1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetOperations.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator.h"
33 #include "llvm/ADT/iterator_range.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
102 using namespace llvm
;
103 using namespace llvm::PatternMatch
;
104 using namespace slpvectorizer
;
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
109 STATISTIC(NumVectorInstructions
, "Number of vector instructions generated");
111 cl::opt
<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden
,
112 cl::desc("Run the SLP vectorization passes"));
115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden
,
116 cl::desc("Only vectorize if you gain more than this "
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden
,
121 cl::desc("Attempt to vectorize horizontal reductions"));
123 static cl::opt
<bool> ShouldStartVectorizeHorAtStore(
124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden
,
126 "Attempt to vectorize horizontal reductions feeding into a store"));
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden
,
130 cl::desc("Attempt to vectorize for this register size in bits"));
132 static cl::opt
<unsigned>
133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden
,
134 cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden
,
138 cl::desc("Maximum depth of the lookup for consecutive stores."));
140 /// Limits the size of scheduling regions in a block.
141 /// It avoid long compile times for _very_ large blocks where vector
142 /// instructions are spread over a wide range.
143 /// This limit is way higher than needed by real-world functions.
145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden
,
146 cl::desc("Limit the size of the SLP scheduling region per block"));
148 static cl::opt
<int> MinVectorRegSizeOption(
149 "slp-min-reg-size", cl::init(128), cl::Hidden
,
150 cl::desc("Attempt to vectorize for this register size in bits"));
152 static cl::opt
<unsigned> RecursionMaxDepth(
153 "slp-recursion-max-depth", cl::init(12), cl::Hidden
,
154 cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 static cl::opt
<unsigned> MinTreeSize(
157 "slp-min-tree-size", cl::init(3), cl::Hidden
,
158 cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 // The maximum depth that the look-ahead score heuristic will explore.
161 // The higher this value, the higher the compilation time overhead.
162 static cl::opt
<int> LookAheadMaxDepth(
163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden
,
164 cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 // The Look-ahead heuristic goes through the users of the bundle to calculate
167 // the users cost in getExternalUsesCost(). To avoid compilation time increase
168 // we limit the number of users visited to this value.
169 static cl::opt
<unsigned> LookAheadUsersBudget(
170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden
,
171 cl::desc("The maximum number of users to visit while visiting the "
172 "predecessors. This prevents compilation time increase."));
175 ViewSLPTree("view-slp-tree", cl::Hidden
,
176 cl::desc("Display the SLP trees with Graphviz"));
178 // Limit the number of alias checks. The limit is chosen so that
179 // it has no negative effect on the llvm benchmarks.
180 static const unsigned AliasedCheckLimit
= 10;
182 // Another limit for the alias checks: The maximum distance between load/store
183 // instructions where alias checks are done.
184 // This limit is useful for very large basic blocks.
185 static const unsigned MaxMemDepDistance
= 160;
187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
188 /// regions to be handled.
189 static const int MinScheduleRegionSize
= 16;
191 /// Predicate for the element types that the SLP vectorizer supports.
193 /// The most important thing to filter here are types which are invalid in LLVM
194 /// vectors. We also filter target specific types which have absolutely no
195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
196 /// avoids spending time checking the cost model and realizing that they will
197 /// be inevitably scalarized.
198 static bool isValidElementType(Type
*Ty
) {
199 return VectorType::isValidElementType(Ty
) && !Ty
->isX86_FP80Ty() &&
200 !Ty
->isPPC_FP128Ty();
203 /// \returns true if all of the instructions in \p VL are in the same block or
205 static bool allSameBlock(ArrayRef
<Value
*> VL
) {
206 Instruction
*I0
= dyn_cast
<Instruction
>(VL
[0]);
209 BasicBlock
*BB
= I0
->getParent();
210 for (int I
= 1, E
= VL
.size(); I
< E
; I
++) {
211 auto *II
= dyn_cast
<Instruction
>(VL
[I
]);
215 if (BB
!= II
->getParent())
221 /// \returns True if the value is a constant (but not globals/constant
223 static bool isConstant(Value
*V
) {
224 return isa
<Constant
>(V
) && !isa
<ConstantExpr
>(V
) && !isa
<GlobalValue
>(V
);
227 /// \returns True if all of the values in \p VL are constants (but not
228 /// globals/constant expressions).
229 static bool allConstant(ArrayRef
<Value
*> VL
) {
230 // Constant expressions and globals can't be vectorized like normal integer/FP
232 return all_of(VL
, isConstant
);
235 /// \returns True if all of the values in \p VL are identical.
236 static bool isSplat(ArrayRef
<Value
*> VL
) {
237 for (unsigned i
= 1, e
= VL
.size(); i
< e
; ++i
)
243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
244 static bool isCommutative(Instruction
*I
) {
245 if (auto *Cmp
= dyn_cast
<CmpInst
>(I
))
246 return Cmp
->isCommutative();
247 if (auto *BO
= dyn_cast
<BinaryOperator
>(I
))
248 return BO
->isCommutative();
249 // TODO: This should check for generic Instruction::isCommutative(), but
250 // we need to confirm that the caller code correctly handles Intrinsics
251 // for example (does not have 2 operands).
255 /// Checks if the vector of instructions can be represented as a shuffle, like:
256 /// %x0 = extractelement <4 x i8> %x, i32 0
257 /// %x3 = extractelement <4 x i8> %x, i32 3
258 /// %y1 = extractelement <4 x i8> %y, i32 1
259 /// %y2 = extractelement <4 x i8> %y, i32 2
260 /// %x0x0 = mul i8 %x0, %x0
261 /// %x3x3 = mul i8 %x3, %x3
262 /// %y1y1 = mul i8 %y1, %y1
263 /// %y2y2 = mul i8 %y2, %y2
264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
268 /// ret <4 x i8> %ins4
269 /// can be transformed into:
270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
272 /// %2 = mul <4 x i8> %1, %1
274 /// We convert this initially to something like:
275 /// %x0 = extractelement <4 x i8> %x, i32 0
276 /// %x3 = extractelement <4 x i8> %x, i32 3
277 /// %y1 = extractelement <4 x i8> %y, i32 1
278 /// %y2 = extractelement <4 x i8> %y, i32 2
279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
283 /// %5 = mul <4 x i8> %4, %4
284 /// %6 = extractelement <4 x i8> %5, i32 0
285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
286 /// %7 = extractelement <4 x i8> %5, i32 1
287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
288 /// %8 = extractelement <4 x i8> %5, i32 2
289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
290 /// %9 = extractelement <4 x i8> %5, i32 3
291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
292 /// ret <4 x i8> %ins4
293 /// InstCombiner transforms this into a shuffle and vector mul
294 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
295 /// TODO: Can we split off and reuse the shuffle mask detection from
296 /// TargetTransformInfo::getInstructionThroughput?
297 static Optional
<TargetTransformInfo::ShuffleKind
>
298 isShuffle(ArrayRef
<Value
*> VL
, SmallVectorImpl
<int> &Mask
) {
299 auto *EI0
= cast
<ExtractElementInst
>(VL
[0]);
301 cast
<FixedVectorType
>(EI0
->getVectorOperandType())->getNumElements();
302 Value
*Vec1
= nullptr;
303 Value
*Vec2
= nullptr;
304 enum ShuffleMode
{ Unknown
, Select
, Permute
};
305 ShuffleMode CommonShuffleMode
= Unknown
;
306 for (unsigned I
= 0, E
= VL
.size(); I
< E
; ++I
) {
307 auto *EI
= cast
<ExtractElementInst
>(VL
[I
]);
308 auto *Vec
= EI
->getVectorOperand();
309 // All vector operands must have the same number of vector elements.
310 if (cast
<FixedVectorType
>(Vec
->getType())->getNumElements() != Size
)
312 auto *Idx
= dyn_cast
<ConstantInt
>(EI
->getIndexOperand());
315 // Undefined behavior if Idx is negative or >= Size.
316 if (Idx
->getValue().uge(Size
)) {
317 Mask
.push_back(UndefMaskElem
);
320 unsigned IntIdx
= Idx
->getValue().getZExtValue();
321 Mask
.push_back(IntIdx
);
322 // We can extractelement from undef or poison vector.
323 if (isa
<UndefValue
>(Vec
))
325 // For correct shuffling we have to have at most 2 different vector operands
326 // in all extractelement instructions.
327 if (!Vec1
|| Vec1
== Vec
)
329 else if (!Vec2
|| Vec2
== Vec
)
333 if (CommonShuffleMode
== Permute
)
335 // If the extract index is not the same as the operation number, it is a
338 CommonShuffleMode
= Permute
;
341 CommonShuffleMode
= Select
;
343 // If we're not crossing lanes in different vectors, consider it as blending.
344 if (CommonShuffleMode
== Select
&& Vec2
)
345 return TargetTransformInfo::SK_Select
;
346 // If Vec2 was never used, we have a permutation of a single vector, otherwise
347 // we have permutation of 2 vectors.
348 return Vec2
? TargetTransformInfo::SK_PermuteTwoSrc
349 : TargetTransformInfo::SK_PermuteSingleSrc
;
354 /// Main data required for vectorization of instructions.
355 struct InstructionsState
{
356 /// The very first instruction in the list with the main opcode.
357 Value
*OpValue
= nullptr;
359 /// The main/alternate instruction.
360 Instruction
*MainOp
= nullptr;
361 Instruction
*AltOp
= nullptr;
363 /// The main/alternate opcodes for the list of instructions.
364 unsigned getOpcode() const {
365 return MainOp
? MainOp
->getOpcode() : 0;
368 unsigned getAltOpcode() const {
369 return AltOp
? AltOp
->getOpcode() : 0;
372 /// Some of the instructions in the list have alternate opcodes.
373 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
375 bool isOpcodeOrAlt(Instruction
*I
) const {
376 unsigned CheckedOpcode
= I
->getOpcode();
377 return getOpcode() == CheckedOpcode
|| getAltOpcode() == CheckedOpcode
;
380 InstructionsState() = delete;
381 InstructionsState(Value
*OpValue
, Instruction
*MainOp
, Instruction
*AltOp
)
382 : OpValue(OpValue
), MainOp(MainOp
), AltOp(AltOp
) {}
385 } // end anonymous namespace
387 /// Chooses the correct key for scheduling data. If \p Op has the same (or
388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
390 static Value
*isOneOf(const InstructionsState
&S
, Value
*Op
) {
391 auto *I
= dyn_cast
<Instruction
>(Op
);
392 if (I
&& S
.isOpcodeOrAlt(I
))
397 /// \returns true if \p Opcode is allowed as part of of the main/alternate
398 /// instruction for SLP vectorization.
400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
401 /// "shuffled out" lane would result in division by zero.
402 static bool isValidForAlternation(unsigned Opcode
) {
403 if (Instruction::isIntDivRem(Opcode
))
409 /// \returns analysis of the Instructions in \p VL described in
410 /// InstructionsState, the Opcode that we suppose the whole list
411 /// could be vectorized even if its structure is diverse.
412 static InstructionsState
getSameOpcode(ArrayRef
<Value
*> VL
,
413 unsigned BaseIndex
= 0) {
414 // Make sure these are all Instructions.
415 if (llvm::any_of(VL
, [](Value
*V
) { return !isa
<Instruction
>(V
); }))
416 return InstructionsState(VL
[BaseIndex
], nullptr, nullptr);
418 bool IsCastOp
= isa
<CastInst
>(VL
[BaseIndex
]);
419 bool IsBinOp
= isa
<BinaryOperator
>(VL
[BaseIndex
]);
420 unsigned Opcode
= cast
<Instruction
>(VL
[BaseIndex
])->getOpcode();
421 unsigned AltOpcode
= Opcode
;
422 unsigned AltIndex
= BaseIndex
;
424 // Check for one alternate opcode from another BinaryOperator.
425 // TODO - generalize to support all operators (types, calls etc.).
426 for (int Cnt
= 0, E
= VL
.size(); Cnt
< E
; Cnt
++) {
427 unsigned InstOpcode
= cast
<Instruction
>(VL
[Cnt
])->getOpcode();
428 if (IsBinOp
&& isa
<BinaryOperator
>(VL
[Cnt
])) {
429 if (InstOpcode
== Opcode
|| InstOpcode
== AltOpcode
)
431 if (Opcode
== AltOpcode
&& isValidForAlternation(InstOpcode
) &&
432 isValidForAlternation(Opcode
)) {
433 AltOpcode
= InstOpcode
;
437 } else if (IsCastOp
&& isa
<CastInst
>(VL
[Cnt
])) {
438 Type
*Ty0
= cast
<Instruction
>(VL
[BaseIndex
])->getOperand(0)->getType();
439 Type
*Ty1
= cast
<Instruction
>(VL
[Cnt
])->getOperand(0)->getType();
441 if (InstOpcode
== Opcode
|| InstOpcode
== AltOpcode
)
443 if (Opcode
== AltOpcode
) {
444 assert(isValidForAlternation(Opcode
) &&
445 isValidForAlternation(InstOpcode
) &&
446 "Cast isn't safe for alternation, logic needs to be updated!");
447 AltOpcode
= InstOpcode
;
452 } else if (InstOpcode
== Opcode
|| InstOpcode
== AltOpcode
)
454 return InstructionsState(VL
[BaseIndex
], nullptr, nullptr);
457 return InstructionsState(VL
[BaseIndex
], cast
<Instruction
>(VL
[BaseIndex
]),
458 cast
<Instruction
>(VL
[AltIndex
]));
461 /// \returns true if all of the values in \p VL have the same type or false
463 static bool allSameType(ArrayRef
<Value
*> VL
) {
464 Type
*Ty
= VL
[0]->getType();
465 for (int i
= 1, e
= VL
.size(); i
< e
; i
++)
466 if (VL
[i
]->getType() != Ty
)
472 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
473 static Optional
<unsigned> getExtractIndex(Instruction
*E
) {
474 unsigned Opcode
= E
->getOpcode();
475 assert((Opcode
== Instruction::ExtractElement
||
476 Opcode
== Instruction::ExtractValue
) &&
477 "Expected extractelement or extractvalue instruction.");
478 if (Opcode
== Instruction::ExtractElement
) {
479 auto *CI
= dyn_cast
<ConstantInt
>(E
->getOperand(1));
482 return CI
->getZExtValue();
484 ExtractValueInst
*EI
= cast
<ExtractValueInst
>(E
);
485 if (EI
->getNumIndices() != 1)
487 return *EI
->idx_begin();
490 /// \returns True if in-tree use also needs extract. This refers to
491 /// possible scalar operand in vectorized instruction.
492 static bool InTreeUserNeedToExtract(Value
*Scalar
, Instruction
*UserInst
,
493 TargetLibraryInfo
*TLI
) {
494 unsigned Opcode
= UserInst
->getOpcode();
496 case Instruction::Load
: {
497 LoadInst
*LI
= cast
<LoadInst
>(UserInst
);
498 return (LI
->getPointerOperand() == Scalar
);
500 case Instruction::Store
: {
501 StoreInst
*SI
= cast
<StoreInst
>(UserInst
);
502 return (SI
->getPointerOperand() == Scalar
);
504 case Instruction::Call
: {
505 CallInst
*CI
= cast
<CallInst
>(UserInst
);
506 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
507 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
) {
508 if (hasVectorInstrinsicScalarOpd(ID
, i
))
509 return (CI
->getArgOperand(i
) == Scalar
);
518 /// \returns the AA location that is being access by the instruction.
519 static MemoryLocation
getLocation(Instruction
*I
, AAResults
*AA
) {
520 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
521 return MemoryLocation::get(SI
);
522 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
523 return MemoryLocation::get(LI
);
524 return MemoryLocation();
527 /// \returns True if the instruction is not a volatile or atomic load/store.
528 static bool isSimple(Instruction
*I
) {
529 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
530 return LI
->isSimple();
531 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
532 return SI
->isSimple();
533 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(I
))
534 return !MI
->isVolatile();
540 static void inversePermutation(ArrayRef
<unsigned> Indices
,
541 SmallVectorImpl
<int> &Mask
) {
543 const unsigned E
= Indices
.size();
544 Mask
.resize(E
, E
+ 1);
545 for (unsigned I
= 0; I
< E
; ++I
)
546 Mask
[Indices
[I
]] = I
;
549 /// \returns inserting index of InsertElement or InsertValue instruction,
550 /// using Offset as base offset for index.
551 static Optional
<int> getInsertIndex(Value
*InsertInst
, unsigned Offset
) {
553 if (auto *IE
= dyn_cast
<InsertElementInst
>(InsertInst
)) {
554 if (auto *CI
= dyn_cast
<ConstantInt
>(IE
->getOperand(2))) {
555 auto *VT
= cast
<FixedVectorType
>(IE
->getType());
556 if (CI
->getValue().uge(VT
->getNumElements()))
557 return UndefMaskElem
;
558 Index
*= VT
->getNumElements();
559 Index
+= CI
->getZExtValue();
562 if (isa
<UndefValue
>(IE
->getOperand(2)))
563 return UndefMaskElem
;
567 auto *IV
= cast
<InsertValueInst
>(InsertInst
);
568 Type
*CurrentType
= IV
->getType();
569 for (unsigned I
: IV
->indices()) {
570 if (auto *ST
= dyn_cast
<StructType
>(CurrentType
)) {
571 Index
*= ST
->getNumElements();
572 CurrentType
= ST
->getElementType(I
);
573 } else if (auto *AT
= dyn_cast
<ArrayType
>(CurrentType
)) {
574 Index
*= AT
->getNumElements();
575 CurrentType
= AT
->getElementType();
584 namespace slpvectorizer
{
586 /// Bottom Up SLP Vectorizer.
592 using ValueList
= SmallVector
<Value
*, 8>;
593 using InstrList
= SmallVector
<Instruction
*, 16>;
594 using ValueSet
= SmallPtrSet
<Value
*, 16>;
595 using StoreList
= SmallVector
<StoreInst
*, 8>;
596 using ExtraValueToDebugLocsMap
=
597 MapVector
<Value
*, SmallVector
<Instruction
*, 2>>;
598 using OrdersType
= SmallVector
<unsigned, 4>;
600 BoUpSLP(Function
*Func
, ScalarEvolution
*Se
, TargetTransformInfo
*Tti
,
601 TargetLibraryInfo
*TLi
, AAResults
*Aa
, LoopInfo
*Li
,
602 DominatorTree
*Dt
, AssumptionCache
*AC
, DemandedBits
*DB
,
603 const DataLayout
*DL
, OptimizationRemarkEmitter
*ORE
)
604 : F(Func
), SE(Se
), TTI(Tti
), TLI(TLi
), AA(Aa
), LI(Li
), DT(Dt
), AC(AC
),
605 DB(DB
), DL(DL
), ORE(ORE
), Builder(Se
->getContext()) {
606 CodeMetrics::collectEphemeralValues(F
, AC
, EphValues
);
607 // Use the vector register size specified by the target unless overridden
608 // by a command-line option.
609 // TODO: It would be better to limit the vectorization factor based on
610 // data type rather than just register size. For example, x86 AVX has
611 // 256-bit registers, but it does not support integer operations
612 // at that width (that requires AVX2).
613 if (MaxVectorRegSizeOption
.getNumOccurrences())
614 MaxVecRegSize
= MaxVectorRegSizeOption
;
617 TTI
->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector
)
620 if (MinVectorRegSizeOption
.getNumOccurrences())
621 MinVecRegSize
= MinVectorRegSizeOption
;
623 MinVecRegSize
= TTI
->getMinVectorRegisterBitWidth();
626 /// Vectorize the tree that starts with the elements in \p VL.
627 /// Returns the vectorized root.
628 Value
*vectorizeTree();
630 /// Vectorize the tree but with the list of externally used values \p
631 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
632 /// generated extractvalue instructions.
633 Value
*vectorizeTree(ExtraValueToDebugLocsMap
&ExternallyUsedValues
);
635 /// \returns the cost incurred by unwanted spills and fills, caused by
636 /// holding live values over call sites.
637 InstructionCost
getSpillCost() const;
639 /// \returns the vectorization cost of the subtree that starts at \p VL.
640 /// A negative number means that this is profitable.
641 InstructionCost
getTreeCost(ArrayRef
<Value
*> VectorizedVals
= None
);
643 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
644 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
645 void buildTree(ArrayRef
<Value
*> Roots
,
646 ArrayRef
<Value
*> UserIgnoreLst
= None
);
648 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
649 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
650 /// into account (and updating it, if required) list of externally used
651 /// values stored in \p ExternallyUsedValues.
652 void buildTree(ArrayRef
<Value
*> Roots
,
653 ExtraValueToDebugLocsMap
&ExternallyUsedValues
,
654 ArrayRef
<Value
*> UserIgnoreLst
= None
);
656 /// Clear the internal data structures that are created by 'buildTree'.
658 VectorizableTree
.clear();
659 ScalarToTreeEntry
.clear();
661 ExternalUses
.clear();
662 NumOpsWantToKeepOrder
.clear();
663 NumOpsWantToKeepOriginalOrder
= 0;
664 for (auto &Iter
: BlocksSchedules
) {
665 BlockScheduling
*BS
= Iter
.second
.get();
669 InstrElementSize
.clear();
672 unsigned getTreeSize() const { return VectorizableTree
.size(); }
674 /// Perform LICM and CSE on the newly generated gather sequences.
675 void optimizeGatherSequence();
677 /// \returns The best order of instructions for vectorization.
678 Optional
<ArrayRef
<unsigned>> bestOrder() const {
680 NumOpsWantToKeepOrder
,
681 [this](const decltype(NumOpsWantToKeepOrder
)::value_type
&D
) {
682 return D
.getFirst().size() ==
683 VectorizableTree
[0]->Scalars
.size();
685 "All orders must have the same size as number of instructions in "
687 auto I
= std::max_element(
688 NumOpsWantToKeepOrder
.begin(), NumOpsWantToKeepOrder
.end(),
689 [](const decltype(NumOpsWantToKeepOrder
)::value_type
&D1
,
690 const decltype(NumOpsWantToKeepOrder
)::value_type
&D2
) {
691 return D1
.second
< D2
.second
;
693 if (I
== NumOpsWantToKeepOrder
.end() ||
694 I
->getSecond() <= NumOpsWantToKeepOriginalOrder
)
697 return makeArrayRef(I
->getFirst());
700 /// Builds the correct order for root instructions.
701 /// If some leaves have the same instructions to be vectorized, we may
702 /// incorrectly evaluate the best order for the root node (it is built for the
703 /// vector of instructions without repeated instructions and, thus, has less
704 /// elements than the root node). This function builds the correct order for
706 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
707 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
708 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
709 /// be reordered, the best order will be \<1, 0\>. We need to extend this
710 /// order for the root node. For the root node this order should look like
711 /// \<3, 0, 1, 2\>. This function extends the order for the reused
713 void findRootOrder(OrdersType
&Order
) {
714 // If the leaf has the same number of instructions to vectorize as the root
715 // - order must be set already.
716 unsigned RootSize
= VectorizableTree
[0]->Scalars
.size();
717 if (Order
.size() == RootSize
)
719 SmallVector
<unsigned, 4> RealOrder(Order
.size());
720 std::swap(Order
, RealOrder
);
721 SmallVector
<int, 4> Mask
;
722 inversePermutation(RealOrder
, Mask
);
723 Order
.assign(Mask
.begin(), Mask
.end());
724 // The leaf has less number of instructions - need to find the true order of
726 // Scan the nodes starting from the leaf back to the root.
727 const TreeEntry
*PNode
= VectorizableTree
.back().get();
728 SmallVector
<const TreeEntry
*, 4> Nodes(1, PNode
);
729 SmallPtrSet
<const TreeEntry
*, 4> Visited
;
730 while (!Nodes
.empty() && Order
.size() != RootSize
) {
731 const TreeEntry
*PNode
= Nodes
.pop_back_val();
732 if (!Visited
.insert(PNode
).second
)
734 const TreeEntry
&Node
= *PNode
;
735 for (const EdgeInfo
&EI
: Node
.UserTreeIndices
)
737 Nodes
.push_back(EI
.UserTE
);
738 if (Node
.ReuseShuffleIndices
.empty())
740 // Build the order for the parent node.
741 OrdersType
NewOrder(Node
.ReuseShuffleIndices
.size(), RootSize
);
742 SmallVector
<unsigned, 4> OrderCounter(Order
.size(), 0);
743 // The algorithm of the order extension is:
744 // 1. Calculate the number of the same instructions for the order.
745 // 2. Calculate the index of the new order: total number of instructions
746 // with order less than the order of the current instruction + reuse
747 // number of the current instruction.
748 // 3. The new order is just the index of the instruction in the original
749 // vector of the instructions.
750 for (unsigned I
: Node
.ReuseShuffleIndices
)
751 ++OrderCounter
[Order
[I
]];
752 SmallVector
<unsigned, 4> CurrentCounter(Order
.size(), 0);
753 for (unsigned I
= 0, E
= Node
.ReuseShuffleIndices
.size(); I
< E
; ++I
) {
754 unsigned ReusedIdx
= Node
.ReuseShuffleIndices
[I
];
755 unsigned OrderIdx
= Order
[ReusedIdx
];
757 for (unsigned J
= 0; J
< OrderIdx
; ++J
)
758 NewIdx
+= OrderCounter
[J
];
759 NewIdx
+= CurrentCounter
[OrderIdx
];
760 ++CurrentCounter
[OrderIdx
];
761 assert(NewOrder
[NewIdx
] == RootSize
&&
762 "The order index should not be written already.");
763 NewOrder
[NewIdx
] = I
;
765 std::swap(Order
, NewOrder
);
767 assert(Order
.size() == RootSize
&&
768 "Root node is expected or the size of the order must be the same as "
769 "the number of elements in the root node.");
770 assert(llvm::all_of(Order
,
771 [RootSize
](unsigned Val
) { return Val
!= RootSize
; }) &&
772 "All indices must be initialized");
775 /// \return The vector element size in bits to use when vectorizing the
776 /// expression tree ending at \p V. If V is a store, the size is the width of
777 /// the stored value. Otherwise, the size is the width of the largest loaded
778 /// value reaching V. This method is used by the vectorizer to calculate
779 /// vectorization factors.
780 unsigned getVectorElementSize(Value
*V
);
782 /// Compute the minimum type sizes required to represent the entries in a
783 /// vectorizable tree.
784 void computeMinimumValueSizes();
786 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
787 unsigned getMaxVecRegSize() const {
788 return MaxVecRegSize
;
791 // \returns minimum vector register size as set by cl::opt.
792 unsigned getMinVecRegSize() const {
793 return MinVecRegSize
;
796 unsigned getMaximumVF(unsigned ElemWidth
, unsigned Opcode
) const {
797 unsigned MaxVF
= MaxVFOption
.getNumOccurrences() ?
798 MaxVFOption
: TTI
->getMaximumVF(ElemWidth
, Opcode
);
799 return MaxVF
? MaxVF
: UINT_MAX
;
802 /// Check if homogeneous aggregate is isomorphic to some VectorType.
803 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
804 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
805 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
807 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
808 unsigned canMapToVector(Type
*T
, const DataLayout
&DL
) const;
810 /// \returns True if the VectorizableTree is both tiny and not fully
811 /// vectorizable. We do not vectorize such trees.
812 bool isTreeTinyAndNotFullyVectorizable() const;
814 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
815 /// can be load combined in the backend. Load combining may not be allowed in
816 /// the IR optimizer, so we do not want to alter the pattern. For example,
817 /// partially transforming a scalar bswap() pattern into vector code is
818 /// effectively impossible for the backend to undo.
819 /// TODO: If load combining is allowed in the IR optimizer, this analysis
820 /// may not be necessary.
821 bool isLoadCombineReductionCandidate(RecurKind RdxKind
) const;
823 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
824 /// can be load combined in the backend. Load combining may not be allowed in
825 /// the IR optimizer, so we do not want to alter the pattern. For example,
826 /// partially transforming a scalar bswap() pattern into vector code is
827 /// effectively impossible for the backend to undo.
828 /// TODO: If load combining is allowed in the IR optimizer, this analysis
829 /// may not be necessary.
830 bool isLoadCombineCandidate() const;
832 OptimizationRemarkEmitter
*getORE() { return ORE
; }
834 /// This structure holds any data we need about the edges being traversed
835 /// during buildTree_rec(). We keep track of:
836 /// (i) the user TreeEntry index, and
837 /// (ii) the index of the edge.
839 EdgeInfo() = default;
840 EdgeInfo(TreeEntry
*UserTE
, unsigned EdgeIdx
)
841 : UserTE(UserTE
), EdgeIdx(EdgeIdx
) {}
842 /// The user TreeEntry.
843 TreeEntry
*UserTE
= nullptr;
844 /// The operand index of the use.
845 unsigned EdgeIdx
= UINT_MAX
;
847 friend inline raw_ostream
&operator<<(raw_ostream
&OS
,
848 const BoUpSLP::EdgeInfo
&EI
) {
853 void dump(raw_ostream
&OS
) const {
854 OS
<< "{User:" << (UserTE
? std::to_string(UserTE
->Idx
) : "null")
855 << " EdgeIdx:" << EdgeIdx
<< "}";
857 LLVM_DUMP_METHOD
void dump() const { dump(dbgs()); }
861 /// A helper data structure to hold the operands of a vector of instructions.
862 /// This supports a fixed vector length for all operand vectors.
864 /// For each operand we need (i) the value, and (ii) the opcode that it
865 /// would be attached to if the expression was in a left-linearized form.
866 /// This is required to avoid illegal operand reordering.
871 /// Op1 Op2 Linearized + Op2
872 /// \ / ----------> |/
875 /// Op1 - Op2 (0 + Op1) - Op2
878 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
880 /// Another way to think of this is to track all the operations across the
881 /// path from the operand all the way to the root of the tree and to
882 /// calculate the operation that corresponds to this path. For example, the
883 /// path from Op2 to the root crosses the RHS of the '-', therefore the
884 /// corresponding operation is a '-' (which matches the one in the
885 /// linearized tree, as shown above).
887 /// For lack of a better term, we refer to this operation as Accumulated
888 /// Path Operation (APO).
890 OperandData() = default;
891 OperandData(Value
*V
, bool APO
, bool IsUsed
)
892 : V(V
), APO(APO
), IsUsed(IsUsed
) {}
893 /// The operand value.
895 /// TreeEntries only allow a single opcode, or an alternate sequence of
896 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
897 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
898 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
901 /// Helper data for the reordering function.
905 /// During operand reordering, we are trying to select the operand at lane
906 /// that matches best with the operand at the neighboring lane. Our
907 /// selection is based on the type of value we are looking for. For example,
908 /// if the neighboring lane has a load, we need to look for a load that is
909 /// accessing a consecutive address. These strategies are summarized in the
910 /// 'ReorderingMode' enumerator.
911 enum class ReorderingMode
{
912 Load
, ///< Matching loads to consecutive memory addresses
913 Opcode
, ///< Matching instructions based on opcode (same or alternate)
914 Constant
, ///< Matching constants
915 Splat
, ///< Matching the same instruction multiple times (broadcast)
916 Failed
, ///< We failed to create a vectorizable group
919 using OperandDataVec
= SmallVector
<OperandData
, 2>;
921 /// A vector of operand vectors.
922 SmallVector
<OperandDataVec
, 4> OpsVec
;
924 const DataLayout
&DL
;
928 /// \returns the operand data at \p OpIdx and \p Lane.
929 OperandData
&getData(unsigned OpIdx
, unsigned Lane
) {
930 return OpsVec
[OpIdx
][Lane
];
933 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
934 const OperandData
&getData(unsigned OpIdx
, unsigned Lane
) const {
935 return OpsVec
[OpIdx
][Lane
];
938 /// Clears the used flag for all entries.
940 for (unsigned OpIdx
= 0, NumOperands
= getNumOperands();
941 OpIdx
!= NumOperands
; ++OpIdx
)
942 for (unsigned Lane
= 0, NumLanes
= getNumLanes(); Lane
!= NumLanes
;
944 OpsVec
[OpIdx
][Lane
].IsUsed
= false;
947 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
948 void swap(unsigned OpIdx1
, unsigned OpIdx2
, unsigned Lane
) {
949 std::swap(OpsVec
[OpIdx1
][Lane
], OpsVec
[OpIdx2
][Lane
]);
952 // The hard-coded scores listed here are not very important. When computing
953 // the scores of matching one sub-tree with another, we are basically
954 // counting the number of values that are matching. So even if all scores
955 // are set to 1, we would still get a decent matching result.
956 // However, sometimes we have to break ties. For example we may have to
957 // choose between matching loads vs matching opcodes. This is what these
958 // scores are helping us with: they provide the order of preference.
960 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
961 static const int ScoreConsecutiveLoads
= 3;
962 /// ExtractElementInst from same vector and consecutive indexes.
963 static const int ScoreConsecutiveExtracts
= 3;
965 static const int ScoreConstants
= 2;
966 /// Instructions with the same opcode.
967 static const int ScoreSameOpcode
= 2;
968 /// Instructions with alt opcodes (e.g, add + sub).
969 static const int ScoreAltOpcodes
= 1;
970 /// Identical instructions (a.k.a. splat or broadcast).
971 static const int ScoreSplat
= 1;
972 /// Matching with an undef is preferable to failing.
973 static const int ScoreUndef
= 1;
974 /// Score for failing to find a decent match.
975 static const int ScoreFail
= 0;
976 /// User exteranl to the vectorized code.
977 static const int ExternalUseCost
= 1;
978 /// The user is internal but in a different lane.
979 static const int UserInDiffLaneCost
= ExternalUseCost
;
981 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
982 static int getShallowScore(Value
*V1
, Value
*V2
, const DataLayout
&DL
,
983 ScalarEvolution
&SE
) {
984 auto *LI1
= dyn_cast
<LoadInst
>(V1
);
985 auto *LI2
= dyn_cast
<LoadInst
>(V2
);
987 if (LI1
->getParent() != LI2
->getParent())
988 return VLOperands::ScoreFail
;
990 Optional
<int> Dist
= getPointersDiff(
991 LI1
->getType(), LI1
->getPointerOperand(), LI2
->getType(),
992 LI2
->getPointerOperand(), DL
, SE
, /*StrictCheck=*/true);
993 return (Dist
&& *Dist
== 1) ? VLOperands::ScoreConsecutiveLoads
994 : VLOperands::ScoreFail
;
997 auto *C1
= dyn_cast
<Constant
>(V1
);
998 auto *C2
= dyn_cast
<Constant
>(V2
);
1000 return VLOperands::ScoreConstants
;
1002 // Extracts from consecutive indexes of the same vector better score as
1003 // the extracts could be optimized away.
1005 ConstantInt
*Ex1Idx
, *Ex2Idx
;
1006 if (match(V1
, m_ExtractElt(m_Value(EV
), m_ConstantInt(Ex1Idx
))) &&
1007 match(V2
, m_ExtractElt(m_Deferred(EV
), m_ConstantInt(Ex2Idx
))) &&
1008 Ex1Idx
->getZExtValue() + 1 == Ex2Idx
->getZExtValue())
1009 return VLOperands::ScoreConsecutiveExtracts
;
1011 auto *I1
= dyn_cast
<Instruction
>(V1
);
1012 auto *I2
= dyn_cast
<Instruction
>(V2
);
1015 return VLOperands::ScoreSplat
;
1016 InstructionsState S
= getSameOpcode({I1
, I2
});
1017 // Note: Only consider instructions with <= 2 operands to avoid
1018 // complexity explosion.
1019 if (S
.getOpcode() && S
.MainOp
->getNumOperands() <= 2)
1020 return S
.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1021 : VLOperands::ScoreSameOpcode
;
1024 if (isa
<UndefValue
>(V2
))
1025 return VLOperands::ScoreUndef
;
1027 return VLOperands::ScoreFail
;
1030 /// Holds the values and their lane that are taking part in the look-ahead
1031 /// score calculation. This is used in the external uses cost calculation.
1032 SmallDenseMap
<Value
*, int> InLookAheadValues
;
1034 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
1035 /// either external to the vectorized code, or require shuffling.
1036 int getExternalUsesCost(const std::pair
<Value
*, int> &LHS
,
1037 const std::pair
<Value
*, int> &RHS
) {
1039 std::array
<std::pair
<Value
*, int>, 2> Values
= {{LHS
, RHS
}};
1040 for (int Idx
= 0, IdxE
= Values
.size(); Idx
!= IdxE
; ++Idx
) {
1041 Value
*V
= Values
[Idx
].first
;
1042 if (isa
<Constant
>(V
)) {
1043 // Since this is a function pass, it doesn't make semantic sense to
1044 // walk the users of a subclass of Constant. The users could be in
1045 // another function, or even another module that happens to be in
1046 // the same LLVMContext.
1050 // Calculate the absolute lane, using the minimum relative lane of LHS
1051 // and RHS as base and Idx as the offset.
1052 int Ln
= std::min(LHS
.second
, RHS
.second
) + Idx
;
1053 assert(Ln
>= 0 && "Bad lane calculation");
1054 unsigned UsersBudget
= LookAheadUsersBudget
;
1055 for (User
*U
: V
->users()) {
1056 if (const TreeEntry
*UserTE
= R
.getTreeEntry(U
)) {
1057 // The user is in the VectorizableTree. Check if we need to insert.
1058 auto It
= llvm::find(UserTE
->Scalars
, U
);
1059 assert(It
!= UserTE
->Scalars
.end() && "U is in UserTE");
1060 int UserLn
= std::distance(UserTE
->Scalars
.begin(), It
);
1061 assert(UserLn
>= 0 && "Bad lane");
1063 Cost
+= UserInDiffLaneCost
;
1065 // Check if the user is in the look-ahead code.
1066 auto It2
= InLookAheadValues
.find(U
);
1067 if (It2
!= InLookAheadValues
.end()) {
1068 // The user is in the look-ahead code. Check the lane.
1069 if (It2
->second
!= Ln
)
1070 Cost
+= UserInDiffLaneCost
;
1072 // The user is neither in SLP tree nor in the look-ahead code.
1073 Cost
+= ExternalUseCost
;
1076 // Limit the number of visited uses to cap compilation time.
1077 if (--UsersBudget
== 0)
1084 /// Go through the operands of \p LHS and \p RHS recursively until \p
1085 /// MaxLevel, and return the cummulative score. For example:
1087 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1]
1092 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1093 /// each level recursively, accumulating the score. It starts from matching
1094 /// the additions at level 0, then moves on to the loads (level 1). The
1095 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1096 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1097 /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1098 /// Please note that the order of the operands does not matter, as we
1099 /// evaluate the score of all profitable combinations of operands. In
1100 /// other words the score of G1 and G4 is the same as G1 and G2. This
1101 /// heuristic is based on ideas described in:
1102 /// Look-ahead SLP: Auto-vectorization in the presence of commutative
1103 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1104 /// LuÃs F. W. Góes
1105 int getScoreAtLevelRec(const std::pair
<Value
*, int> &LHS
,
1106 const std::pair
<Value
*, int> &RHS
, int CurrLevel
,
1109 Value
*V1
= LHS
.first
;
1110 Value
*V2
= RHS
.first
;
1111 // Get the shallow score of V1 and V2.
1112 int ShallowScoreAtThisLevel
=
1113 std::max((int)ScoreFail
, getShallowScore(V1
, V2
, DL
, SE
) -
1114 getExternalUsesCost(LHS
, RHS
));
1115 int Lane1
= LHS
.second
;
1116 int Lane2
= RHS
.second
;
1118 // If reached MaxLevel,
1119 // or if V1 and V2 are not instructions,
1120 // or if they are SPLAT,
1121 // or if they are not consecutive, early return the current cost.
1122 auto *I1
= dyn_cast
<Instruction
>(V1
);
1123 auto *I2
= dyn_cast
<Instruction
>(V2
);
1124 if (CurrLevel
== MaxLevel
|| !(I1
&& I2
) || I1
== I2
||
1125 ShallowScoreAtThisLevel
== VLOperands::ScoreFail
||
1126 (isa
<LoadInst
>(I1
) && isa
<LoadInst
>(I2
) && ShallowScoreAtThisLevel
))
1127 return ShallowScoreAtThisLevel
;
1128 assert(I1
&& I2
&& "Should have early exited.");
1130 // Keep track of in-tree values for determining the external-use cost.
1131 InLookAheadValues
[V1
] = Lane1
;
1132 InLookAheadValues
[V2
] = Lane2
;
1134 // Contains the I2 operand indexes that got matched with I1 operands.
1135 SmallSet
<unsigned, 4> Op2Used
;
1137 // Recursion towards the operands of I1 and I2. We are trying all possbile
1138 // operand pairs, and keeping track of the best score.
1139 for (unsigned OpIdx1
= 0, NumOperands1
= I1
->getNumOperands();
1140 OpIdx1
!= NumOperands1
; ++OpIdx1
) {
1141 // Try to pair op1I with the best operand of I2.
1142 int MaxTmpScore
= 0;
1143 unsigned MaxOpIdx2
= 0;
1144 bool FoundBest
= false;
1145 // If I2 is commutative try all combinations.
1146 unsigned FromIdx
= isCommutative(I2
) ? 0 : OpIdx1
;
1147 unsigned ToIdx
= isCommutative(I2
)
1148 ? I2
->getNumOperands()
1149 : std::min(I2
->getNumOperands(), OpIdx1
+ 1);
1150 assert(FromIdx
<= ToIdx
&& "Bad index");
1151 for (unsigned OpIdx2
= FromIdx
; OpIdx2
!= ToIdx
; ++OpIdx2
) {
1152 // Skip operands already paired with OpIdx1.
1153 if (Op2Used
.count(OpIdx2
))
1155 // Recursively calculate the cost at each level
1156 int TmpScore
= getScoreAtLevelRec({I1
->getOperand(OpIdx1
), Lane1
},
1157 {I2
->getOperand(OpIdx2
), Lane2
},
1158 CurrLevel
+ 1, MaxLevel
);
1159 // Look for the best score.
1160 if (TmpScore
> VLOperands::ScoreFail
&& TmpScore
> MaxTmpScore
) {
1161 MaxTmpScore
= TmpScore
;
1167 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1168 Op2Used
.insert(MaxOpIdx2
);
1169 ShallowScoreAtThisLevel
+= MaxTmpScore
;
1172 return ShallowScoreAtThisLevel
;
1175 /// \Returns the look-ahead score, which tells us how much the sub-trees
1176 /// rooted at \p LHS and \p RHS match, the more they match the higher the
1177 /// score. This helps break ties in an informed way when we cannot decide on
1178 /// the order of the operands by just considering the immediate
1180 int getLookAheadScore(const std::pair
<Value
*, int> &LHS
,
1181 const std::pair
<Value
*, int> &RHS
) {
1182 InLookAheadValues
.clear();
1183 return getScoreAtLevelRec(LHS
, RHS
, 1, LookAheadMaxDepth
);
1186 // Search all operands in Ops[*][Lane] for the one that matches best
1187 // Ops[OpIdx][LastLane] and return its opreand index.
1188 // If no good match can be found, return None.
1190 getBestOperand(unsigned OpIdx
, int Lane
, int LastLane
,
1191 ArrayRef
<ReorderingMode
> ReorderingModes
) {
1192 unsigned NumOperands
= getNumOperands();
1194 // The operand of the previous lane at OpIdx.
1195 Value
*OpLastLane
= getData(OpIdx
, LastLane
).V
;
1197 // Our strategy mode for OpIdx.
1198 ReorderingMode RMode
= ReorderingModes
[OpIdx
];
1200 // The linearized opcode of the operand at OpIdx, Lane.
1201 bool OpIdxAPO
= getData(OpIdx
, Lane
).APO
;
1203 // The best operand index and its score.
1204 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1205 // are using the score to differentiate between the two.
1207 Optional
<unsigned> Idx
= None
;
1211 // Iterate through all unused operands and look for the best.
1212 for (unsigned Idx
= 0; Idx
!= NumOperands
; ++Idx
) {
1213 // Get the operand at Idx and Lane.
1214 OperandData
&OpData
= getData(Idx
, Lane
);
1215 Value
*Op
= OpData
.V
;
1216 bool OpAPO
= OpData
.APO
;
1218 // Skip already selected operands.
1222 // Skip if we are trying to move the operand to a position with a
1223 // different opcode in the linearized tree form. This would break the
1225 if (OpAPO
!= OpIdxAPO
)
1228 // Look for an operand that matches the current mode.
1230 case ReorderingMode::Load
:
1231 case ReorderingMode::Constant
:
1232 case ReorderingMode::Opcode
: {
1233 bool LeftToRight
= Lane
> LastLane
;
1234 Value
*OpLeft
= (LeftToRight
) ? OpLastLane
: Op
;
1235 Value
*OpRight
= (LeftToRight
) ? Op
: OpLastLane
;
1237 getLookAheadScore({OpLeft
, LastLane
}, {OpRight
, Lane
});
1238 if (Score
> BestOp
.Score
) {
1240 BestOp
.Score
= Score
;
1244 case ReorderingMode::Splat
:
1245 if (Op
== OpLastLane
)
1248 case ReorderingMode::Failed
:
1254 getData(BestOp
.Idx
.getValue(), Lane
).IsUsed
= true;
1257 // If we could not find a good match return None.
