[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / test / Transforms / CorrelatedValuePropagation / srem.ll
blob192d9160ba40d47b9be9092f8077727acdfa0921
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -correlated-propagation -S | FileCheck %s
4 target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
5 target triple = "thumbv7m-arm-none-eabi"
7 define void @h(i32* nocapture %p, i32 %x) local_unnamed_addr #0 {
8 ; CHECK-LABEL: @h(
9 ; CHECK-NEXT:  entry:
10 ; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[X:%.*]], 0
11 ; CHECK-NEXT:    br i1 [[CMP]], label [[IF_THEN:%.*]], label [[IF_END:%.*]]
12 ; CHECK:       if.then:
13 ; CHECK-NEXT:    [[REM21:%.*]] = urem i32 [[X]], 10
14 ; CHECK-NEXT:    store i32 [[REM21]], i32* [[P:%.*]], align 4
15 ; CHECK-NEXT:    br label [[IF_END]]
16 ; CHECK:       if.end:
17 ; CHECK-NEXT:    ret void
19 entry:
21   %cmp = icmp sgt i32 %x, 0
22   br i1 %cmp, label %if.then, label %if.end
24 if.then:
25   %rem2 = srem i32 %x, 10
26   store i32 %rem2, i32* %p, align 4
27   br label %if.end
29 if.end:
30   ret void
33 ; looping case where loop has exactly one block
34 ; at the point of srem, we know that %a is always greater than 0,
35 ; because of the assume before it, so we can transform it to urem.
36 declare void @llvm.assume(i1)
37 define void @test4(i32 %n) {
38 ; CHECK-LABEL: @test4(
39 ; CHECK-NEXT:  entry:
40 ; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0
41 ; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]]
42 ; CHECK:       loop:
43 ; CHECK-NEXT:    [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[REM1:%.*]], [[LOOP]] ]
44 ; CHECK-NEXT:    [[COND:%.*]] = icmp sgt i32 [[A]], 4
45 ; CHECK-NEXT:    call void @llvm.assume(i1 [[COND]])
46 ; CHECK-NEXT:    [[REM1]] = urem i32 [[A]], 17
47 ; CHECK-NEXT:    [[LOOPCOND:%.*]] = icmp sgt i32 [[REM1]], 8
48 ; CHECK-NEXT:    br i1 [[LOOPCOND]], label [[LOOP]], label [[EXIT]]
49 ; CHECK:       exit:
50 ; CHECK-NEXT:    ret void
52 entry:
53   %cmp = icmp sgt i32 %n, 0
54   br i1 %cmp, label %loop, label %exit
56 loop:
57   %a = phi i32 [ %n, %entry ], [ %rem, %loop ]
58   %cond = icmp sgt i32 %a, 4
59   call void @llvm.assume(i1 %cond)
60   %rem = srem i32 %a, 17
61   %loopcond = icmp sgt i32 %rem, 8
62   br i1 %loopcond, label %loop, label %exit
64 exit:
65   ret void
68 ; Now, let's try various domain combinations for operands.
70 define i8 @test5_pos_pos(i8 %x, i8 %y) {
71 ; CHECK-LABEL: @test5_pos_pos(
72 ; CHECK-NEXT:    [[C0:%.*]] = icmp sge i8 [[X:%.*]], 0
73 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
74 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i8 [[Y:%.*]], 0
75 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
76 ; CHECK-NEXT:    [[REM1:%.*]] = urem i8 [[X]], [[Y]]
77 ; CHECK-NEXT:    ret i8 [[REM1]]
79   %c0 = icmp sge i8 %x, 0
80   call void @llvm.assume(i1 %c0)
81   %c1 = icmp sge i8 %y, 0
82   call void @llvm.assume(i1 %c1)
84   %rem = srem i8 %x, %y
85   ret i8 %rem
87 define i8 @test6_pos_neg(i8 %x, i8 %y) {
88 ; CHECK-LABEL: @test6_pos_neg(
89 ; CHECK-NEXT:    [[C0:%.*]] = icmp sge i8 [[X:%.*]], 0
90 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
91 ; CHECK-NEXT:    [[C1:%.*]] = icmp sle i8 [[Y:%.*]], 0
92 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
93 ; CHECK-NEXT:    [[Y_NONNEG:%.*]] = sub i8 0, [[Y]]
94 ; CHECK-NEXT:    [[REM1:%.*]] = urem i8 [[X]], [[Y_NONNEG]]
95 ; CHECK-NEXT:    ret i8 [[REM1]]
97   %c0 = icmp sge i8 %x, 0
98   call void @llvm.assume(i1 %c0)
99   %c1 = icmp sle i8 %y, 0
100   call void @llvm.assume(i1 %c1)
102   %rem = srem i8 %x, %y
103   ret i8 %rem
105 define i8 @test7_neg_pos(i8 %x, i8 %y) {
106 ; CHECK-LABEL: @test7_neg_pos(
107 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i8 [[X:%.*]], 0
108 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
109 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i8 [[Y:%.*]], 0
110 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
111 ; CHECK-NEXT:    [[X_NONNEG:%.*]] = sub i8 0, [[X]]
112 ; CHECK-NEXT:    [[REM1:%.*]] = urem i8 [[X_NONNEG]], [[Y]]
113 ; CHECK-NEXT:    [[REM1_NEG:%.*]] = sub i8 0, [[REM1]]
114 ; CHECK-NEXT:    ret i8 [[REM1_NEG]]
116   %c0 = icmp sle i8 %x, 0
117   call void @llvm.assume(i1 %c0)
118   %c1 = icmp sge i8 %y, 0
119   call void @llvm.assume(i1 %c1)
121   %rem = srem i8 %x, %y
122   ret i8 %rem
124 define i8 @test8_neg_neg(i8 %x, i8 %y) {
