[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / test / Transforms / InstCombine / shift-logic.ll
blob437bc1688be45e9032f0abad3fdd32d539ade6e8
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -instcombine -S | FileCheck %s
4 define i8 @shl_and(i8 %x, i8 %y) {
5 ; CHECK-LABEL: @shl_and(
6 ; CHECK-NEXT:    [[TMP1:%.*]] = shl i8 [[X:%.*]], 5
7 ; CHECK-NEXT:    [[TMP2:%.*]] = shl i8 [[Y:%.*]], 2
8 ; CHECK-NEXT:    [[SH1:%.*]] = and i8 [[TMP1]], [[TMP2]]
9 ; CHECK-NEXT:    ret i8 [[SH1]]
11   %sh0 = shl i8 %x, 3
12   %r = and i8 %sh0, %y
13   %sh1 = shl i8 %r, 2
14   ret i8 %sh1
17 define <2 x i8> @shl_and_nonuniform(<2 x i8> %x, <2 x i8> %y) {
18 ; CHECK-LABEL: @shl_and_nonuniform(
19 ; CHECK-NEXT:    [[TMP1:%.*]] = shl <2 x i8> [[X:%.*]], <i8 5, i8 4>
20 ; CHECK-NEXT:    [[TMP2:%.*]] = shl <2 x i8> [[Y:%.*]], <i8 2, i8 0>
21 ; CHECK-NEXT:    [[SH1:%.*]] = and <2 x i8> [[TMP1]], [[TMP2]]
22 ; CHECK-NEXT:    ret <2 x i8> [[SH1]]
24   %sh0 = shl <2 x i8> %x, <i8 3, i8 4>
25   %r = and <2 x i8> %sh0, %y
26   %sh1 = shl <2 x i8> %r, <i8 2, i8 0>
27   ret <2 x i8> %sh1
30 define i16 @shl_or(i16 %x, i16 %py) {
31 ; CHECK-LABEL: @shl_or(
32 ; CHECK-NEXT:    [[Y:%.*]] = srem i16 [[PY:%.*]], 42
33 ; CHECK-NEXT:    [[TMP1:%.*]] = shl i16 [[X:%.*]], 12
34 ; CHECK-NEXT:    [[TMP2:%.*]] = shl nsw i16 [[Y]], 7
35 ; CHECK-NEXT:    [[SH1:%.*]] = or i16 [[TMP1]], [[TMP2]]
36 ; CHECK-NEXT:    ret i16 [[SH1]]
38   %y = srem i16 %py, 42 ; thwart complexity-based canonicalization
39   %sh0 = shl i16 %x, 5
40   %r = or i16 %y, %sh0
41   %sh1 = shl i16 %r, 7
42   ret i16 %sh1
45 define <2 x i16> @shl_or_undef(<2 x i16> %x, <2 x i16> %py) {
46 ; CHECK-LABEL: @shl_or_undef(
47 ; CHECK-NEXT:    [[Y:%.*]] = srem <2 x i16> [[PY:%.*]], <i16 42, i16 42>
48 ; CHECK-NEXT:    [[TMP1:%.*]] = shl <2 x i16> [[X:%.*]], <i16 12, i16 undef>
49 ; CHECK-NEXT:    [[TMP2:%.*]] = shl <2 x i16> [[Y]], <i16 7, i16 undef>
50 ; CHECK-NEXT:    [[SH1:%.*]] = or <2 x i16> [[TMP1]], [[TMP2]]
51 ; CHECK-NEXT:    ret <2 x i16> [[SH1]]
53   %y = srem <2 x i16> %py, <i16 42, i16 42> ; thwart complexity-based canonicalization
54   %sh0 = shl <2 x i16> %x, <i16 5, i16 undef>
55   %r = or <2 x i16> %y, %sh0
56   %sh1 = shl <2 x i16> %r, <i16 7, i16 undef>
57   ret <2 x i16> %sh1
60 define i32 @shl_xor(i32 %x, i32 %y) {
61 ; CHECK-LABEL: @shl_xor(
62 ; CHECK-NEXT:    [[TMP1:%.*]] = shl i32 [[X:%.*]], 12
63 ; CHECK-NEXT:    [[TMP2:%.*]] = shl i32 [[Y:%.*]], 7
64 ; CHECK-NEXT:    [[SH1:%.*]] = xor i32 [[TMP1]], [[TMP2]]
65 ; CHECK-NEXT:    ret i32 [[SH1]]