1261 /// Helper for reorderOperandVecs. \Returns the lane that we should start
1262 /// reordering from. This is the one which has the least number of operands
1263 /// that can freely move about.
1264 unsigned getBestLaneToStartReordering() const {
1265 unsigned BestLane
= 0;
1266 unsigned Min
= UINT_MAX
;
1267 for (unsigned Lane
= 0, NumLanes
= getNumLanes(); Lane
!= NumLanes
;
1269 unsigned NumFreeOps
= getMaxNumOperandsThatCanBeReordered(Lane
);
1270 if (NumFreeOps
< Min
) {
1278 /// \Returns the maximum number of operands that are allowed to be reordered
1279 /// for \p Lane. This is used as a heuristic for selecting the first lane to
1280 /// start operand reordering.
1281 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane
) const {
1282 unsigned CntTrue
= 0;
1283 unsigned NumOperands
= getNumOperands();
1284 // Operands with the same APO can be reordered. We therefore need to count
1285 // how many of them we have for each APO, like this: Cnt[APO] = x.
1286 // Since we only have two APOs, namely true and false, we can avoid using
1287 // a map. Instead we can simply count the number of operands that
1288 // correspond to one of them (in this case the 'true' APO), and calculate
1289 // the other by subtracting it from the total number of operands.
1290 for (unsigned OpIdx
= 0; OpIdx
!= NumOperands
; ++OpIdx
)
1291 if (getData(OpIdx
, Lane
).APO
)
1293 unsigned CntFalse
= NumOperands
- CntTrue
;
1294 return std::max(CntTrue
, CntFalse
);
1297 /// Go through the instructions in VL and append their operands.
1298 void appendOperandsOfVL(ArrayRef
<Value
*> VL
) {
1299 assert(!VL
.empty() && "Bad VL");
1300 assert((empty() || VL
.size() == getNumLanes()) &&
1301 "Expected same number of lanes");
1302 assert(isa
<Instruction
>(VL
[0]) && "Expected instruction");
1303 unsigned NumOperands
= cast
<Instruction
>(VL
[0])->getNumOperands();
1304 OpsVec
.resize(NumOperands
);
1305 unsigned NumLanes
= VL
.size();
1306 for (unsigned OpIdx
= 0; OpIdx
!= NumOperands
; ++OpIdx
) {
1307 OpsVec
[OpIdx
].resize(NumLanes
);
1308 for (unsigned Lane
= 0; Lane
!= NumLanes
; ++Lane
) {
1309 assert(isa
<Instruction
>(VL
[Lane
]) && "Expected instruction");
1310 // Our tree has just 3 nodes: the root and two operands.
1311 // It is therefore trivial to get the APO. We only need to check the
1312 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1313 // RHS operand. The LHS operand of both add and sub is never attached
1314 // to an inversese operation in the linearized form, therefore its APO
1315 // is false. The RHS is true only if VL[Lane] is an inverse operation.
1317 // Since operand reordering is performed on groups of commutative
1318 // operations or alternating sequences (e.g., +, -), we can safely
1319 // tell the inverse operations by checking commutativity.
1320 bool IsInverseOperation
= !isCommutative(cast
<Instruction
>(VL
[Lane
]));
1321 bool APO
= (OpIdx
== 0) ? false : IsInverseOperation
;
1322 OpsVec
[OpIdx
][Lane
] = {cast
<Instruction
>(VL
[Lane
])->getOperand(OpIdx
),
1328 /// \returns the number of operands.
1329 unsigned getNumOperands() const { return OpsVec
.size(); }
1331 /// \returns the number of lanes.
1332 unsigned getNumLanes() const { return OpsVec
[0].size(); }
1334 /// \returns the operand value at \p OpIdx and \p Lane.
1335 Value
*getValue(unsigned OpIdx
, unsigned Lane
) const {
1336 return getData(OpIdx
, Lane
).V
;
1339 /// \returns true if the data structure is empty.
1340 bool empty() const { return OpsVec
.empty(); }
1342 /// Clears the data.
1343 void clear() { OpsVec
.clear(); }
1345 /// \Returns true if there are enough operands identical to \p Op to fill
1346 /// the whole vector.
1347 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1348 bool shouldBroadcast(Value
*Op
, unsigned OpIdx
, unsigned Lane
) {
1349 bool OpAPO
= getData(OpIdx
, Lane
).APO
;
1350 for (unsigned Ln
= 0, Lns
= getNumLanes(); Ln
!= Lns
; ++Ln
) {
1353 // This is set to true if we found a candidate for broadcast at Lane.
1354 bool FoundCandidate
= false;
1355 for (unsigned OpI
= 0, OpE
= getNumOperands(); OpI
!= OpE
; ++OpI
) {
1356 OperandData
&Data
= getData(OpI
, Ln
);
1357 if (Data
.APO
!= OpAPO
|| Data
.IsUsed
)
1360 FoundCandidate
= true;
1365 if (!FoundCandidate
)
1372 /// Initialize with all the operands of the instruction vector \p RootVL.
1373 VLOperands(ArrayRef
<Value
*> RootVL
, const DataLayout
&DL
,
1374 ScalarEvolution
&SE
, const BoUpSLP
&R
)
1375 : DL(DL
), SE(SE
), R(R
) {
1376 // Append all the operands of RootVL.
1377 appendOperandsOfVL(RootVL
);
1380 /// \Returns a value vector with the operands across all lanes for the
1381 /// opearnd at \p OpIdx.
1382 ValueList
getVL(unsigned OpIdx
) const {
1383 ValueList
OpVL(OpsVec
[OpIdx
].size());
1384 assert(OpsVec
[OpIdx
].size() == getNumLanes() &&
1385 "Expected same num of lanes across all operands");
1386 for (unsigned Lane
= 0, Lanes
= getNumLanes(); Lane
!= Lanes
; ++Lane
)
1387 OpVL
[Lane
] = OpsVec
[OpIdx
][Lane
].V
;
1391 // Performs operand reordering for 2 or more operands.
1392 // The original operands are in OrigOps[OpIdx][Lane].
1393 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1395 unsigned NumOperands
= getNumOperands();
1396 unsigned NumLanes
= getNumLanes();
1397 // Each operand has its own mode. We are using this mode to help us select
1398 // the instructions for each lane, so that they match best with the ones
1399 // we have selected so far.
1400 SmallVector
<ReorderingMode
, 2> ReorderingModes(NumOperands
);
1402 // This is a greedy single-pass algorithm. We are going over each lane
1403 // once and deciding on the best order right away with no back-tracking.
1404 // However, in order to increase its effectiveness, we start with the lane
1405 // that has operands that can move the least. For example, given the
1407 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
1408 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
1409 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
1410 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
1411 // we will start at Lane 1, since the operands of the subtraction cannot
1412 // be reordered. Then we will visit the rest of the lanes in a circular
1413 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1415 // Find the first lane that we will start our search from.
1416 unsigned FirstLane
= getBestLaneToStartReordering();
1418 // Initialize the modes.
1419 for (unsigned OpIdx
= 0; OpIdx
!= NumOperands
; ++OpIdx
) {
1420 Value
*OpLane0
= getValue(OpIdx
, FirstLane
);
1421 // Keep track if we have instructions with all the same opcode on one
1423 if (isa
<LoadInst
>(OpLane0
))
1424 ReorderingModes
[OpIdx
] = ReorderingMode::Load
;
1425 else if (isa
<Instruction
>(OpLane0
)) {
1426 // Check if OpLane0 should be broadcast.
1427 if (shouldBroadcast(OpLane0
, OpIdx
, FirstLane
))
1428 ReorderingModes
[OpIdx
] = ReorderingMode::Splat
;
1430 ReorderingModes
[OpIdx
] = ReorderingMode::Opcode
;
1432 else if (isa
<Constant
>(OpLane0
))
1433 ReorderingModes
[OpIdx
] = ReorderingMode::Constant
;
1434 else if (isa
<Argument
>(OpLane0
))
1435 // Our best hope is a Splat. It may save some cost in some cases.
1436 ReorderingModes
[OpIdx
] = ReorderingMode::Splat
;
1438 // NOTE: This should be unreachable.
1439 ReorderingModes
[OpIdx
] = ReorderingMode::Failed
;
1442 // If the initial strategy fails for any of the operand indexes, then we
1443 // perform reordering again in a second pass. This helps avoid assigning
1444 // high priority to the failed strategy, and should improve reordering for
1445 // the non-failed operand indexes.
1446 for (int Pass
= 0; Pass
!= 2; ++Pass
) {
1447 // Skip the second pass if the first pass did not fail.
1448 bool StrategyFailed
= false;
1449 // Mark all operand data as free to use.
1451 // We keep the original operand order for the FirstLane, so reorder the
1452 // rest of the lanes. We are visiting the nodes in a circular fashion,
1453 // using FirstLane as the center point and increasing the radius
1455 for (unsigned Distance
= 1; Distance
!= NumLanes
; ++Distance
) {
1456 // Visit the lane on the right and then the lane on the left.
1457 for (int Direction
: {+1, -1}) {
1458 int Lane
= FirstLane
+ Direction
* Distance
;
1459 if (Lane
< 0 || Lane
>= (int)NumLanes
)
1461 int LastLane
= Lane
- Direction
;
1462 assert(LastLane
>= 0 && LastLane
< (int)NumLanes
&&
1464 // Look for a good match for each operand.
1465 for (unsigned OpIdx
= 0; OpIdx
!= NumOperands
; ++OpIdx
) {
1466 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1467 Optional
<unsigned> BestIdx
=
1468 getBestOperand(OpIdx
, Lane
, LastLane
, ReorderingModes
);
1469 // By not selecting a value, we allow the operands that follow to
1470 // select a better matching value. We will get a non-null value in
1471 // the next run of getBestOperand().
1473 // Swap the current operand with the one returned by
1474 // getBestOperand().
1475 swap(OpIdx
, BestIdx
.getValue(), Lane
);
1477 // We failed to find a best operand, set mode to 'Failed'.
1478 ReorderingModes
[OpIdx
] = ReorderingMode::Failed
;
1479 // Enable the second pass.
1480 StrategyFailed
= true;
1485 // Skip second pass if the strategy did not fail.
1486 if (!StrategyFailed
)
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492 LLVM_DUMP_METHOD
static StringRef
getModeStr(ReorderingMode RMode
) {
1494 case ReorderingMode::Load
:
1496 case ReorderingMode::Opcode
:
1498 case ReorderingMode::Constant
:
1500 case ReorderingMode::Splat
:
1502 case ReorderingMode::Failed
:
1505 llvm_unreachable("Unimplemented Reordering Type");
1508 LLVM_DUMP_METHOD
static raw_ostream
&printMode(ReorderingMode RMode
,
1510 return OS
<< getModeStr(RMode
);
1514 LLVM_DUMP_METHOD
static void dumpMode(ReorderingMode RMode
) {
1515 printMode(RMode
, dbgs());
1518 friend raw_ostream
&operator<<(raw_ostream
&OS
, ReorderingMode RMode
) {
1519 return printMode(RMode
, OS
);
1522 LLVM_DUMP_METHOD raw_ostream
&print(raw_ostream
&OS
) const {
1523 const unsigned Indent
= 2;
1525 for (const OperandDataVec
&OpDataVec
: OpsVec
) {
1526 OS
<< "Operand " << Cnt
++ << "\n";
1527 for (const OperandData
&OpData
: OpDataVec
) {
1528 OS
.indent(Indent
) << "{";
1529 if (Value
*V
= OpData
.V
)
1533 OS
<< ", APO:" << OpData
.APO
<< "}\n";
1541 LLVM_DUMP_METHOD
void dump() const { print(dbgs()); }
1545 /// Checks if the instruction is marked for deletion.
1546 bool isDeleted(Instruction
*I
) const { return DeletedInstructions
.count(I
); }
1548 /// Marks values operands for later deletion by replacing them with Undefs.
1549 void eraseInstructions(ArrayRef
<Value
*> AV
);
1554 /// Checks if all users of \p I are the part of the vectorization tree.
1555 bool areAllUsersVectorized(Instruction
*I
,
1556 ArrayRef
<Value
*> VectorizedVals
) const;
1558 /// \returns the cost of the vectorizable entry.
1559 InstructionCost
getEntryCost(const TreeEntry
*E
,
1560 ArrayRef
<Value
*> VectorizedVals
);
1562 /// This is the recursive part of buildTree.
1563 void buildTree_rec(ArrayRef
<Value
*> Roots
, unsigned Depth
,
1564 const EdgeInfo
&EI
);
1566 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1567 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1568 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1569 /// returns false, setting \p CurrentOrder to either an empty vector or a
1570 /// non-identity permutation that allows to reuse extract instructions.
1571 bool canReuseExtract(ArrayRef
<Value
*> VL
, Value
*OpValue
,
1572 SmallVectorImpl
<unsigned> &CurrentOrder
) const;
1574 /// Vectorize a single entry in the tree.
1575 Value
*vectorizeTree(TreeEntry
*E
);
1577 /// Vectorize a single entry in the tree, starting in \p VL.
1578 Value
*vectorizeTree(ArrayRef
<Value
*> VL
);
1580 /// \returns the scalarization cost for this type. Scalarization in this
1581 /// context means the creation of vectors from a group of scalars.
1583 getGatherCost(FixedVectorType
*Ty
,
1584 const DenseSet
<unsigned> &ShuffledIndices
) const;
1586 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1588 /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1589 /// previous tree entries. \p Mask is filled with the shuffle mask.
1590 Optional
<TargetTransformInfo::ShuffleKind
>
1591 isGatherShuffledEntry(const TreeEntry
*TE
, SmallVectorImpl
<int> &Mask
,
1592 SmallVectorImpl
<const TreeEntry
*> &Entries
);
1594 /// \returns the scalarization cost for this list of values. Assuming that
1595 /// this subtree gets vectorized, we may need to extract the values from the
1596 /// roots. This method calculates the cost of extracting the values.
1597 InstructionCost
getGatherCost(ArrayRef
<Value
*> VL
) const;
1599 /// Set the Builder insert point to one after the last instruction in
1601 void setInsertPointAfterBundle(const TreeEntry
*E
);
1603 /// \returns a vector from a collection of scalars in \p VL.
1604 Value
*gather(ArrayRef
<Value
*> VL
);
1606 /// \returns whether the VectorizableTree is fully vectorizable and will
1607 /// be beneficial even the tree height is tiny.
1608 bool isFullyVectorizableTinyTree() const;
1610 /// Reorder commutative or alt operands to get better probability of
1611 /// generating vectorized code.
1612 static void reorderInputsAccordingToOpcode(ArrayRef
<Value
*> VL
,
1613 SmallVectorImpl
<Value
*> &Left
,
1614 SmallVectorImpl
<Value
*> &Right
,
1615 const DataLayout
&DL
,
1616 ScalarEvolution
&SE
,
1619 using VecTreeTy
= SmallVector
<std::unique_ptr
<TreeEntry
>, 8>;
1620 TreeEntry(VecTreeTy
&Container
) : Container(Container
) {}
1622 /// \returns true if the scalars in VL are equal to this entry.
1623 bool isSame(ArrayRef
<Value
*> VL
) const {
1624 if (VL
.size() == Scalars
.size())
1625 return std::equal(VL
.begin(), VL
.end(), Scalars
.begin());
1626 return VL
.size() == ReuseShuffleIndices
.size() &&
1628 VL
.begin(), VL
.end(), ReuseShuffleIndices
.begin(),
1629 [this](Value
*V
, int Idx
) { return V
== Scalars
[Idx
]; });
1632 /// A vector of scalars.
1635 /// The Scalars are vectorized into this value. It is initialized to Null.
1636 Value
*VectorizedValue
= nullptr;
1638 /// Do we need to gather this sequence or vectorize it
1639 /// (either with vector instruction or with scatter/gather
1640 /// intrinsics for store/load)?
1641 enum EntryState
{ Vectorize
, ScatterVectorize
, NeedToGather
};
1644 /// Does this sequence require some shuffling?
1645 SmallVector
<int, 4> ReuseShuffleIndices
;
1647 /// Does this entry require reordering?
1648 SmallVector
<unsigned, 4> ReorderIndices
;
1650 /// Points back to the VectorizableTree.
1652 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1653 /// to be a pointer and needs to be able to initialize the child iterator.
1654 /// Thus we need a reference back to the container to translate the indices
1656 VecTreeTy
&Container
;
1658 /// The TreeEntry index containing the user of this entry. We can actually
1659 /// have multiple users so the data structure is not truly a tree.
1660 SmallVector
<EdgeInfo
, 1> UserTreeIndices
;
1662 /// The index of this treeEntry in VectorizableTree.
1666 /// The operands of each instruction in each lane Operands[op_index][lane].
1667 /// Note: This helps avoid the replication of the code that performs the
1668 /// reordering of operands during buildTree_rec() and vectorizeTree().
1669 SmallVector
<ValueList
, 2> Operands
;
1671 /// The main/alternate instruction.
1672 Instruction
*MainOp
= nullptr;
1673 Instruction
*AltOp
= nullptr;
1676 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1677 void setOperand(unsigned OpIdx
, ArrayRef
<Value
*> OpVL
) {
1678 if (Operands
.size() < OpIdx
+ 1)
1679 Operands
.resize(OpIdx
+ 1);
1680 assert(Operands
[OpIdx
].empty() && "Already resized?");
1681 Operands
[OpIdx
].resize(Scalars
.size());
1682 for (unsigned Lane
= 0, E
= Scalars
.size(); Lane
!= E
; ++Lane
)
1683 Operands
[OpIdx
][Lane
] = OpVL
[Lane
];
1686 /// Set the operands of this bundle in their original order.
1687 void setOperandsInOrder() {
1688 assert(Operands
.empty() && "Already initialized?");
1689 auto *I0
= cast
<Instruction
>(Scalars
[0]);
1690 Operands
.resize(I0
->getNumOperands());
1691 unsigned NumLanes
= Scalars
.size();
1692 for (unsigned OpIdx
= 0, NumOperands
= I0
->getNumOperands();
1693 OpIdx
!= NumOperands
; ++OpIdx
) {
1694 Operands
[OpIdx
].resize(NumLanes
);
1695 for (unsigned Lane
= 0; Lane
!= NumLanes
; ++Lane
) {
1696 auto *I
= cast
<Instruction
>(Scalars
[Lane
]);
1697 assert(I
->getNumOperands() == NumOperands
&&
1698 "Expected same number of operands");
1699 Operands
[OpIdx
][Lane
] = I
->getOperand(OpIdx
);
1704 /// \returns the \p OpIdx operand of this TreeEntry.
1705 ValueList
&getOperand(unsigned OpIdx
) {
1706 assert(OpIdx
< Operands
.size() && "Off bounds");
1707 return Operands
[OpIdx
];
1710 /// \returns the number of operands.
1711 unsigned getNumOperands() const { return Operands
.size(); }
1713 /// \return the single \p OpIdx operand.
1714 Value
*getSingleOperand(unsigned OpIdx
) const {
1715 assert(OpIdx
< Operands
.size() && "Off bounds");
1716 assert(!Operands
[OpIdx
].empty() && "No operand available");
1717 return Operands
[OpIdx
][0];
1720 /// Some of the instructions in the list have alternate opcodes.
1721 bool isAltShuffle() const {
1722 return getOpcode() != getAltOpcode();
1725 bool isOpcodeOrAlt(Instruction
*I
) const {
1726 unsigned CheckedOpcode
= I
->getOpcode();
1727 return (getOpcode() == CheckedOpcode
||
1728 getAltOpcode() == CheckedOpcode
);
1731 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1732 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1734 Value
*isOneOf(Value
*Op
) const {
1735 auto *I
= dyn_cast
<Instruction
>(Op
);
1736 if (I
&& isOpcodeOrAlt(I
))
1741 void setOperations(const InstructionsState
&S
) {
1746 Instruction
*getMainOp() const {
1750 Instruction
*getAltOp() const {
1754 /// The main/alternate opcodes for the list of instructions.
1755 unsigned getOpcode() const {
1756 return MainOp
? MainOp
->getOpcode() : 0;
1759 unsigned getAltOpcode() const {
1760 return AltOp
? AltOp
->getOpcode() : 0;
1763 /// Update operations state of this entry if reorder occurred.
1764 bool updateStateIfReorder() {
1765 if (ReorderIndices
.empty())
1767 InstructionsState S
= getSameOpcode(Scalars
, ReorderIndices
.front());
1771 /// When ReuseShuffleIndices is empty it just returns position of \p V
1772 /// within vector of Scalars. Otherwise, try to remap on its reuse index.
1773 int findLaneForValue(Value
*V
) const {
1774 unsigned FoundLane
= std::distance(Scalars
.begin(), find(Scalars
, V
));
1775 assert(FoundLane
< Scalars
.size() && "Couldn't find extract lane");
1776 if (!ReuseShuffleIndices
.empty()) {
1777 FoundLane
= std::distance(ReuseShuffleIndices
.begin(),
1778 find(ReuseShuffleIndices
, FoundLane
));
1785 LLVM_DUMP_METHOD
void dump() const {
1786 dbgs() << Idx
<< ".\n";
1787 for (unsigned OpI
= 0, OpE
= Operands
.size(); OpI
!= OpE
; ++OpI
) {
1788 dbgs() << "Operand " << OpI
<< ":\n";
1789 for (const Value
*V
: Operands
[OpI
])
1790 dbgs().indent(2) << *V
<< "\n";
1792 dbgs() << "Scalars: \n";
1793 for (Value
*V
: Scalars
)
1794 dbgs().indent(2) << *V
<< "\n";
1795 dbgs() << "State: ";
1798 dbgs() << "Vectorize\n";
1800 case ScatterVectorize
:
1801 dbgs() << "ScatterVectorize\n";
1804 dbgs() << "NeedToGather\n";
1807 dbgs() << "MainOp: ";
1809 dbgs() << *MainOp
<< "\n";
1812 dbgs() << "AltOp: ";
1814 dbgs() << *AltOp
<< "\n";
1817 dbgs() << "VectorizedValue: ";
1818 if (VectorizedValue
)
1819 dbgs() << *VectorizedValue
<< "\n";
1822 dbgs() << "ReuseShuffleIndices: ";
1823 if (ReuseShuffleIndices
.empty())
1826 for (unsigned ReuseIdx
: ReuseShuffleIndices
)
1827 dbgs() << ReuseIdx
<< ", ";
1829 dbgs() << "ReorderIndices: ";
1830 for (unsigned ReorderIdx
: ReorderIndices
)
1831 dbgs() << ReorderIdx
<< ", ";
1833 dbgs() << "UserTreeIndices: ";
1834 for (const auto &EInfo
: UserTreeIndices
)
1835 dbgs() << EInfo
<< ", ";
1842 void dumpTreeCosts(const TreeEntry
*E
, InstructionCost ReuseShuffleCost
,
1843 InstructionCost VecCost
,
1844 InstructionCost ScalarCost
) const {
1845 dbgs() << "SLP: Calculated costs for Tree:\n"; E
->dump();
1846 dbgs() << "SLP: Costs:\n";
1847 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost
<< "\n";
1848 dbgs() << "SLP: VectorCost = " << VecCost
<< "\n";
1849 dbgs() << "SLP: ScalarCost = " << ScalarCost
<< "\n";
1850 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " <<
1851 ReuseShuffleCost
+ VecCost
- ScalarCost
<< "\n";
1855 /// Create a new VectorizableTree entry.
1856 TreeEntry
*newTreeEntry(ArrayRef
<Value
*> VL
, Optional
<ScheduleData
*> Bundle
,
1857 const InstructionsState
&S
,
1858 const EdgeInfo
&UserTreeIdx
,
1859 ArrayRef
<unsigned> ReuseShuffleIndices
= None
,
1860 ArrayRef
<unsigned> ReorderIndices
= None
) {
1861 TreeEntry::EntryState EntryState
=
1862 Bundle
? TreeEntry::Vectorize
: TreeEntry::NeedToGather
;
1863 return newTreeEntry(VL
, EntryState
, Bundle
, S
, UserTreeIdx
,
1864 ReuseShuffleIndices
, ReorderIndices
);
1867 TreeEntry
*newTreeEntry(ArrayRef
<Value
*> VL
,
1868 TreeEntry::EntryState EntryState
,
1869 Optional
<ScheduleData
*> Bundle
,
1870 const InstructionsState
&S
,
1871 const EdgeInfo
&UserTreeIdx
,
1872 ArrayRef
<unsigned> ReuseShuffleIndices
= None
,
1873 ArrayRef
<unsigned> ReorderIndices
= None
) {
1874 assert(((!Bundle
&& EntryState
== TreeEntry::NeedToGather
) ||
1875 (Bundle
&& EntryState
!= TreeEntry::NeedToGather
)) &&
1876 "Need to vectorize gather entry?");
1877 VectorizableTree
.push_back(std::make_unique
<TreeEntry
>(VectorizableTree
));
1878 TreeEntry
*Last
= VectorizableTree
.back().get();
1879 Last
->Idx
= VectorizableTree
.size() - 1;
1880 Last
->Scalars
.insert(Last
->Scalars
.begin(), VL
.begin(), VL
.end());
1881 Last
->State
= EntryState
;
1882 Last
->ReuseShuffleIndices
.append(ReuseShuffleIndices
.begin(),
1883 ReuseShuffleIndices
.end());
1884 Last
->ReorderIndices
.append(ReorderIndices
.begin(), ReorderIndices
.end());
1885 Last
->setOperations(S
);
1886 if (Last
->State
!= TreeEntry::NeedToGather
) {
1887 for (Value
*V
: VL
) {
1888 assert(!getTreeEntry(V
) && "Scalar already in tree!");
1889 ScalarToTreeEntry
[V
] = Last
;
1891 // Update the scheduler bundle to point to this TreeEntry.
1893 for (ScheduleData
*BundleMember
= Bundle
.getValue(); BundleMember
;
1894 BundleMember
= BundleMember
->NextInBundle
) {
1895 BundleMember
->TE
= Last
;
1896 BundleMember
->Lane
= Lane
;
1899 assert((!Bundle
.getValue() || Lane
== VL
.size()) &&
1900 "Bundle and VL out of sync");
1902 MustGather
.insert(VL
.begin(), VL
.end());
1905 if (UserTreeIdx
.UserTE
)
1906 Last
->UserTreeIndices
.push_back(UserTreeIdx
);
1911 /// -- Vectorization State --
1912 /// Holds all of the tree entries.
1913 TreeEntry::VecTreeTy VectorizableTree
;
1917 LLVM_DUMP_METHOD
void dumpVectorizableTree() const {
1918 for (unsigned Id
= 0, IdE
= VectorizableTree
.size(); Id
!= IdE
; ++Id
) {
1919 VectorizableTree
[Id
]->dump();
1925 TreeEntry
*getTreeEntry(Value
*V
) { return ScalarToTreeEntry
.lookup(V
); }
1927 const TreeEntry
*getTreeEntry(Value
*V
) const {
1928 return ScalarToTreeEntry
.lookup(V
);
1931 /// Maps a specific scalar to its tree entry.
1932 SmallDenseMap
<Value
*, TreeEntry
*> ScalarToTreeEntry
;
1934 /// Maps a value to the proposed vectorizable size.
1935 SmallDenseMap
<Value
*, unsigned> InstrElementSize
;
1937 /// A list of scalars that we found that we need to keep as scalars.
1938 ValueSet MustGather
;
1940 /// This POD struct describes one external user in the vectorized tree.
1941 struct ExternalUser
{
1942 ExternalUser(Value
*S
, llvm::User
*U
, int L
)
1943 : Scalar(S
), User(U
), Lane(L
) {}
1945 // Which scalar in our function.
1948 // Which user that uses the scalar.
1951 // Which lane does the scalar belong to.
1954 using UserList
= SmallVector
<ExternalUser
, 16>;
1956 /// Checks if two instructions may access the same memory.
1958 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1959 /// is invariant in the calling loop.
1960 bool isAliased(const MemoryLocation
&Loc1
, Instruction
*Inst1
,
1961 Instruction
*Inst2
) {
1962 // First check if the result is already in the cache.
1963 AliasCacheKey key
= std::make_pair(Inst1
, Inst2
);
1964 Optional
<bool> &result
= AliasCache
[key
];
1965 if (result
.hasValue()) {
1966 return result
.getValue();
1968 MemoryLocation Loc2
= getLocation(Inst2
, AA
);
1969 bool aliased
= true;
1970 if (Loc1
.Ptr
&& Loc2
.Ptr
&& isSimple(Inst1
) && isSimple(Inst2
)) {
1971 // Do the alias check.
1972 aliased
= !AA
->isNoAlias(Loc1
, Loc2
);
1974 // Store the result in the cache.
1979 using AliasCacheKey
= std::pair
<Instruction
*, Instruction
*>;
1981 /// Cache for alias results.
1982 /// TODO: consider moving this to the AliasAnalysis itself.
1983 DenseMap
<AliasCacheKey
, Optional
<bool>> AliasCache
;
1985 /// Removes an instruction from its block and eventually deletes it.
1986 /// It's like Instruction::eraseFromParent() except that the actual deletion
1987 /// is delayed until BoUpSLP is destructed.
1988 /// This is required to ensure that there are no incorrect collisions in the
1989 /// AliasCache, which can happen if a new instruction is allocated at the
1990 /// same address as a previously deleted instruction.
1991 void eraseInstruction(Instruction
*I
, bool ReplaceOpsWithUndef
= false) {
1992 auto It
= DeletedInstructions
.try_emplace(I
, ReplaceOpsWithUndef
).first
;
1993 It
->getSecond() = It
->getSecond() && ReplaceOpsWithUndef
;
1996 /// Temporary store for deleted instructions. Instructions will be deleted
1997 /// eventually when the BoUpSLP is destructed.
1998 DenseMap
<Instruction
*, bool> DeletedInstructions
;
2000 /// A list of values that need to extracted out of the tree.
2001 /// This list holds pairs of (Internal Scalar : External User). External User
2002 /// can be nullptr, it means that this Internal Scalar will be used later,
2003 /// after vectorization.
2004 UserList ExternalUses
;
2006 /// Values used only by @llvm.assume calls.
2007 SmallPtrSet
<const Value
*, 32> EphValues
;
2009 /// Holds all of the instructions that we gathered.
2010 SetVector
<Instruction
*> GatherSeq
;
2012 /// A list of blocks that we are going to CSE.
2013 SetVector
<BasicBlock
*> CSEBlocks
;
2015 /// Contains all scheduling relevant data for an instruction.
2016 /// A ScheduleData either represents a single instruction or a member of an
2017 /// instruction bundle (= a group of instructions which is combined into a
2018 /// vector instruction).
2019 struct ScheduleData
{
2020 // The initial value for the dependency counters. It means that the
2021 // dependencies are not calculated yet.
2022 enum { InvalidDeps
= -1 };
2024 ScheduleData() = default;
2026 void init(int BlockSchedulingRegionID
, Value
*OpVal
) {
2027 FirstInBundle
= this;
2028 NextInBundle
= nullptr;
2029 NextLoadStore
= nullptr;
2030 IsScheduled
= false;
2031 SchedulingRegionID
= BlockSchedulingRegionID
;
2032 UnscheduledDepsInBundle
= UnscheduledDeps
;
2033 clearDependencies();
2039 /// Returns true if the dependency information has been calculated.
2040 bool hasValidDependencies() const { return Dependencies
!= InvalidDeps
; }
2042 /// Returns true for single instructions and for bundle representatives
2043 /// (= the head of a bundle).
2044 bool isSchedulingEntity() const { return FirstInBundle
== this; }
2046 /// Returns true if it represents an instruction bundle and not only a
2047 /// single instruction.
2048 bool isPartOfBundle() const {
2049 return NextInBundle
!= nullptr || FirstInBundle
!= this;
2052 /// Returns true if it is ready for scheduling, i.e. it has no more
2053 /// unscheduled depending instructions/bundles.
2054 bool isReady() const {
2055 assert(isSchedulingEntity() &&
2056 "can't consider non-scheduling entity for ready list");
2057 return UnscheduledDepsInBundle
== 0 && !IsScheduled
;
2060 /// Modifies the number of unscheduled dependencies, also updating it for
2061 /// the whole bundle.
2062 int incrementUnscheduledDeps(int Incr
) {
2063 UnscheduledDeps
+= Incr
;
2064 return FirstInBundle
->UnscheduledDepsInBundle
+= Incr
;
2067 /// Sets the number of unscheduled dependencies to the number of
2069 void resetUnscheduledDeps() {
2070 incrementUnscheduledDeps(Dependencies
- UnscheduledDeps
);
2073 /// Clears all dependency information.
2074 void clearDependencies() {
2075 Dependencies
= InvalidDeps
;
2076 resetUnscheduledDeps();
2077 MemoryDependencies
.clear();
2080 void dump(raw_ostream
&os
) const {
2081 if (!isSchedulingEntity()) {
2082 os
<< "/ " << *Inst
;
2083 } else if (NextInBundle
) {
2085 ScheduleData
*SD
= NextInBundle
;
2087 os
<< ';' << *SD
->Inst
;
2088 SD
= SD
->NextInBundle
;
2096 Instruction
*Inst
= nullptr;
2098 /// Points to the head in an instruction bundle (and always to this for
2099 /// single instructions).
2100 ScheduleData
*FirstInBundle
= nullptr;
2102 /// Single linked list of all instructions in a bundle. Null if it is a
2103 /// single instruction.
2104 ScheduleData
*NextInBundle
= nullptr;
2106 /// Single linked list of all memory instructions (e.g. load, store, call)
2107 /// in the block - until the end of the scheduling region.
2108 ScheduleData
*NextLoadStore
= nullptr;
2110 /// The dependent memory instructions.
2111 /// This list is derived on demand in calculateDependencies().
2112 SmallVector
<ScheduleData
*, 4> MemoryDependencies
;
2114 /// This ScheduleData is in the current scheduling region if this matches
2115 /// the current SchedulingRegionID of BlockScheduling.
2116 int SchedulingRegionID
= 0;
2118 /// Used for getting a "good" final ordering of instructions.
2119 int SchedulingPriority
= 0;
2121 /// The number of dependencies. Constitutes of the number of users of the
2122 /// instruction plus the number of dependent memory instructions (if any).
2123 /// This value is calculated on demand.
2124 /// If InvalidDeps, the number of dependencies is not calculated yet.
2125 int Dependencies
= InvalidDeps
;
2127 /// The number of dependencies minus the number of dependencies of scheduled
2128 /// instructions. As soon as this is zero, the instruction/bundle gets ready
2130 /// Note that this is negative as long as Dependencies is not calculated.
2131 int UnscheduledDeps
= InvalidDeps
;
2133 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2134 /// single instructions.
2135 int UnscheduledDepsInBundle
= InvalidDeps
;
2137 /// True if this instruction is scheduled (or considered as scheduled in the
2139 bool IsScheduled
= false;
2141 /// Opcode of the current instruction in the schedule data.
2142 Value
*OpValue
= nullptr;
2144 /// The TreeEntry that this instruction corresponds to.
2145 TreeEntry
*TE
= nullptr;
2147 /// The lane of this node in the TreeEntry.
2152 friend inline raw_ostream
&operator<<(raw_ostream
&os
,
2153 const BoUpSLP::ScheduleData
&SD
) {
2159 friend struct GraphTraits
<BoUpSLP
*>;
2160 friend struct DOTGraphTraits
<BoUpSLP
*>;
2162 /// Contains all scheduling data for a basic block.
2163 struct BlockScheduling
{
2164 BlockScheduling(BasicBlock
*BB
)
2165 : BB(BB
), ChunkSize(BB
->size()), ChunkPos(ChunkSize
) {}
2169 ScheduleStart
= nullptr;
2170 ScheduleEnd
= nullptr;
2171 FirstLoadStoreInRegion
= nullptr;
2172 LastLoadStoreInRegion
= nullptr;
2174 // Reduce the maximum schedule region size by the size of the
2175 // previous scheduling run.
2176 ScheduleRegionSizeLimit
-= ScheduleRegionSize
;
2177 if (ScheduleRegionSizeLimit
< MinScheduleRegionSize
)
2178 ScheduleRegionSizeLimit
= MinScheduleRegionSize
;
2179 ScheduleRegionSize
= 0;
2181 // Make a new scheduling region, i.e. all existing ScheduleData is not
2182 // in the new region yet.
2183 ++SchedulingRegionID
;
2186 ScheduleData
*getScheduleData(Value
*V
) {
2187 ScheduleData
*SD
= ScheduleDataMap
[V
];
2188 if (SD
&& SD
->SchedulingRegionID
== SchedulingRegionID
)
2193 ScheduleData
*getScheduleData(Value
*V
, Value
*Key
) {
2195 return getScheduleData(V
);
2196 auto I
= ExtraScheduleDataMap
.find(V
);
2197 if (I
!= ExtraScheduleDataMap
.end()) {
2198 ScheduleData
*SD
= I
->second
[Key
];
2199 if (SD
&& SD
->SchedulingRegionID
== SchedulingRegionID
)
2205 bool isInSchedulingRegion(ScheduleData
*SD
) const {
2206 return SD
->SchedulingRegionID
== SchedulingRegionID
;
2209 /// Marks an instruction as scheduled and puts all dependent ready
2210 /// instructions into the ready-list.
2211 template <typename ReadyListType
>
2212 void schedule(ScheduleData
*SD
, ReadyListType
&ReadyList
) {
2213 SD
->IsScheduled
= true;
2214 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD
<< "\n");
2216 ScheduleData
*BundleMember
= SD
;
2217 while (BundleMember
) {
2218 if (BundleMember
->Inst
!= BundleMember
->OpValue
) {
2219 BundleMember
= BundleMember
->NextInBundle
;
2222 // Handle the def-use chain dependencies.
2224 // Decrement the unscheduled counter and insert to ready list if ready.
2225 auto &&DecrUnsched
= [this, &ReadyList
](Instruction
*I
) {
2226 doForAllOpcodes(I
, [&ReadyList
](ScheduleData
*OpDef
) {
2227 if (OpDef
&& OpDef
->hasValidDependencies() &&
2228 OpDef
->incrementUnscheduledDeps(-1) == 0) {
2229 // There are no more unscheduled dependencies after
2230 // decrementing, so we can put the dependent instruction
2231 // into the ready list.
2232 ScheduleData
*DepBundle
= OpDef
->FirstInBundle
;
2233 assert(!DepBundle
->IsScheduled
&&
2234 "already scheduled bundle gets ready");
2235 ReadyList
.insert(DepBundle
);
2237 << "SLP: gets ready (def): " << *DepBundle
<< "\n");
2242 // If BundleMember is a vector bundle, its operands may have been
2243 // reordered duiring buildTree(). We therefore need to get its operands
2244 // through the TreeEntry.
2245 if (TreeEntry
*TE
= BundleMember
->TE
) {
2246 int Lane
= BundleMember
->Lane
;
2247 assert(Lane
>= 0 && "Lane not set");
2249 // Since vectorization tree is being built recursively this assertion
2250 // ensures that the tree entry has all operands set before reaching
2251 // this code. Couple of exceptions known at the moment are extracts
2252 // where their second (immediate) operand is not added. Since
2253 // immediates do not affect scheduler behavior this is considered
2255 auto *In
= TE
->getMainOp();
2257 (isa
<ExtractValueInst
>(In
) || isa
<ExtractElementInst
>(In
) ||
2258 In
->getNumOperands() == TE
->getNumOperands()) &&
2259 "Missed TreeEntry operands?");
2260 (void)In
; // fake use to avoid build failure when assertions disabled
2262 for (unsigned OpIdx
= 0, NumOperands
= TE
->getNumOperands();
2263 OpIdx
!= NumOperands
; ++OpIdx
)
2264 if (auto *I
= dyn_cast
<Instruction
>(TE
->getOperand(OpIdx
)[Lane
]))
2267 // If BundleMember is a stand-alone instruction, no operand reordering
2268 // has taken place, so we directly access its operands.
2269 for (Use
&U
: BundleMember
->Inst
->operands())
2270 if (auto *I
= dyn_cast
<Instruction
>(U
.get()))
2273 // Handle the memory dependencies.
2274 for (ScheduleData
*MemoryDepSD
: BundleMember
->MemoryDependencies
) {
2275 if (MemoryDepSD
->incrementUnscheduledDeps(-1) == 0) {
2276 // There are no more unscheduled dependencies after decrementing,
2277 // so we can put the dependent instruction into the ready list.
2278 ScheduleData
*DepBundle
= MemoryDepSD
->FirstInBundle
;
2279 assert(!DepBundle
->IsScheduled
&&
2280 "already scheduled bundle gets ready");
2281 ReadyList
.insert(DepBundle
);
2283 << "SLP: gets ready (mem): " << *DepBundle
<< "\n");
2286 BundleMember
= BundleMember
->NextInBundle
;
2290 void doForAllOpcodes(Value
*V
,
2291 function_ref
<void(ScheduleData
*SD
)> Action
) {
2292 if (ScheduleData
*SD
= getScheduleData(V
))
2294 auto I
= ExtraScheduleDataMap
.find(V
);
2295 if (I
!= ExtraScheduleDataMap
.end())
2296 for (auto &P
: I
->second
)
2297 if (P
.second
->SchedulingRegionID
== SchedulingRegionID
)
2301 /// Put all instructions into the ReadyList which are ready for scheduling.
2302 template <typename ReadyListType
>
2303 void initialFillReadyList(ReadyListType
&ReadyList
) {
2304 for (auto *I
= ScheduleStart
; I
!= ScheduleEnd
; I
= I
->getNextNode()) {
2305 doForAllOpcodes(I
, [&](ScheduleData
*SD
) {
2306 if (SD
->isSchedulingEntity() && SD
->isReady()) {
2307 ReadyList
.insert(SD
);
2309 << "SLP: initially in ready list: " << *I
<< "\n");
2315 /// Checks if a bundle of instructions can be scheduled, i.e. has no
2316 /// cyclic dependencies. This is only a dry-run, no instructions are
2317 /// actually moved at this stage.
2318 /// \returns the scheduling bundle. The returned Optional value is non-None
2319 /// if \p VL is allowed to be scheduled.
2320 Optional
<ScheduleData
*>
2321 tryScheduleBundle(ArrayRef
<Value
*> VL
, BoUpSLP
*SLP
,
2322 const InstructionsState
&S
);
2324 /// Un-bundles a group of instructions.
2325 void cancelScheduling(ArrayRef
<Value
*> VL
, Value
*OpValue
);
2327 /// Allocates schedule data chunk.
2328 ScheduleData
*allocateScheduleDataChunks();
2330 /// Extends the scheduling region so that V is inside the region.
2331 /// \returns true if the region size is within the limit.
2332 bool extendSchedulingRegion(Value
*V
, const InstructionsState
&S
);
2334 /// Initialize the ScheduleData structures for new instructions in the
2335 /// scheduling region.
2336 void initScheduleData(Instruction
*FromI
, Instruction
*ToI
,
2337 ScheduleData
*PrevLoadStore
,
2338 ScheduleData
*NextLoadStore
);
2340 /// Updates the dependency information of a bundle and of all instructions/
2341 /// bundles which depend on the original bundle.
2342 void calculateDependencies(ScheduleData
*SD
, bool InsertInReadyList
,
2345 /// Sets all instruction in the scheduling region to un-scheduled.
2346 void resetSchedule();
2350 /// Simple memory allocation for ScheduleData.
2351 std::vector
<std::unique_ptr
<ScheduleData
[]>> ScheduleDataChunks
;
2353 /// The size of a ScheduleData array in ScheduleDataChunks.
2356 /// The allocator position in the current chunk, which is the last entry
2357 /// of ScheduleDataChunks.
2360 /// Attaches ScheduleData to Instruction.
2361 /// Note that the mapping survives during all vectorization iterations, i.e.
2362 /// ScheduleData structures are recycled.
2363 DenseMap
<Value
*, ScheduleData
*> ScheduleDataMap
;
2365 /// Attaches ScheduleData to Instruction with the leading key.
2366 DenseMap
<Value
*, SmallDenseMap
<Value
*, ScheduleData
*>>
2367 ExtraScheduleDataMap
;
2369 struct ReadyList
: SmallVector
<ScheduleData
*, 8> {
2370 void insert(ScheduleData
*SD
) { push_back(SD
); }
2373 /// The ready-list for scheduling (only used for the dry-run).
2374 ReadyList ReadyInsts
;
2376 /// The first instruction of the scheduling region.
2377 Instruction
*ScheduleStart
= nullptr;
2379 /// The first instruction _after_ the scheduling region.
2380 Instruction
*ScheduleEnd
= nullptr;
2382 /// The first memory accessing instruction in the scheduling region
2384 ScheduleData
*FirstLoadStoreInRegion
= nullptr;
2386 /// The last memory accessing instruction in the scheduling region
2388 ScheduleData
*LastLoadStoreInRegion
= nullptr;
2390 /// The current size of the scheduling region.
2391 int ScheduleRegionSize
= 0;
2393 /// The maximum size allowed for the scheduling region.
