[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Vectorize / SLPVectorizer.cpp
blob1520a70c81f29a266fd00a61b6e3917f46f21472
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetOperations.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator.h"
33 #include "llvm/ADT/iterator_range.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <memory>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 using namespace slpvectorizer;
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112 cl::desc("Run the SLP vectorization passes"));
114 static cl::opt<int>
115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116 cl::desc("Only vectorize if you gain more than this "
117 "number "));
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121 cl::desc("Attempt to vectorize horizontal reductions"));
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125 cl::desc(
126 "Attempt to vectorize horizontal reductions feeding into a store"));
128 static cl::opt<int>
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130 cl::desc("Attempt to vectorize for this register size in bits"));
132 static cl::opt<unsigned>
133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
134 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 static cl::opt<int>
137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
138 cl::desc("Maximum depth of the lookup for consecutive stores."));
140 /// Limits the size of scheduling regions in a block.
141 /// It avoid long compile times for _very_ large blocks where vector
142 /// instructions are spread over a wide range.
143 /// This limit is way higher than needed by real-world functions.
144 static cl::opt<int>
145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
146 cl::desc("Limit the size of the SLP scheduling region per block"));
148 static cl::opt<int> MinVectorRegSizeOption(
149 "slp-min-reg-size", cl::init(128), cl::Hidden,
150 cl::desc("Attempt to vectorize for this register size in bits"));
152 static cl::opt<unsigned> RecursionMaxDepth(
153 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
154 cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 static cl::opt<unsigned> MinTreeSize(
157 "slp-min-tree-size", cl::init(3), cl::Hidden,
158 cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 // The maximum depth that the look-ahead score heuristic will explore.
161 // The higher this value, the higher the compilation time overhead.
162 static cl::opt<int> LookAheadMaxDepth(
163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
164 cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 // The Look-ahead heuristic goes through the users of the bundle to calculate
167 // the users cost in getExternalUsesCost(). To avoid compilation time increase
168 // we limit the number of users visited to this value.
169 static cl::opt<unsigned> LookAheadUsersBudget(
170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
171 cl::desc("The maximum number of users to visit while visiting the "
172 "predecessors. This prevents compilation time increase."));
174 static cl::opt<bool>
175 ViewSLPTree("view-slp-tree", cl::Hidden,
176 cl::desc("Display the SLP trees with Graphviz"));
178 // Limit the number of alias checks. The limit is chosen so that
179 // it has no negative effect on the llvm benchmarks.
180 static const unsigned AliasedCheckLimit = 10;
182 // Another limit for the alias checks: The maximum distance between load/store
183 // instructions where alias checks are done.
184 // This limit is useful for very large basic blocks.
185 static const unsigned MaxMemDepDistance = 160;
187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
188 /// regions to be handled.
189 static const int MinScheduleRegionSize = 16;
191 /// Predicate for the element types that the SLP vectorizer supports.
193 /// The most important thing to filter here are types which are invalid in LLVM
194 /// vectors. We also filter target specific types which have absolutely no
195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
196 /// avoids spending time checking the cost model and realizing that they will
197 /// be inevitably scalarized.
198 static bool isValidElementType(Type *Ty) {
199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
200 !Ty->isPPC_FP128Ty();
203 /// \returns true if all of the instructions in \p VL are in the same block or
204 /// false otherwise.
205 static bool allSameBlock(ArrayRef<Value *> VL) {
206 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
207 if (!I0)
208 return false;
209 BasicBlock *BB = I0->getParent();
210 for (int I = 1, E = VL.size(); I < E; I++) {
211 auto *II = dyn_cast<Instruction>(VL[I]);
212 if (!II)
213 return false;
215 if (BB != II->getParent())
216 return false;
218 return true;
221 /// \returns True if the value is a constant (but not globals/constant
222 /// expressions).
223 static bool isConstant(Value *V) {
224 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
227 /// \returns True if all of the values in \p VL are constants (but not
228 /// globals/constant expressions).
229 static bool allConstant(ArrayRef<Value *> VL) {
230 // Constant expressions and globals can't be vectorized like normal integer/FP
231 // constants.
232 return all_of(VL, isConstant);
235 /// \returns True if all of the values in \p VL are identical.
236 static bool isSplat(ArrayRef<Value *> VL) {
237 for (unsigned i = 1, e = VL.size(); i < e; ++i)
238 if (VL[i] != VL[0])
239 return false;
240 return true;
243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
244 static bool isCommutative(Instruction *I) {
245 if (auto *Cmp = dyn_cast<CmpInst>(I))
246 return Cmp->isCommutative();
247 if (auto *BO = dyn_cast<BinaryOperator>(I))
248 return BO->isCommutative();
249 // TODO: This should check for generic Instruction::isCommutative(), but
250 // we need to confirm that the caller code correctly handles Intrinsics
251 // for example (does not have 2 operands).
252 return false;
255 /// Checks if the vector of instructions can be represented as a shuffle, like:
256 /// %x0 = extractelement <4 x i8> %x, i32 0
257 /// %x3 = extractelement <4 x i8> %x, i32 3
258 /// %y1 = extractelement <4 x i8> %y, i32 1
259 /// %y2 = extractelement <4 x i8> %y, i32 2
260 /// %x0x0 = mul i8 %x0, %x0
261 /// %x3x3 = mul i8 %x3, %x3
262 /// %y1y1 = mul i8 %y1, %y1
263 /// %y2y2 = mul i8 %y2, %y2
264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
268 /// ret <4 x i8> %ins4
269 /// can be transformed into:
270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
271 /// i32 6>
272 /// %2 = mul <4 x i8> %1, %1
273 /// ret <4 x i8> %2
274 /// We convert this initially to something like:
275 /// %x0 = extractelement <4 x i8> %x, i32 0
276 /// %x3 = extractelement <4 x i8> %x, i32 3
277 /// %y1 = extractelement <4 x i8> %y, i32 1
278 /// %y2 = extractelement <4 x i8> %y, i32 2
279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
283 /// %5 = mul <4 x i8> %4, %4
284 /// %6 = extractelement <4 x i8> %5, i32 0
285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
286 /// %7 = extractelement <4 x i8> %5, i32 1
287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
288 /// %8 = extractelement <4 x i8> %5, i32 2
289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
290 /// %9 = extractelement <4 x i8> %5, i32 3
291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
292 /// ret <4 x i8> %ins4
293 /// InstCombiner transforms this into a shuffle and vector mul
294 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
295 /// TODO: Can we split off and reuse the shuffle mask detection from
296 /// TargetTransformInfo::getInstructionThroughput?
297 static Optional<TargetTransformInfo::ShuffleKind>
298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
299 auto *EI0 = cast<ExtractElementInst>(VL[0]);
300 unsigned Size =
301 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
302 Value *Vec1 = nullptr;
303 Value *Vec2 = nullptr;
304 enum ShuffleMode { Unknown, Select, Permute };
305 ShuffleMode CommonShuffleMode = Unknown;
306 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
307 auto *EI = cast<ExtractElementInst>(VL[I]);
308 auto *Vec = EI->getVectorOperand();
309 // All vector operands must have the same number of vector elements.
310 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
311 return None;
312 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
313 if (!Idx)
314 return None;
315 // Undefined behavior if Idx is negative or >= Size.
316 if (Idx->getValue().uge(Size)) {
317 Mask.push_back(UndefMaskElem);
318 continue;
320 unsigned IntIdx = Idx->getValue().getZExtValue();
321 Mask.push_back(IntIdx);
322 // We can extractelement from undef or poison vector.
323 if (isa<UndefValue>(Vec))
324 continue;
325 // For correct shuffling we have to have at most 2 different vector operands
326 // in all extractelement instructions.
327 if (!Vec1 || Vec1 == Vec)
328 Vec1 = Vec;
329 else if (!Vec2 || Vec2 == Vec)
330 Vec2 = Vec;
331 else
332 return None;
333 if (CommonShuffleMode == Permute)
334 continue;
335 // If the extract index is not the same as the operation number, it is a
336 // permutation.
337 if (IntIdx != I) {
338 CommonShuffleMode = Permute;
339 continue;
341 CommonShuffleMode = Select;
343 // If we're not crossing lanes in different vectors, consider it as blending.
344 if (CommonShuffleMode == Select && Vec2)
345 return TargetTransformInfo::SK_Select;
346 // If Vec2 was never used, we have a permutation of a single vector, otherwise
347 // we have permutation of 2 vectors.
348 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
349 : TargetTransformInfo::SK_PermuteSingleSrc;
352 namespace {
354 /// Main data required for vectorization of instructions.
355 struct InstructionsState {
356 /// The very first instruction in the list with the main opcode.
357 Value *OpValue = nullptr;
359 /// The main/alternate instruction.
360 Instruction *MainOp = nullptr;
361 Instruction *AltOp = nullptr;
363 /// The main/alternate opcodes for the list of instructions.
364 unsigned getOpcode() const {
365 return MainOp ? MainOp->getOpcode() : 0;
368 unsigned getAltOpcode() const {
369 return AltOp ? AltOp->getOpcode() : 0;
372 /// Some of the instructions in the list have alternate opcodes.
373 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
375 bool isOpcodeOrAlt(Instruction *I) const {
376 unsigned CheckedOpcode = I->getOpcode();
377 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
380 InstructionsState() = delete;
381 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
382 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
385 } // end anonymous namespace
387 /// Chooses the correct key for scheduling data. If \p Op has the same (or
388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
389 /// OpValue.
390 static Value *isOneOf(const InstructionsState &S, Value *Op) {
391 auto *I = dyn_cast<Instruction>(Op);
392 if (I && S.isOpcodeOrAlt(I))
393 return Op;
394 return S.OpValue;
397 /// \returns true if \p Opcode is allowed as part of of the main/alternate
398 /// instruction for SLP vectorization.
400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
401 /// "shuffled out" lane would result in division by zero.
402 static bool isValidForAlternation(unsigned Opcode) {
403 if (Instruction::isIntDivRem(Opcode))
404 return false;
406 return true;
409 /// \returns analysis of the Instructions in \p VL described in
410 /// InstructionsState, the Opcode that we suppose the whole list
411 /// could be vectorized even if its structure is diverse.
412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
413 unsigned BaseIndex = 0) {
414 // Make sure these are all Instructions.
415 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
416 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
418 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
419 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
420 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
421 unsigned AltOpcode = Opcode;
422 unsigned AltIndex = BaseIndex;
424 // Check for one alternate opcode from another BinaryOperator.
425 // TODO - generalize to support all operators (types, calls etc.).
426 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
427 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
428 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
429 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
430 continue;
431 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
432 isValidForAlternation(Opcode)) {
433 AltOpcode = InstOpcode;
434 AltIndex = Cnt;
435 continue;
437 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
438 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
439 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
440 if (Ty0 == Ty1) {
441 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
442 continue;
443 if (Opcode == AltOpcode) {
444 assert(isValidForAlternation(Opcode) &&
445 isValidForAlternation(InstOpcode) &&
446 "Cast isn't safe for alternation, logic needs to be updated!");
447 AltOpcode = InstOpcode;
448 AltIndex = Cnt;
449 continue;
452 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
453 continue;
454 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
457 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
458 cast<Instruction>(VL[AltIndex]));
461 /// \returns true if all of the values in \p VL have the same type or false
462 /// otherwise.
463 static bool allSameType(ArrayRef<Value *> VL) {
464 Type *Ty = VL[0]->getType();
465 for (int i = 1, e = VL.size(); i < e; i++)
466 if (VL[i]->getType() != Ty)
467 return false;
469 return true;
472 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
473 static Optional<unsigned> getExtractIndex(Instruction *E) {
474 unsigned Opcode = E->getOpcode();
475 assert((Opcode == Instruction::ExtractElement ||
476 Opcode == Instruction::ExtractValue) &&
477 "Expected extractelement or extractvalue instruction.");
478 if (Opcode == Instruction::ExtractElement) {
479 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
480 if (!CI)
481 return None;
482 return CI->getZExtValue();
484 ExtractValueInst *EI = cast<ExtractValueInst>(E);
485 if (EI->getNumIndices() != 1)
486 return None;
487 return *EI->idx_begin();
490 /// \returns True if in-tree use also needs extract. This refers to
491 /// possible scalar operand in vectorized instruction.
492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
493 TargetLibraryInfo *TLI) {
494 unsigned Opcode = UserInst->getOpcode();
495 switch (Opcode) {
496 case Instruction::Load: {
497 LoadInst *LI = cast<LoadInst>(UserInst);
498 return (LI->getPointerOperand() == Scalar);
500 case Instruction::Store: {
501 StoreInst *SI = cast<StoreInst>(UserInst);
502 return (SI->getPointerOperand() == Scalar);
504 case Instruction::Call: {
505 CallInst *CI = cast<CallInst>(UserInst);
506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
507 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
508 if (hasVectorInstrinsicScalarOpd(ID, i))
509 return (CI->getArgOperand(i) == Scalar);
511 LLVM_FALLTHROUGH;
513 default:
514 return false;
518 /// \returns the AA location that is being access by the instruction.
519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
520 if (StoreInst *SI = dyn_cast<StoreInst>(I))
521 return MemoryLocation::get(SI);
522 if (LoadInst *LI = dyn_cast<LoadInst>(I))
523 return MemoryLocation::get(LI);
524 return MemoryLocation();
527 /// \returns True if the instruction is not a volatile or atomic load/store.
528 static bool isSimple(Instruction *I) {
529 if (LoadInst *LI = dyn_cast<LoadInst>(I))
530 return LI->isSimple();
531 if (StoreInst *SI = dyn_cast<StoreInst>(I))
532 return SI->isSimple();
533 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
534 return !MI->isVolatile();
535 return true;
538 namespace llvm {
540 static void inversePermutation(ArrayRef<unsigned> Indices,
541 SmallVectorImpl<int> &Mask) {
542 Mask.clear();
543 const unsigned E = Indices.size();
544 Mask.resize(E, E + 1);
545 for (unsigned I = 0; I < E; ++I)
546 Mask[Indices[I]] = I;
549 /// \returns inserting index of InsertElement or InsertValue instruction,
550 /// using Offset as base offset for index.
551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
552 int Index = Offset;
553 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
554 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
555 auto *VT = cast<FixedVectorType>(IE->getType());
556 if (CI->getValue().uge(VT->getNumElements()))
557 return UndefMaskElem;
558 Index *= VT->getNumElements();
559 Index += CI->getZExtValue();
560 return Index;
562 if (isa<UndefValue>(IE->getOperand(2)))
563 return UndefMaskElem;
564 return None;
567 auto *IV = cast<InsertValueInst>(InsertInst);
568 Type *CurrentType = IV->getType();
569 for (unsigned I : IV->indices()) {
570 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
571 Index *= ST->getNumElements();
572 CurrentType = ST->getElementType(I);
573 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
574 Index *= AT->getNumElements();
575 CurrentType = AT->getElementType();
576 } else {
577 return None;
579 Index += I;
581 return Index;
584 namespace slpvectorizer {
586 /// Bottom Up SLP Vectorizer.
587 class BoUpSLP {
588 struct TreeEntry;
589 struct ScheduleData;
591 public:
592 using ValueList = SmallVector<Value *, 8>;
593 using InstrList = SmallVector<Instruction *, 16>;
594 using ValueSet = SmallPtrSet<Value *, 16>;
595 using StoreList = SmallVector<StoreInst *, 8>;
596 using ExtraValueToDebugLocsMap =
597 MapVector<Value *, SmallVector<Instruction *, 2>>;
598 using OrdersType = SmallVector<unsigned, 4>;
600 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
601 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
602 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
603 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
604 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
605 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
606 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
607 // Use the vector register size specified by the target unless overridden
608 // by a command-line option.
609 // TODO: It would be better to limit the vectorization factor based on
610 // data type rather than just register size. For example, x86 AVX has
611 // 256-bit registers, but it does not support integer operations
612 // at that width (that requires AVX2).
613 if (MaxVectorRegSizeOption.getNumOccurrences())
614 MaxVecRegSize = MaxVectorRegSizeOption;
615 else
616 MaxVecRegSize =
617 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
618 .getFixedSize();
620 if (MinVectorRegSizeOption.getNumOccurrences())
621 MinVecRegSize = MinVectorRegSizeOption;
622 else
623 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
626 /// Vectorize the tree that starts with the elements in \p VL.
627 /// Returns the vectorized root.
628 Value *vectorizeTree();
630 /// Vectorize the tree but with the list of externally used values \p
631 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
632 /// generated extractvalue instructions.
633 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
635 /// \returns the cost incurred by unwanted spills and fills, caused by
636 /// holding live values over call sites.
637 InstructionCost getSpillCost() const;
639 /// \returns the vectorization cost of the subtree that starts at \p VL.
640 /// A negative number means that this is profitable.
641 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
643 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
644 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
645 void buildTree(ArrayRef<Value *> Roots,
646 ArrayRef<Value *> UserIgnoreLst = None);
648 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
649 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
650 /// into account (and updating it, if required) list of externally used
651 /// values stored in \p ExternallyUsedValues.
652 void buildTree(ArrayRef<Value *> Roots,
653 ExtraValueToDebugLocsMap &ExternallyUsedValues,
654 ArrayRef<Value *> UserIgnoreLst = None);
656 /// Clear the internal data structures that are created by 'buildTree'.
657 void deleteTree() {
658 VectorizableTree.clear();
659 ScalarToTreeEntry.clear();
660 MustGather.clear();
661 ExternalUses.clear();
662 NumOpsWantToKeepOrder.clear();
663 NumOpsWantToKeepOriginalOrder = 0;
664 for (auto &Iter : BlocksSchedules) {
665 BlockScheduling *BS = Iter.second.get();
666 BS->clear();
668 MinBWs.clear();
669 InstrElementSize.clear();
672 unsigned getTreeSize() const { return VectorizableTree.size(); }
674 /// Perform LICM and CSE on the newly generated gather sequences.
675 void optimizeGatherSequence();
677 /// \returns The best order of instructions for vectorization.
678 Optional<ArrayRef<unsigned>> bestOrder() const {
679 assert(llvm::all_of(
680 NumOpsWantToKeepOrder,
681 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
682 return D.getFirst().size() ==
683 VectorizableTree[0]->Scalars.size();
684 }) &&
685 "All orders must have the same size as number of instructions in "
686 "tree node.");
687 auto I = std::max_element(
688 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
689 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
690 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
691 return D1.second < D2.second;
693 if (I == NumOpsWantToKeepOrder.end() ||
694 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
695 return None;
697 return makeArrayRef(I->getFirst());
700 /// Builds the correct order for root instructions.
701 /// If some leaves have the same instructions to be vectorized, we may
702 /// incorrectly evaluate the best order for the root node (it is built for the
703 /// vector of instructions without repeated instructions and, thus, has less
704 /// elements than the root node). This function builds the correct order for
705 /// the root node.
706 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
707 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
708 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
709 /// be reordered, the best order will be \<1, 0\>. We need to extend this
710 /// order for the root node. For the root node this order should look like
711 /// \<3, 0, 1, 2\>. This function extends the order for the reused
712 /// instructions.
713 void findRootOrder(OrdersType &Order) {
714 // If the leaf has the same number of instructions to vectorize as the root
715 // - order must be set already.
716 unsigned RootSize = VectorizableTree[0]->Scalars.size();
717 if (Order.size() == RootSize)
718 return;
719 SmallVector<unsigned, 4> RealOrder(Order.size());
720 std::swap(Order, RealOrder);
721 SmallVector<int, 4> Mask;
722 inversePermutation(RealOrder, Mask);
723 Order.assign(Mask.begin(), Mask.end());
724 // The leaf has less number of instructions - need to find the true order of
725 // the root.
726 // Scan the nodes starting from the leaf back to the root.
727 const TreeEntry *PNode = VectorizableTree.back().get();
728 SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
729 SmallPtrSet<const TreeEntry *, 4> Visited;
730 while (!Nodes.empty() && Order.size() != RootSize) {
731 const TreeEntry *PNode = Nodes.pop_back_val();
732 if (!Visited.insert(PNode).second)
733 continue;
734 const TreeEntry &Node = *PNode;
735 for (const EdgeInfo &EI : Node.UserTreeIndices)
736 if (EI.UserTE)
737 Nodes.push_back(EI.UserTE);
738 if (Node.ReuseShuffleIndices.empty())
739 continue;
740 // Build the order for the parent node.
741 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
742 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
743 // The algorithm of the order extension is:
744 // 1. Calculate the number of the same instructions for the order.
745 // 2. Calculate the index of the new order: total number of instructions
746 // with order less than the order of the current instruction + reuse
747 // number of the current instruction.
748 // 3. The new order is just the index of the instruction in the original
749 // vector of the instructions.
750 for (unsigned I : Node.ReuseShuffleIndices)
751 ++OrderCounter[Order[I]];
752 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
753 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
754 unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
755 unsigned OrderIdx = Order[ReusedIdx];
756 unsigned NewIdx = 0;
757 for (unsigned J = 0; J < OrderIdx; ++J)
758 NewIdx += OrderCounter[J];
759 NewIdx += CurrentCounter[OrderIdx];
760 ++CurrentCounter[OrderIdx];
761 assert(NewOrder[NewIdx] == RootSize &&
762 "The order index should not be written already.");
763 NewOrder[NewIdx] = I;
765 std::swap(Order, NewOrder);
767 assert(Order.size() == RootSize &&
768 "Root node is expected or the size of the order must be the same as "
769 "the number of elements in the root node.");
770 assert(llvm::all_of(Order,
771 [RootSize](unsigned Val) { return Val != RootSize; }) &&
772 "All indices must be initialized");
775 /// \return The vector element size in bits to use when vectorizing the
776 /// expression tree ending at \p V. If V is a store, the size is the width of
777 /// the stored value. Otherwise, the size is the width of the largest loaded
778 /// value reaching V. This method is used by the vectorizer to calculate
779 /// vectorization factors.
780 unsigned getVectorElementSize(Value *V);
782 /// Compute the minimum type sizes required to represent the entries in a
783 /// vectorizable tree.
784 void computeMinimumValueSizes();
786 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
787 unsigned getMaxVecRegSize() const {
788 return MaxVecRegSize;
791 // \returns minimum vector register size as set by cl::opt.
792 unsigned getMinVecRegSize() const {
793 return MinVecRegSize;
796 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
797 unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
798 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
799 return MaxVF ? MaxVF : UINT_MAX;
802 /// Check if homogeneous aggregate is isomorphic to some VectorType.
803 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
804 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
805 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
807 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
808 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
810 /// \returns True if the VectorizableTree is both tiny and not fully
811 /// vectorizable. We do not vectorize such trees.
812 bool isTreeTinyAndNotFullyVectorizable() const;
814 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
815 /// can be load combined in the backend. Load combining may not be allowed in
816 /// the IR optimizer, so we do not want to alter the pattern. For example,
817 /// partially transforming a scalar bswap() pattern into vector code is
818 /// effectively impossible for the backend to undo.
819 /// TODO: If load combining is allowed in the IR optimizer, this analysis
820 /// may not be necessary.
821 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
823 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
824 /// can be load combined in the backend. Load combining may not be allowed in
825 /// the IR optimizer, so we do not want to alter the pattern. For example,
826 /// partially transforming a scalar bswap() pattern into vector code is
827 /// effectively impossible for the backend to undo.
828 /// TODO: If load combining is allowed in the IR optimizer, this analysis
829 /// may not be necessary.
830 bool isLoadCombineCandidate() const;
832 OptimizationRemarkEmitter *getORE() { return ORE; }
834 /// This structure holds any data we need about the edges being traversed
835 /// during buildTree_rec(). We keep track of:
836 /// (i) the user TreeEntry index, and
837 /// (ii) the index of the edge.
838 struct EdgeInfo {
839 EdgeInfo() = default;
840 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
841 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
842 /// The user TreeEntry.
843 TreeEntry *UserTE = nullptr;
844 /// The operand index of the use.
845 unsigned EdgeIdx = UINT_MAX;
846 #ifndef NDEBUG
847 friend inline raw_ostream &operator<<(raw_ostream &OS,
848 const BoUpSLP::EdgeInfo &EI) {
849 EI.dump(OS);
850 return OS;
852 /// Debug print.
853 void dump(raw_ostream &OS) const {
854 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
855 << " EdgeIdx:" << EdgeIdx << "}";
857 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
858 #endif
861 /// A helper data structure to hold the operands of a vector of instructions.
862 /// This supports a fixed vector length for all operand vectors.
863 class VLOperands {
864 /// For each operand we need (i) the value, and (ii) the opcode that it
865 /// would be attached to if the expression was in a left-linearized form.
866 /// This is required to avoid illegal operand reordering.
867 /// For example:
868 /// \verbatim
869 /// 0 Op1
870 /// |/
871 /// Op1 Op2 Linearized + Op2
872 /// \ / ----------> |/
873 /// - -
875 /// Op1 - Op2 (0 + Op1) - Op2
876 /// \endverbatim
878 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
880 /// Another way to think of this is to track all the operations across the
881 /// path from the operand all the way to the root of the tree and to
882 /// calculate the operation that corresponds to this path. For example, the
883 /// path from Op2 to the root crosses the RHS of the '-', therefore the
884 /// corresponding operation is a '-' (which matches the one in the
885 /// linearized tree, as shown above).
887 /// For lack of a better term, we refer to this operation as Accumulated
888 /// Path Operation (APO).
889 struct OperandData {
890 OperandData() = default;
891 OperandData(Value *V, bool APO, bool IsUsed)
892 : V(V), APO(APO), IsUsed(IsUsed) {}
893 /// The operand value.
894 Value *V = nullptr;
895 /// TreeEntries only allow a single opcode, or an alternate sequence of
896 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
897 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
898 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
899 /// (e.g., Add/Mul)
900 bool APO = false;
901 /// Helper data for the reordering function.
902 bool IsUsed = false;
905 /// During operand reordering, we are trying to select the operand at lane
906 /// that matches best with the operand at the neighboring lane. Our
907 /// selection is based on the type of value we are looking for. For example,
908 /// if the neighboring lane has a load, we need to look for a load that is
909 /// accessing a consecutive address. These strategies are summarized in the
910 /// 'ReorderingMode' enumerator.
911 enum class ReorderingMode {
912 Load, ///< Matching loads to consecutive memory addresses
913 Opcode, ///< Matching instructions based on opcode (same or alternate)
914 Constant, ///< Matching constants
915 Splat, ///< Matching the same instruction multiple times (broadcast)
916 Failed, ///< We failed to create a vectorizable group
919 using OperandDataVec = SmallVector<OperandData, 2>;
921 /// A vector of operand vectors.
922 SmallVector<OperandDataVec, 4> OpsVec;
924 const DataLayout &DL;
925 ScalarEvolution &SE;
926 const BoUpSLP &R;
928 /// \returns the operand data at \p OpIdx and \p Lane.
929 OperandData &getData(unsigned OpIdx, unsigned Lane) {
930 return OpsVec[OpIdx][Lane];
933 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
934 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
935 return OpsVec[OpIdx][Lane];
938 /// Clears the used flag for all entries.
939 void clearUsed() {
940 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
941 OpIdx != NumOperands; ++OpIdx)
942 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
943 ++Lane)
944 OpsVec[OpIdx][Lane].IsUsed = false;
947 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
948 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
949 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
952 // The hard-coded scores listed here are not very important. When computing
953 // the scores of matching one sub-tree with another, we are basically
954 // counting the number of values that are matching. So even if all scores
955 // are set to 1, we would still get a decent matching result.
956 // However, sometimes we have to break ties. For example we may have to
957 // choose between matching loads vs matching opcodes. This is what these
958 // scores are helping us with: they provide the order of preference.
960 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
961 static const int ScoreConsecutiveLoads = 3;
962 /// ExtractElementInst from same vector and consecutive indexes.
963 static const int ScoreConsecutiveExtracts = 3;
964 /// Constants.
965 static const int ScoreConstants = 2;
966 /// Instructions with the same opcode.
967 static const int ScoreSameOpcode = 2;
968 /// Instructions with alt opcodes (e.g, add + sub).
969 static const int ScoreAltOpcodes = 1;
970 /// Identical instructions (a.k.a. splat or broadcast).
971 static const int ScoreSplat = 1;
972 /// Matching with an undef is preferable to failing.
973 static const int ScoreUndef = 1;
974 /// Score for failing to find a decent match.
975 static const int ScoreFail = 0;
976 /// User exteranl to the vectorized code.
977 static const int ExternalUseCost = 1;
978 /// The user is internal but in a different lane.
979 static const int UserInDiffLaneCost = ExternalUseCost;
981 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
982 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
983 ScalarEvolution &SE) {
984 auto *LI1 = dyn_cast<LoadInst>(V1);
985 auto *LI2 = dyn_cast<LoadInst>(V2);
986 if (LI1 && LI2) {
987 if (LI1->getParent() != LI2->getParent())
988 return VLOperands::ScoreFail;
990 Optional<int> Dist = getPointersDiff(
991 LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
992 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
993 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
994 : VLOperands::ScoreFail;
997 auto *C1 = dyn_cast<Constant>(V1);
998 auto *C2 = dyn_cast<Constant>(V2);
999 if (C1 && C2)
1000 return VLOperands::ScoreConstants;
1002 // Extracts from consecutive indexes of the same vector better score as
1003 // the extracts could be optimized away.
1004 Value *EV;
1005 ConstantInt *Ex1Idx, *Ex2Idx;
1006 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
1007 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
1008 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
1009 return VLOperands::ScoreConsecutiveExtracts;
1011 auto *I1 = dyn_cast<Instruction>(V1);
1012 auto *I2 = dyn_cast<Instruction>(V2);
1013 if (I1 && I2) {
1014 if (I1 == I2)
1015 return VLOperands::ScoreSplat;
1016 InstructionsState S = getSameOpcode({I1, I2});
1017 // Note: Only consider instructions with <= 2 operands to avoid
1018 // complexity explosion.
1019 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
1020 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1021 : VLOperands::ScoreSameOpcode;
1024 if (isa<UndefValue>(V2))
1025 return VLOperands::ScoreUndef;
1027 return VLOperands::ScoreFail;
1030 /// Holds the values and their lane that are taking part in the look-ahead
1031 /// score calculation. This is used in the external uses cost calculation.
1032 SmallDenseMap<Value *, int> InLookAheadValues;
1034 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
1035 /// either external to the vectorized code, or require shuffling.
1036 int getExternalUsesCost(const std::pair<Value *, int> &LHS,
1037 const std::pair<Value *, int> &RHS) {
1038 int Cost = 0;
1039 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1040 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1041 Value *V = Values[Idx].first;
1042 if (isa<Constant>(V)) {
1043 // Since this is a function pass, it doesn't make semantic sense to
1044 // walk the users of a subclass of Constant. The users could be in
1045 // another function, or even another module that happens to be in
1046 // the same LLVMContext.
1047 continue;
1050 // Calculate the absolute lane, using the minimum relative lane of LHS
1051 // and RHS as base and Idx as the offset.
1052 int Ln = std::min(LHS.second, RHS.second) + Idx;
1053 assert(Ln >= 0 && "Bad lane calculation");
1054 unsigned UsersBudget = LookAheadUsersBudget;
1055 for (User *U : V->users()) {
1056 if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1057 // The user is in the VectorizableTree. Check if we need to insert.
1058 auto It = llvm::find(UserTE->Scalars, U);
1059 assert(It != UserTE->Scalars.end() && "U is in UserTE");
1060 int UserLn = std::distance(UserTE->Scalars.begin(), It);
1061 assert(UserLn >= 0 && "Bad lane");
1062 if (UserLn != Ln)
1063 Cost += UserInDiffLaneCost;
1064 } else {
1065 // Check if the user is in the look-ahead code.
1066 auto It2 = InLookAheadValues.find(U);
1067 if (It2 != InLookAheadValues.end()) {
1068 // The user is in the look-ahead code. Check the lane.
1069 if (It2->second != Ln)
1070 Cost += UserInDiffLaneCost;
1071 } else {
1072 // The user is neither in SLP tree nor in the look-ahead code.
1073 Cost += ExternalUseCost;
1076 // Limit the number of visited uses to cap compilation time.
1077 if (--UsersBudget == 0)
1078 break;
1081 return Cost;
1084 /// Go through the operands of \p LHS and \p RHS recursively until \p
1085 /// MaxLevel, and return the cummulative score. For example:
1086 /// \verbatim
1087 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1088 /// \ / \ / \ / \ /
1089 /// + + + +
1090 /// G1 G2 G3 G4
1091 /// \endverbatim
1092 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1093 /// each level recursively, accumulating the score. It starts from matching
1094 /// the additions at level 0, then moves on to the loads (level 1). The
1095 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1096 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1097 /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1098 /// Please note that the order of the operands does not matter, as we
1099 /// evaluate the score of all profitable combinations of operands. In
1100 /// other words the score of G1 and G4 is the same as G1 and G2. This
1101 /// heuristic is based on ideas described in:
1102 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1103 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1104 /// Luís F. W. Góes
1105 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1106 const std::pair<Value *, int> &RHS, int CurrLevel,
1107 int MaxLevel) {
1109 Value *V1 = LHS.first;
1110 Value *V2 = RHS.first;
1111 // Get the shallow score of V1 and V2.
1112 int ShallowScoreAtThisLevel =
1113 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1114 getExternalUsesCost(LHS, RHS));
1115 int Lane1 = LHS.second;
1116 int Lane2 = RHS.second;
1118 // If reached MaxLevel,
1119 // or if V1 and V2 are not instructions,
1120 // or if they are SPLAT,
1121 // or if they are not consecutive, early return the current cost.
1122 auto *I1 = dyn_cast<Instruction>(V1);
1123 auto *I2 = dyn_cast<Instruction>(V2);
1124 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1125 ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1126 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1127 return ShallowScoreAtThisLevel;
1128 assert(I1 && I2 && "Should have early exited.");
1130 // Keep track of in-tree values for determining the external-use cost.
1131 InLookAheadValues[V1] = Lane1;
1132 InLookAheadValues[V2] = Lane2;
1134 // Contains the I2 operand indexes that got matched with I1 operands.
1135 SmallSet<unsigned, 4> Op2Used;
1137 // Recursion towards the operands of I1 and I2. We are trying all possbile
1138 // operand pairs, and keeping track of the best score.
1139 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1140 OpIdx1 != NumOperands1; ++OpIdx1) {
1141 // Try to pair op1I with the best operand of I2.
1142 int MaxTmpScore = 0;
1143 unsigned MaxOpIdx2 = 0;
1144 bool FoundBest = false;
1145 // If I2 is commutative try all combinations.
1146 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1147 unsigned ToIdx = isCommutative(I2)
1148 ? I2->getNumOperands()
1149 : std::min(I2->getNumOperands(), OpIdx1 + 1);
1150 assert(FromIdx <= ToIdx && "Bad index");
1151 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1152 // Skip operands already paired with OpIdx1.
1153 if (Op2Used.count(OpIdx2))
1154 continue;
1155 // Recursively calculate the cost at each level
1156 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1157 {I2->getOperand(OpIdx2), Lane2},
1158 CurrLevel + 1, MaxLevel);
1159 // Look for the best score.