125 ; CHECK-LABEL: @test8_neg_neg(
126 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i8 [[X:%.*]], 0
127 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
128 ; CHECK-NEXT:    [[C1:%.*]] = icmp sle i8 [[Y:%.*]], 0
129 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
130 ; CHECK-NEXT:    [[X_NONNEG:%.*]] = sub i8 0, [[X]]
131 ; CHECK-NEXT:    [[Y_NONNEG:%.*]] = sub i8 0, [[Y]]
132 ; CHECK-NEXT:    [[REM1:%.*]] = urem i8 [[X_NONNEG]], [[Y_NONNEG]]
133 ; CHECK-NEXT:    [[REM1_NEG:%.*]] = sub i8 0, [[REM1]]
134 ; CHECK-NEXT:    ret i8 [[REM1_NEG]]
136   %c0 = icmp sle i8 %x, 0
137   call void @llvm.assume(i1 %c0)
138   %c1 = icmp sle i8 %y, 0
139   call void @llvm.assume(i1 %c1)
141   %rem = srem i8 %x, %y
142   ret i8 %rem
145 ; After making remainder unsigned, can we narrow it?
146 define i16 @test9_narrow(i16 %x, i16 %y) {
147 ; CHECK-LABEL: @test9_narrow(
148 ; CHECK-NEXT:    [[C0:%.*]] = icmp ult i16 [[X:%.*]], 128
149 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
150 ; CHECK-NEXT:    [[C1:%.*]] = icmp ult i16 [[Y:%.*]], 128
151 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
152 ; CHECK-NEXT:    [[REM1_LHS_TRUNC:%.*]] = trunc i16 [[X]] to i8
153 ; CHECK-NEXT:    [[REM1_RHS_TRUNC:%.*]] = trunc i16 [[Y]] to i8
154 ; CHECK-NEXT:    [[REM12:%.*]] = urem i8 [[REM1_LHS_TRUNC]], [[REM1_RHS_TRUNC]]
155 ; CHECK-NEXT:    [[REM1_ZEXT:%.*]] = zext i8 [[REM12]] to i16
156 ; CHECK-NEXT:    ret i16 [[REM1_ZEXT]]
158   %c0 = icmp ult i16 %x, 128
159   call void @llvm.assume(i1 %c0)
160   %c1 = icmp ult i16 %y, 128
161   call void @llvm.assume(i1 %c1)
163   %rem = srem i16 %x, %y
164   ret i16 %rem
167 ; Ok, but what about narrowing srem in general?
169 ; If both operands are i15, it's uncontroversial - we can truncate to i16
170 define i64 @test11_i15_i15(i64 %x, i64 %y) {
171 ; CHECK-LABEL: @test11_i15_i15(
172 ; CHECK-NEXT:  entry:
173 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
174 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
175 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -16384
176 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
177 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
178 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
179 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -16384
180 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
181 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
182 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
183 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
184 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
185 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
187 entry:
188   %c0 = icmp sle i64 %x, 16383
189   call void @llvm.assume(i1 %c0)
190   %c1 = icmp sge i64 %x, -16384
191   call void @llvm.assume(i1 %c1)
193   %c2 = icmp sle i64 %y, 16383
194   call void @llvm.assume(i1 %c2)
195   %c3 = icmp sge i64 %y, -16384
196   call void @llvm.assume(i1 %c3)
198   %div = srem i64 %x, %y
199   ret i64 %div
202 ; But if operands are i16, we can only truncate to i32, because we can't
203 ; rule out UB of  i16 INT_MIN s/ i16 -1
204 define i64 @test12_i16_i16(i64 %x, i64 %y) {
205 ; CHECK-LABEL: @test12_i16_i16(
206 ; CHECK-NEXT:  entry:
207 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
208 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
209 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -32768
210 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
211 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
212 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
213 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -32768
214 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
215 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
216 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
217 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
218 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
219 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
221 entry:
222   %c0 = icmp sle i64 %x, 32767
223   call void @llvm.assume(i1 %c0)
224   %c1 = icmp sge i64 %x, -32768
225   call void @llvm.assume(i1 %c1)
227   %c2 = icmp sle i64 %y, 32767
228   call void @llvm.assume(i1 %c2)
229   %c3 = icmp sge i64 %y, -32768
230   call void @llvm.assume(i1 %c3)
232   %div = srem i64 %x, %y
233   ret i64 %div
236 ; But if divident is i16, and divisor is u15, then we know that i16 is UB-safe.