2394 int ScheduleRegionSizeLimit
= ScheduleRegionSizeBudget
;
2396 /// The ID of the scheduling region. For a new vectorization iteration this
2397 /// is incremented which "removes" all ScheduleData from the region.
2398 // Make sure that the initial SchedulingRegionID is greater than the
2399 // initial SchedulingRegionID in ScheduleData (which is 0).
2400 int SchedulingRegionID
= 1;
2403 /// Attaches the BlockScheduling structures to basic blocks.
2404 MapVector
<BasicBlock
*, std::unique_ptr
<BlockScheduling
>> BlocksSchedules
;
2406 /// Performs the "real" scheduling. Done before vectorization is actually
2407 /// performed in a basic block.
2408 void scheduleBlock(BlockScheduling
*BS
);
2410 /// List of users to ignore during scheduling and that don't need extracting.
2411 ArrayRef
<Value
*> UserIgnoreList
;
2413 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2414 /// sorted SmallVectors of unsigned.
2415 struct OrdersTypeDenseMapInfo
{
2416 static OrdersType
getEmptyKey() {
2422 static OrdersType
getTombstoneKey() {
2428 static unsigned getHashValue(const OrdersType
&V
) {
2429 return static_cast<unsigned>(hash_combine_range(V
.begin(), V
.end()));
2432 static bool isEqual(const OrdersType
&LHS
, const OrdersType
&RHS
) {
2437 /// Contains orders of operations along with the number of bundles that have
2438 /// operations in this order. It stores only those orders that require
2439 /// reordering, if reordering is not required it is counted using \a
2440 /// NumOpsWantToKeepOriginalOrder.
2441 DenseMap
<OrdersType
, unsigned, OrdersTypeDenseMapInfo
> NumOpsWantToKeepOrder
;
2442 /// Number of bundles that do not require reordering.
2443 unsigned NumOpsWantToKeepOriginalOrder
= 0;
2445 // Analysis and block reference.
2447 ScalarEvolution
*SE
;
2448 TargetTransformInfo
*TTI
;
2449 TargetLibraryInfo
*TLI
;
2453 AssumptionCache
*AC
;
2455 const DataLayout
*DL
;
2456 OptimizationRemarkEmitter
*ORE
;
2458 unsigned MaxVecRegSize
; // This is set by TTI or overridden by cl::opt.
2459 unsigned MinVecRegSize
; // Set by cl::opt (default: 128).
2461 /// Instruction builder to construct the vectorized tree.
2462 IRBuilder
<> Builder
;
2464 /// A map of scalar integer values to the smallest bit width with which they
2465 /// can legally be represented. The values map to (width, signed) pairs,
2466 /// where "width" indicates the minimum bit width and "signed" is True if the
2467 /// value must be signed-extended, rather than zero-extended, back to its
2469 MapVector
<Value
*, std::pair
<uint64_t, bool>> MinBWs
;
2472 } // end namespace slpvectorizer
2474 template <> struct GraphTraits
<BoUpSLP
*> {
2475 using TreeEntry
= BoUpSLP::TreeEntry
;
2477 /// NodeRef has to be a pointer per the GraphWriter.
2478 using NodeRef
= TreeEntry
*;
2480 using ContainerTy
= BoUpSLP::TreeEntry::VecTreeTy
;
2482 /// Add the VectorizableTree to the index iterator to be able to return
2483 /// TreeEntry pointers.
2484 struct ChildIteratorType
2485 : public iterator_adaptor_base
<
2486 ChildIteratorType
, SmallVector
<BoUpSLP::EdgeInfo
, 1>::iterator
> {
2487 ContainerTy
&VectorizableTree
;
2489 ChildIteratorType(SmallVector
<BoUpSLP::EdgeInfo
, 1>::iterator W
,
2491 : ChildIteratorType::iterator_adaptor_base(W
), VectorizableTree(VT
) {}
2493 NodeRef
operator*() { return I
->UserTE
; }
2496 static NodeRef
getEntryNode(BoUpSLP
&R
) {
2497 return R
.VectorizableTree
[0].get();
2500 static ChildIteratorType
child_begin(NodeRef N
) {
2501 return {N
->UserTreeIndices
.begin(), N
->Container
};
2504 static ChildIteratorType
child_end(NodeRef N
) {
2505 return {N
->UserTreeIndices
.end(), N
->Container
};
2508 /// For the node iterator we just need to turn the TreeEntry iterator into a
2509 /// TreeEntry* iterator so that it dereferences to NodeRef.
2510 class nodes_iterator
{
2511 using ItTy
= ContainerTy::iterator
;
2515 nodes_iterator(const ItTy
&It2
) : It(It2
) {}
2516 NodeRef
operator*() { return It
->get(); }
2517 nodes_iterator
operator++() {
2521 bool operator!=(const nodes_iterator
&N2
) const { return N2
.It
!= It
; }
2524 static nodes_iterator
nodes_begin(BoUpSLP
*R
) {
2525 return nodes_iterator(R
->VectorizableTree
.begin());
2528 static nodes_iterator
nodes_end(BoUpSLP
*R
) {
2529 return nodes_iterator(R
->VectorizableTree
.end());
2532 static unsigned size(BoUpSLP
*R
) { return R
->VectorizableTree
.size(); }
2535 template <> struct DOTGraphTraits
<BoUpSLP
*> : public DefaultDOTGraphTraits
{
2536 using TreeEntry
= BoUpSLP::TreeEntry
;
2538 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
2540 std::string
getNodeLabel(const TreeEntry
*Entry
, const BoUpSLP
*R
) {
2542 raw_string_ostream
OS(Str
);
2543 if (isSplat(Entry
->Scalars
)) {
2544 OS
<< "<splat> " << *Entry
->Scalars
[0];
2547 for (auto V
: Entry
->Scalars
) {
2549 if (llvm::any_of(R
->ExternalUses
, [&](const BoUpSLP::ExternalUser
&EU
) {
2550 return EU
.Scalar
== V
;
2558 static std::string
getNodeAttributes(const TreeEntry
*Entry
,
2560 if (Entry
->State
== TreeEntry::NeedToGather
)
2566 } // end namespace llvm
2568 BoUpSLP::~BoUpSLP() {
2569 for (const auto &Pair
: DeletedInstructions
) {
2570 // Replace operands of ignored instructions with Undefs in case if they were
2571 // marked for deletion.
2572 if (Pair
.getSecond()) {
2573 Value
*Undef
= UndefValue::get(Pair
.getFirst()->getType());
2574 Pair
.getFirst()->replaceAllUsesWith(Undef
);
2576 Pair
.getFirst()->dropAllReferences();
2578 for (const auto &Pair
: DeletedInstructions
) {
2579 assert(Pair
.getFirst()->use_empty() &&
2580 "trying to erase instruction with users.");
2581 Pair
.getFirst()->eraseFromParent();
2583 #ifdef EXPENSIVE_CHECKS
2584 // If we could guarantee that this call is not extremely slow, we could
2585 // remove the ifdef limitation (see PR47712).
2586 assert(!verifyFunction(*F
, &dbgs()));
2590 void BoUpSLP::eraseInstructions(ArrayRef
<Value
*> AV
) {
2591 for (auto *V
: AV
) {
2592 if (auto *I
= dyn_cast
<Instruction
>(V
))
2593 eraseInstruction(I
, /*ReplaceOpsWithUndef=*/true);
2597 void BoUpSLP::buildTree(ArrayRef
<Value
*> Roots
,
2598 ArrayRef
<Value
*> UserIgnoreLst
) {
2599 ExtraValueToDebugLocsMap ExternallyUsedValues
;
2600 buildTree(Roots
, ExternallyUsedValues
, UserIgnoreLst
);
2603 void BoUpSLP::buildTree(ArrayRef
<Value
*> Roots
,
2604 ExtraValueToDebugLocsMap
&ExternallyUsedValues
,
2605 ArrayRef
<Value
*> UserIgnoreLst
) {
2607 UserIgnoreList
= UserIgnoreLst
;
2608 if (!allSameType(Roots
))
2610 buildTree_rec(Roots
, 0, EdgeInfo());
2612 // Collect the values that we need to extract from the tree.
2613 for (auto &TEPtr
: VectorizableTree
) {
2614 TreeEntry
*Entry
= TEPtr
.get();
2616 // No need to handle users of gathered values.
2617 if (Entry
->State
== TreeEntry::NeedToGather
)
2621 for (int Lane
= 0, LE
= Entry
->Scalars
.size(); Lane
!= LE
; ++Lane
) {
2622 Value
*Scalar
= Entry
->Scalars
[Lane
];
2623 int FoundLane
= Entry
->findLaneForValue(Scalar
);
2625 // Check if the scalar is externally used as an extra arg.
2626 auto ExtI
= ExternallyUsedValues
.find(Scalar
);
2627 if (ExtI
!= ExternallyUsedValues
.end()) {
2628 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2629 << Lane
<< " from " << *Scalar
<< ".\n");
2630 ExternalUses
.emplace_back(Scalar
, nullptr, FoundLane
);
2632 for (User
*U
: Scalar
->users()) {
2633 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U
<< ".\n");
2635 Instruction
*UserInst
= dyn_cast
<Instruction
>(U
);
2639 if (isDeleted(UserInst
))
2642 // Skip in-tree scalars that become vectors
2643 if (TreeEntry
*UseEntry
= getTreeEntry(U
)) {
2644 Value
*UseScalar
= UseEntry
->Scalars
[0];
2645 // Some in-tree scalars will remain as scalar in vectorized
2646 // instructions. If that is the case, the one in Lane 0 will
2648 if (UseScalar
!= U
||
2649 UseEntry
->State
== TreeEntry::ScatterVectorize
||
2650 !InTreeUserNeedToExtract(Scalar
, UserInst
, TLI
)) {
2651 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2653 assert(UseEntry
->State
!= TreeEntry::NeedToGather
&& "Bad state");
2658 // Ignore users in the user ignore list.
2659 if (is_contained(UserIgnoreList
, UserInst
))
2662 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U
<< " from lane "
2663 << Lane
<< " from " << *Scalar
<< ".\n");
2664 ExternalUses
.push_back(ExternalUser(Scalar
, U
, FoundLane
));
2670 void BoUpSLP::buildTree_rec(ArrayRef
<Value
*> VL
, unsigned Depth
,
2671 const EdgeInfo
&UserTreeIdx
) {
2672 assert((allConstant(VL
) || allSameType(VL
)) && "Invalid types!");
2674 InstructionsState S
= getSameOpcode(VL
);
2675 if (Depth
== RecursionMaxDepth
) {
2676 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2677 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2681 // Don't handle scalable vectors
2682 if (S
.getOpcode() == Instruction::ExtractElement
&&
2683 isa
<ScalableVectorType
>(
2684 cast
<ExtractElementInst
>(S
.OpValue
)->getVectorOperandType())) {
2685 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
2686 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2690 // Don't handle vectors.
2691 if (S
.OpValue
->getType()->isVectorTy() &&
2692 !isa
<InsertElementInst
>(S
.OpValue
)) {
2693 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2694 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2698 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(S
.OpValue
))
2699 if (SI
->getValueOperand()->getType()->isVectorTy()) {
2700 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2701 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2705 // If all of the operands are identical or constant we have a simple solution.
2706 if (allConstant(VL
) || isSplat(VL
) || !allSameBlock(VL
) || !S
.getOpcode()) {
2707 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2708 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2712 // We now know that this is a vector of instructions of the same type from
2715 // Don't vectorize ephemeral values.
2716 for (Value
*V
: VL
) {
2717 if (EphValues
.count(V
)) {
2718 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2719 << ") is ephemeral.\n");
2720 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2725 // Check if this is a duplicate of another entry.
2726 if (TreeEntry
*E
= getTreeEntry(S
.OpValue
)) {
2727 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S
.OpValue
<< ".\n");
2728 if (!E
->isSame(VL
)) {
2729 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2730 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2733 // Record the reuse of the tree node. FIXME, currently this is only used to
2734 // properly draw the graph rather than for the actual vectorization.
2735 E
->UserTreeIndices
.push_back(UserTreeIdx
);
2736 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S
.OpValue
2741 // Check that none of the instructions in the bundle are already in the tree.
2742 for (Value
*V
: VL
) {
2743 auto *I
= dyn_cast
<Instruction
>(V
);
2746 if (getTreeEntry(I
)) {
2747 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2748 << ") is already in tree.\n");
2749 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2754 // If any of the scalars is marked as a value that needs to stay scalar, then
2755 // we need to gather the scalars.
2756 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2757 for (Value
*V
: VL
) {
2758 if (MustGather
.count(V
) || is_contained(UserIgnoreList
, V
)) {
2759 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2760 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2765 // Check that all of the users of the scalars that we want to vectorize are
2767 auto *VL0
= cast
<Instruction
>(S
.OpValue
);
2768 BasicBlock
*BB
= VL0
->getParent();
2770 if (!DT
->isReachableFromEntry(BB
)) {
2771 // Don't go into unreachable blocks. They may contain instructions with
2772 // dependency cycles which confuse the final scheduling.
2773 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2774 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2778 // Check that every instruction appears once in this bundle.
2779 SmallVector
<unsigned, 4> ReuseShuffleIndicies
;
2780 SmallVector
<Value
*, 4> UniqueValues
;
2781 DenseMap
<Value
*, unsigned> UniquePositions
;
2782 for (Value
*V
: VL
) {
2783 auto Res
= UniquePositions
.try_emplace(V
, UniqueValues
.size());
2784 ReuseShuffleIndicies
.emplace_back(Res
.first
->second
);
2786 UniqueValues
.emplace_back(V
);
2788 size_t NumUniqueScalarValues
= UniqueValues
.size();
2789 if (NumUniqueScalarValues
== VL
.size()) {
2790 ReuseShuffleIndicies
.clear();
2792 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2793 if (NumUniqueScalarValues
<= 1 ||
2794 !llvm::isPowerOf2_32(NumUniqueScalarValues
)) {
2795 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2796 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
);
2802 auto &BSRef
= BlocksSchedules
[BB
];
2804 BSRef
= std::make_unique
<BlockScheduling
>(BB
);
2806 BlockScheduling
&BS
= *BSRef
.get();
2808 Optional
<ScheduleData
*> Bundle
= BS
.tryScheduleBundle(VL
, this, S
);
2810 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2811 assert((!BS
.getScheduleData(VL0
) ||
2812 !BS
.getScheduleData(VL0
)->isPartOfBundle()) &&
2813 "tryScheduleBundle should cancelScheduling on failure");
2814 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
2815 ReuseShuffleIndicies
);
2818 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2820 unsigned ShuffleOrOp
= S
.isAltShuffle() ?
2821 (unsigned) Instruction::ShuffleVector
: S
.getOpcode();
2822 switch (ShuffleOrOp
) {
2823 case Instruction::PHI
: {
2824 auto *PH
= cast
<PHINode
>(VL0
);
2826 // Check for terminator values (e.g. invoke).
2828 for (unsigned I
= 0, E
= PH
->getNumIncomingValues(); I
< E
; ++I
) {
2829 Instruction
*Term
= dyn_cast
<Instruction
>(
2830 cast
<PHINode
>(V
)->getIncomingValueForBlock(
2831 PH
->getIncomingBlock(I
)));
2832 if (Term
&& Term
->isTerminator()) {
2834 << "SLP: Need to swizzle PHINodes (terminator use).\n");
2835 BS
.cancelScheduling(VL
, VL0
);
2836 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
2837 ReuseShuffleIndicies
);
2843 newTreeEntry(VL
, Bundle
, S
, UserTreeIdx
, ReuseShuffleIndicies
);
2844 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2846 // Keeps the reordered operands to avoid code duplication.
2847 SmallVector
<ValueList
, 2> OperandsVec
;
2848 for (unsigned I
= 0, E
= PH
->getNumIncomingValues(); I
< E
; ++I
) {
2849 if (!DT
->isReachableFromEntry(PH
->getIncomingBlock(I
))) {
2850 ValueList
Operands(VL
.size(), PoisonValue::get(PH
->getType()));
2851 TE
->setOperand(I
, Operands
);
2852 OperandsVec
.push_back(Operands
);
2856 // Prepare the operand vector.
2858 Operands
.push_back(cast
<PHINode
>(V
)->getIncomingValueForBlock(
2859 PH
->getIncomingBlock(I
)));
2860 TE
->setOperand(I
, Operands
);
2861 OperandsVec
.push_back(Operands
);
2863 for (unsigned OpIdx
= 0, OpE
= OperandsVec
.size(); OpIdx
!= OpE
; ++OpIdx
)
2864 buildTree_rec(OperandsVec
[OpIdx
], Depth
+ 1, {TE
, OpIdx
});
2867 case Instruction::ExtractValue
:
2868 case Instruction::ExtractElement
: {
2869 OrdersType CurrentOrder
;
2870 bool Reuse
= canReuseExtract(VL
, VL0
, CurrentOrder
);
2872 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2873 ++NumOpsWantToKeepOriginalOrder
;
2874 newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
2875 ReuseShuffleIndicies
);
2876 // This is a special case, as it does not gather, but at the same time
2877 // we are not extending buildTree_rec() towards the operands.
2879 Op0
.assign(VL
.size(), VL0
->getOperand(0));
2880 VectorizableTree
.back()->setOperand(0, Op0
);
2883 if (!CurrentOrder
.empty()) {
2885 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2887 for (unsigned Idx
: CurrentOrder
)
2888 dbgs() << " " << Idx
;
2891 // Insert new order with initial value 0, if it does not exist,
2892 // otherwise return the iterator to the existing one.
2893 newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
2894 ReuseShuffleIndicies
, CurrentOrder
);
2895 findRootOrder(CurrentOrder
);
2896 ++NumOpsWantToKeepOrder
[CurrentOrder
];
2897 // This is a special case, as it does not gather, but at the same time
2898 // we are not extending buildTree_rec() towards the operands.
2900 Op0
.assign(VL
.size(), VL0
->getOperand(0));
2901 VectorizableTree
.back()->setOperand(0, Op0
);
2904 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2905 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
2906 ReuseShuffleIndicies
);
2907 BS
.cancelScheduling(VL
, VL0
);
2910 case Instruction::InsertElement
: {
2911 assert(ReuseShuffleIndicies
.empty() && "All inserts should be unique");
2913 // Check that we have a buildvector and not a shuffle of 2 or more
2914 // different vectors.
2915 ValueSet SourceVectors
;
2917 SourceVectors
.insert(cast
<Instruction
>(V
)->getOperand(0));
2919 if (count_if(VL
, [&SourceVectors
](Value
*V
) {
2920 return !SourceVectors
.contains(V
);
2922 // Found 2nd source vector - cancel.
2923 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
2924 "different source vectors.\n");
2925 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
2926 ReuseShuffleIndicies
);
2927 BS
.cancelScheduling(VL
, VL0
);
2931 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
);
2932 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
2934 constexpr int NumOps
= 2;
2935 ValueList VectorOperands
[NumOps
];
2936 for (int I
= 0; I
< NumOps
; ++I
) {
2938 VectorOperands
[I
].push_back(cast
<Instruction
>(V
)->getOperand(I
));
2940 TE
->setOperand(I
, VectorOperands
[I
]);
2942 buildTree_rec(VectorOperands
[NumOps
- 1], Depth
+ 1, {TE
, 0});
2945 case Instruction::Load
: {
2946 // Check that a vectorized load would load the same memory as a scalar
2947 // load. For example, we don't want to vectorize loads that are smaller
2948 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2949 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2950 // from such a struct, we read/write packed bits disagreeing with the
2951 // unvectorized version.
2952 Type
*ScalarTy
= VL0
->getType();
2954 if (DL
->getTypeSizeInBits(ScalarTy
) !=
2955 DL
->getTypeAllocSizeInBits(ScalarTy
)) {
2956 BS
.cancelScheduling(VL
, VL0
);
2957 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
2958 ReuseShuffleIndicies
);
2959 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2963 // Make sure all loads in the bundle are simple - we can't vectorize
2964 // atomic or volatile loads.
2965 SmallVector
<Value
*, 4> PointerOps(VL
.size());
2966 auto POIter
= PointerOps
.begin();
2967 for (Value
*V
: VL
) {
2968 auto *L
= cast
<LoadInst
>(V
);
2969 if (!L
->isSimple()) {
2970 BS
.cancelScheduling(VL
, VL0
);
2971 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
2972 ReuseShuffleIndicies
);
2973 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2976 *POIter
= L
->getPointerOperand();
2980 OrdersType CurrentOrder
;
2981 // Check the order of pointer operands.
2982 if (llvm::sortPtrAccesses(PointerOps
, ScalarTy
, *DL
, *SE
, CurrentOrder
)) {
2985 if (CurrentOrder
.empty()) {
2986 Ptr0
= PointerOps
.front();
2987 PtrN
= PointerOps
.back();
2989 Ptr0
= PointerOps
[CurrentOrder
.front()];
2990 PtrN
= PointerOps
[CurrentOrder
.back()];
2992 Optional
<int> Diff
= getPointersDiff(
2993 ScalarTy
, Ptr0
, ScalarTy
, PtrN
, *DL
, *SE
);
2994 // Check that the sorted loads are consecutive.
2995 if (static_cast<unsigned>(*Diff
) == VL
.size() - 1) {
2996 if (CurrentOrder
.empty()) {
2997 // Original loads are consecutive and does not require reordering.
2998 ++NumOpsWantToKeepOriginalOrder
;
2999 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
,
3000 UserTreeIdx
, ReuseShuffleIndicies
);
3001 TE
->setOperandsInOrder();
3002 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
3006 newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3007 ReuseShuffleIndicies
, CurrentOrder
);
3008 TE
->setOperandsInOrder();
3009 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
3010 findRootOrder(CurrentOrder
);
3011 ++NumOpsWantToKeepOrder
[CurrentOrder
];
3015 Align CommonAlignment
= cast
<LoadInst
>(VL0
)->getAlign();
3018 commonAlignment(CommonAlignment
, cast
<LoadInst
>(V
)->getAlign());
3019 if (TTI
->isLegalMaskedGather(FixedVectorType::get(ScalarTy
, VL
.size()),
3021 // Vectorizing non-consecutive loads with `llvm.masked.gather`.
3022 TreeEntry
*TE
= newTreeEntry(VL
, TreeEntry::ScatterVectorize
, Bundle
,
3023 S
, UserTreeIdx
, ReuseShuffleIndicies
);
3024 TE
->setOperandsInOrder();
3025 buildTree_rec(PointerOps
, Depth
+ 1, {TE
, 0});
3027 << "SLP: added a vector of non-consecutive loads.\n");
3032 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
3033 BS
.cancelScheduling(VL
, VL0
);
3034 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3035 ReuseShuffleIndicies
);
3038 case Instruction::ZExt
:
3039 case Instruction::SExt
:
3040 case Instruction::FPToUI
:
3041 case Instruction::FPToSI
:
3042 case Instruction::FPExt
:
3043 case Instruction::PtrToInt
:
3044 case Instruction::IntToPtr
:
3045 case Instruction::SIToFP
:
3046 case Instruction::UIToFP
:
3047 case Instruction::Trunc
:
3048 case Instruction::FPTrunc
:
3049 case Instruction::BitCast
: {
3050 Type
*SrcTy
= VL0
->getOperand(0)->getType();
3051 for (Value
*V
: VL
) {
3052 Type
*Ty
= cast
<Instruction
>(V
)->getOperand(0)->getType();
3053 if (Ty
!= SrcTy
|| !isValidElementType(Ty
)) {
3054 BS
.cancelScheduling(VL
, VL0
);
3055 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3056 ReuseShuffleIndicies
);
3058 << "SLP: Gathering casts with different src types.\n");
3062 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3063 ReuseShuffleIndicies
);
3064 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
3066 TE
->setOperandsInOrder();
3067 for (unsigned i
= 0, e
= VL0
->getNumOperands(); i
< e
; ++i
) {
3069 // Prepare the operand vector.
3071 Operands
.push_back(cast
<Instruction
>(V
)->getOperand(i
));
3073 buildTree_rec(Operands
, Depth
+ 1, {TE
, i
});
3077 case Instruction::ICmp
:
3078 case Instruction::FCmp
: {
3079 // Check that all of the compares have the same predicate.
3080 CmpInst::Predicate P0
= cast
<CmpInst
>(VL0
)->getPredicate();
3081 CmpInst::Predicate SwapP0
= CmpInst::getSwappedPredicate(P0
);
3082 Type
*ComparedTy
= VL0
->getOperand(0)->getType();
3083 for (Value
*V
: VL
) {
3084 CmpInst
*Cmp
= cast
<CmpInst
>(V
);
3085 if ((Cmp
->getPredicate() != P0
&& Cmp
->getPredicate() != SwapP0
) ||
3086 Cmp
->getOperand(0)->getType() != ComparedTy
) {
3087 BS
.cancelScheduling(VL
, VL0
);
3088 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3089 ReuseShuffleIndicies
);
3091 << "SLP: Gathering cmp with different predicate.\n");
3096 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3097 ReuseShuffleIndicies
);
3098 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
3100 ValueList Left
, Right
;
3101 if (cast
<CmpInst
>(VL0
)->isCommutative()) {
3102 // Commutative predicate - collect + sort operands of the instructions
3103 // so that each side is more likely to have the same opcode.
3104 assert(P0
== SwapP0
&& "Commutative Predicate mismatch");
3105 reorderInputsAccordingToOpcode(VL
, Left
, Right
, *DL
, *SE
, *this);
3107 // Collect operands - commute if it uses the swapped predicate.
3108 for (Value
*V
: VL
) {
3109 auto *Cmp
= cast
<CmpInst
>(V
);
3110 Value
*LHS
= Cmp
->getOperand(0);
3111 Value
*RHS
= Cmp
->getOperand(1);
3112 if (Cmp
->getPredicate() != P0
)
3113 std::swap(LHS
, RHS
);
3114 Left
.push_back(LHS
);
3115 Right
.push_back(RHS
);
3118 TE
->setOperand(0, Left
);
3119 TE
->setOperand(1, Right
);
3120 buildTree_rec(Left
, Depth
+ 1, {TE
, 0});
3121 buildTree_rec(Right
, Depth
+ 1, {TE
, 1});
3124 case Instruction::Select
:
3125 case Instruction::FNeg
:
3126 case Instruction::Add
:
3127 case Instruction::FAdd
:
3128 case Instruction::Sub
:
3129 case Instruction::FSub
:
3130 case Instruction::Mul
:
3131 case Instruction::FMul
:
3132 case Instruction::UDiv
:
3133 case Instruction::SDiv
:
3134 case Instruction::FDiv
:
3135 case Instruction::URem
:
3136 case Instruction::SRem
:
3137 case Instruction::FRem
:
3138 case Instruction::Shl
:
3139 case Instruction::LShr
:
3140 case Instruction::AShr
:
3141 case Instruction::And
:
3142 case Instruction::Or
:
3143 case Instruction::Xor
: {
3144 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3145 ReuseShuffleIndicies
);
3146 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3148 // Sort operands of the instructions so that each side is more likely to
3149 // have the same opcode.
3150 if (isa
<BinaryOperator
>(VL0
) && VL0
->isCommutative()) {
3151 ValueList Left
, Right
;
3152 reorderInputsAccordingToOpcode(VL
, Left
, Right
, *DL
, *SE
, *this);
3153 TE
->setOperand(0, Left
);
3154 TE
->setOperand(1, Right
);
3155 buildTree_rec(Left
, Depth
+ 1, {TE
, 0});
3156 buildTree_rec(Right
, Depth
+ 1, {TE
, 1});
3160 TE
->setOperandsInOrder();
3161 for (unsigned i
= 0, e
= VL0
->getNumOperands(); i
< e
; ++i
) {
3163 // Prepare the operand vector.
3165 Operands
.push_back(cast
<Instruction
>(V
)->getOperand(i
));
3167 buildTree_rec(Operands
, Depth
+ 1, {TE
, i
});
3171 case Instruction::GetElementPtr
: {
3172 // We don't combine GEPs with complicated (nested) indexing.
3173 for (Value
*V
: VL
) {
3174 if (cast
<Instruction
>(V
)->getNumOperands() != 2) {
3175 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3176 BS
.cancelScheduling(VL
, VL0
);
3177 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3178 ReuseShuffleIndicies
);
3183 // We can't combine several GEPs into one vector if they operate on
3185 Type
*Ty0
= VL0
->getOperand(0)->getType();
3186 for (Value
*V
: VL
) {
3187 Type
*CurTy
= cast
<Instruction
>(V
)->getOperand(0)->getType();
3190 << "SLP: not-vectorizable GEP (different types).\n");
3191 BS
.cancelScheduling(VL
, VL0
);
3192 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3193 ReuseShuffleIndicies
);
3198 // We don't combine GEPs with non-constant indexes.
3199 Type
*Ty1
= VL0
->getOperand(1)->getType();
3200 for (Value
*V
: VL
) {
3201 auto Op
= cast
<Instruction
>(V
)->getOperand(1);
3202 if (!isa
<ConstantInt
>(Op
) ||
3203 (Op
->getType() != Ty1
&&
3204 Op
->getType()->getScalarSizeInBits() >
3205 DL
->getIndexSizeInBits(
3206 V
->getType()->getPointerAddressSpace()))) {
3208 << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3209 BS
.cancelScheduling(VL
, VL0
);
3210 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3211 ReuseShuffleIndicies
);
3216 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3217 ReuseShuffleIndicies
);
3218 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3219 TE
->setOperandsInOrder();
3220 for (unsigned i
= 0, e
= 2; i
< e
; ++i
) {
3222 // Prepare the operand vector.
3224 Operands
.push_back(cast
<Instruction
>(V
)->getOperand(i
));
3226 buildTree_rec(Operands
, Depth
+ 1, {TE
, i
});
3230 case Instruction::Store
: {
3231 // Check if the stores are consecutive or if we need to swizzle them.
3232 llvm::Type
*ScalarTy
= cast
<StoreInst
>(VL0
)->getValueOperand()->getType();
3233 // Avoid types that are padded when being allocated as scalars, while
3234 // being packed together in a vector (such as i1).
3235 if (DL
->getTypeSizeInBits(ScalarTy
) !=
3236 DL
->getTypeAllocSizeInBits(ScalarTy
)) {
3237 BS
.cancelScheduling(VL
, VL0
);
3238 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3239 ReuseShuffleIndicies
);
3240 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3243 // Make sure all stores in the bundle are simple - we can't vectorize
3244 // atomic or volatile stores.
3245 SmallVector
<Value
*, 4> PointerOps(VL
.size());
3246 ValueList
Operands(VL
.size());
3247 auto POIter
= PointerOps
.begin();
3248 auto OIter
= Operands
.begin();
3249 for (Value
*V
: VL
) {
3250 auto *SI
= cast
<StoreInst
>(V
);
3251 if (!SI
->isSimple()) {
3252 BS
.cancelScheduling(VL
, VL0
);
3253 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3254 ReuseShuffleIndicies
);
3255 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3258 *POIter
= SI
->getPointerOperand();
3259 *OIter
= SI
->getValueOperand();
3264 OrdersType CurrentOrder
;
3265 // Check the order of pointer operands.
3266 if (llvm::sortPtrAccesses(PointerOps
, ScalarTy
, *DL
, *SE
, CurrentOrder
)) {
3269 if (CurrentOrder
.empty()) {
3270 Ptr0
= PointerOps
.front();
3271 PtrN
= PointerOps
.back();
3273 Ptr0
= PointerOps
[CurrentOrder
.front()];
3274 PtrN
= PointerOps
[CurrentOrder
.back()];
3276 Optional
<int> Dist
=
3277 getPointersDiff(ScalarTy
, Ptr0
, ScalarTy
, PtrN
, *DL
, *SE
);
3278 // Check that the sorted pointer operands are consecutive.
3279 if (static_cast<unsigned>(*Dist
) == VL
.size() - 1) {
3280 if (CurrentOrder
.empty()) {
3281 // Original stores are consecutive and does not require reordering.
3282 ++NumOpsWantToKeepOriginalOrder
;
3283 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
,
3284 UserTreeIdx
, ReuseShuffleIndicies
);
3285 TE
->setOperandsInOrder();
3286 buildTree_rec(Operands
, Depth
+ 1, {TE
, 0});
3287 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3290 newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3291 ReuseShuffleIndicies
, CurrentOrder
);
3292 TE
->setOperandsInOrder();
3293 buildTree_rec(Operands
, Depth
+ 1, {TE
, 0});
3294 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3295 findRootOrder(CurrentOrder
);
3296 ++NumOpsWantToKeepOrder
[CurrentOrder
];
3302 BS
.cancelScheduling(VL
, VL0
);
3303 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3304 ReuseShuffleIndicies
);
3305 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3308 case Instruction::Call
: {
3309 // Check if the calls are all to the same vectorizable intrinsic or
3310 // library function.
3311 CallInst
*CI
= cast
<CallInst
>(VL0
);
3312 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
3314 VFShape Shape
= VFShape::get(
3315 *CI
, ElementCount::getFixed(static_cast<unsigned int>(VL
.size())),
3316 false /*HasGlobalPred*/);
3317 Function
*VecFunc
= VFDatabase(*CI
).getVectorizedFunction(Shape
);
3319 if (!VecFunc
&& !isTriviallyVectorizable(ID
)) {
3320 BS
.cancelScheduling(VL
, VL0
);
3321 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3322 ReuseShuffleIndicies
);
3323 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3326 Function
*F
= CI
->getCalledFunction();
3327 unsigned NumArgs
= CI
->getNumArgOperands();
3328 SmallVector
<Value
*, 4> ScalarArgs(NumArgs
, nullptr);
3329 for (unsigned j
= 0; j
!= NumArgs
; ++j
)
3330 if (hasVectorInstrinsicScalarOpd(ID
, j
))
3331 ScalarArgs
[j
] = CI
->getArgOperand(j
);
3332 for (Value
*V
: VL
) {
3333 CallInst
*CI2
= dyn_cast
<CallInst
>(V
);
3334 if (!CI2
|| CI2
->getCalledFunction() != F
||
3335 getVectorIntrinsicIDForCall(CI2
, TLI
) != ID
||
3337 VecFunc
!= VFDatabase(*CI2
).getVectorizedFunction(Shape
)) ||
3338 !CI
->hasIdenticalOperandBundleSchema(*CI2
)) {
3339 BS
.cancelScheduling(VL
, VL0
);
3340 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3341 ReuseShuffleIndicies
);
3342 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI
<< "!=" << *V
3346 // Some intrinsics have scalar arguments and should be same in order for
3347 // them to be vectorized.
3348 for (unsigned j
= 0; j
!= NumArgs
; ++j
) {
3349 if (hasVectorInstrinsicScalarOpd(ID
, j
)) {
3350 Value
*A1J
= CI2
->getArgOperand(j
);
3351 if (ScalarArgs
[j
] != A1J
) {
3352 BS
.cancelScheduling(VL
, VL0
);
3353 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3354 ReuseShuffleIndicies
);
3355 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3356 << " argument " << ScalarArgs
[j
] << "!=" << A1J
3362 // Verify that the bundle operands are identical between the two calls.
3363 if (CI
->hasOperandBundles() &&
3364 !std::equal(CI
->op_begin() + CI
->getBundleOperandsStartIndex(),
3365 CI
->op_begin() + CI
->getBundleOperandsEndIndex(),
3366 CI2
->op_begin() + CI2
->getBundleOperandsStartIndex())) {
3367 BS
.cancelScheduling(VL
, VL0
);
3368 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3369 ReuseShuffleIndicies
);
3370 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3371 << *CI
<< "!=" << *V
<< '\n');
3376 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3377 ReuseShuffleIndicies
);
3378 TE
->setOperandsInOrder();
3379 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
) {
3381 // Prepare the operand vector.
3382 for (Value
*V
: VL
) {
3383 auto *CI2
= cast
<CallInst
>(V
);
3384 Operands
.push_back(CI2
->getArgOperand(i
));
3386 buildTree_rec(Operands
, Depth
+ 1, {TE
, i
});
3390 case Instruction::ShuffleVector
: {
3391 // If this is not an alternate sequence of opcode like add-sub
3392 // then do not vectorize this instruction.
3393 if (!S
.isAltShuffle()) {
3394 BS
.cancelScheduling(VL
, VL0
);
3395 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3396 ReuseShuffleIndicies
);
3397 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3400 TreeEntry
*TE
= newTreeEntry(VL
, Bundle
/*vectorized*/, S
, UserTreeIdx
,
3401 ReuseShuffleIndicies
);
3402 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3404 // Reorder operands if reordering would enable vectorization.
3405 if (isa
<BinaryOperator
>(VL0
)) {
3406 ValueList Left
, Right
;
3407 reorderInputsAccordingToOpcode(VL
, Left
, Right
, *DL
, *SE
, *this);
3408 TE
->setOperand(0, Left
);
3409 TE
->setOperand(1, Right
);
3410 buildTree_rec(Left
, Depth
+ 1, {TE
, 0});
3411 buildTree_rec(Right
, Depth
+ 1, {TE
, 1});
3415 TE
->setOperandsInOrder();
3416 for (unsigned i
= 0, e
= VL0
->getNumOperands(); i
< e
; ++i
) {
3418 // Prepare the operand vector.
3420 Operands
.push_back(cast
<Instruction
>(V
)->getOperand(i
));
3422 buildTree_rec(Operands
, Depth
+ 1, {TE
, i
});
3427 BS
.cancelScheduling(VL
, VL0
);
3428 newTreeEntry(VL
, None
/*not vectorized*/, S
, UserTreeIdx
,
3429 ReuseShuffleIndicies
);
3430 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3435 unsigned BoUpSLP::canMapToVector(Type
*T
, const DataLayout
&DL
) const {
3439 while (isa
<StructType
>(EltTy
) || isa
<ArrayType
>(EltTy
) ||
3440 isa
<VectorType
>(EltTy
)) {
3441 if (auto *ST
= dyn_cast
<StructType
>(EltTy
)) {
3442 // Check that struct is homogeneous.
3443 for (const auto *Ty
: ST
->elements())
3444 if (Ty
!= *ST
->element_begin())
3446 N
*= ST
->getNumElements();
3447 EltTy
= *ST
->element_begin();
3448 } else if (auto *AT
= dyn_cast
<ArrayType
>(EltTy
)) {
3449 N
*= AT
->getNumElements();
3450 EltTy
= AT
->getElementType();
3452 auto *VT
= cast
<FixedVectorType
>(EltTy
);
3453 N
*= VT
->getNumElements();
3454 EltTy
= VT
->getElementType();
3458 if (!isValidElementType(EltTy
))
3460 uint64_t VTSize
= DL
.getTypeStoreSizeInBits(FixedVectorType::get(EltTy
, N
));
3461 if (VTSize
< MinVecRegSize
|| VTSize
> MaxVecRegSize
|| VTSize
!= DL
.getTypeStoreSizeInBits(T
))
3466 bool BoUpSLP::canReuseExtract(ArrayRef
<Value
*> VL
, Value
*OpValue
,
3467 SmallVectorImpl
<unsigned> &CurrentOrder
) const {
3468 Instruction
*E0
= cast
<Instruction
>(OpValue
);
3469 assert(E0
->getOpcode() == Instruction::ExtractElement
||
3470 E0
->getOpcode() == Instruction::ExtractValue
);
3471 assert(E0
->getOpcode() == getSameOpcode(VL
).getOpcode() && "Invalid opcode");
3472 // Check if all of the extracts come from the same vector and from the
3474 Value
*Vec
= E0
->getOperand(0);
3476 CurrentOrder
.clear();
3478 // We have to extract from a vector/aggregate with the same number of elements.
3480 if (E0
->getOpcode() == Instruction::ExtractValue
) {
3481 const DataLayout
&DL
= E0
->getModule()->getDataLayout();
3482 NElts
= canMapToVector(Vec
->getType(), DL
);
3485 // Check if load can be rewritten as load of vector.
3486 LoadInst
*LI
= dyn_cast
<LoadInst
>(Vec
);
3487 if (!LI
|| !LI
->isSimple() || !LI
->hasNUses(VL
.size()))
3490 NElts
= cast
<FixedVectorType
>(Vec
->getType())->getNumElements();
3493 if (NElts
!= VL
.size())
3496 // Check that all of the indices extract from the correct offset.
3497 bool ShouldKeepOrder
= true;
3498 unsigned E
= VL
.size();
3499 // Assign to all items the initial value E + 1 so we can check if the extract
3500 // instruction index was used already.
3501 // Also, later we can check that all the indices are used and we have a
3502 // consecutive access in the extract instructions, by checking that no
3503 // element of CurrentOrder still has value E + 1.
3504 CurrentOrder
.assign(E
, E
+ 1);
3506 for (; I
< E
; ++I
) {
3507 auto *Inst
= cast
<Instruction
>(VL
[I
]);
3508 if (Inst
->getOperand(0) != Vec
)
3510 Optional
<unsigned> Idx
= getExtractIndex(Inst
);
3513 const unsigned ExtIdx
= *Idx
;
3515 if (ExtIdx
>= E
|| CurrentOrder
[ExtIdx
] != E
+ 1)
3517 ShouldKeepOrder
= false;
3518 CurrentOrder
[ExtIdx
] = I
;
3520 if (CurrentOrder
[I
] != E
+ 1)
3522 CurrentOrder
[I
] = I
;
3526 CurrentOrder
.clear();
3530 return ShouldKeepOrder
;
3533 bool BoUpSLP::areAllUsersVectorized(Instruction
*I
,
3534 ArrayRef
<Value
*> VectorizedVals
) const {
3535 return (I
->hasOneUse() && is_contained(VectorizedVals
, I
)) ||
3536 llvm::all_of(I
->users(), [this](User
*U
) {
3537 return ScalarToTreeEntry
.count(U
) > 0;
3541 static std::pair
<InstructionCost
, InstructionCost
>
3542 getVectorCallCosts(CallInst
*CI
, FixedVectorType
*VecTy
,
3543 TargetTransformInfo
*TTI
, TargetLibraryInfo
*TLI
) {
3544 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
3546 // Calculate the cost of the scalar and vector calls.
3547 SmallVector
<Type
*, 4> VecTys
;
3548 for (Use
&Arg
: CI
->args())
3550 FixedVectorType::get(Arg
->getType(), VecTy
->getNumElements()));
3552 if (auto *FPCI
= dyn_cast
<FPMathOperator
>(CI
))
3553 FMF
= FPCI
->getFastMathFlags();
3554 SmallVector
<const Value
*> Arguments(CI
->arg_begin(), CI
->arg_end());
3555 IntrinsicCostAttributes
CostAttrs(ID
, VecTy
, Arguments
, VecTys
, FMF
,
3556 dyn_cast
<IntrinsicInst
>(CI
));
3557 auto IntrinsicCost
=
3558 TTI
->getIntrinsicInstrCost(CostAttrs
, TTI::TCK_RecipThroughput
);
3560 auto Shape
= VFShape::get(*CI
, ElementCount::getFixed(static_cast<unsigned>(
3561 VecTy
->getNumElements())),
3562 false /*HasGlobalPred*/);
3563 Function
*VecFunc
= VFDatabase(*CI
).getVectorizedFunction(Shape
);
3564 auto LibCost
= IntrinsicCost
;
3565 if (!CI
->isNoBuiltin() && VecFunc
) {
3566 // Calculate the cost of the vector library call.
3567 // If the corresponding vector call is cheaper, return its cost.
3568 LibCost
= TTI
->getCallInstrCost(nullptr, VecTy
, VecTys
,
3569 TTI::TCK_RecipThroughput
);
3571 return {IntrinsicCost
, LibCost
};
3574 /// Compute the cost of creating a vector of type \p VecTy containing the
3575 /// extracted values from \p VL.
3576 static InstructionCost
3577 computeExtractCost(ArrayRef
<Value
*> VL
, FixedVectorType
*VecTy
,
3578 TargetTransformInfo::ShuffleKind ShuffleKind
,
3579 ArrayRef
<int> Mask
, TargetTransformInfo
&TTI
) {
3580 unsigned NumOfParts
= TTI
.getNumberOfParts(VecTy
);
3582 if (ShuffleKind
!= TargetTransformInfo::SK_PermuteSingleSrc
|| !NumOfParts
||
3583 VecTy
->getNumElements() < NumOfParts
)
3584 return TTI
.getShuffleCost(ShuffleKind
, VecTy
, Mask
);
3586 bool AllConsecutive
= true;
3587 unsigned EltsPerVector
= VecTy
->getNumElements() / NumOfParts
;
3589 InstructionCost Cost
= 0;
3591 // Process extracts in blocks of EltsPerVector to check if the source vector
3592 // operand can be re-used directly. If not, add the cost of creating a shuffle
3593 // to extract the values into a vector register.
3594 for (auto *V
: VL
) {
3597 // Reached the start of a new vector registers.
3598 if (Idx
% EltsPerVector
== 0) {
3599 AllConsecutive
= true;
3603 // Check all extracts for a vector register on the target directly
3604 // extract values in order.
