[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / SimplifyIndVar.cpp
blobbd30be011472d705679b8975c1437d28407b3464
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
31 using namespace llvm;
33 #define DEBUG_TYPE "indvars"
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
39 STATISTIC(
40 NumSimplifiedSDiv,
41 "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43 NumSimplifiedSRem,
44 "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
47 namespace {
48 /// This is a utility for simplifying induction variables
49 /// based on ScalarEvolution. It is the primary instrument of the
50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51 /// other loop passes that preserve SCEV.
52 class SimplifyIndvar {
53 Loop *L;
54 LoopInfo *LI;
55 ScalarEvolution *SE;
56 DominatorTree *DT;
57 const TargetTransformInfo *TTI;
58 SCEVExpander &Rewriter;
59 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
61 bool Changed;
63 public:
64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65 LoopInfo *LI, const TargetTransformInfo *TTI,
66 SCEVExpander &Rewriter,
67 SmallVectorImpl<WeakTrackingVH> &Dead)
68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
69 DeadInsts(Dead), Changed(false) {
70 assert(LI && "IV simplification requires LoopInfo");
73 bool hasChanged() const { return Changed; }
75 /// Iteratively perform simplification on a worklist of users of the
76 /// specified induction variable. This is the top-level driver that applies
77 /// all simplifications to users of an IV.
78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
85 bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
86 bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
87 bool eliminateTrunc(TruncInst *TI);
88 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
89 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
90 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
91 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
92 bool IsSigned);
93 void replaceRemWithNumerator(BinaryOperator *Rem);
94 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
95 void replaceSRemWithURem(BinaryOperator *Rem);
96 bool eliminateSDiv(BinaryOperator *SDiv);
97 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
98 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
102 /// Find a point in code which dominates all given instructions. We can safely
103 /// assume that, whatever fact we can prove at the found point, this fact is
104 /// also true for each of the given instructions.
105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
106 DominatorTree &DT) {
107 Instruction *CommonDom = nullptr;
108 for (auto *Insn : Instructions)
109 if (!CommonDom || DT.dominates(Insn, CommonDom))
110 CommonDom = Insn;
111 else if (!DT.dominates(CommonDom, Insn))
112 // If there is no dominance relation, use common dominator.
113 CommonDom =
114 DT.findNearestCommonDominator(CommonDom->getParent(),
115 Insn->getParent())->getTerminator();
116 assert(CommonDom && "Common dominator not found?");
117 return CommonDom;
120 /// Fold an IV operand into its use. This removes increments of an
121 /// aligned IV when used by a instruction that ignores the low bits.
123 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
125 /// Return the operand of IVOperand for this induction variable if IVOperand can
126 /// be folded (in case more folding opportunities have been exposed).
127 /// Otherwise return null.
128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
129 Value *IVSrc = nullptr;
130 const unsigned OperIdx = 0;
131 const SCEV *FoldedExpr = nullptr;
132 bool MustDropExactFlag = false;
133 switch (UseInst->getOpcode()) {
134 default:
135 return nullptr;
136 case Instruction::UDiv:
137 case Instruction::LShr:
138 // We're only interested in the case where we know something about
139 // the numerator and have a constant denominator.
140 if (IVOperand != UseInst->getOperand(OperIdx) ||
141 !isa<ConstantInt>(UseInst->getOperand(1)))
142 return nullptr;
144 // Attempt to fold a binary operator with constant operand.
145 // e.g. ((I + 1) >> 2) => I >> 2
146 if (!isa<BinaryOperator>(IVOperand)
147 || !isa<ConstantInt>(IVOperand->getOperand(1)))
148 return nullptr;
150 IVSrc = IVOperand->getOperand(0);
151 // IVSrc must be the (SCEVable) IV, since the other operand is const.
152 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
154 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
155 if (UseInst->getOpcode() == Instruction::LShr) {
156 // Get a constant for the divisor. See createSCEV.
157 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
158 if (D->getValue().uge(BitWidth))
159 return nullptr;
161 D = ConstantInt::get(UseInst->getContext(),
162 APInt::getOneBitSet(BitWidth, D->getZExtValue()));
164 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
165 // We might have 'exact' flag set at this point which will no longer be
166 // correct after we make the replacement.
167 if (UseInst->isExact() &&
168 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
169 MustDropExactFlag = true;
171 // We have something that might fold it's operand. Compare SCEVs.
172 if (!SE->isSCEVable(UseInst->getType()))
173 return nullptr;
175 // Bypass the operand if SCEV can prove it has no effect.
176 if (SE->getSCEV(UseInst) != FoldedExpr)
177 return nullptr;
179 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
180 << " -> " << *UseInst << '\n');
182 UseInst->setOperand(OperIdx, IVSrc);
183 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
185 if (MustDropExactFlag)
186 UseInst->dropPoisonGeneratingFlags();
188 ++NumElimOperand;
189 Changed = true;
190 if (IVOperand->use_empty())
191 DeadInsts.emplace_back(IVOperand);
192 return IVSrc;
195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
196 Value *IVOperand) {
197 unsigned IVOperIdx = 0;
198 ICmpInst::Predicate Pred = ICmp->getPredicate();
199 if (IVOperand != ICmp->getOperand(0)) {
200 // Swapped
201 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
202 IVOperIdx = 1;
203 Pred = ICmpInst::getSwappedPredicate(Pred);
206 // Get the SCEVs for the ICmp operands (in the specific context of the
207 // current loop)
208 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
209 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
210 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
212 auto *PN = dyn_cast<PHINode>(IVOperand);
213 if (!PN)
214 return false;
215 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
216 if (!LIP)
217 return false;
218 ICmpInst::Predicate InvariantPredicate = LIP->Pred;
219 const SCEV *InvariantLHS = LIP->LHS;
220 const SCEV *InvariantRHS = LIP->RHS;
222 // Rewrite the comparison to a loop invariant comparison if it can be done
223 // cheaply, where cheaply means "we don't need to emit any new
224 // instructions".
226 SmallDenseMap<const SCEV*, Value*> CheapExpansions;
227 CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
228 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
230 // TODO: Support multiple entry loops? (We currently bail out of these in
231 // the IndVarSimplify pass)
232 if (auto *BB = L->getLoopPredecessor()) {
233 const int Idx = PN->getBasicBlockIndex(BB);
234 if (Idx >= 0) {
235 Value *Incoming = PN->getIncomingValue(Idx);
236 const SCEV *IncomingS = SE->getSCEV(Incoming);
237 CheapExpansions[IncomingS] = Incoming;
240 Value *NewLHS = CheapExpansions[InvariantLHS];
241 Value *NewRHS = CheapExpansions[InvariantRHS];
243 if (!NewLHS)
244 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
245 NewLHS = ConstLHS->getValue();
246 if (!NewRHS)
247 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
248 NewRHS = ConstRHS->getValue();
250 if (!NewLHS || !NewRHS)
251 // We could not find an existing value to replace either LHS or RHS.
252 // Generating new instructions has subtler tradeoffs, so avoid doing that
253 // for now.
254 return false;
256 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
257 ICmp->setPredicate(InvariantPredicate);
258 ICmp->setOperand(0, NewLHS);
259 ICmp->setOperand(1, NewRHS);
260 return true;
263 /// SimplifyIVUsers helper for eliminating useless
264 /// comparisons against an induction variable.
265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
266 unsigned IVOperIdx = 0;
267 ICmpInst::Predicate Pred = ICmp->getPredicate();
268 ICmpInst::Predicate OriginalPred = Pred;
269 if (IVOperand != ICmp->getOperand(0)) {
270 // Swapped
271 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
272 IVOperIdx = 1;
273 Pred = ICmpInst::getSwappedPredicate(Pred);
276 // Get the SCEVs for the ICmp operands (in the specific context of the
277 // current loop)
278 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
279 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
280 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
282 // If the condition is always true or always false in the given context,
283 // replace it with a constant value.
