[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Vectorize / LoopVectorizationPlanner.h
blob870e7175c9221df401ba4f5f237887ea3e2693d7
1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
27 #include "VPlan.h"
29 namespace llvm {
31 class LoopInfo;
32 class LoopVectorizationLegality;
33 class LoopVectorizationCostModel;
34 class PredicatedScalarEvolution;
35 class LoopVectorizationRequirements;
36 class LoopVectorizeHints;
37 class OptimizationRemarkEmitter;
38 class TargetTransformInfo;
39 class TargetLibraryInfo;
40 class VPRecipeBuilder;
42 /// VPlan-based builder utility analogous to IRBuilder.
43 class VPBuilder {
44 VPBasicBlock *BB = nullptr;
45 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
47 VPInstruction *createInstruction(unsigned Opcode,
48 ArrayRef<VPValue *> Operands) {
49 VPInstruction *Instr = new VPInstruction(Opcode, Operands);
50 if (BB)
51 BB->insert(Instr, InsertPt);
52 return Instr;
55 VPInstruction *createInstruction(unsigned Opcode,
56 std::initializer_list<VPValue *> Operands) {
57 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands));
60 public:
61 VPBuilder() {}
63 /// Clear the insertion point: created instructions will not be inserted into
64 /// a block.
65 void clearInsertionPoint() {
66 BB = nullptr;
67 InsertPt = VPBasicBlock::iterator();
70 VPBasicBlock *getInsertBlock() const { return BB; }
71 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
73 /// InsertPoint - A saved insertion point.
74 class VPInsertPoint {
75 VPBasicBlock *Block = nullptr;
76 VPBasicBlock::iterator Point;
78 public:
79 /// Creates a new insertion point which doesn't point to anything.
80 VPInsertPoint() = default;
82 /// Creates a new insertion point at the given location.
83 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
84 : Block(InsertBlock), Point(InsertPoint) {}
86 /// Returns true if this insert point is set.
87 bool isSet() const { return Block != nullptr; }
89 VPBasicBlock *getBlock() const { return Block; }
90 VPBasicBlock::iterator getPoint() const { return Point; }
93 /// Sets the current insert point to a previously-saved location.
94 void restoreIP(VPInsertPoint IP) {
95 if (IP.isSet())
96 setInsertPoint(IP.getBlock(), IP.getPoint());
97 else
98 clearInsertionPoint();
101 /// This specifies that created VPInstructions should be appended to the end
102 /// of the specified block.
103 void setInsertPoint(VPBasicBlock *TheBB) {
104 assert(TheBB && "Attempting to set a null insert point");
105 BB = TheBB;
106 InsertPt = BB->end();
109 /// This specifies that created instructions should be inserted at the
110 /// specified point.
111 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
112 BB = TheBB;
113 InsertPt = IP;
116 /// Insert and return the specified instruction.
117 VPInstruction *insert(VPInstruction *I) const {
118 BB->insert(I, InsertPt);
119 return I;
122 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
123 /// its underlying Instruction.
124 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
125 Instruction *Inst = nullptr) {
126 VPInstruction *NewVPInst = createInstruction(Opcode, Operands);
127 NewVPInst->setUnderlyingValue(Inst);
128 return NewVPInst;
130 VPValue *createNaryOp(unsigned Opcode,
131 std::initializer_list<VPValue *> Operands,
132 Instruction *Inst = nullptr) {
133 return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst);
136 VPValue *createNot(VPValue *Operand) {
137 return createInstruction(VPInstruction::Not, {Operand});
140 VPValue *createAnd(VPValue *LHS, VPValue *RHS) {
141 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS});
144 VPValue *createOr(VPValue *LHS, VPValue *RHS) {
145 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS});
148 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal) {
149 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal});
152 //===--------------------------------------------------------------------===//
153 // RAII helpers.
154 //===--------------------------------------------------------------------===//
156 /// RAII object that stores the current insertion point and restores it when
157 /// the object is destroyed.
158 class InsertPointGuard {
159 VPBuilder &Builder;
160 VPBasicBlock *Block;
161 VPBasicBlock::iterator Point;
163 public:
164 InsertPointGuard(VPBuilder &B)
165 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
167 InsertPointGuard(const InsertPointGuard &) = delete;
168 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
170 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
174 /// TODO: The following VectorizationFactor was pulled out of
175 /// LoopVectorizationCostModel class. LV also deals with
176 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
177 /// We need to streamline them.
179 /// Information about vectorization costs.
180 struct VectorizationFactor {
181 /// Vector width with best cost.
182 ElementCount Width;
183 /// Cost of the loop with that width.
184 InstructionCost Cost;
186 VectorizationFactor(ElementCount Width, InstructionCost Cost)
187 : Width(Width), Cost(Cost) {}
189 /// Width 1 means no vectorization, cost 0 means uncomputed cost.
190 static VectorizationFactor Disabled() {
191 return {ElementCount::getFixed(1), 0};
194 bool operator==(const VectorizationFactor &rhs) const {
195 return Width == rhs.Width && Cost == rhs.Cost;
198 bool operator!=(const VectorizationFactor &rhs) const {
199 return !(*this == rhs);
203 /// A class that represents two vectorization factors (initialized with 0 by
204 /// default). One for fixed-width vectorization and one for scalable
205 /// vectorization. This can be used by the vectorizer to choose from a range of
206 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
207 /// vectorize with.
208 struct FixedScalableVFPair {
209 ElementCount FixedVF;
210 ElementCount ScalableVF;
212 FixedScalableVFPair()
213 : FixedVF(ElementCount::getFixed(0)),
214 ScalableVF(ElementCount::getScalable(0)) {}
215 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
216 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
218 FixedScalableVFPair(const ElementCount &FixedVF,
219 const ElementCount &ScalableVF)
220 : FixedVF(FixedVF), ScalableVF(ScalableVF) {
221 assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
222 "Invalid scalable properties");
225 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
227 /// \return true if either fixed- or scalable VF is non-zero.
228 explicit operator bool() const { return FixedVF || ScalableVF; }
230 /// \return true if either fixed- or scalable VF is a valid vector VF.
231 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
234 /// Planner drives the vectorization process after having passed
235 /// Legality checks.
236 class LoopVectorizationPlanner {
237 /// The loop that we evaluate.
238 Loop *OrigLoop;
240 /// Loop Info analysis.
241 LoopInfo *LI;
243 /// Target Library Info.
244 const TargetLibraryInfo *TLI;
246 /// Target Transform Info.
247 const TargetTransformInfo *TTI;
249 /// The legality analysis.
250 LoopVectorizationLegality *Legal;
252 /// The profitability analysis.
253 LoopVectorizationCostModel &CM;
255 /// The interleaved access analysis.
256 InterleavedAccessInfo &IAI;
258 PredicatedScalarEvolution &PSE;
260 const LoopVectorizeHints &Hints;
262 LoopVectorizationRequirements &Requirements;
264 OptimizationRemarkEmitter *ORE;
266 SmallVector<VPlanPtr, 4> VPlans;
268 /// A builder used to construct the current plan.
269 VPBuilder Builder;
271 /// The best number of elements of the vector types used in the
272 /// transformed loop. BestVF = None means that vectorization is
273 /// disabled.
274 Optional<ElementCount> BestVF = None;
275 unsigned BestUF = 0;
277 public:
278 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
279 const TargetTransformInfo *TTI,
280 LoopVectorizationLegality *Legal,
281 LoopVectorizationCostModel &CM,
282 InterleavedAccessInfo &IAI,
283 PredicatedScalarEvolution &PSE,
284 const LoopVectorizeHints &Hints,
285 LoopVectorizationRequirements &Requirements,
286 OptimizationRemarkEmitter *ORE)
287 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
288 PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {}
290 /// Plan how to best vectorize, return the best VF and its cost, or None if
291 /// vectorization and interleaving should be avoided up front.
292 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
294 /// Use the VPlan-native path to plan how to best vectorize, return the best
295 /// VF and its cost.
296 VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
298 /// Finalize the best decision and dispose of all other VPlans.
299 void setBestPlan(ElementCount VF, unsigned UF);
301 /// Generate the IR code for the body of the vectorized loop according to the
302 /// best selected VPlan.
303 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT);
305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
306 void printPlans(raw_ostream &O);
307 #endif
309 /// Look through the existing plans and return true if we have one with all
310 /// the vectorization factors in question.
311 bool hasPlanWithVFs(const ArrayRef<ElementCount> VFs) const {
312 return any_of(VPlans, [&](const VPlanPtr &Plan) {
313 return all_of(VFs, [&](const ElementCount &VF) {
314 return Plan->hasVF(VF);
319 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
320 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
321 /// returned value holds for the entire \p Range.
322 static bool
323 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
324 VFRange &Range);
326 protected:
327 /// Collect the instructions from the original loop that would be trivially
328 /// dead in the vectorized loop if generated.
329 void collectTriviallyDeadInstructions(
330 SmallPtrSetImpl<Instruction *> &DeadInstructions);
332 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
333 /// according to the information gathered by Legal when it checked if it is
334 /// legal to vectorize the loop.
335 void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
337 private:
338 /// Build a VPlan according to the information gathered by Legal. \return a
339 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
340 /// exclusive, possibly decreasing \p Range.End.
341 VPlanPtr buildVPlan(VFRange &Range);
343 /// Build a VPlan using VPRecipes according to the information gather by
344 /// Legal. This method is only used for the legacy inner loop vectorizer.
345 VPlanPtr buildVPlanWithVPRecipes(
346 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
347 const MapVector<Instruction *, Instruction *> &SinkAfter);
349 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
350 /// according to the information gathered by Legal when it checked if it is
351 /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
352 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
354 // Adjust the recipes for reductions. For in-loop reductions the chain of
355 // instructions leading from the loop exit instr to the phi need to be
356 // converted to reductions, with one operand being vector and the other being
357 // the scalar reduction chain. For other reductions, a select is introduced
358 // between the phi and live-out recipes when folding the tail.
359 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
360 VPRecipeBuilder &RecipeBuilder,
361 ElementCount MinVF);
364 } // namespace llvm
366 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H