1160 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1161 MaxTmpScore = TmpScore;
1162 MaxOpIdx2 = OpIdx2;
1163 FoundBest = true;
1166 if (FoundBest) {
1167 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1168 Op2Used.insert(MaxOpIdx2);
1169 ShallowScoreAtThisLevel += MaxTmpScore;
1172 return ShallowScoreAtThisLevel;
1175 /// \Returns the look-ahead score, which tells us how much the sub-trees
1176 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1177 /// score. This helps break ties in an informed way when we cannot decide on
1178 /// the order of the operands by just considering the immediate
1179 /// predecessors.
1180 int getLookAheadScore(const std::pair<Value *, int> &LHS,
1181 const std::pair<Value *, int> &RHS) {
1182 InLookAheadValues.clear();
1183 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1186 // Search all operands in Ops[*][Lane] for the one that matches best
1187 // Ops[OpIdx][LastLane] and return its opreand index.
1188 // If no good match can be found, return None.
1189 Optional<unsigned>
1190 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1191 ArrayRef<ReorderingMode> ReorderingModes) {
1192 unsigned NumOperands = getNumOperands();
1194 // The operand of the previous lane at OpIdx.
1195 Value *OpLastLane = getData(OpIdx, LastLane).V;
1197 // Our strategy mode for OpIdx.
1198 ReorderingMode RMode = ReorderingModes[OpIdx];
1200 // The linearized opcode of the operand at OpIdx, Lane.
1201 bool OpIdxAPO = getData(OpIdx, Lane).APO;
1203 // The best operand index and its score.
1204 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1205 // are using the score to differentiate between the two.
1206 struct BestOpData {
1207 Optional<unsigned> Idx = None;
1208 unsigned Score = 0;
1209 } BestOp;
1211 // Iterate through all unused operands and look for the best.
1212 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1213 // Get the operand at Idx and Lane.
1214 OperandData &OpData = getData(Idx, Lane);
1215 Value *Op = OpData.V;
1216 bool OpAPO = OpData.APO;
1218 // Skip already selected operands.
1219 if (OpData.IsUsed)
1220 continue;
1222 // Skip if we are trying to move the operand to a position with a
1223 // different opcode in the linearized tree form. This would break the
1224 // semantics.
1225 if (OpAPO != OpIdxAPO)
1226 continue;
1228 // Look for an operand that matches the current mode.
1229 switch (RMode) {
1230 case ReorderingMode::Load:
1231 case ReorderingMode::Constant:
1232 case ReorderingMode::Opcode: {
1233 bool LeftToRight = Lane > LastLane;
1234 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1235 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1236 unsigned Score =
1237 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1238 if (Score > BestOp.Score) {
1239 BestOp.Idx = Idx;
1240 BestOp.Score = Score;
1242 break;
1244 case ReorderingMode::Splat:
1245 if (Op == OpLastLane)
1246 BestOp.Idx = Idx;
1247 break;
1248 case ReorderingMode::Failed:
1249 return None;
1253 if (BestOp.Idx) {
1254 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1255 return BestOp.Idx;
1257 // If we could not find a good match return None.
1258 return None;
1261 /// Helper for reorderOperandVecs. \Returns the lane that we should start
1262 /// reordering from. This is the one which has the least number of operands
1263 /// that can freely move about.
1264 unsigned getBestLaneToStartReordering() const {
1265 unsigned BestLane = 0;
1266 unsigned Min = UINT_MAX;
1267 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1268 ++Lane) {
1269 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1270 if (NumFreeOps < Min) {
1271 Min = NumFreeOps;
1272 BestLane = Lane;
1275 return BestLane;
1278 /// \Returns the maximum number of operands that are allowed to be reordered
1279 /// for \p Lane. This is used as a heuristic for selecting the first lane to
1280 /// start operand reordering.
1281 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1282 unsigned CntTrue = 0;
1283 unsigned NumOperands = getNumOperands();
1284 // Operands with the same APO can be reordered. We therefore need to count
1285 // how many of them we have for each APO, like this: Cnt[APO] = x.
1286 // Since we only have two APOs, namely true and false, we can avoid using
1287 // a map. Instead we can simply count the number of operands that
1288 // correspond to one of them (in this case the 'true' APO), and calculate
1289 // the other by subtracting it from the total number of operands.
1290 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1291 if (getData(OpIdx, Lane).APO)
1292 ++CntTrue;
1293 unsigned CntFalse = NumOperands - CntTrue;
1294 return std::max(CntTrue, CntFalse);
1297 /// Go through the instructions in VL and append their operands.
1298 void appendOperandsOfVL(ArrayRef<Value *> VL) {
1299 assert(!VL.empty() && "Bad VL");
1300 assert((empty() || VL.size() == getNumLanes()) &&
1301 "Expected same number of lanes");
1302 assert(isa<Instruction>(VL[0]) && "Expected instruction");
1303 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1304 OpsVec.resize(NumOperands);
1305 unsigned NumLanes = VL.size();
1306 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1307 OpsVec[OpIdx].resize(NumLanes);
1308 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1309 assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1310 // Our tree has just 3 nodes: the root and two operands.
1311 // It is therefore trivial to get the APO. We only need to check the
1312 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1313 // RHS operand. The LHS operand of both add and sub is never attached
1314 // to an inversese operation in the linearized form, therefore its APO
1315 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1317 // Since operand reordering is performed on groups of commutative
1318 // operations or alternating sequences (e.g., +, -), we can safely
1319 // tell the inverse operations by checking commutativity.
1320 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1321 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1322 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1323 APO, false};
1328 /// \returns the number of operands.
1329 unsigned getNumOperands() const { return OpsVec.size(); }
1331 /// \returns the number of lanes.
1332 unsigned getNumLanes() const { return OpsVec[0].size(); }
1334 /// \returns the operand value at \p OpIdx and \p Lane.
1335 Value *getValue(unsigned OpIdx, unsigned Lane) const {
1336 return getData(OpIdx, Lane).V;
1339 /// \returns true if the data structure is empty.
1340 bool empty() const { return OpsVec.empty(); }
1342 /// Clears the data.
1343 void clear() { OpsVec.clear(); }
1345 /// \Returns true if there are enough operands identical to \p Op to fill
1346 /// the whole vector.
1347 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1348 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1349 bool OpAPO = getData(OpIdx, Lane).APO;
1350 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1351 if (Ln == Lane)
1352 continue;
1353 // This is set to true if we found a candidate for broadcast at Lane.
1354 bool FoundCandidate = false;
1355 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1356 OperandData &Data = getData(OpI, Ln);
1357 if (Data.APO != OpAPO || Data.IsUsed)
1358 continue;
1359 if (Data.V == Op) {
1360 FoundCandidate = true;
1361 Data.IsUsed = true;
1362 break;
1365 if (!FoundCandidate)
1366 return false;
1368 return true;
1371 public:
1372 /// Initialize with all the operands of the instruction vector \p RootVL.
1373 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1374 ScalarEvolution &SE, const BoUpSLP &R)
1375 : DL(DL), SE(SE), R(R) {
1376 // Append all the operands of RootVL.
1377 appendOperandsOfVL(RootVL);
1380 /// \Returns a value vector with the operands across all lanes for the
1381 /// opearnd at \p OpIdx.
1382 ValueList getVL(unsigned OpIdx) const {
1383 ValueList OpVL(OpsVec[OpIdx].size());
1384 assert(OpsVec[OpIdx].size() == getNumLanes() &&
1385 "Expected same num of lanes across all operands");
1386 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1387 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1388 return OpVL;
1391 // Performs operand reordering for 2 or more operands.
1392 // The original operands are in OrigOps[OpIdx][Lane].
1393 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1394 void reorder() {
1395 unsigned NumOperands = getNumOperands();
1396 unsigned NumLanes = getNumLanes();
1397 // Each operand has its own mode. We are using this mode to help us select
1398 // the instructions for each lane, so that they match best with the ones
1399 // we have selected so far.
1400 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1402 // This is a greedy single-pass algorithm. We are going over each lane
1403 // once and deciding on the best order right away with no back-tracking.
1404 // However, in order to increase its effectiveness, we start with the lane
1405 // that has operands that can move the least. For example, given the
1406 // following lanes:
1407 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1408 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1409 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1410 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1411 // we will start at Lane 1, since the operands of the subtraction cannot
1412 // be reordered. Then we will visit the rest of the lanes in a circular
1413 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1415 // Find the first lane that we will start our search from.
1416 unsigned FirstLane = getBestLaneToStartReordering();
1418 // Initialize the modes.
1419 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1420 Value *OpLane0 = getValue(OpIdx, FirstLane);
1421 // Keep track if we have instructions with all the same opcode on one
1422 // side.
1423 if (isa<LoadInst>(OpLane0))
1424 ReorderingModes[OpIdx] = ReorderingMode::Load;
1425 else if (isa<Instruction>(OpLane0)) {
1426 // Check if OpLane0 should be broadcast.
1427 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1428 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1429 else
1430 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1432 else if (isa<Constant>(OpLane0))
1433 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1434 else if (isa<Argument>(OpLane0))
1435 // Our best hope is a Splat. It may save some cost in some cases.
1436 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1437 else
1438 // NOTE: This should be unreachable.
1439 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1442 // If the initial strategy fails for any of the operand indexes, then we
1443 // perform reordering again in a second pass. This helps avoid assigning
1444 // high priority to the failed strategy, and should improve reordering for
1445 // the non-failed operand indexes.
1446 for (int Pass = 0; Pass != 2; ++Pass) {
1447 // Skip the second pass if the first pass did not fail.
1448 bool StrategyFailed = false;
1449 // Mark all operand data as free to use.
1450 clearUsed();
1451 // We keep the original operand order for the FirstLane, so reorder the
1452 // rest of the lanes. We are visiting the nodes in a circular fashion,
1453 // using FirstLane as the center point and increasing the radius
1454 // distance.
1455 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1456 // Visit the lane on the right and then the lane on the left.
1457 for (int Direction : {+1, -1}) {
1458 int Lane = FirstLane + Direction * Distance;
1459 if (Lane < 0 || Lane >= (int)NumLanes)
1460 continue;
1461 int LastLane = Lane - Direction;
1462 assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1463 "Out of bounds");
1464 // Look for a good match for each operand.
1465 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1466 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1467 Optional<unsigned> BestIdx =
1468 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1469 // By not selecting a value, we allow the operands that follow to
1470 // select a better matching value. We will get a non-null value in
1471 // the next run of getBestOperand().
1472 if (BestIdx) {
1473 // Swap the current operand with the one returned by
1474 // getBestOperand().
1475 swap(OpIdx, BestIdx.getValue(), Lane);
1476 } else {
1477 // We failed to find a best operand, set mode to 'Failed'.
1478 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1479 // Enable the second pass.
1480 StrategyFailed = true;
1485 // Skip second pass if the strategy did not fail.
1486 if (!StrategyFailed)
1487 break;
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1493 switch (RMode) {
1494 case ReorderingMode::Load:
1495 return "Load";
1496 case ReorderingMode::Opcode:
1497 return "Opcode";
1498 case ReorderingMode::Constant:
1499 return "Constant";
1500 case ReorderingMode::Splat:
1501 return "Splat";
1502 case ReorderingMode::Failed:
1503 return "Failed";
1505 llvm_unreachable("Unimplemented Reordering Type");
1508 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1509 raw_ostream &OS) {
1510 return OS << getModeStr(RMode);
1513 /// Debug print.
1514 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1515 printMode(RMode, dbgs());
1518 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1519 return printMode(RMode, OS);
1522 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1523 const unsigned Indent = 2;
1524 unsigned Cnt = 0;
1525 for (const OperandDataVec &OpDataVec : OpsVec) {
1526 OS << "Operand " << Cnt++ << "\n";
1527 for (const OperandData &OpData : OpDataVec) {
1528 OS.indent(Indent) << "{";
1529 if (Value *V = OpData.V)
1530 OS << *V;
1531 else
1532 OS << "null";
1533 OS << ", APO:" << OpData.APO << "}\n";
1535 OS << "\n";
1537 return OS;
1540 /// Debug print.
1541 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1542 #endif
1545 /// Checks if the instruction is marked for deletion.
1546 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1548 /// Marks values operands for later deletion by replacing them with Undefs.
1549 void eraseInstructions(ArrayRef<Value *> AV);
1551 ~BoUpSLP();
1553 private:
1554 /// Checks if all users of \p I are the part of the vectorization tree.
1555 bool areAllUsersVectorized(Instruction *I,
1556 ArrayRef<Value *> VectorizedVals) const;
1558 /// \returns the cost of the vectorizable entry.
1559 InstructionCost getEntryCost(const TreeEntry *E,
1560 ArrayRef<Value *> VectorizedVals);
1562 /// This is the recursive part of buildTree.
1563 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1564 const EdgeInfo &EI);
1566 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1567 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1568 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1569 /// returns false, setting \p CurrentOrder to either an empty vector or a
1570 /// non-identity permutation that allows to reuse extract instructions.
1571 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1572 SmallVectorImpl<unsigned> &CurrentOrder) const;
1574 /// Vectorize a single entry in the tree.
1575 Value *vectorizeTree(TreeEntry *E);
1577 /// Vectorize a single entry in the tree, starting in \p VL.
1578 Value *vectorizeTree(ArrayRef<Value *> VL);
1580 /// \returns the scalarization cost for this type. Scalarization in this
1581 /// context means the creation of vectors from a group of scalars.
1582 InstructionCost
1583 getGatherCost(FixedVectorType *Ty,
1584 const DenseSet<unsigned> &ShuffledIndices) const;
1586 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1587 /// tree entries.
1588 /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1589 /// previous tree entries. \p Mask is filled with the shuffle mask.
1590 Optional<TargetTransformInfo::ShuffleKind>
1591 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1592 SmallVectorImpl<const TreeEntry *> &Entries);
1594 /// \returns the scalarization cost for this list of values. Assuming that
1595 /// this subtree gets vectorized, we may need to extract the values from the
1596 /// roots. This method calculates the cost of extracting the values.
1597 InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1599 /// Set the Builder insert point to one after the last instruction in
1600 /// the bundle
1601 void setInsertPointAfterBundle(const TreeEntry *E);
1603 /// \returns a vector from a collection of scalars in \p VL.
1604 Value *gather(ArrayRef<Value *> VL);
1606 /// \returns whether the VectorizableTree is fully vectorizable and will
1607 /// be beneficial even the tree height is tiny.
1608 bool isFullyVectorizableTinyTree() const;
1610 /// Reorder commutative or alt operands to get better probability of
1611 /// generating vectorized code.
1612 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1613 SmallVectorImpl<Value *> &Left,
1614 SmallVectorImpl<Value *> &Right,
1615 const DataLayout &DL,
1616 ScalarEvolution &SE,
1617 const BoUpSLP &R);
1618 struct TreeEntry {
1619 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1620 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1622 /// \returns true if the scalars in VL are equal to this entry.
1623 bool isSame(ArrayRef<Value *> VL) const {
1624 if (VL.size() == Scalars.size())
1625 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1626 return VL.size() == ReuseShuffleIndices.size() &&
1627 std::equal(
1628 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1629 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1632 /// A vector of scalars.
1633 ValueList Scalars;
1635 /// The Scalars are vectorized into this value. It is initialized to Null.
1636 Value *VectorizedValue = nullptr;
1638 /// Do we need to gather this sequence or vectorize it
1639 /// (either with vector instruction or with scatter/gather
1640 /// intrinsics for store/load)?
1641 enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1642 EntryState State;
1644 /// Does this sequence require some shuffling?
1645 SmallVector<int, 4> ReuseShuffleIndices;
1647 /// Does this entry require reordering?
1648 SmallVector<unsigned, 4> ReorderIndices;
1650 /// Points back to the VectorizableTree.
1652 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1653 /// to be a pointer and needs to be able to initialize the child iterator.
1654 /// Thus we need a reference back to the container to translate the indices
1655 /// to entries.
1656 VecTreeTy &Container;
1658 /// The TreeEntry index containing the user of this entry. We can actually
1659 /// have multiple users so the data structure is not truly a tree.
1660 SmallVector<EdgeInfo, 1> UserTreeIndices;
1662 /// The index of this treeEntry in VectorizableTree.
1663 int Idx = -1;
1665 private:
1666 /// The operands of each instruction in each lane Operands[op_index][lane].
1667 /// Note: This helps avoid the replication of the code that performs the
1668 /// reordering of operands during buildTree_rec() and vectorizeTree().
1669 SmallVector<ValueList, 2> Operands;
1671 /// The main/alternate instruction.
1672 Instruction *MainOp = nullptr;
1673 Instruction *AltOp = nullptr;
1675 public:
1676 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1677 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1678 if (Operands.size() < OpIdx + 1)
1679 Operands.resize(OpIdx + 1);
1680 assert(Operands[OpIdx].empty() && "Already resized?");
1681 Operands[OpIdx].resize(Scalars.size());
1682 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1683 Operands[OpIdx][Lane] = OpVL[Lane];
1686 /// Set the operands of this bundle in their original order.
1687 void setOperandsInOrder() {
1688 assert(Operands.empty() && "Already initialized?");
1689 auto *I0 = cast<Instruction>(Scalars[0]);
1690 Operands.resize(I0->getNumOperands());
1691 unsigned NumLanes = Scalars.size();
1692 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1693 OpIdx != NumOperands; ++OpIdx) {
1694 Operands[OpIdx].resize(NumLanes);
1695 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1696 auto *I = cast<Instruction>(Scalars[Lane]);
1697 assert(I->getNumOperands() == NumOperands &&
1698 "Expected same number of operands");
1699 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1704 /// \returns the \p OpIdx operand of this TreeEntry.
1705 ValueList &getOperand(unsigned OpIdx) {
1706 assert(OpIdx < Operands.size() && "Off bounds");
1707 return Operands[OpIdx];
1710 /// \returns the number of operands.
1711 unsigned getNumOperands() const { return Operands.size(); }
1713 /// \return the single \p OpIdx operand.
1714 Value *getSingleOperand(unsigned OpIdx) const {
1715 assert(OpIdx < Operands.size() && "Off bounds");
1716 assert(!Operands[OpIdx].empty() && "No operand available");
1717 return Operands[OpIdx][0];
1720 /// Some of the instructions in the list have alternate opcodes.
1721 bool isAltShuffle() const {
1722 return getOpcode() != getAltOpcode();
1725 bool isOpcodeOrAlt(Instruction *I) const {
1726 unsigned CheckedOpcode = I->getOpcode();
1727 return (getOpcode() == CheckedOpcode ||
1728 getAltOpcode() == CheckedOpcode);
1731 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1732 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1733 /// \p OpValue.
1734 Value *isOneOf(Value *Op) const {
1735 auto *I = dyn_cast<Instruction>(Op);
1736 if (I && isOpcodeOrAlt(I))
1737 return Op;
1738 return MainOp;
1741 void setOperations(const InstructionsState &S) {
1742 MainOp = S.MainOp;
1743 AltOp = S.AltOp;
1746 Instruction *getMainOp() const {
1747 return MainOp;
1750 Instruction *getAltOp() const {
1751 return AltOp;
1754 /// The main/alternate opcodes for the list of instructions.
1755 unsigned getOpcode() const {
1756 return MainOp ? MainOp->getOpcode() : 0;
1759 unsigned getAltOpcode() const {
1760 return AltOp ? AltOp->getOpcode() : 0;
1763 /// Update operations state of this entry if reorder occurred.
1764 bool updateStateIfReorder() {
1765 if (ReorderIndices.empty())
1766 return false;
1767 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1768 setOperations(S);
1769 return true;
1771 /// When ReuseShuffleIndices is empty it just returns position of \p V
1772 /// within vector of Scalars. Otherwise, try to remap on its reuse index.
1773 int findLaneForValue(Value *V) const {
1774 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
1775 assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
1776 if (!ReuseShuffleIndices.empty()) {
1777 FoundLane = std::distance(ReuseShuffleIndices.begin(),
1778 find(ReuseShuffleIndices, FoundLane));
1780 return FoundLane;
1783 #ifndef NDEBUG
1784 /// Debug printer.
1785 LLVM_DUMP_METHOD void dump() const {
1786 dbgs() << Idx << ".\n";
1787 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1788 dbgs() << "Operand " << OpI << ":\n";
1789 for (const Value *V : Operands[OpI])
1790 dbgs().indent(2) << *V << "\n";
1792 dbgs() << "Scalars: \n";
1793 for (Value *V : Scalars)
1794 dbgs().indent(2) << *V << "\n";
1795 dbgs() << "State: ";
1796 switch (State) {
1797 case Vectorize:
1798 dbgs() << "Vectorize\n";
1799 break;
1800 case ScatterVectorize:
1801 dbgs() << "ScatterVectorize\n";
1802 break;
1803 case NeedToGather:
1804 dbgs() << "NeedToGather\n";
1805 break;
1807 dbgs() << "MainOp: ";
1808 if (MainOp)
1809 dbgs() << *MainOp << "\n";
1810 else
1811 dbgs() << "NULL\n";
1812 dbgs() << "AltOp: ";
1813 if (AltOp)
1814 dbgs() << *AltOp << "\n";
1815 else
1816 dbgs() << "NULL\n";
1817 dbgs() << "VectorizedValue: ";
1818 if (VectorizedValue)
1819 dbgs() << *VectorizedValue << "\n";
1820 else
1821 dbgs() << "NULL\n";
1822 dbgs() << "ReuseShuffleIndices: ";
1823 if (ReuseShuffleIndices.empty())
1824 dbgs() << "Empty";
1825 else
1826 for (unsigned ReuseIdx : ReuseShuffleIndices)
1827 dbgs() << ReuseIdx << ", ";
1828 dbgs() << "\n";
1829 dbgs() << "ReorderIndices: ";
1830 for (unsigned ReorderIdx : ReorderIndices)
1831 dbgs() << ReorderIdx << ", ";
1832 dbgs() << "\n";
1833 dbgs() << "UserTreeIndices: ";
1834 for (const auto &EInfo : UserTreeIndices)
1835 dbgs() << EInfo << ", ";
1836 dbgs() << "\n";
1838 #endif
1841 #ifndef NDEBUG
1842 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1843 InstructionCost VecCost,
1844 InstructionCost ScalarCost) const {
1845 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1846 dbgs() << "SLP: Costs:\n";
1847 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1848 dbgs() << "SLP: VectorCost = " << VecCost << "\n";
1849 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n";
1850 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
1851 ReuseShuffleCost + VecCost - ScalarCost << "\n";
1853 #endif
1855 /// Create a new VectorizableTree entry.
1856 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1857 const InstructionsState &S,
1858 const EdgeInfo &UserTreeIdx,
1859 ArrayRef<unsigned> ReuseShuffleIndices = None,
1860 ArrayRef<unsigned> ReorderIndices = None) {
1861 TreeEntry::EntryState EntryState =
1862 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1863 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1864 ReuseShuffleIndices, ReorderIndices);
1867 TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1868 TreeEntry::EntryState EntryState,
1869 Optional<ScheduleData *> Bundle,
1870 const InstructionsState &S,
1871 const EdgeInfo &UserTreeIdx,
1872 ArrayRef<unsigned> ReuseShuffleIndices = None,
1873 ArrayRef<unsigned> ReorderIndices = None) {
1874 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1875 (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1876 "Need to vectorize gather entry?");
1877 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1878 TreeEntry *Last = VectorizableTree.back().get();
1879 Last->Idx = VectorizableTree.size() - 1;
1880 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1881 Last->State = EntryState;
1882 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1883 ReuseShuffleIndices.end());
1884 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1885 Last->setOperations(S);
1886 if (Last->State != TreeEntry::NeedToGather) {
1887 for (Value *V : VL) {
1888 assert(!getTreeEntry(V) && "Scalar already in tree!");
1889 ScalarToTreeEntry[V] = Last;
1891 // Update the scheduler bundle to point to this TreeEntry.
1892 unsigned Lane = 0;
1893 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1894 BundleMember = BundleMember->NextInBundle) {
1895 BundleMember->TE = Last;
1896 BundleMember->Lane = Lane;
1897 ++Lane;
1899 assert((!Bundle.getValue() || Lane == VL.size()) &&
1900 "Bundle and VL out of sync");
1901 } else {
1902 MustGather.insert(VL.begin(), VL.end());
1905 if (UserTreeIdx.UserTE)
1906 Last->UserTreeIndices.push_back(UserTreeIdx);
1908 return Last;
1911 /// -- Vectorization State --
1912 /// Holds all of the tree entries.
1913 TreeEntry::VecTreeTy VectorizableTree;
1915 #ifndef NDEBUG
1916 /// Debug printer.
1917 LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1918 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1919 VectorizableTree[Id]->dump();
1920 dbgs() << "\n";
1923 #endif
1925 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1927 const TreeEntry *getTreeEntry(Value *V) const {
1928 return ScalarToTreeEntry.lookup(V);
1931 /// Maps a specific scalar to its tree entry.
1932 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1934 /// Maps a value to the proposed vectorizable size.
1935 SmallDenseMap<Value *, unsigned> InstrElementSize;
1937 /// A list of scalars that we found that we need to keep as scalars.
1938 ValueSet MustGather;
1940 /// This POD struct describes one external user in the vectorized tree.
1941 struct ExternalUser {
1942 ExternalUser(Value *S, llvm::User *U, int L)
1943 : Scalar(S), User(U), Lane(L) {}
1945 // Which scalar in our function.
1946 Value *Scalar;
1948 // Which user that uses the scalar.
1949 llvm::User *User;
1951 // Which lane does the scalar belong to.
1952 int Lane;
1954 using UserList = SmallVector<ExternalUser, 16>;
1956 /// Checks if two instructions may access the same memory.
1958 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1959 /// is invariant in the calling loop.
1960 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1961 Instruction *Inst2) {
1962 // First check if the result is already in the cache.
1963 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1964 Optional<bool> &result = AliasCache[key];
1965 if (result.hasValue()) {
1966 return result.getValue();
1968 MemoryLocation Loc2 = getLocation(Inst2, AA);
1969 bool aliased = true;
1970 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1971 // Do the alias check.
1972 aliased = !AA->isNoAlias(Loc1, Loc2);
1974 // Store the result in the cache.
1975 result = aliased;
1976 return aliased;
1979 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1981 /// Cache for alias results.
1982 /// TODO: consider moving this to the AliasAnalysis itself.
1983 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1985 /// Removes an instruction from its block and eventually deletes it.
1986 /// It's like Instruction::eraseFromParent() except that the actual deletion
1987 /// is delayed until BoUpSLP is destructed.
1988 /// This is required to ensure that there are no incorrect collisions in the
1989 /// AliasCache, which can happen if a new instruction is allocated at the
1990 /// same address as a previously deleted instruction.
1991 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1992 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1993 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1996 /// Temporary store for deleted instructions. Instructions will be deleted
1997 /// eventually when the BoUpSLP is destructed.
1998 DenseMap<Instruction *, bool> DeletedInstructions;
2000 /// A list of values that need to extracted out of the tree.
2001 /// This list holds pairs of (Internal Scalar : External User). External User
2002 /// can be nullptr, it means that this Internal Scalar will be used later,
2003 /// after vectorization.
2004 UserList ExternalUses;
2006 /// Values used only by @llvm.assume calls.
2007 SmallPtrSet<const Value *, 32> EphValues;
2009 /// Holds all of the instructions that we gathered.
2010 SetVector<Instruction *> GatherSeq;
2012 /// A list of blocks that we are going to CSE.
2013 SetVector<BasicBlock *> CSEBlocks;
2015 /// Contains all scheduling relevant data for an instruction.
2016 /// A ScheduleData either represents a single instruction or a member of an
2017 /// instruction bundle (= a group of instructions which is combined into a
2018 /// vector instruction).
2019 struct ScheduleData {
2020 // The initial value for the dependency counters. It means that the
2021 // dependencies are not calculated yet.
2022 enum { InvalidDeps = -1 };
2024 ScheduleData() = default;
2026 void init(int BlockSchedulingRegionID, Value *OpVal) {
2027 FirstInBundle = this;
2028 NextInBundle = nullptr;
2029 NextLoadStore = nullptr;
2030 IsScheduled = false;
2031 SchedulingRegionID = BlockSchedulingRegionID;
2032 UnscheduledDepsInBundle = UnscheduledDeps;
2033 clearDependencies();
2034 OpValue = OpVal;
2035 TE = nullptr;
2036 Lane = -1;
2039 /// Returns true if the dependency information has been calculated.
2040 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2042 /// Returns true for single instructions and for bundle representatives
2043 /// (= the head of a bundle).
2044 bool isSchedulingEntity() const { return FirstInBundle == this; }
2046 /// Returns true if it represents an instruction bundle and not only a
2047 /// single instruction.
2048 bool isPartOfBundle() const {
2049 return NextInBundle != nullptr || FirstInBundle != this;
2052 /// Returns true if it is ready for scheduling, i.e. it has no more
2053 /// unscheduled depending instructions/bundles.
2054 bool isReady() const {
2055 assert(isSchedulingEntity() &&
2056 "can't consider non-scheduling entity for ready list");
2057 return UnscheduledDepsInBundle == 0 && !IsScheduled;
2060 /// Modifies the number of unscheduled dependencies, also updating it for
2061 /// the whole bundle.
2062 int incrementUnscheduledDeps(int Incr) {
2063 UnscheduledDeps += Incr;
2064 return FirstInBundle->UnscheduledDepsInBundle += Incr;
2067 /// Sets the number of unscheduled dependencies to the number of
2068 /// dependencies.
2069 void resetUnscheduledDeps() {
2070 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2073 /// Clears all dependency information.
2074 void clearDependencies() {
2075 Dependencies = InvalidDeps;
2076 resetUnscheduledDeps();
2077 MemoryDependencies.clear();
2080 void dump(raw_ostream &os) const {
2081 if (!isSchedulingEntity()) {
2082 os << "/ " << *Inst;
2083 } else if (NextInBundle) {
2084 os << '[' << *Inst;
2085 ScheduleData *SD = NextInBundle;
2086 while (SD) {
2087 os << ';' << *SD->Inst;
2088 SD = SD->NextInBundle;
2090 os << ']';
2091 } else {
2092 os << *Inst;
2096 Instruction *Inst = nullptr;
2098 /// Points to the head in an instruction bundle (and always to this for
2099 /// single instructions).
2100 ScheduleData *FirstInBundle = nullptr;
2102 /// Single linked list of all instructions in a bundle. Null if it is a
2103 /// single instruction.
2104 ScheduleData *NextInBundle = nullptr;
2106 /// Single linked list of all memory instructions (e.g. load, store, call)
2107 /// in the block - until the end of the scheduling region.
2108 ScheduleData *NextLoadStore = nullptr;
2110 /// The dependent memory instructions.
2111 /// This list is derived on demand in calculateDependencies().
2112 SmallVector<ScheduleData *, 4> MemoryDependencies;
2114 /// This ScheduleData is in the current scheduling region if this matches
2115 /// the current SchedulingRegionID of BlockScheduling.
2116 int SchedulingRegionID = 0;
2118 /// Used for getting a "good" final ordering of instructions.
2119 int SchedulingPriority = 0;
2121 /// The number of dependencies. Constitutes of the number of users of the
2122 /// instruction plus the number of dependent memory instructions (if any).
2123 /// This value is calculated on demand.
2124 /// If InvalidDeps, the number of dependencies is not calculated yet.
2125 int Dependencies = InvalidDeps;
2127 /// The number of dependencies minus the number of dependencies of scheduled
2128 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2129 /// for scheduling.
2130 /// Note that this is negative as long as Dependencies is not calculated.
2131 int UnscheduledDeps = InvalidDeps;
2133 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2134 /// single instructions.
2135 int UnscheduledDepsInBundle = InvalidDeps;
2137 /// True if this instruction is scheduled (or considered as scheduled in the
2138 /// dry-run).
2139 bool IsScheduled = false;
2141 /// Opcode of the current instruction in the schedule data.
2142 Value *OpValue = nullptr;
2144 /// The TreeEntry that this instruction corresponds to.
2145 TreeEntry *TE = nullptr;
2147 /// The lane of this node in the TreeEntry.
2148 int Lane = -1;
2151 #ifndef NDEBUG
2152 friend inline raw_ostream &operator<<(raw_ostream &os,
2153 const BoUpSLP::ScheduleData &SD) {
2154 SD.dump(os);
2155 return os;
2157 #endif
2159 friend struct GraphTraits<BoUpSLP *>;
2160 friend struct DOTGraphTraits<BoUpSLP *>;
2162 /// Contains all scheduling data for a basic block.
2163 struct BlockScheduling {
2164 BlockScheduling(BasicBlock *BB)
2165 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2167 void clear() {
2168 ReadyInsts.clear();
2169 ScheduleStart = nullptr;
2170 ScheduleEnd = nullptr;
2171 FirstLoadStoreInRegion = nullptr;
2172 LastLoadStoreInRegion = nullptr;
2174 // Reduce the maximum schedule region size by the size of the
2175 // previous scheduling run.
2176 ScheduleRegionSizeLimit -= ScheduleRegionSize;
2177 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2178 ScheduleRegionSizeLimit = MinScheduleRegionSize;
2179 ScheduleRegionSize = 0;
2181 // Make a new scheduling region, i.e. all existing ScheduleData is not
2182 // in the new region yet.
2183 ++SchedulingRegionID;
2186 ScheduleData *getScheduleData(Value *V) {
2187 ScheduleData *SD = ScheduleDataMap[V];
2188 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2189 return SD;
2190 return nullptr;
2193 ScheduleData *getScheduleData(Value *V, Value *Key) {
2194 if (V == Key)
2195 return getScheduleData(V);
2196 auto I = ExtraScheduleDataMap.find(V);
2197 if (I != ExtraScheduleDataMap.end()) {
2198 ScheduleData *SD = I->second[Key];
2199 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2200 return SD;
2202 return nullptr;
2205 bool isInSchedulingRegion(ScheduleData *SD) const {
2206 return SD->SchedulingRegionID == SchedulingRegionID;
2209 /// Marks an instruction as scheduled and puts all dependent ready
2210 /// instructions into the ready-list.
2211 template <typename ReadyListType>
2212 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2213 SD->IsScheduled = true;
2214 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
2216 ScheduleData *BundleMember = SD;
2217 while (BundleMember) {
2218 if (BundleMember->Inst != BundleMember->OpValue) {
2219 BundleMember = BundleMember->NextInBundle;
2220 continue;
2222 // Handle the def-use chain dependencies.
2224 // Decrement the unscheduled counter and insert to ready list if ready.
2225 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2226 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2227 if (OpDef && OpDef->hasValidDependencies() &&
2228 OpDef->incrementUnscheduledDeps(-1) == 0) {
2229 // There are no more unscheduled dependencies after
2230 // decrementing, so we can put the dependent instruction
2231 // into the ready list.
2232 ScheduleData *DepBundle = OpDef->FirstInBundle;
2233 assert(!DepBundle->IsScheduled &&
2234 "already scheduled bundle gets ready");
2235 ReadyList.insert(DepBundle);
2236 LLVM_DEBUG(dbgs()
2237 << "SLP: gets ready (def): " << *DepBundle << "\n");
2242 // If BundleMember is a vector bundle, its operands may have been
2243 // reordered duiring buildTree(). We therefore need to get its operands
2244 // through the TreeEntry.
2245 if (TreeEntry *TE = BundleMember->TE) {
2246 int Lane = BundleMember->Lane;
2247 assert(Lane >= 0 && "Lane not set");
2249 // Since vectorization tree is being built recursively this assertion
2250 // ensures that the tree entry has all operands set before reaching
2251 // this code. Couple of exceptions known at the moment are extracts
2252 // where their second (immediate) operand is not added. Since
2253 // immediates do not affect scheduler behavior this is considered
2254 // okay.