284 SmallVector<Instruction *, 4> Users;
285 for (auto *U : ICmp->users())
286 Users.push_back(cast<Instruction>(U));
287 const Instruction *CtxI = findCommonDominator(Users, *DT);
288 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
289 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
290 DeadInsts.emplace_back(ICmp);
291 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
292 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
293 // fallthrough to end of function
294 } else if (ICmpInst::isSigned(OriginalPred) &&
295 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
296 // If we were unable to make anything above, all we can is to canonicalize
297 // the comparison hoping that it will open the doors for other
298 // optimizations. If we find out that we compare two non-negative values,
299 // we turn the instruction's predicate to its unsigned version. Note that
300 // we cannot rely on Pred here unless we check if we have swapped it.
301 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
302 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
303 << '\n');
304 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
305 } else
306 return;
308 ++NumElimCmp;
309 Changed = true;
312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
313 // Get the SCEVs for the ICmp operands.
314 auto *N = SE->getSCEV(SDiv->getOperand(0));
315 auto *D = SE->getSCEV(SDiv->getOperand(1));
317 // Simplify unnecessary loops away.
318 const Loop *L = LI->getLoopFor(SDiv->getParent());
319 N = SE->getSCEVAtScope(N, L);
320 D = SE->getSCEVAtScope(D, L);
322 // Replace sdiv by udiv if both of the operands are non-negative
323 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
324 auto *UDiv = BinaryOperator::Create(
325 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
326 SDiv->getName() + ".udiv", SDiv);
327 UDiv->setIsExact(SDiv->isExact());
328 SDiv->replaceAllUsesWith(UDiv);
329 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
330 ++NumSimplifiedSDiv;
331 Changed = true;
332 DeadInsts.push_back(SDiv);
333 return true;
336 return false;
339 // i %s n -> i %u n if i >= 0 and n >= 0
340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
341 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
342 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
343 Rem->getName() + ".urem", Rem);
344 Rem->replaceAllUsesWith(URem);
345 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
346 ++NumSimplifiedSRem;
347 Changed = true;
348 DeadInsts.emplace_back(Rem);
351 // i % n --> i if i is in [0,n).
352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
353 Rem->replaceAllUsesWith(Rem->getOperand(0));
354 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
355 ++NumElimRem;
356 Changed = true;
357 DeadInsts.emplace_back(Rem);
360 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
362 auto *T = Rem->getType();
363 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
364 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
365 SelectInst *Sel =
366 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
367 Rem->replaceAllUsesWith(Sel);
368 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
369 ++NumElimRem;
370 Changed = true;
371 DeadInsts.emplace_back(Rem);
374 /// SimplifyIVUsers helper for eliminating useless remainder operations
375 /// operating on an induction variable or replacing srem by urem.
376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
377 bool IsSigned) {
378 auto *NValue = Rem->getOperand(0);
379 auto *DValue = Rem->getOperand(1);
380 // We're only interested in the case where we know something about
381 // the numerator, unless it is a srem, because we want to replace srem by urem
382 // in general.
383 bool UsedAsNumerator = IVOperand == NValue;
384 if (!UsedAsNumerator && !IsSigned)
385 return;
387 const SCEV *N = SE->getSCEV(NValue);
389 // Simplify unnecessary loops away.
390 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
391 N = SE->getSCEVAtScope(N, ICmpLoop);
393 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
395 // Do not proceed if the Numerator may be negative
396 if (!IsNumeratorNonNegative)
397 return;
399 const SCEV *D = SE->getSCEV(DValue);
400 D = SE->getSCEVAtScope(D, ICmpLoop);
402 if (UsedAsNumerator) {
403 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
404 if (SE->isKnownPredicate(LT, N, D)) {
405 replaceRemWithNumerator(Rem);
406 return;
409 auto *T = Rem->getType();
410 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
411 if (SE->isKnownPredicate(LT, NLessOne, D)) {
412 replaceRemWithNumeratorOrZero(Rem);
413 return;
417 // Try to replace SRem with URem, if both N and D are known non-negative.
418 // Since we had already check N, we only need to check D now
419 if (!IsSigned || !SE->isKnownNonNegative(D))
420 return;
422 replaceSRemWithURem(Rem);
425 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
426 const SCEV *LHS = SE->getSCEV(WO->getLHS());
427 const SCEV *RHS = SE->getSCEV(WO->getRHS());
428 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
429 return false;
431 // Proved no overflow, nuke the overflow check and, if possible, the overflow
432 // intrinsic as well.
434 BinaryOperator *NewResult = BinaryOperator::Create(
435 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
437 if (WO->isSigned())
438 NewResult->setHasNoSignedWrap(true);
439 else
440 NewResult->setHasNoUnsignedWrap(true);
442 SmallVector<ExtractValueInst *, 4> ToDelete;
444 for (auto *U : WO->users()) {
445 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
446 if (EVI->getIndices()[0] == 1)
447 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
448 else {
449 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
450 EVI->replaceAllUsesWith(NewResult);
452 ToDelete.push_back(EVI);
456 for (auto *EVI : ToDelete)
457 EVI->eraseFromParent();
459 if (WO->use_empty())
460 WO->eraseFromParent();
462 Changed = true;
463 return true;
466 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
467 const SCEV *LHS = SE->getSCEV(SI->getLHS());
468 const SCEV *RHS = SE->getSCEV(SI->getRHS());
469 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
470 return false;
472 BinaryOperator *BO = BinaryOperator::Create(
473 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
474 if (SI->isSigned())
475 BO->setHasNoSignedWrap();
476 else
477 BO->setHasNoUnsignedWrap();
479 SI->replaceAllUsesWith(BO);
480 DeadInsts.emplace_back(SI);
481 Changed = true;
482 return true;
485 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
486 // It is always legal to replace
487 // icmp <pred> i32 trunc(iv), n
488 // with
489 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
490 // Or with
491 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
492 // Or with either of these if pred is an equality predicate.
494 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
495 // every comparison which uses trunc, it means that we can replace each of
496 // them with comparison of iv against sext/zext(n). We no longer need trunc
497 // after that.
499 // TODO: Should we do this if we can widen *some* comparisons, but not all
500 // of them? Sometimes it is enough to enable other optimizations, but the
501 // trunc instruction will stay in the loop.
502 Value *IV = TI->getOperand(0);
503 Type *IVTy = IV->getType();
504 const SCEV *IVSCEV = SE->getSCEV(IV);
505 const SCEV *TISCEV = SE->getSCEV(TI);
507 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
508 // get rid of trunc
509 bool DoesSExtCollapse = false;
510 bool DoesZExtCollapse = false;
511 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
512 DoesSExtCollapse = true;
513 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
514 DoesZExtCollapse = true;
516 // If neither sext nor zext does collapse, it is not profitable to do any
517 // transform. Bail.
518 if (!DoesSExtCollapse && !DoesZExtCollapse)
519 return false;
521 // Collect users of the trunc that look like comparisons against invariants.
522 // Bail if we find something different.
523 SmallVector<ICmpInst *, 4> ICmpUsers;
524 for (auto *U : TI->users()) {
525 // We don't care about users in unreachable blocks.
526 if (isa<Instruction>(U) &&
527 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
528 continue;
529 ICmpInst *ICI = dyn_cast<ICmpInst>(U);
530 if (!ICI) return false;
531 assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
532 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
533 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
534 return false;
535 // If we cannot get rid of trunc, bail.