3605 unsigned CurrentIdx
= *getExtractIndex(cast
<Instruction
>(V
));
3606 unsigned PrevIdx
= *getExtractIndex(cast
<Instruction
>(VL
[Idx
- 1]));
3607 AllConsecutive
&= PrevIdx
+ 1 == CurrentIdx
&&
3608 CurrentIdx
% EltsPerVector
== Idx
% EltsPerVector
;
3613 // Skip all indices, except for the last index per vector block.
3614 if ((Idx
+ 1) % EltsPerVector
!= 0 && Idx
+ 1 != VL
.size())
3617 // If we have a series of extracts which are not consecutive and hence
3618 // cannot re-use the source vector register directly, compute the shuffle
3619 // cost to extract the a vector with EltsPerVector elements.
3620 Cost
+= TTI
.getShuffleCost(
3621 TargetTransformInfo::SK_PermuteSingleSrc
,
3622 FixedVectorType::get(VecTy
->getElementType(), EltsPerVector
));
3627 /// Shuffles \p Mask in accordance with the given \p SubMask.
3628 static void addMask(SmallVectorImpl
<int> &Mask
, ArrayRef
<int> SubMask
) {
3629 if (SubMask
.empty())
3632 Mask
.append(SubMask
.begin(), SubMask
.end());
3635 SmallVector
<int, 4> NewMask(SubMask
.size(), SubMask
.size());
3636 int TermValue
= std::min(Mask
.size(), SubMask
.size());
3637 for (int I
= 0, E
= SubMask
.size(); I
< E
; ++I
) {
3638 if (SubMask
[I
] >= TermValue
|| SubMask
[I
] == UndefMaskElem
||
3639 Mask
[SubMask
[I
]] >= TermValue
) {
3640 NewMask
[I
] = UndefMaskElem
;
3643 NewMask
[I
] = Mask
[SubMask
[I
]];
3648 InstructionCost
BoUpSLP::getEntryCost(const TreeEntry
*E
,
3649 ArrayRef
<Value
*> VectorizedVals
) {
3650 ArrayRef
<Value
*> VL
= E
->Scalars
;
3652 Type
*ScalarTy
= VL
[0]->getType();
3653 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(VL
[0]))
3654 ScalarTy
= SI
->getValueOperand()->getType();
3655 else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(VL
[0]))
3656 ScalarTy
= CI
->getOperand(0)->getType();
3657 else if (auto *IE
= dyn_cast
<InsertElementInst
>(VL
[0]))
3658 ScalarTy
= IE
->getOperand(1)->getType();
3659 auto *VecTy
= FixedVectorType::get(ScalarTy
, VL
.size());
3660 TTI::TargetCostKind CostKind
= TTI::TCK_RecipThroughput
;
3662 // If we have computed a smaller type for the expression, update VecTy so
3663 // that the costs will be accurate.
3664 if (MinBWs
.count(VL
[0]))
3665 VecTy
= FixedVectorType::get(
3666 IntegerType::get(F
->getContext(), MinBWs
[VL
[0]].first
), VL
.size());
3667 auto *FinalVecTy
= VecTy
;
3669 unsigned ReuseShuffleNumbers
= E
->ReuseShuffleIndices
.size();
3670 bool NeedToShuffleReuses
= !E
->ReuseShuffleIndices
.empty();
3671 if (NeedToShuffleReuses
)
3673 FixedVectorType::get(VecTy
->getElementType(), ReuseShuffleNumbers
);
3674 // FIXME: it tries to fix a problem with MSVC buildbots.
3675 TargetTransformInfo
&TTIRef
= *TTI
;
3676 auto &&AdjustExtractsCost
= [this, &TTIRef
, CostKind
, VL
, VecTy
,
3677 VectorizedVals
](InstructionCost
&Cost
,
3679 DenseMap
<Value
*, int> ExtractVectorsTys
;
3680 for (auto *V
: VL
) {
3681 // If all users of instruction are going to be vectorized and this
3682 // instruction itself is not going to be vectorized, consider this
3683 // instruction as dead and remove its cost from the final cost of the
3685 if (!areAllUsersVectorized(cast
<Instruction
>(V
), VectorizedVals
) ||
3686 (IsGather
&& ScalarToTreeEntry
.count(V
)))
3688 auto *EE
= cast
<ExtractElementInst
>(V
);
3689 unsigned Idx
= *getExtractIndex(EE
);
3690 if (TTIRef
.getNumberOfParts(VecTy
) !=
3691 TTIRef
.getNumberOfParts(EE
->getVectorOperandType())) {
3693 ExtractVectorsTys
.try_emplace(EE
->getVectorOperand(), Idx
).first
;
3694 It
->getSecond() = std::min
<int>(It
->second
, Idx
);
3696 // Take credit for instruction that will become dead.
3697 if (EE
->hasOneUse()) {
3698 Instruction
*Ext
= EE
->user_back();
3699 if ((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
3700 all_of(Ext
->users(),
3701 [](User
*U
) { return isa
<GetElementPtrInst
>(U
); })) {
3702 // Use getExtractWithExtendCost() to calculate the cost of
3703 // extractelement/ext pair.
3705 TTIRef
.getExtractWithExtendCost(Ext
->getOpcode(), Ext
->getType(),
3706 EE
->getVectorOperandType(), Idx
);
3707 // Add back the cost of s|zext which is subtracted separately.
3708 Cost
+= TTIRef
.getCastInstrCost(
3709 Ext
->getOpcode(), Ext
->getType(), EE
->getType(),
3710 TTI::getCastContextHint(Ext
), CostKind
, Ext
);
3714 Cost
-= TTIRef
.getVectorInstrCost(Instruction::ExtractElement
,
3715 EE
->getVectorOperandType(), Idx
);
3717 // Add a cost for subvector extracts/inserts if required.
3718 for (const auto &Data
: ExtractVectorsTys
) {
3719 auto *EEVTy
= cast
<FixedVectorType
>(Data
.first
->getType());
3720 unsigned NumElts
= VecTy
->getNumElements();
3721 if (TTIRef
.getNumberOfParts(EEVTy
) > TTIRef
.getNumberOfParts(VecTy
)) {
3722 unsigned Idx
= (Data
.second
/ NumElts
) * NumElts
;
3723 unsigned EENumElts
= EEVTy
->getNumElements();
3724 if (Idx
+ NumElts
<= EENumElts
) {
3726 TTIRef
.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector
,
3727 EEVTy
, None
, Idx
, VecTy
);
3729 // Need to round up the subvector type vectorization factor to avoid a
3730 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3733 FixedVectorType::get(VecTy
->getElementType(), EENumElts
- Idx
);
3735 TTIRef
.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector
,
3736 EEVTy
, None
, Idx
, SubVT
);
3739 Cost
+= TTIRef
.getShuffleCost(TargetTransformInfo::SK_InsertSubvector
,
3740 VecTy
, None
, 0, EEVTy
);
3744 if (E
->State
== TreeEntry::NeedToGather
) {
3745 if (allConstant(VL
))
3747 if (isa
<InsertElementInst
>(VL
[0]))
3748 return InstructionCost::getInvalid();
3749 SmallVector
<int> Mask
;
3750 SmallVector
<const TreeEntry
*> Entries
;
3751 Optional
<TargetTransformInfo::ShuffleKind
> Shuffle
=
3752 isGatherShuffledEntry(E
, Mask
, Entries
);
3753 if (Shuffle
.hasValue()) {
3754 InstructionCost GatherCost
= 0;
3755 if (ShuffleVectorInst::isIdentityMask(Mask
)) {
3756 // Perfect match in the graph, will reuse the previously vectorized
3760 << "SLP: perfect diamond match for gather bundle that starts with "
3761 << *VL
.front() << ".\n");
3762 if (NeedToShuffleReuses
)
3764 TTI
->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
,
3765 FinalVecTy
, E
->ReuseShuffleIndices
);
3767 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries
.size()
3768 << " entries for bundle that starts with "
3769 << *VL
.front() << ".\n");
3770 // Detected that instead of gather we can emit a shuffle of single/two
3771 // previously vectorized nodes. Add the cost of the permutation rather
3773 ::addMask(Mask
, E
->ReuseShuffleIndices
);
3774 GatherCost
= TTI
->getShuffleCost(*Shuffle
, FinalVecTy
, Mask
);
3779 // Found the broadcasting of the single scalar, calculate the cost as the
3781 return TTI
->getShuffleCost(TargetTransformInfo::SK_Broadcast
, VecTy
);
3783 if (E
->getOpcode() == Instruction::ExtractElement
&& allSameType(VL
) &&
3785 !isa
<ScalableVectorType
>(
3786 cast
<ExtractElementInst
>(E
->getMainOp())->getVectorOperandType())) {
3787 // Check that gather of extractelements can be represented as just a
3788 // shuffle of a single/two vectors the scalars are extracted from.
3789 SmallVector
<int> Mask
;
3790 Optional
<TargetTransformInfo::ShuffleKind
> ShuffleKind
=
3791 isShuffle(VL
, Mask
);
3792 if (ShuffleKind
.hasValue()) {
3793 // Found the bunch of extractelement instructions that must be gathered
3794 // into a vector and can be represented as a permutation elements in a
3795 // single input vector or of 2 input vectors.
3796 InstructionCost Cost
=
3797 computeExtractCost(VL
, VecTy
, *ShuffleKind
, Mask
, *TTI
);
3798 AdjustExtractsCost(Cost
, /*IsGather=*/true);
3799 if (NeedToShuffleReuses
)
3800 Cost
+= TTI
->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
,
3801 FinalVecTy
, E
->ReuseShuffleIndices
);
3805 InstructionCost ReuseShuffleCost
= 0;
3806 if (NeedToShuffleReuses
)
3807 ReuseShuffleCost
= TTI
->getShuffleCost(
3808 TTI::SK_PermuteSingleSrc
, FinalVecTy
, E
->ReuseShuffleIndices
);
3809 return ReuseShuffleCost
+ getGatherCost(VL
);
3811 InstructionCost CommonCost
= 0;
3812 SmallVector
<int> Mask
;
3813 if (!E
->ReorderIndices
.empty()) {
3814 SmallVector
<int> NewMask
;
3815 if (E
->getOpcode() == Instruction::Store
) {
3816 // For stores the order is actually a mask.
3817 NewMask
.resize(E
->ReorderIndices
.size());
3818 copy(E
->ReorderIndices
, NewMask
.begin());
3820 inversePermutation(E
->ReorderIndices
, NewMask
);
3822 ::addMask(Mask
, NewMask
);
3824 if (NeedToShuffleReuses
)
3825 ::addMask(Mask
, E
->ReuseShuffleIndices
);
3826 if (!Mask
.empty() && !ShuffleVectorInst::isIdentityMask(Mask
))
3828 TTI
->getShuffleCost(TTI::SK_PermuteSingleSrc
, FinalVecTy
, Mask
);
3829 assert((E
->State
== TreeEntry::Vectorize
||
3830 E
->State
== TreeEntry::ScatterVectorize
) &&
3832 assert(E
->getOpcode() && allSameType(VL
) && allSameBlock(VL
) && "Invalid VL");
3833 Instruction
*VL0
= E
->getMainOp();
3834 unsigned ShuffleOrOp
=
3835 E
->isAltShuffle() ? (unsigned)Instruction::ShuffleVector
: E
->getOpcode();
3836 switch (ShuffleOrOp
) {
3837 case Instruction::PHI
:
3840 case Instruction::ExtractValue
:
3841 case Instruction::ExtractElement
: {
3842 // The common cost of removal ExtractElement/ExtractValue instructions +
3843 // the cost of shuffles, if required to resuffle the original vector.
3844 if (NeedToShuffleReuses
) {
3846 for (unsigned I
: E
->ReuseShuffleIndices
) {
3847 if (ShuffleOrOp
== Instruction::ExtractElement
) {
3848 auto *EE
= cast
<ExtractElementInst
>(VL
[I
]);
3849 CommonCost
-= TTI
->getVectorInstrCost(Instruction::ExtractElement
,
3850 EE
->getVectorOperandType(),
3851 *getExtractIndex(EE
));
3853 CommonCost
-= TTI
->getVectorInstrCost(Instruction::ExtractElement
,
3858 Idx
= ReuseShuffleNumbers
;
3859 for (Value
*V
: VL
) {
3860 if (ShuffleOrOp
== Instruction::ExtractElement
) {
3861 auto *EE
= cast
<ExtractElementInst
>(V
);
3862 CommonCost
+= TTI
->getVectorInstrCost(Instruction::ExtractElement
,
3863 EE
->getVectorOperandType(),
3864 *getExtractIndex(EE
));
3867 CommonCost
+= TTI
->getVectorInstrCost(Instruction::ExtractElement
,
3872 if (ShuffleOrOp
== Instruction::ExtractValue
) {
3873 for (unsigned I
= 0, E
= VL
.size(); I
< E
; ++I
) {
3874 auto *EI
= cast
<Instruction
>(VL
[I
]);
3875 // Take credit for instruction that will become dead.
3876 if (EI
->hasOneUse()) {
3877 Instruction
*Ext
= EI
->user_back();
3878 if ((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
3879 all_of(Ext
->users(),
3880 [](User
*U
) { return isa
<GetElementPtrInst
>(U
); })) {
3881 // Use getExtractWithExtendCost() to calculate the cost of
3882 // extractelement/ext pair.
3883 CommonCost
-= TTI
->getExtractWithExtendCost(
3884 Ext
->getOpcode(), Ext
->getType(), VecTy
, I
);
3885 // Add back the cost of s|zext which is subtracted separately.
3886 CommonCost
+= TTI
->getCastInstrCost(
3887 Ext
->getOpcode(), Ext
->getType(), EI
->getType(),
3888 TTI::getCastContextHint(Ext
), CostKind
, Ext
);
3893 TTI
->getVectorInstrCost(Instruction::ExtractElement
, VecTy
, I
);
3896 AdjustExtractsCost(CommonCost
, /*IsGather=*/false);
3900 case Instruction::InsertElement
: {
3901 auto *SrcVecTy
= cast
<FixedVectorType
>(VL0
->getType());
3903 unsigned const NumElts
= SrcVecTy
->getNumElements();
3904 unsigned const NumScalars
= VL
.size();
3905 APInt DemandedElts
= APInt::getNullValue(NumElts
);
3906 // TODO: Add support for Instruction::InsertValue.
3907 unsigned Offset
= UINT_MAX
;
3908 bool IsIdentity
= true;
3909 SmallVector
<int> ShuffleMask(NumElts
, UndefMaskElem
);
3910 for (unsigned I
= 0; I
< NumScalars
; ++I
) {
3911 Optional
<int> InsertIdx
= getInsertIndex(VL
[I
], 0);
3912 if (!InsertIdx
|| *InsertIdx
== UndefMaskElem
)
3914 unsigned Idx
= *InsertIdx
;
3915 DemandedElts
.setBit(Idx
);
3918 IsIdentity
&= I
== 0;
3920 assert(Idx
>= Offset
&& "Failed to find vector index offset");
3921 IsIdentity
&= Idx
- Offset
== I
;
3923 ShuffleMask
[Idx
] = I
;
3925 assert(Offset
< NumElts
&& "Failed to find vector index offset");
3927 InstructionCost Cost
= 0;
3928 Cost
-= TTI
->getScalarizationOverhead(SrcVecTy
, DemandedElts
,
3929 /*Insert*/ true, /*Extract*/ false);
3931 if (IsIdentity
&& NumElts
!= NumScalars
&& Offset
% NumScalars
!= 0) {
3932 // FIXME: Replace with SK_InsertSubvector once it is properly supported.
3933 unsigned Sz
= PowerOf2Ceil(Offset
+ NumScalars
);
3934 Cost
+= TTI
->getShuffleCost(
3935 TargetTransformInfo::SK_PermuteSingleSrc
,
3936 FixedVectorType::get(SrcVecTy
->getElementType(), Sz
));
3937 } else if (!IsIdentity
) {
3938 Cost
+= TTI
->getShuffleCost(TTI::SK_PermuteSingleSrc
, SrcVecTy
,
3944 case Instruction::ZExt
:
3945 case Instruction::SExt
:
3946 case Instruction::FPToUI
:
3947 case Instruction::FPToSI
:
3948 case Instruction::FPExt
:
3949 case Instruction::PtrToInt
:
3950 case Instruction::IntToPtr
:
3951 case Instruction::SIToFP
:
3952 case Instruction::UIToFP
:
3953 case Instruction::Trunc
:
3954 case Instruction::FPTrunc
:
3955 case Instruction::BitCast
: {
3956 Type
*SrcTy
= VL0
->getOperand(0)->getType();
3957 InstructionCost ScalarEltCost
=
3958 TTI
->getCastInstrCost(E
->getOpcode(), ScalarTy
, SrcTy
,
3959 TTI::getCastContextHint(VL0
), CostKind
, VL0
);
3960 if (NeedToShuffleReuses
) {
3961 CommonCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
3964 // Calculate the cost of this instruction.
3965 InstructionCost ScalarCost
= VL
.size() * ScalarEltCost
;
3967 auto *SrcVecTy
= FixedVectorType::get(SrcTy
, VL
.size());
3968 InstructionCost VecCost
= 0;
3969 // Check if the values are candidates to demote.
3970 if (!MinBWs
.count(VL0
) || VecTy
!= SrcVecTy
) {
3971 VecCost
= CommonCost
+ TTI
->getCastInstrCost(
3972 E
->getOpcode(), VecTy
, SrcVecTy
,
3973 TTI::getCastContextHint(VL0
), CostKind
, VL0
);
3975 LLVM_DEBUG(dumpTreeCosts(E
, CommonCost
, VecCost
, ScalarCost
));
3976 return VecCost
- ScalarCost
;
3978 case Instruction::FCmp
:
3979 case Instruction::ICmp
:
3980 case Instruction::Select
: {
3981 // Calculate the cost of this instruction.
3982 InstructionCost ScalarEltCost
=
3983 TTI
->getCmpSelInstrCost(E
->getOpcode(), ScalarTy
, Builder
.getInt1Ty(),
3984 CmpInst::BAD_ICMP_PREDICATE
, CostKind
, VL0
);
3985 if (NeedToShuffleReuses
) {
3986 CommonCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
3988 auto *MaskTy
= FixedVectorType::get(Builder
.getInt1Ty(), VL
.size());
3989 InstructionCost ScalarCost
= VecTy
->getNumElements() * ScalarEltCost
;
3991 // Check if all entries in VL are either compares or selects with compares
3992 // as condition that have the same predicates.
3993 CmpInst::Predicate VecPred
= CmpInst::BAD_ICMP_PREDICATE
;
3995 for (auto *V
: VL
) {
3996 CmpInst::Predicate CurrentPred
;
3997 auto MatchCmp
= m_Cmp(CurrentPred
, m_Value(), m_Value());
3998 if ((!match(V
, m_Select(MatchCmp
, m_Value(), m_Value())) &&
3999 !match(V
, MatchCmp
)) ||
4000 (!First
&& VecPred
!= CurrentPred
)) {
4001 VecPred
= CmpInst::BAD_ICMP_PREDICATE
;
4005 VecPred
= CurrentPred
;
4008 InstructionCost VecCost
= TTI
->getCmpSelInstrCost(
4009 E
->getOpcode(), VecTy
, MaskTy
, VecPred
, CostKind
, VL0
);
4010 // Check if it is possible and profitable to use min/max for selects in
4013 auto IntrinsicAndUse
= canConvertToMinOrMaxIntrinsic(VL
);
4014 if (IntrinsicAndUse
.first
!= Intrinsic::not_intrinsic
) {
4015 IntrinsicCostAttributes
CostAttrs(IntrinsicAndUse
.first
, VecTy
,
4017 InstructionCost IntrinsicCost
=
4018 TTI
->getIntrinsicInstrCost(CostAttrs
, CostKind
);
4019 // If the selects are the only uses of the compares, they will be dead
4020 // and we can adjust the cost by removing their cost.
4021 if (IntrinsicAndUse
.second
)
4023 TTI
->getCmpSelInstrCost(Instruction::ICmp
, VecTy
, MaskTy
,
4024 CmpInst::BAD_ICMP_PREDICATE
, CostKind
);
4025 VecCost
= std::min(VecCost
, IntrinsicCost
);
4027 LLVM_DEBUG(dumpTreeCosts(E
, CommonCost
, VecCost
, ScalarCost
));
4028 return CommonCost
+ VecCost
- ScalarCost
;
4030 case Instruction::FNeg
:
4031 case Instruction::Add
:
4032 case Instruction::FAdd
:
4033 case Instruction::Sub
:
4034 case Instruction::FSub
:
4035 case Instruction::Mul
:
4036 case Instruction::FMul
:
4037 case Instruction::UDiv
:
4038 case Instruction::SDiv
:
4039 case Instruction::FDiv
:
4040 case Instruction::URem
:
4041 case Instruction::SRem
:
4042 case Instruction::FRem
:
4043 case Instruction::Shl
:
4044 case Instruction::LShr
:
4045 case Instruction::AShr
:
4046 case Instruction::And
:
4047 case Instruction::Or
:
4048 case Instruction::Xor
: {
4049 // Certain instructions can be cheaper to vectorize if they have a
4050 // constant second vector operand.
4051 TargetTransformInfo::OperandValueKind Op1VK
=
4052 TargetTransformInfo::OK_AnyValue
;
4053 TargetTransformInfo::OperandValueKind Op2VK
=
4054 TargetTransformInfo::OK_UniformConstantValue
;
4055 TargetTransformInfo::OperandValueProperties Op1VP
=
4056 TargetTransformInfo::OP_None
;
4057 TargetTransformInfo::OperandValueProperties Op2VP
=
4058 TargetTransformInfo::OP_PowerOf2
;
4060 // If all operands are exactly the same ConstantInt then set the
4061 // operand kind to OK_UniformConstantValue.
4062 // If instead not all operands are constants, then set the operand kind
4063 // to OK_AnyValue. If all operands are constants but not the same,
4064 // then set the operand kind to OK_NonUniformConstantValue.
4065 ConstantInt
*CInt0
= nullptr;
4066 for (unsigned i
= 0, e
= VL
.size(); i
< e
; ++i
) {
4067 const Instruction
*I
= cast
<Instruction
>(VL
[i
]);
4068 unsigned OpIdx
= isa
<BinaryOperator
>(I
) ? 1 : 0;
4069 ConstantInt
*CInt
= dyn_cast
<ConstantInt
>(I
->getOperand(OpIdx
));
4071 Op2VK
= TargetTransformInfo::OK_AnyValue
;
4072 Op2VP
= TargetTransformInfo::OP_None
;
4075 if (Op2VP
== TargetTransformInfo::OP_PowerOf2
&&
4076 !CInt
->getValue().isPowerOf2())
4077 Op2VP
= TargetTransformInfo::OP_None
;
4083 Op2VK
= TargetTransformInfo::OK_NonUniformConstantValue
;
4086 SmallVector
<const Value
*, 4> Operands(VL0
->operand_values());
4087 InstructionCost ScalarEltCost
=
4088 TTI
->getArithmeticInstrCost(E
->getOpcode(), ScalarTy
, CostKind
, Op1VK
,
4089 Op2VK
, Op1VP
, Op2VP
, Operands
, VL0
);
4090 if (NeedToShuffleReuses
) {
4091 CommonCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
4093 InstructionCost ScalarCost
= VecTy
->getNumElements() * ScalarEltCost
;
4094 InstructionCost VecCost
=
4095 TTI
->getArithmeticInstrCost(E
->getOpcode(), VecTy
, CostKind
, Op1VK
,
4096 Op2VK
, Op1VP
, Op2VP
, Operands
, VL0
);
4097 LLVM_DEBUG(dumpTreeCosts(E
, CommonCost
, VecCost
, ScalarCost
));
4098 return CommonCost
+ VecCost
- ScalarCost
;
4100 case Instruction::GetElementPtr
: {
4101 TargetTransformInfo::OperandValueKind Op1VK
=
4102 TargetTransformInfo::OK_AnyValue
;
4103 TargetTransformInfo::OperandValueKind Op2VK
=
4104 TargetTransformInfo::OK_UniformConstantValue
;
4106 InstructionCost ScalarEltCost
= TTI
->getArithmeticInstrCost(
4107 Instruction::Add
, ScalarTy
, CostKind
, Op1VK
, Op2VK
);
4108 if (NeedToShuffleReuses
) {
4109 CommonCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
4111 InstructionCost ScalarCost
= VecTy
->getNumElements() * ScalarEltCost
;
4112 InstructionCost VecCost
= TTI
->getArithmeticInstrCost(
4113 Instruction::Add
, VecTy
, CostKind
, Op1VK
, Op2VK
);
4114 LLVM_DEBUG(dumpTreeCosts(E
, CommonCost
, VecCost
, ScalarCost
));
4115 return CommonCost
+ VecCost
- ScalarCost
;
4117 case Instruction::Load
: {
4118 // Cost of wide load - cost of scalar loads.
4119 Align Alignment
= cast
<LoadInst
>(VL0
)->getAlign();
4120 InstructionCost ScalarEltCost
= TTI
->getMemoryOpCost(
4121 Instruction::Load
, ScalarTy
, Alignment
, 0, CostKind
, VL0
);
4122 if (NeedToShuffleReuses
) {
4123 CommonCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
4125 InstructionCost ScalarLdCost
= VecTy
->getNumElements() * ScalarEltCost
;
4126 InstructionCost VecLdCost
;
4127 if (E
->State
== TreeEntry::Vectorize
) {
4128 VecLdCost
= TTI
->getMemoryOpCost(Instruction::Load
, VecTy
, Alignment
, 0,
4131 assert(E
->State
== TreeEntry::ScatterVectorize
&& "Unknown EntryState");
4132 Align CommonAlignment
= Alignment
;
4135 commonAlignment(CommonAlignment
, cast
<LoadInst
>(V
)->getAlign());
4136 VecLdCost
= TTI
->getGatherScatterOpCost(
4137 Instruction::Load
, VecTy
, cast
<LoadInst
>(VL0
)->getPointerOperand(),
4138 /*VariableMask=*/false, CommonAlignment
, CostKind
, VL0
);
4140 LLVM_DEBUG(dumpTreeCosts(E
, CommonCost
, VecLdCost
, ScalarLdCost
));
4141 return CommonCost
+ VecLdCost
- ScalarLdCost
;
4143 case Instruction::Store
: {
4144 // We know that we can merge the stores. Calculate the cost.
4145 bool IsReorder
= !E
->ReorderIndices
.empty();
4147 cast
<StoreInst
>(IsReorder
? VL
[E
->ReorderIndices
.front()] : VL0
);
4148 Align Alignment
= SI
->getAlign();
4149 InstructionCost ScalarEltCost
= TTI
->getMemoryOpCost(
4150 Instruction::Store
, ScalarTy
, Alignment
, 0, CostKind
, VL0
);
4151 InstructionCost ScalarStCost
= VecTy
->getNumElements() * ScalarEltCost
;
4152 InstructionCost VecStCost
= TTI
->getMemoryOpCost(
4153 Instruction::Store
, VecTy
, Alignment
, 0, CostKind
, VL0
);
4154 LLVM_DEBUG(dumpTreeCosts(E
, CommonCost
, VecStCost
, ScalarStCost
));
4155 return CommonCost
+ VecStCost
- ScalarStCost
;
4157 case Instruction::Call
: {
4158 CallInst
*CI
= cast
<CallInst
>(VL0
);
4159 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
4161 // Calculate the cost of the scalar and vector calls.
4162 IntrinsicCostAttributes
CostAttrs(ID
, *CI
, 1);
4163 InstructionCost ScalarEltCost
=
4164 TTI
->getIntrinsicInstrCost(CostAttrs
, CostKind
);
4165 if (NeedToShuffleReuses
) {
4166 CommonCost
-= (ReuseShuffleNumbers
- VL
.size()) * ScalarEltCost
;
4168 InstructionCost ScalarCallCost
= VecTy
->getNumElements() * ScalarEltCost
;
4170 auto VecCallCosts
= getVectorCallCosts(CI
, VecTy
, TTI
, TLI
);
4171 InstructionCost VecCallCost
=
4172 std::min(VecCallCosts
.first
, VecCallCosts
.second
);
4174 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost
4175 << " (" << VecCallCost
<< "-" << ScalarCallCost
<< ")"
4176 << " for " << *CI
<< "\n");
4178 return CommonCost
+ VecCallCost
- ScalarCallCost
;
4180 case Instruction::ShuffleVector
: {
4181 assert(E
->isAltShuffle() &&
4182 ((Instruction::isBinaryOp(E
->getOpcode()) &&
4183 Instruction::isBinaryOp(E
->getAltOpcode())) ||
4184 (Instruction::isCast(E
->getOpcode()) &&
4185 Instruction::isCast(E
->getAltOpcode()))) &&
4186 "Invalid Shuffle Vector Operand");
4187 InstructionCost ScalarCost
= 0;
4188 if (NeedToShuffleReuses
) {
4189 for (unsigned Idx
: E
->ReuseShuffleIndices
) {
4190 Instruction
*I
= cast
<Instruction
>(VL
[Idx
]);
4191 CommonCost
-= TTI
->getInstructionCost(I
, CostKind
);
4193 for (Value
*V
: VL
) {
4194 Instruction
*I
= cast
<Instruction
>(V
);
4195 CommonCost
+= TTI
->getInstructionCost(I
, CostKind
);
4198 for (Value
*V
: VL
) {
4199 Instruction
*I
= cast
<Instruction
>(V
);
4200 assert(E
->isOpcodeOrAlt(I
) && "Unexpected main/alternate opcode");
4201 ScalarCost
+= TTI
->getInstructionCost(I
, CostKind
);
4203 // VecCost is equal to sum of the cost of creating 2 vectors
4204 // and the cost of creating shuffle.
4205 InstructionCost VecCost
= 0;
4206 if (Instruction::isBinaryOp(E
->getOpcode())) {
4207 VecCost
= TTI
->getArithmeticInstrCost(E
->getOpcode(), VecTy
, CostKind
);
4208 VecCost
+= TTI
->getArithmeticInstrCost(E
->getAltOpcode(), VecTy
,
4211 Type
*Src0SclTy
= E
->getMainOp()->getOperand(0)->getType();
4212 Type
*Src1SclTy
= E
->getAltOp()->getOperand(0)->getType();
4213 auto *Src0Ty
= FixedVectorType::get(Src0SclTy
, VL
.size());
4214 auto *Src1Ty
= FixedVectorType::get(Src1SclTy
, VL
.size());
4215 VecCost
= TTI
->getCastInstrCost(E
->getOpcode(), VecTy
, Src0Ty
,
4216 TTI::CastContextHint::None
, CostKind
);
4217 VecCost
+= TTI
->getCastInstrCost(E
->getAltOpcode(), VecTy
, Src1Ty
,
4218 TTI::CastContextHint::None
, CostKind
);
4221 SmallVector
<int> Mask(E
->Scalars
.size());
4222 for (unsigned I
= 0, End
= E
->Scalars
.size(); I
< End
; ++I
) {
4223 auto *OpInst
= cast
<Instruction
>(E
->Scalars
[I
]);
4224 assert(E
->isOpcodeOrAlt(OpInst
) && "Unexpected main/alternate opcode");
4225 Mask
[I
] = I
+ (OpInst
->getOpcode() == E
->getAltOpcode() ? End
: 0);
4228 TTI
->getShuffleCost(TargetTransformInfo::SK_Select
, VecTy
, Mask
, 0);
4229 LLVM_DEBUG(dumpTreeCosts(E
, CommonCost
, VecCost
, ScalarCost
));
4230 return CommonCost
+ VecCost
- ScalarCost
;
4233 llvm_unreachable("Unknown instruction");
4237 bool BoUpSLP::isFullyVectorizableTinyTree() const {
4238 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
4239 << VectorizableTree
.size() << " is fully vectorizable .\n");
4241 // We only handle trees of heights 1 and 2.
4242 if (VectorizableTree
.size() == 1 &&
4243 VectorizableTree
[0]->State
== TreeEntry::Vectorize
)
4246 if (VectorizableTree
.size() != 2)
4249 // Handle splat and all-constants stores. Also try to vectorize tiny trees
4250 // with the second gather nodes if they have less scalar operands rather than
4251 // the initial tree element (may be profitable to shuffle the second gather)
4252 // or they are extractelements, which form shuffle.
4253 SmallVector
<int> Mask
;
4254 if (VectorizableTree
[0]->State
== TreeEntry::Vectorize
&&
4255 (allConstant(VectorizableTree
[1]->Scalars
) ||
4256 isSplat(VectorizableTree
[1]->Scalars
) ||
4257 (VectorizableTree
[1]->State
== TreeEntry::NeedToGather
&&
4258 VectorizableTree
[1]->Scalars
.size() <
4259 VectorizableTree
[0]->Scalars
.size()) ||
4260 (VectorizableTree
[1]->State
== TreeEntry::NeedToGather
&&
4261 VectorizableTree
[1]->getOpcode() == Instruction::ExtractElement
&&
4262 isShuffle(VectorizableTree
[1]->Scalars
, Mask
))))
4265 // Gathering cost would be too much for tiny trees.
4266 if (VectorizableTree
[0]->State
== TreeEntry::NeedToGather
||
4267 VectorizableTree
[1]->State
== TreeEntry::NeedToGather
)
4273 static bool isLoadCombineCandidateImpl(Value
*Root
, unsigned NumElts
,
4274 TargetTransformInfo
*TTI
,
4275 bool MustMatchOrInst
) {
4276 // Look past the root to find a source value. Arbitrarily follow the
4277 // path through operand 0 of any 'or'. Also, peek through optional
4278 // shift-left-by-multiple-of-8-bits.
4279 Value
*ZextLoad
= Root
;
4280 const APInt
*ShAmtC
;
4281 bool FoundOr
= false;
4282 while (!isa
<ConstantExpr
>(ZextLoad
) &&
4283 (match(ZextLoad
, m_Or(m_Value(), m_Value())) ||
4284 (match(ZextLoad
, m_Shl(m_Value(), m_APInt(ShAmtC
))) &&
4285 ShAmtC
->urem(8) == 0))) {
4286 auto *BinOp
= cast
<BinaryOperator
>(ZextLoad
);
4287 ZextLoad
= BinOp
->getOperand(0);
4288 if (BinOp
->getOpcode() == Instruction::Or
)
4291 // Check if the input is an extended load of the required or/shift expression.
4293 if ((MustMatchOrInst
&& !FoundOr
) || ZextLoad
== Root
||
4294 !match(ZextLoad
, m_ZExt(m_Load(m_Value(LoadPtr
)))))
4297 // Require that the total load bit width is a legal integer type.
4298 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4299 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4300 Type
*SrcTy
= LoadPtr
->getType()->getPointerElementType();
4301 unsigned LoadBitWidth
= SrcTy
->getIntegerBitWidth() * NumElts
;
4302 if (!TTI
->isTypeLegal(IntegerType::get(Root
->getContext(), LoadBitWidth
)))
4305 // Everything matched - assume that we can fold the whole sequence using
4307 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4308 << *(cast
<Instruction
>(Root
)) << "\n");
4313 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind
) const {
4314 if (RdxKind
!= RecurKind::Or
)
4317 unsigned NumElts
= VectorizableTree
[0]->Scalars
.size();
4318 Value
*FirstReduced
= VectorizableTree
[0]->Scalars
[0];
4319 return isLoadCombineCandidateImpl(FirstReduced
, NumElts
, TTI
,
4320 /* MatchOr */ false);
4323 bool BoUpSLP::isLoadCombineCandidate() const {
4324 // Peek through a final sequence of stores and check if all operations are
4325 // likely to be load-combined.
4326 unsigned NumElts
= VectorizableTree
[0]->Scalars
.size();
4327 for (Value
*Scalar
: VectorizableTree
[0]->Scalars
) {
4329 if (!match(Scalar
, m_Store(m_Value(X
), m_Value())) ||
4330 !isLoadCombineCandidateImpl(X
, NumElts
, TTI
, /* MatchOr */ true))
4336 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4337 // No need to vectorize inserts of gathered values.
4338 if (VectorizableTree
.size() == 2 &&
4339 isa
<InsertElementInst
>(VectorizableTree
[0]->Scalars
[0]) &&
4340 VectorizableTree
[1]->State
== TreeEntry::NeedToGather
)
4343 // We can vectorize the tree if its size is greater than or equal to the
4344 // minimum size specified by the MinTreeSize command line option.
4345 if (VectorizableTree
.size() >= MinTreeSize
)
4348 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4349 // can vectorize it if we can prove it fully vectorizable.
4350 if (isFullyVectorizableTinyTree())
4353 assert(VectorizableTree
.empty()
4354 ? ExternalUses
.empty()
4355 : true && "We shouldn't have any external users");
4357 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4362 InstructionCost
BoUpSLP::getSpillCost() const {
4363 // Walk from the bottom of the tree to the top, tracking which values are
4364 // live. When we see a call instruction that is not part of our tree,
4365 // query TTI to see if there is a cost to keeping values live over it
4366 // (for example, if spills and fills are required).
4367 unsigned BundleWidth
= VectorizableTree
.front()->Scalars
.size();
4368 InstructionCost Cost
= 0;
4370 SmallPtrSet
<Instruction
*, 4> LiveValues
;
4371 Instruction
*PrevInst
= nullptr;
4373 // The entries in VectorizableTree are not necessarily ordered by their
4374 // position in basic blocks. Collect them and order them by dominance so later
4375 // instructions are guaranteed to be visited first. For instructions in
4376 // different basic blocks, we only scan to the beginning of the block, so
4377 // their order does not matter, as long as all instructions in a basic block
4378 // are grouped together. Using dominance ensures a deterministic order.
4379 SmallVector
<Instruction
*, 16> OrderedScalars
;
4380 for (const auto &TEPtr
: VectorizableTree
) {
4381 Instruction
*Inst
= dyn_cast
<Instruction
>(TEPtr
->Scalars
[0]);
4384 OrderedScalars
.push_back(Inst
);
4386 llvm::sort(OrderedScalars
, [&](Instruction
*A
, Instruction
*B
) {
4387 auto *NodeA
= DT
->getNode(A
->getParent());
4388 auto *NodeB
= DT
->getNode(B
->getParent());
4389 assert(NodeA
&& "Should only process reachable instructions");
4390 assert(NodeB
&& "Should only process reachable instructions");
4391 assert((NodeA
== NodeB
) == (NodeA
->getDFSNumIn() == NodeB
->getDFSNumIn()) &&
4392 "Different nodes should have different DFS numbers");
4394 return NodeA
->getDFSNumIn() < NodeB
->getDFSNumIn();
4395 return B
->comesBefore(A
);
4398 for (Instruction
*Inst
: OrderedScalars
) {
4404 // Update LiveValues.
4405 LiveValues
.erase(PrevInst
);
4406 for (auto &J
: PrevInst
->operands()) {
4407 if (isa
<Instruction
>(&*J
) && getTreeEntry(&*J
))
4408 LiveValues
.insert(cast
<Instruction
>(&*J
));
4412 dbgs() << "SLP: #LV: " << LiveValues
.size();
4413 for (auto *X
: LiveValues
)
4414 dbgs() << " " << X
->getName();
4415 dbgs() << ", Looking at ";
4419 // Now find the sequence of instructions between PrevInst and Inst.
4420 unsigned NumCalls
= 0;
4421 BasicBlock::reverse_iterator InstIt
= ++Inst
->getIterator().getReverse(),
4423 PrevInst
->getIterator().getReverse();
4424 while (InstIt
!= PrevInstIt
) {
4425 if (PrevInstIt
== PrevInst
->getParent()->rend()) {
4426 PrevInstIt
= Inst
->getParent()->rbegin();
4430 // Debug information does not impact spill cost.
4431 if ((isa
<CallInst
>(&*PrevInstIt
) &&
4432 !isa
<DbgInfoIntrinsic
>(&*PrevInstIt
)) &&
4433 &*PrevInstIt
!= PrevInst
)
4440 SmallVector
<Type
*, 4> V
;
4441 for (auto *II
: LiveValues
) {
4442 auto *ScalarTy
= II
->getType();
4443 if (auto *VectorTy
= dyn_cast
<FixedVectorType
>(ScalarTy
))
4444 ScalarTy
= VectorTy
->getElementType();
4445 V
.push_back(FixedVectorType::get(ScalarTy
, BundleWidth
));
4447 Cost
+= NumCalls
* TTI
->getCostOfKeepingLiveOverCall(V
);
4456 InstructionCost
BoUpSLP::getTreeCost(ArrayRef
<Value
*> VectorizedVals
) {
4457 InstructionCost Cost
= 0;
4458 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4459 << VectorizableTree
.size() << ".\n");
4461 unsigned BundleWidth
= VectorizableTree
[0]->Scalars
.size();
4463 for (unsigned I
= 0, E
= VectorizableTree
.size(); I
< E
; ++I
) {
4464 TreeEntry
&TE
= *VectorizableTree
[I
].get();
4466 InstructionCost C
= getEntryCost(&TE
, VectorizedVals
);
4468 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4469 << " for bundle that starts with " << *TE
.Scalars
[0]
4471 << "SLP: Current total cost = " << Cost
<< "\n");
4474 SmallPtrSet
<Value
*, 16> ExtractCostCalculated
;
4475 InstructionCost ExtractCost
= 0;
4476 SmallVector
<unsigned> VF
;
4477 SmallVector
<SmallVector
<int>> ShuffleMask
;
4478 SmallVector
<Value
*> FirstUsers
;
4479 SmallVector
<APInt
> DemandedElts
;
4480 for (ExternalUser
&EU
: ExternalUses
) {
4481 // We only add extract cost once for the same scalar.
4482 if (!ExtractCostCalculated
.insert(EU
.Scalar
).second
)
4485 // Uses by ephemeral values are free (because the ephemeral value will be
4486 // removed prior to code generation, and so the extraction will be
4487 // removed as well).
4488 if (EphValues
.count(EU
.User
))
4491 // No extract cost for vector "scalar"
4492 if (isa
<FixedVectorType
>(EU
.Scalar
->getType()))
4495 // Already counted the cost for external uses when tried to adjust the cost
4496 // for extractelements, no need to add it again.
4497 if (isa
<ExtractElementInst
>(EU
.Scalar
))
4500 // If found user is an insertelement, do not calculate extract cost but try
4501 // to detect it as a final shuffled/identity match.
4502 if (EU
.User
&& isa
<InsertElementInst
>(EU
.User
)) {
4503 if (auto *FTy
= dyn_cast
<FixedVectorType
>(EU
.User
->getType())) {
4504 Optional
<int> InsertIdx
= getInsertIndex(EU
.User
, 0);
4505 if (!InsertIdx
|| *InsertIdx
== UndefMaskElem
)
4507 Value
*VU
= EU
.User
;
4508 auto *It
= find_if(FirstUsers
, [VU
](Value
*V
) {
4509 // Checks if 2 insertelements are from the same buildvector.
4510 if (VU
->getType() != V
->getType())
4512 auto *IE1
= cast
<InsertElementInst
>(VU
);
4513 auto *IE2
= cast
<InsertElementInst
>(V
);
4514 // Go though of insertelement instructions trying to find either VU as
4515 // the original vector for IE2 or V as the original vector for IE1.
4517 if (IE1
== VU
|| IE2
== V
)
4520 IE1
= dyn_cast
<InsertElementInst
>(IE1
->getOperand(0));
4522 IE2
= dyn_cast
<InsertElementInst
>(IE2
->getOperand(0));
4523 } while (IE1
|| IE2
);
4527 if (It
== FirstUsers
.end()) {
4528 VF
.push_back(FTy
->getNumElements());
4529 ShuffleMask
.emplace_back(VF
.back(), UndefMaskElem
);
4530 FirstUsers
.push_back(EU
.User
);
4531 DemandedElts
.push_back(APInt::getNullValue(VF
.back()));
4532 VecId
= FirstUsers
.size() - 1;
4534 VecId
= std::distance(FirstUsers
.begin(), It
);
4536 int Idx
= *InsertIdx
;
4537 ShuffleMask
[VecId
][Idx
] = EU
.Lane
;
4538 DemandedElts
[VecId
].setBit(Idx
);
4542 // If we plan to rewrite the tree in a smaller type, we will need to sign
4543 // extend the extracted value back to the original type. Here, we account
4544 // for the extract and the added cost of the sign extend if needed.
4545 auto *VecTy
= FixedVectorType::get(EU
.Scalar
->getType(), BundleWidth
);
4546 auto *ScalarRoot
= VectorizableTree
[0]->Scalars
[0];
4547 if (MinBWs
.count(ScalarRoot
)) {
4548 auto *MinTy
= IntegerType::get(F
->getContext(), MinBWs
[ScalarRoot
].first
);
4550 MinBWs
[ScalarRoot
].second
? Instruction::SExt
: Instruction::ZExt
;
4551 VecTy
= FixedVectorType::get(MinTy
, BundleWidth
);
4552 ExtractCost
+= TTI
->getExtractWithExtendCost(Extend
, EU
.Scalar
->getType(),
4556 TTI
->getVectorInstrCost(Instruction::ExtractElement
, VecTy
, EU
.Lane
);
4560 InstructionCost SpillCost
= getSpillCost();
4561 Cost
+= SpillCost
+ ExtractCost
;
4562 for (int I
= 0, E
= FirstUsers
.size(); I
< E
; ++I
) {
4563 // For the very first element - simple shuffle of the source vector.