2255 auto *In = TE->getMainOp();
2256 assert(In &&
2257 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2258 In->getNumOperands() == TE->getNumOperands()) &&
2259 "Missed TreeEntry operands?");
2260 (void)In; // fake use to avoid build failure when assertions disabled
2262 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2263 OpIdx != NumOperands; ++OpIdx)
2264 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2265 DecrUnsched(I);
2266 } else {
2267 // If BundleMember is a stand-alone instruction, no operand reordering
2268 // has taken place, so we directly access its operands.
2269 for (Use &U : BundleMember->Inst->operands())
2270 if (auto *I = dyn_cast<Instruction>(U.get()))
2271 DecrUnsched(I);
2273 // Handle the memory dependencies.
2274 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2275 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2276 // There are no more unscheduled dependencies after decrementing,
2277 // so we can put the dependent instruction into the ready list.
2278 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2279 assert(!DepBundle->IsScheduled &&
2280 "already scheduled bundle gets ready");
2281 ReadyList.insert(DepBundle);
2282 LLVM_DEBUG(dbgs()
2283 << "SLP: gets ready (mem): " << *DepBundle << "\n");
2286 BundleMember = BundleMember->NextInBundle;
2290 void doForAllOpcodes(Value *V,
2291 function_ref<void(ScheduleData *SD)> Action) {
2292 if (ScheduleData *SD = getScheduleData(V))
2293 Action(SD);
2294 auto I = ExtraScheduleDataMap.find(V);
2295 if (I != ExtraScheduleDataMap.end())
2296 for (auto &P : I->second)
2297 if (P.second->SchedulingRegionID == SchedulingRegionID)
2298 Action(P.second);
2301 /// Put all instructions into the ReadyList which are ready for scheduling.
2302 template <typename ReadyListType>
2303 void initialFillReadyList(ReadyListType &ReadyList) {
2304 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2305 doForAllOpcodes(I, [&](ScheduleData *SD) {
2306 if (SD->isSchedulingEntity() && SD->isReady()) {
2307 ReadyList.insert(SD);
2308 LLVM_DEBUG(dbgs()
2309 << "SLP: initially in ready list: " << *I << "\n");
2315 /// Checks if a bundle of instructions can be scheduled, i.e. has no
2316 /// cyclic dependencies. This is only a dry-run, no instructions are
2317 /// actually moved at this stage.
2318 /// \returns the scheduling bundle. The returned Optional value is non-None
2319 /// if \p VL is allowed to be scheduled.
2320 Optional<ScheduleData *>
2321 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2322 const InstructionsState &S);
2324 /// Un-bundles a group of instructions.
2325 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2327 /// Allocates schedule data chunk.
2328 ScheduleData *allocateScheduleDataChunks();
2330 /// Extends the scheduling region so that V is inside the region.
2331 /// \returns true if the region size is within the limit.
2332 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2334 /// Initialize the ScheduleData structures for new instructions in the
2335 /// scheduling region.
2336 void initScheduleData(Instruction *FromI, Instruction *ToI,
2337 ScheduleData *PrevLoadStore,
2338 ScheduleData *NextLoadStore);
2340 /// Updates the dependency information of a bundle and of all instructions/
2341 /// bundles which depend on the original bundle.
2342 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2343 BoUpSLP *SLP);
2345 /// Sets all instruction in the scheduling region to un-scheduled.
2346 void resetSchedule();
2348 BasicBlock *BB;
2350 /// Simple memory allocation for ScheduleData.
2351 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2353 /// The size of a ScheduleData array in ScheduleDataChunks.
2354 int ChunkSize;
2356 /// The allocator position in the current chunk, which is the last entry
2357 /// of ScheduleDataChunks.
2358 int ChunkPos;
2360 /// Attaches ScheduleData to Instruction.
2361 /// Note that the mapping survives during all vectorization iterations, i.e.
2362 /// ScheduleData structures are recycled.
2363 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2365 /// Attaches ScheduleData to Instruction with the leading key.
2366 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2367 ExtraScheduleDataMap;
2369 struct ReadyList : SmallVector<ScheduleData *, 8> {
2370 void insert(ScheduleData *SD) { push_back(SD); }
2373 /// The ready-list for scheduling (only used for the dry-run).
2374 ReadyList ReadyInsts;
2376 /// The first instruction of the scheduling region.
2377 Instruction *ScheduleStart = nullptr;
2379 /// The first instruction _after_ the scheduling region.
2380 Instruction *ScheduleEnd = nullptr;
2382 /// The first memory accessing instruction in the scheduling region
2383 /// (can be null).
2384 ScheduleData *FirstLoadStoreInRegion = nullptr;
2386 /// The last memory accessing instruction in the scheduling region
2387 /// (can be null).
2388 ScheduleData *LastLoadStoreInRegion = nullptr;
2390 /// The current size of the scheduling region.
2391 int ScheduleRegionSize = 0;
2393 /// The maximum size allowed for the scheduling region.
2394 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2396 /// The ID of the scheduling region. For a new vectorization iteration this
2397 /// is incremented which "removes" all ScheduleData from the region.
2398 // Make sure that the initial SchedulingRegionID is greater than the
2399 // initial SchedulingRegionID in ScheduleData (which is 0).
2400 int SchedulingRegionID = 1;
2403 /// Attaches the BlockScheduling structures to basic blocks.
2404 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2406 /// Performs the "real" scheduling. Done before vectorization is actually
2407 /// performed in a basic block.
2408 void scheduleBlock(BlockScheduling *BS);
2410 /// List of users to ignore during scheduling and that don't need extracting.
2411 ArrayRef<Value *> UserIgnoreList;
2413 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2414 /// sorted SmallVectors of unsigned.
2415 struct OrdersTypeDenseMapInfo {
2416 static OrdersType getEmptyKey() {
2417 OrdersType V;
2418 V.push_back(~1U);
2419 return V;
2422 static OrdersType getTombstoneKey() {
2423 OrdersType V;
2424 V.push_back(~2U);
2425 return V;
2428 static unsigned getHashValue(const OrdersType &V) {
2429 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2432 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2433 return LHS == RHS;
2437 /// Contains orders of operations along with the number of bundles that have
2438 /// operations in this order. It stores only those orders that require
2439 /// reordering, if reordering is not required it is counted using \a
2440 /// NumOpsWantToKeepOriginalOrder.
2441 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2442 /// Number of bundles that do not require reordering.
2443 unsigned NumOpsWantToKeepOriginalOrder = 0;
2445 // Analysis and block reference.
2446 Function *F;
2447 ScalarEvolution *SE;
2448 TargetTransformInfo *TTI;
2449 TargetLibraryInfo *TLI;
2450 AAResults *AA;
2451 LoopInfo *LI;
2452 DominatorTree *DT;
2453 AssumptionCache *AC;
2454 DemandedBits *DB;
2455 const DataLayout *DL;
2456 OptimizationRemarkEmitter *ORE;
2458 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2459 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2461 /// Instruction builder to construct the vectorized tree.
2462 IRBuilder<> Builder;
2464 /// A map of scalar integer values to the smallest bit width with which they
2465 /// can legally be represented. The values map to (width, signed) pairs,
2466 /// where "width" indicates the minimum bit width and "signed" is True if the
2467 /// value must be signed-extended, rather than zero-extended, back to its
2468 /// original width.
2469 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2472 } // end namespace slpvectorizer
2474 template <> struct GraphTraits<BoUpSLP *> {
2475 using TreeEntry = BoUpSLP::TreeEntry;
2477 /// NodeRef has to be a pointer per the GraphWriter.
2478 using NodeRef = TreeEntry *;
2480 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2482 /// Add the VectorizableTree to the index iterator to be able to return
2483 /// TreeEntry pointers.
2484 struct ChildIteratorType
2485 : public iterator_adaptor_base<
2486 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2487 ContainerTy &VectorizableTree;
2489 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2490 ContainerTy &VT)
2491 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2493 NodeRef operator*() { return I->UserTE; }
2496 static NodeRef getEntryNode(BoUpSLP &R) {
2497 return R.VectorizableTree[0].get();
2500 static ChildIteratorType child_begin(NodeRef N) {
2501 return {N->UserTreeIndices.begin(), N->Container};
2504 static ChildIteratorType child_end(NodeRef N) {
2505 return {N->UserTreeIndices.end(), N->Container};
2508 /// For the node iterator we just need to turn the TreeEntry iterator into a
2509 /// TreeEntry* iterator so that it dereferences to NodeRef.
2510 class nodes_iterator {
2511 using ItTy = ContainerTy::iterator;
2512 ItTy It;
2514 public:
2515 nodes_iterator(const ItTy &It2) : It(It2) {}
2516 NodeRef operator*() { return It->get(); }
2517 nodes_iterator operator++() {
2518 ++It;
2519 return *this;
2521 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2524 static nodes_iterator nodes_begin(BoUpSLP *R) {
2525 return nodes_iterator(R->VectorizableTree.begin());
2528 static nodes_iterator nodes_end(BoUpSLP *R) {
2529 return nodes_iterator(R->VectorizableTree.end());
2532 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2535 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2536 using TreeEntry = BoUpSLP::TreeEntry;
2538 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2540 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2541 std::string Str;
2542 raw_string_ostream OS(Str);
2543 if (isSplat(Entry->Scalars)) {
2544 OS << "<splat> " << *Entry->Scalars[0];
2545 return Str;
2547 for (auto V : Entry->Scalars) {
2548 OS << *V;
2549 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2550 return EU.Scalar == V;
2552 OS << " <extract>";
2553 OS << "\n";
2555 return Str;
2558 static std::string getNodeAttributes(const TreeEntry *Entry,
2559 const BoUpSLP *) {
2560 if (Entry->State == TreeEntry::NeedToGather)
2561 return "color=red";
2562 return "";
2566 } // end namespace llvm
2568 BoUpSLP::~BoUpSLP() {
2569 for (const auto &Pair : DeletedInstructions) {
2570 // Replace operands of ignored instructions with Undefs in case if they were
2571 // marked for deletion.
2572 if (Pair.getSecond()) {
2573 Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2574 Pair.getFirst()->replaceAllUsesWith(Undef);
2576 Pair.getFirst()->dropAllReferences();
2578 for (const auto &Pair : DeletedInstructions) {
2579 assert(Pair.getFirst()->use_empty() &&
2580 "trying to erase instruction with users.");
2581 Pair.getFirst()->eraseFromParent();
2583 #ifdef EXPENSIVE_CHECKS
2584 // If we could guarantee that this call is not extremely slow, we could
2585 // remove the ifdef limitation (see PR47712).
2586 assert(!verifyFunction(*F, &dbgs()));
2587 #endif
2590 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2591 for (auto *V : AV) {
2592 if (auto *I = dyn_cast<Instruction>(V))
2593 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2597 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2598 ArrayRef<Value *> UserIgnoreLst) {
2599 ExtraValueToDebugLocsMap ExternallyUsedValues;
2600 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2603 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2604 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2605 ArrayRef<Value *> UserIgnoreLst) {
2606 deleteTree();
2607 UserIgnoreList = UserIgnoreLst;
2608 if (!allSameType(Roots))
2609 return;
2610 buildTree_rec(Roots, 0, EdgeInfo());
2612 // Collect the values that we need to extract from the tree.
2613 for (auto &TEPtr : VectorizableTree) {
2614 TreeEntry *Entry = TEPtr.get();
2616 // No need to handle users of gathered values.
2617 if (Entry->State == TreeEntry::NeedToGather)
2618 continue;
2620 // For each lane:
2621 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2622 Value *Scalar = Entry->Scalars[Lane];
2623 int FoundLane = Entry->findLaneForValue(Scalar);
2625 // Check if the scalar is externally used as an extra arg.
2626 auto ExtI = ExternallyUsedValues.find(Scalar);
2627 if (ExtI != ExternallyUsedValues.end()) {
2628 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2629 << Lane << " from " << *Scalar << ".\n");
2630 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2632 for (User *U : Scalar->users()) {
2633 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2635 Instruction *UserInst = dyn_cast<Instruction>(U);
2636 if (!UserInst)
2637 continue;
2639 if (isDeleted(UserInst))
2640 continue;
2642 // Skip in-tree scalars that become vectors
2643 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2644 Value *UseScalar = UseEntry->Scalars[0];
2645 // Some in-tree scalars will remain as scalar in vectorized
2646 // instructions. If that is the case, the one in Lane 0 will
2647 // be used.
2648 if (UseScalar != U ||
2649 UseEntry->State == TreeEntry::ScatterVectorize ||
2650 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2651 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2652 << ".\n");
2653 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2654 continue;
2658 // Ignore users in the user ignore list.
2659 if (is_contained(UserIgnoreList, UserInst))
2660 continue;
2662 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2663 << Lane << " from " << *Scalar << ".\n");
2664 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2670 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2671 const EdgeInfo &UserTreeIdx) {
2672 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2674 InstructionsState S = getSameOpcode(VL);
2675 if (Depth == RecursionMaxDepth) {
2676 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2678 return;
2681 // Don't handle scalable vectors
2682 if (S.getOpcode() == Instruction::ExtractElement &&
2683 isa<ScalableVectorType>(
2684 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
2685 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
2686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2687 return;
2690 // Don't handle vectors.
2691 if (S.OpValue->getType()->isVectorTy() &&
2692 !isa<InsertElementInst>(S.OpValue)) {
2693 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2694 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2695 return;
2698 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2699 if (SI->getValueOperand()->getType()->isVectorTy()) {
2700 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2702 return;
2705 // If all of the operands are identical or constant we have a simple solution.
2706 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2707 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2708 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2709 return;
2712 // We now know that this is a vector of instructions of the same type from
2713 // the same block.
2715 // Don't vectorize ephemeral values.
2716 for (Value *V : VL) {
2717 if (EphValues.count(V)) {
2718 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2719 << ") is ephemeral.\n");
2720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2721 return;
2725 // Check if this is a duplicate of another entry.
2726 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2727 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2728 if (!E->isSame(VL)) {
2729 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2730 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2731 return;
2733 // Record the reuse of the tree node. FIXME, currently this is only used to
2734 // properly draw the graph rather than for the actual vectorization.
2735 E->UserTreeIndices.push_back(UserTreeIdx);
2736 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2737 << ".\n");
2738 return;
2741 // Check that none of the instructions in the bundle are already in the tree.
2742 for (Value *V : VL) {
2743 auto *I = dyn_cast<Instruction>(V);
2744 if (!I)
2745 continue;
2746 if (getTreeEntry(I)) {
2747 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2748 << ") is already in tree.\n");
2749 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2750 return;
2754 // If any of the scalars is marked as a value that needs to stay scalar, then
2755 // we need to gather the scalars.
2756 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2757 for (Value *V : VL) {
2758 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2759 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2760 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2761 return;
2765 // Check that all of the users of the scalars that we want to vectorize are
2766 // schedulable.
2767 auto *VL0 = cast<Instruction>(S.OpValue);
2768 BasicBlock *BB = VL0->getParent();
2770 if (!DT->isReachableFromEntry(BB)) {
2771 // Don't go into unreachable blocks. They may contain instructions with
2772 // dependency cycles which confuse the final scheduling.
2773 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2774 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2775 return;
2778 // Check that every instruction appears once in this bundle.
2779 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2780 SmallVector<Value *, 4> UniqueValues;
2781 DenseMap<Value *, unsigned> UniquePositions;
2782 for (Value *V : VL) {
2783 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2784 ReuseShuffleIndicies.emplace_back(Res.first->second);
2785 if (Res.second)
2786 UniqueValues.emplace_back(V);
2788 size_t NumUniqueScalarValues = UniqueValues.size();
2789 if (NumUniqueScalarValues == VL.size()) {
2790 ReuseShuffleIndicies.clear();
2791 } else {
2792 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2793 if (NumUniqueScalarValues <= 1 ||
2794 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2795 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2796 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2797 return;
2799 VL = UniqueValues;
2802 auto &BSRef = BlocksSchedules[BB];
2803 if (!BSRef)
2804 BSRef = std::make_unique<BlockScheduling>(BB);
2806 BlockScheduling &BS = *BSRef.get();
2808 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2809 if (!Bundle) {
2810 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2811 assert((!BS.getScheduleData(VL0) ||
2812 !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2813 "tryScheduleBundle should cancelScheduling on failure");
2814 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2815 ReuseShuffleIndicies);
2816 return;
2818 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2820 unsigned ShuffleOrOp = S.isAltShuffle() ?
2821 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2822 switch (ShuffleOrOp) {
2823 case Instruction::PHI: {
2824 auto *PH = cast<PHINode>(VL0);
2826 // Check for terminator values (e.g. invoke).
2827 for (Value *V : VL)
2828 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2829 Instruction *Term = dyn_cast<Instruction>(
2830 cast<PHINode>(V)->getIncomingValueForBlock(
2831 PH->getIncomingBlock(I)));
2832 if (Term && Term->isTerminator()) {
2833 LLVM_DEBUG(dbgs()
2834 << "SLP: Need to swizzle PHINodes (terminator use).\n");
2835 BS.cancelScheduling(VL, VL0);
2836 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2837 ReuseShuffleIndicies);
2838 return;
2842 TreeEntry *TE =
2843 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2844 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2846 // Keeps the reordered operands to avoid code duplication.
2847 SmallVector<ValueList, 2> OperandsVec;
2848 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2849 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
2850 ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
2851 TE->setOperand(I, Operands);
2852 OperandsVec.push_back(Operands);
2853 continue;
2855 ValueList Operands;
2856 // Prepare the operand vector.
2857 for (Value *V : VL)
2858 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2859 PH->getIncomingBlock(I)));
2860 TE->setOperand(I, Operands);
2861 OperandsVec.push_back(Operands);
2863 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2864 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2865 return;
2867 case Instruction::ExtractValue:
2868 case Instruction::ExtractElement: {
2869 OrdersType CurrentOrder;
2870 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2871 if (Reuse) {
2872 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2873 ++NumOpsWantToKeepOriginalOrder;
2874 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2875 ReuseShuffleIndicies);
2876 // This is a special case, as it does not gather, but at the same time
2877 // we are not extending buildTree_rec() towards the operands.
2878 ValueList Op0;
2879 Op0.assign(VL.size(), VL0->getOperand(0));
2880 VectorizableTree.back()->setOperand(0, Op0);
2881 return;
2883 if (!CurrentOrder.empty()) {
2884 LLVM_DEBUG({
2885 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2886 "with order";
2887 for (unsigned Idx : CurrentOrder)
2888 dbgs() << " " << Idx;
2889 dbgs() << "\n";
2891 // Insert new order with initial value 0, if it does not exist,
2892 // otherwise return the iterator to the existing one.
2893 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2894 ReuseShuffleIndicies, CurrentOrder);
2895 findRootOrder(CurrentOrder);
2896 ++NumOpsWantToKeepOrder[CurrentOrder];
2897 // This is a special case, as it does not gather, but at the same time
2898 // we are not extending buildTree_rec() towards the operands.
2899 ValueList Op0;
2900 Op0.assign(VL.size(), VL0->getOperand(0));
2901 VectorizableTree.back()->setOperand(0, Op0);
2902 return;
2904 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2905 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2906 ReuseShuffleIndicies);
2907 BS.cancelScheduling(VL, VL0);
2908 return;
2910 case Instruction::InsertElement: {
2911 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
2913 // Check that we have a buildvector and not a shuffle of 2 or more
2914 // different vectors.
2915 ValueSet SourceVectors;
2916 for (Value *V : VL)
2917 SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
2919 if (count_if(VL, [&SourceVectors](Value *V) {
2920 return !SourceVectors.contains(V);
2921 }) >= 2) {
2922 // Found 2nd source vector - cancel.
2923 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
2924 "different source vectors.\n");
2925 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2926 ReuseShuffleIndicies);
2927 BS.cancelScheduling(VL, VL0);
2928 return;
2931 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
2932 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
2934 constexpr int NumOps = 2;
2935 ValueList VectorOperands[NumOps];
2936 for (int I = 0; I < NumOps; ++I) {
2937 for (Value *V : VL)
2938 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
2940 TE->setOperand(I, VectorOperands[I]);
2942 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
2943 return;
2945 case Instruction::Load: {
2946 // Check that a vectorized load would load the same memory as a scalar
2947 // load. For example, we don't want to vectorize loads that are smaller
2948 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2949 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2950 // from such a struct, we read/write packed bits disagreeing with the
2951 // unvectorized version.
2952 Type *ScalarTy = VL0->getType();
2954 if (DL->getTypeSizeInBits(ScalarTy) !=
2955 DL->getTypeAllocSizeInBits(ScalarTy)) {
2956 BS.cancelScheduling(VL, VL0);
2957 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2958 ReuseShuffleIndicies);
2959 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2960 return;
2963 // Make sure all loads in the bundle are simple - we can't vectorize
2964 // atomic or volatile loads.
2965 SmallVector<Value *, 4> PointerOps(VL.size());
2966 auto POIter = PointerOps.begin();
2967 for (Value *V : VL) {
2968 auto *L = cast<LoadInst>(V);
2969 if (!L->isSimple()) {
2970 BS.cancelScheduling(VL, VL0);
2971 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2972 ReuseShuffleIndicies);
2973 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2974 return;
2976 *POIter = L->getPointerOperand();
2977 ++POIter;
2980 OrdersType CurrentOrder;
2981 // Check the order of pointer operands.
2982 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
2983 Value *Ptr0;
2984 Value *PtrN;
2985 if (CurrentOrder.empty()) {
2986 Ptr0 = PointerOps.front();
2987 PtrN = PointerOps.back();
2988 } else {
2989 Ptr0 = PointerOps[CurrentOrder.front()];
2990 PtrN = PointerOps[CurrentOrder.back()];
2992 Optional<int> Diff = getPointersDiff(
2993 ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
2994 // Check that the sorted loads are consecutive.
2995 if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2996 if (CurrentOrder.empty()) {
2997 // Original loads are consecutive and does not require reordering.
2998 ++NumOpsWantToKeepOriginalOrder;
2999 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3000 UserTreeIdx, ReuseShuffleIndicies);
3001 TE->setOperandsInOrder();
3002 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
3003 } else {
3004 // Need to reorder.
3005 TreeEntry *TE =
3006 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3007 ReuseShuffleIndicies, CurrentOrder);
3008 TE->setOperandsInOrder();
3009 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
3010 findRootOrder(CurrentOrder);
3011 ++NumOpsWantToKeepOrder[CurrentOrder];
3013 return;
3015 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3016 for (Value *V : VL)
3017 CommonAlignment =
3018 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3019 if (TTI->isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
3020 CommonAlignment)) {
3021 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
3022 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle,
3023 S, UserTreeIdx, ReuseShuffleIndicies);
3024 TE->setOperandsInOrder();
3025 buildTree_rec(PointerOps, Depth + 1, {TE, 0});
3026 LLVM_DEBUG(dbgs()
3027 << "SLP: added a vector of non-consecutive loads.\n");
3028 return;
3032 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
3033 BS.cancelScheduling(VL, VL0);
3034 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3035 ReuseShuffleIndicies);
3036 return;
3038 case Instruction::ZExt:
3039 case Instruction::SExt:
3040 case Instruction::FPToUI:
3041 case Instruction::FPToSI:
3042 case Instruction::FPExt:
3043 case Instruction::PtrToInt:
3044 case Instruction::IntToPtr:
3045 case Instruction::SIToFP:
3046 case Instruction::UIToFP:
3047 case Instruction::Trunc:
3048 case Instruction::FPTrunc:
3049 case Instruction::BitCast: {
3050 Type *SrcTy = VL0->getOperand(0)->getType();
3051 for (Value *V : VL) {
3052 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
3053 if (Ty != SrcTy || !isValidElementType(Ty)) {
3054 BS.cancelScheduling(VL, VL0);
3055 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3056 ReuseShuffleIndicies);
3057 LLVM_DEBUG(dbgs()
3058 << "SLP: Gathering casts with different src types.\n");
3059 return;
3062 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3063 ReuseShuffleIndicies);
3064 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
3066 TE->setOperandsInOrder();
3067 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3068 ValueList Operands;
3069 // Prepare the operand vector.
3070 for (Value *V : VL)
3071 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3073 buildTree_rec(Operands, Depth + 1, {TE, i});
3075 return;
3077 case Instruction::ICmp:
3078 case Instruction::FCmp: {
3079 // Check that all of the compares have the same predicate.
3080 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3081 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
3082 Type *ComparedTy = VL0->getOperand(0)->getType();
3083 for (Value *V : VL) {
3084 CmpInst *Cmp = cast<CmpInst>(V);
3085 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
3086 Cmp->getOperand(0)->getType() != ComparedTy) {
3087 BS.cancelScheduling(VL, VL0);
3088 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3089 ReuseShuffleIndicies);
3090 LLVM_DEBUG(dbgs()
3091 << "SLP: Gathering cmp with different predicate.\n");
3092 return;
3096 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3097 ReuseShuffleIndicies);
3098 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
3100 ValueList Left, Right;
3101 if (cast<CmpInst>(VL0)->isCommutative()) {
3102 // Commutative predicate - collect + sort operands of the instructions
3103 // so that each side is more likely to have the same opcode.
3104 assert(P0 == SwapP0 && "Commutative Predicate mismatch");
3105 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3106 } else {
3107 // Collect operands - commute if it uses the swapped predicate.
3108 for (Value *V : VL) {
3109 auto *Cmp = cast<CmpInst>(V);
3110 Value *LHS = Cmp->getOperand(0);
3111 Value *RHS = Cmp->getOperand(1);
3112 if (Cmp->getPredicate() != P0)
3113 std::swap(LHS, RHS);
3114 Left.push_back(LHS);
3115 Right.push_back(RHS);
3118 TE->setOperand(0, Left);
3119 TE->setOperand(1, Right);
3120 buildTree_rec(Left, Depth + 1, {TE, 0});
3121 buildTree_rec(Right, Depth + 1, {TE, 1});
3122 return;
3124 case Instruction::Select:
3125 case Instruction::FNeg:
3126 case Instruction::Add:
3127 case Instruction::FAdd:
3128 case Instruction::Sub:
3129 case Instruction::FSub:
3130 case Instruction::Mul:
3131 case Instruction::FMul:
3132 case Instruction::UDiv:
3133 case Instruction::SDiv:
3134 case Instruction::FDiv:
3135 case Instruction::URem:
3136 case Instruction::SRem:
3137 case Instruction::FRem:
3138 case Instruction::Shl:
3139 case Instruction::LShr:
3140 case Instruction::AShr:
3141 case Instruction::And:
3142 case Instruction::Or:
3143 case Instruction::Xor: {
3144 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3145 ReuseShuffleIndicies);
3146 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3148 // Sort operands of the instructions so that each side is more likely to
3149 // have the same opcode.
3150 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3151 ValueList Left, Right;
3152 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3153 TE->setOperand(0, Left);
3154 TE->setOperand(1, Right);
3155 buildTree_rec(Left, Depth + 1, {TE, 0});
3156 buildTree_rec(Right, Depth + 1, {TE, 1});
3157 return;
3160 TE->setOperandsInOrder();
3161 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3162 ValueList Operands;
3163 // Prepare the operand vector.
3164 for (Value *V : VL)
3165 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3167 buildTree_rec(Operands, Depth + 1, {TE, i});
3169 return;
3171 case Instruction::GetElementPtr: {
3172 // We don't combine GEPs with complicated (nested) indexing.
3173 for (Value *V : VL) {
3174 if (cast<Instruction>(V)->getNumOperands() != 2) {
3175 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3176 BS.cancelScheduling(VL, VL0);
3177 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3178 ReuseShuffleIndicies);
3179 return;
3183 // We can't combine several GEPs into one vector if they operate on
3184 // different types.
3185 Type *Ty0 = VL0->getOperand(0)->getType();
3186 for (Value *V : VL) {
3187 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3188 if (Ty0 != CurTy) {
3189 LLVM_DEBUG(dbgs()
3190 << "SLP: not-vectorizable GEP (different types).\n");
3191 BS.cancelScheduling(VL, VL0);
3192 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3193 ReuseShuffleIndicies);
3194 return;
3198 // We don't combine GEPs with non-constant indexes.
3199 Type *Ty1 = VL0->getOperand(1)->getType();
3200 for (Value *V : VL) {
3201 auto Op = cast<Instruction>(V)->getOperand(1);
3202 if (!isa<ConstantInt>(Op) ||
3203 (Op->getType() != Ty1 &&
3204 Op->getType()->getScalarSizeInBits() >
3205 DL->getIndexSizeInBits(
3206 V->getType()->getPointerAddressSpace()))) {
3207 LLVM_DEBUG(dbgs()
3208 << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3209 BS.cancelScheduling(VL, VL0);
3210 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3211 ReuseShuffleIndicies);
3212 return;
3216 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3217 ReuseShuffleIndicies);
3218 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3219 TE->setOperandsInOrder();
3220 for (unsigned i = 0, e = 2; i < e; ++i) {
3221 ValueList Operands;
3222 // Prepare the operand vector.
3223 for (Value *V : VL)
3224 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3226 buildTree_rec(Operands, Depth + 1, {TE, i});
3228 return;
3230 case Instruction::Store: {
3231 // Check if the stores are consecutive or if we need to swizzle them.
3232 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3233 // Avoid types that are padded when being allocated as scalars, while
3234 // being packed together in a vector (such as i1).
3235 if (DL->getTypeSizeInBits(ScalarTy) !=
3236 DL->getTypeAllocSizeInBits(ScalarTy)) {
3237 BS.cancelScheduling(VL, VL0);
3238 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3239 ReuseShuffleIndicies);
3240 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3241 return;
3243 // Make sure all stores in the bundle are simple - we can't vectorize
3244 // atomic or volatile stores.
3245 SmallVector<Value *, 4> PointerOps(VL.size());
3246 ValueList Operands(VL.size());
3247 auto POIter = PointerOps.begin();
3248 auto OIter = Operands.begin();
3249 for (Value *V : VL) {
3250 auto *SI = cast<StoreInst>(V);
3251 if (!SI->isSimple()) {
3252 BS.cancelScheduling(VL, VL0);
3253 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3254 ReuseShuffleIndicies);
3255 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3256 return;
3258 *POIter = SI->getPointerOperand();
3259 *OIter = SI->getValueOperand();
3260 ++POIter;
3261 ++OIter;
3264 OrdersType CurrentOrder;
3265 // Check the order of pointer operands.
3266 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
3267 Value *Ptr0;
3268 Value *PtrN;
3269 if (CurrentOrder.empty()) {
3270 Ptr0 = PointerOps.front();
3271 PtrN = PointerOps.back();
3272 } else {
3273 Ptr0 = PointerOps[CurrentOrder.front()];
3274 PtrN = PointerOps[CurrentOrder.back()];
3276 Optional<int> Dist =
3277 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
3278 // Check that the sorted pointer operands are consecutive.
3279 if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3280 if (CurrentOrder.empty()) {
3281 // Original stores are consecutive and does not require reordering.
3282 ++NumOpsWantToKeepOriginalOrder;
3283 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3284 UserTreeIdx, ReuseShuffleIndicies);
3285 TE->setOperandsInOrder();
3286 buildTree_rec(Operands, Depth + 1, {TE, 0});
3287 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3288 } else {
3289 TreeEntry *TE =
3290 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3291 ReuseShuffleIndicies, CurrentOrder);
3292 TE->setOperandsInOrder();
3293 buildTree_rec(Operands, Depth + 1, {TE, 0});
3294 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3295 findRootOrder(CurrentOrder);
3296 ++NumOpsWantToKeepOrder[CurrentOrder];
3298 return;
3302 BS.cancelScheduling(VL, VL0);
3303 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3304 ReuseShuffleIndicies);
3305 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3306 return;
3308 case Instruction::Call: {
3309 // Check if the calls are all to the same vectorizable intrinsic or
3310 // library function.
3311 CallInst *CI = cast<CallInst>(VL0);
3312 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3314 VFShape Shape = VFShape::get(
3315 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3316 false /*HasGlobalPred*/);
3317 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3319 if (!VecFunc && !isTriviallyVectorizable(ID)) {
3320 BS.cancelScheduling(VL, VL0);
3321 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3322 ReuseShuffleIndicies);
3323 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3324 return;
3326 Function *F = CI->getCalledFunction();
3327 unsigned NumArgs = CI->getNumArgOperands();
3328 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3329 for (unsigned j = 0; j != NumArgs; ++j)
3330 if (hasVectorInstrinsicScalarOpd(ID, j))
3331 ScalarArgs[j] = CI->getArgOperand(j);
3332 for (Value *V : VL) {
3333 CallInst *CI2 = dyn_cast<CallInst>(V);
3334 if (!CI2 || CI2->getCalledFunction() != F ||
3335 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3336 (VecFunc &&
3337 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3338 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3339 BS.cancelScheduling(VL, VL0);
3340 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3341 ReuseShuffleIndicies);
3342 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3343 << "\n");
3344 return;
3346 // Some intrinsics have scalar arguments and should be same in order for
3347 // them to be vectorized.
3348 for (unsigned j = 0; j != NumArgs; ++j) {
3349 if (hasVectorInstrinsicScalarOpd(ID, j)) {
3350 Value *A1J = CI2->getArgOperand(j);
3351 if (ScalarArgs[j] != A1J) {
3352 BS.cancelScheduling(VL, VL0);
3353 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3354 ReuseShuffleIndicies);
3355 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3356 << " argument " << ScalarArgs[j] << "!=" << A1J
3357 << "\n");
3358 return;
3362 // Verify that the bundle operands are identical between the two calls.
3363 if (CI->hasOperandBundles() &&
3364 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3365 CI->op_begin() + CI->getBundleOperandsEndIndex(),
3366 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3367 BS.cancelScheduling(VL, VL0);
3368 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3369 ReuseShuffleIndicies);
3370 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3371 << *CI << "!=" << *V << '\n');
3372 return;
3376 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3377 ReuseShuffleIndicies);
3378 TE->setOperandsInOrder();
3379 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3380 ValueList Operands;
3381 // Prepare the operand vector.
3382 for (Value *V : VL) {
3383 auto *CI2 = cast<CallInst>(V);
3384 Operands.push_back(CI2->getArgOperand(i));
3386 buildTree_rec(Operands, Depth + 1, {TE, i});
3388 return;
3390 case Instruction::ShuffleVector: {
3391 // If this is not an alternate sequence of opcode like add-sub
3392 // then do not vectorize this instruction.
3393 if (!S.isAltShuffle()) {
3394 BS.cancelScheduling(VL, VL0);
3395 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3396 ReuseShuffleIndicies);
3397 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3398 return;
3400 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3401 ReuseShuffleIndicies);
3402 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3404 // Reorder operands if reordering would enable vectorization.
3405 if (isa<BinaryOperator>(VL0)) {
3406 ValueList Left, Right;
3407 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3408 TE->setOperand(0, Left);
3409 TE->setOperand(1, Right);
3410 buildTree_rec(Left, Depth + 1, {TE, 0});
3411 buildTree_rec(Right, Depth + 1, {TE, 1});
3412 return;
3415 TE->setOperandsInOrder();
3416 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3417 ValueList Operands;
3418 // Prepare the operand vector.