536 if (ICI->isSigned() && !DoesSExtCollapse)
537 return false;
538 if (ICI->isUnsigned() && !DoesZExtCollapse)
539 return false;
540 // For equality, either signed or unsigned works.
541 ICmpUsers.push_back(ICI);
544 auto CanUseZExt = [&](ICmpInst *ICI) {
545 // Unsigned comparison can be widened as unsigned.
546 if (ICI->isUnsigned())
547 return true;
548 // Is it profitable to do zext?
549 if (!DoesZExtCollapse)
550 return false;
551 // For equality, we can safely zext both parts.
552 if (ICI->isEquality())
553 return true;
554 // Otherwise we can only use zext when comparing two non-negative or two
555 // negative values. But in practice, we will never pass DoesZExtCollapse
556 // check for a negative value, because zext(trunc(x)) is non-negative. So
557 // it only make sense to check for non-negativity here.
558 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
559 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
560 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
562 // Replace all comparisons against trunc with comparisons against IV.
563 for (auto *ICI : ICmpUsers) {
564 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
565 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
566 Instruction *Ext = nullptr;
567 // For signed/unsigned predicate, replace the old comparison with comparison
568 // of immediate IV against sext/zext of the invariant argument. If we can
569 // use either sext or zext (i.e. we are dealing with equality predicate),
570 // then prefer zext as a more canonical form.
571 // TODO: If we see a signed comparison which can be turned into unsigned,
572 // we can do it here for canonicalization purposes.
573 ICmpInst::Predicate Pred = ICI->getPredicate();
574 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
575 if (CanUseZExt(ICI)) {
576 assert(DoesZExtCollapse && "Unprofitable zext?");
577 Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
578 Pred = ICmpInst::getUnsignedPredicate(Pred);
579 } else {
580 assert(DoesSExtCollapse && "Unprofitable sext?");
581 Ext = new SExtInst(Op1, IVTy, "sext", ICI);
582 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
584 bool Changed;
585 L->makeLoopInvariant(Ext, Changed);
586 (void)Changed;
587 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
588 ICI->replaceAllUsesWith(NewICI);
589 DeadInsts.emplace_back(ICI);
592 // Trunc no longer needed.
593 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
594 DeadInsts.emplace_back(TI);
595 return true;
598 /// Eliminate an operation that consumes a simple IV and has no observable
599 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
600 /// but UseInst may not be.
601 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
602 Instruction *IVOperand) {
603 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
604 eliminateIVComparison(ICmp, IVOperand);
605 return true;
607 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
608 bool IsSRem = Bin->getOpcode() == Instruction::SRem;
609 if (IsSRem || Bin->getOpcode() == Instruction::URem) {
610 simplifyIVRemainder(Bin, IVOperand, IsSRem);
611 return true;
614 if (Bin->getOpcode() == Instruction::SDiv)
615 return eliminateSDiv(Bin);
618 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
619 if (eliminateOverflowIntrinsic(WO))
620 return true;
622 if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
623 if (eliminateSaturatingIntrinsic(SI))
624 return true;
626 if (auto *TI = dyn_cast<TruncInst>(UseInst))
627 if (eliminateTrunc(TI))
628 return true;
630 if (eliminateIdentitySCEV(UseInst, IVOperand))
631 return true;
633 return false;
636 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
637 if (auto *BB = L->getLoopPreheader())
638 return BB->getTerminator();
640 return Hint;
643 /// Replace the UseInst with a loop invariant expression if it is safe.
644 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
645 if (!SE->isSCEVable(I->getType()))
646 return false;
648 // Get the symbolic expression for this instruction.
649 const SCEV *S = SE->getSCEV(I);
651 if (!SE->isLoopInvariant(S, L))
652 return false;
654 // Do not generate something ridiculous even if S is loop invariant.
655 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
656 return false;
658 auto *IP = GetLoopInvariantInsertPosition(L, I);
660 if (!isSafeToExpandAt(S, IP, *SE)) {
661 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
662 << " with non-speculable loop invariant: " << *S << '\n');
663 return false;
666 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
668 I->replaceAllUsesWith(Invariant);
669 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
670 << " with loop invariant: " << *S << '\n');
671 ++NumFoldedUser;
672 Changed = true;
673 DeadInsts.emplace_back(I);
674 return true;
677 /// Eliminate any operation that SCEV can prove is an identity function.
678 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
679 Instruction *IVOperand) {
680 if (!SE->isSCEVable(UseInst->getType()) ||
681 (UseInst->getType() != IVOperand->getType()) ||
682 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
683 return false;
685 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
686 // dominator tree, even if X is an operand to Y. For instance, in
688 // %iv = phi i32 {0,+,1}
689 // br %cond, label %left, label %merge
691 // left:
692 // %X = add i32 %iv, 0
693 // br label %merge
695 // merge:
696 // %M = phi (%X, %iv)
698 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
699 // %M.replaceAllUsesWith(%X) would be incorrect.
701 if (isa<PHINode>(UseInst))
702 // If UseInst is not a PHI node then we know that IVOperand dominates
703 // UseInst directly from the legality of SSA.
704 if (!DT || !DT->dominates(IVOperand, UseInst))
705 return false;
707 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
708 return false;
710 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
712 UseInst->replaceAllUsesWith(IVOperand);
713 ++NumElimIdentity;
714 Changed = true;
715 DeadInsts.emplace_back(UseInst);
716 return true;
719 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
720 /// unsigned-overflow. Returns true if anything changed, false otherwise.
721 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
722 Value *IVOperand) {
723 SCEV::NoWrapFlags Flags;
724 bool Deduced;
725 std::tie(Flags, Deduced) = SE->getStrengthenedNoWrapFlagsFromBinOp(
726 cast<OverflowingBinaryOperator>(BO));
728 if (!Deduced)
729 return Deduced;
731 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNUW) ==
732 SCEV::FlagNUW);
733 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNSW) ==
734 SCEV::FlagNSW);
736 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
737 // flags on addrecs while performing zero/sign extensions. We could call
738 // forgetValue() here to make sure those flags also propagate to any other
739 // SCEV expressions based on the addrec. However, this can have pathological
740 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
741 return Deduced;
744 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
745 /// information from the IV's range. Returns true if anything changed, false
746 /// otherwise.
747 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
748 Value *IVOperand) {
749 using namespace llvm::PatternMatch;
751 if (BO->getOpcode() == Instruction::Shl) {
752 bool Changed = false;
753 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
754 for (auto *U : BO->users()) {
755 const APInt *C;
756 if (match(U,
757 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
758 match(U,
759 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
760 BinaryOperator *Shr = cast<BinaryOperator>(U);
761 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
762 Shr->setIsExact(true);
763 Changed = true;
767 return Changed;
770 return false;
773 /// Add all uses of Def to the current IV's worklist.
774 static void pushIVUsers(
775 Instruction *Def, Loop *L,
776 SmallPtrSet<Instruction*,16> &Simplified,
777 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
779 for (User *U : Def->users()) {
780 Instruction *UI = cast<Instruction>(U);
782 // Avoid infinite or exponential worklist processing.
783 // Also ensure unique worklist users.
784 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
785 // self edges first.
786 if (UI == Def)
787 continue;
789 // Only change the current Loop, do not change the other parts (e.g. other
790 // Loops).
791 if (!L->contains(UI))
792 continue;
794 // Do not push the same instruction more than once.
795 if (!Simplified.insert(UI).second)
796 continue;
798 SimpleIVUsers.push_back(std::make_pair(UI, Def));
802 /// Return true if this instruction generates a simple SCEV
803 /// expression in terms of that IV.
