[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Vectorize / LoadStoreVectorizer.cpp
blob3b90997100f124ae81e744603ec09bfa14dc9f3a
1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores. Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited. So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures. It's
23 // usually better just to load each element individually into its own scalar
24 // register.
26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a
27 // "vector load" loads directly into a series of scalar registers. In effect,
28 // extracting the elements of the vector is free. It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code. This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
42 #include "llvm/ADT/APInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/AssumptionCache.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/TargetTransformInfo.h"
56 #include "llvm/Analysis/ValueTracking.h"
57 #include "llvm/Analysis/VectorUtils.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instruction.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/KnownBits.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Vectorize.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdlib>
86 #include <tuple>
87 #include <utility>
89 using namespace llvm;
91 #define DEBUG_TYPE "load-store-vectorizer"
93 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
94 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
96 // FIXME: Assuming stack alignment of 4 is always good enough
97 static const unsigned StackAdjustedAlignment = 4;
99 namespace {
101 /// ChainID is an arbitrary token that is allowed to be different only for the
102 /// accesses that are guaranteed to be considered non-consecutive by
103 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
104 /// together and reducing the number of instructions the main search operates on
105 /// at a time, i.e. this is to reduce compile time and nothing else as the main
106 /// search has O(n^2) time complexity. The underlying type of ChainID should not
107 /// be relied upon.
108 using ChainID = const Value *;
109 using InstrList = SmallVector<Instruction *, 8>;
110 using InstrListMap = MapVector<ChainID, InstrList>;
112 class Vectorizer {
113 Function &F;
114 AliasAnalysis &AA;
115 AssumptionCache &AC;
116 DominatorTree &DT;
117 ScalarEvolution &SE;
118 TargetTransformInfo &TTI;
119 const DataLayout &DL;
120 IRBuilder<> Builder;
122 public:
123 Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
124 DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
125 : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
126 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
128 bool run();
130 private:
131 unsigned getPointerAddressSpace(Value *I);
133 static const unsigned MaxDepth = 3;
135 bool isConsecutiveAccess(Value *A, Value *B);
136 bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
137 unsigned Depth = 0) const;
138 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
139 unsigned Depth) const;
140 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
141 unsigned Depth) const;
143 /// After vectorization, reorder the instructions that I depends on
144 /// (the instructions defining its operands), to ensure they dominate I.
145 void reorder(Instruction *I);
147 /// Returns the first and the last instructions in Chain.
148 std::pair<BasicBlock::iterator, BasicBlock::iterator>
149 getBoundaryInstrs(ArrayRef<Instruction *> Chain);
151 /// Erases the original instructions after vectorizing.
152 void eraseInstructions(ArrayRef<Instruction *> Chain);
154 /// "Legalize" the vector type that would be produced by combining \p
155 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
156 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
157 /// expected to have more than 4 elements.
158 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
159 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
161 /// Finds the largest prefix of Chain that's vectorizable, checking for
162 /// intervening instructions which may affect the memory accessed by the
163 /// instructions within Chain.
165 /// The elements of \p Chain must be all loads or all stores and must be in
166 /// address order.
167 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
169 /// Collects load and store instructions to vectorize.
170 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
172 /// Processes the collected instructions, the \p Map. The values of \p Map
173 /// should be all loads or all stores.
174 bool vectorizeChains(InstrListMap &Map);
176 /// Finds the load/stores to consecutive memory addresses and vectorizes them.
177 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
179 /// Vectorizes the load instructions in Chain.
180 bool
181 vectorizeLoadChain(ArrayRef<Instruction *> Chain,
182 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
184 /// Vectorizes the store instructions in Chain.
185 bool
186 vectorizeStoreChain(ArrayRef<Instruction *> Chain,
187 SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
189 /// Check if this load/store access is misaligned accesses.
190 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
191 Align Alignment);
194 class LoadStoreVectorizerLegacyPass : public FunctionPass {
195 public:
196 static char ID;
198 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
199 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
202 bool runOnFunction(Function &F) override;
204 StringRef getPassName() const override {
205 return "GPU Load and Store Vectorizer";
208 void getAnalysisUsage(AnalysisUsage &AU) const override {
209 AU.addRequired<AAResultsWrapperPass>();
210 AU.addRequired<AssumptionCacheTracker>();
211 AU.addRequired<ScalarEvolutionWrapperPass>();
212 AU.addRequired<DominatorTreeWrapperPass>();
213 AU.addRequired<TargetTransformInfoWrapperPass>();
214 AU.setPreservesCFG();
218 } // end anonymous namespace
220 char LoadStoreVectorizerLegacyPass::ID = 0;
222 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
223 "Vectorize load and Store instructions", false, false)
224 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
225 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
227 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
228 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
229 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
230 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
231 "Vectorize load and store instructions", false, false)
233 Pass *llvm::createLoadStoreVectorizerPass() {
234 return new LoadStoreVectorizerLegacyPass();
237 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
238 // Don't vectorize when the attribute NoImplicitFloat is used.
