1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2 ; RUN: llc < %s -mtriple=x86_64-- -mattr=+avx | FileCheck %s --check-prefixes=ANY,AVX1
3 ; RUN: llc < %s -mtriple=x86_64-- -mattr=+avx2 | FileCheck %s --check-prefixes=ANY,INT256
4 ; RUN: llc < %s -mtriple=x86_64-- -mattr=+avx512f | FileCheck %s --check-prefixes=ANY,INT256
6 define <4 x double> @andpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
8 ; ANY: # %bb.0: # %entry
9 ; ANY-NEXT: vandpd %ymm0, %ymm1, %ymm0
10 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
11 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
14 %0 = bitcast <4 x double> %x to <4 x i64>
15 %1 = bitcast <4 x double> %y to <4 x i64>
16 %and.i = and <4 x i64> %0, %1
17 %2 = bitcast <4 x i64> %and.i to <4 x double>
18 ; add forces execution domain
19 %3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
23 define <4 x double> @andpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
24 ; ANY-LABEL: andpd256fold:
25 ; ANY: # %bb.0: # %entry
26 ; ANY-NEXT: vandpd {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
27 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
28 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
31 %0 = bitcast <4 x double> %y to <4 x i64>
32 %and.i = and <4 x i64> %0, <i64 4616752568008179712, i64 4614838538166547251, i64 4612361558371493478, i64 4608083138725491507>
33 %1 = bitcast <4 x i64> %and.i to <4 x double>
34 ; add forces execution domain
35 %2 = fadd <4 x double> %1, <double 0x0, double 0x0, double 0x0, double 0x0>
39 define <8 x float> @andps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
40 ; ANY-LABEL: andps256:
41 ; ANY: # %bb.0: # %entry
42 ; ANY-NEXT: vandps %ymm0, %ymm1, %ymm0
45 %0 = bitcast <8 x float> %x to <8 x i32>
46 %1 = bitcast <8 x float> %y to <8 x i32>
47 %and.i = and <8 x i32> %0, %1
48 %2 = bitcast <8 x i32> %and.i to <8 x float>
52 define <8 x float> @andps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
53 ; ANY-LABEL: andps256fold:
54 ; ANY: # %bb.0: # %entry
55 ; ANY-NEXT: vandps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
58 %0 = bitcast <8 x float> %y to <8 x i32>
59 %and.i = and <8 x i32> %0, <i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938, i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938>
60 %1 = bitcast <8 x i32> %and.i to <8 x float>
64 define <4 x double> @xorpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
65 ; ANY-LABEL: xorpd256:
66 ; ANY: # %bb.0: # %entry
67 ; ANY-NEXT: vxorpd %ymm0, %ymm1, %ymm0
68 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
69 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
72 %0 = bitcast <4 x double> %x to <4 x i64>
73 %1 = bitcast <4 x double> %y to <4 x i64>
74 %xor.i = xor <4 x i64> %0, %1
75 %2 = bitcast <4 x i64> %xor.i to <4 x double>
76 ; add forces execution domain
77 %3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
81 define <4 x double> @xorpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
82 ; ANY-LABEL: xorpd256fold:
83 ; ANY: # %bb.0: # %entry
84 ; ANY-NEXT: vxorpd {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
85 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
86 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
89 %0 = bitcast <4 x double> %y to <4 x i64>
90 %xor.i = xor <4 x i64> %0, <i64 4616752568008179712, i64 4614838538166547251, i64 4612361558371493478, i64 4608083138725491507>
91 %1 = bitcast <4 x i64> %xor.i to <4 x double>
92 ; add forces execution domain
93 %2 = fadd <4 x double> %1, <double 0x0, double 0x0, double 0x0, double 0x0>