805 /// This is similar to IVUsers' isInteresting() but processes each instruction
806 /// non-recursively when the operand is already known to be a simpleIVUser.
808 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
809 if (!SE->isSCEVable(I->getType()))
810 return false;
812 // Get the symbolic expression for this instruction.
813 const SCEV *S = SE->getSCEV(I);
815 // Only consider affine recurrences.
816 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
817 if (AR && AR->getLoop() == L)
818 return true;
820 return false;
823 /// Iteratively perform simplification on a worklist of users
824 /// of the specified induction variable. Each successive simplification may push
825 /// more users which may themselves be candidates for simplification.
827 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
828 /// instructions in-place during analysis. Rather than rewriting induction
829 /// variables bottom-up from their users, it transforms a chain of IVUsers
830 /// top-down, updating the IR only when it encounters a clear optimization
831 /// opportunity.
833 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
835 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
836 if (!SE->isSCEVable(CurrIV->getType()))
837 return;
839 // Instructions processed by SimplifyIndvar for CurrIV.
840 SmallPtrSet<Instruction*,16> Simplified;
842 // Use-def pairs if IV users waiting to be processed for CurrIV.
843 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
845 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
846 // called multiple times for the same LoopPhi. This is the proper thing to
847 // do for loop header phis that use each other.
848 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
850 while (!SimpleIVUsers.empty()) {
851 std::pair<Instruction*, Instruction*> UseOper =
852 SimpleIVUsers.pop_back_val();
853 Instruction *UseInst = UseOper.first;
855 // If a user of the IndVar is trivially dead, we prefer just to mark it dead
856 // rather than try to do some complex analysis or transformation (such as
857 // widening) basing on it.
858 // TODO: Propagate TLI and pass it here to handle more cases.
859 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
860 DeadInsts.emplace_back(UseInst);
861 continue;
864 // Bypass back edges to avoid extra work.
865 if (UseInst == CurrIV) continue;
867 // Try to replace UseInst with a loop invariant before any other
868 // simplifications.
869 if (replaceIVUserWithLoopInvariant(UseInst))
870 continue;
872 Instruction *IVOperand = UseOper.second;
873 for (unsigned N = 0; IVOperand; ++N) {
874 assert(N <= Simplified.size() && "runaway iteration");
876 Value *NewOper = foldIVUser(UseInst, IVOperand);
877 if (!NewOper)
878 break; // done folding
879 IVOperand = dyn_cast<Instruction>(NewOper);
881 if (!IVOperand)
882 continue;
884 if (eliminateIVUser(UseInst, IVOperand)) {
885 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
886 continue;
889 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
890 if ((isa<OverflowingBinaryOperator>(BO) &&
891 strengthenOverflowingOperation(BO, IVOperand)) ||
892 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
893 // re-queue uses of the now modified binary operator and fall
894 // through to the checks that remain.
895 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
899 CastInst *Cast = dyn_cast<CastInst>(UseInst);
900 if (V && Cast) {
901 V->visitCast(Cast);
902 continue;
904 if (isSimpleIVUser(UseInst, L, SE)) {
905 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
910 namespace llvm {
912 void IVVisitor::anchor() { }
914 /// Simplify instructions that use this induction variable
915 /// by using ScalarEvolution to analyze the IV's recurrence.
916 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
917 LoopInfo *LI, const TargetTransformInfo *TTI,
918 SmallVectorImpl<WeakTrackingVH> &Dead,
919 SCEVExpander &Rewriter, IVVisitor *V) {
920 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
921 Rewriter, Dead);
922 SIV.simplifyUsers(CurrIV, V);
923 return SIV.hasChanged();
926 /// Simplify users of induction variables within this
927 /// loop. This does not actually change or add IVs.
928 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
929 LoopInfo *LI, const TargetTransformInfo *TTI,
930 SmallVectorImpl<WeakTrackingVH> &Dead) {
931 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
932 #ifndef NDEBUG
933 Rewriter.setDebugType(DEBUG_TYPE);
934 #endif
935 bool Changed = false;
936 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
937 Changed |=
938 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
940 return Changed;
943 } // namespace llvm
945 //===----------------------------------------------------------------------===//
946 // Widen Induction Variables - Extend the width of an IV to cover its
947 // widest uses.
948 //===----------------------------------------------------------------------===//
950 class WidenIV {
951 // Parameters
952 PHINode *OrigPhi;
953 Type *WideType;
955 // Context
956 LoopInfo *LI;
957 Loop *L;
958 ScalarEvolution *SE;
959 DominatorTree *DT;
961 // Does the module have any calls to the llvm.experimental.guard intrinsic
962 // at all? If not we can avoid scanning instructions looking for guards.
963 bool HasGuards;
965 bool UsePostIncrementRanges;
967 // Statistics
968 unsigned NumElimExt = 0;
969 unsigned NumWidened = 0;
971 // Result
972 PHINode *WidePhi = nullptr;
973 Instruction *WideInc = nullptr;
974 const SCEV *WideIncExpr = nullptr;
975 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
977 SmallPtrSet<Instruction *,16> Widened;
979 enum ExtendKind { ZeroExtended, SignExtended, Unknown };
981 // A map tracking the kind of extension used to widen each narrow IV
982 // and narrow IV user.
983 // Key: pointer to a narrow IV or IV user.
984 // Value: the kind of extension used to widen this Instruction.
985 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
987 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
989 // A map with control-dependent ranges for post increment IV uses. The key is
990 // a pair of IV def and a use of this def denoting the context. The value is
991 // a ConstantRange representing possible values of the def at the given
992 // context.
993 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
995 Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
996 Instruction *UseI) {
997 DefUserPair Key(Def, UseI);
998 auto It = PostIncRangeInfos.find(Key);
999 return It == PostIncRangeInfos.end()
1000 ? Optional<ConstantRange>(None)
1001 : Optional<ConstantRange>(It->second);
1004 void calculatePostIncRanges(PHINode *OrigPhi);
1005 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1007 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1008 DefUserPair Key(Def, UseI);
1009 auto It = PostIncRangeInfos.find(Key);
1010 if (It == PostIncRangeInfos.end())
1011 PostIncRangeInfos.insert({Key, R});
1012 else
1013 It->second = R.intersectWith(It->second);
1016 public:
1017 /// Record a link in the Narrow IV def-use chain along with the WideIV that
1018 /// computes the same value as the Narrow IV def. This avoids caching Use*
1019 /// pointers.
1020 struct NarrowIVDefUse {
1021 Instruction *NarrowDef = nullptr;
1022 Instruction *NarrowUse = nullptr;
1023 Instruction *WideDef = nullptr;
1025 // True if the narrow def is never negative. Tracking this information lets
1026 // us use a sign extension instead of a zero extension or vice versa, when
1027 // profitable and legal.
1028 bool NeverNegative = false;
1030 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1031 bool NeverNegative)
1032 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1033 NeverNegative(NeverNegative) {}
1036 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1037 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1038 bool HasGuards, bool UsePostIncrementRanges = true);
1040 PHINode *createWideIV(SCEVExpander &Rewriter);
1042 unsigned getNumElimExt() { return NumElimExt; };
1043 unsigned getNumWidened() { return NumWidened; };
1045 protected:
1046 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1047 Instruction *Use);
1049 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1050 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1051 const SCEVAddRecExpr *WideAR);
1052 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1054 ExtendKind getExtendKind(Instruction *I);
1056 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1058 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1060 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1062 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1063 unsigned OpCode) const;
1065 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1067 bool widenLoopCompare(NarrowIVDefUse DU);
1068 bool widenWithVariantUse(NarrowIVDefUse DU);
1070 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1072 private:
1073 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1077 /// Determine the insertion point for this user. By default, insert immediately
1078 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1079 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1080 /// common dominator for the incoming blocks. A nullptr can be returned if no
1081 /// viable location is found: it may happen if User is a PHI and Def only comes
1082 /// to this PHI from unreachable blocks.