239 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
240 return false;
242 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
243 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
244 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
245 TargetTransformInfo &TTI =
246 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
248 AssumptionCache &AC =
249 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
251 Vectorizer V(F, AA, AC, DT, SE, TTI);
252 return V.run();
255 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
256 // Don't vectorize when the attribute NoImplicitFloat is used.
257 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
258 return PreservedAnalyses::all();
260 AliasAnalysis &AA = AM.getResult<AAManager>(F);
261 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
262 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
263 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
264 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
266 Vectorizer V(F, AA, AC, DT, SE, TTI);
267 bool Changed = V.run();
268 PreservedAnalyses PA;
269 PA.preserveSet<CFGAnalyses>();
270 return Changed ? PA : PreservedAnalyses::all();
273 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
274 // vectors of Instructions.
275 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
276 SmallVector<Value *, 8> VL(IL.begin(), IL.end());
277 propagateMetadata(I, VL);
280 // Vectorizer Implementation
281 bool Vectorizer::run() {
282 bool Changed = false;
284 // Scan the blocks in the function in post order.
285 for (BasicBlock *BB : post_order(&F)) {
286 InstrListMap LoadRefs, StoreRefs;
287 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
288 Changed |= vectorizeChains(LoadRefs);
289 Changed |= vectorizeChains(StoreRefs);
292 return Changed;
295 unsigned Vectorizer::getPointerAddressSpace(Value *I) {
296 if (LoadInst *L = dyn_cast<LoadInst>(I))
297 return L->getPointerAddressSpace();
298 if (StoreInst *S = dyn_cast<StoreInst>(I))
299 return S->getPointerAddressSpace();
300 return -1;
303 // FIXME: Merge with llvm::isConsecutiveAccess
304 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
305 Value *PtrA = getLoadStorePointerOperand(A);
306 Value *PtrB = getLoadStorePointerOperand(B);
307 unsigned ASA = getPointerAddressSpace(A);
308 unsigned ASB = getPointerAddressSpace(B);
310 // Check that the address spaces match and that the pointers are valid.
311 if (!PtrA || !PtrB || (ASA != ASB))
312 return false;
314 // Make sure that A and B are different pointers of the same size type.
315 Type *PtrATy = getLoadStoreType(A);
316 Type *PtrBTy = getLoadStoreType(B);
317 if (PtrA == PtrB ||
318 PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
319 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
320 DL.getTypeStoreSize(PtrATy->getScalarType()) !=
321 DL.getTypeStoreSize(PtrBTy->getScalarType()))
322 return false;
324 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
325 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
327 return areConsecutivePointers(PtrA, PtrB, Size);
330 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
331 APInt PtrDelta, unsigned Depth) const {
332 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
333 APInt OffsetA(PtrBitWidth, 0);
334 APInt OffsetB(PtrBitWidth, 0);
335 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
336 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
338 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
340 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
341 return false;
343 // In case if we have to shrink the pointer
344 // stripAndAccumulateInBoundsConstantOffsets should properly handle a
345 // possible overflow and the value should fit into a smallest data type
346 // used in the cast/gep chain.
347 assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
348 OffsetB.getMinSignedBits() <= NewPtrBitWidth);
350 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
351 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
352 PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);
354 APInt OffsetDelta = OffsetB - OffsetA;
356 // Check if they are based on the same pointer. That makes the offsets
357 // sufficient.
358 if (PtrA == PtrB)
359 return OffsetDelta == PtrDelta;
361 // Compute the necessary base pointer delta to have the necessary final delta
362 // equal to the pointer delta requested.
363 APInt BaseDelta = PtrDelta - OffsetDelta;
365 // Compute the distance with SCEV between the base pointers.
366 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
367 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
368 const SCEV *C = SE.getConstant(BaseDelta);
369 const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
370 if (X == PtrSCEVB)
371 return true;
373 // The above check will not catch the cases where one of the pointers is
374 // factorized but the other one is not, such as (C + (S * (A + B))) vs
375 // (AS + BS). Get the minus scev. That will allow re-combining the expresions
376 // and getting the simplified difference.
377 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
378 if (C == Dist)
379 return true;
381 // Sometimes even this doesn't work, because SCEV can't always see through
382 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
383 // things the hard way.
384 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
387 static bool checkNoWrapFlags(Instruction *I, bool Signed) {
388 BinaryOperator *BinOpI = cast<BinaryOperator>(I);
389 return (Signed && BinOpI->hasNoSignedWrap()) ||
390 (!Signed && BinOpI->hasNoUnsignedWrap());
393 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
394 unsigned MatchingOpIdxA, Instruction *AddOpB,
395 unsigned MatchingOpIdxB, bool Signed) {
396 // If both OpA and OpB is an add with NSW/NUW and with
397 // one of the operands being the same, we can guarantee that the
398 // transformation is safe if we can prove that OpA won't overflow when
399 // IdxDiff added to the other operand of OpA.