97 define <8 x float> @xorps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
98 ; ANY-LABEL: xorps256:
99 ; ANY: # %bb.0: # %entry
100 ; ANY-NEXT: vxorps %ymm0, %ymm1, %ymm0
103 %0 = bitcast <8 x float> %x to <8 x i32>
104 %1 = bitcast <8 x float> %y to <8 x i32>
105 %xor.i = xor <8 x i32> %0, %1
106 %2 = bitcast <8 x i32> %xor.i to <8 x float>
110 define <8 x float> @xorps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
111 ; ANY-LABEL: xorps256fold:
112 ; ANY: # %bb.0: # %entry
113 ; ANY-NEXT: vxorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
116 %0 = bitcast <8 x float> %y to <8 x i32>
117 %xor.i = xor <8 x i32> %0, <i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938, i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938>
118 %1 = bitcast <8 x i32> %xor.i to <8 x float>
122 define <4 x double> @orpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
123 ; ANY-LABEL: orpd256:
124 ; ANY: # %bb.0: # %entry
125 ; ANY-NEXT: vorpd %ymm0, %ymm1, %ymm0
126 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
127 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
130 %0 = bitcast <4 x double> %x to <4 x i64>
131 %1 = bitcast <4 x double> %y to <4 x i64>
132 %or.i = or <4 x i64> %0, %1
133 %2 = bitcast <4 x i64> %or.i to <4 x double>
134 ; add forces execution domain
135 %3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
139 define <4 x double> @orpd256fold(<4 x double> %y) nounwind uwtable readnone ssp {
140 ; ANY-LABEL: orpd256fold:
141 ; ANY: # %bb.0: # %entry
142 ; ANY-NEXT: vorpd {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
143 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
144 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
147 %0 = bitcast <4 x double> %y to <4 x i64>
148 %or.i = or <4 x i64> %0, <i64 4616752568008179712, i64 4614838538166547251, i64 4612361558371493478, i64 4608083138725491507>
149 %1 = bitcast <4 x i64> %or.i to <4 x double>
150 ; add forces execution domain
151 %2 = fadd <4 x double> %1, <double 0x0, double 0x0, double 0x0, double 0x0>
155 define <8 x float> @orps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
156 ; ANY-LABEL: orps256:
157 ; ANY: # %bb.0: # %entry
158 ; ANY-NEXT: vorps %ymm0, %ymm1, %ymm0
161 %0 = bitcast <8 x float> %x to <8 x i32>
162 %1 = bitcast <8 x float> %y to <8 x i32>
163 %or.i = or <8 x i32> %0, %1
164 %2 = bitcast <8 x i32> %or.i to <8 x float>
168 define <8 x float> @orps256fold(<8 x float> %y) nounwind uwtable readnone ssp {
169 ; ANY-LABEL: orps256fold:
170 ; ANY: # %bb.0: # %entry
171 ; ANY-NEXT: vorps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
174 %0 = bitcast <8 x float> %y to <8 x i32>
175 %or.i = or <8 x i32> %0, <i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938, i32 1083179008, i32 1079613850, i32 1075000115, i32 1067030938>
176 %1 = bitcast <8 x i32> %or.i to <8 x float>
180 define <4 x double> @andnotpd256(<4 x double> %y, <4 x double> %x) nounwind uwtable readnone ssp {
181 ; ANY-LABEL: andnotpd256:
182 ; ANY: # %bb.0: # %entry
183 ; ANY-NEXT: vandnpd %ymm0, %ymm1, %ymm0
184 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
185 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
188 %0 = bitcast <4 x double> %x to <4 x i64>
189 %neg.i = xor <4 x i64> %0, <i64 -1, i64 -1, i64 -1, i64 -1>
190 %1 = bitcast <4 x double> %y to <4 x i64>
191 %and.i = and <4 x i64> %1, %neg.i
192 %2 = bitcast <4 x i64> %and.i to <4 x double>
193 ; add forces execution domain
194 %3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