1083 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1084 DominatorTree *DT, LoopInfo *LI) {
1085 PHINode *PHI = dyn_cast<PHINode>(User);
1086 if (!PHI)
1087 return User;
1089 Instruction *InsertPt = nullptr;
1090 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1091 if (PHI->getIncomingValue(i) != Def)
1092 continue;
1094 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1096 if (!DT->isReachableFromEntry(InsertBB))
1097 continue;
1099 if (!InsertPt) {
1100 InsertPt = InsertBB->getTerminator();
1101 continue;
1103 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1104 InsertPt = InsertBB->getTerminator();
1107 // If we have skipped all inputs, it means that Def only comes to Phi from
1108 // unreachable blocks.
1109 if (!InsertPt)
1110 return nullptr;
1112 auto *DefI = dyn_cast<Instruction>(Def);
1113 if (!DefI)
1114 return InsertPt;
1116 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1118 auto *L = LI->getLoopFor(DefI->getParent());
1119 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1121 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1122 if (LI->getLoopFor(DTN->getBlock()) == L)
1123 return DTN->getBlock()->getTerminator();
1125 llvm_unreachable("DefI dominates InsertPt!");
1128 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1129 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1130 bool HasGuards, bool UsePostIncrementRanges)
1131 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1132 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1133 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1134 DeadInsts(DI) {
1135 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1136 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1139 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1140 bool IsSigned, Instruction *Use) {
1141 // Set the debug location and conservative insertion point.
1142 IRBuilder<> Builder(Use);
1143 // Hoist the insertion point into loop preheaders as far as possible.
1144 for (const Loop *L = LI->getLoopFor(Use->getParent());
1145 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1146 L = L->getParentLoop())
1147 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1149 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1150 Builder.CreateZExt(NarrowOper, WideType);
1153 /// Instantiate a wide operation to replace a narrow operation. This only needs
1154 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1155 /// 0 for any operation we decide not to clone.
1156 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1157 const SCEVAddRecExpr *WideAR) {
1158 unsigned Opcode = DU.NarrowUse->getOpcode();
1159 switch (Opcode) {
1160 default:
1161 return nullptr;
1162 case Instruction::Add:
1163 case Instruction::Mul:
1164 case Instruction::UDiv:
1165 case Instruction::Sub:
1166 return cloneArithmeticIVUser(DU, WideAR);
1168 case Instruction::And:
1169 case Instruction::Or:
1170 case Instruction::Xor:
1171 case Instruction::Shl:
1172 case Instruction::LShr:
1173 case Instruction::AShr:
1174 return cloneBitwiseIVUser(DU);
1178 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1179 Instruction *NarrowUse = DU.NarrowUse;
1180 Instruction *NarrowDef = DU.NarrowDef;
1181 Instruction *WideDef = DU.WideDef;
1183 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1185 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1186 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1187 // invariant and will be folded or hoisted. If it actually comes from a
1188 // widened IV, it should be removed during a future call to widenIVUse.
1189 bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1190 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1191 ? WideDef
1192 : createExtendInst(NarrowUse->getOperand(0), WideType,
1193 IsSigned, NarrowUse);
1194 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1195 ? WideDef
1196 : createExtendInst(NarrowUse->getOperand(1), WideType,
1197 IsSigned, NarrowUse);
1199 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1200 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1201 NarrowBO->getName());
1202 IRBuilder<> Builder(NarrowUse);
1203 Builder.Insert(WideBO);
1204 WideBO->copyIRFlags(NarrowBO);
1205 return WideBO;
1208 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1209 const SCEVAddRecExpr *WideAR) {
1210 Instruction *NarrowUse = DU.NarrowUse;
1211 Instruction *NarrowDef = DU.NarrowDef;
1212 Instruction *WideDef = DU.WideDef;
1214 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1216 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1218 // We're trying to find X such that
1220 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1222 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1223 // and check using SCEV if any of them are correct.
1225 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1226 // correct solution to X.
1227 auto GuessNonIVOperand = [&](bool SignExt) {
1228 const SCEV *WideLHS;
1229 const SCEV *WideRHS;
1231 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1232 if (SignExt)
1233 return SE->getSignExtendExpr(S, Ty);
1234 return SE->getZeroExtendExpr(S, Ty);
1237 if (IVOpIdx == 0) {
1238 WideLHS = SE->getSCEV(WideDef);
1239 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1240 WideRHS = GetExtend(NarrowRHS, WideType);
1241 } else {
1242 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1243 WideLHS = GetExtend(NarrowLHS, WideType);
1244 WideRHS = SE->getSCEV(WideDef);
1247 // WideUse is "WideDef `op.wide` X" as described in the comment.
1248 const SCEV *WideUse =
1249 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1251 return WideUse == WideAR;
1254 bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1255 if (!GuessNonIVOperand(SignExtend)) {
1256 SignExtend = !SignExtend;
1257 if (!GuessNonIVOperand(SignExtend))
1258 return nullptr;
1261 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1262 ? WideDef
1263 : createExtendInst(NarrowUse->getOperand(0), WideType,
1264 SignExtend, NarrowUse);
1265 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1266 ? WideDef
1267 : createExtendInst(NarrowUse->getOperand(1), WideType,
1268 SignExtend, NarrowUse);
1270 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1271 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1272 NarrowBO->getName());
1274 IRBuilder<> Builder(NarrowUse);
1275 Builder.Insert(WideBO);
1276 WideBO->copyIRFlags(NarrowBO);
1277 return WideBO;
1280 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1281 auto It = ExtendKindMap.find(I);
1282 assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1283 return It->second;
1286 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1287 unsigned OpCode) const {
1288 switch (OpCode) {
1289 case Instruction::Add:
1290 return SE->getAddExpr(LHS, RHS);
1291 case Instruction::Sub:
1292 return SE->getMinusSCEV(LHS, RHS);
1293 case Instruction::Mul:
1294 return SE->getMulExpr(LHS, RHS);
1295 case Instruction::UDiv:
1296 return SE->getUDivExpr(LHS, RHS);
1297 default:
1298 llvm_unreachable("Unsupported opcode.");
1302 /// No-wrap operations can transfer sign extension of their result to their
1303 /// operands. Generate the SCEV value for the widened operation without
1304 /// actually modifying the IR yet. If the expression after extending the
1305 /// operands is an AddRec for this loop, return the AddRec and the kind of
1306 /// extension used.
1307 WidenIV::WidenedRecTy
1308 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1309 // Handle the common case of add<nsw/nuw>
1310 const unsigned OpCode = DU.NarrowUse->getOpcode();
1311 // Only Add/Sub/Mul instructions supported yet.
1312 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1313 OpCode != Instruction::Mul)
1314 return {nullptr, Unknown};
1316 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1317 // if extending the other will lead to a recurrence.
1318 const unsigned ExtendOperIdx =
1319 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1320 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1322 const SCEV *ExtendOperExpr = nullptr;
1323 const OverflowingBinaryOperator *OBO =
1324 cast<OverflowingBinaryOperator>(DU.NarrowUse);
1325 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1326 if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1327 ExtendOperExpr = SE->getSignExtendExpr(
1328 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1329 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1330 ExtendOperExpr = SE->getZeroExtendExpr(
1331 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1332 else
1333 return {nullptr, Unknown};
1335 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1336 // flags. This instruction may be guarded by control flow that the no-wrap
1337 // behavior depends on. Non-control-equivalent instructions can be mapped to
1338 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1339 // semantics to those operations.