237 define i64 @test13_i16_u15(i64 %x, i64 %y) {
238 ; CHECK-LABEL: @test13_i16_u15(
239 ; CHECK-NEXT:  entry:
240 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
241 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
242 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -32768
243 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
244 ; CHECK-NEXT:    [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
245 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
246 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
247 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
248 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
249 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
250 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
252 entry:
253   %c0 = icmp sle i64 %x, 32767
254   call void @llvm.assume(i1 %c0)
255   %c1 = icmp sge i64 %x, -32768
256   call void @llvm.assume(i1 %c1)
258   %c2 = icmp ule i64 %y, 32767
259   call void @llvm.assume(i1 %c2)
261   %div = srem i64 %x, %y
262   ret i64 %div
265 ; And likewise, if we know that if the divident is never i16 INT_MIN,
266 ; we can truncate to i16.
267 define i64 @test14_i16safe_i16(i64 %x, i64 %y) {
268 ; CHECK-LABEL: @test14_i16safe_i16(
269 ; CHECK-NEXT:  entry:
270 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
271 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
272 ; CHECK-NEXT:    [[C1:%.*]] = icmp sgt i64 [[X]], -32768
273 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
274 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
275 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
276 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -32768
277 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
278 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
279 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
280 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
281 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
282 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
284 entry:
285   %c0 = icmp sle i64 %x, 32767
286   call void @llvm.assume(i1 %c0)
287   %c1 = icmp sgt i64 %x, -32768
288   call void @llvm.assume(i1 %c1)
290   %c2 = icmp sle i64 %y, 32767
291   call void @llvm.assume(i1 %c2)
292   %c3 = icmp sge i64 %y, -32768
293   call void @llvm.assume(i1 %c3)
295   %div = srem i64 %x, %y
296   ret i64 %div
299 ; Of course, both of the conditions can happen at once.
300 define i64 @test15_i16safe_u15(i64 %x, i64 %y) {
301 ; CHECK-LABEL: @test15_i16safe_u15(
302 ; CHECK-NEXT:  entry:
303 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
304 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
305 ; CHECK-NEXT:    [[C1:%.*]] = icmp sgt i64 [[X]], -32768
306 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
307 ; CHECK-NEXT:    [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
308 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
309 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
310 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
311 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
312 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
313 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
315 entry:
316   %c0 = icmp sle i64 %x, 32767
317   call void @llvm.assume(i1 %c0)
318   %c1 = icmp sgt i64 %x, -32768
319   call void @llvm.assume(i1 %c1)
321   %c2 = icmp ule i64 %y, 32767
322   call void @llvm.assume(i1 %c2)
324   %div = srem i64 %x, %y
325   ret i64 %div
328 ; We at most truncate to i8
329 define i64 @test16_i4_i4(i64 %x, i64 %y) {
330 ; CHECK-LABEL: @test16_i4_i4(
331 ; CHECK-NEXT:  entry:
332 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 3
333 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
334 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -4
335 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
336 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 3
337 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
338 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -4
339 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
340 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i8
341 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i8
342 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i8 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
343 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i8 [[DIV1]] to i64
344 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
346 entry:
347   %c0 = icmp sle i64 %x, 3
348   call void @llvm.assume(i1 %c0)
349   %c1 = icmp sge i64 %x, -4
350   call void @llvm.assume(i1 %c1)
352   %c2 = icmp sle i64 %y, 3
353   call void @llvm.assume(i1 %c2)
354   %c3 = icmp sge i64 %y, -4
355   call void @llvm.assume(i1 %c3)
357   %div = srem i64 %x, %y
358   ret i64 %div
361 ; And we round up to the powers of two
362 define i64 @test17_i9_i9(i64 %x, i64 %y) {
363 ; CHECK-LABEL: @test17_i9_i9(
364 ; CHECK-NEXT:  entry:
365 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 255
366 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
367 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -256
368 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
369 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 255
370 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
371 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -256
372 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
373 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
374 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
375 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
376 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
377 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
379 entry:
380   %c0 = icmp sle i64 %x, 255
381   call void @llvm.assume(i1 %c0)
382   %c1 = icmp sge i64 %x, -256
383   call void @llvm.assume(i1 %c1)
385   %c2 = icmp sle i64 %y, 255
386   call void @llvm.assume(i1 %c2)
387   %c3 = icmp sge i64 %y, -256
388   call void @llvm.assume(i1 %c3)
390   %div = srem i64 %x, %y
391   ret i64 %div
394 ; Don't widen the operation to the next power of two if it wasn't a power of two.