400 // For example:
401 // %tmp7 = add nsw i32 %tmp2, %v0
402 // %tmp8 = sext i32 %tmp7 to i64
403 // ...
404 // %tmp11 = add nsw i32 %v0, 1
405 // %tmp12 = add nsw i32 %tmp2, %tmp11
406 // %tmp13 = sext i32 %tmp12 to i64
408 // Both %tmp7 and %tmp2 has the nsw flag and the first operand
409 // is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow
410 // because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the
411 // nsw flag.
412 assert(AddOpA->getOpcode() == Instruction::Add &&
413 AddOpB->getOpcode() == Instruction::Add &&
414 checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
415 if (AddOpA->getOperand(MatchingOpIdxA) ==
416 AddOpB->getOperand(MatchingOpIdxB)) {
417 Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
418 Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
419 Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
420 Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
421 // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
422 if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
423 checkNoWrapFlags(OtherInstrB, Signed) &&
424 isa<ConstantInt>(OtherInstrB->getOperand(1))) {
425 int64_t CstVal =
426 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
427 if (OtherInstrB->getOperand(0) == OtherOperandA &&
428 IdxDiff.getSExtValue() == CstVal)
429 return true;
431 // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
432 if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
433 checkNoWrapFlags(OtherInstrA, Signed) &&
434 isa<ConstantInt>(OtherInstrA->getOperand(1))) {
435 int64_t CstVal =
436 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
437 if (OtherInstrA->getOperand(0) == OtherOperandB &&
438 IdxDiff.getSExtValue() == -CstVal)
439 return true;
441 // Match `x +nsw/nuw (y +nsw/nuw c)` and
442 // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
443 if (OtherInstrA && OtherInstrB &&
444 OtherInstrA->getOpcode() == Instruction::Add &&
445 OtherInstrB->getOpcode() == Instruction::Add &&
446 checkNoWrapFlags(OtherInstrA, Signed) &&
447 checkNoWrapFlags(OtherInstrB, Signed) &&
448 isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
449 isa<ConstantInt>(OtherInstrB->getOperand(1))) {
450 int64_t CstValA =
451 cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
452 int64_t CstValB =
453 cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
454 if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
455 IdxDiff.getSExtValue() == (CstValB - CstValA))
456 return true;
459 return false;
462 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
463 APInt PtrDelta,
464 unsigned Depth) const {
465 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
466 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
467 if (!GEPA || !GEPB)
468 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
470 // Look through GEPs after checking they're the same except for the last
471 // index.
472 if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
473 GEPA->getPointerOperand() != GEPB->getPointerOperand())
474 return false;
475 gep_type_iterator GTIA = gep_type_begin(GEPA);
476 gep_type_iterator GTIB = gep_type_begin(GEPB);
477 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
478 if (GTIA.getOperand() != GTIB.getOperand())
479 return false;
480 ++GTIA;
481 ++GTIB;
484 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
485 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
486 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
487 OpA->getType() != OpB->getType())
488 return false;
490 if (PtrDelta.isNegative()) {
491 if (PtrDelta.isMinSignedValue())
492 return false;
493 PtrDelta.negate();
494 std::swap(OpA, OpB);
496 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
497 if (PtrDelta.urem(Stride) != 0)
498 return false;
499 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
500 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
502 // Only look through a ZExt/SExt.
503 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
504 return false;
506 bool Signed = isa<SExtInst>(OpA);
508 // At this point A could be a function parameter, i.e. not an instruction
509 Value *ValA = OpA->getOperand(0);
510 OpB = dyn_cast<Instruction>(OpB->getOperand(0));
511 if (!OpB || ValA->getType() != OpB->getType())
512 return false;
514 // Now we need to prove that adding IdxDiff to ValA won't overflow.
515 bool Safe = false;
517 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
518 // ValA, we're okay.
519 if (OpB->getOpcode() == Instruction::Add &&
520 isa<ConstantInt>(OpB->getOperand(1)) &&
521 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
522 checkNoWrapFlags(OpB, Signed))
523 Safe = true;
525 // Second attempt: check if we have eligible add NSW/NUW instruction
526 // sequences.
527 OpA = dyn_cast<Instruction>(ValA);
528 if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
529 OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
530 checkNoWrapFlags(OpB, Signed)) {
531 // In the checks below a matching operand in OpA and OpB is
532 // an operand which is the same in those two instructions.
533 // Below we account for possible orders of the operands of
534 // these add instructions.
535 for (unsigned MatchingOpIdxA : {0, 1})
536 for (unsigned MatchingOpIdxB : {0, 1})
537 if (!Safe)
538 Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
539 MatchingOpIdxB, Signed);
542 unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
544 // Third attempt:
545 // If all set bits of IdxDiff or any higher order bit other than the sign bit
546 // are known to be zero in ValA, we can add Diff to it while guaranteeing no
547 // overflow of any sort.
