[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Vectorize / VPlanHCFGBuilder.cpp
blob379988733312b8f4c393a3c1d7535bb9212c62b9
1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the construction of a VPlan-based Hierarchical CFG
11 /// (H-CFG) for an incoming IR. This construction comprises the following
12 /// components and steps:
14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
17 /// in the plain CFG.
18 /// NOTE: At this point, there is a direct correspondence between all the
19 /// VPBasicBlocks created for the initial plain CFG and the incoming
20 /// BasicBlocks. However, this might change in the future.
21 ///
22 //===----------------------------------------------------------------------===//
24 #include "VPlanHCFGBuilder.h"
25 #include "LoopVectorizationPlanner.h"
26 #include "llvm/Analysis/LoopIterator.h"
28 #define DEBUG_TYPE "loop-vectorize"
30 using namespace llvm;
32 namespace {
33 // Class that is used to build the plain CFG for the incoming IR.
34 class PlainCFGBuilder {
35 private:
36 // The outermost loop of the input loop nest considered for vectorization.
37 Loop *TheLoop;
39 // Loop Info analysis.
40 LoopInfo *LI;
42 // Vectorization plan that we are working on.
43 VPlan &Plan;
45 // Output Top Region.
46 VPRegionBlock *TopRegion = nullptr;
48 // Builder of the VPlan instruction-level representation.
49 VPBuilder VPIRBuilder;
51 // NOTE: The following maps are intentionally destroyed after the plain CFG
52 // construction because subsequent VPlan-to-VPlan transformation may
53 // invalidate them.
54 // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
55 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
56 // Map incoming Value definitions to their newly-created VPValues.
57 DenseMap<Value *, VPValue *> IRDef2VPValue;
59 // Hold phi node's that need to be fixed once the plain CFG has been built.
60 SmallVector<PHINode *, 8> PhisToFix;
62 // Utility functions.
63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64 void fixPhiNodes();
65 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
66 #ifndef NDEBUG
67 bool isExternalDef(Value *Val);
68 #endif
69 VPValue *getOrCreateVPOperand(Value *IRVal);
70 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
72 public:
73 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
74 : TheLoop(Lp), LI(LI), Plan(P) {}
76 // Build the plain CFG and return its Top Region.
77 VPRegionBlock *buildPlainCFG();
79 } // anonymous namespace
81 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
82 // must have no predecessors.
83 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
84 SmallVector<VPBlockBase *, 8> VPBBPreds;
85 // Collect VPBB predecessors.
86 for (BasicBlock *Pred : predecessors(BB))
87 VPBBPreds.push_back(getOrCreateVPBB(Pred));
89 VPBB->setPredecessors(VPBBPreds);
92 // Add operands to VPInstructions representing phi nodes from the input IR.
93 void PlainCFGBuilder::fixPhiNodes() {
94 for (auto *Phi : PhisToFix) {
95 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
96 VPValue *VPVal = IRDef2VPValue[Phi];
97 assert(isa<VPWidenPHIRecipe>(VPVal) &&
98 "Expected WidenPHIRecipe for phi node.");
99 auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
100 assert(VPPhi->getNumOperands() == 0 &&
101 "Expected VPInstruction with no operands.");
103 for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
104 VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
105 BB2VPBB[Phi->getIncomingBlock(I)]);
109 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
110 // existing one if it was already created.
111 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
112 auto BlockIt = BB2VPBB.find(BB);
113 if (BlockIt != BB2VPBB.end())
114 // Retrieve existing VPBB.
115 return BlockIt->second;
117 // Create new VPBB.
118 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
119 VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
120 BB2VPBB[BB] = VPBB;
121 VPBB->setParent(TopRegion);
122 return VPBB;
125 #ifndef NDEBUG
126 // Return true if \p Val is considered an external definition. An external
127 // definition is either:
128 // 1. A Value that is not an Instruction. This will be refined in the future.
129 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
130 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
131 // outermost loop exits.
132 bool PlainCFGBuilder::isExternalDef(Value *Val) {
133 // All the Values that are not Instructions are considered external
134 // definitions for now.
135 Instruction *Inst = dyn_cast<Instruction>(Val);
136 if (!Inst)
137 return true;
139 BasicBlock *InstParent = Inst->getParent();
140 assert(InstParent && "Expected instruction parent.");
142 // Check whether Instruction definition is in loop PH.