67   %sh0 = shl i32 %x, 5
68   %r = xor i32 %sh0, %y
69   %sh1 = shl i32 %r, 7
70   ret i32 %sh1
73 define <2 x i32> @shl_xor_nonuniform(<2 x i32> %x, <2 x i32> %y) {
74 ; CHECK-LABEL: @shl_xor_nonuniform(
75 ; CHECK-NEXT:    [[TMP1:%.*]] = shl <2 x i32> [[X:%.*]], <i32 12, i32 14>
76 ; CHECK-NEXT:    [[TMP2:%.*]] = shl <2 x i32> [[Y:%.*]], <i32 7, i32 8>
77 ; CHECK-NEXT:    [[SH1:%.*]] = xor <2 x i32> [[TMP1]], [[TMP2]]
78 ; CHECK-NEXT:    ret <2 x i32> [[SH1]]
80   %sh0 = shl <2 x i32> %x, <i32 5, i32 6>
81   %r = xor <2 x i32> %sh0, %y
82   %sh1 = shl <2 x i32> %r, <i32 7, i32 8>
83   ret <2 x i32> %sh1
86 define i64 @lshr_and(i64 %x, i64 %py) {
87 ; CHECK-LABEL: @lshr_and(
88 ; CHECK-NEXT:    [[Y:%.*]] = srem i64 [[PY:%.*]], 42
89 ; CHECK-NEXT:    [[TMP1:%.*]] = lshr i64 [[X:%.*]], 12
90 ; CHECK-NEXT:    [[TMP2:%.*]] = lshr i64 [[Y]], 7
91 ; CHECK-NEXT:    [[SH1:%.*]] = and i64 [[TMP1]], [[TMP2]]
92 ; CHECK-NEXT:    ret i64 [[SH1]]
94   %y = srem i64 %py, 42 ; thwart complexity-based canonicalization
95   %sh0 = lshr i64 %x, 5
96   %r = and i64 %y, %sh0
97   %sh1 = lshr i64 %r, 7
98   ret i64 %sh1
101 define <2 x i64> @lshr_and_undef(<2 x i64> %x, <2 x i64> %py) {
102 ; CHECK-LABEL: @lshr_and_undef(
103 ; CHECK-NEXT:    [[Y:%.*]] = srem <2 x i64> [[PY:%.*]], <i64 42, i64 42>
104 ; CHECK-NEXT:    [[TMP1:%.*]] = lshr <2 x i64> [[X:%.*]], <i64 12, i64 undef>
105 ; CHECK-NEXT:    [[TMP2:%.*]] = lshr <2 x i64> [[Y]], <i64 7, i64 undef>
106 ; CHECK-NEXT:    [[SH1:%.*]] = and <2 x i64> [[TMP1]], [[TMP2]]
107 ; CHECK-NEXT:    ret <2 x i64> [[SH1]]
109   %y = srem <2 x i64> %py, <i64 42, i64 42> ; thwart complexity-based canonicalization
110   %sh0 = lshr <2 x i64> %x, <i64 5, i64 undef>
111   %r = and <2 x i64> %y, %sh0
112   %sh1 = lshr <2 x i64> %r, <i64 7, i64 undef>
113   ret <2 x i64> %sh1
116 define <4 x i32> @lshr_or(<4 x i32> %x, <4 x i32> %y) {
117 ; CHECK-LABEL: @lshr_or(
118 ; CHECK-NEXT:    [[TMP1:%.*]] = lshr <4 x i32> [[X:%.*]], <i32 12, i32 12, i32 12, i32 12>
119 ; CHECK-NEXT:    [[TMP2:%.*]] = lshr <4 x i32> [[Y:%.*]], <i32 7, i32 7, i32 7, i32 7>
120 ; CHECK-NEXT:    [[SH1:%.*]] = or <4 x i32> [[TMP1]], [[TMP2]]
121 ; CHECK-NEXT:    ret <4 x i32> [[SH1]]
123   %sh0 = lshr <4 x i32> %x, <i32 5, i32 5, i32 5, i32 5>
124   %r = or <4 x i32> %sh0, %y
125   %sh1 = lshr <4 x i32> %r, <i32 7, i32 7, i32 7, i32 7>
126   ret <4 x i32> %sh1
129 define <8 x i16> @lshr_xor(<8 x i16> %x, <8 x i16> %py) {
130 ; CHECK-LABEL: @lshr_xor(
131 ; CHECK-NEXT:    [[Y:%.*]] = srem <8 x i16> [[PY:%.*]], <i16 42, i16 42, i16 42, i16 42, i16 42, i16 42, i16 42, i16 42>