4564 int Limit
= ShuffleMask
[I
].size() * 2;
4566 all_of(ShuffleMask
[I
], [Limit
](int Idx
) { return Idx
< Limit
; }) &&
4567 !ShuffleVectorInst::isIdentityMask(ShuffleMask
[I
])) {
4568 InstructionCost C
= TTI
->getShuffleCost(
4569 TTI::SK_PermuteSingleSrc
,
4570 cast
<FixedVectorType
>(FirstUsers
[I
]->getType()), ShuffleMask
[I
]);
4571 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4572 << " for final shuffle of insertelement external users "
4573 << *VectorizableTree
.front()->Scalars
.front() << ".\n"
4574 << "SLP: Current total cost = " << Cost
<< "\n");
4578 // Other elements - permutation of 2 vectors (the initial one and the next
4579 // Ith incoming vector).
4580 unsigned VF
= ShuffleMask
[I
].size();
4581 for (unsigned Idx
= 0; Idx
< VF
; ++Idx
) {
4582 int &Mask
= ShuffleMask
[I
][Idx
];
4583 Mask
= Mask
== UndefMaskElem
? Idx
: VF
+ Mask
;
4585 InstructionCost C
= TTI
->getShuffleCost(
4586 TTI::SK_PermuteTwoSrc
, cast
<FixedVectorType
>(FirstUsers
[I
]->getType()),
4590 << "SLP: Adding cost " << C
4591 << " for final shuffle of vector node and external insertelement users "
4592 << *VectorizableTree
.front()->Scalars
.front() << ".\n"
4593 << "SLP: Current total cost = " << Cost
<< "\n");
4595 InstructionCost InsertCost
= TTI
->getScalarizationOverhead(
4596 cast
<FixedVectorType
>(FirstUsers
[I
]->getType()), DemandedElts
[I
],
4600 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
4601 << " for insertelements gather.\n"
4602 << "SLP: Current total cost = " << Cost
<< "\n");
4606 SmallString
<256> Str
;
4608 raw_svector_ostream
OS(Str
);
4609 OS
<< "SLP: Spill Cost = " << SpillCost
<< ".\n"
4610 << "SLP: Extract Cost = " << ExtractCost
<< ".\n"
4611 << "SLP: Total Cost = " << Cost
<< ".\n";
4613 LLVM_DEBUG(dbgs() << Str
);
4615 ViewGraph(this, "SLP" + F
->getName(), false, Str
);
4621 Optional
<TargetTransformInfo::ShuffleKind
>
4622 BoUpSLP::isGatherShuffledEntry(const TreeEntry
*TE
, SmallVectorImpl
<int> &Mask
,
4623 SmallVectorImpl
<const TreeEntry
*> &Entries
) {
4624 // TODO: currently checking only for Scalars in the tree entry, need to count
4625 // reused elements too for better cost estimation.
4626 Mask
.assign(TE
->Scalars
.size(), UndefMaskElem
);
4628 // Build a lists of values to tree entries.
4629 DenseMap
<Value
*, SmallPtrSet
<const TreeEntry
*, 4>> ValueToTEs
;
4630 for (const std::unique_ptr
<TreeEntry
> &EntryPtr
: VectorizableTree
) {
4631 if (EntryPtr
.get() == TE
)
4633 if (EntryPtr
->State
!= TreeEntry::NeedToGather
)
4635 for (Value
*V
: EntryPtr
->Scalars
)
4636 ValueToTEs
.try_emplace(V
).first
->getSecond().insert(EntryPtr
.get());
4638 // Find all tree entries used by the gathered values. If no common entries
4639 // found - not a shuffle.
4640 // Here we build a set of tree nodes for each gathered value and trying to
4641 // find the intersection between these sets. If we have at least one common
4642 // tree node for each gathered value - we have just a permutation of the
4643 // single vector. If we have 2 different sets, we're in situation where we
4644 // have a permutation of 2 input vectors.
4645 SmallVector
<SmallPtrSet
<const TreeEntry
*, 4>> UsedTEs
;
4646 DenseMap
<Value
*, int> UsedValuesEntry
;
4647 for (Value
*V
: TE
->Scalars
) {
4648 if (isa
<UndefValue
>(V
))
4650 // Build a list of tree entries where V is used.
4651 SmallPtrSet
<const TreeEntry
*, 4> VToTEs
;
4652 auto It
= ValueToTEs
.find(V
);
4653 if (It
!= ValueToTEs
.end())
4654 VToTEs
= It
->second
;
4655 if (const TreeEntry
*VTE
= getTreeEntry(V
))
4659 if (UsedTEs
.empty()) {
4660 // The first iteration, just insert the list of nodes to vector.
4661 UsedTEs
.push_back(VToTEs
);
4663 // Need to check if there are any previously used tree nodes which use V.
4664 // If there are no such nodes, consider that we have another one input
4666 SmallPtrSet
<const TreeEntry
*, 4> SavedVToTEs(VToTEs
);
4668 for (SmallPtrSet
<const TreeEntry
*, 4> &Set
: UsedTEs
) {
4669 // Do we have a non-empty intersection of previously listed tree entries
4670 // and tree entries using current V?
4671 set_intersect(VToTEs
, Set
);
4672 if (!VToTEs
.empty()) {
4673 // Yes, write the new subset and continue analysis for the next
4678 VToTEs
= SavedVToTEs
;
4681 // No non-empty intersection found - need to add a second set of possible
4683 if (Idx
== UsedTEs
.size()) {
4684 // If the number of input vectors is greater than 2 - not a permutation,
4685 // fallback to the regular gather.
4686 if (UsedTEs
.size() == 2)
4688 UsedTEs
.push_back(SavedVToTEs
);
4689 Idx
= UsedTEs
.size() - 1;
4691 UsedValuesEntry
.try_emplace(V
, Idx
);
4696 if (UsedTEs
.size() == 1) {
4697 // Try to find the perfect match in another gather node at first.
4698 auto It
= find_if(UsedTEs
.front(), [TE
](const TreeEntry
*EntryPtr
) {
4699 return EntryPtr
->isSame(TE
->Scalars
);
4701 if (It
!= UsedTEs
.front().end()) {
4702 Entries
.push_back(*It
);
4703 std::iota(Mask
.begin(), Mask
.end(), 0);
4704 return TargetTransformInfo::SK_PermuteSingleSrc
;
4706 // No perfect match, just shuffle, so choose the first tree node.
4707 Entries
.push_back(*UsedTEs
.front().begin());
4709 // Try to find nodes with the same vector factor.
4710 assert(UsedTEs
.size() == 2 && "Expected at max 2 permuted entries.");
4711 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4713 auto &&GetVF
= [](const TreeEntry
*TE
) {
4714 if (!TE
->ReuseShuffleIndices
.empty())
4715 return TE
->ReuseShuffleIndices
.size();
4716 return TE
->Scalars
.size();
4718 DenseMap
<int, const TreeEntry
*> VFToTE
;
4719 for (const TreeEntry
*TE
: UsedTEs
.front())
4720 VFToTE
.try_emplace(GetVF(TE
), TE
);
4721 for (const TreeEntry
*TE
: UsedTEs
.back()) {
4722 auto It
= VFToTE
.find(GetVF(TE
));
4723 if (It
!= VFToTE
.end()) {
4725 Entries
.push_back(It
->second
);
4726 Entries
.push_back(TE
);
4730 // No 2 source vectors with the same vector factor - give up and do regular
4732 if (Entries
.empty())
4736 // Build a shuffle mask for better cost estimation and vector emission.
4737 for (int I
= 0, E
= TE
->Scalars
.size(); I
< E
; ++I
) {
4738 Value
*V
= TE
->Scalars
[I
];
4739 if (isa
<UndefValue
>(V
))
4741 unsigned Idx
= UsedValuesEntry
.lookup(V
);
4742 const TreeEntry
*VTE
= Entries
[Idx
];
4743 int FoundLane
= VTE
->findLaneForValue(V
);
4744 Mask
[I
] = Idx
* VF
+ FoundLane
;
4745 // Extra check required by isSingleSourceMaskImpl function (called by
4746 // ShuffleVectorInst::isSingleSourceMask).
4747 if (Mask
[I
] >= 2 * E
)
4750 switch (Entries
.size()) {
4752 return TargetTransformInfo::SK_PermuteSingleSrc
;
4754 return TargetTransformInfo::SK_PermuteTwoSrc
;
4762 BoUpSLP::getGatherCost(FixedVectorType
*Ty
,
4763 const DenseSet
<unsigned> &ShuffledIndices
) const {
4764 unsigned NumElts
= Ty
->getNumElements();
4765 APInt DemandedElts
= APInt::getNullValue(NumElts
);
4766 for (unsigned I
= 0; I
< NumElts
; ++I
)
4767 if (!ShuffledIndices
.count(I
))
4768 DemandedElts
.setBit(I
);
4769 InstructionCost Cost
=
4770 TTI
->getScalarizationOverhead(Ty
, DemandedElts
, /*Insert*/ true,
4772 if (!ShuffledIndices
.empty())
4773 Cost
+= TTI
->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc
, Ty
);
4777 InstructionCost
BoUpSLP::getGatherCost(ArrayRef
<Value
*> VL
) const {
4778 // Find the type of the operands in VL.
4779 Type
*ScalarTy
= VL
[0]->getType();
4780 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(VL
[0]))
4781 ScalarTy
= SI
->getValueOperand()->getType();
4782 auto *VecTy
= FixedVectorType::get(ScalarTy
, VL
.size());
4783 // Find the cost of inserting/extracting values from the vector.
4784 // Check if the same elements are inserted several times and count them as
4785 // shuffle candidates.
4786 DenseSet
<unsigned> ShuffledElements
;
4787 DenseSet
<Value
*> UniqueElements
;
4788 // Iterate in reverse order to consider insert elements with the high cost.
4789 for (unsigned I
= VL
.size(); I
> 0; --I
) {
4790 unsigned Idx
= I
- 1;
4791 if (isConstant(VL
[Idx
]))
4793 if (!UniqueElements
.insert(VL
[Idx
]).second
)
4794 ShuffledElements
.insert(Idx
);
4796 return getGatherCost(VecTy
, ShuffledElements
);
4799 // Perform operand reordering on the instructions in VL and return the reordered
4800 // operands in Left and Right.
4801 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef
<Value
*> VL
,
4802 SmallVectorImpl
<Value
*> &Left
,
4803 SmallVectorImpl
<Value
*> &Right
,
4804 const DataLayout
&DL
,
4805 ScalarEvolution
&SE
,
4809 VLOperands
Ops(VL
, DL
, SE
, R
);
4810 // Reorder the operands in place.
4812 Left
= Ops
.getVL(0);
4813 Right
= Ops
.getVL(1);
4816 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry
*E
) {
4817 // Get the basic block this bundle is in. All instructions in the bundle
4818 // should be in this block.
4819 auto *Front
= E
->getMainOp();
4820 auto *BB
= Front
->getParent();
4821 assert(llvm::all_of(E
->Scalars
, [=](Value
*V
) -> bool {
4822 auto *I
= cast
<Instruction
>(V
);
4823 return !E
->isOpcodeOrAlt(I
) || I
->getParent() == BB
;
4826 // The last instruction in the bundle in program order.
4827 Instruction
*LastInst
= nullptr;
4829 // Find the last instruction. The common case should be that BB has been
4830 // scheduled, and the last instruction is VL.back(). So we start with
4831 // VL.back() and iterate over schedule data until we reach the end of the
4832 // bundle. The end of the bundle is marked by null ScheduleData.
4833 if (BlocksSchedules
.count(BB
)) {
4835 BlocksSchedules
[BB
]->getScheduleData(E
->isOneOf(E
->Scalars
.back()));
4836 if (Bundle
&& Bundle
->isPartOfBundle())
4837 for (; Bundle
; Bundle
= Bundle
->NextInBundle
)
4838 if (Bundle
->OpValue
== Bundle
->Inst
)
4839 LastInst
= Bundle
->Inst
;
4842 // LastInst can still be null at this point if there's either not an entry
4843 // for BB in BlocksSchedules or there's no ScheduleData available for
4844 // VL.back(). This can be the case if buildTree_rec aborts for various
4845 // reasons (e.g., the maximum recursion depth is reached, the maximum region
4846 // size is reached, etc.). ScheduleData is initialized in the scheduling
4849 // If this happens, we can still find the last instruction by brute force. We
4850 // iterate forwards from Front (inclusive) until we either see all
4851 // instructions in the bundle or reach the end of the block. If Front is the
4852 // last instruction in program order, LastInst will be set to Front, and we
4853 // will visit all the remaining instructions in the block.
4855 // One of the reasons we exit early from buildTree_rec is to place an upper
4856 // bound on compile-time. Thus, taking an additional compile-time hit here is
4857 // not ideal. However, this should be exceedingly rare since it requires that
4858 // we both exit early from buildTree_rec and that the bundle be out-of-order
4859 // (causing us to iterate all the way to the end of the block).
4861 SmallPtrSet
<Value
*, 16> Bundle(E
->Scalars
.begin(), E
->Scalars
.end());
4862 for (auto &I
: make_range(BasicBlock::iterator(Front
), BB
->end())) {
4863 if (Bundle
.erase(&I
) && E
->isOpcodeOrAlt(&I
))
4869 assert(LastInst
&& "Failed to find last instruction in bundle");
4871 // Set the insertion point after the last instruction in the bundle. Set the
4872 // debug location to Front.
4873 Builder
.SetInsertPoint(BB
, ++LastInst
->getIterator());
4874 Builder
.SetCurrentDebugLocation(Front
->getDebugLoc());
4877 Value
*BoUpSLP::gather(ArrayRef
<Value
*> VL
) {
4878 // List of instructions/lanes from current block and/or the blocks which are
4879 // part of the current loop. These instructions will be inserted at the end to
4880 // make it possible to optimize loops and hoist invariant instructions out of
4881 // the loops body with better chances for success.
4882 SmallVector
<std::pair
<Value
*, unsigned>, 4> PostponedInsts
;
4883 SmallSet
<int, 4> PostponedIndices
;
4884 Loop
*L
= LI
->getLoopFor(Builder
.GetInsertBlock());
4885 auto &&CheckPredecessor
= [](BasicBlock
*InstBB
, BasicBlock
*InsertBB
) {
4886 SmallPtrSet
<BasicBlock
*, 4> Visited
;
4887 while (InsertBB
&& InsertBB
!= InstBB
&& Visited
.insert(InsertBB
).second
)
4888 InsertBB
= InsertBB
->getSinglePredecessor();
4889 return InsertBB
&& InsertBB
== InstBB
;
4891 for (int I
= 0, E
= VL
.size(); I
< E
; ++I
) {
4892 if (auto *Inst
= dyn_cast
<Instruction
>(VL
[I
]))
4893 if ((CheckPredecessor(Inst
->getParent(), Builder
.GetInsertBlock()) ||
4894 getTreeEntry(Inst
) || (L
&& (L
->contains(Inst
)))) &&
4895 PostponedIndices
.insert(I
).second
)
4896 PostponedInsts
.emplace_back(Inst
, I
);
4899 auto &&CreateInsertElement
= [this](Value
*Vec
, Value
*V
, unsigned Pos
) {
4900 Vec
= Builder
.CreateInsertElement(Vec
, V
, Builder
.getInt32(Pos
));
4901 auto *InsElt
= dyn_cast
<InsertElementInst
>(Vec
);
4904 GatherSeq
.insert(InsElt
);
4905 CSEBlocks
.insert(InsElt
->getParent());
4906 // Add to our 'need-to-extract' list.
4907 if (TreeEntry
*Entry
= getTreeEntry(V
)) {
4908 // Find which lane we need to extract.
4909 unsigned FoundLane
= Entry
->findLaneForValue(V
);
4910 ExternalUses
.emplace_back(V
, InsElt
, FoundLane
);
4915 isa
<StoreInst
>(VL
[0]) ? cast
<StoreInst
>(VL
[0])->getValueOperand() : VL
[0];
4916 FixedVectorType
*VecTy
= FixedVectorType::get(Val0
->getType(), VL
.size());
4917 Value
*Vec
= PoisonValue::get(VecTy
);
4918 SmallVector
<int> NonConsts
;
4919 // Insert constant values at first.
4920 for (int I
= 0, E
= VL
.size(); I
< E
; ++I
) {
4921 if (PostponedIndices
.contains(I
))
4923 if (!isConstant(VL
[I
])) {
4924 NonConsts
.push_back(I
);
4927 Vec
= CreateInsertElement(Vec
, VL
[I
], I
);
4929 // Insert non-constant values.
4930 for (int I
: NonConsts
)
4931 Vec
= CreateInsertElement(Vec
, VL
[I
], I
);
4932 // Append instructions, which are/may be part of the loop, in the end to make
4933 // it possible to hoist non-loop-based instructions.
4934 for (const std::pair
<Value
*, unsigned> &Pair
: PostponedInsts
)
4935 Vec
= CreateInsertElement(Vec
, Pair
.first
, Pair
.second
);
4941 /// Merges shuffle masks and emits final shuffle instruction, if required.
4942 class ShuffleInstructionBuilder
{
4943 IRBuilderBase
&Builder
;
4944 const unsigned VF
= 0;
4945 bool IsFinalized
= false;
4946 SmallVector
<int, 4> Mask
;
4949 ShuffleInstructionBuilder(IRBuilderBase
&Builder
, unsigned VF
)
4950 : Builder(Builder
), VF(VF
) {}
4952 /// Adds a mask, inverting it before applying.
4953 void addInversedMask(ArrayRef
<unsigned> SubMask
) {
4954 if (SubMask
.empty())
4956 SmallVector
<int, 4> NewMask
;
4957 inversePermutation(SubMask
, NewMask
);
4961 /// Functions adds masks, merging them into single one.
4962 void addMask(ArrayRef
<unsigned> SubMask
) {
4963 SmallVector
<int, 4> NewMask(SubMask
.begin(), SubMask
.end());
4967 void addMask(ArrayRef
<int> SubMask
) { ::addMask(Mask
, SubMask
); }
4969 Value
*finalize(Value
*V
) {
4971 unsigned ValueVF
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
4972 if (VF
== ValueVF
&& Mask
.empty())
4974 SmallVector
<int, 4> NormalizedMask(VF
, UndefMaskElem
);
4975 std::iota(NormalizedMask
.begin(), NormalizedMask
.end(), 0);
4976 addMask(NormalizedMask
);
4978 if (VF
== ValueVF
&& ShuffleVectorInst::isIdentityMask(Mask
))
4980 return Builder
.CreateShuffleVector(V
, Mask
, "shuffle");
4983 ~ShuffleInstructionBuilder() {
4984 assert((IsFinalized
|| Mask
.empty()) &&
4985 "Shuffle construction must be finalized.");
4990 Value
*BoUpSLP::vectorizeTree(ArrayRef
<Value
*> VL
) {
4991 unsigned VF
= VL
.size();
4992 InstructionsState S
= getSameOpcode(VL
);
4993 if (S
.getOpcode()) {
4994 if (TreeEntry
*E
= getTreeEntry(S
.OpValue
))
4995 if (E
->isSame(VL
)) {
4996 Value
*V
= vectorizeTree(E
);
4997 if (VF
!= cast
<FixedVectorType
>(V
->getType())->getNumElements()) {
4998 if (!E
->ReuseShuffleIndices
.empty()) {
4999 // Reshuffle to get only unique values.
5000 // If some of the scalars are duplicated in the vectorization tree
5001 // entry, we do not vectorize them but instead generate a mask for
5002 // the reuses. But if there are several users of the same entry,
5003 // they may have different vectorization factors. This is especially
5004 // important for PHI nodes. In this case, we need to adapt the
5005 // resulting instruction for the user vectorization factor and have
5006 // to reshuffle it again to take only unique elements of the vector.
5007 // Without this code the function incorrectly returns reduced vector
5008 // instruction with the same elements, not with the unique ones.
5011 // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
5012 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
5014 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
5016 SmallVector
<int> UniqueIdxs
;
5017 SmallSet
<int, 4> UsedIdxs
;
5020 for (int Idx
: E
->ReuseShuffleIndices
) {
5021 if (Idx
!= Sz
&& UsedIdxs
.insert(Idx
).second
)
5022 UniqueIdxs
.emplace_back(Pos
);
5025 assert(VF
>= UsedIdxs
.size() && "Expected vectorization factor "
5026 "less than original vector size.");
5027 UniqueIdxs
.append(VF
- UsedIdxs
.size(), UndefMaskElem
);
5028 V
= Builder
.CreateShuffleVector(V
, UniqueIdxs
, "shrink.shuffle");
5030 assert(VF
< cast
<FixedVectorType
>(V
->getType())->getNumElements() &&
5031 "Expected vectorization factor less "
5032 "than original vector size.");
5033 SmallVector
<int> UniformMask(VF
, 0);
5034 std::iota(UniformMask
.begin(), UniformMask
.end(), 0);
5035 V
= Builder
.CreateShuffleVector(V
, UniformMask
, "shrink.shuffle");
5042 // Check that every instruction appears once in this bundle.
5043 SmallVector
<int> ReuseShuffleIndicies
;
5044 SmallVector
<Value
*> UniqueValues
;
5045 if (VL
.size() > 2) {
5046 DenseMap
<Value
*, unsigned> UniquePositions
;
5047 unsigned NumValues
=
5048 std::distance(VL
.begin(), find_if(reverse(VL
), [](Value
*V
) {
5049 return !isa
<UndefValue
>(V
);
5051 VF
= std::max
<unsigned>(VF
, PowerOf2Ceil(NumValues
));
5053 for (Value
*V
: VL
.drop_back(VL
.size() - VF
)) {
5054 if (isa
<UndefValue
>(V
)) {
5055 ReuseShuffleIndicies
.emplace_back(UndefMaskElem
);
5058 if (isConstant(V
)) {
5059 ReuseShuffleIndicies
.emplace_back(UniqueValues
.size());
5060 UniqueValues
.emplace_back(V
);
5063 auto Res
= UniquePositions
.try_emplace(V
, UniqueValues
.size());
5064 ReuseShuffleIndicies
.emplace_back(Res
.first
->second
);
5066 UniqueValues
.emplace_back(V
);
5070 if (UniqueVals
== 1 && UniqueValues
.size() == 1) {
5071 // Emit pure splat vector.
5072 ReuseShuffleIndicies
.append(VF
- ReuseShuffleIndicies
.size(),
5074 } else if (UniqueValues
.size() >= VF
- 1 || UniqueValues
.size() <= 1) {
5075 ReuseShuffleIndicies
.clear();
5076 UniqueValues
.clear();
5077 UniqueValues
.append(VL
.begin(), std::next(VL
.begin(), NumValues
));
5079 UniqueValues
.append(VF
- UniqueValues
.size(),
5080 PoisonValue::get(VL
[0]->getType()));
5084 ShuffleInstructionBuilder
ShuffleBuilder(Builder
, VF
);
5085 Value
*Vec
= gather(VL
);
5086 if (!ReuseShuffleIndicies
.empty()) {
5087 ShuffleBuilder
.addMask(ReuseShuffleIndicies
);
5088 Vec
= ShuffleBuilder
.finalize(Vec
);
5089 if (auto *I
= dyn_cast
<Instruction
>(Vec
)) {
5090 GatherSeq
.insert(I
);
5091 CSEBlocks
.insert(I
->getParent());
5097 Value
*BoUpSLP::vectorizeTree(TreeEntry
*E
) {
5098 IRBuilder
<>::InsertPointGuard
Guard(Builder
);
5100 if (E
->VectorizedValue
) {
5101 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E
->Scalars
[0] << ".\n");
5102 return E
->VectorizedValue
;
5105 bool NeedToShuffleReuses
= !E
->ReuseShuffleIndices
.empty();
5106 unsigned VF
= E
->Scalars
.size();
5107 if (NeedToShuffleReuses
)
5108 VF
= E
->ReuseShuffleIndices
.size();
5109 ShuffleInstructionBuilder
ShuffleBuilder(Builder
, VF
);
5110 if (E
->State
== TreeEntry::NeedToGather
) {
5111 setInsertPointAfterBundle(E
);
5113 SmallVector
<int> Mask
;
5114 SmallVector
<const TreeEntry
*> Entries
;
5115 Optional
<TargetTransformInfo::ShuffleKind
> Shuffle
=
5116 isGatherShuffledEntry(E
, Mask
, Entries
);
5117 if (Shuffle
.hasValue()) {
5118 assert((Entries
.size() == 1 || Entries
.size() == 2) &&
5119 "Expected shuffle of 1 or 2 entries.");
5120 Vec
= Builder
.CreateShuffleVector(Entries
.front()->VectorizedValue
,
5121 Entries
.back()->VectorizedValue
, Mask
);
5123 Vec
= gather(E
->Scalars
);
5125 if (NeedToShuffleReuses
) {
5126 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5127 Vec
= ShuffleBuilder
.finalize(Vec
);
5128 if (auto *I
= dyn_cast
<Instruction
>(Vec
)) {
5129 GatherSeq
.insert(I
);
5130 CSEBlocks
.insert(I
->getParent());
5133 E
->VectorizedValue
= Vec
;
5137 assert((E
->State
== TreeEntry::Vectorize
||
5138 E
->State
== TreeEntry::ScatterVectorize
) &&
5140 unsigned ShuffleOrOp
=
5141 E
->isAltShuffle() ? (unsigned)Instruction::ShuffleVector
: E
->getOpcode();
5142 Instruction
*VL0
= E
->getMainOp();
5143 Type
*ScalarTy
= VL0
->getType();
5144 if (auto *Store
= dyn_cast
<StoreInst
>(VL0
))
5145 ScalarTy
= Store
->getValueOperand()->getType();
5146 else if (auto *IE
= dyn_cast
<InsertElementInst
>(VL0
))
5147 ScalarTy
= IE
->getOperand(1)->getType();
5148 auto *VecTy
= FixedVectorType::get(ScalarTy
, E
->Scalars
.size());
5149 switch (ShuffleOrOp
) {
5150 case Instruction::PHI
: {
5151 auto *PH
= cast
<PHINode
>(VL0
);
5152 Builder
.SetInsertPoint(PH
->getParent()->getFirstNonPHI());
5153 Builder
.SetCurrentDebugLocation(PH
->getDebugLoc());
5154 PHINode
*NewPhi
= Builder
.CreatePHI(VecTy
, PH
->getNumIncomingValues());
5156 if (NeedToShuffleReuses
)
5157 V
= Builder
.CreateShuffleVector(V
, E
->ReuseShuffleIndices
, "shuffle");
5159 E
->VectorizedValue
= V
;
5161 // PHINodes may have multiple entries from the same block. We want to
5162 // visit every block once.
5163 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
5165 for (unsigned i
= 0, e
= PH
->getNumIncomingValues(); i
< e
; ++i
) {
5167 BasicBlock
*IBB
= PH
->getIncomingBlock(i
);
5169 if (!VisitedBBs
.insert(IBB
).second
) {
5170 NewPhi
->addIncoming(NewPhi
->getIncomingValueForBlock(IBB
), IBB
);
5174 Builder
.SetInsertPoint(IBB
->getTerminator());
5175 Builder
.SetCurrentDebugLocation(PH
->getDebugLoc());
5176 Value
*Vec
= vectorizeTree(E
->getOperand(i
));
5177 NewPhi
->addIncoming(Vec
, IBB
);
5180 assert(NewPhi
->getNumIncomingValues() == PH
->getNumIncomingValues() &&
5181 "Invalid number of incoming values");
5185 case Instruction::ExtractElement
: {
5186 Value
*V
= E
->getSingleOperand(0);
5187 Builder
.SetInsertPoint(VL0
);
5188 ShuffleBuilder
.addInversedMask(E
->ReorderIndices
);
5189 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5190 V
= ShuffleBuilder
.finalize(V
);
5191 E
->VectorizedValue
= V
;
5194 case Instruction::ExtractValue
: {
5195 auto *LI
= cast
<LoadInst
>(E
->getSingleOperand(0));
5196 Builder
.SetInsertPoint(LI
);
5197 auto *PtrTy
= PointerType::get(VecTy
, LI
->getPointerAddressSpace());
5198 Value
*Ptr
= Builder
.CreateBitCast(LI
->getOperand(0), PtrTy
);
5199 LoadInst
*V
= Builder
.CreateAlignedLoad(VecTy
, Ptr
, LI
->getAlign());
5200 Value
*NewV
= propagateMetadata(V
, E
->Scalars
);
5201 ShuffleBuilder
.addInversedMask(E
->ReorderIndices
);
5202 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5203 NewV
= ShuffleBuilder
.finalize(NewV
);
5204 E
->VectorizedValue
= NewV
;
5207 case Instruction::InsertElement
: {
5208 Builder
.SetInsertPoint(VL0
);
5209 Value
*V
= vectorizeTree(E
->getOperand(1));
5211 const unsigned NumElts
=
5212 cast
<FixedVectorType
>(VL0
->getType())->getNumElements();
5213 const unsigned NumScalars
= E
->Scalars
.size();
5215 // Create InsertVector shuffle if necessary
5216 Instruction
*FirstInsert
= nullptr;
5217 bool IsIdentity
= true;
5218 unsigned Offset
= UINT_MAX
;
5219 for (unsigned I
= 0; I
< NumScalars
; ++I
) {
5220 Value
*Scalar
= E
->Scalars
[I
];
5222 !is_contained(E
->Scalars
, cast
<Instruction
>(Scalar
)->getOperand(0)))
5223 FirstInsert
= cast
<Instruction
>(Scalar
);
5224 Optional
<int> InsertIdx
= getInsertIndex(Scalar
, 0);
5225 if (!InsertIdx
|| *InsertIdx
== UndefMaskElem
)
5227 unsigned Idx
= *InsertIdx
;
5230 IsIdentity
&= I
== 0;
5232 assert(Idx
>= Offset
&& "Failed to find vector index offset");
5233 IsIdentity
&= Idx
- Offset
== I
;
5236 assert(Offset
< NumElts
&& "Failed to find vector index offset");
5238 // Create shuffle to resize vector
5239 SmallVector
<int> Mask(NumElts
, UndefMaskElem
);
5241 for (unsigned I
= 0; I
< NumScalars
; ++I
) {
5242 Value
*Scalar
= E
->Scalars
[I
];
5243 Optional
<int> InsertIdx
= getInsertIndex(Scalar
, 0);
5244 if (!InsertIdx
|| *InsertIdx
== UndefMaskElem
)
5246 Mask
[*InsertIdx
- Offset
] = I
;
5249 std::iota(Mask
.begin(), std::next(Mask
.begin(), NumScalars
), 0);
5251 if (!IsIdentity
|| NumElts
!= NumScalars
)
5252 V
= Builder
.CreateShuffleVector(V
, Mask
);
5254 if ((!IsIdentity
|| Offset
!= 0 ||
5255 !isa
<UndefValue
>(FirstInsert
->getOperand(0))) &&
5256 NumElts
!= NumScalars
) {
5257 SmallVector
<int> InsertMask(NumElts
);
5258 std::iota(InsertMask
.begin(), InsertMask
.end(), 0);
5259 for (unsigned I
= 0; I
< NumElts
; I
++) {
5260 if (Mask
[I
] != UndefMaskElem
)
5261 InsertMask
[Offset
+ I
] = NumElts
+ I
;
5264 V
= Builder
.CreateShuffleVector(
5265 FirstInsert
->getOperand(0), V
, InsertMask
,
5266 cast
<Instruction
>(E
->Scalars
.back())->getName());
5269 ++NumVectorInstructions
;
5270 E
->VectorizedValue
= V
;
5273 case Instruction::ZExt
:
5274 case Instruction::SExt
:
5275 case Instruction::FPToUI
:
5276 case Instruction::FPToSI
:
5277 case Instruction::FPExt
:
5278 case Instruction::PtrToInt
:
5279 case Instruction::IntToPtr
:
5280 case Instruction::SIToFP
:
5281 case Instruction::UIToFP
:
5282 case Instruction::Trunc
:
5283 case Instruction::FPTrunc
:
5284 case Instruction::BitCast
: {
5285 setInsertPointAfterBundle(E
);
5287 Value
*InVec
= vectorizeTree(E
->getOperand(0));
5289 if (E
->VectorizedValue
) {
5290 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
5291 return E
->VectorizedValue
;
5294 auto *CI
= cast
<CastInst
>(VL0
);
5295 Value
*V
= Builder
.CreateCast(CI
->getOpcode(), InVec
, VecTy
);
5296 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5297 V
= ShuffleBuilder
.finalize(V
);
5299 E
->VectorizedValue
= V
;
5300 ++NumVectorInstructions
;
5303 case Instruction::FCmp
:
5304 case Instruction::ICmp
: {
5305 setInsertPointAfterBundle(E
);
5307 Value
*L
= vectorizeTree(E
->getOperand(0));
5308 Value
*R
= vectorizeTree(E
->getOperand(1));
5310 if (E
->VectorizedValue
) {
5311 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
5312 return E
->VectorizedValue
;
5315 CmpInst::Predicate P0
= cast
<CmpInst
>(VL0
)->getPredicate();
5316 Value
*V
= Builder
.CreateCmp(P0
, L
, R
);
5317 propagateIRFlags(V
, E
->Scalars
, VL0
);
5318 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5319 V
= ShuffleBuilder
.finalize(V
);
5321 E
->VectorizedValue
= V
;
5322 ++NumVectorInstructions
;
5325 case Instruction::Select
: {
5326 setInsertPointAfterBundle(E
);
5328 Value
*Cond
= vectorizeTree(E
->getOperand(0));
5329 Value
*True
= vectorizeTree(E
->getOperand(1));
5330 Value
*False
= vectorizeTree(E
->getOperand(2));
5332 if (E
->VectorizedValue
) {
5333 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
5334 return E
->VectorizedValue
;
5337 Value
*V
= Builder
.CreateSelect(Cond
, True
, False
);
5338 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5339 V
= ShuffleBuilder
.finalize(V
);
5341 E
->VectorizedValue
= V
;
5342 ++NumVectorInstructions
;
5345 case Instruction::FNeg
: {
5346 setInsertPointAfterBundle(E
);
5348 Value
*Op
= vectorizeTree(E
->getOperand(0));
5350 if (E
->VectorizedValue
) {
5351 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
5352 return E
->VectorizedValue
;
5355 Value
*V
= Builder
.CreateUnOp(
5356 static_cast<Instruction::UnaryOps
>(E
->getOpcode()), Op
);
5357 propagateIRFlags(V
, E
->Scalars
, VL0
);
5358 if (auto *I
= dyn_cast
<Instruction
>(V
))
5359 V
= propagateMetadata(I
, E
->Scalars
);
5361 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5362 V
= ShuffleBuilder
.finalize(V
);
5364 E
->VectorizedValue
= V
;
5365 ++NumVectorInstructions
;
5369 case Instruction::Add
:
5370 case Instruction::FAdd
:
5371 case Instruction::Sub
:
5372 case Instruction::FSub
:
5373 case Instruction::Mul
:
5374 case Instruction::FMul
:
5375 case Instruction::UDiv
:
5376 case Instruction::SDiv
:
5377 case Instruction::FDiv
:
5378 case Instruction::URem
:
5379 case Instruction::SRem
:
5380 case Instruction::FRem
:
5381 case Instruction::Shl
:
5382 case Instruction::LShr
:
5383 case Instruction::AShr
:
5384 case Instruction::And
:
5385 case Instruction::Or
:
5386 case Instruction::Xor
: {
5387 setInsertPointAfterBundle(E
);
5389 Value
*LHS
= vectorizeTree(E
->getOperand(0));
5390 Value
*RHS
= vectorizeTree(E
->getOperand(1));
5392 if (E
->VectorizedValue
) {
5393 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
5394 return E
->VectorizedValue
;
5397 Value
*V
= Builder
.CreateBinOp(
5398 static_cast<Instruction::BinaryOps
>(E
->getOpcode()), LHS
,
5400 propagateIRFlags(V
, E
->Scalars
, VL0
);
5401 if (auto *I
= dyn_cast
<Instruction
>(V
))
5402 V
= propagateMetadata(I
, E
->Scalars
);
5404 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5405 V
= ShuffleBuilder
.finalize(V
);
5407 E
->VectorizedValue
= V
;
5408 ++NumVectorInstructions
;
5412 case Instruction::Load
: {
5413 // Loads are inserted at the head of the tree because we don't want to
5414 // sink them all the way down past store instructions.
5415 bool IsReorder
= E
->updateStateIfReorder();
5417 VL0
= E
->getMainOp();
5418 setInsertPointAfterBundle(E
);
5420 LoadInst
*LI
= cast
<LoadInst
>(VL0
);
5422 unsigned AS
= LI
->getPointerAddressSpace();
5423 Value
*PO
= LI
->getPointerOperand();
5424 if (E
->State
== TreeEntry::Vectorize
) {
5426 Value
*VecPtr
= Builder
.CreateBitCast(PO
, VecTy
->getPointerTo(AS
));
5428 // The pointer operand uses an in-tree scalar so we add the new BitCast
5429 // to ExternalUses list to make sure that an extract will be generated
5431 if (getTreeEntry(PO
))
5432 ExternalUses
.emplace_back(PO
, cast
<User
>(VecPtr
), 0);
5434 NewLI
= Builder
.CreateAlignedLoad(VecTy
, VecPtr
, LI
->getAlign());
5436 assert(E
->State
== TreeEntry::ScatterVectorize
&& "Unhandled state");
5437 Value
*VecPtr
= vectorizeTree(E
->getOperand(0));
5438 // Use the minimum alignment of the gathered loads.
5439 Align CommonAlignment
= LI
->getAlign();
5440 for (Value
*V
: E
->Scalars
)
5442 commonAlignment(CommonAlignment
, cast
<LoadInst
>(V
)->getAlign());
5443 NewLI
= Builder
.CreateMaskedGather(VecTy
, VecPtr
, CommonAlignment
);
5445 Value
*V
= propagateMetadata(NewLI
, E
->Scalars
);
5447 ShuffleBuilder
.addInversedMask(E
->ReorderIndices
);
5448 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5449 V
= ShuffleBuilder
.finalize(V
);
5450 E
->VectorizedValue
= V
;
5451 ++NumVectorInstructions
;
5454 case Instruction::Store
: {
5455 bool IsReorder
= !E
->ReorderIndices
.empty();
5456 auto *SI
= cast
<StoreInst
>(
5457 IsReorder
? E
->Scalars
[E
->ReorderIndices
.front()] : VL0
);
5458 unsigned AS
= SI
->getPointerAddressSpace();
5460 setInsertPointAfterBundle(E
);
5462 Value
*VecValue
= vectorizeTree(E
->getOperand(0));
5463 ShuffleBuilder
.addMask(E
->ReorderIndices
);
5464 VecValue
= ShuffleBuilder
.finalize(VecValue
);
5466 Value
*ScalarPtr
= SI
->getPointerOperand();
5467 Value
*VecPtr
= Builder
.CreateBitCast(
5468 ScalarPtr
, VecValue
->getType()->getPointerTo(AS
));
5469 StoreInst
*ST
= Builder
.CreateAlignedStore(VecValue
, VecPtr
,
5472 // The pointer operand uses an in-tree scalar, so add the new BitCast to
5473 // ExternalUses to make sure that an extract will be generated in the
5475 if (getTreeEntry(ScalarPtr
))
5476 ExternalUses
.push_back(ExternalUser(ScalarPtr
, cast
<User
>(VecPtr
), 0));
5478 Value
*V
= propagateMetadata(ST
, E
->Scalars
);
5480 E
->VectorizedValue
= V
;
5481 ++NumVectorInstructions
;
5484 case Instruction::GetElementPtr
: {
5485 setInsertPointAfterBundle(E
);
5487 Value
*Op0
= vectorizeTree(E
->getOperand(0));
5489 std::vector
<Value
*> OpVecs
;
5490 for (int j
= 1, e
= cast
<GetElementPtrInst
>(VL0
)->getNumOperands(); j
< e
;
5492 ValueList
&VL
= E
->getOperand(j
);
5493 // Need to cast all elements to the same type before vectorization to
5495 Type
*VL0Ty
= VL0
->getOperand(j
)->getType();
5496 Type
*Ty
= llvm::all_of(
5497 VL
, [VL0Ty
](Value
*V
) { return VL0Ty
== V
->getType(); })
5499 : DL
->getIndexType(cast
<GetElementPtrInst
>(VL0
)
5500 ->getPointerOperandType()
5502 for (Value
*&V
: VL
) {
5503 auto *CI
= cast
<ConstantInt
>(V
);
5504 V
= ConstantExpr::getIntegerCast(CI
, Ty
,
5505 CI
->getValue().isSignBitSet());
5507 Value
*OpVec
= vectorizeTree(VL
);
5508 OpVecs
.push_back(OpVec
);
5511 Value
*V
= Builder
.CreateGEP(
5512 cast
<GetElementPtrInst
>(VL0
)->getSourceElementType(), Op0
, OpVecs
);
5513 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5514 V
= propagateMetadata(I
, E
->Scalars
);
5516 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5517 V
= ShuffleBuilder
.finalize(V
);
5519 E
->VectorizedValue
= V
;
5520 ++NumVectorInstructions
;
5524 case Instruction::Call
: {
5525 CallInst
*CI
= cast
<CallInst
>(VL0
);
5526 setInsertPointAfterBundle(E
);
5528 Intrinsic::ID IID
= Intrinsic::not_intrinsic
;
5529 if (Function
*FI
= CI
->getCalledFunction())
5530 IID
= FI
->getIntrinsicID();
5532 Intrinsic::ID ID
= getVectorIntrinsicIDForCall(CI
, TLI
);
5534 auto VecCallCosts
= getVectorCallCosts(CI
, VecTy
, TTI
, TLI
);
5535 bool UseIntrinsic
= ID
!= Intrinsic::not_intrinsic
&&
5536 VecCallCosts
.first
<= VecCallCosts
.second
;
5538 Value
*ScalarArg
= nullptr;
5539 std::vector
<Value
*> OpVecs
;
5540 SmallVector
<Type
*, 2> TysForDecl
=
5541 {FixedVectorType::get(CI
->getType(), E
->Scalars
.size())};
5542 for (int j
= 0, e
= CI
->getNumArgOperands(); j
< e
; ++j
) {
5544 // Some intrinsics have scalar arguments. This argument should not be
5546 if (UseIntrinsic
&& hasVectorInstrinsicScalarOpd(IID
, j
)) {
5547 CallInst
*CEI
= cast
<CallInst
>(VL0
);
5548 ScalarArg
= CEI
->getArgOperand(j
);
5549 OpVecs
.push_back(CEI
->getArgOperand(j
));
5550 if (hasVectorInstrinsicOverloadedScalarOpd(IID
, j
))
5551 TysForDecl
.push_back(ScalarArg
->getType());
5555 Value
*OpVec
= vectorizeTree(E
->getOperand(j
));
5556 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j
<< "]: " << *OpVec
<< "\n");
5557 OpVecs
.push_back(OpVec
);
5561 if (!UseIntrinsic
) {
5563 VFShape::get(*CI
, ElementCount::getFixed(static_cast<unsigned>(
5564 VecTy
->getNumElements())),
5565 false /*HasGlobalPred*/);
5566 CF
= VFDatabase(*CI
).getVectorizedFunction(Shape
);
5568 CF
= Intrinsic::getDeclaration(F
->getParent(), ID
, TysForDecl
);
5571 SmallVector
<OperandBundleDef
, 1> OpBundles
;
5572 CI
->getOperandBundlesAsDefs(OpBundles
);
5573 Value
*V
= Builder
.CreateCall(CF
, OpVecs
, OpBundles
);
5575 // The scalar argument uses an in-tree scalar so we add the new vectorized
5576 // call to ExternalUses list to make sure that an extract will be
5577 // generated in the future.