143 BasicBlock *PH = TheLoop->getLoopPreheader();
144 assert(PH && "Expected loop pre-header.");
146 if (InstParent == PH)
147 // Instruction definition is in outermost loop PH.
148 return false;
150 // Check whether Instruction definition is in the loop exit.
151 BasicBlock *Exit = TheLoop->getUniqueExitBlock();
152 assert(Exit && "Expected loop with single exit.");
153 if (InstParent == Exit) {
154 // Instruction definition is in outermost loop exit.
155 return false;
158 // Check whether Instruction definition is in loop body.
159 return !TheLoop->contains(Inst);
161 #endif
163 // Create a new VPValue or retrieve an existing one for the Instruction's
164 // operand \p IRVal. This function must only be used to create/retrieve VPValues
165 // for *Instruction's operands* and not to create regular VPInstruction's. For
166 // the latter, please, look at 'createVPInstructionsForVPBB'.
167 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
168 auto VPValIt = IRDef2VPValue.find(IRVal);
169 if (VPValIt != IRDef2VPValue.end())
170 // Operand has an associated VPInstruction or VPValue that was previously
171 // created.
172 return VPValIt->second;
174 // Operand doesn't have a previously created VPInstruction/VPValue. This
175 // means that operand is:
176 // A) a definition external to VPlan,
177 // B) any other Value without specific representation in VPlan.
178 // For now, we use VPValue to represent A and B and classify both as external
179 // definitions. We may introduce specific VPValue subclasses for them in the
180 // future.
181 assert(isExternalDef(IRVal) && "Expected external definition as operand.");
183 // A and B: Create VPValue and add it to the pool of external definitions and
184 // to the Value->VPValue map.
185 VPValue *NewVPVal = new VPValue(IRVal);
186 Plan.addExternalDef(NewVPVal);
187 IRDef2VPValue[IRVal] = NewVPVal;
188 return NewVPVal;
191 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
192 // counterpart. This function must be invoked in RPO so that the operands of a
193 // VPInstruction in \p BB have been visited before (except for Phi nodes).
194 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
195 BasicBlock *BB) {
196 VPIRBuilder.setInsertPoint(VPBB);
197 for (Instruction &InstRef : *BB) {
198 Instruction *Inst = &InstRef;
200 // There shouldn't be any VPValue for Inst at this point. Otherwise, we
201 // visited Inst when we shouldn't, breaking the RPO traversal order.
202 assert(!IRDef2VPValue.count(Inst) &&
203 "Instruction shouldn't have been visited.");
205 if (auto *Br = dyn_cast<BranchInst>(Inst)) {
206 // Branch instruction is not explicitly represented in VPlan but we need
207 // to represent its condition bit when it's conditional.
208 if (Br->isConditional())
209 getOrCreateVPOperand(Br->getCondition());
211 // Skip the rest of the Instruction processing for Branch instructions.
212 continue;
215 VPValue *NewVPV;
216 if (auto *Phi = dyn_cast<PHINode>(Inst)) {
217 // Phi node's operands may have not been visited at this point. We create
218 // an empty VPInstruction that we will fix once the whole plain CFG has
219 // been built.
220 NewVPV = new VPWidenPHIRecipe(Phi);
221 VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
222 PhisToFix.push_back(Phi);
223 } else {
224 // Translate LLVM-IR operands into VPValue operands and set them in the
225 // new VPInstruction.
226 SmallVector<VPValue *, 4> VPOperands;
227 for (Value *Op : Inst->operands())
228 VPOperands.push_back(getOrCreateVPOperand(Op));
230 // Build VPInstruction for any arbitraty Instruction without specific
231 // representation in VPlan.
232 NewVPV = cast<VPInstruction>(
233 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
236 IRDef2VPValue[Inst] = NewVPV;
240 // Main interface to build the plain CFG.
241 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
242 // 1. Create the Top Region. It will be the parent of all VPBBs.
243 TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
245 // 2. Scan the body of the loop in a topological order to visit each basic
246 // block after having visited its predecessor basic blocks. Create a VPBB for
247 // each BB and link it to its successor and predecessor VPBBs. Note that
248 // predecessors must be set in the same order as they are in the incomming IR.