548 if (!Safe) {
549 KnownBits Known(BitWidth);
550 computeKnownBits(ValA, Known, DL, 0, &AC, OpB, &DT);
551 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
552 if (Signed)
553 BitsAllowedToBeSet.clearBit(BitWidth - 1);
554 if (BitsAllowedToBeSet.ult(IdxDiff))
555 return false;
558 const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
559 const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
560 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
561 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
562 return X == OffsetSCEVB;
565 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
566 const APInt &PtrDelta,
567 unsigned Depth) const {
568 if (Depth++ == MaxDepth)
569 return false;
571 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
572 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
573 return SelectA->getCondition() == SelectB->getCondition() &&
574 areConsecutivePointers(SelectA->getTrueValue(),
575 SelectB->getTrueValue(), PtrDelta, Depth) &&
576 areConsecutivePointers(SelectA->getFalseValue(),
577 SelectB->getFalseValue(), PtrDelta, Depth);
580 return false;
583 void Vectorizer::reorder(Instruction *I) {
584 SmallPtrSet<Instruction *, 16> InstructionsToMove;
585 SmallVector<Instruction *, 16> Worklist;
587 Worklist.push_back(I);
588 while (!Worklist.empty()) {
589 Instruction *IW = Worklist.pop_back_val();
590 int NumOperands = IW->getNumOperands();
591 for (int i = 0; i < NumOperands; i++) {
592 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
593 if (!IM || IM->getOpcode() == Instruction::PHI)
594 continue;
596 // If IM is in another BB, no need to move it, because this pass only
597 // vectorizes instructions within one BB.
598 if (IM->getParent() != I->getParent())
599 continue;
601 if (!IM->comesBefore(I)) {
602 InstructionsToMove.insert(IM);
603 Worklist.push_back(IM);
608 // All instructions to move should follow I. Start from I, not from begin().
609 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
610 ++BBI) {
611 if (!InstructionsToMove.count(&*BBI))
612 continue;
613 Instruction *IM = &*BBI;
614 --BBI;
615 IM->removeFromParent();
616 IM->insertBefore(I);
620 std::pair<BasicBlock::iterator, BasicBlock::iterator>
621 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
622 Instruction *C0 = Chain[0];
623 BasicBlock::iterator FirstInstr = C0->getIterator();
624 BasicBlock::iterator LastInstr = C0->getIterator();
626 BasicBlock *BB = C0->getParent();
627 unsigned NumFound = 0;
628 for (Instruction &I : *BB) {
629 if (!is_contained(Chain, &I))
630 continue;
632 ++NumFound;
633 if (NumFound == 1) {
634 FirstInstr = I.getIterator();
636 if (NumFound == Chain.size()) {
637 LastInstr = I.getIterator();
638 break;
642 // Range is [first, last).
643 return std::make_pair(FirstInstr, ++LastInstr);
646 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
647 SmallVector<Instruction *, 16> Instrs;
648 for (Instruction *I : Chain) {
649 Value *PtrOperand = getLoadStorePointerOperand(I);
650 assert(PtrOperand && "Instruction must have a pointer operand.");
651 Instrs.push_back(I);
652 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
653 Instrs.push_back(GEP);
656 // Erase instructions.
657 for (Instruction *I : Instrs)
658 if (I->use_empty())
659 I->eraseFromParent();
662 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
663 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
664 unsigned ElementSizeBits) {
665 unsigned ElementSizeBytes = ElementSizeBits / 8;
666 unsigned SizeBytes = ElementSizeBytes * Chain.size();
667 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
668 if (NumLeft == Chain.size()) {
669 if ((NumLeft & 1) == 0)
670 NumLeft /= 2; // Split even in half
671 else
672 --NumLeft; // Split off last element
673 } else if (NumLeft == 0)
674 NumLeft = 1;
675 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
678 ArrayRef<Instruction *>
679 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
680 // These are in BB order, unlike Chain, which is in address order.
681 SmallVector<Instruction *, 16> MemoryInstrs;
682 SmallVector<Instruction *, 16> ChainInstrs;
684 bool IsLoadChain = isa<LoadInst>(Chain[0]);
685 LLVM_DEBUG({
686 for (Instruction *I : Chain) {
687 if (IsLoadChain)
688 assert(isa<LoadInst>(I) &&
689 "All elements of Chain must be loads, or all must be stores.");
690 else
691 assert(isa<StoreInst>(I) &&
692 "All elements of Chain must be loads, or all must be stores.");
696 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
697 if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
698 if (!is_contained(Chain, &I))
699 MemoryInstrs.push_back(&I);
700 else
701 ChainInstrs.push_back(&I);
702 } else if (isa<IntrinsicInst>(&I) &&
703 cast<IntrinsicInst>(&I)->getIntrinsicID() ==
704 Intrinsic::sideeffect) {
705 // Ignore llvm.sideeffect calls.
706 } else if (isa<IntrinsicInst>(&I) &&
707 cast<IntrinsicInst>(&I)->getIntrinsicID() ==
708 Intrinsic::pseudoprobe) {
709 // Ignore llvm.pseudoprobe calls.
