformation, we are
4219 // evaluating extra values before checking the condition, and it will raise
4220 // UB. It can be solved by adding freeze instruction to extra values.
4221 AssumptionCache
*AC
= Options
.AC
;
4223 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase
, AC
, BI
, nullptr))
4224 ExtraCase
= Builder
.CreateFreeze(ExtraCase
);
4227 Builder
.CreateCondBr(ExtraCase
, EdgeBB
, NewBB
);
4229 Builder
.CreateCondBr(ExtraCase
, NewBB
, EdgeBB
);
4231 OldTI
->eraseFromParent();
4234 Updates
.push_back({DominatorTree::Insert
, BB
, EdgeBB
});
4236 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4237 // for the edge we just added.
4238 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
4240 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
4241 << "\nEXTRABB = " << *BB
);
4245 Builder
.SetInsertPoint(BI
);
4246 // Convert pointer to int before we switch.
4247 if (CompVal
->getType()->isPointerTy()) {
4248 CompVal
= Builder
.CreatePtrToInt(
4249 CompVal
, DL
.getIntPtrType(CompVal
->getType()), "magicptr");
4252 // Create the new switch instruction now.
4253 SwitchInst
*New
= Builder
.CreateSwitch(CompVal
, DefaultBB
, Values
.size());
4255 // Add all of the 'cases' to the switch instruction.
4256 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
4257 New
->addCase(Values
[i
], EdgeBB
);
4259 // We added edges from PI to the EdgeBB. As such, if there were any
4260 // PHI nodes in EdgeBB, they need entries to be added corresponding to
4261 // the number of edges added.
4262 for (BasicBlock::iterator BBI
= EdgeBB
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4263 PHINode
*PN
= cast
<PHINode
>(BBI
);
4264 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
4265 for (unsigned i
= 0, e
= Values
.size() - 1; i
!= e
; ++i
)
4266 PN
->addIncoming(InVal
, BB
);
4269 // Erase the old branch instruction.
4270 EraseTerminatorAndDCECond(BI
);
4272 DTU
->applyUpdates(Updates
);
4274 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
4278 bool SimplifyCFGOpt::simplifyResume(ResumeInst
*RI
, IRBuilder
<> &Builder
) {
4279 if (isa
<PHINode
>(RI
->getValue()))
4280 return simplifyCommonResume(RI
);
4281 else if (isa
<LandingPadInst
>(RI
->getParent()->getFirstNonPHI()) &&
4282 RI
->getValue() == RI
->getParent()->getFirstNonPHI())
4283 // The resume must unwind the exception that caused control to branch here.
4284 return simplifySingleResume(RI
);
4289 // Check if cleanup block is empty
4290 static bool isCleanupBlockEmpty(iterator_range
<BasicBlock::iterator
> R
) {
4291 for (Instruction
&I
: R
) {
4292 auto *II
= dyn_cast
<IntrinsicInst
>(&I
);
4296 Intrinsic::ID IntrinsicID
= II
->getIntrinsicID();
4297 switch (IntrinsicID
) {
4298 case Intrinsic::dbg_declare
:
4299 case Intrinsic::dbg_value
:
4300 case Intrinsic::dbg_label
:
4301 case Intrinsic::lifetime_end
:
4310 // Simplify resume that is shared by several landing pads (phi of landing pad).
4311 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst
*RI
) {
4312 BasicBlock
*BB
= RI
->getParent();
4314 // Check that there are no other instructions except for debug and lifetime
4315 // intrinsics between the phi's and resume instruction.
4316 if (!isCleanupBlockEmpty(
4317 make_range(RI
->getParent()->getFirstNonPHI(), BB
->getTerminator())))
4320 SmallSetVector
<BasicBlock
*, 4> TrivialUnwindBlocks
;
4321 auto *PhiLPInst
= cast
<PHINode
>(RI
->getValue());
4323 // Check incoming blocks to see if any of them are trivial.
4324 for (unsigned Idx
= 0, End
= PhiLPInst
->getNumIncomingValues(); Idx
!= End
;
4326 auto *IncomingBB
= PhiLPInst
->getIncomingBlock(Idx
);
4327 auto *IncomingValue
= PhiLPInst
->getIncomingValue(Idx
);
4329 // If the block has other successors, we can not delete it because
4330 // it has other dependents.
4331 if (IncomingBB
->getUniqueSuccessor() != BB
)
4334 auto *LandingPad
= dyn_cast
<LandingPadInst
>(IncomingBB
->getFirstNonPHI());
4335 // Not the landing pad that caused the control to branch here.
4336 if (IncomingValue
!= LandingPad
)
4339 if (isCleanupBlockEmpty(
4340 make_range(LandingPad
->getNextNode(), IncomingBB
->getTerminator())))
4341 TrivialUnwindBlocks
.insert(IncomingBB
);
4344 // If no trivial unwind blocks, don't do any simplifications.
4345 if (TrivialUnwindBlocks
.empty())
4348 // Turn all invokes that unwind here into calls.
4349 for (auto *TrivialBB
: TrivialUnwindBlocks
) {
4350 // Blocks that will be simplified should be removed from the phi node.
4351 // Note there could be multiple edges to the resume block, and we need
4352 // to remove them all.
4353 while (PhiLPInst
->getBasicBlockIndex(TrivialBB
) != -1)
4354 BB
->removePredecessor(TrivialBB
, true);
4356 for (BasicBlock
*Pred
:
4357 llvm::make_early_inc_range(predecessors(TrivialBB
))) {
4358 removeUnwindEdge(Pred
, DTU
);
4362 // In each SimplifyCFG run, only the current processed block can be erased.
4363 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4364 // of erasing TrivialBB, we only remove the branch to the common resume
4365 // block so that we can later erase the resume block since it has no
4367 TrivialBB
->getTerminator()->eraseFromParent();
4368 new UnreachableInst(RI
->getContext(), TrivialBB
);
4370 DTU
->applyUpdates({{DominatorTree::Delete
, TrivialBB
, BB
}});
4373 // Delete the resume block if all its predecessors have been removed.
4375 DeleteDeadBlock(BB
, DTU
);
4377 return !TrivialUnwindBlocks
.empty();
4380 // Simplify resume that is only used by a single (non-phi) landing pad.
4381 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst
*RI
) {
4382 BasicBlock
*BB
= RI
->getParent();
4383 auto *LPInst
= cast
<LandingPadInst
>(BB
->getFirstNonPHI());
4384 assert(RI
->getValue() == LPInst
&&
4385 "Resume must unwind the exception that caused control to here");
4387 // Check that there are no other instructions except for debug intrinsics.
4388 if (!isCleanupBlockEmpty(
4389 make_range
<Instruction
*>(LPInst
->getNextNode(), RI
)))
4392 // Turn all invokes that unwind here into calls and delete the basic block.
4393 for (BasicBlock
*Pred
: llvm::make_early_inc_range(predecessors(BB
))) {
4394 removeUnwindEdge(Pred
, DTU
);
4398 // The landingpad is now unreachable. Zap it.
4399 DeleteDeadBlock(BB
, DTU
);
4403 static bool removeEmptyCleanup(CleanupReturnInst
*RI
, DomTreeUpdater
*DTU
) {
4404 // If this is a trivial cleanup pad that executes no instructions, it can be
4405 // eliminated. If the cleanup pad continues to the caller, any predecessor
4406 // that is an EH pad will be updated to continue to the caller and any
4407 // predecessor that terminates with an invoke instruction will have its invoke
4408 // instruction converted to a call instruction. If the cleanup pad being
4409 // simplified does not continue to the caller, each predecessor will be
4410 // updated to continue to the unwind destination of the cleanup pad being
4412 BasicBlock
*BB
= RI
->getParent();
4413 CleanupPadInst
*CPInst
= RI
->getCleanupPad();
4414 if (CPInst
->getParent() != BB
)
4415 // This isn't an empty cleanup.
4418 // We cannot kill the pad if it has multiple uses. This typically arises
4419 // from unreachable basic blocks.
4420 if (!CPInst
->hasOneUse())
4423 // Check that there are no other instructions except for benign intrinsics.
4424 if (!isCleanupBlockEmpty(
4425 make_range
<Instruction
*>(CPInst
->getNextNode(), RI
)))
4428 // If the cleanup return we are simplifying unwinds to the caller, this will
4429 // set UnwindDest to nullptr.
4430 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4431 Instruction
*DestEHPad
= UnwindDest
? UnwindDest
->getFirstNonPHI() : nullptr;
4433 // We're about to remove BB from the control flow. Before we do, sink any
4434 // PHINodes into the unwind destination. Doing this before changing the
4435 // control flow avoids some potentially slow checks, since we can currently
4436 // be certain that UnwindDest and BB have no common predecessors (since they
4437 // are both EH pads).
4439 // First, go through the PHI nodes in UnwindDest and update any nodes that
4440 // reference the block we are removing
4441 for (PHINode
&DestPN
: UnwindDest
->phis()) {
4442 int Idx
= DestPN
.getBasicBlockIndex(BB
);
4443 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4445 // This PHI node has an incoming value that corresponds to a control
4446 // path through the cleanup pad we are removing. If the incoming
4447 // value is in the cleanup pad, it must be a PHINode (because we
4448 // verified above that the block is otherwise empty). Otherwise, the
4449 // value is either a constant or a value that dominates the cleanup
4450 // pad being removed.
4452 // Because BB and UnwindDest are both EH pads, all of their
4453 // predecessors must unwind to these blocks, and since no instruction
4454 // can have multiple unwind destinations, there will be no overlap in
4455 // incoming blocks between SrcPN and DestPN.
4456 Value
*SrcVal
= DestPN
.getIncomingValue(Idx
);
4457 PHINode
*SrcPN
= dyn_cast
<PHINode
>(SrcVal
);
4459 bool NeedPHITranslation
= SrcPN
&& SrcPN
->getParent() == BB
;
4460 for (auto *Pred
: predecessors(BB
)) {
4462 NeedPHITranslation
? SrcPN
->getIncomingValueForBlock(Pred
) : SrcVal
;
4463 DestPN
.addIncoming(Incoming
, Pred
);
4467 // Sink any remaining PHI nodes directly into UnwindDest.
4468 Instruction
*InsertPt
= DestEHPad
;
4469 for (PHINode
&PN
: make_early_inc_range(BB
->phis())) {
4470 if (PN
.use_empty() || !PN
.isUsedOutsideOfBlock(BB
))
4471 // If the PHI node has no uses or all of its uses are in this basic
4472 // block (meaning they are debug or lifetime intrinsics), just leave
4473 // it. It will be erased when we erase BB below.
4476 // Otherwise, sink this PHI node into UnwindDest.
4477 // Any predecessors to UnwindDest which are not already represented
4478 // must be back edges which inherit the value from the path through
4479 // BB. In this case, the PHI value must reference itself.
4480 for (auto *pred
: predecessors(UnwindDest
))
4482 PN
.addIncoming(&PN
, pred
);
4483 PN
.moveBefore(InsertPt
);
4484 // Also, add a dummy incoming value for the original BB itself,
4485 // so that the PHI is well-formed until we drop said predecessor.
4486 PN
.addIncoming(UndefValue::get(PN
.getType()), BB
);
4490 std::vector
<DominatorTree::UpdateType
> Updates
;
4492 // We use make_early_inc_range here because we will remove all predecessors.
4493 for (BasicBlock
*PredBB
: llvm::make_early_inc_range(predecessors(BB
))) {
4494 if (UnwindDest
== nullptr) {
4496 DTU
->applyUpdates(Updates
);
4499 removeUnwindEdge(PredBB
, DTU
);
4502 BB
->removePredecessor(PredBB
);
4503 Instruction
*TI
= PredBB
->getTerminator();
4504 TI
->replaceUsesOfWith(BB
, UnwindDest
);
4506 Updates
.push_back({DominatorTree::Insert
, PredBB
, UnwindDest
});
4507 Updates
.push_back({DominatorTree::Delete
, PredBB
, BB
});
4513 DTU
->applyUpdates(Updates
);
4515 DeleteDeadBlock(BB
, DTU
);
4520 // Try to merge two cleanuppads together.
4521 static bool mergeCleanupPad(CleanupReturnInst
*RI
) {
4522 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4524 BasicBlock
*UnwindDest
= RI
->getUnwindDest();
4528 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4529 // be safe to merge without code duplication.