3419 for (Value *V : VL)
3420 Operands.push_back(cast<Instruction>(V)->getOperand(i));
3422 buildTree_rec(Operands, Depth + 1, {TE, i});
3424 return;
3426 default:
3427 BS.cancelScheduling(VL, VL0);
3428 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3429 ReuseShuffleIndicies);
3430 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3431 return;
3435 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3436 unsigned N = 1;
3437 Type *EltTy = T;
3439 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3440 isa<VectorType>(EltTy)) {
3441 if (auto *ST = dyn_cast<StructType>(EltTy)) {
3442 // Check that struct is homogeneous.
3443 for (const auto *Ty : ST->elements())
3444 if (Ty != *ST->element_begin())
3445 return 0;
3446 N *= ST->getNumElements();
3447 EltTy = *ST->element_begin();
3448 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3449 N *= AT->getNumElements();
3450 EltTy = AT->getElementType();
3451 } else {
3452 auto *VT = cast<FixedVectorType>(EltTy);
3453 N *= VT->getNumElements();
3454 EltTy = VT->getElementType();
3458 if (!isValidElementType(EltTy))
3459 return 0;
3460 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3461 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3462 return 0;
3463 return N;
3466 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3467 SmallVectorImpl<unsigned> &CurrentOrder) const {
3468 Instruction *E0 = cast<Instruction>(OpValue);
3469 assert(E0->getOpcode() == Instruction::ExtractElement ||
3470 E0->getOpcode() == Instruction::ExtractValue);
3471 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3472 // Check if all of the extracts come from the same vector and from the
3473 // correct offset.
3474 Value *Vec = E0->getOperand(0);
3476 CurrentOrder.clear();
3478 // We have to extract from a vector/aggregate with the same number of elements.
3479 unsigned NElts;
3480 if (E0->getOpcode() == Instruction::ExtractValue) {
3481 const DataLayout &DL = E0->getModule()->getDataLayout();
3482 NElts = canMapToVector(Vec->getType(), DL);
3483 if (!NElts)
3484 return false;
3485 // Check if load can be rewritten as load of vector.
3486 LoadInst *LI = dyn_cast<LoadInst>(Vec);
3487 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3488 return false;
3489 } else {
3490 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3493 if (NElts != VL.size())
3494 return false;
3496 // Check that all of the indices extract from the correct offset.
3497 bool ShouldKeepOrder = true;
3498 unsigned E = VL.size();
3499 // Assign to all items the initial value E + 1 so we can check if the extract
3500 // instruction index was used already.
3501 // Also, later we can check that all the indices are used and we have a
3502 // consecutive access in the extract instructions, by checking that no
3503 // element of CurrentOrder still has value E + 1.
3504 CurrentOrder.assign(E, E + 1);
3505 unsigned I = 0;
3506 for (; I < E; ++I) {
3507 auto *Inst = cast<Instruction>(VL[I]);
3508 if (Inst->getOperand(0) != Vec)
3509 break;
3510 Optional<unsigned> Idx = getExtractIndex(Inst);
3511 if (!Idx)
3512 break;
3513 const unsigned ExtIdx = *Idx;
3514 if (ExtIdx != I) {
3515 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3516 break;
3517 ShouldKeepOrder = false;
3518 CurrentOrder[ExtIdx] = I;
3519 } else {
3520 if (CurrentOrder[I] != E + 1)
3521 break;
3522 CurrentOrder[I] = I;
3525 if (I < E) {
3526 CurrentOrder.clear();
3527 return false;
3530 return ShouldKeepOrder;
3533 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
3534 ArrayRef<Value *> VectorizedVals) const {
3535 return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
3536 llvm::all_of(I->users(), [this](User *U) {
3537 return ScalarToTreeEntry.count(U) > 0;
3541 static std::pair<InstructionCost, InstructionCost>
3542 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3543 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3544 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3546 // Calculate the cost of the scalar and vector calls.
3547 SmallVector<Type *, 4> VecTys;
3548 for (Use &Arg : CI->args())
3549 VecTys.push_back(
3550 FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3551 FastMathFlags FMF;
3552 if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3553 FMF = FPCI->getFastMathFlags();
3554 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3555 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3556 dyn_cast<IntrinsicInst>(CI));
3557 auto IntrinsicCost =
3558 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3560 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3561 VecTy->getNumElements())),
3562 false /*HasGlobalPred*/);
3563 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3564 auto LibCost = IntrinsicCost;
3565 if (!CI->isNoBuiltin() && VecFunc) {
3566 // Calculate the cost of the vector library call.
3567 // If the corresponding vector call is cheaper, return its cost.
3568 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3569 TTI::TCK_RecipThroughput);
3571 return {IntrinsicCost, LibCost};
3574 /// Compute the cost of creating a vector of type \p VecTy containing the
3575 /// extracted values from \p VL.
3576 static InstructionCost
3577 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3578 TargetTransformInfo::ShuffleKind ShuffleKind,
3579 ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3580 unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3582 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3583 VecTy->getNumElements() < NumOfParts)
3584 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3586 bool AllConsecutive = true;
3587 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3588 unsigned Idx = -1;
3589 InstructionCost Cost = 0;
3591 // Process extracts in blocks of EltsPerVector to check if the source vector
3592 // operand can be re-used directly. If not, add the cost of creating a shuffle
3593 // to extract the values into a vector register.
3594 for (auto *V : VL) {
3595 ++Idx;
3597 // Reached the start of a new vector registers.
3598 if (Idx % EltsPerVector == 0) {
3599 AllConsecutive = true;
3600 continue;
3603 // Check all extracts for a vector register on the target directly
3604 // extract values in order.
3605 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3606 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3607 AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3608 CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3610 if (AllConsecutive)
3611 continue;
3613 // Skip all indices, except for the last index per vector block.
3614 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3615 continue;
3617 // If we have a series of extracts which are not consecutive and hence
3618 // cannot re-use the source vector register directly, compute the shuffle
3619 // cost to extract the a vector with EltsPerVector elements.
3620 Cost += TTI.getShuffleCost(
3621 TargetTransformInfo::SK_PermuteSingleSrc,
3622 FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3624 return Cost;
3627 /// Shuffles \p Mask in accordance with the given \p SubMask.
3628 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
3629 if (SubMask.empty())
3630 return;
3631 if (Mask.empty()) {
3632 Mask.append(SubMask.begin(), SubMask.end());
3633 return;
3635 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
3636 int TermValue = std::min(Mask.size(), SubMask.size());
3637 for (int I = 0, E = SubMask.size(); I < E; ++I) {
3638 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
3639 Mask[SubMask[I]] >= TermValue) {
3640 NewMask[I] = UndefMaskElem;
3641 continue;
3643 NewMask[I] = Mask[SubMask[I]];
3645 Mask.swap(NewMask);
3648 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
3649 ArrayRef<Value *> VectorizedVals) {
3650 ArrayRef<Value*> VL = E->Scalars;
3652 Type *ScalarTy = VL[0]->getType();
3653 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3654 ScalarTy = SI->getValueOperand()->getType();
3655 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3656 ScalarTy = CI->getOperand(0)->getType();
3657 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
3658 ScalarTy = IE->getOperand(1)->getType();
3659 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3660 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3662 // If we have computed a smaller type for the expression, update VecTy so
3663 // that the costs will be accurate.
3664 if (MinBWs.count(VL[0]))
3665 VecTy = FixedVectorType::get(
3666 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3667 auto *FinalVecTy = VecTy;
3669 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3670 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3671 if (NeedToShuffleReuses)
3672 FinalVecTy =
3673 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers);
3674 // FIXME: it tries to fix a problem with MSVC buildbots.
3675 TargetTransformInfo &TTIRef = *TTI;
3676 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
3677 VectorizedVals](InstructionCost &Cost,
3678 bool IsGather) {
3679 DenseMap<Value *, int> ExtractVectorsTys;
3680 for (auto *V : VL) {
3681 // If all users of instruction are going to be vectorized and this
3682 // instruction itself is not going to be vectorized, consider this
3683 // instruction as dead and remove its cost from the final cost of the
3684 // vectorized tree.
3685 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
3686 (IsGather && ScalarToTreeEntry.count(V)))
3687 continue;
3688 auto *EE = cast<ExtractElementInst>(V);
3689 unsigned Idx = *getExtractIndex(EE);
3690 if (TTIRef.getNumberOfParts(VecTy) !=
3691 TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3692 auto It =
3693 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3694 It->getSecond() = std::min<int>(It->second, Idx);
3696 // Take credit for instruction that will become dead.
3697 if (EE->hasOneUse()) {
3698 Instruction *Ext = EE->user_back();
3699 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3700 all_of(Ext->users(),
3701 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3702 // Use getExtractWithExtendCost() to calculate the cost of
3703 // extractelement/ext pair.
3704 Cost -=
3705 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3706 EE->getVectorOperandType(), Idx);
3707 // Add back the cost of s|zext which is subtracted separately.
3708 Cost += TTIRef.getCastInstrCost(
3709 Ext->getOpcode(), Ext->getType(), EE->getType(),
3710 TTI::getCastContextHint(Ext), CostKind, Ext);
3711 continue;
3714 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3715 EE->getVectorOperandType(), Idx);
3717 // Add a cost for subvector extracts/inserts if required.
3718 for (const auto &Data : ExtractVectorsTys) {
3719 auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3720 unsigned NumElts = VecTy->getNumElements();
3721 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3722 unsigned Idx = (Data.second / NumElts) * NumElts;
3723 unsigned EENumElts = EEVTy->getNumElements();
3724 if (Idx + NumElts <= EENumElts) {
3725 Cost +=
3726 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3727 EEVTy, None, Idx, VecTy);
3728 } else {
3729 // Need to round up the subvector type vectorization factor to avoid a
3730 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3731 // <= EENumElts.
3732 auto *SubVT =
3733 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3734 Cost +=
3735 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3736 EEVTy, None, Idx, SubVT);
3738 } else {
3739 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3740 VecTy, None, 0, EEVTy);
3744 if (E->State == TreeEntry::NeedToGather) {
3745 if (allConstant(VL))
3746 return 0;
3747 if (isa<InsertElementInst>(VL[0]))
3748 return InstructionCost::getInvalid();
3749 SmallVector<int> Mask;
3750 SmallVector<const TreeEntry *> Entries;
3751 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3752 isGatherShuffledEntry(E, Mask, Entries);
3753 if (Shuffle.hasValue()) {
3754 InstructionCost GatherCost = 0;
3755 if (ShuffleVectorInst::isIdentityMask(Mask)) {
3756 // Perfect match in the graph, will reuse the previously vectorized
3757 // node. Cost is 0.
3758 LLVM_DEBUG(
3759 dbgs()
3760 << "SLP: perfect diamond match for gather bundle that starts with "
3761 << *VL.front() << ".\n");
3762 if (NeedToShuffleReuses)
3763 GatherCost =
3764 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
3765 FinalVecTy, E->ReuseShuffleIndices);
3766 } else {
3767 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
3768 << " entries for bundle that starts with "
3769 << *VL.front() << ".\n");
3770 // Detected that instead of gather we can emit a shuffle of single/two
3771 // previously vectorized nodes. Add the cost of the permutation rather
3772 // than gather.
3773 ::addMask(Mask, E->ReuseShuffleIndices);
3774 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
3776 return GatherCost;
3778 if (isSplat(VL)) {
3779 // Found the broadcasting of the single scalar, calculate the cost as the
3780 // broadcast.
3781 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
3783 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
3784 allSameBlock(VL) &&
3785 !isa<ScalableVectorType>(
3786 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) {
3787 // Check that gather of extractelements can be represented as just a
3788 // shuffle of a single/two vectors the scalars are extracted from.
3789 SmallVector<int> Mask;
3790 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3791 isShuffle(VL, Mask);
3792 if (ShuffleKind.hasValue()) {
3793 // Found the bunch of extractelement instructions that must be gathered
3794 // into a vector and can be represented as a permutation elements in a
3795 // single input vector or of 2 input vectors.
3796 InstructionCost Cost =
3797 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3798 AdjustExtractsCost(Cost, /*IsGather=*/true);
3799 if (NeedToShuffleReuses)
3800 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
3801 FinalVecTy, E->ReuseShuffleIndices);
3802 return Cost;
3805 InstructionCost ReuseShuffleCost = 0;
3806 if (NeedToShuffleReuses)
3807 ReuseShuffleCost = TTI->getShuffleCost(
3808 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
3809 return ReuseShuffleCost + getGatherCost(VL);
3811 InstructionCost CommonCost = 0;
3812 SmallVector<int> Mask;
3813 if (!E->ReorderIndices.empty()) {
3814 SmallVector<int> NewMask;
3815 if (E->getOpcode() == Instruction::Store) {
3816 // For stores the order is actually a mask.
3817 NewMask.resize(E->ReorderIndices.size());
3818 copy(E->ReorderIndices, NewMask.begin());
3819 } else {
3820 inversePermutation(E->ReorderIndices, NewMask);
3822 ::addMask(Mask, NewMask);
3824 if (NeedToShuffleReuses)
3825 ::addMask(Mask, E->ReuseShuffleIndices);
3826 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
3827 CommonCost =
3828 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
3829 assert((E->State == TreeEntry::Vectorize ||
3830 E->State == TreeEntry::ScatterVectorize) &&
3831 "Unhandled state");
3832 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3833 Instruction *VL0 = E->getMainOp();
3834 unsigned ShuffleOrOp =
3835 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3836 switch (ShuffleOrOp) {
3837 case Instruction::PHI:
3838 return 0;
3840 case Instruction::ExtractValue:
3841 case Instruction::ExtractElement: {
3842 // The common cost of removal ExtractElement/ExtractValue instructions +
3843 // the cost of shuffles, if required to resuffle the original vector.
3844 if (NeedToShuffleReuses) {
3845 unsigned Idx = 0;
3846 for (unsigned I : E->ReuseShuffleIndices) {
3847 if (ShuffleOrOp == Instruction::ExtractElement) {
3848 auto *EE = cast<ExtractElementInst>(VL[I]);
3849 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
3850 EE->getVectorOperandType(),
3851 *getExtractIndex(EE));
3852 } else {
3853 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
3854 VecTy, Idx);
3855 ++Idx;
3858 Idx = ReuseShuffleNumbers;
3859 for (Value *V : VL) {
3860 if (ShuffleOrOp == Instruction::ExtractElement) {
3861 auto *EE = cast<ExtractElementInst>(V);
3862 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
3863 EE->getVectorOperandType(),
3864 *getExtractIndex(EE));
3865 } else {
3866 --Idx;
3867 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
3868 VecTy, Idx);
3872 if (ShuffleOrOp == Instruction::ExtractValue) {
3873 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3874 auto *EI = cast<Instruction>(VL[I]);
3875 // Take credit for instruction that will become dead.
3876 if (EI->hasOneUse()) {
3877 Instruction *Ext = EI->user_back();
3878 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3879 all_of(Ext->users(),
3880 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3881 // Use getExtractWithExtendCost() to calculate the cost of
3882 // extractelement/ext pair.
3883 CommonCost -= TTI->getExtractWithExtendCost(
3884 Ext->getOpcode(), Ext->getType(), VecTy, I);
3885 // Add back the cost of s|zext which is subtracted separately.
3886 CommonCost += TTI->getCastInstrCost(
3887 Ext->getOpcode(), Ext->getType(), EI->getType(),
3888 TTI::getCastContextHint(Ext), CostKind, Ext);
3889 continue;
3892 CommonCost -=
3893 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3895 } else {
3896 AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3898 return CommonCost;
3900 case Instruction::InsertElement: {
3901 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
3903 unsigned const NumElts = SrcVecTy->getNumElements();
3904 unsigned const NumScalars = VL.size();
3905 APInt DemandedElts = APInt::getNullValue(NumElts);
3906 // TODO: Add support for Instruction::InsertValue.
3907 unsigned Offset = UINT_MAX;
3908 bool IsIdentity = true;
3909 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
3910 for (unsigned I = 0; I < NumScalars; ++I) {
3911 Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
3912 if (!InsertIdx || *InsertIdx == UndefMaskElem)
3913 continue;
3914 unsigned Idx = *InsertIdx;
3915 DemandedElts.setBit(Idx);
3916 if (Idx < Offset) {
3917 Offset = Idx;
3918 IsIdentity &= I == 0;
3919 } else {
3920 assert(Idx >= Offset && "Failed to find vector index offset");
3921 IsIdentity &= Idx - Offset == I;
3923 ShuffleMask[Idx] = I;
3925 assert(Offset < NumElts && "Failed to find vector index offset");
3927 InstructionCost Cost = 0;
3928 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
3929 /*Insert*/ true, /*Extract*/ false);
3931 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
3932 // FIXME: Replace with SK_InsertSubvector once it is properly supported.
3933 unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
3934 Cost += TTI->getShuffleCost(
3935 TargetTransformInfo::SK_PermuteSingleSrc,
3936 FixedVectorType::get(SrcVecTy->getElementType(), Sz));
3937 } else if (!IsIdentity) {
3938 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
3939 ShuffleMask);
3942 return Cost;
3944 case Instruction::ZExt:
3945 case Instruction::SExt:
3946 case Instruction::FPToUI:
3947 case Instruction::FPToSI:
3948 case Instruction::FPExt:
3949 case Instruction::PtrToInt:
3950 case Instruction::IntToPtr:
3951 case Instruction::SIToFP:
3952 case Instruction::UIToFP:
3953 case Instruction::Trunc:
3954 case Instruction::FPTrunc:
3955 case Instruction::BitCast: {
3956 Type *SrcTy = VL0->getOperand(0)->getType();
3957 InstructionCost ScalarEltCost =
3958 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3959 TTI::getCastContextHint(VL0), CostKind, VL0);
3960 if (NeedToShuffleReuses) {
3961 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3964 // Calculate the cost of this instruction.
3965 InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3967 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3968 InstructionCost VecCost = 0;
3969 // Check if the values are candidates to demote.
3970 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3971 VecCost = CommonCost + TTI->getCastInstrCost(
3972 E->getOpcode(), VecTy, SrcVecTy,
3973 TTI::getCastContextHint(VL0), CostKind, VL0);
3975 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
3976 return VecCost - ScalarCost;
3978 case Instruction::FCmp:
3979 case Instruction::ICmp:
3980 case Instruction::Select: {
3981 // Calculate the cost of this instruction.
3982 InstructionCost ScalarEltCost =
3983 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3984 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3985 if (NeedToShuffleReuses) {
3986 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3988 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3989 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3991 // Check if all entries in VL are either compares or selects with compares
3992 // as condition that have the same predicates.
3993 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3994 bool First = true;
3995 for (auto *V : VL) {
3996 CmpInst::Predicate CurrentPred;
3997 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3998 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3999 !match(V, MatchCmp)) ||
4000 (!First && VecPred != CurrentPred)) {
4001 VecPred = CmpInst::BAD_ICMP_PREDICATE;
4002 break;
4004 First = false;
4005 VecPred = CurrentPred;
4008 InstructionCost VecCost = TTI->getCmpSelInstrCost(
4009 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
4010 // Check if it is possible and profitable to use min/max for selects in
4011 // VL.
4013 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
4014 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
4015 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
4016 {VecTy, VecTy});
4017 InstructionCost IntrinsicCost =
4018 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4019 // If the selects are the only uses of the compares, they will be dead
4020 // and we can adjust the cost by removing their cost.
4021 if (IntrinsicAndUse.second)
4022 IntrinsicCost -=
4023 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
4024 CmpInst::BAD_ICMP_PREDICATE, CostKind);
4025 VecCost = std::min(VecCost, IntrinsicCost);
4027 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4028 return CommonCost + VecCost - ScalarCost;
4030 case Instruction::FNeg:
4031 case Instruction::Add:
4032 case Instruction::FAdd:
4033 case Instruction::Sub:
4034 case Instruction::FSub:
4035 case Instruction::Mul:
4036 case Instruction::FMul:
4037 case Instruction::UDiv:
4038 case Instruction::SDiv:
4039 case Instruction::FDiv:
4040 case Instruction::URem:
4041 case Instruction::SRem:
4042 case Instruction::FRem:
4043 case Instruction::Shl:
4044 case Instruction::LShr:
4045 case Instruction::AShr:
4046 case Instruction::And:
4047 case Instruction::Or:
4048 case Instruction::Xor: {
4049 // Certain instructions can be cheaper to vectorize if they have a
4050 // constant second vector operand.
4051 TargetTransformInfo::OperandValueKind Op1VK =
4052 TargetTransformInfo::OK_AnyValue;
4053 TargetTransformInfo::OperandValueKind Op2VK =
4054 TargetTransformInfo::OK_UniformConstantValue;
4055 TargetTransformInfo::OperandValueProperties Op1VP =
4056 TargetTransformInfo::OP_None;
4057 TargetTransformInfo::OperandValueProperties Op2VP =
4058 TargetTransformInfo::OP_PowerOf2;
4060 // If all operands are exactly the same ConstantInt then set the
4061 // operand kind to OK_UniformConstantValue.
4062 // If instead not all operands are constants, then set the operand kind
4063 // to OK_AnyValue. If all operands are constants but not the same,
4064 // then set the operand kind to OK_NonUniformConstantValue.
4065 ConstantInt *CInt0 = nullptr;
4066 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
4067 const Instruction *I = cast<Instruction>(VL[i]);
4068 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
4069 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
4070 if (!CInt) {
4071 Op2VK = TargetTransformInfo::OK_AnyValue;
4072 Op2VP = TargetTransformInfo::OP_None;
4073 break;
4075 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
4076 !CInt->getValue().isPowerOf2())
4077 Op2VP = TargetTransformInfo::OP_None;
4078 if (i == 0) {
4079 CInt0 = CInt;
4080 continue;
4082 if (CInt0 != CInt)
4083 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
4086 SmallVector<const Value *, 4> Operands(VL0->operand_values());
4087 InstructionCost ScalarEltCost =
4088 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
4089 Op2VK, Op1VP, Op2VP, Operands, VL0);
4090 if (NeedToShuffleReuses) {
4091 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4093 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4094 InstructionCost VecCost =
4095 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
4096 Op2VK, Op1VP, Op2VP, Operands, VL0);
4097 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4098 return CommonCost + VecCost - ScalarCost;
4100 case Instruction::GetElementPtr: {
4101 TargetTransformInfo::OperandValueKind Op1VK =
4102 TargetTransformInfo::OK_AnyValue;
4103 TargetTransformInfo::OperandValueKind Op2VK =
4104 TargetTransformInfo::OK_UniformConstantValue;
4106 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
4107 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
4108 if (NeedToShuffleReuses) {
4109 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4111 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4112 InstructionCost VecCost = TTI->getArithmeticInstrCost(
4113 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
4114 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4115 return CommonCost + VecCost - ScalarCost;
4117 case Instruction::Load: {
4118 // Cost of wide load - cost of scalar loads.
4119 Align Alignment = cast<LoadInst>(VL0)->getAlign();
4120 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4121 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
4122 if (NeedToShuffleReuses) {
4123 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4125 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
4126 InstructionCost VecLdCost;
4127 if (E->State == TreeEntry::Vectorize) {
4128 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
4129 CostKind, VL0);
4130 } else {
4131 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
4132 Align CommonAlignment = Alignment;
4133 for (Value *V : VL)
4134 CommonAlignment =
4135 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4136 VecLdCost = TTI->getGatherScatterOpCost(
4137 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
4138 /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
4140 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
4141 return CommonCost + VecLdCost - ScalarLdCost;
4143 case Instruction::Store: {
4144 // We know that we can merge the stores. Calculate the cost.
4145 bool IsReorder = !E->ReorderIndices.empty();
4146 auto *SI =
4147 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
4148 Align Alignment = SI->getAlign();
4149 InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4150 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
4151 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
4152 InstructionCost VecStCost = TTI->getMemoryOpCost(
4153 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
4154 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
4155 return CommonCost + VecStCost - ScalarStCost;
4157 case Instruction::Call: {
4158 CallInst *CI = cast<CallInst>(VL0);
4159 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4161 // Calculate the cost of the scalar and vector calls.
4162 IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
4163 InstructionCost ScalarEltCost =
4164 TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4165 if (NeedToShuffleReuses) {
4166 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4168 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
4170 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4171 InstructionCost VecCallCost =
4172 std::min(VecCallCosts.first, VecCallCosts.second);
4174 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
4175 << " (" << VecCallCost << "-" << ScalarCallCost << ")"
4176 << " for " << *CI << "\n");
4178 return CommonCost + VecCallCost - ScalarCallCost;
4180 case Instruction::ShuffleVector: {
4181 assert(E->isAltShuffle() &&
4182 ((Instruction::isBinaryOp(E->getOpcode()) &&
4183 Instruction::isBinaryOp(E->getAltOpcode())) ||
4184 (Instruction::isCast(E->getOpcode()) &&
4185 Instruction::isCast(E->getAltOpcode()))) &&
4186 "Invalid Shuffle Vector Operand");
4187 InstructionCost ScalarCost = 0;
4188 if (NeedToShuffleReuses) {
4189 for (unsigned Idx : E->ReuseShuffleIndices) {
4190 Instruction *I = cast<Instruction>(VL[Idx]);
4191 CommonCost -= TTI->getInstructionCost(I, CostKind);
4193 for (Value *V : VL) {
4194 Instruction *I = cast<Instruction>(V);
4195 CommonCost += TTI->getInstructionCost(I, CostKind);
4198 for (Value *V : VL) {
4199 Instruction *I = cast<Instruction>(V);
4200 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
4201 ScalarCost += TTI->getInstructionCost(I, CostKind);
4203 // VecCost is equal to sum of the cost of creating 2 vectors
4204 // and the cost of creating shuffle.
4205 InstructionCost VecCost = 0;
4206 if (Instruction::isBinaryOp(E->getOpcode())) {
4207 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4208 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4209 CostKind);
4210 } else {
4211 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4212 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4213 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4214 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4215 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4216 TTI::CastContextHint::None, CostKind);
4217 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4218 TTI::CastContextHint::None, CostKind);
4221 SmallVector<int> Mask(E->Scalars.size());
4222 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4223 auto *OpInst = cast<Instruction>(E->Scalars[I]);
4224 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4225 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4227 VecCost +=
4228 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4229 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
4230 return CommonCost + VecCost - ScalarCost;
4232 default:
4233 llvm_unreachable("Unknown instruction");
4237 bool BoUpSLP::isFullyVectorizableTinyTree() const {
4238 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
4239 << VectorizableTree.size() << " is fully vectorizable .\n");
4241 // We only handle trees of heights 1 and 2.
4242 if (VectorizableTree.size() == 1 &&
4243 VectorizableTree[0]->State == TreeEntry::Vectorize)
4244 return true;
4246 if (VectorizableTree.size() != 2)
4247 return false;
4249 // Handle splat and all-constants stores. Also try to vectorize tiny trees
4250 // with the second gather nodes if they have less scalar operands rather than
4251 // the initial tree element (may be profitable to shuffle the second gather)
4252 // or they are extractelements, which form shuffle.
4253 SmallVector<int> Mask;
4254 if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4255 (allConstant(VectorizableTree[1]->Scalars) ||
4256 isSplat(VectorizableTree[1]->Scalars) ||
4257 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4258 VectorizableTree[1]->Scalars.size() <
4259 VectorizableTree[0]->Scalars.size()) ||
4260 (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4261 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
4262 isShuffle(VectorizableTree[1]->Scalars, Mask))))
4263 return true;
4265 // Gathering cost would be too much for tiny trees.
4266 if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4267 VectorizableTree[1]->State == TreeEntry::NeedToGather)
4268 return false;
4270 return true;
4273 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4274 TargetTransformInfo *TTI,
4275 bool MustMatchOrInst) {
4276 // Look past the root to find a source value. Arbitrarily follow the
4277 // path through operand 0 of any 'or'. Also, peek through optional
4278 // shift-left-by-multiple-of-8-bits.
4279 Value *ZextLoad = Root;
4280 const APInt *ShAmtC;
4281 bool FoundOr = false;
4282 while (!isa<ConstantExpr>(ZextLoad) &&
4283 (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4284 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4285 ShAmtC->urem(8) == 0))) {
4286 auto *BinOp = cast<BinaryOperator>(ZextLoad);
4287 ZextLoad = BinOp->getOperand(0);
4288 if (BinOp->getOpcode() == Instruction::Or)
4289 FoundOr = true;
4291 // Check if the input is an extended load of the required or/shift expression.
4292 Value *LoadPtr;
4293 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
4294 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4295 return false;
4297 // Require that the total load bit width is a legal integer type.
4298 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4299 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4300 Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4301 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4302 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4303 return false;
4305 // Everything matched - assume that we can fold the whole sequence using
4306 // load combining.
4307 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4308 << *(cast<Instruction>(Root)) << "\n");
4310 return true;
4313 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4314 if (RdxKind != RecurKind::Or)
4315 return false;
4317 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4318 Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4319 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
4320 /* MatchOr */ false);
4323 bool BoUpSLP::isLoadCombineCandidate() const {
4324 // Peek through a final sequence of stores and check if all operations are
4325 // likely to be load-combined.
4326 unsigned NumElts = VectorizableTree[0]->Scalars.size();
4327 for (Value *Scalar : VectorizableTree[0]->Scalars) {
4328 Value *X;
4329 if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4330 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
4331 return false;
4333 return true;
4336 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4337 // No need to vectorize inserts of gathered values.
4338 if (VectorizableTree.size() == 2 &&
4339 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
4340 VectorizableTree[1]->State == TreeEntry::NeedToGather)
4341 return true;
4343 // We can vectorize the tree if its size is greater than or equal to the
4344 // minimum size specified by the MinTreeSize command line option.
4345 if (VectorizableTree.size() >= MinTreeSize)
4346 return false;
4348 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4349 // can vectorize it if we can prove it fully vectorizable.
4350 if (isFullyVectorizableTinyTree())
4351 return false;
4353 assert(VectorizableTree.empty()
4354 ? ExternalUses.empty()
4355 : true && "We shouldn't have any external users");
4357 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4358 // vectorizable.
4359 return true;
4362 InstructionCost BoUpSLP::getSpillCost() const {
4363 // Walk from the bottom of the tree to the top, tracking which values are
4364 // live. When we see a call instruction that is not part of our tree,
4365 // query TTI to see if there is a cost to keeping values live over it
4366 // (for example, if spills and fills are required).
4367 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4368 InstructionCost Cost = 0;
4370 SmallPtrSet<Instruction*, 4> LiveValues;
4371 Instruction *PrevInst = nullptr;
4373 // The entries in VectorizableTree are not necessarily ordered by their
4374 // position in basic blocks. Collect them and order them by dominance so later
4375 // instructions are guaranteed to be visited first. For instructions in
4376 // different basic blocks, we only scan to the beginning of the block, so
4377 // their order does not matter, as long as all instructions in a basic block
4378 // are grouped together. Using dominance ensures a deterministic order.
4379 SmallVector<Instruction *, 16> OrderedScalars;
4380 for (const auto &TEPtr : VectorizableTree) {
4381 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4382 if (!Inst)
4383 continue;
4384 OrderedScalars.push_back(Inst);
4386 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
4387 auto *NodeA = DT->getNode(A->getParent());
4388 auto *NodeB = DT->getNode(B->getParent());
4389 assert(NodeA && "Should only process reachable instructions");
4390 assert(NodeB && "Should only process reachable instructions");
4391 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
4392 "Different nodes should have different DFS numbers");
4393 if (NodeA != NodeB)
4394 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
4395 return B->comesBefore(A);
4398 for (Instruction *Inst : OrderedScalars) {
4399 if (!PrevInst) {
4400 PrevInst = Inst;
4401 continue;
4404 // Update LiveValues.
4405 LiveValues.erase(PrevInst);
4406 for (auto &J : PrevInst->operands()) {
4407 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4408 LiveValues.insert(cast<Instruction>(&*J));
4411 LLVM_DEBUG({
4412 dbgs() << "SLP: #LV: " << LiveValues.size();
4413 for (auto *X : LiveValues)
4414 dbgs() << " " << X->getName();
4415 dbgs() << ", Looking at ";
4416 Inst->dump();
4419 // Now find the sequence of instructions between PrevInst and Inst.
4420 unsigned NumCalls = 0;
4421 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4422 PrevInstIt =
4423 PrevInst->getIterator().getReverse();
4424 while (InstIt != PrevInstIt) {
4425 if (PrevInstIt == PrevInst->getParent()->rend()) {
4426 PrevInstIt = Inst->getParent()->rbegin();
4427 continue;
4430 // Debug information does not impact spill cost.
4431 if ((isa<CallInst>(&*PrevInstIt) &&
4432 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4433 &*PrevInstIt != PrevInst)
4434 NumCalls++;
4436 ++PrevInstIt;
4439 if (NumCalls) {
4440 SmallVector<Type*, 4> V;
4441 for (auto *II : LiveValues) {
4442 auto *ScalarTy = II->getType();
4443 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
4444 ScalarTy = VectorTy->getElementType();
4445 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
4447 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4450 PrevInst = Inst;
4453 return Cost;
4456 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
4457 InstructionCost Cost = 0;
4458 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4459 << VectorizableTree.size() << ".\n");
4461 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4463 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4464 TreeEntry &TE = *VectorizableTree[I].get();
4466 InstructionCost C = getEntryCost(&TE, VectorizedVals);
4467 Cost += C;
4468 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4469 << " for bundle that starts with " << *TE.Scalars[0]
4470 << ".\n"
4471 << "SLP: Current total cost = " << Cost << "\n");
4474 SmallPtrSet<Value *, 16> ExtractCostCalculated;
4475 InstructionCost ExtractCost = 0;
4476 SmallVector<unsigned> VF;
4477 SmallVector<SmallVector<int>> ShuffleMask;
4478 SmallVector<Value *> FirstUsers;
4479 SmallVector<APInt> DemandedElts;
4480 for (ExternalUser &EU : ExternalUses) {
4481 // We only add extract cost once for the same scalar.
4482 if (!ExtractCostCalculated.insert(EU.Scalar).second)
4483 continue;
4485 // Uses by ephemeral values are free (because the ephemeral value will be
4486 // removed prior to code generation, and so the extraction will be
4487 // removed as well).
4488 if (EphValues.count(EU.User))
4489 continue;
4491 // No extract cost for vector "scalar"
4492 if (isa<FixedVectorType>(EU.Scalar->getType()))
4493 continue;
4495 // Already counted the cost for external uses when tried to adjust the cost
4496 // for extractelements, no need to add it again.
4497 if (isa<ExtractElementInst>(EU.Scalar))
4498 continue;
4500 // If found user is an insertelement, do not calculate extract cost but try
4501 // to detect it as a final shuffled/identity match.
4502 if (EU.User && isa<InsertElementInst>(EU.User)) {
4503 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
4504 Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
4505 if (!InsertIdx || *InsertIdx == UndefMaskElem)
4506 continue;
4507 Value *VU = EU.User;
4508 auto *It = find_if(FirstUsers, [VU](Value *V) {
4509 // Checks if 2 insertelements are from the same buildvector.
4510 if (VU->getType() != V->getType())
4511 return false;
4512 auto *IE1 = cast<InsertElementInst>(VU);
4513 auto *IE2 = cast<InsertElementInst>(V);
4514 // Go though of insertelement instructions trying to find either VU as
4515 // the original vector for IE2 or V as the original vector for IE1.