5578 if (ScalarArg
&& getTreeEntry(ScalarArg
))
5579 ExternalUses
.push_back(ExternalUser(ScalarArg
, cast
<User
>(V
), 0));
5581 propagateIRFlags(V
, E
->Scalars
, VL0
);
5582 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5583 V
= ShuffleBuilder
.finalize(V
);
5585 E
->VectorizedValue
= V
;
5586 ++NumVectorInstructions
;
5589 case Instruction::ShuffleVector
: {
5590 assert(E
->isAltShuffle() &&
5591 ((Instruction::isBinaryOp(E
->getOpcode()) &&
5592 Instruction::isBinaryOp(E
->getAltOpcode())) ||
5593 (Instruction::isCast(E
->getOpcode()) &&
5594 Instruction::isCast(E
->getAltOpcode()))) &&
5595 "Invalid Shuffle Vector Operand");
5597 Value
*LHS
= nullptr, *RHS
= nullptr;
5598 if (Instruction::isBinaryOp(E
->getOpcode())) {
5599 setInsertPointAfterBundle(E
);
5600 LHS
= vectorizeTree(E
->getOperand(0));
5601 RHS
= vectorizeTree(E
->getOperand(1));
5603 setInsertPointAfterBundle(E
);
5604 LHS
= vectorizeTree(E
->getOperand(0));
5607 if (E
->VectorizedValue
) {
5608 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0
<< ".\n");
5609 return E
->VectorizedValue
;
5613 if (Instruction::isBinaryOp(E
->getOpcode())) {
5614 V0
= Builder
.CreateBinOp(
5615 static_cast<Instruction::BinaryOps
>(E
->getOpcode()), LHS
, RHS
);
5616 V1
= Builder
.CreateBinOp(
5617 static_cast<Instruction::BinaryOps
>(E
->getAltOpcode()), LHS
, RHS
);
5619 V0
= Builder
.CreateCast(
5620 static_cast<Instruction::CastOps
>(E
->getOpcode()), LHS
, VecTy
);
5621 V1
= Builder
.CreateCast(
5622 static_cast<Instruction::CastOps
>(E
->getAltOpcode()), LHS
, VecTy
);
5625 // Create shuffle to take alternate operations from the vector.
5626 // Also, gather up main and alt scalar ops to propagate IR flags to
5627 // each vector operation.
5628 ValueList OpScalars
, AltScalars
;
5629 unsigned Sz
= E
->Scalars
.size();
5630 SmallVector
<int> Mask(Sz
);
5631 for (unsigned I
= 0; I
< Sz
; ++I
) {
5632 auto *OpInst
= cast
<Instruction
>(E
->Scalars
[I
]);
5633 assert(E
->isOpcodeOrAlt(OpInst
) && "Unexpected main/alternate opcode");
5634 if (OpInst
->getOpcode() == E
->getAltOpcode()) {
5636 AltScalars
.push_back(E
->Scalars
[I
]);
5639 OpScalars
.push_back(E
->Scalars
[I
]);
5643 propagateIRFlags(V0
, OpScalars
);
5644 propagateIRFlags(V1
, AltScalars
);
5646 Value
*V
= Builder
.CreateShuffleVector(V0
, V1
, Mask
);
5647 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5648 V
= propagateMetadata(I
, E
->Scalars
);
5649 ShuffleBuilder
.addMask(E
->ReuseShuffleIndices
);
5650 V
= ShuffleBuilder
.finalize(V
);
5652 E
->VectorizedValue
= V
;
5653 ++NumVectorInstructions
;
5658 llvm_unreachable("unknown inst");
5663 Value
*BoUpSLP::vectorizeTree() {
5664 ExtraValueToDebugLocsMap ExternallyUsedValues
;
5665 return vectorizeTree(ExternallyUsedValues
);
5669 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap
&ExternallyUsedValues
) {
5670 // All blocks must be scheduled before any instructions are inserted.
5671 for (auto &BSIter
: BlocksSchedules
) {
5672 scheduleBlock(BSIter
.second
.get());
5675 Builder
.SetInsertPoint(&F
->getEntryBlock().front());
5676 auto *VectorRoot
= vectorizeTree(VectorizableTree
[0].get());
5678 // If the vectorized tree can be rewritten in a smaller type, we truncate the
5679 // vectorized root. InstCombine will then rewrite the entire expression. We
5680 // sign extend the extracted values below.
5681 auto *ScalarRoot
= VectorizableTree
[0]->Scalars
[0];
5682 if (MinBWs
.count(ScalarRoot
)) {
5683 if (auto *I
= dyn_cast
<Instruction
>(VectorRoot
)) {
5684 // If current instr is a phi and not the last phi, insert it after the
5686 if (isa
<PHINode
>(I
))
5687 Builder
.SetInsertPoint(&*I
->getParent()->getFirstInsertionPt());
5689 Builder
.SetInsertPoint(&*++BasicBlock::iterator(I
));
5691 auto BundleWidth
= VectorizableTree
[0]->Scalars
.size();
5692 auto *MinTy
= IntegerType::get(F
->getContext(), MinBWs
[ScalarRoot
].first
);
5693 auto *VecTy
= FixedVectorType::get(MinTy
, BundleWidth
);
5694 auto *Trunc
= Builder
.CreateTrunc(VectorRoot
, VecTy
);
5695 VectorizableTree
[0]->VectorizedValue
= Trunc
;
5698 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses
.size()
5701 // Extract all of the elements with the external uses.
5702 for (const auto &ExternalUse
: ExternalUses
) {
5703 Value
*Scalar
= ExternalUse
.Scalar
;
5704 llvm::User
*User
= ExternalUse
.User
;
5706 // Skip users that we already RAUW. This happens when one instruction
5707 // has multiple uses of the same value.
5708 if (User
&& !is_contained(Scalar
->users(), User
))
5710 TreeEntry
*E
= getTreeEntry(Scalar
);
5711 assert(E
&& "Invalid scalar");
5712 assert(E
->State
!= TreeEntry::NeedToGather
&&
5713 "Extracting from a gather list");
5715 Value
*Vec
= E
->VectorizedValue
;
5716 assert(Vec
&& "Can't find vectorizable value");
5718 Value
*Lane
= Builder
.getInt32(ExternalUse
.Lane
);
5719 auto ExtractAndExtendIfNeeded
= [&](Value
*Vec
) {
5720 if (Scalar
->getType() != Vec
->getType()) {
5722 // "Reuse" the existing extract to improve final codegen.
5723 if (auto *ES
= dyn_cast
<ExtractElementInst
>(Scalar
)) {
5724 Ex
= Builder
.CreateExtractElement(ES
->getOperand(0),
5727 Ex
= Builder
.CreateExtractElement(Vec
, Lane
);
5729 // If necessary, sign-extend or zero-extend ScalarRoot
5730 // to the larger type.
5731 if (!MinBWs
.count(ScalarRoot
))
5733 if (MinBWs
[ScalarRoot
].second
)
5734 return Builder
.CreateSExt(Ex
, Scalar
->getType());
5735 return Builder
.CreateZExt(Ex
, Scalar
->getType());
5737 assert(isa
<FixedVectorType
>(Scalar
->getType()) &&
5738 isa
<InsertElementInst
>(Scalar
) &&
5739 "In-tree scalar of vector type is not insertelement?");
5742 // If User == nullptr, the Scalar is used as extra arg. Generate
5743 // ExtractElement instruction and update the record for this scalar in
5744 // ExternallyUsedValues.
5746 assert(ExternallyUsedValues
.count(Scalar
) &&
5747 "Scalar with nullptr as an external user must be registered in "
5748 "ExternallyUsedValues map");
5749 if (auto *VecI
= dyn_cast
<Instruction
>(Vec
)) {
5750 Builder
.SetInsertPoint(VecI
->getParent(),
5751 std::next(VecI
->getIterator()));
5753 Builder
.SetInsertPoint(&F
->getEntryBlock().front());
5755 Value
*NewInst
= ExtractAndExtendIfNeeded(Vec
);
5756 CSEBlocks
.insert(cast
<Instruction
>(Scalar
)->getParent());
5757 auto &NewInstLocs
= ExternallyUsedValues
[NewInst
];
5758 auto It
= ExternallyUsedValues
.find(Scalar
);
5759 assert(It
!= ExternallyUsedValues
.end() &&
5760 "Externally used scalar is not found in ExternallyUsedValues");
5761 NewInstLocs
.append(It
->second
);
5762 ExternallyUsedValues
.erase(Scalar
);
5763 // Required to update internally referenced instructions.
5764 Scalar
->replaceAllUsesWith(NewInst
);
5768 // Generate extracts for out-of-tree users.
5769 // Find the insertion point for the extractelement lane.
5770 if (auto *VecI
= dyn_cast
<Instruction
>(Vec
)) {
5771 if (PHINode
*PH
= dyn_cast
<PHINode
>(User
)) {
5772 for (int i
= 0, e
= PH
->getNumIncomingValues(); i
!= e
; ++i
) {
5773 if (PH
->getIncomingValue(i
) == Scalar
) {
5774 Instruction
*IncomingTerminator
=
5775 PH
->getIncomingBlock(i
)->getTerminator();
5776 if (isa
<CatchSwitchInst
>(IncomingTerminator
)) {
5777 Builder
.SetInsertPoint(VecI
->getParent(),
5778 std::next(VecI
->getIterator()));
5780 Builder
.SetInsertPoint(PH
->getIncomingBlock(i
)->getTerminator());
5782 Value
*NewInst
= ExtractAndExtendIfNeeded(Vec
);
5783 CSEBlocks
.insert(PH
->getIncomingBlock(i
));
5784 PH
->setOperand(i
, NewInst
);
5788 Builder
.SetInsertPoint(cast
<Instruction
>(User
));
5789 Value
*NewInst
= ExtractAndExtendIfNeeded(Vec
);
5790 CSEBlocks
.insert(cast
<Instruction
>(User
)->getParent());
5791 User
->replaceUsesOfWith(Scalar
, NewInst
);
5794 Builder
.SetInsertPoint(&F
->getEntryBlock().front());
5795 Value
*NewInst
= ExtractAndExtendIfNeeded(Vec
);
5796 CSEBlocks
.insert(&F
->getEntryBlock());
5797 User
->replaceUsesOfWith(Scalar
, NewInst
);
5800 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User
<< ".\n");
5803 // For each vectorized value:
5804 for (auto &TEPtr
: VectorizableTree
) {
5805 TreeEntry
*Entry
= TEPtr
.get();
5807 // No need to handle users of gathered values.
5808 if (Entry
->State
== TreeEntry::NeedToGather
)
5811 assert(Entry
->VectorizedValue
&& "Can't find vectorizable value");
5814 for (int Lane
= 0, LE
= Entry
->Scalars
.size(); Lane
!= LE
; ++Lane
) {
5815 Value
*Scalar
= Entry
->Scalars
[Lane
];
5818 Type
*Ty
= Scalar
->getType();
5819 if (!Ty
->isVoidTy()) {
5820 for (User
*U
: Scalar
->users()) {
5821 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U
<< ".\n");
5823 // It is legal to delete users in the ignorelist.
5824 assert((getTreeEntry(U
) || is_contained(UserIgnoreList
, U
) ||
5825 (isa_and_nonnull
<Instruction
>(U
) &&
5826 isDeleted(cast
<Instruction
>(U
)))) &&
5827 "Deleting out-of-tree value");
5831 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar
<< ".\n");
5832 eraseInstruction(cast
<Instruction
>(Scalar
));
5836 Builder
.ClearInsertionPoint();
5837 InstrElementSize
.clear();
5839 return VectorizableTree
[0]->VectorizedValue
;
5842 void BoUpSLP::optimizeGatherSequence() {
5843 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq
.size()
5844 << " gather sequences instructions.\n");
5845 // LICM InsertElementInst sequences.
5846 for (Instruction
*I
: GatherSeq
) {
5850 // Check if this block is inside a loop.
5851 Loop
*L
= LI
->getLoopFor(I
->getParent());
5855 // Check if it has a preheader.
5856 BasicBlock
*PreHeader
= L
->getLoopPreheader();
5860 // If the vector or the element that we insert into it are
5861 // instructions that are defined in this basic block then we can't
5862 // hoist this instruction.
5863 auto *Op0
= dyn_cast
<Instruction
>(I
->getOperand(0));
5864 auto *Op1
= dyn_cast
<Instruction
>(I
->getOperand(1));
5865 if (Op0
&& L
->contains(Op0
))
5867 if (Op1
&& L
->contains(Op1
))
5870 // We can hoist this instruction. Move it to the pre-header.
5871 I
->moveBefore(PreHeader
->getTerminator());
5874 // Make a list of all reachable blocks in our CSE queue.
5875 SmallVector
<const DomTreeNode
*, 8> CSEWorkList
;
5876 CSEWorkList
.reserve(CSEBlocks
.size());
5877 for (BasicBlock
*BB
: CSEBlocks
)
5878 if (DomTreeNode
*N
= DT
->getNode(BB
)) {
5879 assert(DT
->isReachableFromEntry(N
));
5880 CSEWorkList
.push_back(N
);
5883 // Sort blocks by domination. This ensures we visit a block after all blocks
5884 // dominating it are visited.
5885 llvm::sort(CSEWorkList
, [](const DomTreeNode
*A
, const DomTreeNode
*B
) {
5886 assert((A
== B
) == (A
->getDFSNumIn() == B
->getDFSNumIn()) &&
5887 "Different nodes should have different DFS numbers");
5888 return A
->getDFSNumIn() < B
->getDFSNumIn();
5891 // Perform O(N^2) search over the gather sequences and merge identical
5892 // instructions. TODO: We can further optimize this scan if we split the
5893 // instructions into different buckets based on the insert lane.
5894 SmallVector
<Instruction
*, 16> Visited
;
5895 for (auto I
= CSEWorkList
.begin(), E
= CSEWorkList
.end(); I
!= E
; ++I
) {
5897 (I
== CSEWorkList
.begin() || !DT
->dominates(*I
, *std::prev(I
))) &&
5898 "Worklist not sorted properly!");
5899 BasicBlock
*BB
= (*I
)->getBlock();
5900 // For all instructions in blocks containing gather sequences:
5901 for (BasicBlock::iterator it
= BB
->begin(), e
= BB
->end(); it
!= e
;) {
5902 Instruction
*In
= &*it
++;
5905 if (!isa
<InsertElementInst
>(In
) && !isa
<ExtractElementInst
>(In
) &&
5906 !isa
<ShuffleVectorInst
>(In
))
5909 // Check if we can replace this instruction with any of the
5910 // visited instructions.
5911 for (Instruction
*v
: Visited
) {
5912 if (In
->isIdenticalTo(v
) &&
5913 DT
->dominates(v
->getParent(), In
->getParent())) {
5914 In
->replaceAllUsesWith(v
);
5915 eraseInstruction(In
);
5921 assert(!is_contained(Visited
, In
));
5922 Visited
.push_back(In
);
5930 // Groups the instructions to a bundle (which is then a single scheduling entity)
5931 // and schedules instructions until the bundle gets ready.
5932 Optional
<BoUpSLP::ScheduleData
*>
5933 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef
<Value
*> VL
, BoUpSLP
*SLP
,
5934 const InstructionsState
&S
) {
5935 if (isa
<PHINode
>(S
.OpValue
) || isa
<InsertElementInst
>(S
.OpValue
))
5938 // Initialize the instruction bundle.
5939 Instruction
*OldScheduleEnd
= ScheduleEnd
;
5940 ScheduleData
*PrevInBundle
= nullptr;
5941 ScheduleData
*Bundle
= nullptr;
5942 bool ReSchedule
= false;
5943 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S
.OpValue
<< "\n");
5945 auto &&TryScheduleBundle
= [this, OldScheduleEnd
, SLP
](bool ReSchedule
,
5946 ScheduleData
*Bundle
) {
5947 // The scheduling region got new instructions at the lower end (or it is a
5948 // new region for the first bundle). This makes it necessary to
5949 // recalculate all dependencies.
5950 // It is seldom that this needs to be done a second time after adding the
5951 // initial bundle to the region.
5952 if (ScheduleEnd
!= OldScheduleEnd
) {
5953 for (auto *I
= ScheduleStart
; I
!= ScheduleEnd
; I
= I
->getNextNode())
5954 doForAllOpcodes(I
, [](ScheduleData
*SD
) { SD
->clearDependencies(); });
5959 initialFillReadyList(ReadyInsts
);
5962 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5963 << " in block " << BB
->getName() << "\n");
5964 calculateDependencies(Bundle
, /*InsertInReadyList=*/true, SLP
);
5967 // Now try to schedule the new bundle or (if no bundle) just calculate
5968 // dependencies. As soon as the bundle is "ready" it means that there are no
5969 // cyclic dependencies and we can schedule it. Note that's important that we
5970 // don't "schedule" the bundle yet (see cancelScheduling).
5971 while (((!Bundle
&& ReSchedule
) || (Bundle
&& !Bundle
->isReady())) &&
5972 !ReadyInsts
.empty()) {
5973 ScheduleData
*Picked
= ReadyInsts
.pop_back_val();
5974 if (Picked
->isSchedulingEntity() && Picked
->isReady())
5975 schedule(Picked
, ReadyInsts
);
5979 // Make sure that the scheduling region contains all
5980 // instructions of the bundle.
5981 for (Value
*V
: VL
) {
5982 if (!extendSchedulingRegion(V
, S
)) {
5983 // If the scheduling region got new instructions at the lower end (or it
5984 // is a new region for the first bundle). This makes it necessary to
5985 // recalculate all dependencies.
5986 // Otherwise the compiler may crash trying to incorrectly calculate
5987 // dependencies and emit instruction in the wrong order at the actual
5989 TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5994 for (Value
*V
: VL
) {
5995 ScheduleData
*BundleMember
= getScheduleData(V
);
5996 assert(BundleMember
&&
5997 "no ScheduleData for bundle member (maybe not in same basic block)");
5998 if (BundleMember
->IsScheduled
) {
5999 // A bundle member was scheduled as single instruction before and now
6000 // needs to be scheduled as part of the bundle. We just get rid of the
6001 // existing schedule.
6002 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
6003 << " was already scheduled\n");
6006 assert(BundleMember
->isSchedulingEntity() &&
6007 "bundle member already part of other bundle");
6009 PrevInBundle
->NextInBundle
= BundleMember
;
6011 Bundle
= BundleMember
;
6013 BundleMember
->UnscheduledDepsInBundle
= 0;
6014 Bundle
->UnscheduledDepsInBundle
+= BundleMember
->UnscheduledDeps
;
6016 // Group the instructions to a bundle.
6017 BundleMember
->FirstInBundle
= Bundle
;
6018 PrevInBundle
= BundleMember
;
6020 assert(Bundle
&& "Failed to find schedule bundle");
6021 TryScheduleBundle(ReSchedule
, Bundle
);
6022 if (!Bundle
->isReady()) {
6023 cancelScheduling(VL
, S
.OpValue
);
6029 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef
<Value
*> VL
,
6031 if (isa
<PHINode
>(OpValue
) || isa
<InsertElementInst
>(OpValue
))
6034 ScheduleData
*Bundle
= getScheduleData(OpValue
);
6035 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle
<< "\n");
6036 assert(!Bundle
->IsScheduled
&&
6037 "Can't cancel bundle which is already scheduled");
6038 assert(Bundle
->isSchedulingEntity() && Bundle
->isPartOfBundle() &&
6039 "tried to unbundle something which is not a bundle");
6041 // Un-bundle: make single instructions out of the bundle.
6042 ScheduleData
*BundleMember
= Bundle
;
6043 while (BundleMember
) {
6044 assert(BundleMember
->FirstInBundle
== Bundle
&& "corrupt bundle links");
6045 BundleMember
->FirstInBundle
= BundleMember
;
6046 ScheduleData
*Next
= BundleMember
->NextInBundle
;
6047 BundleMember
->NextInBundle
= nullptr;
6048 BundleMember
->UnscheduledDepsInBundle
= BundleMember
->UnscheduledDeps
;
6049 if (BundleMember
->UnscheduledDepsInBundle
== 0) {
6050 ReadyInsts
.insert(BundleMember
);
6052 BundleMember
= Next
;
6056 BoUpSLP::ScheduleData
*BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
6057 // Allocate a new ScheduleData for the instruction.
6058 if (ChunkPos
>= ChunkSize
) {
6059 ScheduleDataChunks
.push_back(std::make_unique
<ScheduleData
[]>(ChunkSize
));
6062 return &(ScheduleDataChunks
.back()[ChunkPos
++]);
6065 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value
*V
,
6066 const InstructionsState
&S
) {
6067 if (getScheduleData(V
, isOneOf(S
, V
)))
6069 Instruction
*I
= dyn_cast
<Instruction
>(V
);
6070 assert(I
&& "bundle member must be an instruction");
6071 assert(!isa
<PHINode
>(I
) && !isa
<InsertElementInst
>(I
) &&
6072 "phi nodes/insertelements don't need to be scheduled");
6073 auto &&CheckSheduleForI
= [this, &S
](Instruction
*I
) -> bool {
6074 ScheduleData
*ISD
= getScheduleData(I
);
6077 assert(isInSchedulingRegion(ISD
) &&
6078 "ScheduleData not in scheduling region");
6079 ScheduleData
*SD
= allocateScheduleDataChunks();
6081 SD
->init(SchedulingRegionID
, S
.OpValue
);
6082 ExtraScheduleDataMap
[I
][S
.OpValue
] = SD
;
6085 if (CheckSheduleForI(I
))
6087 if (!ScheduleStart
) {
6088 // It's the first instruction in the new region.
6089 initScheduleData(I
, I
->getNextNode(), nullptr, nullptr);
6091 ScheduleEnd
= I
->getNextNode();
6092 if (isOneOf(S
, I
) != I
)
6093 CheckSheduleForI(I
);
6094 assert(ScheduleEnd
&& "tried to vectorize a terminator?");
6095 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I
<< "\n");
6098 // Search up and down at the same time, because we don't know if the new
6099 // instruction is above or below the existing scheduling region.
6100 BasicBlock::reverse_iterator UpIter
=
6101 ++ScheduleStart
->getIterator().getReverse();
6102 BasicBlock::reverse_iterator UpperEnd
= BB
->rend();
6103 BasicBlock::iterator DownIter
= ScheduleEnd
->getIterator();
6104 BasicBlock::iterator LowerEnd
= BB
->end();
6105 while (UpIter
!= UpperEnd
&& DownIter
!= LowerEnd
&& &*UpIter
!= I
&&
6107 if (++ScheduleRegionSize
> ScheduleRegionSizeLimit
) {
6108 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
6115 if (DownIter
== LowerEnd
|| (UpIter
!= UpperEnd
&& &*UpIter
== I
)) {
6116 assert(I
->getParent() == ScheduleStart
->getParent() &&
6117 "Instruction is in wrong basic block.");
6118 initScheduleData(I
, ScheduleStart
, nullptr, FirstLoadStoreInRegion
);
6120 if (isOneOf(S
, I
) != I
)
6121 CheckSheduleForI(I
);
6122 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
6126 assert((UpIter
== UpperEnd
|| (DownIter
!= LowerEnd
&& &*DownIter
== I
)) &&
6127 "Expected to reach top of the basic block or instruction down the "
6129 assert(I
->getParent() == ScheduleEnd
->getParent() &&
6130 "Instruction is in wrong basic block.");
6131 initScheduleData(ScheduleEnd
, I
->getNextNode(), LastLoadStoreInRegion
,
6133 ScheduleEnd
= I
->getNextNode();
6134 if (isOneOf(S
, I
) != I
)
6135 CheckSheduleForI(I
);
6136 assert(ScheduleEnd
&& "tried to vectorize a terminator?");
6137 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
<< "\n");
6141 void BoUpSLP::BlockScheduling::initScheduleData(Instruction
*FromI
,
6143 ScheduleData
*PrevLoadStore
,
6144 ScheduleData
*NextLoadStore
) {
6145 ScheduleData
*CurrentLoadStore
= PrevLoadStore
;
6146 for (Instruction
*I
= FromI
; I
!= ToI
; I
= I
->getNextNode()) {
6147 ScheduleData
*SD
= ScheduleDataMap
[I
];
6149 SD
= allocateScheduleDataChunks();
6150 ScheduleDataMap
[I
] = SD
;
6153 assert(!isInSchedulingRegion(SD
) &&
6154 "new ScheduleData already in scheduling region");
6155 SD
->init(SchedulingRegionID
, I
);
6157 if (I
->mayReadOrWriteMemory() &&
6158 (!isa
<IntrinsicInst
>(I
) ||
6159 (cast
<IntrinsicInst
>(I
)->getIntrinsicID() != Intrinsic::sideeffect
&&
6160 cast
<IntrinsicInst
>(I
)->getIntrinsicID() !=
6161 Intrinsic::pseudoprobe
))) {
6162 // Update the linked list of memory accessing instructions.
6163 if (CurrentLoadStore
) {
6164 CurrentLoadStore
->NextLoadStore
= SD
;
6166 FirstLoadStoreInRegion
= SD
;
6168 CurrentLoadStore
= SD
;
6171 if (NextLoadStore
) {
6172 if (CurrentLoadStore
)
6173 CurrentLoadStore
->NextLoadStore
= NextLoadStore
;
6175 LastLoadStoreInRegion
= CurrentLoadStore
;
6179 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData
*SD
,
6180 bool InsertInReadyList
,
6182 assert(SD
->isSchedulingEntity());
6184 SmallVector
<ScheduleData
*, 10> WorkList
;
6185 WorkList
.push_back(SD
);
6187 while (!WorkList
.empty()) {
6188 ScheduleData
*SD
= WorkList
.pop_back_val();
6190 ScheduleData
*BundleMember
= SD
;
6191 while (BundleMember
) {
6192 assert(isInSchedulingRegion(BundleMember
));
6193 if (!BundleMember
->hasValidDependencies()) {
6195 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
6197 BundleMember
->Dependencies
= 0;
6198 BundleMember
->resetUnscheduledDeps();
6200 // Handle def-use chain dependencies.
6201 if (BundleMember
->OpValue
!= BundleMember
->Inst
) {
6202 ScheduleData
*UseSD
= getScheduleData(BundleMember
->Inst
);
6203 if (UseSD
&& isInSchedulingRegion(UseSD
->FirstInBundle
)) {
6204 BundleMember
->Dependencies
++;
6205 ScheduleData
*DestBundle
= UseSD
->FirstInBundle
;
6206 if (!DestBundle
->IsScheduled
)
6207 BundleMember
->incrementUnscheduledDeps(1);
6208 if (!DestBundle
->hasValidDependencies())
6209 WorkList
.push_back(DestBundle
);
6212 for (User
*U
: BundleMember
->Inst
->users()) {
6213 if (isa
<Instruction
>(U
)) {
6214 ScheduleData
*UseSD
= getScheduleData(U
);
6215 if (UseSD
&& isInSchedulingRegion(UseSD
->FirstInBundle
)) {
6216 BundleMember
->Dependencies
++;
6217 ScheduleData
*DestBundle
= UseSD
->FirstInBundle
;
6218 if (!DestBundle
->IsScheduled
)
6219 BundleMember
->incrementUnscheduledDeps(1);
6220 if (!DestBundle
->hasValidDependencies())
6221 WorkList
.push_back(DestBundle
);
6224 // I'm not sure if this can ever happen. But we need to be safe.
6225 // This lets the instruction/bundle never be scheduled and
6226 // eventually disable vectorization.
6227 BundleMember
->Dependencies
++;
6228 BundleMember
->incrementUnscheduledDeps(1);
6233 // Handle the memory dependencies.
6234 ScheduleData
*DepDest
= BundleMember
->NextLoadStore
;
6236 Instruction
*SrcInst
= BundleMember
->Inst
;
6237 MemoryLocation SrcLoc
= getLocation(SrcInst
, SLP
->AA
);
6238 bool SrcMayWrite
= BundleMember
->Inst
->mayWriteToMemory();
6239 unsigned numAliased
= 0;
6240 unsigned DistToSrc
= 1;
6243 assert(isInSchedulingRegion(DepDest
));
6245 // We have two limits to reduce the complexity:
6246 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
6247 // SLP->isAliased (which is the expensive part in this loop).
6248 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
6249 // the whole loop (even if the loop is fast, it's quadratic).
6250 // It's important for the loop break condition (see below) to
6251 // check this limit even between two read-only instructions.
6252 if (DistToSrc
>= MaxMemDepDistance
||
6253 ((SrcMayWrite
|| DepDest
->Inst
->mayWriteToMemory()) &&
6254 (numAliased
>= AliasedCheckLimit
||
6255 SLP
->isAliased(SrcLoc
, SrcInst
, DepDest
->Inst
)))) {
6257 // We increment the counter only if the locations are aliased
6258 // (instead of counting all alias checks). This gives a better
6259 // balance between reduced runtime and accurate dependencies.
6262 DepDest
->MemoryDependencies
.push_back(BundleMember
);
6263 BundleMember
->Dependencies
++;
6264 ScheduleData
*DestBundle
= DepDest
->FirstInBundle
;
6265 if (!DestBundle
->IsScheduled
) {
6266 BundleMember
->incrementUnscheduledDeps(1);
6268 if (!DestBundle
->hasValidDependencies()) {
6269 WorkList
.push_back(DestBundle
);
6272 DepDest
= DepDest
->NextLoadStore
;
6274 // Example, explaining the loop break condition: Let's assume our
6275 // starting instruction is i0 and MaxMemDepDistance = 3.
6278 // i0,i1,i2,i3,i4,i5,i6,i7,i8
6281 // MaxMemDepDistance let us stop alias-checking at i3 and we add
6282 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
6283 // Previously we already added dependencies from i3 to i6,i7,i8
6284 // (because of MaxMemDepDistance). As we added a dependency from
6285 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
6286 // and we can abort this loop at i6.
6287 if (DistToSrc
>= 2 * MaxMemDepDistance
)
6293 BundleMember
= BundleMember
->NextInBundle
;
6295 if (InsertInReadyList
&& SD
->isReady()) {
6296 ReadyInsts
.push_back(SD
);
6297 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD
->Inst
6303 void BoUpSLP::BlockScheduling::resetSchedule() {
6304 assert(ScheduleStart
&&
6305 "tried to reset schedule on block which has not been scheduled");
6306 for (Instruction
*I
= ScheduleStart
; I
!= ScheduleEnd
; I
= I
->getNextNode()) {
6307 doForAllOpcodes(I
, [&](ScheduleData
*SD
) {
6308 assert(isInSchedulingRegion(SD
) &&
6309 "ScheduleData not in scheduling region");
6310 SD
->IsScheduled
= false;
6311 SD
->resetUnscheduledDeps();
6317 void BoUpSLP::scheduleBlock(BlockScheduling
*BS
) {
6318 if (!BS
->ScheduleStart
)
6321 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS
->BB
->getName() << "\n");
6323 BS
->resetSchedule();
6325 // For the real scheduling we use a more sophisticated ready-list: it is
6326 // sorted by the original instruction location. This lets the final schedule
6327 // be as close as possible to the original instruction order.
6328 struct ScheduleDataCompare
{
6329 bool operator()(ScheduleData
*SD1
, ScheduleData
*SD2
) const {
6330 return SD2
->SchedulingPriority
< SD1
->SchedulingPriority
;
6333 std::set
<ScheduleData
*, ScheduleDataCompare
> ReadyInsts
;
6335 // Ensure that all dependency data is updated and fill the ready-list with
6336 // initial instructions.
6338 int NumToSchedule
= 0;
6339 for (auto *I
= BS
->ScheduleStart
; I
!= BS
->ScheduleEnd
;
6340 I
= I
->getNextNode()) {
6341 BS
->doForAllOpcodes(I
, [this, &Idx
, &NumToSchedule
, BS
](ScheduleData
*SD
) {
6342 assert((isa
<InsertElementInst
>(SD
->Inst
) ||
6343 SD
->isPartOfBundle() == (getTreeEntry(SD
->Inst
) != nullptr)) &&
6344 "scheduler and vectorizer bundle mismatch");
6345 SD
->FirstInBundle
->SchedulingPriority
= Idx
++;
6346 if (SD
->isSchedulingEntity()) {
6347 BS
->calculateDependencies(SD
, false, this);
6352 BS
->initialFillReadyList(ReadyInsts
);
6354 Instruction
*LastScheduledInst
= BS
->ScheduleEnd
;
6356 // Do the "real" scheduling.
6357 while (!ReadyInsts
.empty()) {
6358 ScheduleData
*picked
= *ReadyInsts
.begin();
6359 ReadyInsts
.erase(ReadyInsts
.begin());
6361 // Move the scheduled instruction(s) to their dedicated places, if not
6363 ScheduleData
*BundleMember
= picked
;
6364 while (BundleMember
) {
6365 Instruction
*pickedInst
= BundleMember
->Inst
;
6366 if (pickedInst
->getNextNode() != LastScheduledInst
) {
6367 BS
->BB
->getInstList().remove(pickedInst
);
6368 BS
->BB
->getInstList().insert(LastScheduledInst
->getIterator(),
6371 LastScheduledInst
= pickedInst
;
6372 BundleMember
= BundleMember
->NextInBundle
;
6375 BS
->schedule(picked
, ReadyInsts
);
6378 assert(NumToSchedule
== 0 && "could not schedule all instructions");
6380 // Avoid duplicate scheduling of the block.
6381 BS
->ScheduleStart
= nullptr;
6384 unsigned BoUpSLP::getVectorElementSize(Value
*V
) {
6385 // If V is a store, just return the width of the stored value (or value
6386 // truncated just before storing) without traversing the expression tree.
6387 // This is the common case.
6388 if (auto *Store
= dyn_cast
<StoreInst
>(V
)) {
6389 if (auto *Trunc
= dyn_cast
<TruncInst
>(Store
->getValueOperand()))
6390 return DL
->getTypeSizeInBits(Trunc
->getSrcTy());
6391 return DL
->getTypeSizeInBits(Store
->getValueOperand()->getType());
6394 if (auto *IEI
= dyn_cast
<InsertElementInst
>(V
))
6395 return getVectorElementSize(IEI
->getOperand(1));
6397 auto E
= InstrElementSize
.find(V
);
6398 if (E
!= InstrElementSize
.end())
6401 // If V is not a store, we can traverse the expression tree to find loads
6402 // that feed it. The type of the loaded value may indicate a more suitable
6403 // width than V's type. We want to base the vector element size on the width
6404 // of memory operations where possible.
6405 SmallVector
<std::pair
<Instruction
*, BasicBlock
*>, 16> Worklist
;
6406 SmallPtrSet
<Instruction
*, 16> Visited
;
6407 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
6408 Worklist
.emplace_back(I
, I
->getParent());
6412 // Traverse the expression tree in bottom-up order looking for loads. If we
6413 // encounter an instruction we don't yet handle, we give up.
6415 while (!Worklist
.empty()) {
6418 std::tie(I
, Parent
) = Worklist
.pop_back_val();
6420 // We should only be looking at scalar instructions here. If the current
6421 // instruction has a vector type, skip.
6422 auto *Ty
= I
->getType();
6423 if (isa
<VectorType
>(Ty
))
6426 // If the current instruction is a load, update MaxWidth to reflect the
6427 // width of the loaded value.
6428 if (isa
<LoadInst
>(I
) || isa
<ExtractElementInst
>(I
) ||
6429 isa
<ExtractValueInst
>(I
))
6430 Width
= std::max
<unsigned>(Width
, DL
->getTypeSizeInBits(Ty
));
6432 // Otherwise, we need to visit the operands of the instruction. We only
6433 // handle the interesting cases from buildTree here. If an operand is an
6434 // instruction we haven't yet visited and from the same basic block as the
6435 // user or the use is a PHI node, we add it to the worklist.
6436 else if (isa
<PHINode
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
6437 isa
<CmpInst
>(I
) || isa
<SelectInst
>(I
) || isa
<BinaryOperator
>(I
) ||
6438 isa
<UnaryOperator
>(I
)) {
6439 for (Use
&U
: I
->operands())
6440 if (auto *J
= dyn_cast
<Instruction
>(U
.get()))
6441 if (Visited
.insert(J
).second
&&
6442 (isa
<PHINode
>(I
) || J
->getParent() == Parent
))
6443 Worklist
.emplace_back(J
, J
->getParent());
6449 // If we didn't encounter a memory access in the expression tree, or if we
6450 // gave up for some reason, just return the width of V. Otherwise, return the
6451 // maximum width we found.
6453 if (auto *CI
= dyn_cast
<CmpInst
>(V
))
6454 V
= CI
->getOperand(0);
6455 Width
= DL
->getTypeSizeInBits(V
->getType());
6458 for (Instruction
*I
: Visited
)
6459 InstrElementSize
[I
] = Width
;
6464 // Determine if a value V in a vectorizable expression Expr can be demoted to a
6465 // smaller type with a truncation. We collect the values that will be demoted
6466 // in ToDemote and additional roots that require investigating in Roots.
6467 static bool collectValuesToDemote(Value
*V
, SmallPtrSetImpl
<Value
*> &Expr
,
6468 SmallVectorImpl
<Value
*> &ToDemote
,
6469 SmallVectorImpl
<Value
*> &Roots
) {
6470 // We can always demote constants.
6471 if (isa
<Constant
>(V
)) {
6472 ToDemote
.push_back(V
);
6476 // If the value is not an instruction in the expression with only one use, it
6477 // cannot be demoted.
6478 auto *I
= dyn_cast
<Instruction
>(V
);
6479 if (!I
|| !I
->hasOneUse() || !Expr
.count(I
))
6482 switch (I
->getOpcode()) {
6484 // We can always demote truncations and extensions. Since truncations can
6485 // seed additional demotion, we save the truncated value.
6486 case Instruction::Trunc
:
6487 Roots
.push_back(I
->getOperand(0));
6489 case Instruction::ZExt
:
6490 case Instruction::SExt
:
6491 if (isa
<ExtractElementInst
>(I
->getOperand(0)) ||
6492 isa
<InsertElementInst
>(I
->getOperand(0)))
6496 // We can demote certain binary operations if we can demote both of their
6498 case Instruction::Add
:
6499 case Instruction::Sub
:
6500 case Instruction::Mul
:
6501 case Instruction::And
:
6502 case Instruction::Or
:
6503 case Instruction::Xor
:
6504 if (!collectValuesToDemote(I
->getOperand(0), Expr
, ToDemote
, Roots
) ||
6505 !collectValuesToDemote(I
->getOperand(1), Expr
, ToDemote
, Roots
))
6509 // We can demote selects if we can demote their true and false values.
6510 case Instruction::Select
: {
6511 SelectInst
*SI
= cast
<SelectInst
>(I
);
6512 if (!collectValuesToDemote(SI
->getTrueValue(), Expr
, ToDemote
, Roots
) ||
6513 !collectValuesToDemote(SI
->getFalseValue(), Expr
, ToDemote
, Roots
))
6518 // We can demote phis if we can demote all their incoming operands. Note that
6519 // we don't need to worry about cycles since we ensure single use above.
6520 case Instruction::PHI
: {
6521 PHINode
*PN
= cast
<PHINode
>(I
);
6522 for (Value
*IncValue
: PN
->incoming_values())
6523 if (!collectValuesToDemote(IncValue
, Expr
, ToDemote
, Roots
))
6528 // Otherwise, conservatively give up.
6533 // Record the value that we can demote.
6534 ToDemote
.push_back(V
);
6538 void BoUpSLP::computeMinimumValueSizes() {
6539 // If there are no external uses, the expression tree must be rooted by a
6540 // store. We can't demote in-memory values, so there is nothing to do here.
6541 if (ExternalUses
.empty())
6544 // We only attempt to truncate integer expressions.
6545 auto &TreeRoot
= VectorizableTree
[0]->Scalars
;
6546 auto *TreeRootIT
= dyn_cast
<IntegerType
>(TreeRoot
[0]->getType());
6550 // If the expression is not rooted by a store, these roots should have
6551 // external uses. We will rely on InstCombine to rewrite the expression in
6552 // the narrower type. However, InstCombine only rewrites single-use values.
6553 // This means that if a tree entry other than a root is used externally, it
6554 // must have multiple uses and InstCombine will not rewrite it. The code
6555 // below ensures that only the roots are used externally.
6556 SmallPtrSet
<Value
*, 32> Expr(TreeRoot
.begin(), TreeRoot
.end());
6557 for (auto &EU
: ExternalUses
)
6558 if (!Expr
.erase(EU
.Scalar
))
6563 // Collect the scalar values of the vectorizable expression. We will use this
6564 // context to determine which values can be demoted. If we see a truncation,
6565 // we mark it as seeding another demotion.
6566 for (auto &EntryPtr
: VectorizableTree
)
6567 Expr
.insert(EntryPtr
->Scalars
.begin(), EntryPtr
->Scalars
.end());
6569 // Ensure the roots of the vectorizable tree don't form a cycle. They must
6570 // have a single external user that is not in the vectorizable tree.
6571 for (auto *Root
: TreeRoot
)
6572 if (!Root
->hasOneUse() || Expr
.count(*Root
->user_begin()))
6575 // Conservatively determine if we can actually truncate the roots of the
6576 // expression. Collect the values that can be demoted in ToDemote and
6577 // additional roots that require investigating in Roots.
6578 SmallVector
<Value
*, 32> ToDemote
;
6579 SmallVector
<Value
*, 4> Roots
;
6580 for (auto *Root
: TreeRoot
)
6581 if (!collectValuesToDemote(Root
, Expr
, ToDemote
, Roots
))
6584 // The maximum bit width required to represent all the values that can be
6585 // demoted without loss of precision. It would be safe to truncate the roots
6586 // of the expression to this width.
6587 auto MaxBitWidth
= 8u;
6589 // We first check if all the bits of the roots are demanded. If they're not,
6590 // we can truncate the roots to this narrower type.
6591 for (auto *Root
: TreeRoot
) {
6592 auto Mask
= DB
->getDemandedBits(cast
<Instruction
>(Root
));
6593 MaxBitWidth
= std::max
<unsigned>(
6594 Mask
.getBitWidth() - Mask
.countLeadingZeros(), MaxBitWidth
);
6597 // True if the roots can be zero-extended back to their original type, rather
6598 // than sign-extended. We know that if the leading bits are not demanded, we
6599 // can safely zero-extend. So we initialize IsKnownPositive to True.
6600 bool IsKnownPositive
= true;
6602 // If all the bits of the roots are demanded, we can try a little harder to
6603 // compute a narrower type. This can happen, for example, if the roots are
6604 // getelementptr indices. InstCombine promotes these indices to the pointer
6605 // width. Thus, all their bits are technically demanded even though the
6606 // address computation might be vectorized in a smaller type.
6608 // We start by looking at each entry that can be demoted. We compute the
6609 // maximum bit width required to store the scalar by using ValueTracking to
6610 // compute the number of high-order bits we can truncate.
6611 if (MaxBitWidth
== DL
->getTypeSizeInBits(TreeRoot
[0]->getType()) &&
6612 llvm::all_of(TreeRoot
, [](Value
*R
) {
6613 assert(R
->hasOneUse() && "Root should have only one use!");
6614 return isa
<GetElementPtrInst
>(R
->user_back());
6618 // Determine if the sign bit of all the roots is known to be zero. If not,
6619 // IsKnownPositive is set to False.
6620 IsKnownPositive
= llvm::all_of(TreeRoot
, [&](Value
*R
) {
6621 KnownBits Known
= computeKnownBits(R
, *DL
);
6622 return Known
.isNonNegative();
6625 // Determine the maximum number of bits required to store the scalar
6627 for (auto *Scalar
: ToDemote
) {
6628 auto NumSignBits
= ComputeNumSignBits(Scalar
, *DL
, 0, AC
, nullptr, DT
);
6629 auto NumTypeBits
= DL
->getTypeSizeInBits(Scalar
->getType());
6630 MaxBitWidth
= std::max
<unsigned>(NumTypeBits
- NumSignBits
, MaxBitWidth
);
6633 // If we can't prove that the sign bit is zero, we must add one to the
6634 // maximum bit width to account for the unknown sign bit. This preserves
6635 // the existing sign bit so we can safely sign-extend the root back to the
6636 // original type. Otherwise, if we know the sign bit is zero, we will
6637 // zero-extend the root instead.
6639 // FIXME: This is somewhat suboptimal, as there will be cases where adding
6640 // one to the maximum bit width will yield a larger-than-necessary
6641 // type. In general, we need to add an extra bit only if we can't
6642 // prove that the upper bit of the original type is equal to the
6643 // upper bit of the proposed smaller type. If these two bits are the
6644 // same (either zero or one) we know that sign-extending from the
6645 // smaller type will result in the same value. Here, since we can't
6646 // yet prove this, we are just making the proposed smaller type
6647 // larger to ensure correctness.
6648 if (!IsKnownPositive
)
6652 // Round MaxBitWidth up to the next power-of-two.
6653 if (!isPowerOf2_64(MaxBitWidth
))
6654 MaxBitWidth
= NextPowerOf2(MaxBitWidth
);
6656 // If the maximum bit width we compute is less than the with of the roots'
6657 // type, we can proceed with the narrowing. Otherwise, do nothing.
6658 if (MaxBitWidth
>= TreeRootIT
->getBitWidth())
6661 // If we can truncate the root, we must collect additional values that might
6662 // be demoted as a result. That is, those seeded by truncations we will
6664 while (!Roots
.empty())
6665 collectValuesToDemote(Roots
.pop_back_val(), Expr
, ToDemote
, Roots
);
6667 // Finally, map the values we can demote to the maximum bit with we computed.
6668 for (auto *Scalar
: ToDemote
)
6669 MinBWs
[Scalar
] = std::make_pair(MaxBitWidth
, !IsKnownPositive
);
6674 /// The SLPVectorizer Pass.