710 } else if (isa<IntrinsicInst>(&I) &&
711 cast<IntrinsicInst>(&I)->getIntrinsicID() == Intrinsic::assume) {
712 // Ignore llvm.assume calls.
713 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
714 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
715 << '\n');
716 break;
717 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
718 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
719 << '\n');
720 break;
724 // Loop until we find an instruction in ChainInstrs that we can't vectorize.
725 unsigned ChainInstrIdx = 0;
726 Instruction *BarrierMemoryInstr = nullptr;
728 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
729 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
731 // If a barrier memory instruction was found, chain instructions that follow
732 // will not be added to the valid prefix.
733 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr))
734 break;
736 // Check (in BB order) if any instruction prevents ChainInstr from being
737 // vectorized. Find and store the first such "conflicting" instruction.
738 for (Instruction *MemInstr : MemoryInstrs) {
739 // If a barrier memory instruction was found, do not check past it.
740 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr))
741 break;
743 auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
744 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
745 if (MemLoad && ChainLoad)
746 continue;
748 // We can ignore the alias if the we have a load store pair and the load
749 // is known to be invariant. The load cannot be clobbered by the store.
750 auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
751 return LI->hasMetadata(LLVMContext::MD_invariant_load);
754 // We can ignore the alias as long as the load comes before the store,
755 // because that means we won't be moving the load past the store to
756 // vectorize it (the vectorized load is inserted at the location of the
757 // first load in the chain).
758 if (isa<StoreInst>(MemInstr) && ChainLoad &&
759 (IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr)))
760 continue;
762 // Same case, but in reverse.
763 if (MemLoad && isa<StoreInst>(ChainInstr) &&
764 (IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr)))
765 continue;
767 if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
768 MemoryLocation::get(ChainInstr))) {
769 LLVM_DEBUG({
770 dbgs() << "LSV: Found alias:\n"
771 " Aliasing instruction and pointer:\n"
772 << " " << *MemInstr << '\n'
773 << " " << *getLoadStorePointerOperand(MemInstr) << '\n'
774 << " Aliased instruction and pointer:\n"
775 << " " << *ChainInstr << '\n'
776 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n';
778 // Save this aliasing memory instruction as a barrier, but allow other
779 // instructions that precede the barrier to be vectorized with this one.
780 BarrierMemoryInstr = MemInstr;
781 break;
784 // Continue the search only for store chains, since vectorizing stores that
785 // precede an aliasing load is valid. Conversely, vectorizing loads is valid
786 // up to an aliasing store, but should not pull loads from further down in
787 // the basic block.
788 if (IsLoadChain && BarrierMemoryInstr) {
789 // The BarrierMemoryInstr is a store that precedes ChainInstr.
790 assert(BarrierMemoryInstr->comesBefore(ChainInstr));
791 break;
795 // Find the largest prefix of Chain whose elements are all in
796 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of
797 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB
798 // order.)
799 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
800 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
801 unsigned ChainIdx = 0;
802 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
803 if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
804 break;
806 return Chain.slice(0, ChainIdx);
809 static ChainID getChainID(const Value *Ptr) {
810 const Value *ObjPtr = getUnderlyingObject(Ptr);
811 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
812 // The select's themselves are distinct instructions even if they share the
813 // same condition and evaluate to consecutive pointers for true and false
814 // values of the condition. Therefore using the select's themselves for
815 // grouping instructions would put consecutive accesses into different lists
816 // and they won't be even checked for being consecutive, and won't be
817 // vectorized.
818 return Sel->getCondition();
820 return ObjPtr;
823 std::pair<InstrListMap, InstrListMap>
824 Vectorizer::collectInstructions(BasicBlock *BB) {
825 InstrListMap LoadRefs;
826 InstrListMap StoreRefs;
828 for (Instruction &I : *BB) {
829 if (!I.mayReadOrWriteMemory())
830 continue;
832 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
833 if (!LI->isSimple())
834 continue;
836 // Skip if it's not legal.
837 if (!TTI.isLegalToVectorizeLoad(LI))
838 continue;
840 Type *Ty = LI->getType();
841 if (!VectorType::isValidElementType(Ty->getScalarType()))
842 continue;
844 // Skip weird non-byte sizes. They probably aren't worth the effort of
845 // handling correctly.
846 unsigned TySize = DL.getTypeSizeInBits(Ty);
847 if ((TySize % 8) != 0)
848 continue;
850 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
851 // functions are currently using an integer type for the vectorized
852 // load/store, and does not support casting between the integer type and a
853 // vector of pointers (e.g. i64 to <2 x i16*>)
854 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
855 continue;
857 Value *Ptr = LI->getPointerOperand();
858 unsigned AS = Ptr->getType()->getPointerAddressSpace();
859 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
861 unsigned VF = VecRegSize / TySize;
862 VectorType *VecTy = dyn_cast<VectorType>(Ty);
864 // No point in looking at these if they're too big to vectorize.