198 define <4 x double> @andnotpd256fold(<4 x double> %y, <4 x double>* nocapture %x) nounwind uwtable readonly ssp {
199 ; ANY-LABEL: andnotpd256fold:
200 ; ANY: # %bb.0: # %entry
201 ; ANY-NEXT: vandnpd (%rdi), %ymm0, %ymm0
202 ; ANY-NEXT: vxorpd %xmm1, %xmm1, %xmm1
203 ; ANY-NEXT: vaddpd %ymm1, %ymm0, %ymm0
206 %tmp2 = load <4 x double>, <4 x double>* %x, align 32
207 %0 = bitcast <4 x double> %y to <4 x i64>
208 %neg.i = xor <4 x i64> %0, <i64 -1, i64 -1, i64 -1, i64 -1>
209 %1 = bitcast <4 x double> %tmp2 to <4 x i64>
210 %and.i = and <4 x i64> %1, %neg.i
211 %2 = bitcast <4 x i64> %and.i to <4 x double>
212 ; add forces execution domain
213 %3 = fadd <4 x double> %2, <double 0x0, double 0x0, double 0x0, double 0x0>
217 define <8 x float> @andnotps256(<8 x float> %y, <8 x float> %x) nounwind uwtable readnone ssp {
218 ; ANY-LABEL: andnotps256:
219 ; ANY: # %bb.0: # %entry
220 ; ANY-NEXT: vandnps %ymm0, %ymm1, %ymm0
223 %0 = bitcast <8 x float> %x to <8 x i32>
224 %neg.i = xor <8 x i32> %0, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
225 %1 = bitcast <8 x float> %y to <8 x i32>
226 %and.i = and <8 x i32> %1, %neg.i
227 %2 = bitcast <8 x i32> %and.i to <8 x float>
231 define <8 x float> @andnotps256fold(<8 x float> %y, <8 x float>* nocapture %x) nounwind uwtable readonly ssp {
232 ; ANY-LABEL: andnotps256fold:
233 ; ANY: # %bb.0: # %entry
234 ; ANY-NEXT: vandnps (%rdi), %ymm0, %ymm0
237 %tmp2 = load <8 x float>, <8 x float>* %x, align 32
238 %0 = bitcast <8 x float> %y to <8 x i32>
239 %neg.i = xor <8 x i32> %0, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
240 %1 = bitcast <8 x float> %tmp2 to <8 x i32>
241 %and.i = and <8 x i32> %1, %neg.i
242 %2 = bitcast <8 x i32> %and.i to <8 x float>
246 ;;; Test that basic 2 x i64 logic use the integer version on AVX
248 define <2 x i64> @vpandn(<2 x i64> %a, <2 x i64> %b) nounwind uwtable readnone ssp {
249 ; Force the execution domain with an add.
252 ; ANY-NEXT: vpcmpeqd %xmm1, %xmm1, %xmm1
253 ; ANY-NEXT: vpsubq %xmm1, %xmm0, %xmm1
254 ; ANY-NEXT: vpandn %xmm0, %xmm1, %xmm0
256 %a2 = add <2 x i64> %a, <i64 1, i64 1>
257 %y = xor <2 x i64> %a2, <i64 -1, i64 -1>
258 %x = and <2 x i64> %a, %y
262 define <2 x i64> @vpand(<2 x i64> %a, <2 x i64> %b) nounwind uwtable readnone ssp {
263 ; Force the execution domain with an add.
266 ; ANY-NEXT: vpcmpeqd %xmm2, %xmm2, %xmm2
267 ; ANY-NEXT: vpsubq %xmm2, %xmm0, %xmm0
268 ; ANY-NEXT: vpand %xmm1, %xmm0, %xmm0
270 %a2 = add <2 x i64> %a, <i64 1, i64 1>
271 %x = and <2 x i64> %a2, %b
275 define <4 x i32> @and_xor_splat1_v4i32(<4 x i32> %x) nounwind {
276 ; AVX1-LABEL: and_xor_splat1_v4i32:
278 ; AVX1-NEXT: vandnps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0, %xmm0
281 ; INT256-LABEL: and_xor_splat1_v4i32:
283 ; INT256-NEXT: vbroadcastss {{.*#+}} xmm1 = [1,1,1,1]
284 ; INT256-NEXT: vandnps %xmm1, %xmm0, %xmm0
286 %xor = xor <4 x i32> %x, <i32 1, i32 1, i32 1, i32 1>
287 %and = and <4 x i32> %xor, <i32 1, i32 1, i32 1, i32 1>
291 define <4 x i64> @and_xor_splat1_v4i64(<4 x i64> %x) nounwind {
292 ; AVX1-LABEL: and_xor_splat1_v4i64:
294 ; AVX1-NEXT: vandnps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
297 ; INT256-LABEL: and_xor_splat1_v4i64:
299 ; INT256-NEXT: vbroadcastsd {{.*#+}} ymm1 = [1,1,1,1]
300 ; INT256-NEXT: vandnps %ymm1, %ymm0, %ymm0
302 %xor = xor <4 x i64> %x, <i64 1, i64 1, i64 1, i64 1>
303 %and = and <4 x i64> %xor, <i64 1, i64 1, i64 1, i64 1>
307 ; PR37749 - https://bugs.llvm.org/show_bug.cgi?id=37749
308 ; For AVX1, we don't want a 256-bit logic op with insert/extract to the surrounding 128-bit ops.
310 define <8 x i32> @and_disguised_i8_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
311 ; AVX1-LABEL: and_disguised_i8_elts:
313 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm3
314 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
315 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
316 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
317 ; AVX1-NEXT: vmovdqa {{.*#+}} xmm1 = [255,255,255,255]
318 ; AVX1-NEXT: vpand %xmm1, %xmm0, %xmm0
319 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm4
320 ; AVX1-NEXT: vpaddd %xmm4, %xmm0, %xmm0
321 ; AVX1-NEXT: vpand %xmm1, %xmm3, %xmm1
322 ; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
323 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
326 ; INT256-LABEL: and_disguised_i8_elts:
328 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
329 ; INT256-NEXT: vpand {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
330 ; INT256-NEXT: vpaddd %ymm2, %ymm0, %ymm0
332 %a = add <8 x i32> %x, %y
333 %l = and <8 x i32> %a, <i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255>
334 %t = add <8 x i32> %l, %z
338 define <8 x i32> @andn_disguised_i8_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
339 ; AVX1-LABEL: andn_disguised_i8_elts:
341 ; AVX1-NEXT: vpaddd %xmm0, %xmm1, %xmm3
342 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
343 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
344 ; AVX1-NEXT: vpaddd %xmm0, %xmm1, %xmm0
345 ; AVX1-NEXT: vmovdqa {{.*#+}} xmm1 = [255,255,255,255]
346 ; AVX1-NEXT: vpandn %xmm1, %xmm0, %xmm0
347 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm4
348 ; AVX1-NEXT: vpaddd %xmm4, %xmm0, %xmm0
349 ; AVX1-NEXT: vpandn %xmm1, %xmm3, %xmm1
350 ; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
351 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
354 ; INT256-LABEL: andn_disguised_i8_elts:
356 ; INT256-NEXT: vpaddd %ymm0, %ymm1, %ymm0
357 ; INT256-NEXT: vpandn {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
358 ; INT256-NEXT: vpaddd %ymm2, %ymm0, %ymm0
360 %add = add <8 x i32> %y, %x
361 %neg = and <8 x i32> %add, <i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255>
362 %and = xor <8 x i32> %neg, <i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255>
363 %add1 = add <8 x i32> %and, %z
367 ; Negative test - if we don't have a leading concat_vectors, the transform won't be profitable.
369 define <8 x i32> @andn_variable_mask_operand_no_concat(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
370 ; AVX1-LABEL: andn_variable_mask_operand_no_concat:
372 ; AVX1-NEXT: vandnps %ymm2, %ymm0, %ymm0
373 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm2
374 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm3
375 ; AVX1-NEXT: vpaddd %xmm3, %xmm2, %xmm2
376 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
377 ; AVX1-NEXT: vinsertf128 $1, %xmm2, %ymm0, %ymm0
380 ; INT256-LABEL: andn_variable_mask_operand_no_concat:
382 ; INT256-NEXT: vpandn %ymm2, %ymm0, %ymm0
383 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
385 %and = and <8 x i32> %x, %z
386 %xor = xor <8 x i32> %and, %z ; demanded bits will make this a 'not'
387 %add = add <8 x i32> %xor, %y
391 ; Negative test - if we don't have a leading concat_vectors, the transform won't be profitable (even if the mask is a constant).
393 define <8 x i32> @andn_constant_mask_operand_no_concat(<8 x i32> %x, <8 x i32> %y) {
394 ; AVX1-LABEL: andn_constant_mask_operand_no_concat:
396 ; AVX1-NEXT: vandnps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
397 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm2
398 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm3
399 ; AVX1-NEXT: vpaddd %xmm2, %xmm3, %xmm2
400 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
401 ; AVX1-NEXT: vinsertf128 $1, %xmm2, %ymm0, %ymm0
404 ; INT256-LABEL: andn_constant_mask_operand_no_concat:
406 ; INT256-NEXT: vpandn {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %ymm0, %ymm0
407 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
409 %xor = xor <8 x i32> %x, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
410 %and = and <8 x i32> %xor, <i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255>
411 %r = add <8 x i32> %and, %y
415 ; This is a close call, but we split the 'andn' to reduce the insert/extract.
417 define <8 x i32> @andn_variable_mask_operand_concat(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z, <8 x i32> %w) {
418 ; AVX1-LABEL: andn_variable_mask_operand_concat:
420 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm4
421 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
422 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
423 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
424 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm1
425 ; AVX1-NEXT: vpandn %xmm1, %xmm0, %xmm0
426 ; AVX1-NEXT: vextractf128 $1, %ymm3, %xmm1
427 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
428 ; AVX1-NEXT: vpandn %xmm2, %xmm4, %xmm1
429 ; AVX1-NEXT: vpaddd %xmm3, %xmm1, %xmm1
430 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
433 ; INT256-LABEL: andn_variable_mask_operand_concat:
435 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
436 ; INT256-NEXT: vpandn %ymm2, %ymm0, %ymm0
437 ; INT256-NEXT: vpaddd %ymm3, %ymm0, %ymm0
439 %add = add <8 x i32> %x, %y
440 %xor = xor <8 x i32> %add, <i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1, i32 -1>
441 %and = and <8 x i32> %xor, %z
442 %r = add <8 x i32> %and, %w
446 define <8 x i32> @or_disguised_i8_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
447 ; AVX1-LABEL: or_disguised_i8_elts:
449 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm3
450 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
451 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
452 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
453 ; AVX1-NEXT: vmovdqa {{.*#+}} xmm1 = [255,255,255,255]
454 ; AVX1-NEXT: vpor %xmm1, %xmm0, %xmm0
455 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm4
456 ; AVX1-NEXT: vpaddd %xmm4, %xmm0, %xmm0
457 ; AVX1-NEXT: vpor %xmm1, %xmm3, %xmm1
458 ; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
459 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
462 ; INT256-LABEL: or_disguised_i8_elts:
464 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
465 ; INT256-NEXT: vpbroadcastd {{.*#+}} ymm1 = [255,255,255,255,255,255,255,255]
466 ; INT256-NEXT: vpor %ymm1, %ymm0, %ymm0
467 ; INT256-NEXT: vpaddd %ymm2, %ymm0, %ymm0
469 %a = add <8 x i32> %x, %y
470 %l = or <8 x i32> %a, <i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255>
471 %t = add <8 x i32> %l, %z
475 define <8 x i32> @xor_disguised_i8_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
476 ; AVX1-LABEL: xor_disguised_i8_elts:
478 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm3
479 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
480 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
481 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
482 ; AVX1-NEXT: vmovdqa {{.*#+}} xmm1 = [255,255,255,255]
483 ; AVX1-NEXT: vpxor %xmm1, %xmm0, %xmm0
484 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm4
485 ; AVX1-NEXT: vpaddd %xmm4, %xmm0, %xmm0
486 ; AVX1-NEXT: vpxor %xmm1, %xmm3, %xmm1
487 ; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
488 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
491 ; INT256-LABEL: xor_disguised_i8_elts:
493 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
494 ; INT256-NEXT: vpbroadcastd {{.*#+}} ymm1 = [255,255,255,255,255,255,255,255]
495 ; INT256-NEXT: vpxor %ymm1, %ymm0, %ymm0
496 ; INT256-NEXT: vpaddd %ymm2, %ymm0, %ymm0
498 %a = add <8 x i32> %x, %y
499 %l = xor <8 x i32> %a, <i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255, i32 255>
500 %t = add <8 x i32> %l, %z
504 define <8 x i32> @and_disguised_i16_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
505 ; AVX1-LABEL: and_disguised_i16_elts:
507 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm3
508 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
509 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
510 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
511 ; AVX1-NEXT: vpxor %xmm1, %xmm1, %xmm1
512 ; AVX1-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1],xmm0[2],xmm1[3],xmm0[4],xmm1[5],xmm0[6],xmm1[7]
513 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm4
514 ; AVX1-NEXT: vpaddd %xmm4, %xmm0, %xmm0
515 ; AVX1-NEXT: vpblendw {{.*#+}} xmm1 = xmm3[0],xmm1[1],xmm3[2],xmm1[3],xmm3[4],xmm1[5],xmm3[6],xmm1[7]
516 ; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
517 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
520 ; INT256-LABEL: and_disguised_i16_elts:
522 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
523 ; INT256-NEXT: vpxor %xmm1, %xmm1, %xmm1
524 ; INT256-NEXT: vpblendw {{.*#+}} ymm0 = ymm0[0],ymm1[1],ymm0[2],ymm1[3],ymm0[4],ymm1[5],ymm0[6],ymm1[7],ymm0[8],ymm1[9],ymm0[10],ymm1[11],ymm0[12],ymm1[13],ymm0[14],ymm1[15]
525 ; INT256-NEXT: vpaddd %ymm2, %ymm0, %ymm0
527 %a = add <8 x i32> %x, %y
528 %l = and <8 x i32> %a, <i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535>
529 %t = add <8 x i32> %l, %z
533 define <8 x i32> @or_disguised_i16_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
534 ; AVX1-LABEL: or_disguised_i16_elts:
536 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm3
537 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
538 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
539 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
540 ; AVX1-NEXT: vmovdqa {{.*#+}} xmm1 = [65535,65535,65535,65535]
541 ; AVX1-NEXT: vpor %xmm1, %xmm0, %xmm0
542 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm4
543 ; AVX1-NEXT: vpaddd %xmm4, %xmm0, %xmm0
544 ; AVX1-NEXT: vpor %xmm1, %xmm3, %xmm1
545 ; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
546 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
549 ; INT256-LABEL: or_disguised_i16_elts:
551 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
552 ; INT256-NEXT: vpbroadcastd {{.*#+}} ymm1 = [65535,65535,65535,65535,65535,65535,65535,65535]
553 ; INT256-NEXT: vpor %ymm1, %ymm0, %ymm0
554 ; INT256-NEXT: vpaddd %ymm2, %ymm0, %ymm0
556 %a = add <8 x i32> %x, %y
557 %l = or <8 x i32> %a, <i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535>
558 %t = add <8 x i32> %l, %z
562 define <8 x i32> @xor_disguised_i16_elts(<8 x i32> %x, <8 x i32> %y, <8 x i32> %z) {
563 ; AVX1-LABEL: xor_disguised_i16_elts:
565 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm3
566 ; AVX1-NEXT: vextractf128 $1, %ymm1, %xmm1
567 ; AVX1-NEXT: vextractf128 $1, %ymm0, %xmm0
568 ; AVX1-NEXT: vpaddd %xmm1, %xmm0, %xmm0
569 ; AVX1-NEXT: vmovdqa {{.*#+}} xmm1 = [65535,65535,65535,65535]
570 ; AVX1-NEXT: vpxor %xmm1, %xmm0, %xmm0
571 ; AVX1-NEXT: vextractf128 $1, %ymm2, %xmm4
572 ; AVX1-NEXT: vpaddd %xmm4, %xmm0, %xmm0
573 ; AVX1-NEXT: vpxor %xmm1, %xmm3, %xmm1
574 ; AVX1-NEXT: vpaddd %xmm2, %xmm1, %xmm1
575 ; AVX1-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
578 ; INT256-LABEL: xor_disguised_i16_elts:
580 ; INT256-NEXT: vpaddd %ymm1, %ymm0, %ymm0
581 ; INT256-NEXT: vpbroadcastd {{.*#+}} ymm1 = [65535,65535,65535,65535,65535,65535,65535,65535]
582 ; INT256-NEXT: vpxor %ymm1, %ymm0, %ymm0
583 ; INT256-NEXT: vpaddd %ymm2, %ymm0, %ymm0
585 %a = add <8 x i32> %x, %y
586 %l = xor <8 x i32> %a, <i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535, i32 65535>
587 %t = add <8 x i32> %l, %z