4516 do {
4517 if (IE1 == VU || IE2 == V)
4518 return true;
4519 if (IE1)
4520 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
4521 if (IE2)
4522 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
4523 } while (IE1 || IE2);
4524 return false;
4526 int VecId = -1;
4527 if (It == FirstUsers.end()) {
4528 VF.push_back(FTy->getNumElements());
4529 ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
4530 FirstUsers.push_back(EU.User);
4531 DemandedElts.push_back(APInt::getNullValue(VF.back()));
4532 VecId = FirstUsers.size() - 1;
4533 } else {
4534 VecId = std::distance(FirstUsers.begin(), It);
4536 int Idx = *InsertIdx;
4537 ShuffleMask[VecId][Idx] = EU.Lane;
4538 DemandedElts[VecId].setBit(Idx);
4542 // If we plan to rewrite the tree in a smaller type, we will need to sign
4543 // extend the extracted value back to the original type. Here, we account
4544 // for the extract and the added cost of the sign extend if needed.
4545 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4546 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4547 if (MinBWs.count(ScalarRoot)) {
4548 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4549 auto Extend =
4550 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4551 VecTy = FixedVectorType::get(MinTy, BundleWidth);
4552 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4553 VecTy, EU.Lane);
4554 } else {
4555 ExtractCost +=
4556 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4560 InstructionCost SpillCost = getSpillCost();
4561 Cost += SpillCost + ExtractCost;
4562 for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
4563 // For the very first element - simple shuffle of the source vector.
4564 int Limit = ShuffleMask[I].size() * 2;
4565 if (I == 0 &&
4566 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) &&
4567 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) {
4568 InstructionCost C = TTI->getShuffleCost(
4569 TTI::SK_PermuteSingleSrc,
4570 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
4571 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4572 << " for final shuffle of insertelement external users "
4573 << *VectorizableTree.front()->Scalars.front() << ".\n"
4574 << "SLP: Current total cost = " << Cost << "\n");
4575 Cost += C;
4576 continue;
4578 // Other elements - permutation of 2 vectors (the initial one and the next
4579 // Ith incoming vector).
4580 unsigned VF = ShuffleMask[I].size();
4581 for (unsigned Idx = 0; Idx < VF; ++Idx) {
4582 int &Mask = ShuffleMask[I][Idx];
4583 Mask = Mask == UndefMaskElem ? Idx : VF + Mask;
4585 InstructionCost C = TTI->getShuffleCost(
4586 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
4587 ShuffleMask[I]);
4588 LLVM_DEBUG(
4589 dbgs()
4590 << "SLP: Adding cost " << C
4591 << " for final shuffle of vector node and external insertelement users "
4592 << *VectorizableTree.front()->Scalars.front() << ".\n"
4593 << "SLP: Current total cost = " << Cost << "\n");
4594 Cost += C;
4595 InstructionCost InsertCost = TTI->getScalarizationOverhead(
4596 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
4597 /*Insert*/ true,
4598 /*Extract*/ false);
4599 Cost -= InsertCost;
4600 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
4601 << " for insertelements gather.\n"
4602 << "SLP: Current total cost = " << Cost << "\n");
4605 #ifndef NDEBUG
4606 SmallString<256> Str;
4608 raw_svector_ostream OS(Str);
4609 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4610 << "SLP: Extract Cost = " << ExtractCost << ".\n"
4611 << "SLP: Total Cost = " << Cost << ".\n";
4613 LLVM_DEBUG(dbgs() << Str);
4614 if (ViewSLPTree)
4615 ViewGraph(this, "SLP" + F->getName(), false, Str);
4616 #endif
4618 return Cost;
4621 Optional<TargetTransformInfo::ShuffleKind>
4622 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4623 SmallVectorImpl<const TreeEntry *> &Entries) {
4624 // TODO: currently checking only for Scalars in the tree entry, need to count
4625 // reused elements too for better cost estimation.
4626 Mask.assign(TE->Scalars.size(), UndefMaskElem);
4627 Entries.clear();
4628 // Build a lists of values to tree entries.
4629 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
4630 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
4631 if (EntryPtr.get() == TE)
4632 break;
4633 if (EntryPtr->State != TreeEntry::NeedToGather)
4634 continue;
4635 for (Value *V : EntryPtr->Scalars)
4636 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
4638 // Find all tree entries used by the gathered values. If no common entries
4639 // found - not a shuffle.
4640 // Here we build a set of tree nodes for each gathered value and trying to
4641 // find the intersection between these sets. If we have at least one common
4642 // tree node for each gathered value - we have just a permutation of the
4643 // single vector. If we have 2 different sets, we're in situation where we
4644 // have a permutation of 2 input vectors.
4645 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
4646 DenseMap<Value *, int> UsedValuesEntry;
4647 for (Value *V : TE->Scalars) {
4648 if (isa<UndefValue>(V))
4649 continue;
4650 // Build a list of tree entries where V is used.
4651 SmallPtrSet<const TreeEntry *, 4> VToTEs;
4652 auto It = ValueToTEs.find(V);
4653 if (It != ValueToTEs.end())
4654 VToTEs = It->second;
4655 if (const TreeEntry *VTE = getTreeEntry(V))
4656 VToTEs.insert(VTE);
4657 if (VToTEs.empty())
4658 return None;
4659 if (UsedTEs.empty()) {
4660 // The first iteration, just insert the list of nodes to vector.
4661 UsedTEs.push_back(VToTEs);
4662 } else {
4663 // Need to check if there are any previously used tree nodes which use V.
4664 // If there are no such nodes, consider that we have another one input
4665 // vector.
4666 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
4667 unsigned Idx = 0;
4668 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
4669 // Do we have a non-empty intersection of previously listed tree entries
4670 // and tree entries using current V?
4671 set_intersect(VToTEs, Set);
4672 if (!VToTEs.empty()) {
4673 // Yes, write the new subset and continue analysis for the next
4674 // scalar.
4675 Set.swap(VToTEs);
4676 break;
4678 VToTEs = SavedVToTEs;
4679 ++Idx;
4681 // No non-empty intersection found - need to add a second set of possible
4682 // source vectors.
4683 if (Idx == UsedTEs.size()) {
4684 // If the number of input vectors is greater than 2 - not a permutation,
4685 // fallback to the regular gather.
4686 if (UsedTEs.size() == 2)
4687 return None;
4688 UsedTEs.push_back(SavedVToTEs);
4689 Idx = UsedTEs.size() - 1;
4691 UsedValuesEntry.try_emplace(V, Idx);
4695 unsigned VF = 0;
4696 if (UsedTEs.size() == 1) {
4697 // Try to find the perfect match in another gather node at first.
4698 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
4699 return EntryPtr->isSame(TE->Scalars);
4701 if (It != UsedTEs.front().end()) {
4702 Entries.push_back(*It);
4703 std::iota(Mask.begin(), Mask.end(), 0);
4704 return TargetTransformInfo::SK_PermuteSingleSrc;
4706 // No perfect match, just shuffle, so choose the first tree node.
4707 Entries.push_back(*UsedTEs.front().begin());
4708 } else {
4709 // Try to find nodes with the same vector factor.
4710 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
4711 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4712 // landed.
4713 auto &&GetVF = [](const TreeEntry *TE) {
4714 if (!TE->ReuseShuffleIndices.empty())
4715 return TE->ReuseShuffleIndices.size();
4716 return TE->Scalars.size();
4718 DenseMap<int, const TreeEntry *> VFToTE;
4719 for (const TreeEntry *TE : UsedTEs.front())
4720 VFToTE.try_emplace(GetVF(TE), TE);
4721 for (const TreeEntry *TE : UsedTEs.back()) {
4722 auto It = VFToTE.find(GetVF(TE));
4723 if (It != VFToTE.end()) {
4724 VF = It->first;
4725 Entries.push_back(It->second);
4726 Entries.push_back(TE);
4727 break;
4730 // No 2 source vectors with the same vector factor - give up and do regular
4731 // gather.
4732 if (Entries.empty())
4733 return None;
4736 // Build a shuffle mask for better cost estimation and vector emission.
4737 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4738 Value *V = TE->Scalars[I];
4739 if (isa<UndefValue>(V))
4740 continue;
4741 unsigned Idx = UsedValuesEntry.lookup(V);
4742 const TreeEntry *VTE = Entries[Idx];
4743 int FoundLane = VTE->findLaneForValue(V);
4744 Mask[I] = Idx * VF + FoundLane;
4745 // Extra check required by isSingleSourceMaskImpl function (called by
4746 // ShuffleVectorInst::isSingleSourceMask).
4747 if (Mask[I] >= 2 * E)
4748 return None;
4750 switch (Entries.size()) {
4751 case 1:
4752 return TargetTransformInfo::SK_PermuteSingleSrc;
4753 case 2:
4754 return TargetTransformInfo::SK_PermuteTwoSrc;
4755 default:
4756 break;
4758 return None;
4761 InstructionCost
4762 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4763 const DenseSet<unsigned> &ShuffledIndices) const {
4764 unsigned NumElts = Ty->getNumElements();
4765 APInt DemandedElts = APInt::getNullValue(NumElts);
4766 for (unsigned I = 0; I < NumElts; ++I)
4767 if (!ShuffledIndices.count(I))
4768 DemandedElts.setBit(I);
4769 InstructionCost Cost =
4770 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4771 /*Extract*/ false);
4772 if (!ShuffledIndices.empty())
4773 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4774 return Cost;
4777 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4778 // Find the type of the operands in VL.
4779 Type *ScalarTy = VL[0]->getType();
4780 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4781 ScalarTy = SI->getValueOperand()->getType();
4782 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4783 // Find the cost of inserting/extracting values from the vector.
4784 // Check if the same elements are inserted several times and count them as
4785 // shuffle candidates.
4786 DenseSet<unsigned> ShuffledElements;
4787 DenseSet<Value *> UniqueElements;
4788 // Iterate in reverse order to consider insert elements with the high cost.
4789 for (unsigned I = VL.size(); I > 0; --I) {
4790 unsigned Idx = I - 1;
4791 if (isConstant(VL[Idx]))
4792 continue;
4793 if (!UniqueElements.insert(VL[Idx]).second)
4794 ShuffledElements.insert(Idx);
4796 return getGatherCost(VecTy, ShuffledElements);
4799 // Perform operand reordering on the instructions in VL and return the reordered
4800 // operands in Left and Right.
4801 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4802 SmallVectorImpl<Value *> &Left,
4803 SmallVectorImpl<Value *> &Right,
4804 const DataLayout &DL,
4805 ScalarEvolution &SE,
4806 const BoUpSLP &R) {
4807 if (VL.empty())
4808 return;
4809 VLOperands Ops(VL, DL, SE, R);
4810 // Reorder the operands in place.
4811 Ops.reorder();
4812 Left = Ops.getVL(0);
4813 Right = Ops.getVL(1);
4816 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4817 // Get the basic block this bundle is in. All instructions in the bundle
4818 // should be in this block.
4819 auto *Front = E->getMainOp();
4820 auto *BB = Front->getParent();
4821 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4822 auto *I = cast<Instruction>(V);
4823 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4824 }));
4826 // The last instruction in the bundle in program order.
4827 Instruction *LastInst = nullptr;
4829 // Find the last instruction. The common case should be that BB has been
4830 // scheduled, and the last instruction is VL.back(). So we start with
4831 // VL.back() and iterate over schedule data until we reach the end of the
4832 // bundle. The end of the bundle is marked by null ScheduleData.
4833 if (BlocksSchedules.count(BB)) {
4834 auto *Bundle =
4835 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4836 if (Bundle && Bundle->isPartOfBundle())
4837 for (; Bundle; Bundle = Bundle->NextInBundle)
4838 if (Bundle->OpValue == Bundle->Inst)
4839 LastInst = Bundle->Inst;
4842 // LastInst can still be null at this point if there's either not an entry
4843 // for BB in BlocksSchedules or there's no ScheduleData available for
4844 // VL.back(). This can be the case if buildTree_rec aborts for various
4845 // reasons (e.g., the maximum recursion depth is reached, the maximum region
4846 // size is reached, etc.). ScheduleData is initialized in the scheduling
4847 // "dry-run".
4849 // If this happens, we can still find the last instruction by brute force. We
4850 // iterate forwards from Front (inclusive) until we either see all
4851 // instructions in the bundle or reach the end of the block. If Front is the
4852 // last instruction in program order, LastInst will be set to Front, and we
4853 // will visit all the remaining instructions in the block.
4855 // One of the reasons we exit early from buildTree_rec is to place an upper
4856 // bound on compile-time. Thus, taking an additional compile-time hit here is
4857 // not ideal. However, this should be exceedingly rare since it requires that
4858 // we both exit early from buildTree_rec and that the bundle be out-of-order
4859 // (causing us to iterate all the way to the end of the block).
4860 if (!LastInst) {
4861 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4862 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4863 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4864 LastInst = &I;
4865 if (Bundle.empty())
4866 break;
4869 assert(LastInst && "Failed to find last instruction in bundle");
4871 // Set the insertion point after the last instruction in the bundle. Set the
4872 // debug location to Front.
4873 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4874 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4877 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4878 // List of instructions/lanes from current block and/or the blocks which are
4879 // part of the current loop. These instructions will be inserted at the end to
4880 // make it possible to optimize loops and hoist invariant instructions out of
4881 // the loops body with better chances for success.
4882 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
4883 SmallSet<int, 4> PostponedIndices;
4884 Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
4885 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
4886 SmallPtrSet<BasicBlock *, 4> Visited;
4887 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
4888 InsertBB = InsertBB->getSinglePredecessor();
4889 return InsertBB && InsertBB == InstBB;
4891 for (int I = 0, E = VL.size(); I < E; ++I) {
4892 if (auto *Inst = dyn_cast<Instruction>(VL[I]))
4893 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
4894 getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
4895 PostponedIndices.insert(I).second)
4896 PostponedInsts.emplace_back(Inst, I);
4899 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
4900 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
4901 auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4902 if (!InsElt)
4903 return Vec;
4904 GatherSeq.insert(InsElt);
4905 CSEBlocks.insert(InsElt->getParent());
4906 // Add to our 'need-to-extract' list.
4907 if (TreeEntry *Entry = getTreeEntry(V)) {
4908 // Find which lane we need to extract.
4909 unsigned FoundLane = Entry->findLaneForValue(V);
4910 ExternalUses.emplace_back(V, InsElt, FoundLane);
4912 return Vec;
4914 Value *Val0 =
4915 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4916 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4917 Value *Vec = PoisonValue::get(VecTy);
4918 SmallVector<int> NonConsts;
4919 // Insert constant values at first.
4920 for (int I = 0, E = VL.size(); I < E; ++I) {
4921 if (PostponedIndices.contains(I))
4922 continue;
4923 if (!isConstant(VL[I])) {
4924 NonConsts.push_back(I);
4925 continue;
4927 Vec = CreateInsertElement(Vec, VL[I], I);
4929 // Insert non-constant values.
4930 for (int I : NonConsts)
4931 Vec = CreateInsertElement(Vec, VL[I], I);
4932 // Append instructions, which are/may be part of the loop, in the end to make
4933 // it possible to hoist non-loop-based instructions.
4934 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
4935 Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
4937 return Vec;
4940 namespace {
4941 /// Merges shuffle masks and emits final shuffle instruction, if required.
4942 class ShuffleInstructionBuilder {
4943 IRBuilderBase &Builder;
4944 const unsigned VF = 0;
4945 bool IsFinalized = false;
4946 SmallVector<int, 4> Mask;
4948 public:
4949 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
4950 : Builder(Builder), VF(VF) {}
4952 /// Adds a mask, inverting it before applying.
4953 void addInversedMask(ArrayRef<unsigned> SubMask) {
4954 if (SubMask.empty())
4955 return;
4956 SmallVector<int, 4> NewMask;
4957 inversePermutation(SubMask, NewMask);
4958 addMask(NewMask);
4961 /// Functions adds masks, merging them into single one.
4962 void addMask(ArrayRef<unsigned> SubMask) {
4963 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4964 addMask(NewMask);
4967 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
4969 Value *finalize(Value *V) {
4970 IsFinalized = true;
4971 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
4972 if (VF == ValueVF && Mask.empty())
4973 return V;
4974 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
4975 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
4976 addMask(NormalizedMask);
4978 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
4979 return V;
4980 return Builder.CreateShuffleVector(V, Mask, "shuffle");
4983 ~ShuffleInstructionBuilder() {
4984 assert((IsFinalized || Mask.empty()) &&
4985 "Shuffle construction must be finalized.");
4988 } // namespace
4990 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4991 unsigned VF = VL.size();
4992 InstructionsState S = getSameOpcode(VL);
4993 if (S.getOpcode()) {
4994 if (TreeEntry *E = getTreeEntry(S.OpValue))
4995 if (E->isSame(VL)) {
4996 Value *V = vectorizeTree(E);
4997 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
4998 if (!E->ReuseShuffleIndices.empty()) {
4999 // Reshuffle to get only unique values.
5000 // If some of the scalars are duplicated in the vectorization tree
5001 // entry, we do not vectorize them but instead generate a mask for
5002 // the reuses. But if there are several users of the same entry,
5003 // they may have different vectorization factors. This is especially
5004 // important for PHI nodes. In this case, we need to adapt the
5005 // resulting instruction for the user vectorization factor and have
5006 // to reshuffle it again to take only unique elements of the vector.
5007 // Without this code the function incorrectly returns reduced vector
5008 // instruction with the same elements, not with the unique ones.
5010 // block:
5011 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
5012 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
5013 // ... (use %2)
5014 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
5015 // br %block
5016 SmallVector<int> UniqueIdxs;
5017 SmallSet<int, 4> UsedIdxs;
5018 int Pos = 0;
5019 int Sz = VL.size();
5020 for (int Idx : E->ReuseShuffleIndices) {
5021 if (Idx != Sz && UsedIdxs.insert(Idx).second)
5022 UniqueIdxs.emplace_back(Pos);
5023 ++Pos;
5025 assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
5026 "less than original vector size.");
5027 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
5028 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
5029 } else {
5030 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
5031 "Expected vectorization factor less "
5032 "than original vector size.");
5033 SmallVector<int> UniformMask(VF, 0);
5034 std::iota(UniformMask.begin(), UniformMask.end(), 0);
5035 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
5038 return V;
5042 // Check that every instruction appears once in this bundle.
5043 SmallVector<int> ReuseShuffleIndicies;
5044 SmallVector<Value *> UniqueValues;
5045 if (VL.size() > 2) {
5046 DenseMap<Value *, unsigned> UniquePositions;
5047 unsigned NumValues =
5048 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
5049 return !isa<UndefValue>(V);
5050 }).base());
5051 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
5052 int UniqueVals = 0;
5053 for (Value *V : VL.drop_back(VL.size() - VF)) {
5054 if (isa<UndefValue>(V)) {
5055 ReuseShuffleIndicies.emplace_back(UndefMaskElem);
5056 continue;
5058 if (isConstant(V)) {
5059 ReuseShuffleIndicies.emplace_back(UniqueValues.size());
5060 UniqueValues.emplace_back(V);
5061 continue;
5063 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5064 ReuseShuffleIndicies.emplace_back(Res.first->second);
5065 if (Res.second) {
5066 UniqueValues.emplace_back(V);
5067 ++UniqueVals;
5070 if (UniqueVals == 1 && UniqueValues.size() == 1) {
5071 // Emit pure splat vector.
5072 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
5073 UndefMaskElem);
5074 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
5075 ReuseShuffleIndicies.clear();
5076 UniqueValues.clear();
5077 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
5079 UniqueValues.append(VF - UniqueValues.size(),
5080 PoisonValue::get(VL[0]->getType()));
5081 VL = UniqueValues;
5084 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5085 Value *Vec = gather(VL);
5086 if (!ReuseShuffleIndicies.empty()) {
5087 ShuffleBuilder.addMask(ReuseShuffleIndicies);
5088 Vec = ShuffleBuilder.finalize(Vec);
5089 if (auto *I = dyn_cast<Instruction>(Vec)) {
5090 GatherSeq.insert(I);
5091 CSEBlocks.insert(I->getParent());
5094 return Vec;
5097 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
5098 IRBuilder<>::InsertPointGuard Guard(Builder);
5100 if (E->VectorizedValue) {
5101 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
5102 return E->VectorizedValue;
5105 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5106 unsigned VF = E->Scalars.size();
5107 if (NeedToShuffleReuses)
5108 VF = E->ReuseShuffleIndices.size();
5109 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5110 if (E->State == TreeEntry::NeedToGather) {
5111 setInsertPointAfterBundle(E);
5112 Value *Vec;
5113 SmallVector<int> Mask;
5114 SmallVector<const TreeEntry *> Entries;
5115 Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5116 isGatherShuffledEntry(E, Mask, Entries);
5117 if (Shuffle.hasValue()) {
5118 assert((Entries.size() == 1 || Entries.size() == 2) &&
5119 "Expected shuffle of 1 or 2 entries.");
5120 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
5121 Entries.back()->VectorizedValue, Mask);
5122 } else {
5123 Vec = gather(E->Scalars);
5125 if (NeedToShuffleReuses) {
5126 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5127 Vec = ShuffleBuilder.finalize(Vec);
5128 if (auto *I = dyn_cast<Instruction>(Vec)) {
5129 GatherSeq.insert(I);
5130 CSEBlocks.insert(I->getParent());
5133 E->VectorizedValue = Vec;
5134 return Vec;
5137 assert((E->State == TreeEntry::Vectorize ||
5138 E->State == TreeEntry::ScatterVectorize) &&
5139 "Unhandled state");
5140 unsigned ShuffleOrOp =
5141 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5142 Instruction *VL0 = E->getMainOp();
5143 Type *ScalarTy = VL0->getType();
5144 if (auto *Store = dyn_cast<StoreInst>(VL0))
5145 ScalarTy = Store->getValueOperand()->getType();
5146 else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
5147 ScalarTy = IE->getOperand(1)->getType();
5148 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
5149 switch (ShuffleOrOp) {
5150 case Instruction::PHI: {
5151 auto *PH = cast<PHINode>(VL0);
5152 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
5153 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5154 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
5155 Value *V = NewPhi;
5156 if (NeedToShuffleReuses)
5157 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
5159 E->VectorizedValue = V;
5161 // PHINodes may have multiple entries from the same block. We want to
5162 // visit every block once.
5163 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
5165 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
5166 ValueList Operands;
5167 BasicBlock *IBB = PH->getIncomingBlock(i);
5169 if (!VisitedBBs.insert(IBB).second) {
5170 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
5171 continue;
5174 Builder.SetInsertPoint(IBB->getTerminator());
5175 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5176 Value *Vec = vectorizeTree(E->getOperand(i));
5177 NewPhi->addIncoming(Vec, IBB);
5180 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
5181 "Invalid number of incoming values");
5182 return V;
5185 case Instruction::ExtractElement: {
5186 Value *V = E->getSingleOperand(0);
5187 Builder.SetInsertPoint(VL0);
5188 ShuffleBuilder.addInversedMask(E->ReorderIndices);
5189 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5190 V = ShuffleBuilder.finalize(V);
5191 E->VectorizedValue = V;
5192 return V;
5194 case Instruction::ExtractValue: {
5195 auto *LI = cast<LoadInst>(E->getSingleOperand(0));
5196 Builder.SetInsertPoint(LI);
5197 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
5198 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
5199 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
5200 Value *NewV = propagateMetadata(V, E->Scalars);
5201 ShuffleBuilder.addInversedMask(E->ReorderIndices);
5202 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5203 NewV = ShuffleBuilder.finalize(NewV);
5204 E->VectorizedValue = NewV;
5205 return NewV;
5207 case Instruction::InsertElement: {
5208 Builder.SetInsertPoint(VL0);
5209 Value *V = vectorizeTree(E->getOperand(1));
5211 const unsigned NumElts =
5212 cast<FixedVectorType>(VL0->getType())->getNumElements();
5213 const unsigned NumScalars = E->Scalars.size();
5215 // Create InsertVector shuffle if necessary
5216 Instruction *FirstInsert = nullptr;
5217 bool IsIdentity = true;
5218 unsigned Offset = UINT_MAX;
5219 for (unsigned I = 0; I < NumScalars; ++I) {
5220 Value *Scalar = E->Scalars[I];
5221 if (!FirstInsert &&
5222 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
5223 FirstInsert = cast<Instruction>(Scalar);
5224 Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5225 if (!InsertIdx || *InsertIdx == UndefMaskElem)
5226 continue;
5227 unsigned Idx = *InsertIdx;
5228 if (Idx < Offset) {
5229 Offset = Idx;
5230 IsIdentity &= I == 0;
5231 } else {
5232 assert(Idx >= Offset && "Failed to find vector index offset");
5233 IsIdentity &= Idx - Offset == I;
5236 assert(Offset < NumElts && "Failed to find vector index offset");
5238 // Create shuffle to resize vector
5239 SmallVector<int> Mask(NumElts, UndefMaskElem);
5240 if (!IsIdentity) {
5241 for (unsigned I = 0; I < NumScalars; ++I) {
5242 Value *Scalar = E->Scalars[I];
5243 Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5244 if (!InsertIdx || *InsertIdx == UndefMaskElem)
5245 continue;
5246 Mask[*InsertIdx - Offset] = I;
5248 } else {
5249 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5251 if (!IsIdentity || NumElts != NumScalars)
5252 V = Builder.CreateShuffleVector(V, Mask);
5254 if ((!IsIdentity || Offset != 0 ||
5255 !isa<UndefValue>(FirstInsert->getOperand(0))) &&
5256 NumElts != NumScalars) {
5257 SmallVector<int> InsertMask(NumElts);
5258 std::iota(InsertMask.begin(), InsertMask.end(), 0);
5259 for (unsigned I = 0; I < NumElts; I++) {
5260 if (Mask[I] != UndefMaskElem)
5261 InsertMask[Offset + I] = NumElts + I;
5264 V = Builder.CreateShuffleVector(
5265 FirstInsert->getOperand(0), V, InsertMask,
5266 cast<Instruction>(E->Scalars.back())->getName());
5269 ++NumVectorInstructions;
5270 E->VectorizedValue = V;
5271 return V;
5273 case Instruction::ZExt:
5274 case Instruction::SExt:
5275 case Instruction::FPToUI:
5276 case Instruction::FPToSI:
5277 case Instruction::FPExt:
5278 case Instruction::PtrToInt:
5279 case Instruction::IntToPtr:
5280 case Instruction::SIToFP:
5281 case Instruction::UIToFP:
5282 case Instruction::Trunc:
5283 case Instruction::FPTrunc:
5284 case Instruction::BitCast: {
5285 setInsertPointAfterBundle(E);
5287 Value *InVec = vectorizeTree(E->getOperand(0));
5289 if (E->VectorizedValue) {
5290 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5291 return E->VectorizedValue;
5294 auto *CI = cast<CastInst>(VL0);
5295 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
5296 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5297 V = ShuffleBuilder.finalize(V);
5299 E->VectorizedValue = V;
5300 ++NumVectorInstructions;
5301 return V;
5303 case Instruction::FCmp:
5304 case Instruction::ICmp: {
5305 setInsertPointAfterBundle(E);
5307 Value *L = vectorizeTree(E->getOperand(0));
5308 Value *R = vectorizeTree(E->getOperand(1));
5310 if (E->VectorizedValue) {
5311 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5312 return E->VectorizedValue;
5315 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5316 Value *V = Builder.CreateCmp(P0, L, R);
5317 propagateIRFlags(V, E->Scalars, VL0);
5318 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5319 V = ShuffleBuilder.finalize(V);
5321 E->VectorizedValue = V;
5322 ++NumVectorInstructions;
5323 return V;
5325 case Instruction::Select: {
5326 setInsertPointAfterBundle(E);
5328 Value *Cond = vectorizeTree(E->getOperand(0));
5329 Value *True = vectorizeTree(E->getOperand(1));
5330 Value *False = vectorizeTree(E->getOperand(2));
5332 if (E->VectorizedValue) {
5333 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5334 return E->VectorizedValue;
5337 Value *V = Builder.CreateSelect(Cond, True, False);
5338 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5339 V = ShuffleBuilder.finalize(V);
5341 E->VectorizedValue = V;
5342 ++NumVectorInstructions;
5343 return V;
5345 case Instruction::FNeg: {
5346 setInsertPointAfterBundle(E);
5348 Value *Op = vectorizeTree(E->getOperand(0));
5350 if (E->VectorizedValue) {
5351 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5352 return E->VectorizedValue;
5355 Value *V = Builder.CreateUnOp(
5356 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
5357 propagateIRFlags(V, E->Scalars, VL0);
5358 if (auto *I = dyn_cast<Instruction>(V))
5359 V = propagateMetadata(I, E->Scalars);
5361 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5362 V = ShuffleBuilder.finalize(V);
5364 E->VectorizedValue = V;
5365 ++NumVectorInstructions;
5367 return V;
5369 case Instruction::Add:
5370 case Instruction::FAdd:
5371 case Instruction::Sub:
5372 case Instruction::FSub:
5373 case Instruction::Mul:
5374 case Instruction::FMul:
5375 case Instruction::UDiv:
5376 case Instruction::SDiv:
5377 case Instruction::FDiv:
5378 case Instruction::URem:
5379 case Instruction::SRem:
5380 case Instruction::FRem:
5381 case Instruction::Shl:
5382 case Instruction::LShr:
5383 case Instruction::AShr:
5384 case Instruction::And:
5385 case Instruction::Or:
5386 case Instruction::Xor: {
5387 setInsertPointAfterBundle(E);
5389 Value *LHS = vectorizeTree(E->getOperand(0));
5390 Value *RHS = vectorizeTree(E->getOperand(1));
5392 if (E->VectorizedValue) {
5393 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5394 return E->VectorizedValue;
5397 Value *V = Builder.CreateBinOp(
5398 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
5399 RHS);
5400 propagateIRFlags(V, E->Scalars, VL0);
5401 if (auto *I = dyn_cast<Instruction>(V))
5402 V = propagateMetadata(I, E->Scalars);
5404 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5405 V = ShuffleBuilder.finalize(V);
5407 E->VectorizedValue = V;
5408 ++NumVectorInstructions;
5410 return V;
5412 case Instruction::Load: {
5413 // Loads are inserted at the head of the tree because we don't want to
5414 // sink them all the way down past store instructions.
5415 bool IsReorder = E->updateStateIfReorder();
5416 if (IsReorder)
5417 VL0 = E->getMainOp();
5418 setInsertPointAfterBundle(E);
5420 LoadInst *LI = cast<LoadInst>(VL0);
5421 Instruction *NewLI;
5422 unsigned AS = LI->getPointerAddressSpace();
5423 Value *PO = LI->getPointerOperand();
5424 if (E->State == TreeEntry::Vectorize) {
5426 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
5428 // The pointer operand uses an in-tree scalar so we add the new BitCast
5429 // to ExternalUses list to make sure that an extract will be generated
5430 // in the future.
5431 if (getTreeEntry(PO))
5432 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
5434 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
5435 } else {
5436 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
5437 Value *VecPtr = vectorizeTree(E->getOperand(0));
5438 // Use the minimum alignment of the gathered loads.
5439 Align CommonAlignment = LI->getAlign();
5440 for (Value *V : E->Scalars)
5441 CommonAlignment =
5442 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5443 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
5445 Value *V = propagateMetadata(NewLI, E->Scalars);
5447 ShuffleBuilder.addInversedMask(E->ReorderIndices);
5448 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5449 V = ShuffleBuilder.finalize(V);
5450 E->VectorizedValue = V;
5451 ++NumVectorInstructions;
5452 return V;
5454 case Instruction::Store: {
5455 bool IsReorder = !E->ReorderIndices.empty();
5456 auto *SI = cast<StoreInst>(
5457 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
5458 unsigned AS = SI->getPointerAddressSpace();
5460 setInsertPointAfterBundle(E);
5462 Value *VecValue = vectorizeTree(E->getOperand(0));
5463 ShuffleBuilder.addMask(E->ReorderIndices);
5464 VecValue = ShuffleBuilder.finalize(VecValue);
5466 Value *ScalarPtr = SI->getPointerOperand();
5467 Value *VecPtr = Builder.CreateBitCast(
5468 ScalarPtr, VecValue->getType()->getPointerTo(AS));
5469 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
5470 SI->getAlign());
5472 // The pointer operand uses an in-tree scalar, so add the new BitCast to
5473 // ExternalUses to make sure that an extract will be generated in the
5474 // future.
5475 if (getTreeEntry(ScalarPtr))
5476 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
5478 Value *V = propagateMetadata(ST, E->Scalars);
5480 E->VectorizedValue = V;
5481 ++NumVectorInstructions;
5482 return V;
5484 case Instruction::GetElementPtr: {
5485 setInsertPointAfterBundle(E);
5487 Value *Op0 = vectorizeTree(E->getOperand(0));
5489 std::vector<Value *> OpVecs;
5490 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
5491 ++j) {
5492 ValueList &VL = E->getOperand(j);
5493 // Need to cast all elements to the same type before vectorization to
5494 // avoid crash.
5495 Type *VL0Ty = VL0->getOperand(j)->getType();
5496 Type *Ty = llvm::all_of(
5497 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
5498 ? VL0Ty
5499 : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5500 ->getPointerOperandType()
5501 ->getScalarType());
5502 for (Value *&V : VL) {
5503 auto *CI = cast<ConstantInt>(V);
5504 V = ConstantExpr::getIntegerCast(CI, Ty,
5505 CI->getValue().isSignBitSet());
5507 Value *OpVec = vectorizeTree(VL);
5508 OpVecs.push_back(OpVec);
5511 Value *V = Builder.CreateGEP(
5512 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
5513 if (Instruction *I = dyn_cast<Instruction>(V))
5514 V = propagateMetadata(I, E->Scalars);
5516 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5517 V = ShuffleBuilder.finalize(V);
5519 E->VectorizedValue = V;
5520 ++NumVectorInstructions;
5522 return V;
5524 case Instruction::Call: {
5525 CallInst *CI = cast<CallInst>(VL0);
5526 setInsertPointAfterBundle(E);
5528 Intrinsic::ID IID = Intrinsic::not_intrinsic;
5529 if (Function *FI = CI->getCalledFunction())
5530 IID = FI->getIntrinsicID();
5532 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5534 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5535 bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5536 VecCallCosts.first <= VecCallCosts.second;
5538 Value *ScalarArg = nullptr;
5539 std::vector<Value *> OpVecs;
5540 SmallVector<Type *, 2> TysForDecl =
5541 {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5542 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5543 ValueList OpVL;
5544 // Some intrinsics have scalar arguments. This argument should not be
5545 // vectorized.
5546 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5547 CallInst *CEI = cast<CallInst>(VL0);
5548 ScalarArg = CEI->getArgOperand(j);
5549 OpVecs.push_back(CEI->getArgOperand(j));
5550 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
5551 TysForDecl.push_back(ScalarArg->getType());
5552 continue;
5555 Value *OpVec = vectorizeTree(E->getOperand(j));
5556 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
5557 OpVecs.push_back(OpVec);
5560 Function *CF;
5561 if (!UseIntrinsic) {
5562 VFShape Shape =
5563 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5564 VecTy->getNumElements())),
5565 false /*HasGlobalPred*/);
5566 CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5567 } else {
5568 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
5571 SmallVector<OperandBundleDef, 1> OpBundles;
5572 CI->getOperandBundlesAsDefs(OpBundles);
5573 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5575 // The scalar argument uses an in-tree scalar so we add the new vectorized
5576 // call to ExternalUses list to make sure that an extract will be
5577 // generated in the future.