865 if (TySize > VecRegSize / 2 ||
866 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
867 continue;
869 // Make sure all the users of a vector are constant-index extracts.
870 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
871 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
872 return EEI && isa<ConstantInt>(EEI->getOperand(1));
874 continue;
876 // Save the load locations.
877 const ChainID ID = getChainID(Ptr);
878 LoadRefs[ID].push_back(LI);
879 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
880 if (!SI->isSimple())
881 continue;
883 // Skip if it's not legal.
884 if (!TTI.isLegalToVectorizeStore(SI))
885 continue;
887 Type *Ty = SI->getValueOperand()->getType();
888 if (!VectorType::isValidElementType(Ty->getScalarType()))
889 continue;
891 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
892 // functions are currently using an integer type for the vectorized
893 // load/store, and does not support casting between the integer type and a
894 // vector of pointers (e.g. i64 to <2 x i16*>)
895 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
896 continue;
898 // Skip weird non-byte sizes. They probably aren't worth the effort of
899 // handling correctly.
900 unsigned TySize = DL.getTypeSizeInBits(Ty);
901 if ((TySize % 8) != 0)
902 continue;
904 Value *Ptr = SI->getPointerOperand();
905 unsigned AS = Ptr->getType()->getPointerAddressSpace();
906 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
908 unsigned VF = VecRegSize / TySize;
909 VectorType *VecTy = dyn_cast<VectorType>(Ty);
911 // No point in looking at these if they're too big to vectorize.
912 if (TySize > VecRegSize / 2 ||
913 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
914 continue;
916 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
917 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
918 return EEI && isa<ConstantInt>(EEI->getOperand(1));
920 continue;
922 // Save store location.
923 const ChainID ID = getChainID(Ptr);
924 StoreRefs[ID].push_back(SI);
928 return {LoadRefs, StoreRefs};
931 bool Vectorizer::vectorizeChains(InstrListMap &Map) {
932 bool Changed = false;
934 for (const std::pair<ChainID, InstrList> &Chain : Map) {
935 unsigned Size = Chain.second.size();
936 if (Size < 2)
937 continue;
939 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
941 // Process the stores in chunks of 64.
942 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
943 unsigned Len = std::min<unsigned>(CE - CI, 64);
944 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
945 Changed |= vectorizeInstructions(Chunk);
949 return Changed;
952 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
953 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
954 << " instructions.\n");
955 SmallVector<int, 16> Heads, Tails;
956 int ConsecutiveChain[64];
958 // Do a quadratic search on all of the given loads/stores and find all of the
959 // pairs of loads/stores that follow each other.
960 for (int i = 0, e = Instrs.size(); i < e; ++i) {
961 ConsecutiveChain[i] = -1;
962 for (int j = e - 1; j >= 0; --j) {
963 if (i == j)
964 continue;
966 if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
967 if (ConsecutiveChain[i] != -1) {
968 int CurDistance = std::abs(ConsecutiveChain[i] - i);
969 int NewDistance = std::abs(ConsecutiveChain[i] - j);
970 if (j < i || NewDistance > CurDistance)
971 continue; // Should not insert.
974 Tails.push_back(j);
975 Heads.push_back(i);
976 ConsecutiveChain[i] = j;
981 bool Changed = false;
982 SmallPtrSet<Instruction *, 16> InstructionsProcessed;
984 for (int Head : Heads) {
985 if (InstructionsProcessed.count(Instrs[Head]))
986 continue;
987 bool LongerChainExists = false;
988 for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
989 if (Head == Tails[TIt] &&
990 !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
991 LongerChainExists = true;
992 break;
994 if (LongerChainExists)
995 continue;
997 // We found an instr that starts a chain. Now follow the chain and try to
998 // vectorize it.
999 SmallVector<Instruction *, 16> Operands;
1000 int I = Head;
1001 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
1002 if (InstructionsProcessed.count(Instrs[I]))
1003 break;
1005 Operands.push_back(Instrs[I]);
1006 I = ConsecutiveChain[I];
1009 bool Vectorized = false;
1010 if (isa<LoadInst>(*Operands.begin()))
1011 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
1012 else
1013 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
1015 Changed |= Vectorized;
1018 return Changed;
1021 bool Vectorizer::vectorizeStoreChain(
1022 ArrayRef<Instruction *> Chain,
1023 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1024 StoreInst *S0 = cast<StoreInst>(Chain[0]);
1026 // If the vector has an int element, default to int for the whole store.
1027 Type *StoreTy = nullptr;
1028 for (Instruction *I : Chain) {
1029 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
1030 if (StoreTy->isIntOrIntVectorTy())
1031 break;
1033 if (StoreTy->isPtrOrPtrVectorTy()) {
1034 StoreTy = Type::getIntNTy(F.getParent()->getContext(),
1035 DL.getTypeSizeInBits(StoreTy));
1036 break;
1039 assert(StoreTy && "Failed to find store type");
1041 unsigned Sz = DL.getTypeSizeInBits(StoreTy);
1042 unsigned AS = S0->getPointerAddressSpace();
1043 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1044 unsigned VF = VecRegSize / Sz;
1045 unsigned ChainSize = Chain.size();
1046 Align Alignment = S0->getAlign();
1048 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1049 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1050 return false;
1053 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1054 if (NewChain.empty()) {
1055 // No vectorization possible.
1056 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1057 return false;
1059 if (NewChain.size() == 1) {
1060 // Failed after the first instruction. Discard it and try the smaller chain.
1061 InstructionsProcessed->insert(NewChain.front());
1062 return false;
1065 // Update Chain to the valid vectorizable subchain.
1066 Chain = NewChain;
1067 ChainSize = Chain.size();
1069 // Check if it's legal to vectorize this chain. If not, split the chain and
1070 // try again.
1071 unsigned EltSzInBytes = Sz / 8;
1072 unsigned SzInBytes = EltSzInBytes * ChainSize;
1074 FixedVectorType *VecTy;
1075 auto *VecStoreTy = dyn_cast<FixedVectorType>(StoreTy);
1076 if (VecStoreTy)
1077 VecTy = FixedVectorType::get(StoreTy->getScalarType(),
1078 Chain.size() * VecStoreTy->getNumElements());
1079 else
1080 VecTy = FixedVectorType::get(StoreTy, Chain.size());
1082 // If it's more than the max vector size or the target has a better
1083 // vector factor, break it into two pieces.
1084 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
1085 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1086 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1087 " Creating two separate arrays.\n");
1088 return vectorizeStoreChain(Chain.slice(0, TargetVF),
1089 InstructionsProcessed) |
1090 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
1093 LLVM_DEBUG({
1094 dbgs() << "LSV: Stores to vectorize:\n";
1095 for (Instruction *I : Chain)
1096 dbgs() << " " << *I << "\n";
1099 // We won't try again to vectorize the elements of the chain, regardless of
1100 // whether we succeed below.
1101 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1103 // If the store is going to be misaligned, don't vectorize it.
1104 if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1105 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1106 auto Chains = splitOddVectorElts(Chain, Sz);
1107 return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1108 vectorizeStoreChain(Chains.second, InstructionsProcessed);
1111 Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
1112 Align(StackAdjustedAlignment),
1113 DL, S0, nullptr, &DT);
1114 if (NewAlign >= Alignment)
1115 Alignment = NewAlign;
1116 else
1117 return false;
1120 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
1121 auto Chains = splitOddVectorElts(Chain, Sz);
1122 return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1123 vectorizeStoreChain(Chains.second, InstructionsProcessed);
1126 BasicBlock::iterator First, Last;
1127 std::tie(First, Last) = getBoundaryInstrs(Chain);
1128 Builder.SetInsertPoint(&*Last);
1130 Value *Vec = UndefValue::get(VecTy);
1132 if (VecStoreTy) {
1133 unsigned VecWidth = VecStoreTy->getNumElements();
1134 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1135 StoreInst *Store = cast<StoreInst>(Chain[I]);
1136 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
1137 unsigned NewIdx = J + I * VecWidth;
1138 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
1139 Builder.getInt32(J));
1140 if (Extract->getType() != StoreTy->getScalarType())
1141 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
1143 Value *Insert =
1144 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
1145 Vec = Insert;
1148 } else {
1149 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1150 StoreInst *Store = cast<StoreInst>(Chain[I]);
1151 Value *Extract = Store->getValueOperand();
1152 if (Extract->getType() != StoreTy->getScalarType())
1153 Extract =
1154 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
1156 Value *Insert =
1157 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
1158 Vec = Insert;
1162 StoreInst *SI = Builder.CreateAlignedStore(
1163 Vec,
1164 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
1165 Alignment);
1166 propagateMetadata(SI, Chain);
1168 eraseInstructions(Chain);
1169 ++NumVectorInstructions;
1170 NumScalarsVectorized += Chain.size();
1171 return true;
1174 bool Vectorizer::vectorizeLoadChain(
1175 ArrayRef<Instruction *> Chain,
1176 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1177 LoadInst *L0 = cast<LoadInst>(Chain[0]);
1179 // If the vector has an int element, default to int for the whole load.
1180 Type *LoadTy = nullptr;
1181 for (const auto &V : Chain) {
1182 LoadTy = cast<LoadInst>(V)->getType();
1183 if (LoadTy->isIntOrIntVectorTy())
1184 break;
1186 if (LoadTy->isPtrOrPtrVectorTy()) {
1187 LoadTy = Type::getIntNTy(F.getParent()->getContext(),
1188 DL.getTypeSizeInBits(LoadTy));
1189 break;
1192 assert(LoadTy && "Can't determine LoadInst type from chain");
1194 unsigned Sz = DL.getTypeSizeInBits(LoadTy);
1195 unsigned AS = L0->getPointerAddressSpace();
1196 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1197 unsigned VF = VecRegSize / Sz;
1198 unsigned ChainSize = Chain.size();
1199 Align Alignment = L0->getAlign();
1201 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1202 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1203 return false;
1206 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1207 if (NewChain.empty()) {
1208 // No vectorization possible.