1340 const SCEV *lhs = SE->getSCEV(DU.WideDef);
1341 const SCEV *rhs = ExtendOperExpr;
1343 // Let's swap operands to the initial order for the case of non-commutative
1344 // operations, like SUB. See PR21014.
1345 if (ExtendOperIdx == 0)
1346 std::swap(lhs, rhs);
1347 const SCEVAddRecExpr *AddRec =
1348 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1350 if (!AddRec || AddRec->getLoop() != L)
1351 return {nullptr, Unknown};
1353 return {AddRec, ExtKind};
1356 /// Is this instruction potentially interesting for further simplification after
1357 /// widening it's type? In other words, can the extend be safely hoisted out of
1358 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1359 /// so, return the extended recurrence and the kind of extension used. Otherwise
1360 /// return {nullptr, Unknown}.
1361 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1362 if (!DU.NarrowUse->getType()->isIntegerTy())
1363 return {nullptr, Unknown};
1365 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1366 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1367 SE->getTypeSizeInBits(WideType)) {
1368 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1369 // index. So don't follow this use.
1370 return {nullptr, Unknown};
1373 const SCEV *WideExpr;
1374 ExtendKind ExtKind;
1375 if (DU.NeverNegative) {
1376 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1377 if (isa<SCEVAddRecExpr>(WideExpr))
1378 ExtKind = SignExtended;
1379 else {
1380 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1381 ExtKind = ZeroExtended;
1383 } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1384 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1385 ExtKind = SignExtended;
1386 } else {
1387 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1388 ExtKind = ZeroExtended;
1390 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1391 if (!AddRec || AddRec->getLoop() != L)
1392 return {nullptr, Unknown};
1393 return {AddRec, ExtKind};
1396 /// This IV user cannot be widened. Replace this use of the original narrow IV
1397 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1398 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1399 LoopInfo *LI) {
1400 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1401 if (!InsertPt)
1402 return;
1403 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1404 << *DU.NarrowUse << "\n");
1405 IRBuilder<> Builder(InsertPt);
1406 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1407 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1410 /// If the narrow use is a compare instruction, then widen the compare
1411 // (and possibly the other operand). The extend operation is hoisted into the
1412 // loop preheader as far as possible.
1413 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1414 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1415 if (!Cmp)
1416 return false;
1418 // We can legally widen the comparison in the following two cases:
1420 // - The signedness of the IV extension and comparison match
1422 // - The narrow IV is always positive (and thus its sign extension is equal
1423 // to its zero extension). For instance, let's say we're zero extending
1424 // %narrow for the following use
1426 // icmp slt i32 %narrow, %val ... (A)
1428 // and %narrow is always positive. Then
1430 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1431 // == icmp slt i32 zext(%narrow), sext(%val)
1432 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1433 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1434 return false;
1436 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1437 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1438 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1439 assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1441 // Widen the compare instruction.
1442 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1443 if (!InsertPt)
1444 return false;
1445 IRBuilder<> Builder(InsertPt);
1446 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1448 // Widen the other operand of the compare, if necessary.
1449 if (CastWidth < IVWidth) {
1450 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1451 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1453 return true;
1456 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1457 // will not work when:
1458 // 1) SCEV traces back to an instruction inside the loop that SCEV can not
1459 // expand, eg. add %indvar, (load %addr)
1460 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1461 // While SCEV fails to avoid trunc, we can still try to use instruction
1462 // combining approach to prove trunc is not required. This can be further
1463 // extended with other instruction combining checks, but for now we handle the
1464 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1466 // Src:
1467 // %c = sub nsw %b, %indvar
1468 // %d = sext %c to i64
1469 // Dst:
1470 // %indvar.ext1 = sext %indvar to i64
1471 // %m = sext %b to i64
1472 // %d = sub nsw i64 %m, %indvar.ext1
1473 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1474 // trunc is required regardless of how %b is generated. This pattern is common
1475 // when calculating address in 64 bit architecture
1476 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1477 Instruction *NarrowUse = DU.NarrowUse;
1478 Instruction *NarrowDef = DU.NarrowDef;
1479 Instruction *WideDef = DU.WideDef;
1481 // Handle the common case of add<nsw/nuw>
1482 const unsigned OpCode = NarrowUse->getOpcode();
1483 // Only Add/Sub/Mul instructions are supported.
1484 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1485 OpCode != Instruction::Mul)
1486 return false;
1488 // The operand that is not defined by NarrowDef of DU. Let's call it the
1489 // other operand.
1490 assert((NarrowUse->getOperand(0) == NarrowDef ||
1491 NarrowUse->getOperand(1) == NarrowDef) &&
1492 "bad DU");
1494 const OverflowingBinaryOperator *OBO =
1495 cast<OverflowingBinaryOperator>(NarrowUse);
1496 ExtendKind ExtKind = getExtendKind(NarrowDef);
1497 bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1498 bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1499 auto AnotherOpExtKind = ExtKind;
1501 // Check that all uses are either:
1502 // - narrow def (in case of we are widening the IV increment);
1503 // - single-input LCSSA Phis;
1504 // - comparison of the chosen type;
1505 // - extend of the chosen type (raison d'etre).
1506 SmallVector<Instruction *, 4> ExtUsers;
1507 SmallVector<PHINode *, 4> LCSSAPhiUsers;
1508 SmallVector<ICmpInst *, 4> ICmpUsers;
1509 for (Use &U : NarrowUse->uses()) {
1510 Instruction *User = cast<Instruction>(U.getUser());
1511 if (User == NarrowDef)
1512 continue;
1513 if (!L->contains(User)) {
1514 auto *LCSSAPhi = cast<PHINode>(User);
1515 // Make sure there is only 1 input, so that we don't have to split
1516 // critical edges.
1517 if (LCSSAPhi->getNumOperands() != 1)
1518 return false;
1519 LCSSAPhiUsers.push_back(LCSSAPhi);
1520 continue;
1522 if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1523 auto Pred = ICmp->getPredicate();
1524 // We have 3 types of predicates: signed, unsigned and equality
1525 // predicates. For equality, it's legal to widen icmp for either sign and
1526 // zero extend. For sign extend, we can also do so for signed predicates,
1527 // likeweise for zero extend we can widen icmp for unsigned predicates.
1528 if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1529 return false;
1530 if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1531 return false;
1532 ICmpUsers.push_back(ICmp);
1533 continue;
1535 if (ExtKind == SignExtended)
1536 User = dyn_cast<SExtInst>(User);
1537 else
1538 User = dyn_cast<ZExtInst>(User);
1539 if (!User || User->getType() != WideType)
1540 return false;
1541 ExtUsers.push_back(User);
1543 if (ExtUsers.empty()) {
1544 DeadInsts.emplace_back(NarrowUse);
1545 return true;
1548 // We'll prove some facts that should be true in the context of ext users. If
1549 // there is no users, we are done now. If there are some, pick their common
1550 // dominator as context.
1551 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1553 if (!CanSignExtend && !CanZeroExtend) {
1554 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1555 // will most likely not see it. Let's try to prove it.
1556 if (OpCode != Instruction::Add)
1557 return false;
1558 if (ExtKind != ZeroExtended)
1559 return false;
1560 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1561 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1562 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1563 if (NarrowUse->getOperand(0) != NarrowDef)
1564 return false;
1565 if (!SE->isKnownNegative(RHS))
1566 return false;
1567 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1568 SE->getNegativeSCEV(RHS), CtxI);
1569 if (!ProvedSubNUW)
1570 return false;
1571 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1572 // neg(zext(neg(op))), which is basically sext(op).