6675 struct SLPVectorizer
: public FunctionPass
{
6676 SLPVectorizerPass Impl
;
6678 /// Pass identification, replacement for typeid
6681 explicit SLPVectorizer() : FunctionPass(ID
) {
6682 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6685 bool doInitialization(Module
&M
) override
{
6689 bool runOnFunction(Function
&F
) override
{
6690 if (skipFunction(F
))
6693 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
6694 auto *TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
6695 auto *TLIP
= getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
6696 auto *TLI
= TLIP
? &TLIP
->getTLI(F
) : nullptr;
6697 auto *AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
6698 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
6699 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
6700 auto *AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
6701 auto *DB
= &getAnalysis
<DemandedBitsWrapperPass
>().getDemandedBits();
6702 auto *ORE
= &getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
6704 return Impl
.runImpl(F
, SE
, TTI
, TLI
, AA
, LI
, DT
, AC
, DB
, ORE
);
6707 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
6708 FunctionPass::getAnalysisUsage(AU
);
6709 AU
.addRequired
<AssumptionCacheTracker
>();
6710 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
6711 AU
.addRequired
<AAResultsWrapperPass
>();
6712 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
6713 AU
.addRequired
<LoopInfoWrapperPass
>();
6714 AU
.addRequired
<DominatorTreeWrapperPass
>();
6715 AU
.addRequired
<DemandedBitsWrapperPass
>();
6716 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
6717 AU
.addRequired
<InjectTLIMappingsLegacy
>();
6718 AU
.addPreserved
<LoopInfoWrapperPass
>();
6719 AU
.addPreserved
<DominatorTreeWrapperPass
>();
6720 AU
.addPreserved
<AAResultsWrapperPass
>();
6721 AU
.addPreserved
<GlobalsAAWrapperPass
>();
6722 AU
.setPreservesCFG();
6726 } // end anonymous namespace
6728 PreservedAnalyses
SLPVectorizerPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
6729 auto *SE
= &AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
6730 auto *TTI
= &AM
.getResult
<TargetIRAnalysis
>(F
);
6731 auto *TLI
= AM
.getCachedResult
<TargetLibraryAnalysis
>(F
);
6732 auto *AA
= &AM
.getResult
<AAManager
>(F
);
6733 auto *LI
= &AM
.getResult
<LoopAnalysis
>(F
);
6734 auto *DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
6735 auto *AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
6736 auto *DB
= &AM
.getResult
<DemandedBitsAnalysis
>(F
);
6737 auto *ORE
= &AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
6739 bool Changed
= runImpl(F
, SE
, TTI
, TLI
, AA
, LI
, DT
, AC
, DB
, ORE
);
6741 return PreservedAnalyses::all();
6743 PreservedAnalyses PA
;
6744 PA
.preserveSet
<CFGAnalyses
>();
6748 bool SLPVectorizerPass::runImpl(Function
&F
, ScalarEvolution
*SE_
,
6749 TargetTransformInfo
*TTI_
,
6750 TargetLibraryInfo
*TLI_
, AAResults
*AA_
,
6751 LoopInfo
*LI_
, DominatorTree
*DT_
,
6752 AssumptionCache
*AC_
, DemandedBits
*DB_
,
6753 OptimizationRemarkEmitter
*ORE_
) {
6754 if (!RunSLPVectorization
)
6764 DL
= &F
.getParent()->getDataLayout();
6768 bool Changed
= false;
6770 // If the target claims to have no vector registers don't attempt
6772 if (!TTI
->getNumberOfRegisters(TTI
->getRegisterClassForType(true)))
6775 // Don't vectorize when the attribute NoImplicitFloat is used.
6776 if (F
.hasFnAttribute(Attribute::NoImplicitFloat
))
6779 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F
.getName() << ".\n");
6781 // Use the bottom up slp vectorizer to construct chains that start with
6782 // store instructions.
6783 BoUpSLP
R(&F
, SE
, TTI
, TLI
, AA
, LI
, DT
, AC
, DB
, DL
, ORE_
);
6785 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6786 // delete instructions.
6788 // Update DFS numbers now so that we can use them for ordering.
6789 DT
->updateDFSNumbers();
6791 // Scan the blocks in the function in post order.
6792 for (auto BB
: post_order(&F
.getEntryBlock())) {
6793 collectSeedInstructions(BB
);
6795 // Vectorize trees that end at stores.
6796 if (!Stores
.empty()) {
6797 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores
.size()
6798 << " underlying objects.\n");
6799 Changed
|= vectorizeStoreChains(R
);
6802 // Vectorize trees that end at reductions.
6803 Changed
|= vectorizeChainsInBlock(BB
, R
);
6805 // Vectorize the index computations of getelementptr instructions. This
6806 // is primarily intended to catch gather-like idioms ending at
6807 // non-consecutive loads.
6808 if (!GEPs
.empty()) {
6809 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs
.size()
6810 << " underlying objects.\n");
6811 Changed
|= vectorizeGEPIndices(BB
, R
);
6816 R
.optimizeGatherSequence();
6817 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F
.getName() << "\"\n");
6822 /// Order may have elements assigned special value (size) which is out of
6823 /// bounds. Such indices only appear on places which correspond to undef values
6824 /// (see canReuseExtract for details) and used in order to avoid undef values
6825 /// have effect on operands ordering.
6826 /// The first loop below simply finds all unused indices and then the next loop
6827 /// nest assigns these indices for undef values positions.
6828 /// As an example below Order has two undef positions and they have assigned
6829 /// values 3 and 7 respectively:
6830 /// before: 6 9 5 4 9 2 1 0
6831 /// after: 6 3 5 4 7 2 1 0
6832 /// \returns Fixed ordering.
6833 static BoUpSLP::OrdersType
fixupOrderingIndices(ArrayRef
<unsigned> Order
) {
6834 BoUpSLP::OrdersType
NewOrder(Order
.begin(), Order
.end());
6835 const unsigned Sz
= NewOrder
.size();
6836 SmallBitVector
UsedIndices(Sz
);
6837 SmallVector
<int> MaskedIndices
;
6838 for (int I
= 0, E
= NewOrder
.size(); I
< E
; ++I
) {
6839 if (NewOrder
[I
] < Sz
)
6840 UsedIndices
.set(NewOrder
[I
]);
6842 MaskedIndices
.push_back(I
);
6844 if (MaskedIndices
.empty())
6846 SmallVector
<int> AvailableIndices(MaskedIndices
.size());
6848 int Idx
= UsedIndices
.find_first();
6850 AvailableIndices
[Cnt
] = Idx
;
6851 Idx
= UsedIndices
.find_next(Idx
);
6854 assert(Cnt
== MaskedIndices
.size() && "Non-synced masked/available indices.");
6855 for (int I
= 0, E
= MaskedIndices
.size(); I
< E
; ++I
)
6856 NewOrder
[MaskedIndices
[I
]] = AvailableIndices
[I
];
6860 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef
<Value
*> Chain
, BoUpSLP
&R
,
6862 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain
.size()
6864 const unsigned Sz
= R
.getVectorElementSize(Chain
[0]);
6865 const unsigned MinVF
= R
.getMinVecRegSize() / Sz
;
6866 unsigned VF
= Chain
.size();
6868 if (!isPowerOf2_32(Sz
) || !isPowerOf2_32(VF
) || VF
< 2 || VF
< MinVF
)
6871 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF
<< " stores at offset " << Idx
6875 Optional
<ArrayRef
<unsigned>> Order
= R
.bestOrder();
6876 // TODO: Handle orders of size less than number of elements in the vector.
6877 if (Order
&& Order
->size() == Chain
.size()) {
6878 // TODO: reorder tree nodes without tree rebuilding.
6879 SmallVector
<Value
*, 4> ReorderedOps(Chain
.size());
6880 transform(fixupOrderingIndices(*Order
), ReorderedOps
.begin(),
6881 [Chain
](const unsigned Idx
) { return Chain
[Idx
]; });
6882 R
.buildTree(ReorderedOps
);
6884 if (R
.isTreeTinyAndNotFullyVectorizable())
6886 if (R
.isLoadCombineCandidate())
6889 R
.computeMinimumValueSizes();
6891 InstructionCost Cost
= R
.getTreeCost();
6893 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost
<< " for VF =" << VF
<< "\n");
6894 if (Cost
< -SLPCostThreshold
) {
6895 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost
<< "\n");
6897 using namespace ore
;
6899 R
.getORE()->emit(OptimizationRemark(SV_NAME
, "StoresVectorized",
6900 cast
<StoreInst
>(Chain
[0]))
6901 << "Stores SLP vectorized with cost " << NV("Cost", Cost
)
6902 << " and with tree size "
6903 << NV("TreeSize", R
.getTreeSize()));
6912 bool SLPVectorizerPass::vectorizeStores(ArrayRef
<StoreInst
*> Stores
,
6914 // We may run into multiple chains that merge into a single chain. We mark the
6915 // stores that we vectorized so that we don't visit the same store twice.
6916 BoUpSLP::ValueSet VectorizedStores
;
6917 bool Changed
= false;
6919 int E
= Stores
.size();
6920 SmallBitVector
Tails(E
, false);
6921 int MaxIter
= MaxStoreLookup
.getValue();
6922 SmallVector
<std::pair
<int, int>, 16> ConsecutiveChain(
6923 E
, std::make_pair(E
, INT_MAX
));
6924 SmallVector
<SmallBitVector
, 4> CheckedPairs(E
, SmallBitVector(E
, false));
6926 auto &&FindConsecutiveAccess
= [this, &Stores
, &Tails
, &IterCnt
, MaxIter
,
6928 &ConsecutiveChain
](int K
, int Idx
) {
6929 if (IterCnt
>= MaxIter
)
6931 if (CheckedPairs
[Idx
].test(K
))
6932 return ConsecutiveChain
[K
].second
== 1 &&
6933 ConsecutiveChain
[K
].first
== Idx
;
6935 CheckedPairs
[Idx
].set(K
);
6936 CheckedPairs
[K
].set(Idx
);
6937 Optional
<int> Diff
= getPointersDiff(
6938 Stores
[K
]->getValueOperand()->getType(), Stores
[K
]->getPointerOperand(),
6939 Stores
[Idx
]->getValueOperand()->getType(),
6940 Stores
[Idx
]->getPointerOperand(), *DL
, *SE
, /*StrictCheck=*/true);
6941 if (!Diff
|| *Diff
== 0)
6945 if (ConsecutiveChain
[Idx
].second
> -Val
) {
6947 ConsecutiveChain
[Idx
] = std::make_pair(K
, -Val
);
6951 if (ConsecutiveChain
[K
].second
<= Val
)
6955 ConsecutiveChain
[K
] = std::make_pair(Idx
, Val
);
6958 // Do a quadratic search on all of the given stores in reverse order and find
6959 // all of the pairs of stores that follow each other.
6960 for (int Idx
= E
- 1; Idx
>= 0; --Idx
) {
6961 // If a store has multiple consecutive store candidates, search according
6962 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6963 // This is because usually pairing with immediate succeeding or preceding
6964 // candidate create the best chance to find slp vectorization opportunity.
6965 const int MaxLookDepth
= std::max(E
- Idx
, Idx
+ 1);
6967 for (int Offset
= 1, F
= MaxLookDepth
; Offset
< F
; ++Offset
)
6968 if ((Idx
>= Offset
&& FindConsecutiveAccess(Idx
- Offset
, Idx
)) ||
6969 (Idx
+ Offset
< E
&& FindConsecutiveAccess(Idx
+ Offset
, Idx
)))
6973 // Tracks if we tried to vectorize stores starting from the given tail
6975 SmallBitVector
TriedTails(E
, false);
6976 // For stores that start but don't end a link in the chain:
6977 for (int Cnt
= E
; Cnt
> 0; --Cnt
) {
6979 if (ConsecutiveChain
[I
].first
== E
|| Tails
.test(I
))
6981 // We found a store instr that starts a chain. Now follow the chain and try
6983 BoUpSLP::ValueList Operands
;
6984 // Collect the chain into a list.
6985 while (I
!= E
&& !VectorizedStores
.count(Stores
[I
])) {
6986 Operands
.push_back(Stores
[I
]);
6988 if (ConsecutiveChain
[I
].second
!= 1) {
6989 // Mark the new end in the chain and go back, if required. It might be
6990 // required if the original stores come in reversed order, for example.
6991 if (ConsecutiveChain
[I
].first
!= E
&&
6992 Tails
.test(ConsecutiveChain
[I
].first
) && !TriedTails
.test(I
) &&
6993 !VectorizedStores
.count(Stores
[ConsecutiveChain
[I
].first
])) {
6995 Tails
.reset(ConsecutiveChain
[I
].first
);
6996 if (Cnt
< ConsecutiveChain
[I
].first
+ 2)
6997 Cnt
= ConsecutiveChain
[I
].first
+ 2;
7001 // Move to the next value in the chain.
7002 I
= ConsecutiveChain
[I
].first
;
7004 assert(!Operands
.empty() && "Expected non-empty list of stores.");
7006 unsigned MaxVecRegSize
= R
.getMaxVecRegSize();
7007 unsigned EltSize
= R
.getVectorElementSize(Operands
[0]);
7008 unsigned MaxElts
= llvm::PowerOf2Floor(MaxVecRegSize
/ EltSize
);
7010 unsigned MinVF
= std::max(2U, R
.getMinVecRegSize() / EltSize
);
7011 unsigned MaxVF
= std::min(R
.getMaximumVF(EltSize
, Instruction::Store
),
7014 // FIXME: Is division-by-2 the correct step? Should we assert that the
7015 // register size is a power-of-2?
7016 unsigned StartIdx
= 0;
7017 for (unsigned Size
= MaxVF
; Size
>= MinVF
; Size
/= 2) {
7018 for (unsigned Cnt
= StartIdx
, E
= Operands
.size(); Cnt
+ Size
<= E
;) {
7019 ArrayRef
<Value
*> Slice
= makeArrayRef(Operands
).slice(Cnt
, Size
);
7020 if (!VectorizedStores
.count(Slice
.front()) &&
7021 !VectorizedStores
.count(Slice
.back()) &&
7022 vectorizeStoreChain(Slice
, R
, Cnt
)) {
7023 // Mark the vectorized stores so that we don't vectorize them again.
7024 VectorizedStores
.insert(Slice
.begin(), Slice
.end());
7026 // If we vectorized initial block, no need to try to vectorize it
7028 if (Cnt
== StartIdx
)
7035 // Check if the whole array was vectorized already - exit.
7036 if (StartIdx
>= Operands
.size())
7044 void SLPVectorizerPass::collectSeedInstructions(BasicBlock
*BB
) {
7045 // Initialize the collections. We will make a single pass over the block.
7049 // Visit the store and getelementptr instructions in BB and organize them in
7050 // Stores and GEPs according to the underlying objects of their pointer
7052 for (Instruction
&I
: *BB
) {
7053 // Ignore store instructions that are volatile or have a pointer operand
7054 // that doesn't point to a scalar type.
7055 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
7056 if (!SI
->isSimple())
7058 if (!isValidElementType(SI
->getValueOperand()->getType()))
7060 Stores
[getUnderlyingObject(SI
->getPointerOperand())].push_back(SI
);
7063 // Ignore getelementptr instructions that have more than one index, a
7064 // constant index, or a pointer operand that doesn't point to a scalar
7066 else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
7067 auto Idx
= GEP
->idx_begin()->get();
7068 if (GEP
->getNumIndices() > 1 || isa
<Constant
>(Idx
))
7070 if (!isValidElementType(Idx
->getType()))
7072 if (GEP
->getType()->isVectorTy())
7074 GEPs
[GEP
->getPointerOperand()].push_back(GEP
);
7079 bool SLPVectorizerPass::tryToVectorizePair(Value
*A
, Value
*B
, BoUpSLP
&R
) {
7082 Value
*VL
[] = {A
, B
};
7083 return tryToVectorizeList(VL
, R
, /*AllowReorder=*/true);
7086 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef
<Value
*> VL
, BoUpSLP
&R
,
7087 bool AllowReorder
) {
7091 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
7092 << VL
.size() << ".\n");
7094 // Check that all of the parts are instructions of the same type,
7095 // we permit an alternate opcode via InstructionsState.
7096 InstructionsState S
= getSameOpcode(VL
);
7100 Instruction
*I0
= cast
<Instruction
>(S
.OpValue
);
7101 // Make sure invalid types (including vector type) are rejected before
7102 // determining vectorization factor for scalar instructions.
7103 for (Value
*V
: VL
) {
7104 Type
*Ty
= V
->getType();
7105 if (!isa
<InsertElementInst
>(V
) && !isValidElementType(Ty
)) {
7106 // NOTE: the following will give user internal llvm type name, which may
7108 R
.getORE()->emit([&]() {
7109 std::string type_str
;
7110 llvm::raw_string_ostream
rso(type_str
);
7112 return OptimizationRemarkMissed(SV_NAME
, "UnsupportedType", I0
)
7113 << "Cannot SLP vectorize list: type "
7114 << rso
.str() + " is unsupported by vectorizer";
7120 unsigned Sz
= R
.getVectorElementSize(I0
);
7121 unsigned MinVF
= std::max(2U, R
.getMinVecRegSize() / Sz
);
7122 unsigned MaxVF
= std::max
<unsigned>(PowerOf2Floor(VL
.size()), MinVF
);
7123 MaxVF
= std::min(R
.getMaximumVF(Sz
, S
.getOpcode()), MaxVF
);
7125 R
.getORE()->emit([&]() {
7126 return OptimizationRemarkMissed(SV_NAME
, "SmallVF", I0
)
7127 << "Cannot SLP vectorize list: vectorization factor "
7128 << "less than 2 is not supported";
7133 bool Changed
= false;
7134 bool CandidateFound
= false;
7135 InstructionCost MinCost
= SLPCostThreshold
.getValue();
7136 Type
*ScalarTy
= VL
[0]->getType();
7137 if (auto *IE
= dyn_cast
<InsertElementInst
>(VL
[0]))
7138 ScalarTy
= IE
->getOperand(1)->getType();
7140 unsigned NextInst
= 0, MaxInst
= VL
.size();
7141 for (unsigned VF
= MaxVF
; NextInst
+ 1 < MaxInst
&& VF
>= MinVF
; VF
/= 2) {
7142 // No actual vectorization should happen, if number of parts is the same as
7143 // provided vectorization factor (i.e. the scalar type is used for vector
7144 // code during codegen).
7145 auto *VecTy
= FixedVectorType::get(ScalarTy
, VF
);
7146 if (TTI
->getNumberOfParts(VecTy
) == VF
)
7148 for (unsigned I
= NextInst
; I
< MaxInst
; ++I
) {
7149 unsigned OpsWidth
= 0;
7151 if (I
+ VF
> MaxInst
)
7152 OpsWidth
= MaxInst
- I
;
7156 if (!isPowerOf2_32(OpsWidth
))
7159 if ((VF
> MinVF
&& OpsWidth
<= VF
/ 2) || (VF
== MinVF
&& OpsWidth
< 2))
7162 ArrayRef
<Value
*> Ops
= VL
.slice(I
, OpsWidth
);
7163 // Check that a previous iteration of this loop did not delete the Value.
7164 if (llvm::any_of(Ops
, [&R
](Value
*V
) {
7165 auto *I
= dyn_cast
<Instruction
>(V
);
7166 return I
&& R
.isDeleted(I
);
7170 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations "
7175 Optional
<ArrayRef
<unsigned>> Order
= R
.bestOrder();
7177 // TODO: reorder tree nodes without tree rebuilding.
7178 SmallVector
<Value
*, 4> ReorderedOps(Ops
.size());
7179 transform(fixupOrderingIndices(*Order
), ReorderedOps
.begin(),
7180 [Ops
](const unsigned Idx
) { return Ops
[Idx
]; });
7181 R
.buildTree(ReorderedOps
);
7184 if (R
.isTreeTinyAndNotFullyVectorizable())
7187 R
.computeMinimumValueSizes();
7188 InstructionCost Cost
= R
.getTreeCost();
7189 CandidateFound
= true;
7190 MinCost
= std::min(MinCost
, Cost
);
7192 if (Cost
< -SLPCostThreshold
) {
7193 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost
<< ".\n");
7194 R
.getORE()->emit(OptimizationRemark(SV_NAME
, "VectorizedList",
7195 cast
<Instruction
>(Ops
[0]))
7196 << "SLP vectorized with cost " << ore::NV("Cost", Cost
)
7197 << " and with tree size "
7198 << ore::NV("TreeSize", R
.getTreeSize()));
7201 // Move to the next bundle.
7209 if (!Changed
&& CandidateFound
) {
7210 R
.getORE()->emit([&]() {
7211 return OptimizationRemarkMissed(SV_NAME
, "NotBeneficial", I0
)
7212 << "List vectorization was possible but not beneficial with cost "
7213 << ore::NV("Cost", MinCost
) << " >= "
7214 << ore::NV("Treshold", -SLPCostThreshold
);
7216 } else if (!Changed
) {
7217 R
.getORE()->emit([&]() {
7218 return OptimizationRemarkMissed(SV_NAME
, "NotPossible", I0
)
7219 << "Cannot SLP vectorize list: vectorization was impossible"
7220 << " with available vectorization factors";
7226 bool SLPVectorizerPass::tryToVectorize(Instruction
*I
, BoUpSLP
&R
) {
7230 if (!isa
<BinaryOperator
>(I
) && !isa
<CmpInst
>(I
))
7233 Value
*P
= I
->getParent();
7235 // Vectorize in current basic block only.
7236 auto *Op0
= dyn_cast
<Instruction
>(I
->getOperand(0));
7237 auto *Op1
= dyn_cast
<Instruction
>(I
->getOperand(1));
7238 if (!Op0
|| !Op1
|| Op0
->getParent() != P
|| Op1
->getParent() != P
)
7241 // Try to vectorize V.
7242 if (tryToVectorizePair(Op0
, Op1
, R
))
7245 auto *A
= dyn_cast
<BinaryOperator
>(Op0
);
7246 auto *B
= dyn_cast
<BinaryOperator
>(Op1
);
7248 if (B
&& B
->hasOneUse()) {
7249 auto *B0
= dyn_cast
<BinaryOperator
>(B
->getOperand(0));
7250 auto *B1
= dyn_cast
<BinaryOperator
>(B
->getOperand(1));
7251 if (B0
&& B0
->getParent() == P
&& tryToVectorizePair(A
, B0
, R
))
7253 if (B1
&& B1
->getParent() == P
&& tryToVectorizePair(A
, B1
, R
))
7258 if (A
&& A
->hasOneUse()) {
7259 auto *A0
= dyn_cast
<BinaryOperator
>(A
->getOperand(0));
7260 auto *A1
= dyn_cast
<BinaryOperator
>(A
->getOperand(1));
7261 if (A0
&& A0
->getParent() == P
&& tryToVectorizePair(A0
, B
, R
))
7263 if (A1
&& A1
->getParent() == P
&& tryToVectorizePair(A1
, B
, R
))
7271 /// Model horizontal reductions.
7273 /// A horizontal reduction is a tree of reduction instructions that has values
7274 /// that can be put into a vector as its leaves. For example:
7281 /// This tree has "mul" as its leaf values and "+" as its reduction
7282 /// instructions. A reduction can feed into a store or a binary operation
7297 class HorizontalReduction
{
7298 using ReductionOpsType
= SmallVector
<Value
*, 16>;
7299 using ReductionOpsListType
= SmallVector
<ReductionOpsType
, 2>;
7300 ReductionOpsListType ReductionOps
;
7301 SmallVector
<Value
*, 32> ReducedVals
;
7302 // Use map vector to make stable output.
7303 MapVector
<Instruction
*, Value
*> ExtraArgs
;
7304 WeakTrackingVH ReductionRoot
;
7305 /// The type of reduction operation.
7308 const unsigned INVALID_OPERAND_INDEX
= std::numeric_limits
<unsigned>::max();
7310 static bool isCmpSelMinMax(Instruction
*I
) {
7311 return match(I
, m_Select(m_Cmp(), m_Value(), m_Value())) &&
7312 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I
));
7315 // And/or are potentially poison-safe logical patterns like:
7316 // select x, y, false
7317 // select x, true, y
7318 static bool isBoolLogicOp(Instruction
*I
) {
7319 return match(I
, m_LogicalAnd(m_Value(), m_Value())) ||
7320 match(I
, m_LogicalOr(m_Value(), m_Value()));
7323 /// Checks if instruction is associative and can be vectorized.
7324 static bool isVectorizable(RecurKind Kind
, Instruction
*I
) {
7325 if (Kind
== RecurKind::None
)
7328 // Integer ops that map to select instructions or intrinsics are fine.
7329 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind
) ||
7333 if (Kind
== RecurKind::FMax
|| Kind
== RecurKind::FMin
) {
7334 // FP min/max are associative except for NaN and -0.0. We do not
7335 // have to rule out -0.0 here because the intrinsic semantics do not
7336 // specify a fixed result for it.
7337 return I
->getFastMathFlags().noNaNs();
7340 return I
->isAssociative();
7343 static Value
*getRdxOperand(Instruction
*I
, unsigned Index
) {
7344 // Poison-safe 'or' takes the form: select X, true, Y
7345 // To make that work with the normal operand processing, we skip the
7346 // true value operand.
7347 // TODO: Change the code and data structures to handle this without a hack.
7348 if (getRdxKind(I
) == RecurKind::Or
&& isa
<SelectInst
>(I
) && Index
== 1)
7349 return I
->getOperand(2);
7350 return I
->getOperand(Index
);
7353 /// Checks if the ParentStackElem.first should be marked as a reduction
7354 /// operation with an extra argument or as extra argument itself.
7355 void markExtraArg(std::pair
<Instruction
*, unsigned> &ParentStackElem
,
7357 if (ExtraArgs
.count(ParentStackElem
.first
)) {
7358 ExtraArgs
[ParentStackElem
.first
] = nullptr;
7359 // We ran into something like:
7360 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
7361 // The whole ParentStackElem.first should be considered as an extra value
7363 // Do not perform analysis of remaining operands of ParentStackElem.first
7364 // instruction, this whole instruction is an extra argument.
7365 ParentStackElem
.second
= INVALID_OPERAND_INDEX
;
7367 // We ran into something like:
7368 // ParentStackElem.first += ... + ExtraArg + ...
7369 ExtraArgs
[ParentStackElem
.first
] = ExtraArg
;
7373 /// Creates reduction operation with the current opcode.
7374 static Value
*createOp(IRBuilder
<> &Builder
, RecurKind Kind
, Value
*LHS
,
7375 Value
*RHS
, const Twine
&Name
, bool UseSelect
) {
7376 unsigned RdxOpcode
= RecurrenceDescriptor::getOpcode(Kind
);
7378 case RecurKind::Add
:
7379 case RecurKind::Mul
:
7381 case RecurKind::And
:
7382 case RecurKind::Xor
:
7383 case RecurKind::FAdd
:
7384 case RecurKind::FMul
:
7385 return Builder
.CreateBinOp((Instruction::BinaryOps
)RdxOpcode
, LHS
, RHS
,
7387 case RecurKind::FMax
:
7388 return Builder
.CreateBinaryIntrinsic(Intrinsic::maxnum
, LHS
, RHS
);
7389 case RecurKind::FMin
:
7390 return Builder
.CreateBinaryIntrinsic(Intrinsic::minnum
, LHS
, RHS
);
7391 case RecurKind::SMax
:
7393 Value
*Cmp
= Builder
.CreateICmpSGT(LHS
, RHS
, Name
);
7394 return Builder
.CreateSelect(Cmp
, LHS
, RHS
, Name
);
7396 return Builder
.CreateBinaryIntrinsic(Intrinsic::smax
, LHS
, RHS
);
7397 case RecurKind::SMin
:
7399 Value
*Cmp
= Builder
.CreateICmpSLT(LHS
, RHS
, Name
);
7400 return Builder
.CreateSelect(Cmp
, LHS
, RHS
, Name
);
7402 return Builder
.CreateBinaryIntrinsic(Intrinsic::smin
, LHS
, RHS
);
7403 case RecurKind::UMax
:
7405 Value
*Cmp
= Builder
.CreateICmpUGT(LHS
, RHS
, Name
);
7406 return Builder
.CreateSelect(Cmp
, LHS
, RHS
, Name
);
7408 return Builder
.CreateBinaryIntrinsic(Intrinsic::umax
, LHS
, RHS
);
7409 case RecurKind::UMin
:
7411 Value
*Cmp
= Builder
.CreateICmpULT(LHS
, RHS
, Name
);
7412 return Builder
.CreateSelect(Cmp
, LHS
, RHS
, Name
);
7414 return Builder
.CreateBinaryIntrinsic(Intrinsic::umin
, LHS
, RHS
);
7416 llvm_unreachable("Unknown reduction operation.");
7420 /// Creates reduction operation with the current opcode with the IR flags
7421 /// from \p ReductionOps.
7422 static Value
*createOp(IRBuilder
<> &Builder
, RecurKind RdxKind
, Value
*LHS
,
7423 Value
*RHS
, const Twine
&Name
,
7424 const ReductionOpsListType
&ReductionOps
) {
7425 bool UseSelect
= ReductionOps
.size() == 2;
7426 assert((!UseSelect
|| isa
<SelectInst
>(ReductionOps
[1][0])) &&
7427 "Expected cmp + select pairs for reduction");
7428 Value
*Op
= createOp(Builder
, RdxKind
, LHS
, RHS
, Name
, UseSelect
);
7429 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind
)) {
7430 if (auto *Sel
= dyn_cast
<SelectInst
>(Op
)) {
7431 propagateIRFlags(Sel
->getCondition(), ReductionOps
[0]);
7432 propagateIRFlags(Op
, ReductionOps
[1]);
7436 propagateIRFlags(Op
, ReductionOps
[0]);
7440 /// Creates reduction operation with the current opcode with the IR flags
7442 static Value
*createOp(IRBuilder
<> &Builder
, RecurKind RdxKind
, Value
*LHS
,
7443 Value
*RHS
, const Twine
&Name
, Instruction
*I
) {
7444 auto *SelI
= dyn_cast
<SelectInst
>(I
);
7445 Value
*Op
= createOp(Builder
, RdxKind
, LHS
, RHS
, Name
, SelI
!= nullptr);
7446 if (SelI
&& RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind
)) {
7447 if (auto *Sel
= dyn_cast
<SelectInst
>(Op
))
7448 propagateIRFlags(Sel
->getCondition(), SelI
->getCondition());
7450 propagateIRFlags(Op
, I
);
7454 static RecurKind
getRdxKind(Instruction
*I
) {
7455 assert(I
&& "Expected instruction for reduction matching");
7456 TargetTransformInfo::ReductionFlags RdxFlags
;
7457 if (match(I
, m_Add(m_Value(), m_Value())))
7458 return RecurKind::Add
;
7459 if (match(I
, m_Mul(m_Value(), m_Value())))
7460 return RecurKind::Mul
;
7461 if (match(I
, m_And(m_Value(), m_Value())) ||
7462 match(I
, m_LogicalAnd(m_Value(), m_Value())))
7463 return RecurKind::And
;
7464 if (match(I
, m_Or(m_Value(), m_Value())) ||
7465 match(I
, m_LogicalOr(m_Value(), m_Value())))
7466 return RecurKind::Or
;
7467 if (match(I
, m_Xor(m_Value(), m_Value())))
7468 return RecurKind::Xor
;
7469 if (match(I
, m_FAdd(m_Value(), m_Value())))
7470 return RecurKind::FAdd
;
7471 if (match(I
, m_FMul(m_Value(), m_Value())))
7472 return RecurKind::FMul
;
7474 if (match(I
, m_Intrinsic
<Intrinsic::maxnum
>(m_Value(), m_Value())))
7475 return RecurKind::FMax
;
7476 if (match(I
, m_Intrinsic
<Intrinsic::minnum
>(m_Value(), m_Value())))
7477 return RecurKind::FMin
;
7479 // This matches either cmp+select or intrinsics. SLP is expected to handle
7481 // TODO: If we are canonicalizing to intrinsics, we can remove several
7482 // special-case paths that deal with selects.
7483 if (match(I
, m_SMax(m_Value(), m_Value())))
7484 return RecurKind::SMax
;
7485 if (match(I
, m_SMin(m_Value(), m_Value())))
7486 return RecurKind::SMin
;
7487 if (match(I
, m_UMax(m_Value(), m_Value())))
7488 return RecurKind::UMax
;
7489 if (match(I
, m_UMin(m_Value(), m_Value())))
7490 return RecurKind::UMin
;
7492 if (auto *Select
= dyn_cast
<SelectInst
>(I
)) {
7493 // Try harder: look for min/max pattern based on instructions producing
7494 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
7495 // During the intermediate stages of SLP, it's very common to have
7496 // pattern like this (since optimizeGatherSequence is run only once
7498 // %1 = extractelement <2 x i32> %a, i32 0
7499 // %2 = extractelement <2 x i32> %a, i32 1
7500 // %cond = icmp sgt i32 %1, %2
7501 // %3 = extractelement <2 x i32> %a, i32 0
7502 // %4 = extractelement <2 x i32> %a, i32 1
7503 // %select = select i1 %cond, i32 %3, i32 %4
7504 CmpInst::Predicate Pred
;
7508 Value
*LHS
= Select
->getTrueValue();
7509 Value
*RHS
= Select
->getFalseValue();
7510 Value
*Cond
= Select
->getCondition();
7512 // TODO: Support inverse predicates.
7513 if (match(Cond
, m_Cmp(Pred
, m_Specific(LHS
), m_Instruction(L2
)))) {
7514 if (!isa
<ExtractElementInst
>(RHS
) ||
7515 !L2
->isIdenticalTo(cast
<Instruction
>(RHS
)))
7516 return RecurKind::None
;
7517 } else if (match(Cond
, m_Cmp(Pred
, m_Instruction(L1
), m_Specific(RHS
)))) {
7518 if (!isa
<ExtractElementInst
>(LHS
) ||
7519 !L1
->isIdenticalTo(cast
<Instruction
>(LHS
)))
7520 return RecurKind::None
;
7522 if (!isa
<ExtractElementInst
>(LHS
) || !isa
<ExtractElementInst
>(RHS
))
7523 return RecurKind::None
;
7524 if (!match(Cond
, m_Cmp(Pred
, m_Instruction(L1
), m_Instruction(L2
))) ||
7525 !L1
->isIdenticalTo(cast
<Instruction
>(LHS
)) ||
7526 !L2
->isIdenticalTo(cast
<Instruction
>(RHS
)))
7527 return RecurKind::None
;
7530 TargetTransformInfo::ReductionFlags RdxFlags
;
7533 return RecurKind::None
;
7534 case CmpInst::ICMP_SGT
:
7535 case CmpInst::ICMP_SGE
:
7536 return RecurKind::SMax
;
7537 case CmpInst::ICMP_SLT
:
7538 case CmpInst::ICMP_SLE
:
7539 return RecurKind::SMin
;
7540 case CmpInst::ICMP_UGT
:
7541 case CmpInst::ICMP_UGE
:
7542 return RecurKind::UMax
;
7543 case CmpInst::ICMP_ULT
:
7544 case CmpInst::ICMP_ULE
:
7545 return RecurKind::UMin
;
7548 return RecurKind::None
;
7551 /// Get the index of the first operand.
7552 static unsigned getFirstOperandIndex(Instruction
*I
) {
7553 return isCmpSelMinMax(I
) ? 1 : 0;
7556 /// Total number of operands in the reduction operation.
7557 static unsigned getNumberOfOperands(Instruction
*I
) {
7558 return isCmpSelMinMax(I
) ? 3 : 2;
7561 /// Checks if the instruction is in basic block \p BB.
7562 /// For a cmp+sel min/max reduction check that both ops are in \p BB.
7563 static bool hasSameParent(Instruction
*I
, BasicBlock
*BB
) {
7564 if (isCmpSelMinMax(I
)) {
7565 auto *Sel
= cast
<SelectInst
>(I
);
7566 auto *Cmp
= cast
<Instruction
>(Sel
->getCondition());
7567 return Sel
->getParent() == BB
&& Cmp
->getParent() == BB
;
7569 return I
->getParent() == BB
;
7572 /// Expected number of uses for reduction operations/reduced values.
7573 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax
, Instruction
*I
) {
7574 if (IsCmpSelMinMax
) {
7575 // SelectInst must be used twice while the condition op must have single
7577 if (auto *Sel
= dyn_cast
<SelectInst
>(I
))
7578 return Sel
->hasNUses(2) && Sel
->getCondition()->hasOneUse();
7579 return I
->hasNUses(2);
7582 // Arithmetic reduction operation must be used once only.
7583 return I
->hasOneUse();
7586 /// Initializes the list of reduction operations.
7587 void initReductionOps(Instruction
*I
) {
7588 if (isCmpSelMinMax(I
))
7589 ReductionOps
.assign(2, ReductionOpsType());
7591 ReductionOps
.assign(1, ReductionOpsType());
7594 /// Add all reduction operations for the reduction instruction \p I.
7595 void addReductionOps(Instruction
*I
) {
7596 if (isCmpSelMinMax(I
)) {
7597 ReductionOps
[0].emplace_back(cast
<SelectInst
>(I
)->getCondition());
7598 ReductionOps
[1].emplace_back(I
);
7600 ReductionOps
[0].emplace_back(I
);
7604 static Value
*getLHS(RecurKind Kind
, Instruction
*I
) {
7605 if (Kind
== RecurKind::None
)
7607 return I
->getOperand(getFirstOperandIndex(I
));
7609 static Value
*getRHS(RecurKind Kind
, Instruction
*I
) {
7610 if (Kind
== RecurKind::None
)
7612 return I
->getOperand(getFirstOperandIndex(I
) + 1);
7616 HorizontalReduction() = default;
7618 /// Try to find a reduction tree.
7619 bool matchAssociativeReduction(PHINode
*Phi
, Instruction
*Inst
) {
7620 assert((!Phi
|| is_contained(Phi
->operands(), Inst
)) &&
7621 "Phi needs to use the binary operator");
7622 assert((isa
<BinaryOperator
>(Inst
) || isa
<SelectInst
>(Inst
) ||
7623 isa
<IntrinsicInst
>(Inst
)) &&
7624 "Expected binop, select, or intrinsic for reduction matching");
7625 RdxKind
= getRdxKind(Inst
);
7627 // We could have a initial reductions that is not an add.
7628 // r *= v1 + v2 + v3 + v4
7629 // In such a case start looking for a tree rooted in the first '+'.
7631 if (getLHS(RdxKind
, Inst
) == Phi
) {
7633 Inst
= dyn_cast
<Instruction
>(getRHS(RdxKind
, Inst
));
7636 RdxKind
= getRdxKind(Inst
);
7637 } else if (getRHS(RdxKind
, Inst
) == Phi
) {
7639 Inst
= dyn_cast
<Instruction
>(getLHS(RdxKind
, Inst
));
7642 RdxKind
= getRdxKind(Inst
);
7646 if (!isVectorizable(RdxKind
, Inst
))
7649 // Analyze "regular" integer/FP types for reductions - no target-specific
7650 // types or pointers.
7651 Type
*Ty
= Inst
->getType();
7652 if (!isValidElementType(Ty
) || Ty
->isPointerTy())
7655 // Though the ultimate reduction may have multiple uses, its condition must
7656 // have only single use.
7657 if (auto *Sel
= dyn_cast
<SelectInst
>(Inst
))
7658 if (!Sel
->getCondition()->hasOneUse())
7661 ReductionRoot
= Inst
;
7663 // The opcode for leaf values that we perform a reduction on.
7664 // For example: load(x) + load(y) + load(z) + fptoui(w)
7665 // The leaf opcode for 'w' does not match, so we don't include it as a
7666 // potential candidate for the reduction.
7667 unsigned LeafOpcode
= 0;
7669 // Post-order traverse the reduction tree starting at Inst. We only handle
7670 // true trees containing binary operators or selects.
7671 SmallVector
<std::pair
<Instruction
*, unsigned>, 32> Stack
;
7672 Stack
.push_back(std::make_pair(Inst
, getFirstOperandIndex(Inst
)));
7673 initReductionOps(Inst
);
7674 while (!Stack
.empty()) {
7675 Instruction
*TreeN
= Stack
.back().first
;
7676 unsigned EdgeToVisit
= Stack
.back().second
++;
7677 const RecurKind TreeRdxKind
= getRdxKind(TreeN
);
7678 bool IsReducedValue
= TreeRdxKind
!= RdxKind
;
7681 if (IsReducedValue
|| EdgeToVisit
>= getNumberOfOperands(TreeN
)) {
7683 ReducedVals
.push_back(TreeN
);
7685 auto ExtraArgsIter
= ExtraArgs
.find(TreeN
);
7686 if (ExtraArgsIter
!= ExtraArgs
.end() && !ExtraArgsIter
->second
) {
7687 // Check if TreeN is an extra argument of its parent operation.
7688 if (Stack
.size() <= 1) {
7689 // TreeN can't be an extra argument as it is a root reduction
7693 // Yes, TreeN is an extra argument, do not add it to a list of
7694 // reduction operations.
7695 // Stack[Stack.size() - 2] always points to the parent operation.
7696 markExtraArg(Stack
[Stack
.size() - 2], TreeN
);
7697 ExtraArgs
.erase(TreeN
);
7699 addReductionOps(TreeN
);
7707 Value
*EdgeVal
= getRdxOperand(TreeN
, EdgeToVisit
);
7708 auto *EdgeInst
= dyn_cast
<Instruction
>(EdgeVal
);
7710 // Edge value is not a reduction instruction or a leaf instruction.
7711 // (It may be a constant, function argument, or something else.)
7712 markExtraArg(Stack
.back(), EdgeVal
);
7715 RecurKind EdgeRdxKind
= getRdxKind(EdgeInst
);
7716 // Continue analysis if the next operand is a reduction operation or
7717 // (possibly) a leaf value. If the leaf value opcode is not set,
7718 // the first met operation != reduction operation is considered as the
7720 // Only handle trees in the current basic block.
7721 // Each tree node needs to have minimal number of users except for the
7722 // ultimate reduction.
7723 const bool IsRdxInst
= EdgeRdxKind
== RdxKind
;
7724 if (EdgeInst
!= Phi
&& EdgeInst
!= Inst
&&
7725 hasSameParent(EdgeInst
, Inst
->getParent()) &&
7726 hasRequiredNumberOfUses(isCmpSelMinMax(Inst
), EdgeInst
) &&
7727 (!LeafOpcode
|| LeafOpcode
== EdgeInst
->getOpcode() || IsRdxInst
)) {
7729 // We need to be able to reassociate the reduction operations.
7730 if (!isVectorizable(EdgeRdxKind
, EdgeInst
)) {
7731 // I is an extra argument for TreeN (its parent operation).
7732 markExtraArg(Stack
.back(), EdgeInst
);
7735 } else if (!LeafOpcode
) {
7736 LeafOpcode
= EdgeInst
->getOpcode();
7739 std::make_pair(EdgeInst
, getFirstOperandIndex(EdgeInst
)));
7742 // I is an extra argument for TreeN (its parent operation).
7743 markExtraArg(Stack
.back(), EdgeInst
);
7748 /// Attempt to vectorize the tree found by matchAssociativeReduction.
7749 bool tryToReduce(BoUpSLP
&V
, TargetTransformInfo
*TTI
) {
7750 // If there are a sufficient number of reduction values, reduce
7751 // to a nearby power-of-2. We can safely generate oversized
7752 // vectors and rely on the backend to split them to legal sizes.
7753 unsigned NumReducedVals
= ReducedVals
.size();
7754 if (NumReducedVals
< 4)
7757 // Intersect the fast-math-flags from all reduction operations.
7758 FastMathFlags RdxFMF
;
7760 for (ReductionOpsType
&RdxOp
: ReductionOps
) {
7761 for (Value
*RdxVal
: RdxOp
) {
7762 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(RdxVal
))
7763 RdxFMF
&= FPMO
->getFastMathFlags();
7767 IRBuilder
<> Builder(cast
<Instruction
>(ReductionRoot
));
7768 Builder
.setFastMathFlags(RdxFMF
);
7770 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues
;
7771 // The same extra argument may be used several times, so log each attempt
7773 for (const std::pair
<Instruction
*, Value
*> &Pair
: ExtraArgs
) {
7774 assert(Pair
.first
&& "DebugLoc must be set.");
7775 ExternallyUsedValues
[Pair
.second
].push_back(Pair
.first
);
7778 // The compare instruction of a min/max is the insertion point for new
7779 // instructions and may be replaced with a new compare instruction.
7780 auto getCmpForMinMaxReduction
= [](Instruction
*RdxRootInst
) {
7781 assert(isa
<SelectInst
>(RdxRootInst
) &&
7782 "Expected min/max reduction to have select root instruction");
7783 Value
*ScalarCond
= cast
<SelectInst
>(RdxRootInst
)->getCondition();
7784 assert(isa
<Instruction
>(ScalarCond
) &&
7785 "Expected min/max reduction to have compare condition");
7786 return cast
<Instruction
>(ScalarCond
);
7789 // The reduction root is used as the insertion point for new instructions,
7790 // so set it as externally used to prevent it from being deleted.