1209 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1210 return false;
1212 if (NewChain.size() == 1) {
1213 // Failed after the first instruction. Discard it and try the smaller chain.
1214 InstructionsProcessed->insert(NewChain.front());
1215 return false;
1218 // Update Chain to the valid vectorizable subchain.
1219 Chain = NewChain;
1220 ChainSize = Chain.size();
1222 // Check if it's legal to vectorize this chain. If not, split the chain and
1223 // try again.
1224 unsigned EltSzInBytes = Sz / 8;
1225 unsigned SzInBytes = EltSzInBytes * ChainSize;
1226 VectorType *VecTy;
1227 auto *VecLoadTy = dyn_cast<FixedVectorType>(LoadTy);
1228 if (VecLoadTy)
1229 VecTy = FixedVectorType::get(LoadTy->getScalarType(),
1230 Chain.size() * VecLoadTy->getNumElements());
1231 else
1232 VecTy = FixedVectorType::get(LoadTy, Chain.size());
1234 // If it's more than the max vector size or the target has a better
1235 // vector factor, break it into two pieces.
1236 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
1237 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1238 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1239 " Creating two separate arrays.\n");
1240 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
1241 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
1244 // We won't try again to vectorize the elements of the chain, regardless of
1245 // whether we succeed below.
1246 InstructionsProcessed->insert(Chain.begin(), Chain.end());
1248 // If the load is going to be misaligned, don't vectorize it.
1249 if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1250 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1251 auto Chains = splitOddVectorElts(Chain, Sz);
1252 return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1253 vectorizeLoadChain(Chains.second, InstructionsProcessed);
1256 Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
1257 Align(StackAdjustedAlignment),
1258 DL, L0, nullptr, &DT);
1259 if (NewAlign >= Alignment)
1260 Alignment = NewAlign;
1261 else
1262 return false;
1265 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
1266 auto Chains = splitOddVectorElts(Chain, Sz);
1267 return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1268 vectorizeLoadChain(Chains.second, InstructionsProcessed);
1271 LLVM_DEBUG({
1272 dbgs() << "LSV: Loads to vectorize:\n";
1273 for (Instruction *I : Chain)
1274 I->dump();
1277 // getVectorizablePrefix already computed getBoundaryInstrs. The value of
1278 // Last may have changed since then, but the value of First won't have. If it
1279 // matters, we could compute getBoundaryInstrs only once and reuse it here.
1280 BasicBlock::iterator First, Last;
1281 std::tie(First, Last) = getBoundaryInstrs(Chain);
1282 Builder.SetInsertPoint(&*First);
1284 Value *Bitcast =
1285 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
1286 LoadInst *LI =
1287 Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment));
1288 propagateMetadata(LI, Chain);
1290 if (VecLoadTy) {
1291 SmallVector<Instruction *, 16> InstrsToErase;
1293 unsigned VecWidth = VecLoadTy->getNumElements();
1294 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1295 for (auto Use : Chain[I]->users()) {
1296 // All users of vector loads are ExtractElement instructions with
1297 // constant indices, otherwise we would have bailed before now.
1298 Instruction *UI = cast<Instruction>(Use);
1299 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
1300 unsigned NewIdx = Idx + I * VecWidth;
1301 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
1302 UI->getName());
1303 if (V->getType() != UI->getType())
1304 V = Builder.CreateBitCast(V, UI->getType());
1306 // Replace the old instruction.
1307 UI->replaceAllUsesWith(V);
1308 InstrsToErase.push_back(UI);
1312 // Bitcast might not be an Instruction, if the value being loaded is a
1313 // constant. In that case, no need to reorder anything.
1314 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1315 reorder(BitcastInst);
1317 for (auto I : InstrsToErase)
1318 I->eraseFromParent();
1319 } else {
1320 for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1321 Value *CV = Chain[I];
1322 Value *V =
1323 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
1324 if (V->getType() != CV->getType()) {
1325 V = Builder.CreateBitOrPointerCast(V, CV->getType());
1328 // Replace the old instruction.
1329 CV->replaceAllUsesWith(V);
1332 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1333 reorder(BitcastInst);
1336 eraseInstructions(Chain);
1338 ++NumVectorInstructions;
1339 NumScalarsVectorized += Chain.size();
1340 return true;
1343 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
1344 Align Alignment) {
1345 if (Alignment.value() % SzInBytes == 0)
1346 return false;
1348 bool Fast = false;
1349 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
1350 SzInBytes * 8, AddressSpace,
1351 Alignment, &Fast);
1352 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
1353 << " and fast? " << Fast << "\n";);
1354 return !Allows || !Fast;