132 ; CHECK-NEXT:    [[TMP1:%.*]] = lshr <8 x i16> [[X:%.*]], <i16 12, i16 12, i16 12, i16 12, i16 12, i16 12, i16 12, i16 12>
133 ; CHECK-NEXT:    [[TMP2:%.*]] = lshr <8 x i16> [[Y]], <i16 7, i16 7, i16 7, i16 7, i16 7, i16 7, i16 7, i16 7>
134 ; CHECK-NEXT:    [[SH1:%.*]] = xor <8 x i16> [[TMP1]], [[TMP2]]
135 ; CHECK-NEXT:    ret <8 x i16> [[SH1]]
137   %y = srem <8 x i16> %py, <i16 42, i16 42, i16 42, i16 42, i16 42, i16 42, i16 42, i16 -42> ; thwart complexity-based canonicalization
138   %sh0 = lshr <8 x i16> %x, <i16 5, i16 5, i16 5, i16 5, i16 5, i16 5, i16 5, i16 5>
139   %r = xor <8 x i16> %y, %sh0
140   %sh1 = lshr <8 x i16> %r, <i16 7, i16 7, i16 7, i16 7, i16 7, i16 7, i16 7, i16 7>
141   ret <8 x i16> %sh1
144 define <16 x i8> @ashr_and(<16 x i8> %x, <16 x i8> %py, <16 x i8> %pz) {
145 ; CHECK-LABEL: @ashr_and(
146 ; CHECK-NEXT:    [[Y:%.*]] = srem <16 x i8> [[PY:%.*]], [[PZ:%.*]]
147 ; CHECK-NEXT:    [[TMP1:%.*]] = ashr <16 x i8> [[X:%.*]], <i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5, i8 5>
148 ; CHECK-NEXT:    [[TMP2:%.*]] = ashr <16 x i8> [[Y]], <i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2>
149 ; CHECK-NEXT:    [[SH1:%.*]] = and <16 x i8> [[TMP1]], [[TMP2]]
150 ; CHECK-NEXT:    ret <16 x i8> [[SH1]]
152   %y = srem <16 x i8> %py, %pz ; thwart complexity-based canonicalization
153   %sh0 = ashr <16 x i8> %x, <i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3, i8 3>
154   %r = and <16 x i8> %y, %sh0
155   %sh1 = ashr <16 x i8> %r, <i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2, i8 2>
156   ret <16 x i8> %sh1
159 define <2 x i64> @ashr_or(<2 x i64> %x, <2 x i64> %y) {
160 ; CHECK-LABEL: @ashr_or(
161 ; CHECK-NEXT:    [[TMP1:%.*]] = ashr <2 x i64> [[X:%.*]], <i64 12, i64 12>
162 ; CHECK-NEXT:    [[TMP2:%.*]] = ashr <2 x i64> [[Y:%.*]], <i64 7, i64 7>
163 ; CHECK-NEXT:    [[SH1:%.*]] = or <2 x i64> [[TMP1]], [[TMP2]]
164 ; CHECK-NEXT:    ret <2 x i64> [[SH1]]
166   %sh0 = ashr <2 x i64> %x, <i64 5, i64 5>
167   %r = or <2 x i64> %sh0, %y
168   %sh1 = ashr <2 x i64> %r, <i64 7, i64 7>
169   ret <2 x i64> %sh1
172 define i32 @ashr_xor(i32 %x, i32 %py) {
173 ; CHECK-LABEL: @ashr_xor(
174 ; CHECK-NEXT:    [[Y:%.*]] = srem i32 [[PY:%.*]], 42
175 ; CHECK-NEXT:    [[TMP1:%.*]] = ashr i32 [[X:%.*]], 12
176 ; CHECK-NEXT:    [[TMP2:%.*]] = ashr i32 [[Y]], 7
177 ; CHECK-NEXT:    [[SH1:%.*]] = xor i32 [[TMP1]], [[TMP2]]
178 ; CHECK-NEXT:    ret i32 [[SH1]]
180   %y = srem i32 %py, 42 ; thwart complexity-based canonicalization