7791 ExternallyUsedValues
[ReductionRoot
];
7792 SmallVector
<Value
*, 16> IgnoreList
;
7793 for (ReductionOpsType
&RdxOp
: ReductionOps
)
7794 IgnoreList
.append(RdxOp
.begin(), RdxOp
.end());
7796 unsigned ReduxWidth
= PowerOf2Floor(NumReducedVals
);
7797 if (NumReducedVals
> ReduxWidth
) {
7798 // In the loop below, we are building a tree based on a window of
7799 // 'ReduxWidth' values.
7800 // If the operands of those values have common traits (compare predicate,
7801 // constant operand, etc), then we want to group those together to
7802 // minimize the cost of the reduction.
7804 // TODO: This should be extended to count common operands for
7805 // compares and binops.
7807 // Step 1: Count the number of times each compare predicate occurs.
7808 SmallDenseMap
<unsigned, unsigned> PredCountMap
;
7809 for (Value
*RdxVal
: ReducedVals
) {
7810 CmpInst::Predicate Pred
;
7811 if (match(RdxVal
, m_Cmp(Pred
, m_Value(), m_Value())))
7812 ++PredCountMap
[Pred
];
7814 // Step 2: Sort the values so the most common predicates come first.
7815 stable_sort(ReducedVals
, [&PredCountMap
](Value
*A
, Value
*B
) {
7816 CmpInst::Predicate PredA
, PredB
;
7817 if (match(A
, m_Cmp(PredA
, m_Value(), m_Value())) &&
7818 match(B
, m_Cmp(PredB
, m_Value(), m_Value()))) {
7819 return PredCountMap
[PredA
] > PredCountMap
[PredB
];
7825 Value
*VectorizedTree
= nullptr;
7827 while (i
< NumReducedVals
- ReduxWidth
+ 1 && ReduxWidth
> 2) {
7828 ArrayRef
<Value
*> VL(&ReducedVals
[i
], ReduxWidth
);
7829 V
.buildTree(VL
, ExternallyUsedValues
, IgnoreList
);
7830 Optional
<ArrayRef
<unsigned>> Order
= V
.bestOrder();
7832 assert(Order
->size() == VL
.size() &&
7833 "Order size must be the same as number of vectorized "
7835 // TODO: reorder tree nodes without tree rebuilding.
7836 SmallVector
<Value
*, 4> ReorderedOps(VL
.size());
7837 transform(fixupOrderingIndices(*Order
), ReorderedOps
.begin(),
7838 [VL
](const unsigned Idx
) { return VL
[Idx
]; });
7839 V
.buildTree(ReorderedOps
, ExternallyUsedValues
, IgnoreList
);
7841 if (V
.isTreeTinyAndNotFullyVectorizable())
7843 if (V
.isLoadCombineReductionCandidate(RdxKind
))
7846 // For a poison-safe boolean logic reduction, do not replace select
7847 // instructions with logic ops. All reduced values will be frozen (see
7848 // below) to prevent leaking poison.
7849 if (isa
<SelectInst
>(ReductionRoot
) &&
7850 isBoolLogicOp(cast
<Instruction
>(ReductionRoot
)) &&
7851 NumReducedVals
!= ReduxWidth
)
7854 V
.computeMinimumValueSizes();
7857 InstructionCost TreeCost
=
7858 V
.getTreeCost(makeArrayRef(&ReducedVals
[i
], ReduxWidth
));
7859 InstructionCost ReductionCost
=
7860 getReductionCost(TTI
, ReducedVals
[i
], ReduxWidth
, RdxFMF
);
7861 InstructionCost Cost
= TreeCost
+ ReductionCost
;
7862 if (!Cost
.isValid()) {
7863 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7866 if (Cost
>= -SLPCostThreshold
) {
7867 V
.getORE()->emit([&]() {
7868 return OptimizationRemarkMissed(SV_NAME
, "HorSLPNotBeneficial",
7869 cast
<Instruction
>(VL
[0]))
7870 << "Vectorizing horizontal reduction is possible"
7871 << "but not beneficial with cost " << ore::NV("Cost", Cost
)
7872 << " and threshold "
7873 << ore::NV("Threshold", -SLPCostThreshold
);
7878 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7879 << Cost
<< ". (HorRdx)\n");
7880 V
.getORE()->emit([&]() {
7881 return OptimizationRemark(SV_NAME
, "VectorizedHorizontalReduction",
7882 cast
<Instruction
>(VL
[0]))
7883 << "Vectorized horizontal reduction with cost "
7884 << ore::NV("Cost", Cost
) << " and with tree size "
7885 << ore::NV("TreeSize", V
.getTreeSize());
7888 // Vectorize a tree.
7889 DebugLoc Loc
= cast
<Instruction
>(ReducedVals
[i
])->getDebugLoc();
7890 Value
*VectorizedRoot
= V
.vectorizeTree(ExternallyUsedValues
);
7892 // Emit a reduction. If the root is a select (min/max idiom), the insert
7893 // point is the compare condition of that select.
7894 Instruction
*RdxRootInst
= cast
<Instruction
>(ReductionRoot
);
7895 if (isCmpSelMinMax(RdxRootInst
))
7896 Builder
.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst
));
7898 Builder
.SetInsertPoint(RdxRootInst
);
7900 // To prevent poison from leaking across what used to be sequential, safe,
7901 // scalar boolean logic operations, the reduction operand must be frozen.
7902 if (isa
<SelectInst
>(RdxRootInst
) && isBoolLogicOp(RdxRootInst
))
7903 VectorizedRoot
= Builder
.CreateFreeze(VectorizedRoot
);
7905 Value
*ReducedSubTree
=
7906 emitReduction(VectorizedRoot
, Builder
, ReduxWidth
, TTI
);
7908 if (!VectorizedTree
) {
7909 // Initialize the final value in the reduction.
7910 VectorizedTree
= ReducedSubTree
;
7912 // Update the final value in the reduction.
7913 Builder
.SetCurrentDebugLocation(Loc
);
7914 VectorizedTree
= createOp(Builder
, RdxKind
, VectorizedTree
,
7915 ReducedSubTree
, "op.rdx", ReductionOps
);
7918 ReduxWidth
= PowerOf2Floor(NumReducedVals
- i
);
7921 if (VectorizedTree
) {
7922 // Finish the reduction.
7923 for (; i
< NumReducedVals
; ++i
) {
7924 auto *I
= cast
<Instruction
>(ReducedVals
[i
]);
7925 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
7927 createOp(Builder
, RdxKind
, VectorizedTree
, I
, "", ReductionOps
);
7929 for (auto &Pair
: ExternallyUsedValues
) {
7930 // Add each externally used value to the final reduction.
7931 for (auto *I
: Pair
.second
) {
7932 Builder
.SetCurrentDebugLocation(I
->getDebugLoc());
7933 VectorizedTree
= createOp(Builder
, RdxKind
, VectorizedTree
,
7934 Pair
.first
, "op.extra", I
);
7938 ReductionRoot
->replaceAllUsesWith(VectorizedTree
);
7940 // Mark all scalar reduction ops for deletion, they are replaced by the
7941 // vector reductions.
7942 V
.eraseInstructions(IgnoreList
);
7944 return VectorizedTree
!= nullptr;
7947 unsigned numReductionValues() const { return ReducedVals
.size(); }
7950 /// Calculate the cost of a reduction.
7951 InstructionCost
getReductionCost(TargetTransformInfo
*TTI
,
7952 Value
*FirstReducedVal
, unsigned ReduxWidth
,
7953 FastMathFlags FMF
) {
7954 Type
*ScalarTy
= FirstReducedVal
->getType();
7955 FixedVectorType
*VectorTy
= FixedVectorType::get(ScalarTy
, ReduxWidth
);
7956 InstructionCost VectorCost
, ScalarCost
;
7958 case RecurKind::Add
:
7959 case RecurKind::Mul
:
7961 case RecurKind::And
:
7962 case RecurKind::Xor
:
7963 case RecurKind::FAdd
:
7964 case RecurKind::FMul
: {
7965 unsigned RdxOpcode
= RecurrenceDescriptor::getOpcode(RdxKind
);
7966 VectorCost
= TTI
->getArithmeticReductionCost(RdxOpcode
, VectorTy
, FMF
);
7967 ScalarCost
= TTI
->getArithmeticInstrCost(RdxOpcode
, ScalarTy
);
7970 case RecurKind::FMax
:
7971 case RecurKind::FMin
: {
7972 auto *VecCondTy
= cast
<VectorType
>(CmpInst::makeCmpResultType(VectorTy
));
7973 VectorCost
= TTI
->getMinMaxReductionCost(VectorTy
, VecCondTy
,
7974 /*unsigned=*/false);
7976 TTI
->getCmpSelInstrCost(Instruction::FCmp
, ScalarTy
) +
7977 TTI
->getCmpSelInstrCost(Instruction::Select
, ScalarTy
,
7978 CmpInst::makeCmpResultType(ScalarTy
));
7981 case RecurKind::SMax
:
7982 case RecurKind::SMin
:
7983 case RecurKind::UMax
:
7984 case RecurKind::UMin
: {
7985 auto *VecCondTy
= cast
<VectorType
>(CmpInst::makeCmpResultType(VectorTy
));
7987 RdxKind
== RecurKind::UMax
|| RdxKind
== RecurKind::UMin
;
7988 VectorCost
= TTI
->getMinMaxReductionCost(VectorTy
, VecCondTy
, IsUnsigned
);
7990 TTI
->getCmpSelInstrCost(Instruction::ICmp
, ScalarTy
) +
7991 TTI
->getCmpSelInstrCost(Instruction::Select
, ScalarTy
,
7992 CmpInst::makeCmpResultType(ScalarTy
));
7996 llvm_unreachable("Expected arithmetic or min/max reduction operation");
7999 // Scalar cost is repeated for N-1 elements.
8000 ScalarCost
*= (ReduxWidth
- 1);
8001 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost
- ScalarCost
8002 << " for reduction that starts with " << *FirstReducedVal
8003 << " (It is a splitting reduction)\n");
8004 return VectorCost
- ScalarCost
;
8007 /// Emit a horizontal reduction of the vectorized value.
8008 Value
*emitReduction(Value
*VectorizedValue
, IRBuilder
<> &Builder
,
8009 unsigned ReduxWidth
, const TargetTransformInfo
*TTI
) {
8010 assert(VectorizedValue
&& "Need to have a vectorized tree node");
8011 assert(isPowerOf2_32(ReduxWidth
) &&
8012 "We only handle power-of-two reductions for now");
8014 return createSimpleTargetReduction(Builder
, TTI
, VectorizedValue
, RdxKind
,
8015 ReductionOps
.back());
8019 } // end anonymous namespace
8021 static Optional
<unsigned> getAggregateSize(Instruction
*InsertInst
) {
8022 if (auto *IE
= dyn_cast
<InsertElementInst
>(InsertInst
))
8023 return cast
<FixedVectorType
>(IE
->getType())->getNumElements();
8025 unsigned AggregateSize
= 1;
8026 auto *IV
= cast
<InsertValueInst
>(InsertInst
);
8027 Type
*CurrentType
= IV
->getType();
8029 if (auto *ST
= dyn_cast
<StructType
>(CurrentType
)) {
8030 for (auto *Elt
: ST
->elements())
8031 if (Elt
!= ST
->getElementType(0)) // check homogeneity
8033 AggregateSize
*= ST
->getNumElements();
8034 CurrentType
= ST
->getElementType(0);
8035 } else if (auto *AT
= dyn_cast
<ArrayType
>(CurrentType
)) {
8036 AggregateSize
*= AT
->getNumElements();
8037 CurrentType
= AT
->getElementType();
8038 } else if (auto *VT
= dyn_cast
<FixedVectorType
>(CurrentType
)) {
8039 AggregateSize
*= VT
->getNumElements();
8040 return AggregateSize
;
8041 } else if (CurrentType
->isSingleValueType()) {
8042 return AggregateSize
;
8049 static bool findBuildAggregate_rec(Instruction
*LastInsertInst
,
8050 TargetTransformInfo
*TTI
,
8051 SmallVectorImpl
<Value
*> &BuildVectorOpds
,
8052 SmallVectorImpl
<Value
*> &InsertElts
,
8053 unsigned OperandOffset
) {
8055 Value
*InsertedOperand
= LastInsertInst
->getOperand(1);
8056 Optional
<int> OperandIndex
= getInsertIndex(LastInsertInst
, OperandOffset
);
8059 if (isa
<InsertElementInst
>(InsertedOperand
) ||
8060 isa
<InsertValueInst
>(InsertedOperand
)) {
8061 if (!findBuildAggregate_rec(cast
<Instruction
>(InsertedOperand
), TTI
,
8062 BuildVectorOpds
, InsertElts
, *OperandIndex
))
8065 BuildVectorOpds
[*OperandIndex
] = InsertedOperand
;
8066 InsertElts
[*OperandIndex
] = LastInsertInst
;
8068 LastInsertInst
= dyn_cast
<Instruction
>(LastInsertInst
->getOperand(0));
8069 } while (LastInsertInst
!= nullptr &&
8070 (isa
<InsertValueInst
>(LastInsertInst
) ||
8071 isa
<InsertElementInst
>(LastInsertInst
)) &&
8072 LastInsertInst
->hasOneUse());
8076 /// Recognize construction of vectors like
8077 /// %ra = insertelement <4 x float> poison, float %s0, i32 0
8078 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
8079 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
8080 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
8081 /// starting from the last insertelement or insertvalue instruction.
8083 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
8084 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
8085 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
8087 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
8089 /// \return true if it matches.
8090 static bool findBuildAggregate(Instruction
*LastInsertInst
,
8091 TargetTransformInfo
*TTI
,
8092 SmallVectorImpl
<Value
*> &BuildVectorOpds
,
8093 SmallVectorImpl
<Value
*> &InsertElts
) {
8095 assert((isa
<InsertElementInst
>(LastInsertInst
) ||
8096 isa
<InsertValueInst
>(LastInsertInst
)) &&
8097 "Expected insertelement or insertvalue instruction!");
8099 assert((BuildVectorOpds
.empty() && InsertElts
.empty()) &&
8100 "Expected empty result vectors!");
8102 Optional
<unsigned> AggregateSize
= getAggregateSize(LastInsertInst
);
8105 BuildVectorOpds
.resize(*AggregateSize
);
8106 InsertElts
.resize(*AggregateSize
);
8108 if (findBuildAggregate_rec(LastInsertInst
, TTI
, BuildVectorOpds
, InsertElts
,
8110 llvm::erase_value(BuildVectorOpds
, nullptr);
8111 llvm::erase_value(InsertElts
, nullptr);
8112 if (BuildVectorOpds
.size() >= 2)
8119 /// Try and get a reduction value from a phi node.
8121 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
8122 /// if they come from either \p ParentBB or a containing loop latch.
8124 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
8125 /// if not possible.
8126 static Value
*getReductionValue(const DominatorTree
*DT
, PHINode
*P
,
8127 BasicBlock
*ParentBB
, LoopInfo
*LI
) {
8128 // There are situations where the reduction value is not dominated by the
8129 // reduction phi. Vectorizing such cases has been reported to cause
8130 // miscompiles. See PR25787.
8131 auto DominatedReduxValue
= [&](Value
*R
) {
8132 return isa
<Instruction
>(R
) &&
8133 DT
->dominates(P
->getParent(), cast
<Instruction
>(R
)->getParent());
8136 Value
*Rdx
= nullptr;
8138 // Return the incoming value if it comes from the same BB as the phi node.
8139 if (P
->getIncomingBlock(0) == ParentBB
) {
8140 Rdx
= P
->getIncomingValue(0);
8141 } else if (P
->getIncomingBlock(1) == ParentBB
) {
8142 Rdx
= P
->getIncomingValue(1);
8145 if (Rdx
&& DominatedReduxValue(Rdx
))
8148 // Otherwise, check whether we have a loop latch to look at.
8149 Loop
*BBL
= LI
->getLoopFor(ParentBB
);
8152 BasicBlock
*BBLatch
= BBL
->getLoopLatch();
8156 // There is a loop latch, return the incoming value if it comes from
8157 // that. This reduction pattern occasionally turns up.
8158 if (P
->getIncomingBlock(0) == BBLatch
) {
8159 Rdx
= P
->getIncomingValue(0);
8160 } else if (P
->getIncomingBlock(1) == BBLatch
) {
8161 Rdx
= P
->getIncomingValue(1);
8164 if (Rdx
&& DominatedReduxValue(Rdx
))
8170 static bool matchRdxBop(Instruction
*I
, Value
*&V0
, Value
*&V1
) {
8171 if (match(I
, m_BinOp(m_Value(V0
), m_Value(V1
))))
8173 if (match(I
, m_Intrinsic
<Intrinsic::maxnum
>(m_Value(V0
), m_Value(V1
))))
8175 if (match(I
, m_Intrinsic
<Intrinsic::minnum
>(m_Value(V0
), m_Value(V1
))))
8177 if (match(I
, m_Intrinsic
<Intrinsic::smax
>(m_Value(V0
), m_Value(V1
))))
8179 if (match(I
, m_Intrinsic
<Intrinsic::smin
>(m_Value(V0
), m_Value(V1
))))
8181 if (match(I
, m_Intrinsic
<Intrinsic::umax
>(m_Value(V0
), m_Value(V1
))))
8183 if (match(I
, m_Intrinsic
<Intrinsic::umin
>(m_Value(V0
), m_Value(V1
))))
8188 /// Attempt to reduce a horizontal reduction.
8189 /// If it is legal to match a horizontal reduction feeding the phi node \a P
8190 /// with reduction operators \a Root (or one of its operands) in a basic block
8191 /// \a BB, then check if it can be done. If horizontal reduction is not found
8192 /// and root instruction is a binary operation, vectorization of the operands is
8194 /// \returns true if a horizontal reduction was matched and reduced or operands
8195 /// of one of the binary instruction were vectorized.
8196 /// \returns false if a horizontal reduction was not matched (or not possible)
8197 /// or no vectorization of any binary operation feeding \a Root instruction was
8199 static bool tryToVectorizeHorReductionOrInstOperands(
8200 PHINode
*P
, Instruction
*Root
, BasicBlock
*BB
, BoUpSLP
&R
,
8201 TargetTransformInfo
*TTI
,
8202 const function_ref
<bool(Instruction
*, BoUpSLP
&)> Vectorize
) {
8203 if (!ShouldVectorizeHor
)
8209 if (Root
->getParent() != BB
|| isa
<PHINode
>(Root
))
8211 // Start analysis starting from Root instruction. If horizontal reduction is
8212 // found, try to vectorize it. If it is not a horizontal reduction or
8213 // vectorization is not possible or not effective, and currently analyzed
8214 // instruction is a binary operation, try to vectorize the operands, using
8215 // pre-order DFS traversal order. If the operands were not vectorized, repeat
8216 // the same procedure considering each operand as a possible root of the
8217 // horizontal reduction.
8218 // Interrupt the process if the Root instruction itself was vectorized or all
8219 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
8220 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
8221 // CmpInsts so we can skip extra attempts in
8222 // tryToVectorizeHorReductionOrInstOperands and save compile time.
8223 SmallVector
<std::pair
<Instruction
*, unsigned>, 8> Stack(1, {Root
, 0});
8224 SmallPtrSet
<Value
*, 8> VisitedInstrs
;
8226 while (!Stack
.empty()) {
8229 std::tie(Inst
, Level
) = Stack
.pop_back_val();
8230 // Do not try to analyze instruction that has already been vectorized.
8231 // This may happen when we vectorize instruction operands on a previous
8232 // iteration while stack was populated before that happened.
8233 if (R
.isDeleted(Inst
))
8236 bool IsBinop
= matchRdxBop(Inst
, B0
, B1
);
8237 bool IsSelect
= match(Inst
, m_Select(m_Value(), m_Value(), m_Value()));
8238 if (IsBinop
|| IsSelect
) {
8239 HorizontalReduction HorRdx
;
8240 if (HorRdx
.matchAssociativeReduction(P
, Inst
)) {
8241 if (HorRdx
.tryToReduce(R
, TTI
)) {
8243 // Set P to nullptr to avoid re-analysis of phi node in
8244 // matchAssociativeReduction function unless this is the root node.
8250 Inst
= dyn_cast
<Instruction
>(B0
);
8252 Inst
= dyn_cast
<Instruction
>(B1
);
8254 // Set P to nullptr to avoid re-analysis of phi node in
8255 // matchAssociativeReduction function unless this is the root node.
8261 // Set P to nullptr to avoid re-analysis of phi node in
8262 // matchAssociativeReduction function unless this is the root node.
8264 // Do not try to vectorize CmpInst operands, this is done separately.
8265 if (!isa
<CmpInst
>(Inst
) && Vectorize(Inst
, R
)) {
8270 // Try to vectorize operands.
8271 // Continue analysis for the instruction from the same basic block only to
8272 // save compile time.
8273 if (++Level
< RecursionMaxDepth
)
8274 for (auto *Op
: Inst
->operand_values())
8275 if (VisitedInstrs
.insert(Op
).second
)
8276 if (auto *I
= dyn_cast
<Instruction
>(Op
))
8277 // Do not try to vectorize CmpInst operands, this is done
8279 if (!isa
<PHINode
>(I
) && !isa
<CmpInst
>(I
) && !R
.isDeleted(I
) &&
8280 I
->getParent() == BB
)
8281 Stack
.emplace_back(I
, Level
);
8286 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode
*P
, Value
*V
,
8287 BasicBlock
*BB
, BoUpSLP
&R
,
8288 TargetTransformInfo
*TTI
) {
8289 auto *I
= dyn_cast_or_null
<Instruction
>(V
);
8293 if (!isa
<BinaryOperator
>(I
))
8295 // Try to match and vectorize a horizontal reduction.
8296 auto &&ExtraVectorization
= [this](Instruction
*I
, BoUpSLP
&R
) -> bool {
8297 return tryToVectorize(I
, R
);
8299 return tryToVectorizeHorReductionOrInstOperands(P
, I
, BB
, R
, TTI
,
8300 ExtraVectorization
);
8303 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst
*IVI
,
8304 BasicBlock
*BB
, BoUpSLP
&R
) {
8305 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
8306 if (!R
.canMapToVector(IVI
->getType(), DL
))
8309 SmallVector
<Value
*, 16> BuildVectorOpds
;
8310 SmallVector
<Value
*, 16> BuildVectorInsts
;
8311 if (!findBuildAggregate(IVI
, TTI
, BuildVectorOpds
, BuildVectorInsts
))
8314 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI
<< "\n");
8315 // Aggregate value is unlikely to be processed in vector register, we need to
8316 // extract scalars into scalar registers, so NeedExtraction is set true.
8317 return tryToVectorizeList(BuildVectorOpds
, R
, /*AllowReorder=*/false);
8320 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst
*IEI
,
8321 BasicBlock
*BB
, BoUpSLP
&R
) {
8322 SmallVector
<Value
*, 16> BuildVectorInsts
;
8323 SmallVector
<Value
*, 16> BuildVectorOpds
;
8324 SmallVector
<int> Mask
;
8325 if (!findBuildAggregate(IEI
, TTI
, BuildVectorOpds
, BuildVectorInsts
) ||
8326 (llvm::all_of(BuildVectorOpds
,
8327 [](Value
*V
) { return isa
<ExtractElementInst
>(V
); }) &&
8328 isShuffle(BuildVectorOpds
, Mask
)))
8331 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI
<< "\n");
8332 return tryToVectorizeList(BuildVectorInsts
, R
, /*AllowReorder=*/true);
8335 bool SLPVectorizerPass::vectorizeSimpleInstructions(
8336 SmallVectorImpl
<Instruction
*> &Instructions
, BasicBlock
*BB
, BoUpSLP
&R
,
8337 bool AtTerminator
) {
8338 bool OpsChanged
= false;
8339 SmallVector
<Instruction
*, 4> PostponedCmps
;
8340 for (auto *I
: reverse(Instructions
)) {
8343 if (auto *LastInsertValue
= dyn_cast
<InsertValueInst
>(I
))
8344 OpsChanged
|= vectorizeInsertValueInst(LastInsertValue
, BB
, R
);
8345 else if (auto *LastInsertElem
= dyn_cast
<InsertElementInst
>(I
))
8346 OpsChanged
|= vectorizeInsertElementInst(LastInsertElem
, BB
, R
);
8347 else if (isa
<CmpInst
>(I
))
8348 PostponedCmps
.push_back(I
);
8351 // Try to find reductions first.
8352 for (Instruction
*I
: PostponedCmps
) {
8355 for (Value
*Op
: I
->operands())
8356 OpsChanged
|= vectorizeRootInstruction(nullptr, Op
, BB
, R
, TTI
);
8358 // Try to vectorize operands as vector bundles.
8359 for (Instruction
*I
: PostponedCmps
) {
8362 OpsChanged
|= tryToVectorize(I
, R
);
8364 Instructions
.clear();
8366 // Insert in reverse order since the PostponedCmps vector was filled in
8368 Instructions
.assign(PostponedCmps
.rbegin(), PostponedCmps
.rend());
8373 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock
*BB
, BoUpSLP
&R
) {
8374 bool Changed
= false;
8375 SmallVector
<Value
*, 4> Incoming
;
8376 SmallPtrSet
<Value
*, 16> VisitedInstrs
;
8377 // Maps phi nodes to the non-phi nodes found in the use tree for each phi
8378 // node. Allows better to identify the chains that can be vectorized in the
8380 DenseMap
<Value
*, SmallVector
<Value
*, 4>> PHIToOpcodes
;
8382 bool HaveVectorizedPhiNodes
= true;
8383 while (HaveVectorizedPhiNodes
) {
8384 HaveVectorizedPhiNodes
= false;
8386 // Collect the incoming values from the PHIs.
8388 for (Instruction
&I
: *BB
) {
8389 PHINode
*P
= dyn_cast
<PHINode
>(&I
);
8393 // No need to analyze deleted, vectorized and non-vectorizable
8395 if (!VisitedInstrs
.count(P
) && !R
.isDeleted(P
) &&
8396 isValidElementType(P
->getType()))
8397 Incoming
.push_back(P
);
8400 // Find the corresponding non-phi nodes for better matching when trying to
8402 for (Value
*V
: Incoming
) {
8403 SmallVectorImpl
<Value
*> &Opcodes
=
8404 PHIToOpcodes
.try_emplace(V
).first
->getSecond();
8405 if (!Opcodes
.empty())
8407 SmallVector
<Value
*, 4> Nodes(1, V
);
8408 SmallPtrSet
<Value
*, 4> Visited
;
8409 while (!Nodes
.empty()) {
8410 auto *PHI
= cast
<PHINode
>(Nodes
.pop_back_val());
8411 if (!Visited
.insert(PHI
).second
)
8413 for (Value
*V
: PHI
->incoming_values()) {
8414 if (auto *PHI1
= dyn_cast
<PHINode
>((V
))) {
8415 Nodes
.push_back(PHI1
);
8418 Opcodes
.emplace_back(V
);
8423 // Sort by type, parent, operands.
8424 stable_sort(Incoming
, [this, &PHIToOpcodes
](Value
*V1
, Value
*V2
) {
8425 assert(isValidElementType(V1
->getType()) &&
8426 isValidElementType(V2
->getType()) &&
8427 "Expected vectorizable types only.");
8428 // It is fine to compare type IDs here, since we expect only vectorizable
8429 // types, like ints, floats and pointers, we don't care about other type.
8430 if (V1
->getType()->getTypeID() < V2
->getType()->getTypeID())
8432 if (V1
->getType()->getTypeID() > V2
->getType()->getTypeID())
8434 ArrayRef
<Value
*> Opcodes1
= PHIToOpcodes
[V1
];
8435 ArrayRef
<Value
*> Opcodes2
= PHIToOpcodes
[V2
];
8436 if (Opcodes1
.size() < Opcodes2
.size())
8438 if (Opcodes1
.size() > Opcodes2
.size())
8440 for (int I
= 0, E
= Opcodes1
.size(); I
< E
; ++I
) {
8441 // Undefs are compatible with any other value.
8442 if (isa
<UndefValue
>(Opcodes1
[I
]) || isa
<UndefValue
>(Opcodes2
[I
]))
8444 if (auto *I1
= dyn_cast
<Instruction
>(Opcodes1
[I
]))
8445 if (auto *I2
= dyn_cast
<Instruction
>(Opcodes2
[I
])) {
8446 DomTreeNodeBase
<BasicBlock
> *NodeI1
= DT
->getNode(I1
->getParent());
8447 DomTreeNodeBase
<BasicBlock
> *NodeI2
= DT
->getNode(I2
->getParent());
8449 return NodeI2
!= nullptr;
8452 assert((NodeI1
== NodeI2
) ==
8453 (NodeI1
->getDFSNumIn() == NodeI2
->getDFSNumIn()) &&
8454 "Different nodes should have different DFS numbers");
8455 if (NodeI1
!= NodeI2
)
8456 return NodeI1
->getDFSNumIn() < NodeI2
->getDFSNumIn();
8457 InstructionsState S
= getSameOpcode({I1
, I2
});
8460 return I1
->getOpcode() < I2
->getOpcode();
8462 if (isa
<Constant
>(Opcodes1
[I
]) && isa
<Constant
>(Opcodes2
[I
]))
8464 if (Opcodes1
[I
]->getValueID() < Opcodes2
[I
]->getValueID())
8466 if (Opcodes1
[I
]->getValueID() > Opcodes2
[I
]->getValueID())
8472 auto &&AreCompatiblePHIs
= [&PHIToOpcodes
](Value
*V1
, Value
*V2
) {
8475 if (V1
->getType() != V2
->getType())
8477 ArrayRef
<Value
*> Opcodes1
= PHIToOpcodes
[V1
];
8478 ArrayRef
<Value
*> Opcodes2
= PHIToOpcodes
[V2
];
8479 if (Opcodes1
.size() != Opcodes2
.size())
8481 for (int I
= 0, E
= Opcodes1
.size(); I
< E
; ++I
) {
8482 // Undefs are compatible with any other value.
8483 if (isa
<UndefValue
>(Opcodes1
[I
]) || isa
<UndefValue
>(Opcodes2
[I
]))
8485 if (auto *I1
= dyn_cast
<Instruction
>(Opcodes1
[I
]))
8486 if (auto *I2
= dyn_cast
<Instruction
>(Opcodes2
[I
])) {
8487 if (I1
->getParent() != I2
->getParent())
8489 InstructionsState S
= getSameOpcode({I1
, I2
});
8494 if (isa
<Constant
>(Opcodes1
[I
]) && isa
<Constant
>(Opcodes2
[I
]))
8496 if (Opcodes1
[I
]->getValueID() != Opcodes2
[I
]->getValueID())
8502 // Try to vectorize elements base on their type.
8503 SmallVector
<Value
*, 4> Candidates
;
8504 for (SmallVector
<Value
*, 4>::iterator IncIt
= Incoming
.begin(),
8508 // Look for the next elements with the same type, parent and operand
8510 SmallVector
<Value
*, 4>::iterator SameTypeIt
= IncIt
;
8511 while (SameTypeIt
!= E
&& AreCompatiblePHIs(*SameTypeIt
, *IncIt
)) {
8512 VisitedInstrs
.insert(*SameTypeIt
);
8516 // Try to vectorize them.
8517 unsigned NumElts
= (SameTypeIt
- IncIt
);
8518 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
8519 << NumElts
<< ")\n");
8520 // The order in which the phi nodes appear in the program does not matter.
8521 // So allow tryToVectorizeList to reorder them if it is beneficial. This
8522 // is done when there are exactly two elements since tryToVectorizeList
8523 // asserts that there are only two values when AllowReorder is true.
8524 if (NumElts
> 1 && tryToVectorizeList(makeArrayRef(IncIt
, NumElts
), R
,
8525 /*AllowReorder=*/true)) {
8526 // Success start over because instructions might have been changed.
8527 HaveVectorizedPhiNodes
= true;
8529 } else if (NumElts
< 4 &&
8530 (Candidates
.empty() ||
8531 Candidates
.front()->getType() == (*IncIt
)->getType())) {
8532 Candidates
.append(IncIt
, std::next(IncIt
, NumElts
));
8534 // Final attempt to vectorize phis with the same types.
8535 if (SameTypeIt
== E
|| (*SameTypeIt
)->getType() != (*IncIt
)->getType()) {
8536 if (Candidates
.size() > 1 &&
8537 tryToVectorizeList(Candidates
, R
, /*AllowReorder=*/true)) {
8538 // Success start over because instructions might have been changed.
8539 HaveVectorizedPhiNodes
= true;
8545 // Start over at the next instruction of a different type (or the end).
8550 VisitedInstrs
.clear();
8552 SmallVector
<Instruction
*, 8> PostProcessInstructions
;
8553 SmallDenseSet
<Instruction
*, 4> KeyNodes
;
8554 for (BasicBlock::iterator it
= BB
->begin(), e
= BB
->end(); it
!= e
; ++it
) {
8555 // Skip instructions with scalable type. The num of elements is unknown at
8556 // compile-time for scalable type.
8557 if (isa
<ScalableVectorType
>(it
->getType()))
8560 // Skip instructions marked for the deletion.
8561 if (R
.isDeleted(&*it
))
8563 // We may go through BB multiple times so skip the one we have checked.
8564 if (!VisitedInstrs
.insert(&*it
).second
) {
8565 if (it
->use_empty() && KeyNodes
.contains(&*it
) &&
8566 vectorizeSimpleInstructions(PostProcessInstructions
, BB
, R
,
8567 it
->isTerminator())) {
8568 // We would like to start over since some instructions are deleted
8569 // and the iterator may become invalid value.
8577 if (isa
<DbgInfoIntrinsic
>(it
))
8580 // Try to vectorize reductions that use PHINodes.
8581 if (PHINode
*P
= dyn_cast
<PHINode
>(it
)) {
8582 // Check that the PHI is a reduction PHI.
8583 if (P
->getNumIncomingValues() == 2) {
8584 // Try to match and vectorize a horizontal reduction.
8585 if (vectorizeRootInstruction(P
, getReductionValue(DT
, P
, BB
, LI
), BB
, R
,
8593 // Try to vectorize the incoming values of the PHI, to catch reductions
8594 // that feed into PHIs.
8595 for (unsigned I
= 0, E
= P
->getNumIncomingValues(); I
!= E
; I
++) {
8596 // Skip if the incoming block is the current BB for now. Also, bypass
8597 // unreachable IR for efficiency and to avoid crashing.
8598 // TODO: Collect the skipped incoming values and try to vectorize them
8599 // after processing BB.
8600 if (BB
== P
->getIncomingBlock(I
) ||
8601 !DT
->isReachableFromEntry(P
->getIncomingBlock(I
)))
8604 Changed
|= vectorizeRootInstruction(nullptr, P
->getIncomingValue(I
),
8605 P
->getIncomingBlock(I
), R
, TTI
);
8610 // Ran into an instruction without users, like terminator, or function call
8611 // with ignored return value, store. Ignore unused instructions (basing on
8612 // instruction type, except for CallInst and InvokeInst).
8613 if (it
->use_empty() && (it
->getType()->isVoidTy() || isa
<CallInst
>(it
) ||
8614 isa
<InvokeInst
>(it
))) {
8615 KeyNodes
.insert(&*it
);
8616 bool OpsChanged
= false;
8617 if (ShouldStartVectorizeHorAtStore
|| !isa
<StoreInst
>(it
)) {
8618 for (auto *V
: it
->operand_values()) {
8619 // Try to match and vectorize a horizontal reduction.
8620 OpsChanged
|= vectorizeRootInstruction(nullptr, V
, BB
, R
, TTI
);
8623 // Start vectorization of post-process list of instructions from the
8624 // top-tree instructions to try to vectorize as many instructions as
8626 OpsChanged
|= vectorizeSimpleInstructions(PostProcessInstructions
, BB
, R
,
8627 it
->isTerminator());
8629 // We would like to start over since some instructions are deleted
8630 // and the iterator may become invalid value.
8638 if (isa
<InsertElementInst
>(it
) || isa
<CmpInst
>(it
) ||
8639 isa
<InsertValueInst
>(it
))
8640 PostProcessInstructions
.push_back(&*it
);
8646 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock
*BB
, BoUpSLP
&R
) {
8647 auto Changed
= false;
8648 for (auto &Entry
: GEPs
) {
8649 // If the getelementptr list has fewer than two elements, there's nothing
8651 if (Entry
.second
.size() < 2)
8654 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
8655 << Entry
.second
.size() << ".\n");
8657 // Process the GEP list in chunks suitable for the target's supported
8658 // vector size. If a vector register can't hold 1 element, we are done. We
8659 // are trying to vectorize the index computations, so the maximum number of
8660 // elements is based on the size of the index expression, rather than the
8661 // size of the GEP itself (the target's pointer size).
8662 unsigned MaxVecRegSize
= R
.getMaxVecRegSize();
8663 unsigned EltSize
= R
.getVectorElementSize(*Entry
.second
[0]->idx_begin());
8664 if (MaxVecRegSize
< EltSize
)
8667 unsigned MaxElts
= MaxVecRegSize
/ EltSize
;
8668 for (unsigned BI
= 0, BE
= Entry
.second
.size(); BI
< BE
; BI
+= MaxElts
) {
8669 auto Len
= std::min
<unsigned>(BE
- BI
, MaxElts
);
8670 ArrayRef
<GetElementPtrInst
*> GEPList(&Entry
.second
[BI
], Len
);
8672 // Initialize a set a candidate getelementptrs. Note that we use a
8673 // SetVector here to preserve program order. If the index computations
8674 // are vectorizable and begin with loads, we want to minimize the chance
8675 // of having to reorder them later.
8676 SetVector
<Value
*> Candidates(GEPList
.begin(), GEPList
.end());
8678 // Some of the candidates may have already been vectorized after we
8679 // initially collected them. If so, they are marked as deleted, so remove
8680 // them from the set of candidates.
8681 Candidates
.remove_if(
8682 [&R
](Value
*I
) { return R
.isDeleted(cast
<Instruction
>(I
)); });
8684 // Remove from the set of candidates all pairs of getelementptrs with
8685 // constant differences. Such getelementptrs are likely not good
8686 // candidates for vectorization in a bottom-up phase since one can be
8687 // computed from the other. We also ensure all candidate getelementptr
8688 // indices are unique.
8689 for (int I
= 0, E
= GEPList
.size(); I
< E
&& Candidates
.size() > 1; ++I
) {
8690 auto *GEPI
= GEPList
[I
];
8691 if (!Candidates
.count(GEPI
))
8693 auto *SCEVI
= SE
->getSCEV(GEPList
[I
]);
8694 for (int J
= I
+ 1; J
< E
&& Candidates
.size() > 1; ++J
) {
8695 auto *GEPJ
= GEPList
[J
];
8696 auto *SCEVJ
= SE
->getSCEV(GEPList
[J
]);
8697 if (isa
<SCEVConstant
>(SE
->getMinusSCEV(SCEVI
, SCEVJ
))) {
8698 Candidates
.remove(GEPI
);
8699 Candidates
.remove(GEPJ
);
8700 } else if (GEPI
->idx_begin()->get() == GEPJ
->idx_begin()->get()) {
8701 Candidates
.remove(GEPJ
);
8706 // We break out of the above computation as soon as we know there are
8707 // fewer than two candidates remaining.
8708 if (Candidates
.size() < 2)
8711 // Add the single, non-constant index of each candidate to the bundle. We
8712 // ensured the indices met these constraints when we originally collected
8713 // the getelementptrs.
8714 SmallVector
<Value
*, 16> Bundle(Candidates
.size());
8715 auto BundleIndex
= 0u;
8716 for (auto *V
: Candidates
) {
8717 auto *GEP
= cast
<GetElementPtrInst
>(V
);
8718 auto *GEPIdx
= GEP
->idx_begin()->get();
8719 assert(GEP
->getNumIndices() == 1 || !isa
<Constant
>(GEPIdx
));
8720 Bundle
[BundleIndex
++] = GEPIdx
;
8723 // Try and vectorize the indices. We are currently only interested in
8724 // gather-like cases of the form:
8726 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8728 // where the loads of "a", the loads of "b", and the subtractions can be
8729 // performed in parallel. It's likely that detecting this pattern in a
8730 // bottom-up phase will be simpler and less costly than building a
8731 // full-blown top-down phase beginning at the consecutive loads.
8732 Changed
|= tryToVectorizeList(Bundle
, R
);
8738 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP
&R
) {
8739 bool Changed
= false;
8740 // Sort by type, base pointers and values operand. Value operands must be
8741 // compatible (have the same opcode, same parent), otherwise it is
8742 // definitely not profitable to try to vectorize them.
8743 auto &&StoreSorter
= [this](StoreInst
*V
, StoreInst
*V2
) {
8744 if (V
->getPointerOperandType()->getTypeID() <
8745 V2
->getPointerOperandType()->getTypeID())
8747 if (V
->getPointerOperandType()->getTypeID() >
8748 V2
->getPointerOperandType()->getTypeID())
8750 // UndefValues are compatible with all other values.
8751 if (isa
<UndefValue
>(V
->getValueOperand()) ||
8752 isa
<UndefValue
>(V2
->getValueOperand()))
8754 if (auto *I1
= dyn_cast
<Instruction
>(V
->getValueOperand()))
8755 if (auto *I2
= dyn_cast
<Instruction
>(V2
->getValueOperand())) {
8756 DomTreeNodeBase
<llvm::BasicBlock
> *NodeI1
=
8757 DT
->getNode(I1
->getParent());
8758 DomTreeNodeBase
<llvm::BasicBlock
> *NodeI2
=
8759 DT
->getNode(I2
->getParent());
8760 assert(NodeI1
&& "Should only process reachable instructions");
8761 assert(NodeI1
&& "Should only process reachable instructions");
8762 assert((NodeI1
== NodeI2
) ==
8763 (NodeI1
->getDFSNumIn() == NodeI2
->getDFSNumIn()) &&
8764 "Different nodes should have different DFS numbers");
8765 if (NodeI1
!= NodeI2
)
8766 return NodeI1
->getDFSNumIn() < NodeI2
->getDFSNumIn();
8767 InstructionsState S
= getSameOpcode({I1
, I2
});
8770 return I1
->getOpcode() < I2
->getOpcode();
8772 if (isa
<Constant
>(V
->getValueOperand()) &&
8773 isa
<Constant
>(V2
->getValueOperand()))
8775 return V
->getValueOperand()->getValueID() <
8776 V2
->getValueOperand()->getValueID();
8779 auto &&AreCompatibleStores
= [](StoreInst
*V1
, StoreInst
*V2
) {
8782 if (V1
->getPointerOperandType() != V2
->getPointerOperandType())
8784 // Undefs are compatible with any other value.
8785 if (isa
<UndefValue
>(V1
->getValueOperand()) ||
8786 isa
<UndefValue
>(V2
->getValueOperand()))
8788 if (auto *I1
= dyn_cast
<Instruction
>(V1
->getValueOperand()))
8789 if (auto *I2
= dyn_cast
<Instruction
>(V2
->getValueOperand())) {
8790 if (I1
->getParent() != I2
->getParent())
8792 InstructionsState S
= getSameOpcode({I1
, I2
});
8793 return S
.getOpcode() > 0;
8795 if (isa
<Constant
>(V1
->getValueOperand()) &&
8796 isa
<Constant
>(V2
->getValueOperand()))
8798 return V1
->getValueOperand()->getValueID() ==
8799 V2
->getValueOperand()->getValueID();
8802 // Attempt to sort and vectorize each of the store-groups.
8803 for (auto &Pair
: Stores
) {
8804 if (Pair
.second
.size() < 2)
8807 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8808 << Pair
.second
.size() << ".\n");
8810 stable_sort(Pair
.second
, StoreSorter
);
8812 // Try to vectorize elements based on their compatibility.
8813 for (ArrayRef
<StoreInst
*>::iterator IncIt
= Pair
.second
.begin(),
8814 E
= Pair
.second
.end();
8817 // Look for the next elements with the same type.
8818 ArrayRef
<StoreInst
*>::iterator SameTypeIt
= IncIt
;
8819 Type
*EltTy
= (*IncIt
)->getPointerOperand()->getType();
8821 while (SameTypeIt
!= E
&& AreCompatibleStores(*SameTypeIt
, *IncIt
))
8824 // Try to vectorize them.
8825 unsigned NumElts
= (SameTypeIt
- IncIt
);
8826 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores ("
8827 << NumElts
<< ")\n");
8828 if (NumElts
> 1 && !EltTy
->getPointerElementType()->isVectorTy() &&
8829 vectorizeStores(makeArrayRef(IncIt
, NumElts
), R
)) {
8830 // Success start over because instructions might have been changed.
8834 // Start over at the next instruction of a different type (or the end).
8841 char SLPVectorizer::ID
= 0;
8843 static const char lv_name
[] = "SLP Vectorizer";
8845 INITIALIZE_PASS_BEGIN(SLPVectorizer
, SV_NAME
, lv_name
, false, false)
8846 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
8847 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
8848 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
8849 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
8850 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
8851 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass
)
8852 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
8853 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy
)
8854 INITIALIZE_PASS_END(SLPVectorizer
, SV_NAME
, lv_name
, false, false)
8856 Pass
*llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }