1 ; Test the handling of base + displacement addresses for large frames,
2 ; in cases where both 12-bit and 20-bit displacements are allowed.
3 ; The tests here assume z10 register pressure, without the high words
6 ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | \
7 ; RUN: FileCheck -check-prefix=CHECK-NOFP %s
8 ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 -frame-pointer=all | \
9 ; RUN: FileCheck -check-prefix=CHECK-FP %s
11 ; This file tests what happens when a displacement is converted from
12 ; being relative to the start of a frame object to being relative to
13 ; the frame itself. In some cases the test is only possible if two
14 ; objects are allocated.
16 ; Rather than rely on a particular order for those objects, the tests
17 ; instead allocate two objects of the same size and apply the test to
18 ; both of them. For consistency, all tests follow this model, even if
19 ; one object would actually be enough.
21 ; First check the highest offset that is in range of the 12-bit form.
23 ; The last in-range doubleword offset is 4088. Since the frame has two
24 ; emergency spill slots at 160(%r15), the amount that we need to allocate
25 ; in order to put another object at offset 4088 is 4088 - 176 = 3912 bytes.
27 ; CHECK-NOFP-LABEL: f1:
28 ; CHECK-NOFP: mvi 4095(%r15), 42
32 ; CHECK-FP: mvi 4095(%r11), 42
34 %region1 = alloca [3912 x i8], align 8
35 %region2 = alloca [3912 x i8], align 8
36 %ptr1 = getelementptr inbounds [3912 x i8], [3912 x i8]* %region1, i64 0, i64 7
37 %ptr2 = getelementptr inbounds [3912 x i8], [3912 x i8]* %region2, i64 0, i64 7
38 store volatile i8 42, i8 *%ptr1
39 store volatile i8 42, i8 *%ptr2
43 ; Test the first offset that is out-of-range of the 12-bit form.
45 ; CHECK-NOFP-LABEL: f2:
46 ; CHECK-NOFP: mviy 4096(%r15), 42
50 ; CHECK-FP: mviy 4096(%r11), 42
52 %region1 = alloca [3912 x i8], align 8
53 %region2 = alloca [3912 x i8], align 8
54 %ptr1 = getelementptr inbounds [3912 x i8], [3912 x i8]* %region1, i64 0, i64 8
55 %ptr2 = getelementptr inbounds [3912 x i8], [3912 x i8]* %region2, i64 0, i64 8
56 store volatile i8 42, i8 *%ptr1
57 store volatile i8 42, i8 *%ptr2
61 ; Test the last offset that is in range of the 20-bit form.
63 ; The last in-range doubleword offset is 524280, so by the same reasoning
64 ; as above, we need to allocate objects of 524280 - 176 = 524104 bytes.
66 ; CHECK-NOFP-LABEL: f3:
67 ; CHECK-NOFP: mviy 524287(%r15), 42
71 ; CHECK-FP: mviy 524287(%r11), 42
73 %region1 = alloca [524104 x i8], align 8
74 %region2 = alloca [524104 x i8], align 8
75 %ptr1 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region1, i64 0, i64 7
76 %ptr2 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region2, i64 0, i64 7
77 store volatile i8 42, i8 *%ptr1
78 store volatile i8 42, i8 *%ptr2
82 ; Test the first out-of-range offset. We can't use an index register here,
83 ; and the offset is also out of LAY's range, so expect a constant load
84 ; followed by an addition.
86 ; CHECK-NOFP-LABEL: f4:
87 ; CHECK-NOFP: llilh %r1, 8
88 ; CHECK-NOFP: la %r1, 0(%r1,%r15)
89 ; CHECK-NOFP: mvi 0(%r1), 42
93 ; CHECK-FP: llilh %r1, 8
94 ; CHECK-FP: la %r1, 0(%r1,%r11)
95 ; CHECK-FP: mvi 0(%r1), 42
97 %region1 = alloca [524104 x i8], align 8
98 %region2 = alloca [524104 x i8], align 8
99 %ptr1 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region1, i64 0, i64 8
100 %ptr2 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region2, i64 0, i64 8
101 store volatile i8 42, i8 *%ptr1
102 store volatile i8 42, i8 *%ptr2
106 ; Add 4095 to the previous offset, to test the other end of the MVI range.
107 ; The instruction will actually be STCY before frame lowering.
109 ; CHECK-NOFP-LABEL: f5:
110 ; CHECK-NOFP: llilh %r1, 8
111 ; CHECK-NOFP: la %r1, 0(%r1,%r15)
112 ; CHECK-NOFP: mvi 4095(%r1), 42
113 ; CHECK-NOFP: br %r14
115 ; CHECK-FP-LABEL: f5:
116 ; CHECK-FP: llilh %r1, 8
117 ; CHECK-FP: la %r1, 0(%r1,%r11)
118 ; CHECK-FP: mvi 4095(%r1), 42
120 %region1 = alloca [524104 x i8], align 8
121 %region2 = alloca [524104 x i8], align 8
122 %ptr1 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region1, i64 0, i64 4103
123 %ptr2 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region2, i64 0, i64 4103
124 store volatile i8 42, i8 *%ptr1
125 store volatile i8 42, i8 *%ptr2
129 ; Test the next offset after that, which uses MVIY instead of MVI.
131 ; CHECK-NOFP-LABEL: f6:
132 ; CHECK-NOFP: llilh %r1, 8
133 ; CHECK-NOFP: la %r1, 0(%r1,%r15)
134 ; CHECK-NOFP: mviy 4096(%r1), 42
135 ; CHECK-NOFP: br %r14
137 ; CHECK-FP-LABEL: f6:
138 ; CHECK-FP: llilh %r1, 8
139 ; CHECK-FP: la %r1, 0(%r1,%r11)
140 ; CHECK-FP: mviy 4096(%r1), 42
142 %region1 = alloca [524104 x i8], align 8
143 %region2 = alloca [524104 x i8], align 8
144 %ptr1 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region1, i64 0, i64 4104
145 %ptr2 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region2, i64 0, i64 4104
146 store volatile i8 42, i8 *%ptr1
147 store volatile i8 42, i8 *%ptr2
151 ; Now try an offset of 524287 from the start of the object, with the
152 ; object being at offset 1048576 (1 << 20). The backend prefers to create
153 ; anchors 0x10000 bytes apart, so that the high part can be loaded using
154 ; LLILH while still using MVI in more cases than 0x40000 anchors would.
156 ; CHECK-NOFP-LABEL: f7:
157 ; CHECK-NOFP: llilh %r1, 23
158 ; CHECK-NOFP: la %r1, 0(%r1,%r15)
159 ; CHECK-NOFP: mviy 65535(%r1), 42
160 ; CHECK-NOFP: br %r14
162 ; CHECK-FP-LABEL: f7:
163 ; CHECK-FP: llilh %r1, 23
164 ; CHECK-FP: la %r1, 0(%r1,%r11)
165 ; CHECK-FP: mviy 65535(%r1), 42
167 %region1 = alloca [1048400 x i8], align 8
168 %region2 = alloca [1048400 x i8], align 8
169 %ptr1 = getelementptr inbounds [1048400 x i8], [1048400 x i8]* %region1, i64 0, i64 524287
170 %ptr2 = getelementptr inbounds [1048400 x i8], [1048400 x i8]* %region2, i64 0, i64 524287
171 store volatile i8 42, i8 *%ptr1
172 store volatile i8 42, i8 *%ptr2
176 ; Keep the object-relative offset the same but bump the size of the
177 ; objects by one doubleword.
179 ; CHECK-NOFP-LABEL: f8:
180 ; CHECK-NOFP: llilh %r1, 24
181 ; CHECK-NOFP: la %r1, 0(%r1,%r15)
182 ; CHECK-NOFP: mvi 7(%r1), 42
183 ; CHECK-NOFP: br %r14
185 ; CHECK-FP-LABEL: f8:
186 ; CHECK-FP: llilh %r1, 24
187 ; CHECK-FP: la %r1, 0(%r1,%r11)
188 ; CHECK-FP: mvi 7(%r1), 42
190 %region1 = alloca [1048408 x i8], align 8
191 %region2 = alloca [1048408 x i8], align 8
192 %ptr1 = getelementptr inbounds [1048408 x i8], [1048408 x i8]* %region1, i64 0, i64 524287
193 %ptr2 = getelementptr inbounds [1048408 x i8], [1048408 x i8]* %region2, i64 0, i64 524287
194 store volatile i8 42, i8 *%ptr1
195 store volatile i8 42, i8 *%ptr2
199 ; Check a case where the original displacement is out of range. The backend
200 ; should force separate address logic from the outset. We don't yet do any
201 ; kind of anchor optimization, so there should be no offset on the MVI itself.
203 ; Before frame lowering this is an LA followed by the AGFI seen below.
204 ; The LA then gets lowered into the LLILH/LA form. The exact sequence
205 ; isn't that important though.
207 ; CHECK-NOFP-LABEL: f9:
208 ; CHECK-NOFP: llilh [[R1:%r[1-5]]], 16
209 ; CHECK-NOFP: la [[R2:%r[1-5]]], 8([[R1]],%r15)
210 ; CHECK-NOFP: agfi [[R2]], 524288
211 ; CHECK-NOFP: mvi 0([[R2]]), 42
212 ; CHECK-NOFP: br %r14
214 ; CHECK-FP-LABEL: f9:
215 ; CHECK-FP: llilh [[R1:%r[1-5]]], 16
216 ; CHECK-FP: la [[R2:%r[1-5]]], 8([[R1]],%r11)
217 ; CHECK-FP: agfi [[R2]], 524288
218 ; CHECK-FP: mvi 0([[R2]]), 42
220 %region1 = alloca [1048408 x i8], align 8
221 %region2 = alloca [1048408 x i8], align 8
222 %ptr1 = getelementptr inbounds [1048408 x i8], [1048408 x i8]* %region1, i64 0, i64 524288
223 %ptr2 = getelementptr inbounds [1048408 x i8], [1048408 x i8]* %region2, i64 0, i64 524288
224 store volatile i8 42, i8 *%ptr1
225 store volatile i8 42, i8 *%ptr2
229 ; Repeat f4 in a case that needs the emergency spill slots (because all
230 ; call-clobbered registers are live and no call-saved ones have been
232 define void @f10(i32 *%vptr) {
233 ; CHECK-NOFP-LABEL: f10:
234 ; CHECK-NOFP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r15)
235 ; CHECK-NOFP: llilh [[REGISTER]], 8
236 ; CHECK-NOFP: la [[REGISTER]], 0([[REGISTER]],%r15)
237 ; CHECK-NOFP: mvi 0([[REGISTER]]), 42
238 ; CHECK-NOFP: lg [[REGISTER]], [[OFFSET]](%r15)
239 ; CHECK-NOFP: br %r14
241 ; CHECK-FP-LABEL: f10:
242 ; CHECK-FP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r11)
243 ; CHECK-FP: llilh [[REGISTER]], 8
244 ; CHECK-FP: la [[REGISTER]], 0([[REGISTER]],%r11)
245 ; CHECK-FP: mvi 0([[REGISTER]]), 42
246 ; CHECK-FP: lg [[REGISTER]], [[OFFSET]](%r11)
248 %i0 = load volatile i32, i32 *%vptr
249 %i1 = load volatile i32, i32 *%vptr
250 %i3 = load volatile i32, i32 *%vptr
251 %i4 = load volatile i32, i32 *%vptr
252 %i5 = load volatile i32, i32 *%vptr
253 %region1 = alloca [524104 x i8], align 8
254 %region2 = alloca [524104 x i8], align 8
255 %ptr1 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region1, i64 0, i64 8
256 %ptr2 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region2, i64 0, i64 8
257 store volatile i8 42, i8 *%ptr1
258 store volatile i8 42, i8 *%ptr2
259 store volatile i32 %i0, i32 *%vptr
260 store volatile i32 %i1, i32 *%vptr
261 store volatile i32 %i3, i32 *%vptr
262 store volatile i32 %i4, i32 *%vptr
263 store volatile i32 %i5, i32 *%vptr
267 ; And again with maximum register pressure. The only spill slots that the
268 ; NOFP case needs are the emergency ones, so the offsets are the same as for f4.
269 ; The FP case needs to spill an extra register and is too dependent on
270 ; register allocation heuristics for a stable test.
271 define void @f11(i32 *%vptr) {
272 ; CHECK-NOFP-LABEL: f11:
273 ; CHECK-NOFP: stmg %r6, %r15,
274 ; CHECK-NOFP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r15)
275 ; CHECK-NOFP: llilh [[REGISTER]], 8
276 ; CHECK-NOFP: la [[REGISTER]], 0([[REGISTER]],%r15)
277 ; CHECK-NOFP: mvi 0([[REGISTER]]), 42
278 ; CHECK-NOFP: lg [[REGISTER]], [[OFFSET]](%r15)
279 ; CHECK-NOFP: lmg %r6, %r15,
280 ; CHECK-NOFP: br %r14
281 %i0 = load volatile i32, i32 *%vptr
282 %i1 = load volatile i32, i32 *%vptr
283 %i3 = load volatile i32, i32 *%vptr
284 %i4 = load volatile i32, i32 *%vptr
285 %i5 = load volatile i32, i32 *%vptr
286 %i6 = load volatile i32, i32 *%vptr
287 %i7 = load volatile i32, i32 *%vptr
288 %i8 = load volatile i32, i32 *%vptr
289 %i9 = load volatile i32, i32 *%vptr
290 %i10 = load volatile i32, i32 *%vptr
291 %i11 = load volatile i32, i32 *%vptr
292 %i12 = load volatile i32, i32 *%vptr
293 %i13 = load volatile i32, i32 *%vptr
294 %i14 = load volatile i32, i32 *%vptr
295 %region1 = alloca [524104 x i8], align 8
296 %region2 = alloca [524104 x i8], align 8
297 %ptr1 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region1, i64 0, i64 8
298 %ptr2 = getelementptr inbounds [524104 x i8], [524104 x i8]* %region2, i64 0, i64 8
299 store volatile i8 42, i8 *%ptr1
300 store volatile i8 42, i8 *%ptr2
301 store volatile i32 %i0, i32 *%vptr
302 store volatile i32 %i1, i32 *%vptr
303 store volatile i32 %i3, i32 *%vptr
304 store volatile i32 %i4, i32 *%vptr
305 store volatile i32 %i5, i32 *%vptr
306 store volatile i32 %i6, i32 *%vptr
307 store volatile i32 %i7, i32 *%vptr
308 store volatile i32 %i8, i32 *%vptr
309 store volatile i32 %i9, i32 *%vptr
310 store volatile i32 %i10, i32 *%vptr
311 store volatile i32 %i11, i32 *%vptr
312 store volatile i32 %i12, i32 *%vptr
313 store volatile i32 %i13, i32 *%vptr
314 store volatile i32 %i14, i32 *%vptr