181   %sh0 = ashr i32 %x, 5
182   %r = xor i32 %y, %sh0
183   %sh1 = ashr i32 %r, 7
184   ret i32 %sh1
187 define i32 @shr_mismatch_xor(i32 %x, i32 %y) {
188 ; CHECK-LABEL: @shr_mismatch_xor(
189 ; CHECK-NEXT:    [[SH0:%.*]] = ashr i32 [[X:%.*]], 5
190 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[SH0]], [[Y:%.*]]
191 ; CHECK-NEXT:    [[SH1:%.*]] = lshr i32 [[R]], 7
192 ; CHECK-NEXT:    ret i32 [[SH1]]
194   %sh0 = ashr i32 %x, 5
195   %r = xor i32 %y, %sh0
196   %sh1 = lshr i32 %r, 7
197   ret i32 %sh1
200 define i32 @ashr_overshift_xor(i32 %x, i32 %y) {
201 ; CHECK-LABEL: @ashr_overshift_xor(
202 ; CHECK-NEXT:    [[SH0:%.*]] = ashr i32 [[X:%.*]], 15
203 ; CHECK-NEXT:    [[R:%.*]] = xor i32 [[SH0]], [[Y:%.*]]
204 ; CHECK-NEXT:    [[SH1:%.*]] = ashr i32 [[R]], 17
205 ; CHECK-NEXT:    ret i32 [[SH1]]
207   %sh0 = ashr i32 %x, 15
208   %r = xor i32 %y, %sh0
209   %sh1 = ashr i32 %r, 17
210   ret i32 %sh1
213 define <2 x i32> @ashr_undef_undef_xor(<2 x i32> %x, <2 x i32> %y) {
214 ; CHECK-LABEL: @ashr_undef_undef_xor(
215 ; CHECK-NEXT:    [[SH0:%.*]] = ashr <2 x i32> [[X:%.*]], <i32 15, i32 undef>
216 ; CHECK-NEXT:    [[R:%.*]] = xor <2 x i32> [[SH0]], [[Y:%.*]]
217 ; CHECK-NEXT:    [[SH1:%.*]] = ashr <2 x i32> [[R]], <i32 undef, i32 17>
218 ; CHECK-NEXT:    ret <2 x i32> [[SH1]]
220   %sh0 = ashr <2 x i32> %x, <i32 15, i32 undef>
221   %r = xor <2 x i32> %y, %sh0
222   %sh1 = ashr <2 x i32> %r, <i32 undef, i32 17>
223   ret <2 x i32> %sh1
226 define i32 @lshr_or_extra_use(i32 %x, i32 %y, i32* %p) {
227 ; CHECK-LABEL: @lshr_or_extra_use(
228 ; CHECK-NEXT:    [[SH0:%.*]] = lshr i32 [[X:%.*]], 5
229 ; CHECK-NEXT:    [[R:%.*]] = or i32 [[SH0]], [[Y:%.*]]
230 ; CHECK-NEXT:    store i32 [[R]], i32* [[P:%.*]], align 4
231 ; CHECK-NEXT:    [[SH1:%.*]] = lshr i32 [[R]], 7
232 ; CHECK-NEXT:    ret i32 [[SH1]]
234   %sh0 = lshr i32 %x, 5
235   %r = or i32 %sh0, %y
236   store i32 %r, i32* %p
237   %sh1 = lshr i32 %r, 7
238   ret i32 %sh1
241 ; Avoid crashing on constant expressions.
243 @g = external global i32
245 define i32 @PR44028(i32 %x) {
246 ; CHECK-LABEL: @PR44028(
247 ; CHECK-NEXT:    [[SH1:%.*]] = ashr exact i32 [[X:%.*]], 16
248 ; CHECK-NEXT:    [[T0:%.*]] = xor i32 [[SH1]], shl (i32 ptrtoint (i32* @g to i32), i32 16)
249 ; CHECK-NEXT:    [[T27:%.*]] = ashr exact i32 [[T0]], 16
250 ; CHECK-NEXT:    ret i32 [[T27]]
252   %sh1 = ashr exact i32 %x, 16
253   %t0 = xor i32 %sh1, shl (i32 ptrtoint (i32* @g to i32), i32 16)
254   %t27 = ashr exact i32 %t0, 16
255   ret i32 %t27