5578 if (ScalarArg && getTreeEntry(ScalarArg))
5579 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5581 propagateIRFlags(V, E->Scalars, VL0);
5582 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5583 V = ShuffleBuilder.finalize(V);
5585 E->VectorizedValue = V;
5586 ++NumVectorInstructions;
5587 return V;
5589 case Instruction::ShuffleVector: {
5590 assert(E->isAltShuffle() &&
5591 ((Instruction::isBinaryOp(E->getOpcode()) &&
5592 Instruction::isBinaryOp(E->getAltOpcode())) ||
5593 (Instruction::isCast(E->getOpcode()) &&
5594 Instruction::isCast(E->getAltOpcode()))) &&
5595 "Invalid Shuffle Vector Operand");
5597 Value *LHS = nullptr, *RHS = nullptr;
5598 if (Instruction::isBinaryOp(E->getOpcode())) {
5599 setInsertPointAfterBundle(E);
5600 LHS = vectorizeTree(E->getOperand(0));
5601 RHS = vectorizeTree(E->getOperand(1));
5602 } else {
5603 setInsertPointAfterBundle(E);
5604 LHS = vectorizeTree(E->getOperand(0));
5607 if (E->VectorizedValue) {
5608 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5609 return E->VectorizedValue;
5612 Value *V0, *V1;
5613 if (Instruction::isBinaryOp(E->getOpcode())) {
5614 V0 = Builder.CreateBinOp(
5615 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5616 V1 = Builder.CreateBinOp(
5617 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5618 } else {
5619 V0 = Builder.CreateCast(
5620 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5621 V1 = Builder.CreateCast(
5622 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5625 // Create shuffle to take alternate operations from the vector.
5626 // Also, gather up main and alt scalar ops to propagate IR flags to
5627 // each vector operation.
5628 ValueList OpScalars, AltScalars;
5629 unsigned Sz = E->Scalars.size();
5630 SmallVector<int> Mask(Sz);
5631 for (unsigned I = 0; I < Sz; ++I) {
5632 auto *OpInst = cast<Instruction>(E->Scalars[I]);
5633 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
5634 if (OpInst->getOpcode() == E->getAltOpcode()) {
5635 Mask[I] = Sz + I;
5636 AltScalars.push_back(E->Scalars[I]);
5637 } else {
5638 Mask[I] = I;
5639 OpScalars.push_back(E->Scalars[I]);
5643 propagateIRFlags(V0, OpScalars);
5644 propagateIRFlags(V1, AltScalars);
5646 Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5647 if (Instruction *I = dyn_cast<Instruction>(V))
5648 V = propagateMetadata(I, E->Scalars);
5649 ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5650 V = ShuffleBuilder.finalize(V);
5652 E->VectorizedValue = V;
5653 ++NumVectorInstructions;
5655 return V;
5657 default:
5658 llvm_unreachable("unknown inst");
5660 return nullptr;
5663 Value *BoUpSLP::vectorizeTree() {
5664 ExtraValueToDebugLocsMap ExternallyUsedValues;
5665 return vectorizeTree(ExternallyUsedValues);
5668 Value *
5669 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5670 // All blocks must be scheduled before any instructions are inserted.
5671 for (auto &BSIter : BlocksSchedules) {
5672 scheduleBlock(BSIter.second.get());
5675 Builder.SetInsertPoint(&F->getEntryBlock().front());
5676 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5678 // If the vectorized tree can be rewritten in a smaller type, we truncate the
5679 // vectorized root. InstCombine will then rewrite the entire expression. We
5680 // sign extend the extracted values below.
5681 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5682 if (MinBWs.count(ScalarRoot)) {
5683 if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5684 // If current instr is a phi and not the last phi, insert it after the
5685 // last phi node.
5686 if (isa<PHINode>(I))
5687 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5688 else
5689 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5691 auto BundleWidth = VectorizableTree[0]->Scalars.size();
5692 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5693 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5694 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5695 VectorizableTree[0]->VectorizedValue = Trunc;
5698 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5699 << " values .\n");
5701 // Extract all of the elements with the external uses.
5702 for (const auto &ExternalUse : ExternalUses) {
5703 Value *Scalar = ExternalUse.Scalar;
5704 llvm::User *User = ExternalUse.User;
5706 // Skip users that we already RAUW. This happens when one instruction
5707 // has multiple uses of the same value.
5708 if (User && !is_contained(Scalar->users(), User))
5709 continue;
5710 TreeEntry *E = getTreeEntry(Scalar);
5711 assert(E && "Invalid scalar");
5712 assert(E->State != TreeEntry::NeedToGather &&
5713 "Extracting from a gather list");
5715 Value *Vec = E->VectorizedValue;
5716 assert(Vec && "Can't find vectorizable value");
5718 Value *Lane = Builder.getInt32(ExternalUse.Lane);
5719 auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
5720 if (Scalar->getType() != Vec->getType()) {
5721 Value *Ex;
5722 // "Reuse" the existing extract to improve final codegen.
5723 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
5724 Ex = Builder.CreateExtractElement(ES->getOperand(0),
5725 ES->getOperand(1));
5726 } else {
5727 Ex = Builder.CreateExtractElement(Vec, Lane);
5729 // If necessary, sign-extend or zero-extend ScalarRoot
5730 // to the larger type.
5731 if (!MinBWs.count(ScalarRoot))
5732 return Ex;
5733 if (MinBWs[ScalarRoot].second)
5734 return Builder.CreateSExt(Ex, Scalar->getType());
5735 return Builder.CreateZExt(Ex, Scalar->getType());
5737 assert(isa<FixedVectorType>(Scalar->getType()) &&
5738 isa<InsertElementInst>(Scalar) &&
5739 "In-tree scalar of vector type is not insertelement?");
5740 return Vec;
5742 // If User == nullptr, the Scalar is used as extra arg. Generate
5743 // ExtractElement instruction and update the record for this scalar in
5744 // ExternallyUsedValues.
5745 if (!User) {
5746 assert(ExternallyUsedValues.count(Scalar) &&
5747 "Scalar with nullptr as an external user must be registered in "
5748 "ExternallyUsedValues map");
5749 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5750 Builder.SetInsertPoint(VecI->getParent(),
5751 std::next(VecI->getIterator()));
5752 } else {
5753 Builder.SetInsertPoint(&F->getEntryBlock().front());
5755 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5756 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5757 auto &NewInstLocs = ExternallyUsedValues[NewInst];
5758 auto It = ExternallyUsedValues.find(Scalar);
5759 assert(It != ExternallyUsedValues.end() &&
5760 "Externally used scalar is not found in ExternallyUsedValues");
5761 NewInstLocs.append(It->second);
5762 ExternallyUsedValues.erase(Scalar);
5763 // Required to update internally referenced instructions.
5764 Scalar->replaceAllUsesWith(NewInst);
5765 continue;
5768 // Generate extracts for out-of-tree users.
5769 // Find the insertion point for the extractelement lane.
5770 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5771 if (PHINode *PH = dyn_cast<PHINode>(User)) {
5772 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5773 if (PH->getIncomingValue(i) == Scalar) {
5774 Instruction *IncomingTerminator =
5775 PH->getIncomingBlock(i)->getTerminator();
5776 if (isa<CatchSwitchInst>(IncomingTerminator)) {
5777 Builder.SetInsertPoint(VecI->getParent(),
5778 std::next(VecI->getIterator()));
5779 } else {
5780 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5782 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5783 CSEBlocks.insert(PH->getIncomingBlock(i));
5784 PH->setOperand(i, NewInst);
5787 } else {
5788 Builder.SetInsertPoint(cast<Instruction>(User));
5789 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5790 CSEBlocks.insert(cast<Instruction>(User)->getParent());
5791 User->replaceUsesOfWith(Scalar, NewInst);
5793 } else {
5794 Builder.SetInsertPoint(&F->getEntryBlock().front());
5795 Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5796 CSEBlocks.insert(&F->getEntryBlock());
5797 User->replaceUsesOfWith(Scalar, NewInst);
5800 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5803 // For each vectorized value:
5804 for (auto &TEPtr : VectorizableTree) {
5805 TreeEntry *Entry = TEPtr.get();
5807 // No need to handle users of gathered values.
5808 if (Entry->State == TreeEntry::NeedToGather)
5809 continue;
5811 assert(Entry->VectorizedValue && "Can't find vectorizable value");
5813 // For each lane:
5814 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5815 Value *Scalar = Entry->Scalars[Lane];
5817 #ifndef NDEBUG
5818 Type *Ty = Scalar->getType();
5819 if (!Ty->isVoidTy()) {
5820 for (User *U : Scalar->users()) {
5821 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5823 // It is legal to delete users in the ignorelist.
5824 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) ||
5825 (isa_and_nonnull<Instruction>(U) &&
5826 isDeleted(cast<Instruction>(U)))) &&
5827 "Deleting out-of-tree value");
5830 #endif
5831 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5832 eraseInstruction(cast<Instruction>(Scalar));
5836 Builder.ClearInsertionPoint();
5837 InstrElementSize.clear();
5839 return VectorizableTree[0]->VectorizedValue;
5842 void BoUpSLP::optimizeGatherSequence() {
5843 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5844 << " gather sequences instructions.\n");
5845 // LICM InsertElementInst sequences.
5846 for (Instruction *I : GatherSeq) {
5847 if (isDeleted(I))
5848 continue;
5850 // Check if this block is inside a loop.
5851 Loop *L = LI->getLoopFor(I->getParent());
5852 if (!L)
5853 continue;
5855 // Check if it has a preheader.
5856 BasicBlock *PreHeader = L->getLoopPreheader();
5857 if (!PreHeader)
5858 continue;
5860 // If the vector or the element that we insert into it are
5861 // instructions that are defined in this basic block then we can't
5862 // hoist this instruction.
5863 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5864 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5865 if (Op0 && L->contains(Op0))
5866 continue;
5867 if (Op1 && L->contains(Op1))
5868 continue;
5870 // We can hoist this instruction. Move it to the pre-header.
5871 I->moveBefore(PreHeader->getTerminator());
5874 // Make a list of all reachable blocks in our CSE queue.
5875 SmallVector<const DomTreeNode *, 8> CSEWorkList;
5876 CSEWorkList.reserve(CSEBlocks.size());
5877 for (BasicBlock *BB : CSEBlocks)
5878 if (DomTreeNode *N = DT->getNode(BB)) {
5879 assert(DT->isReachableFromEntry(N));
5880 CSEWorkList.push_back(N);
5883 // Sort blocks by domination. This ensures we visit a block after all blocks
5884 // dominating it are visited.
5885 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
5886 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
5887 "Different nodes should have different DFS numbers");
5888 return A->getDFSNumIn() < B->getDFSNumIn();
5891 // Perform O(N^2) search over the gather sequences and merge identical
5892 // instructions. TODO: We can further optimize this scan if we split the
5893 // instructions into different buckets based on the insert lane.
5894 SmallVector<Instruction *, 16> Visited;
5895 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5896 assert(*I &&
5897 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5898 "Worklist not sorted properly!");
5899 BasicBlock *BB = (*I)->getBlock();
5900 // For all instructions in blocks containing gather sequences:
5901 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5902 Instruction *In = &*it++;
5903 if (isDeleted(In))
5904 continue;
5905 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In) &&
5906 !isa<ShuffleVectorInst>(In))
5907 continue;
5909 // Check if we can replace this instruction with any of the
5910 // visited instructions.
5911 for (Instruction *v : Visited) {
5912 if (In->isIdenticalTo(v) &&
5913 DT->dominates(v->getParent(), In->getParent())) {
5914 In->replaceAllUsesWith(v);
5915 eraseInstruction(In);
5916 In = nullptr;
5917 break;
5920 if (In) {
5921 assert(!is_contained(Visited, In));
5922 Visited.push_back(In);
5926 CSEBlocks.clear();
5927 GatherSeq.clear();
5930 // Groups the instructions to a bundle (which is then a single scheduling entity)
5931 // and schedules instructions until the bundle gets ready.
5932 Optional<BoUpSLP::ScheduleData *>
5933 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5934 const InstructionsState &S) {
5935 if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue))
5936 return nullptr;
5938 // Initialize the instruction bundle.
5939 Instruction *OldScheduleEnd = ScheduleEnd;
5940 ScheduleData *PrevInBundle = nullptr;
5941 ScheduleData *Bundle = nullptr;
5942 bool ReSchedule = false;
5943 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
5945 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5946 ScheduleData *Bundle) {
5947 // The scheduling region got new instructions at the lower end (or it is a
5948 // new region for the first bundle). This makes it necessary to
5949 // recalculate all dependencies.
5950 // It is seldom that this needs to be done a second time after adding the
5951 // initial bundle to the region.
5952 if (ScheduleEnd != OldScheduleEnd) {
5953 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5954 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5955 ReSchedule = true;
5957 if (ReSchedule) {
5958 resetSchedule();
5959 initialFillReadyList(ReadyInsts);
5961 if (Bundle) {
5962 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5963 << " in block " << BB->getName() << "\n");
5964 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5967 // Now try to schedule the new bundle or (if no bundle) just calculate
5968 // dependencies. As soon as the bundle is "ready" it means that there are no
5969 // cyclic dependencies and we can schedule it. Note that's important that we
5970 // don't "schedule" the bundle yet (see cancelScheduling).
5971 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5972 !ReadyInsts.empty()) {
5973 ScheduleData *Picked = ReadyInsts.pop_back_val();
5974 if (Picked->isSchedulingEntity() && Picked->isReady())
5975 schedule(Picked, ReadyInsts);
5979 // Make sure that the scheduling region contains all
5980 // instructions of the bundle.
5981 for (Value *V : VL) {
5982 if (!extendSchedulingRegion(V, S)) {
5983 // If the scheduling region got new instructions at the lower end (or it
5984 // is a new region for the first bundle). This makes it necessary to
5985 // recalculate all dependencies.
5986 // Otherwise the compiler may crash trying to incorrectly calculate
5987 // dependencies and emit instruction in the wrong order at the actual
5988 // scheduling.
5989 TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5990 return None;
5994 for (Value *V : VL) {
5995 ScheduleData *BundleMember = getScheduleData(V);
5996 assert(BundleMember &&
5997 "no ScheduleData for bundle member (maybe not in same basic block)");
5998 if (BundleMember->IsScheduled) {
5999 // A bundle member was scheduled as single instruction before and now
6000 // needs to be scheduled as part of the bundle. We just get rid of the
6001 // existing schedule.
6002 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
6003 << " was already scheduled\n");
6004 ReSchedule = true;
6006 assert(BundleMember->isSchedulingEntity() &&
6007 "bundle member already part of other bundle");
6008 if (PrevInBundle) {
6009 PrevInBundle->NextInBundle = BundleMember;
6010 } else {
6011 Bundle = BundleMember;
6013 BundleMember->UnscheduledDepsInBundle = 0;
6014 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
6016 // Group the instructions to a bundle.
6017 BundleMember->FirstInBundle = Bundle;
6018 PrevInBundle = BundleMember;
6020 assert(Bundle && "Failed to find schedule bundle");
6021 TryScheduleBundle(ReSchedule, Bundle);
6022 if (!Bundle->isReady()) {
6023 cancelScheduling(VL, S.OpValue);
6024 return None;
6026 return Bundle;
6029 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
6030 Value *OpValue) {
6031 if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue))
6032 return;
6034 ScheduleData *Bundle = getScheduleData(OpValue);
6035 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
6036 assert(!Bundle->IsScheduled &&
6037 "Can't cancel bundle which is already scheduled");
6038 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
6039 "tried to unbundle something which is not a bundle");
6041 // Un-bundle: make single instructions out of the bundle.
6042 ScheduleData *BundleMember = Bundle;
6043 while (BundleMember) {
6044 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
6045 BundleMember->FirstInBundle = BundleMember;
6046 ScheduleData *Next = BundleMember->NextInBundle;
6047 BundleMember->NextInBundle = nullptr;
6048 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
6049 if (BundleMember->UnscheduledDepsInBundle == 0) {
6050 ReadyInsts.insert(BundleMember);
6052 BundleMember = Next;
6056 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
6057 // Allocate a new ScheduleData for the instruction.
6058 if (ChunkPos >= ChunkSize) {
6059 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
6060 ChunkPos = 0;
6062 return &(ScheduleDataChunks.back()[ChunkPos++]);
6065 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
6066 const InstructionsState &S) {
6067 if (getScheduleData(V, isOneOf(S, V)))
6068 return true;
6069 Instruction *I = dyn_cast<Instruction>(V);
6070 assert(I && "bundle member must be an instruction");
6071 assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) &&
6072 "phi nodes/insertelements don't need to be scheduled");
6073 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
6074 ScheduleData *ISD = getScheduleData(I);
6075 if (!ISD)
6076 return false;
6077 assert(isInSchedulingRegion(ISD) &&
6078 "ScheduleData not in scheduling region");
6079 ScheduleData *SD = allocateScheduleDataChunks();
6080 SD->Inst = I;
6081 SD->init(SchedulingRegionID, S.OpValue);
6082 ExtraScheduleDataMap[I][S.OpValue] = SD;
6083 return true;
6085 if (CheckSheduleForI(I))
6086 return true;
6087 if (!ScheduleStart) {
6088 // It's the first instruction in the new region.
6089 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
6090 ScheduleStart = I;
6091 ScheduleEnd = I->getNextNode();
6092 if (isOneOf(S, I) != I)
6093 CheckSheduleForI(I);
6094 assert(ScheduleEnd && "tried to vectorize a terminator?");
6095 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
6096 return true;
6098 // Search up and down at the same time, because we don't know if the new
6099 // instruction is above or below the existing scheduling region.
6100 BasicBlock::reverse_iterator UpIter =
6101 ++ScheduleStart->getIterator().getReverse();
6102 BasicBlock::reverse_iterator UpperEnd = BB->rend();
6103 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
6104 BasicBlock::iterator LowerEnd = BB->end();
6105 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
6106 &*DownIter != I) {
6107 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
6108 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
6109 return false;
6112 ++UpIter;
6113 ++DownIter;
6115 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
6116 assert(I->getParent() == ScheduleStart->getParent() &&
6117 "Instruction is in wrong basic block.");
6118 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
6119 ScheduleStart = I;
6120 if (isOneOf(S, I) != I)
6121 CheckSheduleForI(I);
6122 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
6123 << "\n");
6124 return true;
6126 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
6127 "Expected to reach top of the basic block or instruction down the "
6128 "lower end.");
6129 assert(I->getParent() == ScheduleEnd->getParent() &&
6130 "Instruction is in wrong basic block.");
6131 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
6132 nullptr);
6133 ScheduleEnd = I->getNextNode();
6134 if (isOneOf(S, I) != I)
6135 CheckSheduleForI(I);
6136 assert(ScheduleEnd && "tried to vectorize a terminator?");
6137 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
6138 return true;
6141 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
6142 Instruction *ToI,
6143 ScheduleData *PrevLoadStore,
6144 ScheduleData *NextLoadStore) {
6145 ScheduleData *CurrentLoadStore = PrevLoadStore;
6146 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
6147 ScheduleData *SD = ScheduleDataMap[I];
6148 if (!SD) {
6149 SD = allocateScheduleDataChunks();
6150 ScheduleDataMap[I] = SD;
6151 SD->Inst = I;
6153 assert(!isInSchedulingRegion(SD) &&
6154 "new ScheduleData already in scheduling region");
6155 SD->init(SchedulingRegionID, I);
6157 if (I->mayReadOrWriteMemory() &&
6158 (!isa<IntrinsicInst>(I) ||
6159 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
6160 cast<IntrinsicInst>(I)->getIntrinsicID() !=
6161 Intrinsic::pseudoprobe))) {
6162 // Update the linked list of memory accessing instructions.
6163 if (CurrentLoadStore) {
6164 CurrentLoadStore->NextLoadStore = SD;
6165 } else {
6166 FirstLoadStoreInRegion = SD;
6168 CurrentLoadStore = SD;
6171 if (NextLoadStore) {
6172 if (CurrentLoadStore)
6173 CurrentLoadStore->NextLoadStore = NextLoadStore;
6174 } else {
6175 LastLoadStoreInRegion = CurrentLoadStore;
6179 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
6180 bool InsertInReadyList,
6181 BoUpSLP *SLP) {
6182 assert(SD->isSchedulingEntity());
6184 SmallVector<ScheduleData *, 10> WorkList;
6185 WorkList.push_back(SD);
6187 while (!WorkList.empty()) {
6188 ScheduleData *SD = WorkList.pop_back_val();
6190 ScheduleData *BundleMember = SD;
6191 while (BundleMember) {
6192 assert(isInSchedulingRegion(BundleMember));
6193 if (!BundleMember->hasValidDependencies()) {
6195 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
6196 << "\n");
6197 BundleMember->Dependencies = 0;
6198 BundleMember->resetUnscheduledDeps();
6200 // Handle def-use chain dependencies.
6201 if (BundleMember->OpValue != BundleMember->Inst) {
6202 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
6203 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6204 BundleMember->Dependencies++;
6205 ScheduleData *DestBundle = UseSD->FirstInBundle;
6206 if (!DestBundle->IsScheduled)
6207 BundleMember->incrementUnscheduledDeps(1);
6208 if (!DestBundle->hasValidDependencies())
6209 WorkList.push_back(DestBundle);
6211 } else {
6212 for (User *U : BundleMember->Inst->users()) {
6213 if (isa<Instruction>(U)) {
6214 ScheduleData *UseSD = getScheduleData(U);
6215 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6216 BundleMember->Dependencies++;
6217 ScheduleData *DestBundle = UseSD->FirstInBundle;
6218 if (!DestBundle->IsScheduled)
6219 BundleMember->incrementUnscheduledDeps(1);
6220 if (!DestBundle->hasValidDependencies())
6221 WorkList.push_back(DestBundle);
6223 } else {
6224 // I'm not sure if this can ever happen. But we need to be safe.
6225 // This lets the instruction/bundle never be scheduled and
6226 // eventually disable vectorization.
6227 BundleMember->Dependencies++;
6228 BundleMember->incrementUnscheduledDeps(1);
6233 // Handle the memory dependencies.
6234 ScheduleData *DepDest = BundleMember->NextLoadStore;
6235 if (DepDest) {
6236 Instruction *SrcInst = BundleMember->Inst;
6237 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
6238 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
6239 unsigned numAliased = 0;
6240 unsigned DistToSrc = 1;
6242 while (DepDest) {
6243 assert(isInSchedulingRegion(DepDest));
6245 // We have two limits to reduce the complexity:
6246 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
6247 // SLP->isAliased (which is the expensive part in this loop).
6248 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
6249 // the whole loop (even if the loop is fast, it's quadratic).
6250 // It's important for the loop break condition (see below) to
6251 // check this limit even between two read-only instructions.
6252 if (DistToSrc >= MaxMemDepDistance ||
6253 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
6254 (numAliased >= AliasedCheckLimit ||
6255 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
6257 // We increment the counter only if the locations are aliased
6258 // (instead of counting all alias checks). This gives a better
6259 // balance between reduced runtime and accurate dependencies.
6260 numAliased++;
6262 DepDest->MemoryDependencies.push_back(BundleMember);
6263 BundleMember->Dependencies++;
6264 ScheduleData *DestBundle = DepDest->FirstInBundle;
6265 if (!DestBundle->IsScheduled) {
6266 BundleMember->incrementUnscheduledDeps(1);
6268 if (!DestBundle->hasValidDependencies()) {
6269 WorkList.push_back(DestBundle);
6272 DepDest = DepDest->NextLoadStore;
6274 // Example, explaining the loop break condition: Let's assume our
6275 // starting instruction is i0 and MaxMemDepDistance = 3.
6277 // +--------v--v--v
6278 // i0,i1,i2,i3,i4,i5,i6,i7,i8
6279 // +--------^--^--^
6281 // MaxMemDepDistance let us stop alias-checking at i3 and we add
6282 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
6283 // Previously we already added dependencies from i3 to i6,i7,i8
6284 // (because of MaxMemDepDistance). As we added a dependency from
6285 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
6286 // and we can abort this loop at i6.
6287 if (DistToSrc >= 2 * MaxMemDepDistance)
6288 break;
6289 DistToSrc++;
6293 BundleMember = BundleMember->NextInBundle;
6295 if (InsertInReadyList && SD->isReady()) {
6296 ReadyInsts.push_back(SD);
6297 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
6298 << "\n");
6303 void BoUpSLP::BlockScheduling::resetSchedule() {
6304 assert(ScheduleStart &&
6305 "tried to reset schedule on block which has not been scheduled");
6306 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
6307 doForAllOpcodes(I, [&](ScheduleData *SD) {
6308 assert(isInSchedulingRegion(SD) &&
6309 "ScheduleData not in scheduling region");
6310 SD->IsScheduled = false;
6311 SD->resetUnscheduledDeps();
6314 ReadyInsts.clear();
6317 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
6318 if (!BS->ScheduleStart)
6319 return;
6321 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
6323 BS->resetSchedule();
6325 // For the real scheduling we use a more sophisticated ready-list: it is
6326 // sorted by the original instruction location. This lets the final schedule
6327 // be as close as possible to the original instruction order.
6328 struct ScheduleDataCompare {
6329 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
6330 return SD2->SchedulingPriority < SD1->SchedulingPriority;
6333 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
6335 // Ensure that all dependency data is updated and fill the ready-list with
6336 // initial instructions.
6337 int Idx = 0;
6338 int NumToSchedule = 0;
6339 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
6340 I = I->getNextNode()) {
6341 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
6342 assert((isa<InsertElementInst>(SD->Inst) ||
6343 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
6344 "scheduler and vectorizer bundle mismatch");
6345 SD->FirstInBundle->SchedulingPriority = Idx++;
6346 if (SD->isSchedulingEntity()) {
6347 BS->calculateDependencies(SD, false, this);
6348 NumToSchedule++;
6352 BS->initialFillReadyList(ReadyInsts);
6354 Instruction *LastScheduledInst = BS->ScheduleEnd;
6356 // Do the "real" scheduling.
6357 while (!ReadyInsts.empty()) {
6358 ScheduleData *picked = *ReadyInsts.begin();
6359 ReadyInsts.erase(ReadyInsts.begin());
6361 // Move the scheduled instruction(s) to their dedicated places, if not
6362 // there yet.
6363 ScheduleData *BundleMember = picked;
6364 while (BundleMember) {
6365 Instruction *pickedInst = BundleMember->Inst;
6366 if (pickedInst->getNextNode() != LastScheduledInst) {
6367 BS->BB->getInstList().remove(pickedInst);
6368 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
6369 pickedInst);
6371 LastScheduledInst = pickedInst;
6372 BundleMember = BundleMember->NextInBundle;
6375 BS->schedule(picked, ReadyInsts);
6376 NumToSchedule--;
6378 assert(NumToSchedule == 0 && "could not schedule all instructions");
6380 // Avoid duplicate scheduling of the block.
6381 BS->ScheduleStart = nullptr;
6384 unsigned BoUpSLP::getVectorElementSize(Value *V) {
6385 // If V is a store, just return the width of the stored value (or value
6386 // truncated just before storing) without traversing the expression tree.
6387 // This is the common case.
6388 if (auto *Store = dyn_cast<StoreInst>(V)) {
6389 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
6390 return DL->getTypeSizeInBits(Trunc->getSrcTy());
6391 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
6394 if (auto *IEI = dyn_cast<InsertElementInst>(V))
6395 return getVectorElementSize(IEI->getOperand(1));
6397 auto E = InstrElementSize.find(V);
6398 if (E != InstrElementSize.end())
6399 return E->second;
6401 // If V is not a store, we can traverse the expression tree to find loads
6402 // that feed it. The type of the loaded value may indicate a more suitable
6403 // width than V's type. We want to base the vector element size on the width
6404 // of memory operations where possible.
6405 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
6406 SmallPtrSet<Instruction *, 16> Visited;
6407 if (auto *I = dyn_cast<Instruction>(V)) {
6408 Worklist.emplace_back(I, I->getParent());
6409 Visited.insert(I);
6412 // Traverse the expression tree in bottom-up order looking for loads. If we
6413 // encounter an instruction we don't yet handle, we give up.
6414 auto Width = 0u;
6415 while (!Worklist.empty()) {
6416 Instruction *I;
6417 BasicBlock *Parent;
6418 std::tie(I, Parent) = Worklist.pop_back_val();
6420 // We should only be looking at scalar instructions here. If the current
6421 // instruction has a vector type, skip.
6422 auto *Ty = I->getType();
6423 if (isa<VectorType>(Ty))
6424 continue;
6426 // If the current instruction is a load, update MaxWidth to reflect the
6427 // width of the loaded value.
6428 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
6429 isa<ExtractValueInst>(I))
6430 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
6432 // Otherwise, we need to visit the operands of the instruction. We only
6433 // handle the interesting cases from buildTree here. If an operand is an
6434 // instruction we haven't yet visited and from the same basic block as the
6435 // user or the use is a PHI node, we add it to the worklist.
6436 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6437 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
6438 isa<UnaryOperator>(I)) {
6439 for (Use &U : I->operands())
6440 if (auto *J = dyn_cast<Instruction>(U.get()))
6441 if (Visited.insert(J).second &&
6442 (isa<PHINode>(I) || J->getParent() == Parent))
6443 Worklist.emplace_back(J, J->getParent());
6444 } else {
6445 break;
6449 // If we didn't encounter a memory access in the expression tree, or if we
6450 // gave up for some reason, just return the width of V. Otherwise, return the
6451 // maximum width we found.
6452 if (!Width) {
6453 if (auto *CI = dyn_cast<CmpInst>(V))
6454 V = CI->getOperand(0);
6455 Width = DL->getTypeSizeInBits(V->getType());
6458 for (Instruction *I : Visited)
6459 InstrElementSize[I] = Width;
6461 return Width;
6464 // Determine if a value V in a vectorizable expression Expr can be demoted to a
6465 // smaller type with a truncation. We collect the values that will be demoted
6466 // in ToDemote and additional roots that require investigating in Roots.
6467 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
6468 SmallVectorImpl<Value *> &ToDemote,
6469 SmallVectorImpl<Value *> &Roots) {
6470 // We can always demote constants.
6471 if (isa<Constant>(V)) {
6472 ToDemote.push_back(V);
6473 return true;
6476 // If the value is not an instruction in the expression with only one use, it
6477 // cannot be demoted.
6478 auto *I = dyn_cast<Instruction>(V);
6479 if (!I || !I->hasOneUse() || !Expr.count(I))
6480 return false;
6482 switch (I->getOpcode()) {
6484 // We can always demote truncations and extensions. Since truncations can
6485 // seed additional demotion, we save the truncated value.
6486 case Instruction::Trunc:
6487 Roots.push_back(I->getOperand(0));
6488 break;
6489 case Instruction::ZExt:
6490 case Instruction::SExt:
6491 if (isa<ExtractElementInst>(I->getOperand(0)) ||
6492 isa<InsertElementInst>(I->getOperand(0)))
6493 return false;
6494 break;
6496 // We can demote certain binary operations if we can demote both of their
6497 // operands.
6498 case Instruction::Add:
6499 case Instruction::Sub:
6500 case Instruction::Mul:
6501 case Instruction::And:
6502 case Instruction::Or:
6503 case Instruction::Xor:
6504 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
6505 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
6506 return false;
6507 break;
6509 // We can demote selects if we can demote their true and false values.
6510 case Instruction::Select: {
6511 SelectInst *SI = cast<SelectInst>(I);
6512 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
6513 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
6514 return false;
6515 break;
6518 // We can demote phis if we can demote all their incoming operands. Note that
6519 // we don't need to worry about cycles since we ensure single use above.
6520 case Instruction::PHI: {
6521 PHINode *PN = cast<PHINode>(I);
6522 for (Value *IncValue : PN->incoming_values())
6523 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
6524 return false;
6525 break;
6528 // Otherwise, conservatively give up.
6529 default:
6530 return false;
6533 // Record the value that we can demote.
6534 ToDemote.push_back(V);
6535 return true;
6538 void BoUpSLP::computeMinimumValueSizes() {
6539 // If there are no external uses, the expression tree must be rooted by a
6540 // store. We can't demote in-memory values, so there is nothing to do here.
6541 if (ExternalUses.empty())
6542 return;
6544 // We only attempt to truncate integer expressions.
6545 auto &TreeRoot = VectorizableTree[0]->Scalars;
6546 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
6547 if (!TreeRootIT)
6548 return;
6550 // If the expression is not rooted by a store, these roots should have
6551 // external uses. We will rely on InstCombine to rewrite the expression in
6552 // the narrower type. However, InstCombine only rewrites single-use values.
6553 // This means that if a tree entry other than a root is used externally, it
6554 // must have multiple uses and InstCombine will not rewrite it. The code
6555 // below ensures that only the roots are used externally.
6556 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6557 for (auto &EU : ExternalUses)
6558 if (!Expr.erase(EU.Scalar))
6559 return;
6560 if (!Expr.empty())
6561 return;
6563 // Collect the scalar values of the vectorizable expression. We will use this
6564 // context to determine which values can be demoted. If we see a truncation,
6565 // we mark it as seeding another demotion.
6566 for (auto &EntryPtr : VectorizableTree)
6567 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6569 // Ensure the roots of the vectorizable tree don't form a cycle. They must
6570 // have a single external user that is not in the vectorizable tree.
6571 for (auto *Root : TreeRoot)
6572 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6573 return;
6575 // Conservatively determine if we can actually truncate the roots of the
6576 // expression. Collect the values that can be demoted in ToDemote and
6577 // additional roots that require investigating in Roots.
6578 SmallVector<Value *, 32> ToDemote;
6579 SmallVector<Value *, 4> Roots;
6580 for (auto *Root : TreeRoot)
6581 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6582 return;
6584 // The maximum bit width required to represent all the values that can be
6585 // demoted without loss of precision. It would be safe to truncate the roots
6586 // of the expression to this width.
6587 auto MaxBitWidth = 8u;
6589 // We first check if all the bits of the roots are demanded. If they're not,
6590 // we can truncate the roots to this narrower type.
6591 for (auto *Root : TreeRoot) {
6592 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6593 MaxBitWidth = std::max<unsigned>(
6594 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6597 // True if the roots can be zero-extended back to their original type, rather
6598 // than sign-extended. We know that if the leading bits are not demanded, we
6599 // can safely zero-extend. So we initialize IsKnownPositive to True.
6600 bool IsKnownPositive = true;
6602 // If all the bits of the roots are demanded, we can try a little harder to
6603 // compute a narrower type. This can happen, for example, if the roots are
6604 // getelementptr indices. InstCombine promotes these indices to the pointer
6605 // width. Thus, all their bits are technically demanded even though the
6606 // address computation might be vectorized in a smaller type.
6608 // We start by looking at each entry that can be demoted. We compute the
6609 // maximum bit width required to store the scalar by using ValueTracking to
6610 // compute the number of high-order bits we can truncate.
6611 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6612 llvm::all_of(TreeRoot, [](Value *R) {
6613 assert(R->hasOneUse() && "Root should have only one use!");
6614 return isa<GetElementPtrInst>(R->user_back());
6615 })) {
6616 MaxBitWidth = 8u;
6618 // Determine if the sign bit of all the roots is known to be zero. If not,
6619 // IsKnownPositive is set to False.