4530 if (UnwindDest
->getSinglePredecessor() != RI
->getParent())
4533 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4534 auto *SuccessorCleanupPad
= dyn_cast
<CleanupPadInst
>(&UnwindDest
->front());
4535 if (!SuccessorCleanupPad
)
4538 CleanupPadInst
*PredecessorCleanupPad
= RI
->getCleanupPad();
4539 // Replace any uses of the successor cleanupad with the predecessor pad
4540 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4541 // funclet bundle operands.
4542 SuccessorCleanupPad
->replaceAllUsesWith(PredecessorCleanupPad
);
4543 // Remove the old cleanuppad.
4544 SuccessorCleanupPad
->eraseFromParent();
4545 // Now, we simply replace the cleanupret with a branch to the unwind
4547 BranchInst::Create(UnwindDest
, RI
->getParent());
4548 RI
->eraseFromParent();
4553 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst
*RI
) {
4554 // It is possible to transiantly have an undef cleanuppad operand because we
4555 // have deleted some, but not all, dead blocks.
4556 // Eventually, this block will be deleted.
4557 if (isa
<UndefValue
>(RI
->getOperand(0)))
4560 if (mergeCleanupPad(RI
))
4563 if (removeEmptyCleanup(RI
, DTU
))
4569 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4570 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst
*UI
) {
4571 BasicBlock
*BB
= UI
->getParent();
4573 bool Changed
= false;
4575 // If there are any instructions immediately before the unreachable that can
4576 // be removed, do so.
4577 while (UI
->getIterator() != BB
->begin()) {
4578 BasicBlock::iterator BBI
= UI
->getIterator();
4581 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI
))
4582 break; // Can not drop any more instructions. We're done here.
4583 // Otherwise, this instruction can be freely erased,
4584 // even if it is not side-effect free.
4586 // Note that deleting EH's here is in fact okay, although it involves a bit
4587 // of subtle reasoning. If this inst is an EH, all the predecessors of this
4588 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4589 // and we can therefore guarantee this block will be erased.
4591 // Delete this instruction (any uses are guaranteed to be dead)
4592 BBI
->replaceAllUsesWith(PoisonValue::get(BBI
->getType()));
4593 BBI
->eraseFromParent();
4597 // If the unreachable instruction is the first in the block, take a gander
4598 // at all of the predecessors of this instruction, and simplify them.
4599 if (&BB
->front() != UI
)
4602 std::vector
<DominatorTree::UpdateType
> Updates
;
4604 SmallSetVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
4605 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
4606 auto *Predecessor
= Preds
[i
];
4607 Instruction
*TI
= Predecessor
->getTerminator();
4608 IRBuilder
<> Builder(TI
);
4609 if (auto *BI
= dyn_cast
<BranchInst
>(TI
)) {
4610 // We could either have a proper unconditional branch,
4611 // or a degenerate conditional branch with matching destinations.
4612 if (all_of(BI
->successors(),
4613 [BB
](auto *Successor
) { return Successor
== BB
; })) {
4614 new UnreachableInst(TI
->getContext(), TI
);
4615 TI
->eraseFromParent();
4618 assert(BI
->isConditional() && "Can't get here with an uncond branch.");
4619 Value
* Cond
= BI
->getCondition();
4620 assert(BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
4621 "The destinations are guaranteed to be different here.");
4622 if (BI
->getSuccessor(0) == BB
) {
4623 Builder
.CreateAssumption(Builder
.CreateNot(Cond
));
4624 Builder
.CreateBr(BI
->getSuccessor(1));
4626 assert(BI
->getSuccessor(1) == BB
&& "Incorrect CFG");
4627 Builder
.CreateAssumption(Cond
);
4628 Builder
.CreateBr(BI
->getSuccessor(0));
4630 EraseTerminatorAndDCECond(BI
);
4634 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
4635 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
4636 SwitchInstProfUpdateWrapper
SU(*SI
);
4637 for (auto i
= SU
->case_begin(), e
= SU
->case_end(); i
!= e
;) {
4638 if (i
->getCaseSuccessor() != BB
) {
4642 BB
->removePredecessor(SU
->getParent());
4643 i
= SU
.removeCase(i
);
4647 // Note that the default destination can't be removed!
4648 if (DTU
&& SI
->getDefaultDest() != BB
)
4649 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
4650 } else if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
4651 if (II
->getUnwindDest() == BB
) {
4653 DTU
->applyUpdates(Updates
);
4656 removeUnwindEdge(TI
->getParent(), DTU
);
4659 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
4660 if (CSI
->getUnwindDest() == BB
) {
4662 DTU
->applyUpdates(Updates
);
4665 removeUnwindEdge(TI
->getParent(), DTU
);
4670 for (CatchSwitchInst::handler_iterator I
= CSI
->handler_begin(),
4671 E
= CSI
->handler_end();
4674 CSI
->removeHandler(I
);
4681 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
4682 if (CSI
->getNumHandlers() == 0) {
4683 if (CSI
->hasUnwindDest()) {
4684 // Redirect all predecessors of the block containing CatchSwitchInst
4685 // to instead branch to the CatchSwitchInst's unwind destination.
4687 for (auto *PredecessorOfPredecessor
: predecessors(Predecessor
)) {
4688 Updates
.push_back({DominatorTree::Insert
,
4689 PredecessorOfPredecessor
,
4690 CSI
->getUnwindDest()});
4691 Updates
.push_back({DominatorTree::Delete
,
4692 PredecessorOfPredecessor
, Predecessor
});
4695 Predecessor
->replaceAllUsesWith(CSI
->getUnwindDest());
4697 // Rewrite all preds to unwind to caller (or from invoke to call).
4699 DTU
->applyUpdates(Updates
);
4702 SmallVector
<BasicBlock
*, 8> EHPreds(predecessors(Predecessor
));
4703 for (BasicBlock
*EHPred
: EHPreds
)
4704 removeUnwindEdge(EHPred
, DTU
);
4706 // The catchswitch is no longer reachable.
4707 new UnreachableInst(CSI
->getContext(), CSI
);
4708 CSI
->eraseFromParent();
4711 } else if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
4713 assert(CRI
->hasUnwindDest() && CRI
->getUnwindDest() == BB
&&
4714 "Expected to always have an unwind to BB.");
4716 Updates
.push_back({DominatorTree::Delete
, Predecessor
, BB
});
4717 new UnreachableInst(TI
->getContext(), TI
);
4718 TI
->eraseFromParent();
4724 DTU
->applyUpdates(Updates
);
4726 // If this block is now dead, remove it.
4727 if (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) {
4728 DeleteDeadBlock(BB
, DTU
);
4735 static bool CasesAreContiguous(SmallVectorImpl
<ConstantInt
*> &Cases
) {
4736 assert(Cases
.size() >= 1);
4738 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
4739 for (size_t I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
4740 if (Cases
[I
- 1]->getValue() != Cases
[I
]->getValue() + 1)
4746 static void createUnreachableSwitchDefault(SwitchInst
*Switch
,
4747 DomTreeUpdater
*DTU
) {
4748 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4749 auto *BB
= Switch
->getParent();
4750 auto *OrigDefaultBlock
= Switch
->getDefaultDest();
4751 OrigDefaultBlock
->removePredecessor(BB
);
4752 BasicBlock
*NewDefaultBlock
= BasicBlock::Create(
4753 BB
->getContext(), BB
->getName() + ".unreachabledefault", BB
->getParent(),
4755 new UnreachableInst(Switch
->getContext(), NewDefaultBlock
);
4756 Switch
->setDefaultDest(&*NewDefaultBlock
);
4758 SmallVector
<DominatorTree::UpdateType
, 2> Updates
;
4759 Updates
.push_back({DominatorTree::Insert
, BB
, &*NewDefaultBlock
});
4760 if (!is_contained(successors(BB
), OrigDefaultBlock
))
4761 Updates
.push_back({DominatorTree::Delete
, BB
, &*OrigDefaultBlock
});
4762 DTU
->applyUpdates(Updates
);
4766 /// Turn a switch with two reachable destinations into an integer range
4767 /// comparison and branch.
4768 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst
*SI
,
4769 IRBuilder
<> &Builder
) {
4770 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
4773 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4775 auto *BB
= SI
->getParent();
4777 // Partition the cases into two sets with different destinations.
4778 BasicBlock
*DestA
= HasDefault
? SI
->getDefaultDest() : nullptr;
4779 BasicBlock
*DestB
= nullptr;
4780 SmallVector
<ConstantInt
*, 16> CasesA
;
4781 SmallVector
<ConstantInt
*, 16> CasesB
;
4783 for (auto Case
: SI
->cases()) {
4784 BasicBlock
*Dest
= Case
.getCaseSuccessor();
4787 if (Dest
== DestA
) {
4788 CasesA
.push_back(Case
.getCaseValue());
4793 if (Dest
== DestB
) {
4794 CasesB
.push_back(Case
.getCaseValue());
4797 return false; // More than two destinations.
4800 assert(DestA
&& DestB
&&
4801 "Single-destination switch should have been folded.");
4802 assert(DestA
!= DestB
);
4803 assert(DestB
!= SI
->getDefaultDest());
4804 assert(!CasesB
.empty() && "There must be non-default cases.");
4805 assert(!CasesA
.empty() || HasDefault
);
4807 // Figure out if one of the sets of cases form a contiguous range.
4808 SmallVectorImpl
<ConstantInt
*> *ContiguousCases
= nullptr;
4809 BasicBlock
*ContiguousDest
= nullptr;
4810 BasicBlock
*OtherDest
= nullptr;
4811 if (!CasesA
.empty() && CasesAreContiguous(CasesA
)) {
4812 ContiguousCases
= &CasesA
;
4813 ContiguousDest
= DestA
;
4815 } else if (CasesAreContiguous(CasesB
)) {
4816 ContiguousCases
= &CasesB
;
4817 ContiguousDest
= DestB
;
4822 // Start building the compare and branch.
4824 Constant
*Offset
= ConstantExpr::getNeg(ContiguousCases
->back());
4825 Constant
*NumCases
=
4826 ConstantInt::get(Offset
->getType(), ContiguousCases
->size());
4828 Value
*Sub
= SI
->getCondition();
4829 if (!Offset
->isNullValue())
4830 Sub
= Builder
.CreateAdd(Sub
, Offset
, Sub
->getName() + ".off");
4833 // If NumCases overflowed, then all possible values jump to the successor.
4834 if (NumCases
->isNullValue() && !ContiguousCases
->empty())
4835 Cmp
= ConstantInt::getTrue(SI
->getContext());
4837 Cmp
= Builder
.CreateICmpULT(Sub
, NumCases
, "switch");
4838 BranchInst
*NewBI
= Builder
.CreateCondBr(Cmp
, ContiguousDest
, OtherDest
);
4840 // Update weight for the newly-created conditional branch.
4841 if (HasBranchWeights(SI
)) {
4842 SmallVector
<uint64_t, 8> Weights
;
4843 GetBranchWeights(SI
, Weights
);
4844 if (Weights
.size() == 1 + SI
->getNumCases()) {
4845 uint64_t TrueWeight
= 0;
4846 uint64_t FalseWeight
= 0;
4847 for (size_t I
= 0, E
= Weights
.size(); I
!= E
; ++I
) {
4848 if (SI
->getSuccessor(I
) == ContiguousDest
)
4849 TrueWeight
+= Weights
[I
];
4851 FalseWeight
+= Weights
[I
];
4853 while (TrueWeight
> UINT32_MAX
|| FalseWeight
> UINT32_MAX
) {
4857 setBranchWeights(NewBI
, TrueWeight
, FalseWeight
);
4861 // Prune obsolete incoming values off the successors' PHI nodes.
4862 for (auto BBI
= ContiguousDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4863 unsigned PreviousEdges
= ContiguousCases
->size();
4864 if (ContiguousDest
== SI
->getDefaultDest())
4866 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4867 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4869 for (auto BBI
= OtherDest
->begin(); isa
<PHINode
>(BBI
); ++BBI
) {
4870 unsigned PreviousEdges
= SI
->getNumCases() - ContiguousCases
->size();
4871 if (OtherDest
== SI
->getDefaultDest())
4873 for (unsigned I
= 0, E
= PreviousEdges
- 1; I
!= E
; ++I
)
4874 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
4877 // Clean up the default block - it may have phis or other instructions before
4878 // the unreachable terminator.