1573 AnotherOpExtKind = SignExtended;
1576 // Verifying that Defining operand is an AddRec
1577 const SCEV *Op1 = SE->getSCEV(WideDef);
1578 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1579 if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1580 return false;
1582 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1584 // Generating a widening use instruction.
1585 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1586 ? WideDef
1587 : createExtendInst(NarrowUse->getOperand(0), WideType,
1588 AnotherOpExtKind, NarrowUse);
1589 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1590 ? WideDef
1591 : createExtendInst(NarrowUse->getOperand(1), WideType,
1592 AnotherOpExtKind, NarrowUse);
1594 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1595 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1596 NarrowBO->getName());
1597 IRBuilder<> Builder(NarrowUse);
1598 Builder.Insert(WideBO);
1599 WideBO->copyIRFlags(NarrowBO);
1600 ExtendKindMap[NarrowUse] = ExtKind;
1602 for (Instruction *User : ExtUsers) {
1603 assert(User->getType() == WideType && "Checked before!");
1604 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1605 << *WideBO << "\n");
1606 ++NumElimExt;
1607 User->replaceAllUsesWith(WideBO);
1608 DeadInsts.emplace_back(User);
1611 for (PHINode *User : LCSSAPhiUsers) {
1612 assert(User->getNumOperands() == 1 && "Checked before!");
1613 Builder.SetInsertPoint(User);
1614 auto *WidePN =
1615 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1616 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1617 assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1618 "Not a LCSSA Phi?");
1619 WidePN->addIncoming(WideBO, LoopExitingBlock);
1620 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1621 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1622 User->replaceAllUsesWith(TruncPN);
1623 DeadInsts.emplace_back(User);
1626 for (ICmpInst *User : ICmpUsers) {
1627 Builder.SetInsertPoint(User);
1628 auto ExtendedOp = [&](Value * V)->Value * {
1629 if (V == NarrowUse)
1630 return WideBO;
1631 if (ExtKind == ZeroExtended)
1632 return Builder.CreateZExt(V, WideBO->getType());
1633 else
1634 return Builder.CreateSExt(V, WideBO->getType());
1636 auto Pred = User->getPredicate();
1637 auto *LHS = ExtendedOp(User->getOperand(0));
1638 auto *RHS = ExtendedOp(User->getOperand(1));
1639 auto *WideCmp =
1640 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1641 User->replaceAllUsesWith(WideCmp);
1642 DeadInsts.emplace_back(User);
1645 return true;
1648 /// Determine whether an individual user of the narrow IV can be widened. If so,
1649 /// return the wide clone of the user.
1650 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1651 assert(ExtendKindMap.count(DU.NarrowDef) &&
1652 "Should already know the kind of extension used to widen NarrowDef");
1654 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1655 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1656 if (LI->getLoopFor(UsePhi->getParent()) != L) {
1657 // For LCSSA phis, sink the truncate outside the loop.
1658 // After SimplifyCFG most loop exit targets have a single predecessor.
1659 // Otherwise fall back to a truncate within the loop.
1660 if (UsePhi->getNumOperands() != 1)
1661 truncateIVUse(DU, DT, LI);
1662 else {
1663 // Widening the PHI requires us to insert a trunc. The logical place
1664 // for this trunc is in the same BB as the PHI. This is not possible if
1665 // the BB is terminated by a catchswitch.
1666 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1667 return nullptr;
1669 PHINode *WidePhi =
1670 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1671 UsePhi);
1672 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1673 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1674 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1675 UsePhi->replaceAllUsesWith(Trunc);
1676 DeadInsts.emplace_back(UsePhi);
1677 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1678 << *WidePhi << "\n");
1680 return nullptr;
1684 // This narrow use can be widened by a sext if it's non-negative or its narrow
1685 // def was widended by a sext. Same for zext.
1686 auto canWidenBySExt = [&]() {
1687 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1689 auto canWidenByZExt = [&]() {
1690 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1693 // Our raison d'etre! Eliminate sign and zero extension.
1694 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1695 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1696 Value *NewDef = DU.WideDef;
1697 if (DU.NarrowUse->getType() != WideType) {
1698 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1699 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1700 if (CastWidth < IVWidth) {
1701 // The cast isn't as wide as the IV, so insert a Trunc.
1702 IRBuilder<> Builder(DU.NarrowUse);
1703 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1705 else {
1706 // A wider extend was hidden behind a narrower one. This may induce
1707 // another round of IV widening in which the intermediate IV becomes
1708 // dead. It should be very rare.
1709 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1710 << " not wide enough to subsume " << *DU.NarrowUse
1711 << "\n");
1712 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1713 NewDef = DU.NarrowUse;
1716 if (NewDef != DU.NarrowUse) {
1717 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1718 << " replaced by " << *DU.WideDef << "\n");
1719 ++NumElimExt;
1720 DU.NarrowUse->replaceAllUsesWith(NewDef);
1721 DeadInsts.emplace_back(DU.NarrowUse);
1723 // Now that the extend is gone, we want to expose it's uses for potential
1724 // further simplification. We don't need to directly inform SimplifyIVUsers
1725 // of the new users, because their parent IV will be processed later as a
1726 // new loop phi. If we preserved IVUsers analysis, we would also want to
1727 // push the uses of WideDef here.
1729 // No further widening is needed. The deceased [sz]ext had done it for us.
1730 return nullptr;
1733 // Does this user itself evaluate to a recurrence after widening?
1734 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1735 if (!WideAddRec.first)
1736 WideAddRec = getWideRecurrence(DU);
1738 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1739 if (!WideAddRec.first) {
1740 // If use is a loop condition, try to promote the condition instead of
1741 // truncating the IV first.
1742 if (widenLoopCompare(DU))
1743 return nullptr;
1745 // We are here about to generate a truncate instruction that may hurt
1746 // performance because the scalar evolution expression computed earlier
1747 // in WideAddRec.first does not indicate a polynomial induction expression.
1748 // In that case, look at the operands of the use instruction to determine
1749 // if we can still widen the use instead of truncating its operand.
1750 if (widenWithVariantUse(DU))
1751 return nullptr;
1753 // This user does not evaluate to a recurrence after widening, so don't
1754 // follow it. Instead insert a Trunc to kill off the original use,
1755 // eventually isolating the original narrow IV so it can be removed.
1756 truncateIVUse(DU, DT, LI);
1757 return nullptr;
1759 // Assume block terminators cannot evaluate to a recurrence. We can't to
1760 // insert a Trunc after a terminator if there happens to be a critical edge.
1761 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1762 "SCEV is not expected to evaluate a block terminator");
1764 // Reuse the IV increment that SCEVExpander created as long as it dominates
1765 // NarrowUse.
1766 Instruction *WideUse = nullptr;
1767 if (WideAddRec.first == WideIncExpr &&
1768 Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1769 WideUse = WideInc;
1770 else {
1771 WideUse = cloneIVUser(DU, WideAddRec.first);
1772 if (!WideUse)
1773 return nullptr;
1775 // Evaluation of WideAddRec ensured that the narrow expression could be
1776 // extended outside the loop without overflow. This suggests that the wide use
1777 // evaluates to the same expression as the extended narrow use, but doesn't
1778 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1779 // where it fails, we simply throw away the newly created wide use.
1780 if (WideAddRec.first != SE->getSCEV(WideUse)) {
1781 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1782 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1783 << "\n");
1784 DeadInsts.emplace_back(WideUse);
1785 return nullptr;
1788 // if we reached this point then we are going to replace
1789 // DU.NarrowUse with WideUse. Reattach DbgValue then.