6620 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6621 KnownBits Known = computeKnownBits(R, *DL);
6622 return Known.isNonNegative();
6625 // Determine the maximum number of bits required to store the scalar
6626 // values.
6627 for (auto *Scalar : ToDemote) {
6628 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6629 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6630 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6633 // If we can't prove that the sign bit is zero, we must add one to the
6634 // maximum bit width to account for the unknown sign bit. This preserves
6635 // the existing sign bit so we can safely sign-extend the root back to the
6636 // original type. Otherwise, if we know the sign bit is zero, we will
6637 // zero-extend the root instead.
6639 // FIXME: This is somewhat suboptimal, as there will be cases where adding
6640 // one to the maximum bit width will yield a larger-than-necessary
6641 // type. In general, we need to add an extra bit only if we can't
6642 // prove that the upper bit of the original type is equal to the
6643 // upper bit of the proposed smaller type. If these two bits are the
6644 // same (either zero or one) we know that sign-extending from the
6645 // smaller type will result in the same value. Here, since we can't
6646 // yet prove this, we are just making the proposed smaller type
6647 // larger to ensure correctness.
6648 if (!IsKnownPositive)
6649 ++MaxBitWidth;
6652 // Round MaxBitWidth up to the next power-of-two.
6653 if (!isPowerOf2_64(MaxBitWidth))
6654 MaxBitWidth = NextPowerOf2(MaxBitWidth);
6656 // If the maximum bit width we compute is less than the with of the roots'
6657 // type, we can proceed with the narrowing. Otherwise, do nothing.
6658 if (MaxBitWidth >= TreeRootIT->getBitWidth())
6659 return;
6661 // If we can truncate the root, we must collect additional values that might
6662 // be demoted as a result. That is, those seeded by truncations we will
6663 // modify.
6664 while (!Roots.empty())
6665 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6667 // Finally, map the values we can demote to the maximum bit with we computed.
6668 for (auto *Scalar : ToDemote)
6669 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6672 namespace {
6674 /// The SLPVectorizer Pass.
6675 struct SLPVectorizer : public FunctionPass {
6676 SLPVectorizerPass Impl;
6678 /// Pass identification, replacement for typeid
6679 static char ID;
6681 explicit SLPVectorizer() : FunctionPass(ID) {
6682 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6685 bool doInitialization(Module &M) override {
6686 return false;
6689 bool runOnFunction(Function &F) override {
6690 if (skipFunction(F))
6691 return false;
6693 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6694 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6695 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6696 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6697 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6698 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6699 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6700 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6701 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6702 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6704 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6707 void getAnalysisUsage(AnalysisUsage &AU) const override {
6708 FunctionPass::getAnalysisUsage(AU);
6709 AU.addRequired<AssumptionCacheTracker>();
6710 AU.addRequired<ScalarEvolutionWrapperPass>();
6711 AU.addRequired<AAResultsWrapperPass>();
6712 AU.addRequired<TargetTransformInfoWrapperPass>();
6713 AU.addRequired<LoopInfoWrapperPass>();
6714 AU.addRequired<DominatorTreeWrapperPass>();
6715 AU.addRequired<DemandedBitsWrapperPass>();
6716 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6717 AU.addRequired<InjectTLIMappingsLegacy>();
6718 AU.addPreserved<LoopInfoWrapperPass>();
6719 AU.addPreserved<DominatorTreeWrapperPass>();
6720 AU.addPreserved<AAResultsWrapperPass>();
6721 AU.addPreserved<GlobalsAAWrapperPass>();
6722 AU.setPreservesCFG();
6726 } // end anonymous namespace
6728 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6729 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6730 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6731 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6732 auto *AA = &AM.getResult<AAManager>(F);
6733 auto *LI = &AM.getResult<LoopAnalysis>(F);
6734 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6735 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6736 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6737 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6739 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6740 if (!Changed)
6741 return PreservedAnalyses::all();
6743 PreservedAnalyses PA;
6744 PA.preserveSet<CFGAnalyses>();
6745 return PA;
6748 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6749 TargetTransformInfo *TTI_,
6750 TargetLibraryInfo *TLI_, AAResults *AA_,
6751 LoopInfo *LI_, DominatorTree *DT_,
6752 AssumptionCache *AC_, DemandedBits *DB_,
6753 OptimizationRemarkEmitter *ORE_) {
6754 if (!RunSLPVectorization)
6755 return false;
6756 SE = SE_;
6757 TTI = TTI_;
6758 TLI = TLI_;
6759 AA = AA_;
6760 LI = LI_;
6761 DT = DT_;
6762 AC = AC_;
6763 DB = DB_;
6764 DL = &F.getParent()->getDataLayout();
6766 Stores.clear();
6767 GEPs.clear();
6768 bool Changed = false;
6770 // If the target claims to have no vector registers don't attempt
6771 // vectorization.
6772 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6773 return false;
6775 // Don't vectorize when the attribute NoImplicitFloat is used.
6776 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6777 return false;
6779 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6781 // Use the bottom up slp vectorizer to construct chains that start with
6782 // store instructions.
6783 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6785 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6786 // delete instructions.
6788 // Update DFS numbers now so that we can use them for ordering.
6789 DT->updateDFSNumbers();
6791 // Scan the blocks in the function in post order.
6792 for (auto BB : post_order(&F.getEntryBlock())) {
6793 collectSeedInstructions(BB);
6795 // Vectorize trees that end at stores.
6796 if (!Stores.empty()) {
6797 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6798 << " underlying objects.\n");
6799 Changed |= vectorizeStoreChains(R);
6802 // Vectorize trees that end at reductions.
6803 Changed |= vectorizeChainsInBlock(BB, R);
6805 // Vectorize the index computations of getelementptr instructions. This
6806 // is primarily intended to catch gather-like idioms ending at
6807 // non-consecutive loads.
6808 if (!GEPs.empty()) {
6809 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6810 << " underlying objects.\n");
6811 Changed |= vectorizeGEPIndices(BB, R);
6815 if (Changed) {
6816 R.optimizeGatherSequence();
6817 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6819 return Changed;
6822 /// Order may have elements assigned special value (size) which is out of
6823 /// bounds. Such indices only appear on places which correspond to undef values
6824 /// (see canReuseExtract for details) and used in order to avoid undef values
6825 /// have effect on operands ordering.
6826 /// The first loop below simply finds all unused indices and then the next loop
6827 /// nest assigns these indices for undef values positions.
6828 /// As an example below Order has two undef positions and they have assigned
6829 /// values 3 and 7 respectively:
6830 /// before: 6 9 5 4 9 2 1 0
6831 /// after: 6 3 5 4 7 2 1 0
6832 /// \returns Fixed ordering.
6833 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) {
6834 BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end());
6835 const unsigned Sz = NewOrder.size();
6836 SmallBitVector UsedIndices(Sz);
6837 SmallVector<int> MaskedIndices;
6838 for (int I = 0, E = NewOrder.size(); I < E; ++I) {
6839 if (NewOrder[I] < Sz)
6840 UsedIndices.set(NewOrder[I]);
6841 else
6842 MaskedIndices.push_back(I);
6844 if (MaskedIndices.empty())
6845 return NewOrder;
6846 SmallVector<int> AvailableIndices(MaskedIndices.size());
6847 unsigned Cnt = 0;
6848 int Idx = UsedIndices.find_first();
6849 do {
6850 AvailableIndices[Cnt] = Idx;
6851 Idx = UsedIndices.find_next(Idx);
6852 ++Cnt;
6853 } while (Idx > 0);
6854 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.");
6855 for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
6856 NewOrder[MaskedIndices[I]] = AvailableIndices[I];
6857 return NewOrder;
6860 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6861 unsigned Idx) {
6862 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6863 << "\n");
6864 const unsigned Sz = R.getVectorElementSize(Chain[0]);
6865 const unsigned MinVF = R.getMinVecRegSize() / Sz;
6866 unsigned VF = Chain.size();
6868 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6869 return false;
6871 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6872 << "\n");
6874 R.buildTree(Chain);
6875 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6876 // TODO: Handle orders of size less than number of elements in the vector.
6877 if (Order && Order->size() == Chain.size()) {
6878 // TODO: reorder tree nodes without tree rebuilding.
6879 SmallVector<Value *, 4> ReorderedOps(Chain.size());
6880 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
6881 [Chain](const unsigned Idx) { return Chain[Idx]; });
6882 R.buildTree(ReorderedOps);
6884 if (R.isTreeTinyAndNotFullyVectorizable())
6885 return false;
6886 if (R.isLoadCombineCandidate())
6887 return false;
6889 R.computeMinimumValueSizes();
6891 InstructionCost Cost = R.getTreeCost();
6893 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6894 if (Cost < -SLPCostThreshold) {
6895 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6897 using namespace ore;
6899 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6900 cast<StoreInst>(Chain[0]))
6901 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6902 << " and with tree size "
6903 << NV("TreeSize", R.getTreeSize()));
6905 R.vectorizeTree();
6906 return true;
6909 return false;
6912 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6913 BoUpSLP &R) {
6914 // We may run into multiple chains that merge into a single chain. We mark the
6915 // stores that we vectorized so that we don't visit the same store twice.
6916 BoUpSLP::ValueSet VectorizedStores;
6917 bool Changed = false;
6919 int E = Stores.size();
6920 SmallBitVector Tails(E, false);
6921 int MaxIter = MaxStoreLookup.getValue();
6922 SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6923 E, std::make_pair(E, INT_MAX));
6924 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6925 int IterCnt;
6926 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6927 &CheckedPairs,
6928 &ConsecutiveChain](int K, int Idx) {
6929 if (IterCnt >= MaxIter)
6930 return true;
6931 if (CheckedPairs[Idx].test(K))
6932 return ConsecutiveChain[K].second == 1 &&
6933 ConsecutiveChain[K].first == Idx;
6934 ++IterCnt;
6935 CheckedPairs[Idx].set(K);
6936 CheckedPairs[K].set(Idx);
6937 Optional<int> Diff = getPointersDiff(
6938 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
6939 Stores[Idx]->getValueOperand()->getType(),
6940 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
6941 if (!Diff || *Diff == 0)
6942 return false;
6943 int Val = *Diff;
6944 if (Val < 0) {
6945 if (ConsecutiveChain[Idx].second > -Val) {
6946 Tails.set(K);
6947 ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6949 return false;
6951 if (ConsecutiveChain[K].second <= Val)
6952 return false;
6954 Tails.set(Idx);
6955 ConsecutiveChain[K] = std::make_pair(Idx, Val);
6956 return Val == 1;
6958 // Do a quadratic search on all of the given stores in reverse order and find
6959 // all of the pairs of stores that follow each other.
6960 for (int Idx = E - 1; Idx >= 0; --Idx) {
6961 // If a store has multiple consecutive store candidates, search according
6962 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6963 // This is because usually pairing with immediate succeeding or preceding
6964 // candidate create the best chance to find slp vectorization opportunity.
6965 const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6966 IterCnt = 0;
6967 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6968 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6969 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6970 break;
6973 // Tracks if we tried to vectorize stores starting from the given tail
6974 // already.
6975 SmallBitVector TriedTails(E, false);
6976 // For stores that start but don't end a link in the chain:
6977 for (int Cnt = E; Cnt > 0; --Cnt) {
6978 int I = Cnt - 1;
6979 if (ConsecutiveChain[I].first == E || Tails.test(I))
6980 continue;
6981 // We found a store instr that starts a chain. Now follow the chain and try
6982 // to vectorize it.
6983 BoUpSLP::ValueList Operands;
6984 // Collect the chain into a list.
6985 while (I != E && !VectorizedStores.count(Stores[I])) {
6986 Operands.push_back(Stores[I]);
6987 Tails.set(I);
6988 if (ConsecutiveChain[I].second != 1) {
6989 // Mark the new end in the chain and go back, if required. It might be
6990 // required if the original stores come in reversed order, for example.
6991 if (ConsecutiveChain[I].first != E &&
6992 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6993 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6994 TriedTails.set(I);
6995 Tails.reset(ConsecutiveChain[I].first);
6996 if (Cnt < ConsecutiveChain[I].first + 2)
6997 Cnt = ConsecutiveChain[I].first + 2;
6999 break;
7001 // Move to the next value in the chain.
7002 I = ConsecutiveChain[I].first;
7004 assert(!Operands.empty() && "Expected non-empty list of stores.");
7006 unsigned MaxVecRegSize = R.getMaxVecRegSize();
7007 unsigned EltSize = R.getVectorElementSize(Operands[0]);
7008 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
7010 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
7011 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
7012 MaxElts);
7014 // FIXME: Is division-by-2 the correct step? Should we assert that the
7015 // register size is a power-of-2?
7016 unsigned StartIdx = 0;
7017 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
7018 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
7019 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
7020 if (!VectorizedStores.count(Slice.front()) &&
7021 !VectorizedStores.count(Slice.back()) &&
7022 vectorizeStoreChain(Slice, R, Cnt)) {
7023 // Mark the vectorized stores so that we don't vectorize them again.
7024 VectorizedStores.insert(Slice.begin(), Slice.end());
7025 Changed = true;
7026 // If we vectorized initial block, no need to try to vectorize it
7027 // again.
7028 if (Cnt == StartIdx)
7029 StartIdx += Size;
7030 Cnt += Size;
7031 continue;
7033 ++Cnt;
7035 // Check if the whole array was vectorized already - exit.
7036 if (StartIdx >= Operands.size())
7037 break;
7041 return Changed;
7044 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
7045 // Initialize the collections. We will make a single pass over the block.
7046 Stores.clear();
7047 GEPs.clear();
7049 // Visit the store and getelementptr instructions in BB and organize them in
7050 // Stores and GEPs according to the underlying objects of their pointer
7051 // operands.
7052 for (Instruction &I : *BB) {
7053 // Ignore store instructions that are volatile or have a pointer operand
7054 // that doesn't point to a scalar type.
7055 if (auto *SI = dyn_cast<StoreInst>(&I)) {
7056 if (!SI->isSimple())
7057 continue;
7058 if (!isValidElementType(SI->getValueOperand()->getType()))
7059 continue;
7060 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
7063 // Ignore getelementptr instructions that have more than one index, a
7064 // constant index, or a pointer operand that doesn't point to a scalar
7065 // type.
7066 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
7067 auto Idx = GEP->idx_begin()->get();
7068 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
7069 continue;
7070 if (!isValidElementType(Idx->getType()))
7071 continue;
7072 if (GEP->getType()->isVectorTy())
7073 continue;
7074 GEPs[GEP->getPointerOperand()].push_back(GEP);
7079 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
7080 if (!A || !B)
7081 return false;
7082 Value *VL[] = {A, B};
7083 return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
7086 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
7087 bool AllowReorder) {
7088 if (VL.size() < 2)
7089 return false;
7091 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
7092 << VL.size() << ".\n");
7094 // Check that all of the parts are instructions of the same type,
7095 // we permit an alternate opcode via InstructionsState.
7096 InstructionsState S = getSameOpcode(VL);
7097 if (!S.getOpcode())
7098 return false;
7100 Instruction *I0 = cast<Instruction>(S.OpValue);
7101 // Make sure invalid types (including vector type) are rejected before
7102 // determining vectorization factor for scalar instructions.
7103 for (Value *V : VL) {
7104 Type *Ty = V->getType();
7105 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
7106 // NOTE: the following will give user internal llvm type name, which may
7107 // not be useful.
7108 R.getORE()->emit([&]() {
7109 std::string type_str;
7110 llvm::raw_string_ostream rso(type_str);
7111 Ty->print(rso);
7112 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
7113 << "Cannot SLP vectorize list: type "
7114 << rso.str() + " is unsupported by vectorizer";
7116 return false;
7120 unsigned Sz = R.getVectorElementSize(I0);
7121 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
7122 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
7123 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
7124 if (MaxVF < 2) {
7125 R.getORE()->emit([&]() {
7126 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
7127 << "Cannot SLP vectorize list: vectorization factor "
7128 << "less than 2 is not supported";
7130 return false;
7133 bool Changed = false;
7134 bool CandidateFound = false;
7135 InstructionCost MinCost = SLPCostThreshold.getValue();
7136 Type *ScalarTy = VL[0]->getType();
7137 if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7138 ScalarTy = IE->getOperand(1)->getType();
7140 unsigned NextInst = 0, MaxInst = VL.size();
7141 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
7142 // No actual vectorization should happen, if number of parts is the same as
7143 // provided vectorization factor (i.e. the scalar type is used for vector
7144 // code during codegen).
7145 auto *VecTy = FixedVectorType::get(ScalarTy, VF);
7146 if (TTI->getNumberOfParts(VecTy) == VF)
7147 continue;
7148 for (unsigned I = NextInst; I < MaxInst; ++I) {
7149 unsigned OpsWidth = 0;
7151 if (I + VF > MaxInst)
7152 OpsWidth = MaxInst - I;
7153 else
7154 OpsWidth = VF;
7156 if (!isPowerOf2_32(OpsWidth))
7157 continue;
7159 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
7160 break;
7162 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
7163 // Check that a previous iteration of this loop did not delete the Value.
7164 if (llvm::any_of(Ops, [&R](Value *V) {
7165 auto *I = dyn_cast<Instruction>(V);
7166 return I && R.isDeleted(I);
7168 continue;
7170 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
7171 << "\n");
7173 R.buildTree(Ops);
7174 if (AllowReorder) {
7175 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
7176 if (Order) {
7177 // TODO: reorder tree nodes without tree rebuilding.
7178 SmallVector<Value *, 4> ReorderedOps(Ops.size());
7179 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7180 [Ops](const unsigned Idx) { return Ops[Idx]; });
7181 R.buildTree(ReorderedOps);
7184 if (R.isTreeTinyAndNotFullyVectorizable())
7185 continue;
7187 R.computeMinimumValueSizes();
7188 InstructionCost Cost = R.getTreeCost();
7189 CandidateFound = true;
7190 MinCost = std::min(MinCost, Cost);
7192 if (Cost < -SLPCostThreshold) {
7193 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
7194 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
7195 cast<Instruction>(Ops[0]))
7196 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
7197 << " and with tree size "
7198 << ore::NV("TreeSize", R.getTreeSize()));
7200 R.vectorizeTree();
7201 // Move to the next bundle.
7202 I += VF - 1;
7203 NextInst = I + 1;
7204 Changed = true;
7209 if (!Changed && CandidateFound) {
7210 R.getORE()->emit([&]() {
7211 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
7212 << "List vectorization was possible but not beneficial with cost "
7213 << ore::NV("Cost", MinCost) << " >= "
7214 << ore::NV("Treshold", -SLPCostThreshold);
7216 } else if (!Changed) {
7217 R.getORE()->emit([&]() {
7218 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
7219 << "Cannot SLP vectorize list: vectorization was impossible"
7220 << " with available vectorization factors";
7223 return Changed;
7226 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
7227 if (!I)
7228 return false;
7230 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
7231 return false;
7233 Value *P = I->getParent();
7235 // Vectorize in current basic block only.
7236 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
7237 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
7238 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
7239 return false;
7241 // Try to vectorize V.
7242 if (tryToVectorizePair(Op0, Op1, R))
7243 return true;
7245 auto *A = dyn_cast<BinaryOperator>(Op0);
7246 auto *B = dyn_cast<BinaryOperator>(Op1);
7247 // Try to skip B.
7248 if (B && B->hasOneUse()) {
7249 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
7250 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
7251 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
7252 return true;
7253 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
7254 return true;
7257 // Try to skip A.
7258 if (A && A->hasOneUse()) {
7259 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
7260 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
7261 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
7262 return true;
7263 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
7264 return true;
7266 return false;
7269 namespace {
7271 /// Model horizontal reductions.
7273 /// A horizontal reduction is a tree of reduction instructions that has values
7274 /// that can be put into a vector as its leaves. For example:
7276 /// mul mul mul mul
7277 /// \ / \ /
7278 /// + +
7279 /// \ /
7280 /// +
7281 /// This tree has "mul" as its leaf values and "+" as its reduction
7282 /// instructions. A reduction can feed into a store or a binary operation
7283 /// feeding a phi.
7284 /// ...
7285 /// \ /
7286 /// +
7287 /// |
7288 /// phi +=
7290 /// Or:
7291 /// ...
7292 /// \ /
7293 /// +
7294 /// |
7295 /// *p =
7297 class HorizontalReduction {
7298 using ReductionOpsType = SmallVector<Value *, 16>;
7299 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
7300 ReductionOpsListType ReductionOps;
7301 SmallVector<Value *, 32> ReducedVals;
7302 // Use map vector to make stable output.
7303 MapVector<Instruction *, Value *> ExtraArgs;
7304 WeakTrackingVH ReductionRoot;
7305 /// The type of reduction operation.
7306 RecurKind RdxKind;
7308 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
7310 static bool isCmpSelMinMax(Instruction *I) {
7311 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
7312 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
7315 // And/or are potentially poison-safe logical patterns like:
7316 // select x, y, false
7317 // select x, true, y
7318 static bool isBoolLogicOp(Instruction *I) {
7319 return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
7320 match(I, m_LogicalOr(m_Value(), m_Value()));
7323 /// Checks if instruction is associative and can be vectorized.
7324 static bool isVectorizable(RecurKind Kind, Instruction *I) {
7325 if (Kind == RecurKind::None)
7326 return false;
7328 // Integer ops that map to select instructions or intrinsics are fine.
7329 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
7330 isBoolLogicOp(I))
7331 return true;
7333 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
7334 // FP min/max are associative except for NaN and -0.0. We do not
7335 // have to rule out -0.0 here because the intrinsic semantics do not
7336 // specify a fixed result for it.
7337 return I->getFastMathFlags().noNaNs();
7340 return I->isAssociative();
7343 static Value *getRdxOperand(Instruction *I, unsigned Index) {
7344 // Poison-safe 'or' takes the form: select X, true, Y
7345 // To make that work with the normal operand processing, we skip the
7346 // true value operand.
7347 // TODO: Change the code and data structures to handle this without a hack.
7348 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
7349 return I->getOperand(2);
7350 return I->getOperand(Index);
7353 /// Checks if the ParentStackElem.first should be marked as a reduction
7354 /// operation with an extra argument or as extra argument itself.
7355 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
7356 Value *ExtraArg) {
7357 if (ExtraArgs.count(ParentStackElem.first)) {
7358 ExtraArgs[ParentStackElem.first] = nullptr;
7359 // We ran into something like:
7360 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
7361 // The whole ParentStackElem.first should be considered as an extra value
7362 // in this case.
7363 // Do not perform analysis of remaining operands of ParentStackElem.first
7364 // instruction, this whole instruction is an extra argument.
7365 ParentStackElem.second = INVALID_OPERAND_INDEX;
7366 } else {
7367 // We ran into something like:
7368 // ParentStackElem.first += ... + ExtraArg + ...
7369 ExtraArgs[ParentStackElem.first] = ExtraArg;
7373 /// Creates reduction operation with the current opcode.
7374 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
7375 Value *RHS, const Twine &Name, bool UseSelect) {
7376 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
7377 switch (Kind) {
7378 case RecurKind::Add:
7379 case RecurKind::Mul:
7380 case RecurKind::Or:
7381 case RecurKind::And:
7382 case RecurKind::Xor:
7383 case RecurKind::FAdd:
7384 case RecurKind::FMul:
7385 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
7386 Name);
7387 case RecurKind::FMax:
7388 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
7389 case RecurKind::FMin:
7390 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
7391 case RecurKind::SMax:
7392 if (UseSelect) {
7393 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
7394 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7396 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
7397 case RecurKind::SMin:
7398 if (UseSelect) {
7399 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
7400 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7402 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
7403 case RecurKind::UMax:
7404 if (UseSelect) {
7405 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
7406 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7408 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
7409 case RecurKind::UMin:
7410 if (UseSelect) {
7411 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
7412 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7414 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
7415 default:
7416 llvm_unreachable("Unknown reduction operation.");
7420 /// Creates reduction operation with the current opcode with the IR flags
7421 /// from \p ReductionOps.
7422 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7423 Value *RHS, const Twine &Name,
7424 const ReductionOpsListType &ReductionOps) {
7425 bool UseSelect = ReductionOps.size() == 2;
7426 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
7427 "Expected cmp + select pairs for reduction");
7428 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
7429 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7430 if (auto *Sel = dyn_cast<SelectInst>(Op)) {
7431 propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
7432 propagateIRFlags(Op, ReductionOps[1]);
7433 return Op;
7436 propagateIRFlags(Op, ReductionOps[0]);
7437 return Op;
7440 /// Creates reduction operation with the current opcode with the IR flags
7441 /// from \p I.
7442 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7443 Value *RHS, const Twine &Name, Instruction *I) {
7444 auto *SelI = dyn_cast<SelectInst>(I);
7445 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
7446 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7447 if (auto *Sel = dyn_cast<SelectInst>(Op))
7448 propagateIRFlags(Sel->getCondition(), SelI->getCondition());
7450 propagateIRFlags(Op, I);
7451 return Op;
7454 static RecurKind getRdxKind(Instruction *I) {
7455 assert(I && "Expected instruction for reduction matching");
7456 TargetTransformInfo::ReductionFlags RdxFlags;
7457 if (match(I, m_Add(m_Value(), m_Value())))
7458 return RecurKind::Add;
7459 if (match(I, m_Mul(m_Value(), m_Value())))
7460 return RecurKind::Mul;
7461 if (match(I, m_And(m_Value(), m_Value())) ||
7462 match(I, m_LogicalAnd(m_Value(), m_Value())))
7463 return RecurKind::And;
7464 if (match(I, m_Or(m_Value(), m_Value())) ||
7465 match(I, m_LogicalOr(m_Value(), m_Value())))
7466 return RecurKind::Or;
7467 if (match(I, m_Xor(m_Value(), m_Value())))
7468 return RecurKind::Xor;
7469 if (match(I, m_FAdd(m_Value(), m_Value())))
7470 return RecurKind::FAdd;
7471 if (match(I, m_FMul(m_Value(), m_Value())))
7472 return RecurKind::FMul;
7474 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
7475 return RecurKind::FMax;
7476 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
7477 return RecurKind::FMin;
7479 // This matches either cmp+select or intrinsics. SLP is expected to handle
7480 // either form.
7481 // TODO: If we are canonicalizing to intrinsics, we can remove several
7482 // special-case paths that deal with selects.
7483 if (match(I, m_SMax(m_Value(), m_Value())))
7484 return RecurKind::SMax;
7485 if (match(I, m_SMin(m_Value(), m_Value())))
7486 return RecurKind::SMin;
7487 if (match(I, m_UMax(m_Value(), m_Value())))
7488 return RecurKind::UMax;
7489 if (match(I, m_UMin(m_Value(), m_Value())))
7490 return RecurKind::UMin;
7492 if (auto *Select = dyn_cast<SelectInst>(I)) {
7493 // Try harder: look for min/max pattern based on instructions producing
7494 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
7495 // During the intermediate stages of SLP, it's very common to have
7496 // pattern like this (since optimizeGatherSequence is run only once
7497 // at the end):
7498 // %1 = extractelement <2 x i32> %a, i32 0
7499 // %2 = extractelement <2 x i32> %a, i32 1
7500 // %cond = icmp sgt i32 %1, %2
7501 // %3 = extractelement <2 x i32> %a, i32 0
7502 // %4 = extractelement <2 x i32> %a, i32 1
7503 // %select = select i1 %cond, i32 %3, i32 %4
7504 CmpInst::Predicate Pred;
7505 Instruction *L1;
7506 Instruction *L2;
7508 Value *LHS = Select->getTrueValue();
7509 Value *RHS = Select->getFalseValue();
7510 Value *Cond = Select->getCondition();
7512 // TODO: Support inverse predicates.
7513 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
7514 if (!isa<ExtractElementInst>(RHS) ||
7515 !L2->isIdenticalTo(cast<Instruction>(RHS)))
7516 return RecurKind::None;
7517 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
7518 if (!isa<ExtractElementInst>(LHS) ||
7519 !L1->isIdenticalTo(cast<Instruction>(LHS)))
7520 return RecurKind::None;
7521 } else {
7522 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
7523 return RecurKind::None;
7524 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
7525 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
7526 !L2->isIdenticalTo(cast<Instruction>(RHS)))
7527 return RecurKind::None;
7530 TargetTransformInfo::ReductionFlags RdxFlags;
7531 switch (Pred) {
7532 default:
7533 return RecurKind::None;
7534 case CmpInst::ICMP_SGT:
7535 case CmpInst::ICMP_SGE:
7536 return RecurKind::SMax;
7537 case CmpInst::ICMP_SLT:
7538 case CmpInst::ICMP_SLE:
7539 return RecurKind::SMin;
7540 case CmpInst::ICMP_UGT:
7541 case CmpInst::ICMP_UGE:
7542 return RecurKind::UMax;
7543 case CmpInst::ICMP_ULT:
7544 case CmpInst::ICMP_ULE:
7545 return RecurKind::UMin;
7548 return RecurKind::None;
7551 /// Get the index of the first operand.
7552 static unsigned getFirstOperandIndex(Instruction *I) {
7553 return isCmpSelMinMax(I) ? 1 : 0;
7556 /// Total number of operands in the reduction operation.
7557 static unsigned getNumberOfOperands(Instruction *I) {
7558 return isCmpSelMinMax(I) ? 3 : 2;
7561 /// Checks if the instruction is in basic block \p BB.
7562 /// For a cmp+sel min/max reduction check that both ops are in \p BB.
7563 static bool hasSameParent(Instruction *I, BasicBlock *BB) {
7564 if (isCmpSelMinMax(I)) {
7565 auto *Sel = cast<SelectInst>(I);
7566 auto *Cmp = cast<Instruction>(Sel->getCondition());
7567 return Sel->getParent() == BB && Cmp->getParent() == BB;
7569 return I->getParent() == BB;
7572 /// Expected number of uses for reduction operations/reduced values.
7573 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
7574 if (IsCmpSelMinMax) {
7575 // SelectInst must be used twice while the condition op must have single
7576 // use only.
7577 if (auto *Sel = dyn_cast<SelectInst>(I))
7578 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
7579 return I->hasNUses(2);
7582 // Arithmetic reduction operation must be used once only.
7583 return I->hasOneUse();
7586 /// Initializes the list of reduction operations.
7587 void initReductionOps(Instruction *I) {
7588 if (isCmpSelMinMax(I))
7589 ReductionOps.assign(2, ReductionOpsType());
7590 else
7591 ReductionOps.assign(1, ReductionOpsType());
7594 /// Add all reduction operations for the reduction instruction \p I.
7595 void addReductionOps(Instruction *I) {
7596 if (isCmpSelMinMax(I)) {
7597 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
7598 ReductionOps[1].emplace_back(I);
7599 } else {
7600 ReductionOps[0].emplace_back(I);
7604 static Value *getLHS(RecurKind Kind, Instruction *I) {
7605 if (Kind == RecurKind::None)
7606 return nullptr;
7607 return I->getOperand(getFirstOperandIndex(I));
7609 static Value *getRHS(RecurKind Kind, Instruction *I) {
7610 if (Kind == RecurKind::None)
7611 return nullptr;
7612 return I->getOperand(getFirstOperandIndex(I) + 1);
7615 public:
7616 HorizontalReduction() = default;
7618 /// Try to find a reduction tree.
7619 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
7620 assert((!Phi || is_contained(Phi->operands(), Inst)) &&
7621 "Phi needs to use the binary operator");
7622 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
7623 isa<IntrinsicInst>(Inst)) &&
7624 "Expected binop, select, or intrinsic for reduction matching");
7625 RdxKind = getRdxKind(Inst);
7627 // We could have a initial reductions that is not an add.
7628 // r *= v1 + v2 + v3 + v4
7629 // In such a case start looking for a tree rooted in the first '+'.
7630 if (Phi) {
7631 if (getLHS(RdxKind, Inst) == Phi) {
7632 Phi = nullptr;
7633 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
7634 if (!Inst)
7635 return false;
7636 RdxKind = getRdxKind(Inst);
7637 } else if (getRHS(RdxKind, Inst) == Phi) {
7638 Phi = nullptr;
7639 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
7640 if (!Inst)
7641 return false;
7642 RdxKind = getRdxKind(Inst);
7646 if (!isVectorizable(RdxKind, Inst))
7647 return false;
7649 // Analyze "regular" integer/FP types for reductions - no target-specific
7650 // types or pointers.
7651 Type *Ty = Inst->getType();
7652 if (!isValidElementType(Ty) || Ty->isPointerTy())
7653 return false;
7655 // Though the ultimate reduction may have multiple uses, its condition must
7656 // have only single use.
7657 if (auto *Sel = dyn_cast<SelectInst>(Inst))
7658 if (!Sel->getCondition()->hasOneUse())
7659 return false;
7661 ReductionRoot = Inst;
7663 // The opcode for leaf values that we perform a reduction on.
7664 // For example: load(x) + load(y) + load(z) + fptoui(w)
7665 // The leaf opcode for 'w' does not match, so we don't include it as a
7666 // potential candidate for the reduction.
7667 unsigned LeafOpcode = 0;
7669 // Post-order traverse the reduction tree starting at Inst. We only handle
7670 // true trees containing binary operators or selects.
7671 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7672 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
7673 initReductionOps(Inst);
7674 while (!Stack.empty()) {
7675 Instruction *TreeN = Stack.back().first;
7676 unsigned EdgeToVisit = Stack.back().second++;
7677 const RecurKind TreeRdxKind = getRdxKind(TreeN);
7678 bool IsReducedValue = TreeRdxKind != RdxKind;
7680 // Postorder visit.
7681 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
7682 if (IsReducedValue)
7683 ReducedVals.push_back(TreeN);
7684 else {
7685 auto ExtraArgsIter = ExtraArgs.find(TreeN);
7686 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7687 // Check if TreeN is an extra argument of its parent operation.
7688 if (Stack.size() <= 1) {
7689 // TreeN can't be an extra argument as it is a root reduction
7690 // operation.
7691 return false;
7693 // Yes, TreeN is an extra argument, do not add it to a list of
7694 // reduction operations.
7695 // Stack[Stack.size() - 2] always points to the parent operation.
7696 markExtraArg(Stack[Stack.size() - 2], TreeN);
7697 ExtraArgs.erase(TreeN);
7698 } else
7699 addReductionOps(TreeN);
7701 // Retract.
7702 Stack.pop_back();
7703 continue;
7706 // Visit operands.
7707 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
7708 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7709 if (!EdgeInst) {
7710 // Edge value is not a reduction instruction or a leaf instruction.
7711 // (It may be a constant, function argument, or something else.)
7712 markExtraArg(Stack.back(), EdgeVal);
7713 continue;
7715 RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7716 // Continue analysis if the next operand is a reduction operation or
7717 // (possibly) a leaf value. If the leaf value opcode is not set,
7718 // the first met operation != reduction operation is considered as the
7719 // leaf opcode.
7720 // Only handle trees in the current basic block.
7721 // Each tree node needs to have minimal number of users except for the
7722 // ultimate reduction.
7723 const bool IsRdxInst = EdgeRdxKind == RdxKind;
7724 if (EdgeInst != Phi && EdgeInst != Inst &&
7725 hasSameParent(EdgeInst, Inst->getParent()) &&
7726 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
7727 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7728 if (IsRdxInst) {
7729 // We need to be able to reassociate the reduction operations.