395 define i9 @test18_i9_i9(i9 %x, i9 %y) {
396 ; CHECK-LABEL: @test18_i9_i9(
397 ; CHECK-NEXT:  entry:
398 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i9 [[X:%.*]], 255
399 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
400 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i9 [[X]], -256
401 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
402 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i9 [[Y:%.*]], 255
403 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
404 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i9 [[Y]], -256
405 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
406 ; CHECK-NEXT:    [[DIV:%.*]] = srem i9 [[X]], [[Y]]
407 ; CHECK-NEXT:    ret i9 [[DIV]]
409 entry:
410   %c0 = icmp sle i9 %x, 255
411   call void @llvm.assume(i1 %c0)
412   %c1 = icmp sge i9 %x, -256
413   call void @llvm.assume(i1 %c1)
415   %c2 = icmp sle i9 %y, 255
416   call void @llvm.assume(i1 %c2)
417   %c3 = icmp sge i9 %y, -256
418   call void @llvm.assume(i1 %c3)
420   %div = srem i9 %x, %y
421   ret i9 %div
423 define i10 @test19_i10_i10(i10 %x, i10 %y) {
424 ; CHECK-LABEL: @test19_i10_i10(
425 ; CHECK-NEXT:  entry:
426 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i10 [[X:%.*]], 255
427 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
428 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i10 [[X]], -256
429 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
430 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i10 [[Y:%.*]], 255
431 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
432 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i10 [[Y]], -256
433 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
434 ; CHECK-NEXT:    [[DIV:%.*]] = srem i10 [[X]], [[Y]]
435 ; CHECK-NEXT:    ret i10 [[DIV]]
437 entry:
438   %c0 = icmp sle i10 %x, 255
439   call void @llvm.assume(i1 %c0)
440   %c1 = icmp sge i10 %x, -256
441   call void @llvm.assume(i1 %c1)
443   %c2 = icmp sle i10 %y, 255
444   call void @llvm.assume(i1 %c2)
445   %c3 = icmp sge i10 %y, -256
446   call void @llvm.assume(i1 %c3)
448   %div = srem i10 %x, %y
449   ret i10 %div
452 ; Note that we need to take the maximal bitwidth, in which both of the operands are representable!
453 define i64 @test20_i16_i18(i64 %x, i64 %y) {
454 ; CHECK-LABEL: @test20_i16_i18(
455 ; CHECK-NEXT:  entry:
456 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
457 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
458 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -16384
459 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
460 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 65535
461 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
462 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -65536
463 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
464 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
465 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
466 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
467 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
468 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
470 entry:
471   %c0 = icmp sle i64 %x, 16383
472   call void @llvm.assume(i1 %c0)
473   %c1 = icmp sge i64 %x, -16384
474   call void @llvm.assume(i1 %c1)
476   %c2 = icmp sle i64 %y, 65535
477   call void @llvm.assume(i1 %c2)
478   %c3 = icmp sge i64 %y, -65536
479   call void @llvm.assume(i1 %c3)
481   %div = srem i64 %x, %y
482   ret i64 %div
484 define i64 @test21_i18_i16(i64 %x, i64 %y) {
485 ; CHECK-LABEL: @test21_i18_i16(
486 ; CHECK-NEXT:  entry:
487 ; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 65535
488 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
489 ; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -65536
490 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
491 ; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
492 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
493 ; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -16384
494 ; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
495 ; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
496 ; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
497 ; CHECK-NEXT:    [[DIV1:%.*]] = srem i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
498 ; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
499 ; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
501 entry:
502   %c0 = icmp sle i64 %x, 65535
503   call void @llvm.assume(i1 %c0)
504   %c1 = icmp sge i64 %x, -65536
505   call void @llvm.assume(i1 %c1)
507   %c2 = icmp sle i64 %y, 16383
508   call void @llvm.assume(i1 %c2)
509   %c3 = icmp sge i64 %y, -16384
510   call void @llvm.assume(i1 %c3)
512   %div = srem i64 %x, %y
513   ret i64 %div