4880 createUnreachableSwitchDefault(SI
, DTU
);
4882 auto *UnreachableDefault
= SI
->getDefaultDest();
4885 SI
->eraseFromParent();
4887 if (!HasDefault
&& DTU
)
4888 DTU
->applyUpdates({{DominatorTree::Delete
, BB
, UnreachableDefault
}});
4893 /// Compute masked bits for the condition of a switch
4894 /// and use it to remove dead cases.
4895 static bool eliminateDeadSwitchCases(SwitchInst
*SI
, DomTreeUpdater
*DTU
,
4896 AssumptionCache
*AC
,
4897 const DataLayout
&DL
) {
4898 Value
*Cond
= SI
->getCondition();
4899 unsigned Bits
= Cond
->getType()->getIntegerBitWidth();
4900 KnownBits Known
= computeKnownBits(Cond
, DL
, 0, AC
, SI
);
4902 // We can also eliminate cases by determining that their values are outside of
4903 // the limited range of the condition based on how many significant (non-sign)
4904 // bits are in the condition value.
4905 unsigned ExtraSignBits
= ComputeNumSignBits(Cond
, DL
, 0, AC
, SI
) - 1;
4906 unsigned MaxSignificantBitsInCond
= Bits
- ExtraSignBits
;
4908 // Gather dead cases.
4909 SmallVector
<ConstantInt
*, 8> DeadCases
;
4910 SmallDenseMap
<BasicBlock
*, int, 8> NumPerSuccessorCases
;
4911 for (auto &Case
: SI
->cases()) {
4912 auto *Successor
= Case
.getCaseSuccessor();
4914 ++NumPerSuccessorCases
[Successor
];
4915 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
4916 if (Known
.Zero
.intersects(CaseVal
) || !Known
.One
.isSubsetOf(CaseVal
) ||
4917 (CaseVal
.getMinSignedBits() > MaxSignificantBitsInCond
)) {
4918 DeadCases
.push_back(Case
.getCaseValue());
4920 --NumPerSuccessorCases
[Successor
];
4921 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4926 // If we can prove that the cases must cover all possible values, the
4927 // default destination becomes dead and we can remove it. If we know some
4928 // of the bits in the value, we can use that to more precisely compute the
4929 // number of possible unique case values.
4931 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
4932 const unsigned NumUnknownBits
=
4933 Bits
- (Known
.Zero
| Known
.One
).countPopulation();
4934 assert(NumUnknownBits
<= Bits
);
4935 if (HasDefault
&& DeadCases
.empty() &&
4936 NumUnknownBits
< 64 /* avoid overflow */ &&
4937 SI
->getNumCases() == (1ULL << NumUnknownBits
)) {
4938 createUnreachableSwitchDefault(SI
, DTU
);
4942 if (DeadCases
.empty())
4945 SwitchInstProfUpdateWrapper
SIW(*SI
);
4946 for (ConstantInt
*DeadCase
: DeadCases
) {
4947 SwitchInst::CaseIt CaseI
= SI
->findCaseValue(DeadCase
);
4948 assert(CaseI
!= SI
->case_default() &&
4949 "Case was not found. Probably mistake in DeadCases forming.");
4950 // Prune unused values from PHI nodes.
4951 CaseI
->getCaseSuccessor()->removePredecessor(SI
->getParent());
4952 SIW
.removeCase(CaseI
);
4956 std::vector
<DominatorTree::UpdateType
> Updates
;
4957 for (const std::pair
<BasicBlock
*, int> &I
: NumPerSuccessorCases
)
4959 Updates
.push_back({DominatorTree::Delete
, SI
->getParent(), I
.first
});
4960 DTU
->applyUpdates(Updates
);
4966 /// If BB would be eligible for simplification by
4967 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4968 /// by an unconditional branch), look at the phi node for BB in the successor
4969 /// block and see if the incoming value is equal to CaseValue. If so, return
4970 /// the phi node, and set PhiIndex to BB's index in the phi node.
4971 static PHINode
*FindPHIForConditionForwarding(ConstantInt
*CaseValue
,
4972 BasicBlock
*BB
, int *PhiIndex
) {
4973 if (BB
->getFirstNonPHIOrDbg() != BB
->getTerminator())
4974 return nullptr; // BB must be empty to be a candidate for simplification.
4975 if (!BB
->getSinglePredecessor())
4976 return nullptr; // BB must be dominated by the switch.
4978 BranchInst
*Branch
= dyn_cast
<BranchInst
>(BB
->getTerminator());
4979 if (!Branch
|| !Branch
->isUnconditional())
4980 return nullptr; // Terminator must be unconditional branch.
4982 BasicBlock
*Succ
= Branch
->getSuccessor(0);
4984 for (PHINode
&PHI
: Succ
->phis()) {
4985 int Idx
= PHI
.getBasicBlockIndex(BB
);
4986 assert(Idx
>= 0 && "PHI has no entry for predecessor?");
4988 Value
*InValue
= PHI
.getIncomingValue(Idx
);
4989 if (InValue
!= CaseValue
)
4999 /// Try to forward the condition of a switch instruction to a phi node
5000 /// dominated by the switch, if that would mean that some of the destination
5001 /// blocks of the switch can be folded away. Return true if a change is made.
5002 static bool ForwardSwitchConditionToPHI(SwitchInst
*SI
) {
5003 using ForwardingNodesMap
= DenseMap
<PHINode
*, SmallVector
<int, 4>>;
5005 ForwardingNodesMap ForwardingNodes
;
5006 BasicBlock
*SwitchBlock
= SI
->getParent();
5007 bool Changed
= false;
5008 for (auto &Case
: SI
->cases()) {
5009 ConstantInt
*CaseValue
= Case
.getCaseValue();
5010 BasicBlock
*CaseDest
= Case
.getCaseSuccessor();
5012 // Replace phi operands in successor blocks that are using the constant case
5013 // value rather than the switch condition variable:
5015 // switch i32 %x, label %default [
5016 // i32 17, label %succ
5019 // %r = phi i32 ... [ 17, %switchbb ] ...
5021 // %r = phi i32 ... [ %x, %switchbb ] ...
5023 for (PHINode
&Phi
: CaseDest
->phis()) {
5024 // This only works if there is exactly 1 incoming edge from the switch to
5025 // a phi. If there is >1, that means multiple cases of the switch map to 1
5026 // value in the phi, and that phi value is not the switch condition. Thus,
5027 // this transform would not make sense (the phi would be invalid because
5028 // a phi can't have different incoming values from the same block).
5029 int SwitchBBIdx
= Phi
.getBasicBlockIndex(SwitchBlock
);
5030 if (Phi
.getIncomingValue(SwitchBBIdx
) == CaseValue
&&
5031 count(Phi
.blocks(), SwitchBlock
) == 1) {
5032 Phi
.setIncomingValue(SwitchBBIdx
, SI
->getCondition());
5037 // Collect phi nodes that are indirectly using this switch's case constants.
5039 if (auto *Phi
= FindPHIForConditionForwarding(CaseValue
, CaseDest
, &PhiIdx
))
5040 ForwardingNodes
[Phi
].push_back(PhiIdx
);
5043 for (auto &ForwardingNode
: ForwardingNodes
) {
5044 PHINode
*Phi
= ForwardingNode
.first
;
5045 SmallVectorImpl
<int> &Indexes
= ForwardingNode
.second
;
5046 if (Indexes
.size() < 2)
5049 for (int Index
: Indexes
)
5050 Phi
->setIncomingValue(Index
, SI
->getCondition());
5057 /// Return true if the backend will be able to handle
5058 /// initializing an array of constants like C.
5059 static bool ValidLookupTableConstant(Constant
*C
, const TargetTransformInfo
&TTI
) {
5060 if (C
->isThreadDependent())
5062 if (C
->isDLLImportDependent())
5065 if (!isa
<ConstantFP
>(C
) && !isa
<ConstantInt
>(C
) &&
5066 !isa
<ConstantPointerNull
>(C
) && !isa
<GlobalValue
>(C
) &&
5067 !isa
<UndefValue
>(C
) && !isa
<ConstantExpr
>(C
))
5070 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
5071 if (!CE
->isGEPWithNoNotionalOverIndexing())
5073 if (!ValidLookupTableConstant(CE
->getOperand(0), TTI
))
5077 if (!TTI
.shouldBuildLookupTablesForConstant(C
))
5083 /// If V is a Constant, return it. Otherwise, try to look up
5084 /// its constant value in ConstantPool, returning 0 if it's not there.
5086 LookupConstant(Value
*V
,
5087 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
5088 if (Constant
*C
= dyn_cast
<Constant
>(V
))
5090 return ConstantPool
.lookup(V
);
5093 /// Try to fold instruction I into a constant. This works for
5094 /// simple instructions such as binary operations where both operands are
5095 /// constant or can be replaced by constants from the ConstantPool. Returns the
5096 /// resulting constant on success, 0 otherwise.
5098 ConstantFold(Instruction
*I
, const DataLayout
&DL
,
5099 const SmallDenseMap
<Value
*, Constant
*> &ConstantPool
) {
5100 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(I
)) {
5101 Constant
*A
= LookupConstant(Select
->getCondition(), ConstantPool
);
5104 if (A
->isAllOnesValue())
5105 return LookupConstant(Select
->getTrueValue(), ConstantPool
);
5106 if (A
->isNullValue())
5107 return LookupConstant(Select
->getFalseValue(), ConstantPool
);
5111 SmallVector
<Constant
*, 4> COps
;
5112 for (unsigned N
= 0, E
= I
->getNumOperands(); N
!= E
; ++N
) {
5113 if (Constant
*A
= LookupConstant(I
->getOperand(N
), ConstantPool
))
5119 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
5120 return ConstantFoldCompareInstOperands(Cmp
->getPredicate(), COps
[0],
5124 return ConstantFoldInstOperands(I
, COps
, DL
);
5127 /// Try to determine the resulting constant values in phi nodes
5128 /// at the common destination basic block, *CommonDest, for one of the case
5129 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5130 /// case), of a switch instruction SI.
5132 GetCaseResults(SwitchInst
*SI
, ConstantInt
*CaseVal
, BasicBlock
*CaseDest
,
5133 BasicBlock
**CommonDest
,
5134 SmallVectorImpl
<std::pair
<PHINode
*, Constant
*>> &Res
,
5135 const DataLayout
&DL
, const TargetTransformInfo
&TTI
) {
5136 // The block from which we enter the common destination.
5137 BasicBlock
*Pred
= SI
->getParent();
5139 // If CaseDest is empty except for some side-effect free instructions through
5140 // which we can constant-propagate the CaseVal, continue to its successor.
5141 SmallDenseMap
<Value
*, Constant
*> ConstantPool
;
5142 ConstantPool
.insert(std::make_pair(SI
->getCondition(), CaseVal
));
5143 for (Instruction
&I
:CaseDest
->instructionsWithoutDebug()) {
5144 if (I
.isTerminator()) {
5145 // If the terminator is a simple branch, continue to the next block.
5146 if (I
.getNumSuccessors() != 1 || I
.isExceptionalTerminator())
5149 CaseDest
= I
.getSuccessor(0);
5150 } else if (Constant
*C
= ConstantFold(&I
, DL
, ConstantPool
)) {
5151 // Instruction is side-effect free and constant.
5153 // If the instruction has uses outside this block or a phi node slot for
5154 // the block, it is not safe to bypass the instruction since it would then
5155 // no longer dominate all its uses.
5156 for (auto &Use
: I
.uses()) {
5157 User
*User
= Use
.getUser();
5158 if (Instruction
*I
= dyn_cast
<Instruction
>(User
))
5159 if (I
->getParent() == CaseDest
)
5161 if (PHINode
*Phi
= dyn_cast
<PHINode
>(User
))
5162 if (Phi
->getIncomingBlock(Use
) == CaseDest
)
5167 ConstantPool
.insert(std::make_pair(&I
, C
));
5173 // If we did not have a CommonDest before, use the current one.
5175 *CommonDest
= CaseDest
;
5176 // If the destination isn't the common one, abort.
5177 if (CaseDest
!= *CommonDest
)
5180 // Get the values for this case from phi nodes in the destination block.
5181 for (PHINode
&PHI
: (*CommonDest
)->phis()) {
5182 int Idx
= PHI
.getBasicBlockIndex(Pred
);
5186 Constant
*ConstVal
=
5187 LookupConstant(PHI
.getIncomingValue(Idx
), ConstantPool
);
5191 // Be conservative about which kinds of constants we support.
5192 if (!ValidLookupTableConstant(ConstVal
, TTI
))
5195 Res
.push_back(std::make_pair(&PHI
, ConstVal
));
5198 return Res
.size() > 0;
5201 // Helper function used to add CaseVal to the list of cases that generate
5202 // Result. Returns the updated number of cases that generate this result.
5203 static uintptr_t MapCaseToResult(ConstantInt
*CaseVal
,
5204 SwitchCaseResultVectorTy
&UniqueResults
,
5206 for (auto &I
: UniqueResults
) {
5207 if (I
.first
== Result
) {
5208 I
.second
.push_back(CaseVal
);
5209 return I
.second
.size();
5212 UniqueResults
.push_back(
5213 std::make_pair(Result
, SmallVector
<ConstantInt
*, 4>(1, CaseVal
)));
5217 // Helper function that initializes a map containing
5218 // results for the PHI node of the common destination block for a switch
5219 // instruction. Returns false if multiple PHI nodes have been found or if
5220 // there is not a common destination block for the switch.
5222 InitializeUniqueCases(SwitchInst
*SI
, PHINode
*&PHI
, BasicBlock
*&CommonDest
,
5223 SwitchCaseResultVectorTy
&UniqueResults
,
5224 Constant
*&DefaultResult
, const DataLayout
&DL
,
5225 const TargetTransformInfo
&TTI
,
5226 uintptr_t MaxUniqueResults
, uintptr_t MaxCasesPerResult
) {
5227 for (auto &I
: SI
->cases()) {
5228 ConstantInt
*CaseVal
= I
.getCaseValue();
5230 // Resulting value at phi nodes for this case value.
5231 SwitchCaseResultsTy Results
;
5232 if (!GetCaseResults(SI
, CaseVal
, I
.getCaseSuccessor(), &CommonDest
, Results
,
5236 // Only one value per case is permitted.
5237 if (Results
.size() > 1)
5240 // Add the case->result mapping to UniqueResults.
5241 const uintptr_t NumCasesForResult
=
5242 MapCaseToResult(CaseVal
, UniqueResults
, Results
.begin()->second
);
5244 // Early out if there are too many cases for this result.
5245 if (NumCasesForResult
> MaxCasesPerResult
)
5248 // Early out if there are too many unique results.
5249 if (UniqueResults
.size() > MaxUniqueResults
)
5252 // Check the PHI consistency.
5254 PHI
= Results
[0].first
;
5255 else if (PHI
!= Results
[0].first
)
5258 // Find the default result value.
5259 SmallVector
<std::pair
<PHINode
*, Constant
*>, 1> DefaultResults
;
5260 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
5261 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
, DefaultResults
,
5263 // If the default value is not found abort unless the default destination
5266 DefaultResults
.size() == 1 ? DefaultResults
.begin()->second
: nullptr;
5267 if ((!DefaultResult
&&
5268 !isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg())))
5274 // Helper function that checks if it is possible to transform a switch with only
5275 // two cases (or two cases + default) that produces a result into a select.
5278 // case 10: %0 = icmp eq i32 %a, 10
5279 // return 10; %1 = select i1 %0, i32 10, i32 4
5280 // case 20: ----> %2 = icmp eq i32 %a, 20
5281 // return 2; %3 = select i1 %2, i32 2, i32 %1
5285 static Value
*ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy
&ResultVector
,
5286 Constant
*DefaultResult
, Value
*Condition
,
5287 IRBuilder
<> &Builder
) {
5288 // If we are selecting between only two cases transform into a simple
5289 // select or a two-way select if default is possible.
5290 if (ResultVector
.size() == 2 && ResultVector
[0].second
.size() == 1 &&
5291 ResultVector
[1].second
.size() == 1) {
5292 ConstantInt
*const FirstCase
= ResultVector
[0].second
[0];
5293 ConstantInt
*const SecondCase
= ResultVector
[1].second
[0];
5295 bool DefaultCanTrigger
= DefaultResult
;
5296 Value
*SelectValue
= ResultVector
[1].first
;
5297 if (DefaultCanTrigger
) {
5298 Value
*const ValueCompare
=
5299 Builder
.CreateICmpEQ(Condition
, SecondCase
, "switch.selectcmp");
5300 SelectValue
= Builder
.CreateSelect(ValueCompare
, ResultVector
[1].first
,
5301 DefaultResult
, "switch.select");
5303 Value
*const ValueCompare
=
5304 Builder
.CreateICmpEQ(Condition
, FirstCase
, "switch.selectcmp");
5305 return Builder
.CreateSelect(ValueCompare
, ResultVector
[0].first
,
5306 SelectValue
, "switch.select");
5309 // Handle the degenerate case where two cases have the same value.
5310 if (ResultVector
.size() == 1 && ResultVector
[0].second
.size() == 2 &&
5312 Value
*Cmp1
= Builder
.CreateICmpEQ(
5313 Condition
, ResultVector
[0].second
[0], "switch.selectcmp.case1");
5314 Value
*Cmp2
= Builder
.CreateICmpEQ(
5315 Condition
, ResultVector
[0].second
[1], "switch.selectcmp.case2");
5316 Value
*Cmp
= Builder
.CreateOr(Cmp1
, Cmp2
, "switch.selectcmp");
5317 return Builder
.CreateSelect(Cmp
, ResultVector
[0].first
, DefaultResult
);
5323 // Helper function to cleanup a switch instruction that has been converted into
5324 // a select, fixing up PHI nodes and basic blocks.
5325 static void RemoveSwitchAfterSelectConversion(SwitchInst
*SI
, PHINode
*PHI
,
5327 IRBuilder
<> &Builder
,
5328 DomTreeUpdater
*DTU
) {
5329 std::vector
<DominatorTree::UpdateType
> Updates
;
5331 BasicBlock
*SelectBB
= SI
->getParent();
5332 BasicBlock
*DestBB
= PHI
->getParent();
5334 if (DTU
&& !is_contained(predecessors(DestBB
), SelectBB
))
5335 Updates
.push_back({DominatorTree::Insert
, SelectBB
, DestBB
});
5336 Builder
.CreateBr(DestBB
);
5338 // Remove the switch.
5340 while (PHI
->getBasicBlockIndex(SelectBB
) >= 0)
5341 PHI
->removeIncomingValue(SelectBB
);
5342 PHI
->addIncoming(SelectValue
, SelectBB
);
5344 SmallPtrSet
<BasicBlock
*, 4> RemovedSuccessors
;
5345 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
5346 BasicBlock
*Succ
= SI
->getSuccessor(i
);
5350 Succ
->removePredecessor(SelectBB
);
5351 if (DTU
&& RemovedSuccessors
.insert(Succ
).second
)
5352 Updates
.push_back({DominatorTree::Delete
, SelectBB
, Succ
});
5354 SI
->eraseFromParent();
5356 DTU
->applyUpdates(Updates
);
5359 /// If the switch is only used to initialize one or more
5360 /// phi nodes in a common successor block with only two different
5361 /// constant values, replace the switch with select.
5362 static bool switchToSelect(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5363 DomTreeUpdater
*DTU
, const DataLayout
&DL
,
5364 const TargetTransformInfo
&TTI
) {
5365 Value
*const Cond
= SI
->getCondition();
5366 PHINode
*PHI
= nullptr;
5367 BasicBlock
*CommonDest
= nullptr;
5368 Constant
*DefaultResult
;
5369 SwitchCaseResultVectorTy UniqueResults
;
5370 // Collect all the cases that will deliver the same value from the switch.
5371 if (!InitializeUniqueCases(SI
, PHI
, CommonDest
, UniqueResults
, DefaultResult
,
5372 DL
, TTI
, /*MaxUniqueResults*/2,
5373 /*MaxCasesPerResult*/2))
5375 assert(PHI
!= nullptr && "PHI for value select not found");
5377 Builder
.SetInsertPoint(SI
);
5378 Value
*SelectValue
=
5379 ConvertTwoCaseSwitch(UniqueResults
, DefaultResult
, Cond
, Builder
);
5381 RemoveSwitchAfterSelectConversion(SI
, PHI
, SelectValue
, Builder
, DTU
);
5384 // The switch couldn't be converted into a select.
5390 /// This class represents a lookup table that can be used to replace a switch.
5391 class SwitchLookupTable
{
5393 /// Create a lookup table to use as a switch replacement with the contents
5394 /// of Values, using DefaultValue to fill any holes in the table.
5396 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
5397 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
5398 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
);
5400 /// Build instructions with Builder to retrieve the value at
5401 /// the position given by Index in the lookup table.
5402 Value
*BuildLookup(Value
*Index
, IRBuilder
<> &Builder
);
5404 /// Return true if a table with TableSize elements of
5405 /// type ElementType would fit in a target-legal register.
5406 static bool WouldFitInRegister(const DataLayout
&DL
, uint64_t TableSize
,
5410 // Depending on the contents of the table, it can be represented in
5413 // For tables where each element contains the same value, we just have to
5414 // store that single value and return it for each lookup.
5417 // For tables where there is a linear relationship between table index
5418 // and values. We calculate the result with a simple multiplication
5419 // and addition instead of a table lookup.
5422 // For small tables with integer elements, we can pack them into a bitmap
5423 // that fits into a target-legal register. Values are retrieved by
5424 // shift and mask operations.
5427 // The table is stored as an array of values. Values are retrieved by load
5428 // instructions from the table.
5432 // For SingleValueKind, this is the single value.
5433 Constant
*SingleValue
= nullptr;
5435 // For BitMapKind, this is the bitmap.
5436 ConstantInt
*BitMap
= nullptr;
5437 IntegerType
*BitMapElementTy
= nullptr;
5439 // For LinearMapKind, these are the constants used to derive the value.
5440 ConstantInt
*LinearOffset
= nullptr;
5441 ConstantInt
*LinearMultiplier
= nullptr;
5443 // For ArrayKind, this is the array.
5444 GlobalVariable
*Array
= nullptr;
5447 } // end anonymous namespace
5449 SwitchLookupTable::SwitchLookupTable(
5450 Module
&M
, uint64_t TableSize
, ConstantInt
*Offset
,
5451 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
,
5452 Constant
*DefaultValue
, const DataLayout
&DL
, const StringRef
&FuncName
) {
5453 assert(Values
.size() && "Can't build lookup table without values!");
5454 assert(TableSize
>= Values
.size() && "Can't fit values in table!");
5456 // If all values in the table are equal, this is that value.
5457 SingleValue
= Values
.begin()->second
;
5459 Type
*ValueType
= Values
.begin()->second
->getType();
5461 // Build up the table contents.
5462 SmallVector
<Constant
*, 64> TableContents(TableSize
);
5463 for (size_t I
= 0, E
= Values
.size(); I
!= E
; ++I
) {
5464 ConstantInt
*CaseVal
= Values
[I
].first
;
5465 Constant
*CaseRes
= Values
[I
].second
;
5466 assert(CaseRes
->getType() == ValueType
);
5468 uint64_t Idx
= (CaseVal
->getValue() - Offset
->getValue()).getLimitedValue();
5469 TableContents
[Idx
] = CaseRes
;
5471 if (CaseRes
!= SingleValue
)
5472 SingleValue
= nullptr;
5475 // Fill in any holes in the table with the default result.
5476 if (Values
.size() < TableSize
) {
5477 assert(DefaultValue
&&
5478 "Need a default value to fill the lookup table holes.");
5479 assert(DefaultValue
->getType() == ValueType
);
5480 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
5481 if (!TableContents
[I
])
5482 TableContents
[I
] = DefaultValue
;
5485 if (DefaultValue
!= SingleValue
)
5486 SingleValue
= nullptr;
5489 // If each element in the table contains the same value, we only need to store
5490 // that single value.
5492 Kind
= SingleValueKind
;
5496 // Check if we can derive the value with a linear transformation from the
5498 if (isa
<IntegerType
>(ValueType
)) {
5499 bool LinearMappingPossible
= true;
5502 assert(TableSize
>= 2 && "Should be a SingleValue table.");
5503 // Check if there is the same distance between two consecutive values.
5504 for (uint64_t I
= 0; I
< TableSize
; ++I
) {
5505 ConstantInt
*ConstVal
= dyn_cast
<ConstantInt
>(TableContents
[I
]);
5507 // This is an undef. We could deal with it, but undefs in lookup tables
5508 // are very seldom. It's probably not worth the additional complexity.
5509 LinearMappingPossible
= false;
5512 const APInt
&Val
= ConstVal
->getValue();
5514 APInt Dist
= Val
- PrevVal
;
5517 } else if (Dist
!= DistToPrev
) {
5518 LinearMappingPossible
= false;
5524 if (LinearMappingPossible
) {
5525 LinearOffset
= cast
<ConstantInt
>(TableContents
[0]);
5526 LinearMultiplier
= ConstantInt::get(M
.getContext(), DistToPrev
);
5527 Kind
= LinearMapKind
;
5533 // If the type is integer and the table fits in a register, build a bitmap.
5534 if (WouldFitInRegister(DL
, TableSize
, ValueType
)) {
5535 IntegerType
*IT
= cast
<IntegerType
>(ValueType
);
5536 APInt
TableInt(TableSize
* IT
->getBitWidth(), 0);
5537 for (uint64_t I
= TableSize
; I
> 0; --I
) {
5538 TableInt
<<= IT
->getBitWidth();
5539 // Insert values into the bitmap. Undef values are set to zero.
5540 if (!isa
<UndefValue
>(TableContents
[I
- 1])) {
5541 ConstantInt
*Val
= cast
<ConstantInt
>(TableContents
[I
- 1]);
5542 TableInt
|= Val
->getValue().zext(TableInt
.getBitWidth());
5545 BitMap
= ConstantInt::get(M
.getContext(), TableInt
);
5546 BitMapElementTy
= IT
;
5552 // Store the table in an array.
5553 ArrayType
*ArrayTy
= ArrayType::get(ValueType
, TableSize
);
5554 Constant
*Initializer
= ConstantArray::get(ArrayTy
, TableContents
);
5556 Array
= new GlobalVariable(M
, ArrayTy
, /*isConstant=*/true,
5557 GlobalVariable::PrivateLinkage
, Initializer
,
5558 "switch.table." + FuncName
);
5559 Array
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
5560 // Set the alignment to that of an array items. We will be only loading one
5562 Array
->setAlignment(Align(DL
.getPrefTypeAlignment(ValueType
)));
5566 Value
*SwitchLookupTable::BuildLookup(Value
*Index
, IRBuilder
<> &Builder
) {
5568 case SingleValueKind
:
5570 case LinearMapKind
: {
5571 // Derive the result value from the input value.
5572 Value
*Result
= Builder
.CreateIntCast(Index
, LinearMultiplier
->getType(),
5573 false, "switch.idx.cast");
5574 if (!LinearMultiplier
->isOne())
5575 Result
= Builder
.CreateMul(Result
, LinearMultiplier
, "switch.idx.mult");
5576 if (!LinearOffset
->isZero())
5577 Result
= Builder
.CreateAdd(Result
, LinearOffset
, "switch.offset");
5581 // Type of the bitmap (e.g. i59).
5582 IntegerType
*MapTy
= BitMap
->getType();
5584 // Cast Index to the same type as the bitmap.
5585 // Note: The Index is <= the number of elements in the table, so
5586 // truncating it to the width of the bitmask is safe.
5587 Value
*ShiftAmt
= Builder
.CreateZExtOrTrunc(Index
, MapTy
, "switch.cast");
5589 // Multiply the shift amount by the element width.
5590 ShiftAmt
= Builder
.CreateMul(
5591 ShiftAmt
, ConstantInt::get(MapTy
, BitMapElementTy
->getBitWidth()),
5595 Value
*DownShifted
=
5596 Builder
.CreateLShr(BitMap
, ShiftAmt
, "switch.downshift");
5598 return Builder
.CreateTrunc(DownShifted
, BitMapElementTy
, "switch.masked");
5601 // Make sure the table index will not overflow when treated as signed.
5602 IntegerType
*IT
= cast
<IntegerType
>(Index
->getType());
5603 uint64_t TableSize
=
5604 Array
->getInitializer()->getType()->getArrayNumElements();
5605 if (TableSize
> (1ULL << (IT
->getBitWidth() - 1)))
5606 Index
= Builder
.CreateZExt(
5607 Index
, IntegerType::get(IT
->getContext(), IT
->getBitWidth() + 1),
5608 "switch.tableidx.zext");
5610 Value
*GEPIndices
[] = {Builder
.getInt32(0), Index
};
5611 Value
*GEP
= Builder
.CreateInBoundsGEP(Array
->getValueType(), Array
,
5612 GEPIndices
, "switch.gep");
5613 return Builder
.CreateLoad(
5614 cast
<ArrayType
>(Array
->getValueType())->getElementType(), GEP
,
5618 llvm_unreachable("Unknown lookup table kind!");
5621 bool SwitchLookupTable::WouldFitInRegister(const DataLayout
&DL
,
5623 Type
*ElementType
) {
5624 auto *IT
= dyn_cast
<IntegerType
>(ElementType
);
5627 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5628 // are <= 15, we could try to narrow the type.
5630 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5631 if (TableSize
>= UINT_MAX
/ IT
->getBitWidth())
5633 return DL
.fitsInLegalInteger(TableSize
* IT
->getBitWidth());
5636 static bool isTypeLegalForLookupTable(Type
*Ty
, const TargetTransformInfo
&TTI
,
5637 const DataLayout
&DL
) {
5638 // Allow any legal type.
5639 if (TTI
.isTypeLegal(Ty
))
5642 auto *IT
= dyn_cast
<IntegerType
>(Ty
);
5646 // Also allow power of 2 integer types that have at least 8 bits and fit in
5647 // a register. These types are common in frontend languages and targets
5648 // usually support loads of these types.
5649 // TODO: We could relax this to any integer that fits in a register and rely
5650 // on ABI alignment and padding in the table to allow the load to be widened.
5651 // Or we could widen the constants and truncate the load.
5652 unsigned BitWidth
= IT
->getBitWidth();
5653 return BitWidth
>= 8 && isPowerOf2_32(BitWidth
) &&
5654 DL
.fitsInLegalInteger(IT
->getBitWidth());
5657 /// Determine whether a lookup table should be built for this switch, based on
5658 /// the number of cases, size of the table, and the types of the results.
5659 // TODO: We could support larger than legal types by limiting based on the
5660 // number of loads required and/or table size. If the constants are small we
5661 // could use smaller table entries and extend after the load.
5663 ShouldBuildLookupTable(SwitchInst
*SI
, uint64_t TableSize
,
5664 const TargetTransformInfo
&TTI
, const DataLayout
&DL
,
5665 const SmallDenseMap
<PHINode
*, Type
*> &ResultTypes
) {
5666 if (SI
->getNumCases() > TableSize
|| TableSize
>= UINT64_MAX
/ 10)
5667 return false; // TableSize overflowed, or mul below might overflow.
5669 bool AllTablesFitInRegister
= true;
5670 bool HasIllegalType
= false;
5671 for (const auto &I
: ResultTypes
) {
5672 Type
*Ty
= I
.second
;
5674 // Saturate this flag to true.
5675 HasIllegalType
= HasIllegalType
|| !isTypeLegalForLookupTable(Ty
, TTI
, DL
);
5677 // Saturate this flag to false.
5678 AllTablesFitInRegister
=
5679 AllTablesFitInRegister
&&
5680 SwitchLookupTable::WouldFitInRegister(DL
, TableSize
, Ty
);
5682 // If both flags saturate, we're done. NOTE: This *only* works with
5683 // saturating flags, and all flags have to saturate first due to the
5684 // non-deterministic behavior of iterating over a dense map.
5685 if (HasIllegalType
&& !AllTablesFitInRegister
)
5689 // If each table would fit in a register, we should build it anyway.
5690 if (AllTablesFitInRegister
)
5693 // Don't build a table that doesn't fit in-register if it has illegal types.
5697 // The table density should be at least 40%. This is the same criterion as for
5698 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5699 // FIXME: Find the best cut-off.
5700 return SI
->getNumCases() * 10 >= TableSize
* 4;
5703 /// Try to reuse the switch table index compare. Following pattern:
5705 /// if (idx < tablesize)
5706 /// r = table[idx]; // table does not contain default_value
5708 /// r = default_value;
5709 /// if (r != default_value)
5712 /// Is optimized to:
5714 /// cond = idx < tablesize;
5718 /// r = default_value;
5722 /// Jump threading will then eliminate the second if(cond).
5723 static void reuseTableCompare(
5724 User
*PhiUser
, BasicBlock
*PhiBlock
, BranchInst
*RangeCheckBranch
,
5725 Constant
*DefaultValue
,
5726 const SmallVectorImpl
<std::pair
<ConstantInt
*, Constant
*>> &Values
) {
5727 ICmpInst
*CmpInst
= dyn_cast
<ICmpInst
>(PhiUser
);
5731 // We require that the compare is in the same block as the phi so that jump
5732 // threading can do its work afterwards.
5733 if (CmpInst
->getParent() != PhiBlock
)
5736 Constant
*CmpOp1
= dyn_cast
<Constant
>(CmpInst
->getOperand(1));
5740 Value
*RangeCmp
= RangeCheckBranch
->getCondition();
5741 Constant
*TrueConst
= ConstantInt::getTrue(RangeCmp
->getType());
5742 Constant
*FalseConst
= ConstantInt::getFalse(RangeCmp
->getType());
5744 // Check if the compare with the default value is constant true or false.
5745 Constant
*DefaultConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5746 DefaultValue
, CmpOp1
, true);
5747 if (DefaultConst
!= TrueConst
&& DefaultConst
!= FalseConst
)
5750 // Check if the compare with the case values is distinct from the default
5752 for (auto ValuePair
: Values
) {
5753 Constant
*CaseConst
= ConstantExpr::getICmp(CmpInst
->getPredicate(),
5754 ValuePair
.second
, CmpOp1
, true);
5755 if (!CaseConst
|| CaseConst
== DefaultConst
|| isa
<UndefValue
>(CaseConst
))
5757 assert((CaseConst
== TrueConst
|| CaseConst
== FalseConst
) &&
5758 "Expect true or false as compare result.");
5761 // Check if the branch instruction dominates the phi node. It's a simple
5762 // dominance check, but sufficient for our needs.
5763 // Although this check is invariant in the calling loops, it's better to do it
5764 // at this late stage. Practically we do it at most once for a switch.
5765 BasicBlock
*BranchBlock
= RangeCheckBranch
->getParent();
5766 for (BasicBlock
*Pred
: predecessors(PhiBlock
)) {
5767 if (Pred
!= BranchBlock
&& Pred
->getUniquePredecessor() != BranchBlock
)
5771 if (DefaultConst
== FalseConst
) {
5772 // The compare yields the same result. We can replace it.
5773 CmpInst
->replaceAllUsesWith(RangeCmp
);
5774 ++NumTableCmpReuses
;
5776 // The compare yields the same result, just inverted. We can replace it.
5777 Value
*InvertedTableCmp
= BinaryOperator::CreateXor(
5778 RangeCmp
, ConstantInt::get(RangeCmp
->getType(), 1), "inverted.cmp",
5780 CmpInst
->replaceAllUsesWith(InvertedTableCmp
);
5781 ++NumTableCmpReuses
;
5785 /// If the switch is only used to initialize one or more phi nodes in a common
5786 /// successor block with different constant values, replace the switch with
5788 static bool SwitchToLookupTable(SwitchInst
*SI
, IRBuilder
<> &Builder
,
5789 DomTreeUpdater
*DTU
, const DataLayout
&DL
,
5790 const TargetTransformInfo
&TTI
) {
5791 assert(SI
->getNumCases() > 1 && "Degenerate switch?");
5793 BasicBlock
*BB
= SI
->getParent();
5794 Function
*Fn
= BB
->getParent();
5795 // Only build lookup table when we have a target that supports it or the
5796 // attribute is not set.
5797 if (!TTI
.shouldBuildLookupTables() ||
5798 (Fn
->getFnAttribute("no-jump-tables").getValueAsBool()))
5801 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5802 // split off a dense part and build a lookup table for that.
5804 // FIXME: This creates arrays of GEPs to constant strings, which means each
5805 // GEP needs a runtime relocation in PIC code. We should just build one big
5806 // string and lookup indices into that.
5808 // Ignore switches with less than three cases. Lookup tables will not make
5809 // them faster, so we don't analyze them.
5810 if (SI
->getNumCases() < 3)
5813 // Figure out the corresponding result for each case value and phi node in the
5814 // common destination, as well as the min and max case values.
5815 assert(!SI
->cases().empty());
5816 SwitchInst::CaseIt CI
= SI
->case_begin();
5817 ConstantInt
*MinCaseVal
= CI
->getCaseValue();
5818 ConstantInt
*MaxCaseVal
= CI
->getCaseValue();
5820 BasicBlock
*CommonDest
= nullptr;
5822 using ResultListTy
= SmallVector
<std::pair
<ConstantInt
*, Constant
*>, 4>;
5823 SmallDenseMap
<PHINode
*, ResultListTy
> ResultLists
;
5825 SmallDenseMap
<PHINode
*, Constant
*> DefaultResults
;
5826 SmallDenseMap
<PHINode
*, Type
*> ResultTypes
;
5827 SmallVector
<PHINode
*, 4> PHIs
;
5829 for (SwitchInst::CaseIt E
= SI
->case_end(); CI
!= E
; ++CI
) {
5830 ConstantInt
*CaseVal
= CI
->getCaseValue();
5831 if (CaseVal
->getValue().slt(MinCaseVal
->getValue()))
5832 MinCaseVal
= CaseVal
;
5833 if (CaseVal
->getValue().sgt(MaxCaseVal
->getValue()))
5834 MaxCaseVal
= CaseVal
;
5836 // Resulting value at phi nodes for this case value.
5837 using ResultsTy
= SmallVector
<std::pair
<PHINode
*, Constant
*>, 4>;
5839 if (!GetCaseResults(SI
, CaseVal
, CI
->getCaseSuccessor(), &CommonDest
,
5843 // Append the result from this case to the list for each phi.
5844 for (const auto &I
: Results
) {
5845 PHINode
*PHI
= I
.first
;
5846 Constant
*Value
= I
.second
;
5847 if (!ResultLists
.count(PHI
))
5848 PHIs
.push_back(PHI
);
5849 ResultLists
[PHI
].push_back(std::make_pair(CaseVal
, Value
));
5853 // Keep track of the result types.
5854 for (PHINode
*PHI
: PHIs
) {
5855 ResultTypes
[PHI
] = ResultLists
[PHI
][0].second
->getType();
5858 uint64_t NumResults
= ResultLists
[PHIs
[0]].size();
5859 APInt RangeSpread
= MaxCaseVal
->getValue() - MinCaseVal
->getValue();
5860 uint64_t TableSize
= RangeSpread
.getLimitedValue() + 1;
5861 bool TableHasHoles
= (NumResults
< TableSize
);
5863 // If the table has holes, we need a constant result for the default case
5864 // or a bitmask that fits in a register.
5865 SmallVector
<std::pair
<PHINode
*, Constant
*>, 4> DefaultResultsList
;
5866 bool HasDefaultResults
=
5867 GetCaseResults(SI
, nullptr, SI
->getDefaultDest(), &CommonDest
,
5868 DefaultResultsList
, DL
, TTI
);
5870 bool NeedMask
= (TableHasHoles
&& !HasDefaultResults
);
5872 // As an extra penalty for the validity test we require more cases.
5873 if (SI
->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5875 if (!DL
.fitsInLegalInteger(TableSize
))
5879 for (const auto &I
: DefaultResultsList
) {
5880 PHINode
*PHI
= I
.first
;
5881 Constant
*Result
= I
.second
;
5882 DefaultResults
[PHI
] = Result
;
5885 if (!ShouldBuildLookupTable(SI
, TableSize
, TTI
, DL
, ResultTypes
))
5888 std::vector
<DominatorTree::UpdateType
> Updates
;
5890 // Create the BB that does the lookups.
5891 Module
&Mod
= *CommonDest
->getParent()->getParent();
5892 BasicBlock
*LookupBB
= BasicBlock::Create(
5893 Mod
.getContext(), "switch.lookup", CommonDest
->getParent(), CommonDest
);
5895 // Compute the table index value.
5896 Builder
.SetInsertPoint(SI
);
5898 if (MinCaseVal
->isNullValue())
5899 TableIndex
= SI
->getCondition();
5901 TableIndex
= Builder
.CreateSub(SI
->getCondition(), MinCaseVal
,
5904 // Compute the maximum table size representable by the integer type we are
5906 unsigned CaseSize
= MinCaseVal
->getType()->getPrimitiveSizeInBits();
5907 uint64_t MaxTableSize
= CaseSize
> 63 ? UINT64_MAX
: 1ULL << CaseSize
;
5908 assert(MaxTableSize
>= TableSize
&&
5909 "It is impossible for a switch to have more entries than the max "
5910 "representable value of its input integer type's size.");
5912 // If the default destination is unreachable, or if the lookup table covers
5913 // all values of the conditional variable, branch directly to the lookup table
5914 // BB. Otherwise, check that the condition is within the case range.
5915 const bool DefaultIsReachable
=
5916 !isa
<UnreachableInst
>(SI
->getDefaultDest()->getFirstNonPHIOrDbg());
5917 const bool GeneratingCoveredLookupTable
= (MaxTableSize
== TableSize
);
5918 BranchInst
*RangeCheckBranch
= nullptr;
5920 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5921 Builder
.CreateBr(LookupBB
);
5923 Updates
.push_back({DominatorTree::Insert
, BB
, LookupBB
});
5924 // Note: We call removeProdecessor later since we need to be able to get the
5925 // PHI value for the default case in case we're using a bit mask.
5927 Value
*Cmp
= Builder
.CreateICmpULT(
5928 TableIndex
, ConstantInt::get(MinCaseVal
->getType(), TableSize
));
5930 Builder
.CreateCondBr(Cmp
, LookupBB
, SI
->getDefaultDest());
5932 Updates
.push_back({DominatorTree::Insert
, BB
, LookupBB
});
5935 // Populate the BB that does the lookups.
5936 Builder
.SetInsertPoint(LookupBB
);
5939 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5940 // re-purposed to do the hole check, and we create a new LookupBB.
5941 BasicBlock
*MaskBB
= LookupBB
;
5942 MaskBB
->setName("switch.hole_check");
5943 LookupBB
= BasicBlock::Create(Mod
.getContext(), "switch.lookup",
5944 CommonDest
->getParent(), CommonDest
);
5946 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5947 // unnecessary illegal types.
5948 uint64_t TableSizePowOf2
= NextPowerOf2(std::max(7ULL, TableSize
- 1ULL));
5949 APInt
MaskInt(TableSizePowOf2
, 0);
5950 APInt
One(TableSizePowOf2
, 1);
5951 // Build bitmask; fill in a 1 bit for every case.
5952 const ResultListTy
&ResultList
= ResultLists
[PHIs
[0]];
5953 for (size_t I
= 0, E
= ResultList
.size(); I
!= E
; ++I
) {
5954 uint64_t Idx
= (ResultList
[I
].first
->getValue() - MinCaseVal
->getValue())
5956 MaskInt
|= One
<< Idx
;
5958 ConstantInt
*TableMask
= ConstantInt::get(Mod
.getContext(), MaskInt
);
5960 // Get the TableIndex'th bit of the bitmask.
5961 // If this bit is 0 (meaning hole) jump to the default destination,
5962 // else continue with table lookup.
5963 IntegerType
*MapTy
= TableMask
->getType();
5965 Builder
.CreateZExtOrTrunc(TableIndex
, MapTy
, "switch.maskindex");
5966 Value
*Shifted
= Builder
.CreateLShr(TableMask
, MaskIndex
, "switch.shifted");
5967 Value
*LoBit
= Builder
.CreateTrunc(
5968 Shifted
, Type::getInt1Ty(Mod
.getContext()), "switch.lobit");
5969 Builder
.CreateCondBr(LoBit
, LookupBB
, SI
->getDefaultDest());
5971 Updates
.push_back({DominatorTree::Insert
, MaskBB
, LookupBB
});
5972 Updates
.push_back({DominatorTree::Insert
, MaskBB
, SI
->getDefaultDest()});
5974 Builder
.SetInsertPoint(LookupBB
);
5975 AddPredecessorToBlock(SI
->getDefaultDest(), MaskBB
, BB
);
5978 if (!DefaultIsReachable
|| GeneratingCoveredLookupTable
) {
5979 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5980 // do not delete PHINodes here.
5981 SI
->getDefaultDest()->removePredecessor(BB
,
5982 /*KeepOneInputPHIs=*/true);
5984 Updates
.push_back({DominatorTree::Delete
, BB
, SI
->getDefaultDest()});
5987 for (PHINode
*PHI
: PHIs
) {
5988 const ResultListTy
&ResultList
= ResultLists
[PHI
];
5990 // If using a bitmask, use any value to fill the lookup table holes.
5991 Constant
*DV
= NeedMask
? ResultLists
[PHI
][0].second
: DefaultResults
[PHI
];
5992 StringRef FuncName
= Fn
->getName();
5993 SwitchLookupTable
Table(Mod
, TableSize
, MinCaseVal
, ResultList
, DV
, DL
,
5996 Value
*Result
= Table
.BuildLookup(TableIndex
, Builder
);
5998 // Do a small peephole optimization: re-use the switch table compare if
6000 if (!TableHasHoles
&& HasDefaultResults
&& RangeCheckBranch
) {
6001 BasicBlock
*PhiBlock
= PHI
->getParent();
6002 // Search for compare instructions which use the phi.
6003 for (auto *User
: PHI
->users()) {
6004 reuseTableCompare(User
, PhiBlock
, RangeCheckBranch
, DV
, ResultList
);
6008 PHI
->addIncoming(Result
, LookupBB
);
6011 Builder
.CreateBr(CommonDest
);
6013 Updates
.push_back({DominatorTree::Insert
, LookupBB
, CommonDest
});
6015 // Remove the switch.
6016 SmallPtrSet
<BasicBlock
*, 8> RemovedSuccessors
;
6017 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
< e
; ++i
) {
6018 BasicBlock
*Succ
= SI
->getSuccessor(i
);
6020 if (Succ
== SI
->getDefaultDest())
6022 Succ
->removePredecessor(BB
);
6023 RemovedSuccessors
.insert(Succ
);
6025 SI
->eraseFromParent();
6028 for (BasicBlock
*RemovedSuccessor
: RemovedSuccessors
)
6029 Updates
.push_back({DominatorTree::Delete
, BB
, RemovedSuccessor
});
6030 DTU
->applyUpdates(Updates
);
6035 ++NumLookupTablesHoles
;
6039 static bool isSwitchDense(ArrayRef
<int64_t> Values
) {
6040 // See also SelectionDAGBuilder::isDense(), which this function was based on.
6041 uint64_t Diff
= (uint64_t)Values
.back() - (uint64_t)Values
.front();
6042 uint64_t Range
= Diff
+ 1;
6043 uint64_t NumCases
= Values
.size();
6044 // 40% is the default density for building a jump table in optsize/minsize mode.
6045 uint64_t MinDensity
= 40;
6047 return NumCases
* 100 >= Range
* MinDensity
;
6050 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6053 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6054 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6056 /// This converts a sparse switch into a dense switch which allows better
6057 /// lowering and could also allow transforming into a lookup table.
6058 static bool ReduceSwitchRange(SwitchInst
*SI
, IRBuilder
<> &Builder
,
6059 const DataLayout
&DL
,
6060 const TargetTransformInfo
&TTI
) {
6061 auto *CondTy
= cast
<IntegerType
>(SI
->getCondition()->getType());
6062 if (CondTy
->getIntegerBitWidth() > 64 ||
6063 !DL
.fitsInLegalInteger(CondTy
->getIntegerBitWidth()))
6065 // Only bother with this optimization if there are more than 3 switch cases;
6066 // SDAG will only bother creating jump tables for 4 or more cases.
6067 if (SI
->getNumCases() < 4)
6070 // This transform is agnostic to the signedness of the input or case values. We
6071 // can treat the case values as signed or unsigned. We can optimize more common
6072 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6074 SmallVector
<int64_t,4> Values
;
6075 for (auto &C
: SI
->cases())
6076 Values
.push_back(C
.getCaseValue()->getValue().getSExtValue());
6079 // If the switch is already dense, there's nothing useful to do here.
6080 if (isSwitchDense(Values
))
6083 // First, transform the values such that they start at zero and ascend.
6084 int64_t Base
= Values
[0];
6085 for (auto &V
: Values
)
6086 V
-= (uint64_t)(Base
);
6088 // Now we have signed numbers that have been shifted so that, given enough
6089 // precision, there are no negative values. Since the rest of the transform
6090 // is bitwise only, we switch now to an unsigned representation.
6092 // This transform can be done speculatively because it is so cheap - it
6093 // results in a single rotate operation being inserted.
6094 // FIXME: It's possible that optimizing a switch on powers of two might also
6095 // be beneficial - flag values are often powers of two and we could use a CLZ
6096 // as the key function.
6098 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6099 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6101 unsigned Shift
= 64;
6102 for (auto &V
: Values
)
6103 Shift
= std::min(Shift
, countTrailingZeros((uint64_t)V
));
6106 for (auto &V
: Values
)
6107 V
= (int64_t)((uint64_t)V
>> Shift
);
6109 if (!isSwitchDense(Values
))
6110 // Transform didn't create a dense switch.
6113 // The obvious transform is to shift the switch condition right and emit a
6114 // check that the condition actually cleanly divided by GCD, i.e.
6115 // C & (1 << Shift - 1) == 0
6116 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6118 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6119 // shift and puts the shifted-off bits in the uppermost bits. If any of these
6120 // are nonzero then the switch condition will be very large and will hit the
6123 auto *Ty
= cast
<IntegerType
>(SI
->getCondition()->getType());
6124 Builder
.SetInsertPoint(SI
);
6125 auto *ShiftC
= ConstantInt::get(Ty
, Shift
);
6126 auto *Sub
= Builder
.CreateSub(SI
->getCondition(), ConstantInt::get(Ty
, Base
));
6127 auto *LShr
= Builder
.CreateLShr(Sub
, ShiftC
);
6128 auto *Shl
= Builder
.CreateShl(Sub
, Ty
->getBitWidth() - Shift
);
6129 auto *Rot
= Builder
.CreateOr(LShr
, Shl
);
6130 SI
->replaceUsesOfWith(SI
->getCondition(), Rot
);
6132 for (auto Case
: SI
->cases()) {
6133 auto *Orig
= Case
.getCaseValue();
6134 auto Sub
= Orig
->getValue() - APInt(Ty
->getBitWidth(), Base
);
6136 cast
<ConstantInt
>(ConstantInt::get(Ty
, Sub
.lshr(ShiftC
->getValue()))));
6141 bool SimplifyCFGOpt::simplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
6142 BasicBlock
*BB
= SI
->getParent();
6144 if (isValueEqualityComparison(SI
)) {
6145 // If we only have one predecessor, and if it is a branch on this value,
6146 // see if that predecessor totally determines the outcome of this switch.
6147 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
6148 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
, Builder
))
6149 return requestResimplify();
6151 Value
*Cond
= SI
->getCondition();
6152 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
6153 if (SimplifySwitchOnSelect(SI
, Select
))
6154 return requestResimplify();
6156 // If the block only contains the switch, see if we can fold the block
6157 // away into any preds.
6158 if (SI
== &*BB
->instructionsWithoutDebug().begin())
6159 if (FoldValueComparisonIntoPredecessors(SI
, Builder
))
6160 return requestResimplify();
6163 // Try to transform the switch into an icmp and a branch.
6164 if (TurnSwitchRangeIntoICmp(SI
, Builder
))
6165 return requestResimplify();
6167 // Remove unreachable cases.
6168 if (eliminateDeadSwitchCases(SI
, DTU
, Options
.AC
, DL
))
6169 return requestResimplify();
6171 if (switchToSelect(SI
, Builder
, DTU
, DL
, TTI
))
6172 return requestResimplify();
6174 if (Options
.ForwardSwitchCondToPhi
&& ForwardSwitchConditionToPHI(SI
))
6175 return requestResimplify();
6177 // The conversion from switch to lookup tables results in difficult-to-analyze
6178 // code and makes pruning branches much harder. This is a problem if the
6179 // switch expression itself can still be restricted as a result of inlining or
6180 // CVP. Therefore, only apply this transformation during late stages of the
6181 // optimisation pipeline.
6182 if (Options
.ConvertSwitchToLookupTable
&&
6183 SwitchToLookupTable(SI
, Builder
, DTU
, DL
, TTI
))
6184 return requestResimplify();
6186 if (ReduceSwitchRange(SI
, Builder
, DL
, TTI
))
6187 return requestResimplify();
6192 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst
*IBI
) {
6193 BasicBlock
*BB
= IBI
->getParent();
6194 bool Changed
= false;
6196 // Eliminate redundant destinations.
6197 SmallPtrSet
<Value
*, 8> Succs
;
6198 SmallPtrSet
<BasicBlock
*, 8> RemovedSuccs
;
6199 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
6200 BasicBlock
*Dest
= IBI
->getDestination(i
);
6201 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
).second
) {
6202 if (!Dest
->hasAddressTaken())
6203 RemovedSuccs
.insert(Dest
);
6204 Dest
->removePredecessor(BB
);
6205 IBI
->removeDestination(i
);
6213 std::vector
<DominatorTree::UpdateType
> Updates
;
6214 Updates
.reserve(RemovedSuccs
.size());
6215 for (auto *RemovedSucc
: RemovedSuccs
)
6216 Updates
.push_back({DominatorTree::Delete
, BB
, RemovedSucc
});
6217 DTU
->applyUpdates(Updates
);
6220 if (IBI
->getNumDestinations() == 0) {
6221 // If the indirectbr has no successors, change it to unreachable.
6222 new UnreachableInst(IBI
->getContext(), IBI
);
6223 EraseTerminatorAndDCECond(IBI
);
6227 if (IBI
->getNumDestinations() == 1) {
6228 // If the indirectbr has one successor, change it to a direct branch.
6229 BranchInst::Create(IBI
->getDestination(0), IBI
);
6230 EraseTerminatorAndDCECond(IBI
);
6234 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
6235 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
6236 return requestResimplify();
6241 /// Given an block with only a single landing pad and a unconditional branch
6242 /// try to find another basic block which this one can be merged with. This
6243 /// handles cases where we have multiple invokes with unique landing pads, but
6244 /// a shared handler.
6246 /// We specifically choose to not worry about merging non-empty blocks
6247 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
6248 /// practice, the optimizer produces empty landing pad blocks quite frequently
6249 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
6250 /// sinking in this file)
6252 /// This is primarily a code size optimization. We need to avoid performing
6253 /// any transform which might inhibit optimization (such as our ability to
6254 /// specialize a particular handler via tail commoning). We do this by not
6255 /// merging any blocks which require us to introduce a phi. Since the same
6256 /// values are flowing through both blocks, we don't lose any ability to
6257 /// specialize. If anything, we make such specialization more likely.
6259 /// TODO - This transformation could remove entries from a phi in the target
6260 /// block when the inputs in the phi are the same for the two blocks being
6261 /// merged. In some cases, this could result in removal of the PHI entirely.
6262 static bool TryToMergeLandingPad(LandingPadInst
*LPad
, BranchInst
*BI
,
6263 BasicBlock
*BB
, DomTreeUpdater
*DTU
) {
6264 auto Succ
= BB
->getUniqueSuccessor();
6266 // If there's a phi in the successor block, we'd likely have to introduce
6267 // a phi into the merged landing pad block.
6268 if (isa
<PHINode
>(*Succ
->begin()))
6271 for (BasicBlock
*OtherPred
: predecessors(Succ
)) {
6272 if (BB
== OtherPred
)
6274 BasicBlock::iterator I
= OtherPred
->begin();
6275 LandingPadInst
*LPad2
= dyn_cast
<LandingPadInst
>(I
);
6276 if (!LPad2
|| !LPad2
->isIdenticalTo(LPad
))
6278 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
6280 BranchInst
*BI2
= dyn_cast
<BranchInst
>(I
);
6281 if (!BI2
|| !BI2
->isIdenticalTo(BI
))
6284 std::vector
<DominatorTree::UpdateType
> Updates
;
6286 // We've found an identical block. Update our predecessors to take that
6287 // path instead and make ourselves dead.
6288 SmallPtrSet
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
6289 for (BasicBlock
*Pred
: Preds
) {
6290 InvokeInst
*II
= cast
<InvokeInst
>(Pred
->getTerminator());
6291 assert(II
->getNormalDest() != BB
&& II
->getUnwindDest() == BB
&&
6292 "unexpected successor");
6293 II
->setUnwindDest(OtherPred
);
6295 Updates
.push_back({DominatorTree::Insert
, Pred
, OtherPred
});
6296 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
6300 // The debug info in OtherPred doesn't cover the merged control flow that
6301 // used to go through BB. We need to delete it or update it.
6302 for (auto I
= OtherPred
->begin(), E
= OtherPred
->end(); I
!= E
;) {
6303 Instruction
&Inst
= *I
;
6305 if (isa
<DbgInfoIntrinsic
>(Inst
))
6306 Inst
.eraseFromParent();
6309 SmallPtrSet
<BasicBlock
*, 16> Succs(succ_begin(BB
), succ_end(BB
));
6310 for (BasicBlock
*Succ
: Succs
) {
6311 Succ
->removePredecessor(BB
);
6313 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
6316 IRBuilder
<> Builder(BI
);
6317 Builder
.CreateUnreachable();
6318 BI
->eraseFromParent();
6320 DTU
->applyUpdates(Updates
);
6326 bool SimplifyCFGOpt::simplifyBranch(BranchInst
*Branch
, IRBuilder
<> &Builder
) {
6327 return Branch
->isUnconditional() ? simplifyUncondBranch(Branch
, Builder
)
6328 : simplifyCondBranch(Branch
, Builder
);
6331 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst
*BI
,
6332 IRBuilder
<> &Builder
) {
6333 BasicBlock
*BB
= BI
->getParent();
6334 BasicBlock
*Succ
= BI
->getSuccessor(0);
6336 // If the Terminator is the only non-phi instruction, simplify the block.
6337 // If LoopHeader is provided, check if the block or its successor is a loop
6338 // header. (This is for early invocations before loop simplify and
6339 // vectorization to keep canonical loop forms for nested loops. These blocks
6340 // can be eliminated when the pass is invoked later in the back-end.)
6341 // Note that if BB has only one predecessor then we do not introduce new
6342 // backedge, so we can eliminate BB.
6343 bool NeedCanonicalLoop
=
6344 Options
.NeedCanonicalLoop
&&
6345 (!LoopHeaders
.empty() && BB
->hasNPredecessorsOrMore(2) &&
6346 (is_contained(LoopHeaders
, BB
) || is_contained(LoopHeaders
, Succ
)));
6347 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbg(true)->getIterator();
6348 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
6349 !NeedCanonicalLoop
&& TryToSimplifyUncondBranchFromEmptyBlock(BB
, DTU
))
6352 // If the only instruction in the block is a seteq/setne comparison against a
6353 // constant, try to simplify the block.
6354 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
6355 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
6356 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
6358 if (I
->isTerminator() &&
6359 tryToSimplifyUncondBranchWithICmpInIt(ICI
, Builder
))
6363 // See if we can merge an empty landing pad block with another which is
6365 if (LandingPadInst
*LPad
= dyn_cast
<LandingPadInst
>(I
)) {
6366 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
6368 if (I
->isTerminator() && TryToMergeLandingPad(LPad
, BI
, BB
, DTU
))
6372 // If this basic block is ONLY a compare and a branch, and if a predecessor
6373 // branches to us and our successor, fold the comparison into the
6374 // predecessor and use logical operations to update the incoming value
6375 // for PHI nodes in common successor.
6376 if (FoldBranchToCommonDest(BI
, DTU
, /*MSSAU=*/nullptr, &TTI
,
6377 Options
.BonusInstThreshold
))
6378 return requestResimplify();
6382 static BasicBlock
*allPredecessorsComeFromSameSource(BasicBlock
*BB
) {
6383 BasicBlock
*PredPred
= nullptr;
6384 for (auto *P
: predecessors(BB
)) {
6385 BasicBlock
*PPred
= P
->getSinglePredecessor();
6386 if (!PPred
|| (PredPred
&& PredPred
!= PPred
))
6393 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
) {
6395 !isa
<ConstantInt
>(BI
->getCondition()) &&
6396 BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
6397 "Tautological conditional branch should have been eliminated already.");
6399 BasicBlock
*BB
= BI
->getParent();
6400 if (!Options
.SimplifyCondBranch
)
6403 // Conditional branch
6404 if (isValueEqualityComparison(BI
)) {
6405 // If we only have one predecessor, and if it is a branch on this value,
6406 // see if that predecessor totally determines the outcome of this
6408 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
6409 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
, Builder
))
6410 return requestResimplify();
6412 // This block must be empty, except for the setcond inst, if it exists.
6413 // Ignore dbg and pseudo intrinsics.
6414 auto I
= BB
->instructionsWithoutDebug(true).begin();
6416 if (FoldValueComparisonIntoPredecessors(BI
, Builder
))
6417 return requestResimplify();
6418 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())) {
6420 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
, Builder
))
6421 return requestResimplify();
6425 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6426 if (SimplifyBranchOnICmpChain(BI
, Builder
, DL
))
6429 // If this basic block has dominating predecessor blocks and the dominating
6430 // blocks' conditions imply BI's condition, we know the direction of BI.
6431 Optional
<bool> Imp
= isImpliedByDomCondition(BI
->getCondition(), BI
, DL
);
6433 // Turn this into a branch on constant.
6434 auto *OldCond
= BI
->getCondition();
6435 ConstantInt
*TorF
= *Imp
? ConstantInt::getTrue(BB
->getContext())
6436 : ConstantInt::getFalse(BB
->getContext());
6437 BI
->setCondition(TorF
);
6438 RecursivelyDeleteTriviallyDeadInstructions(OldCond
);
6439 return requestResimplify();
6442 // If this basic block is ONLY a compare and a branch, and if a predecessor
6443 // branches to us and one of our successors, fold the comparison into the
6444 // predecessor and use logical operations to pick the right destination.
6445 if (FoldBranchToCommonDest(BI
, DTU
, /*MSSAU=*/nullptr, &TTI
,
6446 Options
.BonusInstThreshold
))
6447 return requestResimplify();
6449 // We have a conditional branch to two blocks that are only reachable
6450 // from BI. We know that the condbr dominates the two blocks, so see if
6451 // there is any identical code in the "then" and "else" blocks. If so, we
6452 // can hoist it up to the branching block.
6453 if (BI
->getSuccessor(0)->getSinglePredecessor()) {
6454 if (BI
->getSuccessor(1)->getSinglePredecessor()) {
6456 HoistThenElseCodeToIf(BI
, TTI
, !Options
.HoistCommonInsts
))
6457 return requestResimplify();
6459 // If Successor #1 has multiple preds, we may be able to conditionally
6460 // execute Successor #0 if it branches to Successor #1.
6461 Instruction
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
6462 if (Succ0TI
->getNumSuccessors() == 1 &&
6463 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
6464 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0), TTI
))
6465 return requestResimplify();
6467 } else if (BI
->getSuccessor(1)->getSinglePredecessor()) {
6468 // If Successor #0 has multiple preds, we may be able to conditionally
6469 // execute Successor #1 if it branches to Successor #0.
6470 Instruction
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
6471 if (Succ1TI
->getNumSuccessors() == 1 &&
6472 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
6473 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1), TTI
))
6474 return requestResimplify();
6477 // If this is a branch on a phi node in the current block, thread control
6478 // through this block if any PHI node entries are constants.
6479 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
6480 if (PN
->getParent() == BI
->getParent())
6481 if (FoldCondBranchOnPHI(BI
, DTU
, DL
, Options
.AC
))
6482 return requestResimplify();
6484 // Scan predecessor blocks for conditional branches.
6485 for (BasicBlock
*Pred
: predecessors(BB
))
6486 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
6487 if (PBI
!= BI
&& PBI
->isConditional())
6488 if (SimplifyCondBranchToCondBranch(PBI
, BI
, DTU
, DL
, TTI
))
6489 return requestResimplify();
6491 // Look for diamond patterns.
6492 if (MergeCondStores
)
6493 if (BasicBlock
*PrevBB
= allPredecessorsComeFromSameSource(BB
))
6494 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>(PrevBB
->getTerminator()))
6495 if (PBI
!= BI
&& PBI
->isConditional())
6496 if (mergeConditionalStores(PBI
, BI
, DTU
, DL
, TTI
))
6497 return requestResimplify();
6502 /// Check if passing a value to an instruction will cause undefined behavior.
6503 static bool passingValueIsAlwaysUndefined(Value
*V
, Instruction
*I
, bool PtrValueMayBeModified
) {
6504 Constant
*C
= dyn_cast
<Constant
>(V
);
6511 if (C
->isNullValue() || isa
<UndefValue
>(C
)) {
6512 // Only look at the first use, avoid hurting compile time with long uselists
6513 User
*Use
= *I
->user_begin();
6515 // Now make sure that there are no instructions in between that can alter
6516 // control flow (eg. calls)
6517 for (BasicBlock::iterator
6518 i
= ++BasicBlock::iterator(I
),
6519 UI
= BasicBlock::iterator(dyn_cast
<Instruction
>(Use
));
6521 if (i
== I
->getParent()->end())
6523 if (!isGuaranteedToTransferExecutionToSuccessor(&*i
))
6527 // Look through GEPs. A load from a GEP derived from NULL is still undefined
6528 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Use
))
6529 if (GEP
->getPointerOperand() == I
) {
6530 if (!GEP
->isInBounds() || !GEP
->hasAllZeroIndices())
6531 PtrValueMayBeModified
= true;
6532 return passingValueIsAlwaysUndefined(V
, GEP
, PtrValueMayBeModified
);
6535 // Look through bitcasts.
6536 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Use
))
6537 return passingValueIsAlwaysUndefined(V
, BC
, PtrValueMayBeModified
);
6539 // Load from null is undefined.
6540 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Use
))
6541 if (!LI
->isVolatile())
6542 return !NullPointerIsDefined(LI
->getFunction(),
6543 LI
->getPointerAddressSpace());
6545 // Store to null is undefined.
6546 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Use
))
6547 if (!SI
->isVolatile())
6548 return (!NullPointerIsDefined(SI
->getFunction(),
6549 SI
->getPointerAddressSpace())) &&
6550 SI
->getPointerOperand() == I
;
6552 if (auto *CB
= dyn_cast
<CallBase
>(Use
)) {
6553 if (C
->isNullValue() && NullPointerIsDefined(CB
->getFunction()))
6555 // A call to null is undefined.
6556 if (CB
->getCalledOperand() == I
)
6559 if (C
->isNullValue()) {
6560 for (const llvm::Use
&Arg
: CB
->args())
6562 unsigned ArgIdx
= CB
->getArgOperandNo(&Arg
);
6563 if (CB
->isPassingUndefUB(ArgIdx
) &&
6564 CB
->paramHasAttr(ArgIdx
, Attribute::NonNull
)) {
6565 // Passing null to a nonnnull+noundef argument is undefined.
6566 return !PtrValueMayBeModified
;
6569 } else if (isa
<UndefValue
>(C
)) {
6570 // Passing undef to a noundef argument is undefined.
6571 for (const llvm::Use
&Arg
: CB
->args())
6573 unsigned ArgIdx
= CB
->getArgOperandNo(&Arg
);
6574 if (CB
->isPassingUndefUB(ArgIdx
)) {
6575 // Passing undef to a noundef argument is undefined.
6585 /// If BB has an incoming value that will always trigger undefined behavior
6586 /// (eg. null pointer dereference), remove the branch leading here.
6587 static bool removeUndefIntroducingPredecessor(BasicBlock
*BB
,
6588 DomTreeUpdater
*DTU
) {
6589 for (PHINode
&PHI
: BB
->phis())
6590 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
)
6591 if (passingValueIsAlwaysUndefined(PHI
.getIncomingValue(i
), &PHI
)) {
6592 BasicBlock
*Predecessor
= PHI
.getIncomingBlock(i
);
6593 Instruction
*T
= Predecessor
->getTerminator();
6594 IRBuilder
<> Builder(T
);
6595 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
6596 BB
->removePredecessor(Predecessor
);
6597 // Turn uncoditional branches into unreachables and remove the dead
6598 // destination from conditional branches.
6599 if (BI
->isUnconditional())
6600 Builder
.CreateUnreachable();
6602 Builder
.CreateBr(BI
->getSuccessor(0) == BB
? BI
->getSuccessor(1)
6603 : BI
->getSuccessor(0));
6604 BI
->eraseFromParent();
6606 DTU
->applyUpdates({{DominatorTree::Delete
, Predecessor
, BB
}});
6609 // TODO: SwitchInst.
6615 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock
*BB
) {
6616 bool Changed
= false;
6618 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
6619 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
6621 // Remove basic blocks that have no predecessors (except the entry block)...
6622 // or that just have themself as a predecessor. These are unreachable.
6623 if ((pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()) ||
6624 BB
->getSinglePredecessor() == BB
) {
6625 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB
);
6626 DeleteDeadBlock(BB
, DTU
);
6630 // Check to see if we can constant propagate this terminator instruction
6632 Changed
|= ConstantFoldTerminator(BB
, /*DeleteDeadConditions=*/true,
6633 /*TLI=*/nullptr, DTU
);
6635 // Check for and eliminate duplicate PHI nodes in this block.
6636 Changed
|= EliminateDuplicatePHINodes(BB
);
6638 // Check for and remove branches that will always cause undefined behavior.
6639 if (removeUndefIntroducingPredecessor(BB
, DTU
))
6640 return requestResimplify();
6642 // Merge basic blocks into their predecessor if there is only one distinct
6643 // pred, and if there is only one distinct successor of the predecessor, and
6644 // if there are no PHI nodes.
6645 if (MergeBlockIntoPredecessor(BB
, DTU
))
6648 if (SinkCommon
&& Options
.SinkCommonInsts
)
6649 if (SinkCommonCodeFromPredecessors(BB
, DTU
)) {
6650 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6651 // so we may now how duplicate PHI's.
6652 // Let's rerun EliminateDuplicatePHINodes() first,
6653 // before FoldTwoEntryPHINode() potentially converts them into select's,
6654 // after which we'd need a whole EarlyCSE pass run to cleanup them.
6658 IRBuilder
<> Builder(BB
);
6660 if (Options
.FoldTwoEntryPHINode
) {
6661 // If there is a trivial two-entry PHI node in this basic block, and we can
6662 // eliminate it, do so now.
6663 if (auto *PN
= dyn_cast
<PHINode
>(BB
->begin()))
6664 if (PN
->getNumIncomingValues() == 2)
6665 if (FoldTwoEntryPHINode(PN
, TTI
, DTU
, DL
))
6669 Instruction
*Terminator
= BB
->getTerminator();
6670 Builder
.SetInsertPoint(Terminator
);
6671 switch (Terminator
->getOpcode()) {
6672 case Instruction::Br
:
6673 Changed
|= simplifyBranch(cast
<BranchInst
>(Terminator
), Builder
);
6675 case Instruction::Resume
:
6676 Changed
|= simplifyResume(cast
<ResumeInst
>(Terminator
), Builder
);
6678 case Instruction::CleanupRet
:
6679 Changed
|= simplifyCleanupReturn(cast
<CleanupReturnInst
>(Terminator
));
6681 case Instruction::Switch
:
6682 Changed
|= simplifySwitch(cast
<SwitchInst
>(Terminator
), Builder
);
6684 case Instruction::Unreachable
:
6685 Changed
|= simplifyUnreachable(cast
<UnreachableInst
>(Terminator
));
6687 case Instruction::IndirectBr
:
6688 Changed
|= simplifyIndirectBr(cast
<IndirectBrInst
>(Terminator
));
6695 bool SimplifyCFGOpt::simplifyOnce(BasicBlock
*BB
) {
6696 bool Changed
= simplifyOnceImpl(BB
);
6701 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
6702 bool Changed
= false;
6704 // Repeated simplify BB as long as resimplification is requested.
6708 // Perform one round of simplifcation. Resimplify flag will be set if
6709 // another iteration is requested.
6710 Changed
|= simplifyOnce(BB
);
6711 } while (Resimplify
);
6716 bool llvm::simplifyCFG(BasicBlock
*BB
, const TargetTransformInfo
&TTI
,
6717 DomTreeUpdater
*DTU
, const SimplifyCFGOptions
&Options
,
6718 ArrayRef
<WeakVH
> LoopHeaders
) {
6719 return SimplifyCFGOpt(TTI
, DTU
, BB
->getModule()->getDataLayout(), LoopHeaders
,