1790 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1792 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1793 // Returning WideUse pushes it on the worklist.
1794 return WideUse;
1797 /// Add eligible users of NarrowDef to NarrowIVUsers.
1798 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1799 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1800 bool NonNegativeDef =
1801 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1802 SE->getZero(NarrowSCEV->getType()));
1803 for (User *U : NarrowDef->users()) {
1804 Instruction *NarrowUser = cast<Instruction>(U);
1806 // Handle data flow merges and bizarre phi cycles.
1807 if (!Widened.insert(NarrowUser).second)
1808 continue;
1810 bool NonNegativeUse = false;
1811 if (!NonNegativeDef) {
1812 // We might have a control-dependent range information for this context.
1813 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1814 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1817 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1818 NonNegativeDef || NonNegativeUse);
1822 /// Process a single induction variable. First use the SCEVExpander to create a
1823 /// wide induction variable that evaluates to the same recurrence as the
1824 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1825 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1826 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1828 /// It would be simpler to delete uses as they are processed, but we must avoid
1829 /// invalidating SCEV expressions.
1830 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1831 // Is this phi an induction variable?
1832 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1833 if (!AddRec)
1834 return nullptr;
1836 // Widen the induction variable expression.
1837 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1838 ? SE->getSignExtendExpr(AddRec, WideType)
1839 : SE->getZeroExtendExpr(AddRec, WideType);
1841 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1842 "Expect the new IV expression to preserve its type");
1844 // Can the IV be extended outside the loop without overflow?
1845 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1846 if (!AddRec || AddRec->getLoop() != L)
1847 return nullptr;
1849 // An AddRec must have loop-invariant operands. Since this AddRec is
1850 // materialized by a loop header phi, the expression cannot have any post-loop
1851 // operands, so they must dominate the loop header.
1852 assert(
1853 SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1854 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1855 "Loop header phi recurrence inputs do not dominate the loop");
1857 // Iterate over IV uses (including transitive ones) looking for IV increments
1858 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1859 // the increment calculate control-dependent range information basing on
1860 // dominating conditions inside of the loop (e.g. a range check inside of the
1861 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1863 // Control-dependent range information is later used to prove that a narrow
1864 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1865 // this on demand because when pushNarrowIVUsers needs this information some
1866 // of the dominating conditions might be already widened.
1867 if (UsePostIncrementRanges)
1868 calculatePostIncRanges(OrigPhi);
1870 // The rewriter provides a value for the desired IV expression. This may
1871 // either find an existing phi or materialize a new one. Either way, we
1872 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1873 // of the phi-SCC dominates the loop entry.
1874 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1875 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1876 // If the wide phi is not a phi node, for example a cast node, like bitcast,
1877 // inttoptr, ptrtoint, just skip for now.
1878 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1879 // if the cast node is an inserted instruction without any user, we should
1880 // remove it to make sure the pass don't touch the function as we can not
1881 // wide the phi.
1882 if (ExpandInst->hasNUses(0) &&
1883 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1884 DeadInsts.emplace_back(ExpandInst);
1885 return nullptr;
1888 // Remembering the WideIV increment generated by SCEVExpander allows
1889 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1890 // employ a general reuse mechanism because the call above is the only call to
1891 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1892 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1893 WideInc =
1894 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1895 WideIncExpr = SE->getSCEV(WideInc);
1896 // Propagate the debug location associated with the original loop increment
1897 // to the new (widened) increment.
1898 auto *OrigInc =
1899 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1900 WideInc->setDebugLoc(OrigInc->getDebugLoc());
1903 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1904 ++NumWidened;
1906 // Traverse the def-use chain using a worklist starting at the original IV.
1907 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1909 Widened.insert(OrigPhi);
1910 pushNarrowIVUsers(OrigPhi, WidePhi);
1912 while (!NarrowIVUsers.empty()) {
1913 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1915 // Process a def-use edge. This may replace the use, so don't hold a
1916 // use_iterator across it.
1917 Instruction *WideUse = widenIVUse(DU, Rewriter);
1919 // Follow all def-use edges from the previous narrow use.
1920 if (WideUse)
1921 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1923 // widenIVUse may have removed the def-use edge.
1924 if (DU.NarrowDef->use_empty())
1925 DeadInsts.emplace_back(DU.NarrowDef);
1928 // Attach any debug information to the new PHI.
1929 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1931 return WidePhi;
1934 /// Calculates control-dependent range for the given def at the given context
1935 /// by looking at dominating conditions inside of the loop
1936 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1937 Instruction *NarrowUser) {
1938 using namespace llvm::PatternMatch;
1940 Value *NarrowDefLHS;
1941 const APInt *NarrowDefRHS;
1942 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1943 m_APInt(NarrowDefRHS))) ||
1944 !NarrowDefRHS->isNonNegative())
1945 return;
1947 auto UpdateRangeFromCondition = [&] (Value *Condition,
1948 bool TrueDest) {
1949 CmpInst::Predicate Pred;
1950 Value *CmpRHS;
1951 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1952 m_Value(CmpRHS))))
1953 return;
1955 CmpInst::Predicate P =
1956 TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1958 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1959 auto CmpConstrainedLHSRange =
1960 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1961 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
1962 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
1964 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1967 auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1968 if (!HasGuards)
1969 return;
1971 for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1972 Ctx->getParent()->rend())) {
1973 Value *C = nullptr;
1974 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1975 UpdateRangeFromCondition(C, /*TrueDest=*/true);
1979 UpdateRangeFromGuards(NarrowUser);
1981 BasicBlock *NarrowUserBB = NarrowUser->getParent();
1982 // If NarrowUserBB is statically unreachable asking dominator queries may
1983 // yield surprising results. (e.g. the block may not have a dom tree node)
1984 if (!DT->isReachableFromEntry(NarrowUserBB))
1985 return;
1987 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1988 L->contains(DTB->getBlock());
1989 DTB = DTB->getIDom()) {
1990 auto *BB = DTB->getBlock();
1991 auto *TI = BB->getTerminator();
1992 UpdateRangeFromGuards(TI);
1994 auto *BI = dyn_cast<BranchInst>(TI);
1995 if (!BI || !BI->isConditional())
1996 continue;
1998 auto *TrueSuccessor = BI->getSuccessor(0);
1999 auto *FalseSuccessor = BI->getSuccessor(1);
2001 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2002 return BBE.isSingleEdge() &&
2003 DT->dominates(BBE, NarrowUser->getParent());
2006 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2007 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2009 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2010 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2014 /// Calculates PostIncRangeInfos map for the given IV
2015 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2016 SmallPtrSet<Instruction *, 16> Visited;
2017 SmallVector<Instruction *, 6> Worklist;
2018 Worklist.push_back(OrigPhi);
2019 Visited.insert(OrigPhi);
2021 while (!Worklist.empty()) {
2022 Instruction *NarrowDef = Worklist.pop_back_val();
2024 for (Use &U : NarrowDef->uses()) {
2025 auto *NarrowUser = cast<Instruction>(U.getUser());
2027 // Don't go looking outside the current loop.
2028 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2029 if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2030 continue;
2032 if (!Visited.insert(NarrowUser).second)
2033 continue;
2035 Worklist.push_back(NarrowUser);
2037 calculatePostIncRange(NarrowDef, NarrowUser);
2042 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2043 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2044 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2045 unsigned &NumElimExt, unsigned &NumWidened,
2046 bool HasGuards, bool UsePostIncrementRanges) {
2047 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2048 PHINode *WidePHI = Widener.createWideIV(Rewriter);
2049 NumElimExt = Widener.getNumElimExt();
2050 NumWidened = Widener.getNumWidened();
2051 return WidePHI;