249 // Otherwise, there might be problems with existing phi nodes and algorithm
250 // based on predecessors traversal.
252 // Loop PH needs to be explicitly visited since it's not taken into account by
253 // LoopBlocksDFS.
254 BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
255 assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
256 "Unexpected loop preheader");
257 VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
258 for (auto &I : *PreheaderBB) {
259 if (I.getType()->isVoidTy())
260 continue;
261 VPValue *VPV = new VPValue(&I);
262 Plan.addExternalDef(VPV);
263 IRDef2VPValue[&I] = VPV;
265 // Create empty VPBB for Loop H so that we can link PH->H.
266 VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
267 // Preheader's predecessors will be set during the loop RPO traversal below.
268 PreheaderVPBB->setOneSuccessor(HeaderVPBB);
270 LoopBlocksRPO RPO(TheLoop);
271 RPO.perform(LI);
273 for (BasicBlock *BB : RPO) {
274 // Create or retrieve the VPBasicBlock for this BB and create its
275 // VPInstructions.
276 VPBasicBlock *VPBB = getOrCreateVPBB(BB);
277 createVPInstructionsForVPBB(VPBB, BB);
279 // Set VPBB successors. We create empty VPBBs for successors if they don't
280 // exist already. Recipes will be created when the successor is visited
281 // during the RPO traversal.
282 Instruction *TI = BB->getTerminator();
283 assert(TI && "Terminator expected.");
284 unsigned NumSuccs = TI->getNumSuccessors();
286 if (NumSuccs == 1) {
287 VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
288 assert(SuccVPBB && "VPBB Successor not found.");
289 VPBB->setOneSuccessor(SuccVPBB);
290 } else if (NumSuccs == 2) {
291 VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
292 assert(SuccVPBB0 && "Successor 0 not found.");
293 VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
294 assert(SuccVPBB1 && "Successor 1 not found.");
296 // Get VPBB's condition bit.
297 assert(isa<BranchInst>(TI) && "Unsupported terminator!");
298 auto *Br = cast<BranchInst>(TI);
299 Value *BrCond = Br->getCondition();
300 // Look up the branch condition to get the corresponding VPValue
301 // representing the condition bit in VPlan (which may be in another VPBB).
302 assert(IRDef2VPValue.count(BrCond) &&
303 "Missing condition bit in IRDef2VPValue!");
304 VPValue *VPCondBit = IRDef2VPValue[BrCond];
306 // Link successors using condition bit.
307 VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
308 } else
309 llvm_unreachable("Number of successors not supported.");
311 // Set VPBB predecessors in the same order as they are in the incoming BB.
312 setVPBBPredsFromBB(VPBB, BB);
315 // 3. Process outermost loop exit. We created an empty VPBB for the loop
316 // single exit BB during the RPO traversal of the loop body but Instructions
317 // weren't visited because it's not part of the the loop.
318 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
319 assert(LoopExitBB && "Loops with multiple exits are not supported.");
320 VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
321 createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
322 // Loop exit was already set as successor of the loop exiting BB.
323 // We only set its predecessor VPBB now.
324 setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
326 // 4. The whole CFG has been built at this point so all the input Values must
327 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
328 // VPlan operands.
329 fixPhiNodes();
331 // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
332 // Top Region entry and exit.
333 TopRegion->setEntry(PreheaderVPBB);
334 TopRegion->setExit(LoopExitVPBB);
335 return TopRegion;
338 VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
339 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
340 return PCFGBuilder.buildPlainCFG();
343 // Public interface to build a H-CFG.
344 void VPlanHCFGBuilder::buildHierarchicalCFG() {
345 // Build Top Region enclosing the plain CFG and set it as VPlan entry.
346 VPRegionBlock *TopRegion = buildPlainCFG();
347 Plan.setEntry(TopRegion);
348 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
350 Verifier.verifyHierarchicalCFG(TopRegion);
352 // Compute plain CFG dom tree for VPLInfo.
353 VPDomTree.recalculate(*TopRegion);
354 LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
355 VPDomTree.print(dbgs()));
357 // Compute VPLInfo and keep it in Plan.
358 VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
359 VPLInfo.analyze(VPDomTree);
360 LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
361 VPLInfo.print(dbgs()));