7730 if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7731 // I is an extra argument for TreeN (its parent operation).
7732 markExtraArg(Stack.back(), EdgeInst);
7733 continue;
7735 } else if (!LeafOpcode) {
7736 LeafOpcode = EdgeInst->getOpcode();
7738 Stack.push_back(
7739 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7740 continue;
7742 // I is an extra argument for TreeN (its parent operation).
7743 markExtraArg(Stack.back(), EdgeInst);
7745 return true;
7748 /// Attempt to vectorize the tree found by matchAssociativeReduction.
7749 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7750 // If there are a sufficient number of reduction values, reduce
7751 // to a nearby power-of-2. We can safely generate oversized
7752 // vectors and rely on the backend to split them to legal sizes.
7753 unsigned NumReducedVals = ReducedVals.size();
7754 if (NumReducedVals < 4)
7755 return false;
7757 // Intersect the fast-math-flags from all reduction operations.
7758 FastMathFlags RdxFMF;
7759 RdxFMF.set();
7760 for (ReductionOpsType &RdxOp : ReductionOps) {
7761 for (Value *RdxVal : RdxOp) {
7762 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7763 RdxFMF &= FPMO->getFastMathFlags();
7767 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7768 Builder.setFastMathFlags(RdxFMF);
7770 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7771 // The same extra argument may be used several times, so log each attempt
7772 // to use it.
7773 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7774 assert(Pair.first && "DebugLoc must be set.");
7775 ExternallyUsedValues[Pair.second].push_back(Pair.first);
7778 // The compare instruction of a min/max is the insertion point for new
7779 // instructions and may be replaced with a new compare instruction.
7780 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7781 assert(isa<SelectInst>(RdxRootInst) &&
7782 "Expected min/max reduction to have select root instruction");
7783 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7784 assert(isa<Instruction>(ScalarCond) &&
7785 "Expected min/max reduction to have compare condition");
7786 return cast<Instruction>(ScalarCond);
7789 // The reduction root is used as the insertion point for new instructions,
7790 // so set it as externally used to prevent it from being deleted.
7791 ExternallyUsedValues[ReductionRoot];
7792 SmallVector<Value *, 16> IgnoreList;
7793 for (ReductionOpsType &RdxOp : ReductionOps)
7794 IgnoreList.append(RdxOp.begin(), RdxOp.end());
7796 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7797 if (NumReducedVals > ReduxWidth) {
7798 // In the loop below, we are building a tree based on a window of
7799 // 'ReduxWidth' values.
7800 // If the operands of those values have common traits (compare predicate,
7801 // constant operand, etc), then we want to group those together to
7802 // minimize the cost of the reduction.
7804 // TODO: This should be extended to count common operands for
7805 // compares and binops.
7807 // Step 1: Count the number of times each compare predicate occurs.
7808 SmallDenseMap<unsigned, unsigned> PredCountMap;
7809 for (Value *RdxVal : ReducedVals) {
7810 CmpInst::Predicate Pred;
7811 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7812 ++PredCountMap[Pred];
7814 // Step 2: Sort the values so the most common predicates come first.
7815 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7816 CmpInst::Predicate PredA, PredB;
7817 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7818 match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7819 return PredCountMap[PredA] > PredCountMap[PredB];
7821 return false;
7825 Value *VectorizedTree = nullptr;
7826 unsigned i = 0;
7827 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7828 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7829 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7830 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7831 if (Order) {
7832 assert(Order->size() == VL.size() &&
7833 "Order size must be the same as number of vectorized "
7834 "instructions.");
7835 // TODO: reorder tree nodes without tree rebuilding.
7836 SmallVector<Value *, 4> ReorderedOps(VL.size());
7837 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7838 [VL](const unsigned Idx) { return VL[Idx]; });
7839 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7841 if (V.isTreeTinyAndNotFullyVectorizable())
7842 break;
7843 if (V.isLoadCombineReductionCandidate(RdxKind))
7844 break;
7846 // For a poison-safe boolean logic reduction, do not replace select
7847 // instructions with logic ops. All reduced values will be frozen (see
7848 // below) to prevent leaking poison.
7849 if (isa<SelectInst>(ReductionRoot) &&
7850 isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
7851 NumReducedVals != ReduxWidth)
7852 break;
7854 V.computeMinimumValueSizes();
7856 // Estimate cost.
7857 InstructionCost TreeCost =
7858 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
7859 InstructionCost ReductionCost =
7860 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
7861 InstructionCost Cost = TreeCost + ReductionCost;
7862 if (!Cost.isValid()) {
7863 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7864 return false;
7866 if (Cost >= -SLPCostThreshold) {
7867 V.getORE()->emit([&]() {
7868 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7869 cast<Instruction>(VL[0]))
7870 << "Vectorizing horizontal reduction is possible"
7871 << "but not beneficial with cost " << ore::NV("Cost", Cost)
7872 << " and threshold "
7873 << ore::NV("Threshold", -SLPCostThreshold);
7875 break;
7878 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7879 << Cost << ". (HorRdx)\n");
7880 V.getORE()->emit([&]() {
7881 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7882 cast<Instruction>(VL[0]))
7883 << "Vectorized horizontal reduction with cost "
7884 << ore::NV("Cost", Cost) << " and with tree size "
7885 << ore::NV("TreeSize", V.getTreeSize());
7888 // Vectorize a tree.
7889 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7890 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7892 // Emit a reduction. If the root is a select (min/max idiom), the insert
7893 // point is the compare condition of that select.
7894 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7895 if (isCmpSelMinMax(RdxRootInst))
7896 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7897 else
7898 Builder.SetInsertPoint(RdxRootInst);
7900 // To prevent poison from leaking across what used to be sequential, safe,
7901 // scalar boolean logic operations, the reduction operand must be frozen.
7902 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
7903 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
7905 Value *ReducedSubTree =
7906 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7908 if (!VectorizedTree) {
7909 // Initialize the final value in the reduction.
7910 VectorizedTree = ReducedSubTree;
7911 } else {
7912 // Update the final value in the reduction.
7913 Builder.SetCurrentDebugLocation(Loc);
7914 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7915 ReducedSubTree, "op.rdx", ReductionOps);
7917 i += ReduxWidth;
7918 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7921 if (VectorizedTree) {
7922 // Finish the reduction.
7923 for (; i < NumReducedVals; ++i) {
7924 auto *I = cast<Instruction>(ReducedVals[i]);
7925 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7926 VectorizedTree =
7927 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7929 for (auto &Pair : ExternallyUsedValues) {
7930 // Add each externally used value to the final reduction.
7931 for (auto *I : Pair.second) {
7932 Builder.SetCurrentDebugLocation(I->getDebugLoc());
7933 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7934 Pair.first, "op.extra", I);
7938 ReductionRoot->replaceAllUsesWith(VectorizedTree);
7940 // Mark all scalar reduction ops for deletion, they are replaced by the
7941 // vector reductions.
7942 V.eraseInstructions(IgnoreList);
7944 return VectorizedTree != nullptr;
7947 unsigned numReductionValues() const { return ReducedVals.size(); }
7949 private:
7950 /// Calculate the cost of a reduction.
7951 InstructionCost getReductionCost(TargetTransformInfo *TTI,
7952 Value *FirstReducedVal, unsigned ReduxWidth,
7953 FastMathFlags FMF) {
7954 Type *ScalarTy = FirstReducedVal->getType();
7955 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7956 InstructionCost VectorCost, ScalarCost;
7957 switch (RdxKind) {
7958 case RecurKind::Add:
7959 case RecurKind::Mul:
7960 case RecurKind::Or:
7961 case RecurKind::And:
7962 case RecurKind::Xor:
7963 case RecurKind::FAdd:
7964 case RecurKind::FMul: {
7965 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7966 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF);
7967 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7968 break;
7970 case RecurKind::FMax:
7971 case RecurKind::FMin: {
7972 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7973 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7974 /*unsigned=*/false);
7975 ScalarCost =
7976 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7977 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7978 CmpInst::makeCmpResultType(ScalarTy));
7979 break;
7981 case RecurKind::SMax:
7982 case RecurKind::SMin:
7983 case RecurKind::UMax:
7984 case RecurKind::UMin: {
7985 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7986 bool IsUnsigned =
7987 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7988 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned);
7989 ScalarCost =
7990 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7991 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7992 CmpInst::makeCmpResultType(ScalarTy));
7993 break;
7995 default:
7996 llvm_unreachable("Expected arithmetic or min/max reduction operation");
7999 // Scalar cost is repeated for N-1 elements.
8000 ScalarCost *= (ReduxWidth - 1);
8001 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
8002 << " for reduction that starts with " << *FirstReducedVal
8003 << " (It is a splitting reduction)\n");
8004 return VectorCost - ScalarCost;
8007 /// Emit a horizontal reduction of the vectorized value.
8008 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
8009 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
8010 assert(VectorizedValue && "Need to have a vectorized tree node");
8011 assert(isPowerOf2_32(ReduxWidth) &&
8012 "We only handle power-of-two reductions for now");
8014 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
8015 ReductionOps.back());
8019 } // end anonymous namespace
8021 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
8022 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
8023 return cast<FixedVectorType>(IE->getType())->getNumElements();
8025 unsigned AggregateSize = 1;
8026 auto *IV = cast<InsertValueInst>(InsertInst);
8027 Type *CurrentType = IV->getType();
8028 do {
8029 if (auto *ST = dyn_cast<StructType>(CurrentType)) {
8030 for (auto *Elt : ST->elements())
8031 if (Elt != ST->getElementType(0)) // check homogeneity
8032 return None;
8033 AggregateSize *= ST->getNumElements();
8034 CurrentType = ST->getElementType(0);
8035 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
8036 AggregateSize *= AT->getNumElements();
8037 CurrentType = AT->getElementType();
8038 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
8039 AggregateSize *= VT->getNumElements();
8040 return AggregateSize;
8041 } else if (CurrentType->isSingleValueType()) {
8042 return AggregateSize;
8043 } else {
8044 return None;
8046 } while (true);
8049 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
8050 TargetTransformInfo *TTI,
8051 SmallVectorImpl<Value *> &BuildVectorOpds,
8052 SmallVectorImpl<Value *> &InsertElts,
8053 unsigned OperandOffset) {
8054 do {
8055 Value *InsertedOperand = LastInsertInst->getOperand(1);
8056 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
8057 if (!OperandIndex)
8058 return false;
8059 if (isa<InsertElementInst>(InsertedOperand) ||
8060 isa<InsertValueInst>(InsertedOperand)) {
8061 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
8062 BuildVectorOpds, InsertElts, *OperandIndex))
8063 return false;
8064 } else {
8065 BuildVectorOpds[*OperandIndex] = InsertedOperand;
8066 InsertElts[*OperandIndex] = LastInsertInst;
8068 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
8069 } while (LastInsertInst != nullptr &&
8070 (isa<InsertValueInst>(LastInsertInst) ||
8071 isa<InsertElementInst>(LastInsertInst)) &&
8072 LastInsertInst->hasOneUse());
8073 return true;
8076 /// Recognize construction of vectors like
8077 /// %ra = insertelement <4 x float> poison, float %s0, i32 0
8078 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
8079 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
8080 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
8081 /// starting from the last insertelement or insertvalue instruction.
8083 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
8084 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
8085 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
8087 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
8089 /// \return true if it matches.
8090 static bool findBuildAggregate(Instruction *LastInsertInst,
8091 TargetTransformInfo *TTI,
8092 SmallVectorImpl<Value *> &BuildVectorOpds,
8093 SmallVectorImpl<Value *> &InsertElts) {
8095 assert((isa<InsertElementInst>(LastInsertInst) ||
8096 isa<InsertValueInst>(LastInsertInst)) &&
8097 "Expected insertelement or insertvalue instruction!");
8099 assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
8100 "Expected empty result vectors!");
8102 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
8103 if (!AggregateSize)
8104 return false;
8105 BuildVectorOpds.resize(*AggregateSize);
8106 InsertElts.resize(*AggregateSize);
8108 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
8109 0)) {
8110 llvm::erase_value(BuildVectorOpds, nullptr);
8111 llvm::erase_value(InsertElts, nullptr);
8112 if (BuildVectorOpds.size() >= 2)
8113 return true;
8116 return false;
8119 /// Try and get a reduction value from a phi node.
8121 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
8122 /// if they come from either \p ParentBB or a containing loop latch.
8124 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
8125 /// if not possible.
8126 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
8127 BasicBlock *ParentBB, LoopInfo *LI) {
8128 // There are situations where the reduction value is not dominated by the
8129 // reduction phi. Vectorizing such cases has been reported to cause
8130 // miscompiles. See PR25787.
8131 auto DominatedReduxValue = [&](Value *R) {
8132 return isa<Instruction>(R) &&
8133 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
8136 Value *Rdx = nullptr;
8138 // Return the incoming value if it comes from the same BB as the phi node.
8139 if (P->getIncomingBlock(0) == ParentBB) {
8140 Rdx = P->getIncomingValue(0);
8141 } else if (P->getIncomingBlock(1) == ParentBB) {
8142 Rdx = P->getIncomingValue(1);
8145 if (Rdx && DominatedReduxValue(Rdx))
8146 return Rdx;
8148 // Otherwise, check whether we have a loop latch to look at.
8149 Loop *BBL = LI->getLoopFor(ParentBB);
8150 if (!BBL)
8151 return nullptr;
8152 BasicBlock *BBLatch = BBL->getLoopLatch();
8153 if (!BBLatch)
8154 return nullptr;
8156 // There is a loop latch, return the incoming value if it comes from
8157 // that. This reduction pattern occasionally turns up.
8158 if (P->getIncomingBlock(0) == BBLatch) {
8159 Rdx = P->getIncomingValue(0);
8160 } else if (P->getIncomingBlock(1) == BBLatch) {
8161 Rdx = P->getIncomingValue(1);
8164 if (Rdx && DominatedReduxValue(Rdx))
8165 return Rdx;
8167 return nullptr;
8170 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
8171 if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
8172 return true;
8173 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
8174 return true;
8175 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
8176 return true;
8177 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
8178 return true;
8179 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
8180 return true;
8181 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
8182 return true;
8183 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
8184 return true;
8185 return false;
8188 /// Attempt to reduce a horizontal reduction.
8189 /// If it is legal to match a horizontal reduction feeding the phi node \a P
8190 /// with reduction operators \a Root (or one of its operands) in a basic block
8191 /// \a BB, then check if it can be done. If horizontal reduction is not found
8192 /// and root instruction is a binary operation, vectorization of the operands is
8193 /// attempted.
8194 /// \returns true if a horizontal reduction was matched and reduced or operands
8195 /// of one of the binary instruction were vectorized.
8196 /// \returns false if a horizontal reduction was not matched (or not possible)
8197 /// or no vectorization of any binary operation feeding \a Root instruction was
8198 /// performed.
8199 static bool tryToVectorizeHorReductionOrInstOperands(
8200 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
8201 TargetTransformInfo *TTI,
8202 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
8203 if (!ShouldVectorizeHor)
8204 return false;
8206 if (!Root)
8207 return false;
8209 if (Root->getParent() != BB || isa<PHINode>(Root))
8210 return false;
8211 // Start analysis starting from Root instruction. If horizontal reduction is
8212 // found, try to vectorize it. If it is not a horizontal reduction or
8213 // vectorization is not possible or not effective, and currently analyzed
8214 // instruction is a binary operation, try to vectorize the operands, using
8215 // pre-order DFS traversal order. If the operands were not vectorized, repeat
8216 // the same procedure considering each operand as a possible root of the
8217 // horizontal reduction.
8218 // Interrupt the process if the Root instruction itself was vectorized or all
8219 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
8220 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
8221 // CmpInsts so we can skip extra attempts in
8222 // tryToVectorizeHorReductionOrInstOperands and save compile time.
8223 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
8224 SmallPtrSet<Value *, 8> VisitedInstrs;
8225 bool Res = false;
8226 while (!Stack.empty()) {
8227 Instruction *Inst;
8228 unsigned Level;
8229 std::tie(Inst, Level) = Stack.pop_back_val();
8230 // Do not try to analyze instruction that has already been vectorized.
8231 // This may happen when we vectorize instruction operands on a previous
8232 // iteration while stack was populated before that happened.
8233 if (R.isDeleted(Inst))
8234 continue;
8235 Value *B0, *B1;
8236 bool IsBinop = matchRdxBop(Inst, B0, B1);
8237 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
8238 if (IsBinop || IsSelect) {
8239 HorizontalReduction HorRdx;
8240 if (HorRdx.matchAssociativeReduction(P, Inst)) {
8241 if (HorRdx.tryToReduce(R, TTI)) {
8242 Res = true;
8243 // Set P to nullptr to avoid re-analysis of phi node in
8244 // matchAssociativeReduction function unless this is the root node.
8245 P = nullptr;
8246 continue;
8249 if (P && IsBinop) {
8250 Inst = dyn_cast<Instruction>(B0);
8251 if (Inst == P)
8252 Inst = dyn_cast<Instruction>(B1);
8253 if (!Inst) {
8254 // Set P to nullptr to avoid re-analysis of phi node in
8255 // matchAssociativeReduction function unless this is the root node.
8256 P = nullptr;
8257 continue;
8261 // Set P to nullptr to avoid re-analysis of phi node in
8262 // matchAssociativeReduction function unless this is the root node.
8263 P = nullptr;
8264 // Do not try to vectorize CmpInst operands, this is done separately.
8265 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
8266 Res = true;
8267 continue;
8270 // Try to vectorize operands.
8271 // Continue analysis for the instruction from the same basic block only to
8272 // save compile time.
8273 if (++Level < RecursionMaxDepth)
8274 for (auto *Op : Inst->operand_values())
8275 if (VisitedInstrs.insert(Op).second)
8276 if (auto *I = dyn_cast<Instruction>(Op))
8277 // Do not try to vectorize CmpInst operands, this is done
8278 // separately.
8279 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
8280 I->getParent() == BB)
8281 Stack.emplace_back(I, Level);
8283 return Res;
8286 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
8287 BasicBlock *BB, BoUpSLP &R,
8288 TargetTransformInfo *TTI) {
8289 auto *I = dyn_cast_or_null<Instruction>(V);
8290 if (!I)
8291 return false;
8293 if (!isa<BinaryOperator>(I))
8294 P = nullptr;
8295 // Try to match and vectorize a horizontal reduction.
8296 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
8297 return tryToVectorize(I, R);
8299 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
8300 ExtraVectorization);
8303 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
8304 BasicBlock *BB, BoUpSLP &R) {
8305 const DataLayout &DL = BB->getModule()->getDataLayout();
8306 if (!R.canMapToVector(IVI->getType(), DL))
8307 return false;
8309 SmallVector<Value *, 16> BuildVectorOpds;
8310 SmallVector<Value *, 16> BuildVectorInsts;
8311 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
8312 return false;
8314 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
8315 // Aggregate value is unlikely to be processed in vector register, we need to
8316 // extract scalars into scalar registers, so NeedExtraction is set true.
8317 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false);
8320 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
8321 BasicBlock *BB, BoUpSLP &R) {
8322 SmallVector<Value *, 16> BuildVectorInsts;
8323 SmallVector<Value *, 16> BuildVectorOpds;
8324 SmallVector<int> Mask;
8325 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
8326 (llvm::all_of(BuildVectorOpds,
8327 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
8328 isShuffle(BuildVectorOpds, Mask)))
8329 return false;
8331 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
8332 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true);
8335 bool SLPVectorizerPass::vectorizeSimpleInstructions(
8336 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
8337 bool AtTerminator) {
8338 bool OpsChanged = false;
8339 SmallVector<Instruction *, 4> PostponedCmps;
8340 for (auto *I : reverse(Instructions)) {
8341 if (R.isDeleted(I))
8342 continue;
8343 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
8344 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
8345 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
8346 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
8347 else if (isa<CmpInst>(I))
8348 PostponedCmps.push_back(I);
8350 if (AtTerminator) {
8351 // Try to find reductions first.
8352 for (Instruction *I : PostponedCmps) {
8353 if (R.isDeleted(I))
8354 continue;
8355 for (Value *Op : I->operands())
8356 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
8358 // Try to vectorize operands as vector bundles.
8359 for (Instruction *I : PostponedCmps) {
8360 if (R.isDeleted(I))
8361 continue;
8362 OpsChanged |= tryToVectorize(I, R);
8364 Instructions.clear();
8365 } else {
8366 // Insert in reverse order since the PostponedCmps vector was filled in
8367 // reverse order.
8368 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
8370 return OpsChanged;
8373 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
8374 bool Changed = false;
8375 SmallVector<Value *, 4> Incoming;
8376 SmallPtrSet<Value *, 16> VisitedInstrs;
8377 // Maps phi nodes to the non-phi nodes found in the use tree for each phi
8378 // node. Allows better to identify the chains that can be vectorized in the
8379 // better way.
8380 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
8382 bool HaveVectorizedPhiNodes = true;
8383 while (HaveVectorizedPhiNodes) {
8384 HaveVectorizedPhiNodes = false;
8386 // Collect the incoming values from the PHIs.
8387 Incoming.clear();
8388 for (Instruction &I : *BB) {
8389 PHINode *P = dyn_cast<PHINode>(&I);
8390 if (!P)
8391 break;
8393 // No need to analyze deleted, vectorized and non-vectorizable
8394 // instructions.
8395 if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
8396 isValidElementType(P->getType()))
8397 Incoming.push_back(P);
8400 // Find the corresponding non-phi nodes for better matching when trying to
8401 // build the tree.
8402 for (Value *V : Incoming) {
8403 SmallVectorImpl<Value *> &Opcodes =
8404 PHIToOpcodes.try_emplace(V).first->getSecond();
8405 if (!Opcodes.empty())
8406 continue;
8407 SmallVector<Value *, 4> Nodes(1, V);
8408 SmallPtrSet<Value *, 4> Visited;
8409 while (!Nodes.empty()) {
8410 auto *PHI = cast<PHINode>(Nodes.pop_back_val());
8411 if (!Visited.insert(PHI).second)
8412 continue;
8413 for (Value *V : PHI->incoming_values()) {
8414 if (auto *PHI1 = dyn_cast<PHINode>((V))) {
8415 Nodes.push_back(PHI1);
8416 continue;
8418 Opcodes.emplace_back(V);
8423 // Sort by type, parent, operands.
8424 stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) {
8425 assert(isValidElementType(V1->getType()) &&
8426 isValidElementType(V2->getType()) &&
8427 "Expected vectorizable types only.");
8428 // It is fine to compare type IDs here, since we expect only vectorizable
8429 // types, like ints, floats and pointers, we don't care about other type.
8430 if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
8431 return true;
8432 if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
8433 return false;
8434 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8435 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8436 if (Opcodes1.size() < Opcodes2.size())
8437 return true;
8438 if (Opcodes1.size() > Opcodes2.size())
8439 return false;
8440 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8441 // Undefs are compatible with any other value.
8442 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8443 continue;
8444 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8445 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8446 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
8447 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
8448 if (!NodeI1)
8449 return NodeI2 != nullptr;
8450 if (!NodeI2)
8451 return false;
8452 assert((NodeI1 == NodeI2) ==
8453 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
8454 "Different nodes should have different DFS numbers");
8455 if (NodeI1 != NodeI2)
8456 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
8457 InstructionsState S = getSameOpcode({I1, I2});
8458 if (S.getOpcode())
8459 continue;
8460 return I1->getOpcode() < I2->getOpcode();
8462 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8463 continue;
8464 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
8465 return true;
8466 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
8467 return false;
8469 return false;
8472 auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
8473 if (V1 == V2)
8474 return true;
8475 if (V1->getType() != V2->getType())
8476 return false;
8477 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8478 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8479 if (Opcodes1.size() != Opcodes2.size())
8480 return false;
8481 for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8482 // Undefs are compatible with any other value.
8483 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8484 continue;
8485 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8486 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8487 if (I1->getParent() != I2->getParent())
8488 return false;
8489 InstructionsState S = getSameOpcode({I1, I2});
8490 if (S.getOpcode())
8491 continue;
8492 return false;
8494 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8495 continue;
8496 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
8497 return false;
8499 return true;
8502 // Try to vectorize elements base on their type.
8503 SmallVector<Value *, 4> Candidates;
8504 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
8505 E = Incoming.end();
8506 IncIt != E;) {
8508 // Look for the next elements with the same type, parent and operand
8509 // kinds.
8510 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
8511 while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) {
8512 VisitedInstrs.insert(*SameTypeIt);
8513 ++SameTypeIt;
8516 // Try to vectorize them.
8517 unsigned NumElts = (SameTypeIt - IncIt);
8518 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
8519 << NumElts << ")\n");
8520 // The order in which the phi nodes appear in the program does not matter.
8521 // So allow tryToVectorizeList to reorder them if it is beneficial. This
8522 // is done when there are exactly two elements since tryToVectorizeList
8523 // asserts that there are only two values when AllowReorder is true.
8524 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
8525 /*AllowReorder=*/true)) {
8526 // Success start over because instructions might have been changed.
8527 HaveVectorizedPhiNodes = true;
8528 Changed = true;
8529 } else if (NumElts < 4 &&
8530 (Candidates.empty() ||
8531 Candidates.front()->getType() == (*IncIt)->getType())) {
8532 Candidates.append(IncIt, std::next(IncIt, NumElts));
8534 // Final attempt to vectorize phis with the same types.
8535 if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) {
8536 if (Candidates.size() > 1 &&
8537 tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) {
8538 // Success start over because instructions might have been changed.
8539 HaveVectorizedPhiNodes = true;
8540 Changed = true;
8542 Candidates.clear();
8545 // Start over at the next instruction of a different type (or the end).
8546 IncIt = SameTypeIt;
8550 VisitedInstrs.clear();
8552 SmallVector<Instruction *, 8> PostProcessInstructions;
8553 SmallDenseSet<Instruction *, 4> KeyNodes;
8554 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
8555 // Skip instructions with scalable type. The num of elements is unknown at
8556 // compile-time for scalable type.
8557 if (isa<ScalableVectorType>(it->getType()))
8558 continue;
8560 // Skip instructions marked for the deletion.
8561 if (R.isDeleted(&*it))
8562 continue;
8563 // We may go through BB multiple times so skip the one we have checked.
8564 if (!VisitedInstrs.insert(&*it).second) {
8565 if (it->use_empty() && KeyNodes.contains(&*it) &&
8566 vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8567 it->isTerminator())) {
8568 // We would like to start over since some instructions are deleted
8569 // and the iterator may become invalid value.
8570 Changed = true;
8571 it = BB->begin();
8572 e = BB->end();
8574 continue;
8577 if (isa<DbgInfoIntrinsic>(it))
8578 continue;
8580 // Try to vectorize reductions that use PHINodes.
8581 if (PHINode *P = dyn_cast<PHINode>(it)) {
8582 // Check that the PHI is a reduction PHI.
8583 if (P->getNumIncomingValues() == 2) {
8584 // Try to match and vectorize a horizontal reduction.
8585 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
8586 TTI)) {
8587 Changed = true;
8588 it = BB->begin();
8589 e = BB->end();
8590 continue;
8593 // Try to vectorize the incoming values of the PHI, to catch reductions
8594 // that feed into PHIs.
8595 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
8596 // Skip if the incoming block is the current BB for now. Also, bypass
8597 // unreachable IR for efficiency and to avoid crashing.
8598 // TODO: Collect the skipped incoming values and try to vectorize them
8599 // after processing BB.
8600 if (BB == P->getIncomingBlock(I) ||
8601 !DT->isReachableFromEntry(P->getIncomingBlock(I)))
8602 continue;
8604 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
8605 P->getIncomingBlock(I), R, TTI);
8607 continue;
8610 // Ran into an instruction without users, like terminator, or function call
8611 // with ignored return value, store. Ignore unused instructions (basing on
8612 // instruction type, except for CallInst and InvokeInst).
8613 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
8614 isa<InvokeInst>(it))) {
8615 KeyNodes.insert(&*it);
8616 bool OpsChanged = false;
8617 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
8618 for (auto *V : it->operand_values()) {
8619 // Try to match and vectorize a horizontal reduction.
8620 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
8623 // Start vectorization of post-process list of instructions from the
8624 // top-tree instructions to try to vectorize as many instructions as
8625 // possible.
8626 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8627 it->isTerminator());
8628 if (OpsChanged) {
8629 // We would like to start over since some instructions are deleted
8630 // and the iterator may become invalid value.
8631 Changed = true;
8632 it = BB->begin();
8633 e = BB->end();
8634 continue;
8638 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
8639 isa<InsertValueInst>(it))
8640 PostProcessInstructions.push_back(&*it);
8643 return Changed;
8646 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
8647 auto Changed = false;
8648 for (auto &Entry : GEPs) {
8649 // If the getelementptr list has fewer than two elements, there's nothing
8650 // to do.
8651 if (Entry.second.size() < 2)
8652 continue;
8654 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
8655 << Entry.second.size() << ".\n");
8657 // Process the GEP list in chunks suitable for the target's supported
8658 // vector size. If a vector register can't hold 1 element, we are done. We
8659 // are trying to vectorize the index computations, so the maximum number of
8660 // elements is based on the size of the index expression, rather than the
8661 // size of the GEP itself (the target's pointer size).
8662 unsigned MaxVecRegSize = R.getMaxVecRegSize();
8663 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
8664 if (MaxVecRegSize < EltSize)
8665 continue;
8667 unsigned MaxElts = MaxVecRegSize / EltSize;
8668 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
8669 auto Len = std::min<unsigned>(BE - BI, MaxElts);
8670 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
8672 // Initialize a set a candidate getelementptrs. Note that we use a
8673 // SetVector here to preserve program order. If the index computations
8674 // are vectorizable and begin with loads, we want to minimize the chance
8675 // of having to reorder them later.
8676 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
8678 // Some of the candidates may have already been vectorized after we
8679 // initially collected them. If so, they are marked as deleted, so remove
8680 // them from the set of candidates.
8681 Candidates.remove_if(
8682 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8684 // Remove from the set of candidates all pairs of getelementptrs with
8685 // constant differences. Such getelementptrs are likely not good
8686 // candidates for vectorization in a bottom-up phase since one can be
8687 // computed from the other. We also ensure all candidate getelementptr
8688 // indices are unique.
8689 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8690 auto *GEPI = GEPList[I];
8691 if (!Candidates.count(GEPI))
8692 continue;
8693 auto *SCEVI = SE->getSCEV(GEPList[I]);
8694 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8695 auto *GEPJ = GEPList[J];
8696 auto *SCEVJ = SE->getSCEV(GEPList[J]);
8697 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8698 Candidates.remove(GEPI);
8699 Candidates.remove(GEPJ);
8700 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8701 Candidates.remove(GEPJ);
8706 // We break out of the above computation as soon as we know there are
8707 // fewer than two candidates remaining.
8708 if (Candidates.size() < 2)
8709 continue;
8711 // Add the single, non-constant index of each candidate to the bundle. We
8712 // ensured the indices met these constraints when we originally collected
8713 // the getelementptrs.
8714 SmallVector<Value *, 16> Bundle(Candidates.size());
8715 auto BundleIndex = 0u;
8716 for (auto *V : Candidates) {
8717 auto *GEP = cast<GetElementPtrInst>(V);
8718 auto *GEPIdx = GEP->idx_begin()->get();
8719 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
8720 Bundle[BundleIndex++] = GEPIdx;
8723 // Try and vectorize the indices. We are currently only interested in
8724 // gather-like cases of the form:
8726 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8728 // where the loads of "a", the loads of "b", and the subtractions can be
8729 // performed in parallel. It's likely that detecting this pattern in a
8730 // bottom-up phase will be simpler and less costly than building a
8731 // full-blown top-down phase beginning at the consecutive loads.
8732 Changed |= tryToVectorizeList(Bundle, R);
8735 return Changed;
8738 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8739 bool Changed = false;
8740 // Sort by type, base pointers and values operand. Value operands must be
8741 // compatible (have the same opcode, same parent), otherwise it is
8742 // definitely not profitable to try to vectorize them.
8743 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
8744 if (V->getPointerOperandType()->getTypeID() <
8745 V2->getPointerOperandType()->getTypeID())
8746 return true;
8747 if (V->getPointerOperandType()->getTypeID() >
8748 V2->getPointerOperandType()->getTypeID())
8749 return false;
8750 // UndefValues are compatible with all other values.
8751 if (isa<UndefValue>(V->getValueOperand()) ||
8752 isa<UndefValue>(V2->getValueOperand()))
8753 return false;
8754 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
8755 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
8756 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
8757 DT->getNode(I1->getParent());
8758 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
8759 DT->getNode(I2->getParent());
8760 assert(NodeI1 && "Should only process reachable instructions");
8761 assert(NodeI1 && "Should only process reachable instructions");
8762 assert((NodeI1 == NodeI2) ==
8763 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
8764 "Different nodes should have different DFS numbers");
8765 if (NodeI1 != NodeI2)
8766 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
8767 InstructionsState S = getSameOpcode({I1, I2});
8768 if (S.getOpcode())
8769 return false;
8770 return I1->getOpcode() < I2->getOpcode();
8772 if (isa<Constant>(V->getValueOperand()) &&
8773 isa<Constant>(V2->getValueOperand()))
8774 return false;
8775 return V->getValueOperand()->getValueID() <
8776 V2->getValueOperand()->getValueID();
8779 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
8780 if (V1 == V2)
8781 return true;
8782 if (V1->getPointerOperandType() != V2->getPointerOperandType())
8783 return false;
8784 // Undefs are compatible with any other value.
8785 if (isa<UndefValue>(V1->getValueOperand()) ||
8786 isa<UndefValue>(V2->getValueOperand()))
8787 return true;
8788 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
8789 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
8790 if (I1->getParent() != I2->getParent())
8791 return false;
8792 InstructionsState S = getSameOpcode({I1, I2});
8793 return S.getOpcode() > 0;
8795 if (isa<Constant>(V1->getValueOperand()) &&
8796 isa<Constant>(V2->getValueOperand()))
8797 return true;
8798 return V1->getValueOperand()->getValueID() ==
8799 V2->getValueOperand()->getValueID();
8802 // Attempt to sort and vectorize each of the store-groups.
8803 for (auto &Pair : Stores) {
8804 if (Pair.second.size() < 2)
8805 continue;
8807 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8808 << Pair.second.size() << ".\n");
8810 stable_sort(Pair.second, StoreSorter);
8812 // Try to vectorize elements based on their compatibility.
8813 for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(),
8814 E = Pair.second.end();
8815 IncIt != E;) {
8817 // Look for the next elements with the same type.
8818 ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt;
8819 Type *EltTy = (*IncIt)->getPointerOperand()->getType();
8821 while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt))
8822 ++SameTypeIt;
8824 // Try to vectorize them.
8825 unsigned NumElts = (SameTypeIt - IncIt);
8826 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores ("
8827 << NumElts << ")\n");
8828 if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() &&
8829 vectorizeStores(makeArrayRef(IncIt, NumElts), R)) {
8830 // Success start over because instructions might have been changed.
8831 Changed = true;
8834 // Start over at the next instruction of a different type (or the end).
8835 IncIt = SameTypeIt;
8838 return Changed;
8841 char SLPVectorizer::ID = 0;
8843 static const char lv_name[] = "SLP Vectorizer";
8845 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
8846 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8847 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8848 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8849 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8850 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
8851 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8852 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8853 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8854 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
8856 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }