1 ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
2 ; RUN: llc < %s -O3 -mtriple=x86_64-unknown-unknown -mcpu=core2 | FileCheck %s -check-prefix=X64
3 ; RUN: llc < %s -O3 -mtriple=i686-unknown-unknown -mcpu=core2 | FileCheck %s -check-prefix=X32
5 ; @simple is the most basic chain of address induction variables. Chaining
6 ; saves at least one register and avoids complex addressing and setup
10 ; no other address computation in the preheader
11 ; no complex address modes
13 ; no expensive address computation in the preheader
14 ; no complex address modes
16 define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
18 ; X64: # %bb.0: # %entry
19 ; X64-NEXT: movslq %edx, %rcx
20 ; X64-NEXT: shlq $2, %rcx
21 ; X64-NEXT: xorl %eax, %eax
22 ; X64-NEXT: .p2align 4, 0x90
23 ; X64-NEXT: .LBB0_1: # %loop
24 ; X64-NEXT: # =>This Inner Loop Header: Depth=1
25 ; X64-NEXT: addl (%rdi), %eax
26 ; X64-NEXT: leaq (%rdi,%rcx), %r8
27 ; X64-NEXT: addl (%rdi,%rcx), %eax
28 ; X64-NEXT: leaq (%r8,%rcx), %rdx
29 ; X64-NEXT: addl (%rcx,%r8), %eax
30 ; X64-NEXT: addl (%rcx,%rdx), %eax
31 ; X64-NEXT: addq %rcx, %rdx
32 ; X64-NEXT: addq %rcx, %rdx
33 ; X64-NEXT: movq %rdx, %rdi
34 ; X64-NEXT: cmpq %rsi, %rdx
35 ; X64-NEXT: jne .LBB0_1
36 ; X64-NEXT: # %bb.2: # %exit
40 ; X32: # %bb.0: # %entry
41 ; X32-NEXT: pushl %ebx
42 ; X32-NEXT: pushl %edi
43 ; X32-NEXT: pushl %esi
44 ; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
45 ; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
46 ; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
47 ; X32-NEXT: shll $2, %edx
48 ; X32-NEXT: xorl %eax, %eax
49 ; X32-NEXT: .p2align 4, 0x90
50 ; X32-NEXT: .LBB0_1: # %loop
51 ; X32-NEXT: # =>This Inner Loop Header: Depth=1
52 ; X32-NEXT: addl (%esi), %eax
53 ; X32-NEXT: leal (%esi,%edx), %edi
54 ; X32-NEXT: addl (%esi,%edx), %eax
55 ; X32-NEXT: leal (%edi,%edx), %ebx
56 ; X32-NEXT: addl (%edx,%edi), %eax
57 ; X32-NEXT: addl (%edx,%ebx), %eax
58 ; X32-NEXT: addl %edx, %ebx
59 ; X32-NEXT: addl %edx, %ebx
60 ; X32-NEXT: movl %ebx, %esi
61 ; X32-NEXT: cmpl %ecx, %ebx
62 ; X32-NEXT: jne .LBB0_1
63 ; X32-NEXT: # %bb.2: # %exit
71 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
72 %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
73 %v = load i32, i32* %iv
74 %iv1 = getelementptr inbounds i32, i32* %iv, i32 %x
75 %v1 = load i32, i32* %iv1
76 %iv2 = getelementptr inbounds i32, i32* %iv1, i32 %x
77 %v2 = load i32, i32* %iv2
78 %iv3 = getelementptr inbounds i32, i32* %iv2, i32 %x
79 %v3 = load i32, i32* %iv3
81 %s2 = add i32 %s1, %v1
82 %s3 = add i32 %s2, %v2
83 %s4 = add i32 %s3, %v3
84 %iv4 = getelementptr inbounds i32, i32* %iv3, i32 %x
85 %cmp = icmp eq i32* %iv4, %b
86 br i1 %cmp, label %exit, label %loop
91 ; @user is not currently chained because the IV is live across memory ops.
93 ; expensive address computation in the preheader
94 ; complex address modes
95 define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
97 ; X64: # %bb.0: # %entry
98 ; X64-NEXT: movslq %edx, %rcx
99 ; X64-NEXT: movq %rcx, %rdx
100 ; X64-NEXT: shlq $4, %rdx
101 ; X64-NEXT: leaq (,%rcx,4), %rax
102 ; X64-NEXT: leaq (%rax,%rax,2), %r8
103 ; X64-NEXT: xorl %eax, %eax
104 ; X64-NEXT: .p2align 4, 0x90
105 ; X64-NEXT: .LBB1_1: # %loop
106 ; X64-NEXT: # =>This Inner Loop Header: Depth=1
107 ; X64-NEXT: addl (%rdi), %eax
108 ; X64-NEXT: addl (%rdi,%rcx,4), %eax
109 ; X64-NEXT: addl (%rdi,%rcx,8), %eax
110 ; X64-NEXT: addl (%rdi,%r8), %eax
111 ; X64-NEXT: movl %eax, (%rdi)
112 ; X64-NEXT: addq %rdx, %rdi
113 ; X64-NEXT: cmpq %rsi, %rdi
114 ; X64-NEXT: jne .LBB1_1
115 ; X64-NEXT: # %bb.2: # %exit
119 ; X32: # %bb.0: # %entry
120 ; X32-NEXT: pushl %ebx
121 ; X32-NEXT: pushl %edi
122 ; X32-NEXT: pushl %esi
123 ; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
124 ; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
125 ; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
126 ; X32-NEXT: movl %ecx, %edi
127 ; X32-NEXT: shll $4, %edi
128 ; X32-NEXT: leal (,%ecx,4), %eax
129 ; X32-NEXT: leal (%eax,%eax,2), %ebx
130 ; X32-NEXT: xorl %eax, %eax
131 ; X32-NEXT: .p2align 4, 0x90
132 ; X32-NEXT: .LBB1_1: # %loop
133 ; X32-NEXT: # =>This Inner Loop Header: Depth=1
134 ; X32-NEXT: addl (%esi), %eax
135 ; X32-NEXT: addl (%esi,%ecx,4), %eax
136 ; X32-NEXT: addl (%esi,%ecx,8), %eax
137 ; X32-NEXT: addl (%esi,%ebx), %eax
138 ; X32-NEXT: movl %eax, (%esi)
139 ; X32-NEXT: addl %edi, %esi
140 ; X32-NEXT: cmpl %edx, %esi
141 ; X32-NEXT: jne .LBB1_1
142 ; X32-NEXT: # %bb.2: # %exit
143 ; X32-NEXT: popl %esi
144 ; X32-NEXT: popl %edi
145 ; X32-NEXT: popl %ebx
150 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
151 %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
152 %v = load i32, i32* %iv
153 %iv1 = getelementptr inbounds i32, i32* %iv, i32 %x
154 %v1 = load i32, i32* %iv1
155 %iv2 = getelementptr inbounds i32, i32* %iv1, i32 %x
156 %v2 = load i32, i32* %iv2
157 %iv3 = getelementptr inbounds i32, i32* %iv2, i32 %x
158 %v3 = load i32, i32* %iv3
160 %s2 = add i32 %s1, %v1
161 %s3 = add i32 %s2, %v2
162 %s4 = add i32 %s3, %v3
163 %iv4 = getelementptr inbounds i32, i32* %iv3, i32 %x
164 store i32 %s4, i32* %iv
165 %cmp = icmp eq i32* %iv4, %b
166 br i1 %cmp, label %exit, label %loop
171 ; @extrastride is a slightly more interesting case of a single
172 ; complete chain with multiple strides. The test case IR is what LSR
173 ; used to do, and exactly what we don't want to do. LSR's new IV
174 ; chaining feature should now undo the damage.
176 ; We currently don't handle this on X64 because the sexts cause
177 ; strange increment expressions like this:
178 ; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
180 ; For x32, no spills in the preheader, no complex address modes, no reloads.
182 define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
183 ; X64-LABEL: extrastride:
184 ; X64: # %bb.0: # %entry
185 ; X64-NEXT: pushq %rbp
186 ; X64-NEXT: pushq %r14
187 ; X64-NEXT: pushq %rbx
188 ; X64-NEXT: # kill: def $ecx killed $ecx def $rcx
189 ; X64-NEXT: # kill: def $esi killed $esi def $rsi
190 ; X64-NEXT: testl %r9d, %r9d
191 ; X64-NEXT: je .LBB2_3
192 ; X64-NEXT: # %bb.1: # %for.body.lr.ph
193 ; X64-NEXT: leal (%rsi,%rsi), %r14d
194 ; X64-NEXT: leal (%rsi,%rsi,2), %ebx
195 ; X64-NEXT: addl %esi, %ecx
196 ; X64-NEXT: leal (,%rsi,4), %eax
197 ; X64-NEXT: leal (%rcx,%rsi,4), %ebp
198 ; X64-NEXT: movslq %eax, %r10
199 ; X64-NEXT: movslq %ebx, %r11
200 ; X64-NEXT: movslq %r14d, %rbx
201 ; X64-NEXT: movslq %esi, %rsi
202 ; X64-NEXT: movslq %r8d, %rcx
203 ; X64-NEXT: shlq $2, %rcx
204 ; X64-NEXT: movslq %ebp, %rax
205 ; X64-NEXT: .p2align 4, 0x90
206 ; X64-NEXT: .LBB2_2: # %for.body
207 ; X64-NEXT: # =>This Inner Loop Header: Depth=1
208 ; X64-NEXT: movl (%rdi,%rsi), %ebp
209 ; X64-NEXT: addl (%rdi), %ebp
210 ; X64-NEXT: addl (%rdi,%rbx), %ebp
211 ; X64-NEXT: addl (%rdi,%r11), %ebp
212 ; X64-NEXT: addl (%rdi,%r10), %ebp
213 ; X64-NEXT: movl %ebp, (%rdx)
214 ; X64-NEXT: addq %rax, %rdi
215 ; X64-NEXT: addq %rcx, %rdx
216 ; X64-NEXT: decl %r9d
217 ; X64-NEXT: jne .LBB2_2
218 ; X64-NEXT: .LBB2_3: # %for.end
219 ; X64-NEXT: popq %rbx
220 ; X64-NEXT: popq %r14
221 ; X64-NEXT: popq %rbp
224 ; X32-LABEL: extrastride:
225 ; X32: # %bb.0: # %entry
226 ; X32-NEXT: pushl %ebp
227 ; X32-NEXT: pushl %ebx
228 ; X32-NEXT: pushl %edi
229 ; X32-NEXT: pushl %esi
230 ; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
231 ; X32-NEXT: testl %eax, %eax
232 ; X32-NEXT: je .LBB2_3
233 ; X32-NEXT: # %bb.1: # %for.body.lr.ph
234 ; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
235 ; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
236 ; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
237 ; X32-NEXT: movl {{[0-9]+}}(%esp), %ebx
238 ; X32-NEXT: movl {{[0-9]+}}(%esp), %edi
239 ; X32-NEXT: addl %esi, %edi
240 ; X32-NEXT: shll $2, %ecx
241 ; X32-NEXT: .p2align 4, 0x90
242 ; X32-NEXT: .LBB2_2: # %for.body
243 ; X32-NEXT: # =>This Inner Loop Header: Depth=1
244 ; X32-NEXT: movl (%ebx,%esi), %ebp
245 ; X32-NEXT: addl (%ebx), %ebp
246 ; X32-NEXT: addl %esi, %ebx
247 ; X32-NEXT: addl (%esi,%ebx), %ebp
248 ; X32-NEXT: addl %esi, %ebx
249 ; X32-NEXT: addl (%esi,%ebx), %ebp
250 ; X32-NEXT: addl %esi, %ebx
251 ; X32-NEXT: addl (%esi,%ebx), %ebp
252 ; X32-NEXT: movl %ebp, (%edx)
253 ; X32-NEXT: addl %esi, %ebx
254 ; X32-NEXT: addl %edi, %ebx
255 ; X32-NEXT: addl %ecx, %edx
256 ; X32-NEXT: decl %eax
257 ; X32-NEXT: jne .LBB2_2
258 ; X32-NEXT: .LBB2_3: # %for.end
259 ; X32-NEXT: popl %esi
260 ; X32-NEXT: popl %edi
261 ; X32-NEXT: popl %ebx
262 ; X32-NEXT: popl %ebp
265 %cmp8 = icmp eq i32 %z, 0
266 br i1 %cmp8, label %for.end, label %for.body.lr.ph
268 for.body.lr.ph: ; preds = %entry
269 %add.ptr.sum = shl i32 %main_stride, 1 ; s*2
270 %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
271 %add.ptr2.sum = add i32 %x, %main_stride ; s + x
272 %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
273 %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
276 for.body: ; preds = %for.body.lr.ph, %for.body
277 %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
278 %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
279 %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
280 %0 = bitcast i8* %main.addr.011 to i32*
281 %1 = load i32, i32* %0, align 4
282 %add.ptr = getelementptr inbounds i8, i8* %main.addr.011, i32 %main_stride
283 %2 = bitcast i8* %add.ptr to i32*
284 %3 = load i32, i32* %2, align 4
285 %add.ptr1 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr.sum
286 %4 = bitcast i8* %add.ptr1 to i32*
287 %5 = load i32, i32* %4, align 4
288 %add.ptr2 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr1.sum
289 %6 = bitcast i8* %add.ptr2 to i32*
290 %7 = load i32, i32* %6, align 4
291 %add.ptr3 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr4.sum
292 %8 = bitcast i8* %add.ptr3 to i32*
293 %9 = load i32, i32* %8, align 4
294 %add = add i32 %3, %1
295 %add4 = add i32 %add, %5
296 %add5 = add i32 %add4, %7
297 %add6 = add i32 %add5, %9
298 store i32 %add6, i32* %res.addr.09, align 4
299 %add.ptr6 = getelementptr inbounds i8, i8* %main.addr.011, i32 %add.ptr3.sum
300 %add.ptr7 = getelementptr inbounds i32, i32* %res.addr.09, i32 %y
301 %inc = add i32 %i.010, 1
302 %cmp = icmp eq i32 %inc, %z
303 br i1 %cmp, label %for.end, label %for.body
305 for.end: ; preds = %for.body, %entry
309 ; @foldedidx is an unrolled variant of this loop:
310 ; for (unsigned long i = 0; i < len; i += s) {
311 ; c[i] = a[i] + b[i];
313 ; where 's' can be folded into the addressing mode.
314 ; Consequently, we should *not* form any chains.
316 define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
317 ; X64-LABEL: foldedidx:
318 ; X64: # %bb.0: # %entry
319 ; X64-NEXT: movl $3, %eax
320 ; X64-NEXT: .p2align 4, 0x90
321 ; X64-NEXT: .LBB3_1: # %for.body
322 ; X64-NEXT: # =>This Inner Loop Header: Depth=1
323 ; X64-NEXT: movzbl -3(%rdi,%rax), %r8d
324 ; X64-NEXT: movzbl -3(%rsi,%rax), %ecx
325 ; X64-NEXT: addl %r8d, %ecx
326 ; X64-NEXT: movb %cl, -3(%rdx,%rax)
327 ; X64-NEXT: movzbl -2(%rdi,%rax), %r8d
328 ; X64-NEXT: movzbl -2(%rsi,%rax), %ecx
329 ; X64-NEXT: addl %r8d, %ecx
330 ; X64-NEXT: movb %cl, -2(%rdx,%rax)
331 ; X64-NEXT: movzbl -1(%rdi,%rax), %r8d
332 ; X64-NEXT: movzbl -1(%rsi,%rax), %ecx
333 ; X64-NEXT: addl %r8d, %ecx
334 ; X64-NEXT: movb %cl, -1(%rdx,%rax)
335 ; X64-NEXT: movzbl (%rdi,%rax), %r8d
336 ; X64-NEXT: movzbl (%rsi,%rax), %ecx
337 ; X64-NEXT: addl %r8d, %ecx
338 ; X64-NEXT: movb %cl, (%rdx,%rax)
339 ; X64-NEXT: addq $4, %rax
340 ; X64-NEXT: cmpl $403, %eax # imm = 0x193
341 ; X64-NEXT: jne .LBB3_1
342 ; X64-NEXT: # %bb.2: # %for.end
345 ; X32-LABEL: foldedidx:
346 ; X32: # %bb.0: # %entry
347 ; X32-NEXT: pushl %ebx
348 ; X32-NEXT: pushl %edi
349 ; X32-NEXT: pushl %esi
350 ; X32-NEXT: movl $3, %eax
351 ; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
352 ; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
353 ; X32-NEXT: movl {{[0-9]+}}(%esp), %esi
354 ; X32-NEXT: .p2align 4, 0x90
355 ; X32-NEXT: .LBB3_1: # %for.body
356 ; X32-NEXT: # =>This Inner Loop Header: Depth=1
357 ; X32-NEXT: movzbl -3(%esi,%eax), %edi
358 ; X32-NEXT: movzbl -3(%edx,%eax), %ebx
359 ; X32-NEXT: addl %edi, %ebx
360 ; X32-NEXT: movb %bl, -3(%ecx,%eax)
361 ; X32-NEXT: movzbl -2(%esi,%eax), %edi
362 ; X32-NEXT: movzbl -2(%edx,%eax), %ebx
363 ; X32-NEXT: addl %edi, %ebx
364 ; X32-NEXT: movb %bl, -2(%ecx,%eax)
365 ; X32-NEXT: movzbl -1(%esi,%eax), %edi
366 ; X32-NEXT: movzbl -1(%edx,%eax), %ebx
367 ; X32-NEXT: addl %edi, %ebx
368 ; X32-NEXT: movb %bl, -1(%ecx,%eax)
369 ; X32-NEXT: movzbl (%esi,%eax), %edi
370 ; X32-NEXT: movzbl (%edx,%eax), %ebx
371 ; X32-NEXT: addl %edi, %ebx
372 ; X32-NEXT: movb %bl, (%ecx,%eax)
373 ; X32-NEXT: addl $4, %eax
374 ; X32-NEXT: cmpl $403, %eax # imm = 0x193
375 ; X32-NEXT: jne .LBB3_1
376 ; X32-NEXT: # %bb.2: # %for.end
377 ; X32-NEXT: popl %esi
378 ; X32-NEXT: popl %edi
379 ; X32-NEXT: popl %ebx
384 for.body: ; preds = %for.body, %entry
385 %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
386 %arrayidx = getelementptr inbounds i8, i8* %a, i32 %i.07
387 %0 = load i8, i8* %arrayidx, align 1
388 %conv5 = zext i8 %0 to i32
389 %arrayidx1 = getelementptr inbounds i8, i8* %b, i32 %i.07
390 %1 = load i8, i8* %arrayidx1, align 1
391 %conv26 = zext i8 %1 to i32
392 %add = add nsw i32 %conv26, %conv5
393 %conv3 = trunc i32 %add to i8
394 %arrayidx4 = getelementptr inbounds i8, i8* %c, i32 %i.07
395 store i8 %conv3, i8* %arrayidx4, align 1
396 %inc1 = or i32 %i.07, 1
397 %arrayidx.1 = getelementptr inbounds i8, i8* %a, i32 %inc1
398 %2 = load i8, i8* %arrayidx.1, align 1
399 %conv5.1 = zext i8 %2 to i32
400 %arrayidx1.1 = getelementptr inbounds i8, i8* %b, i32 %inc1
401 %3 = load i8, i8* %arrayidx1.1, align 1
402 %conv26.1 = zext i8 %3 to i32
403 %add.1 = add nsw i32 %conv26.1, %conv5.1
404 %conv3.1 = trunc i32 %add.1 to i8
405 %arrayidx4.1 = getelementptr inbounds i8, i8* %c, i32 %inc1
406 store i8 %conv3.1, i8* %arrayidx4.1, align 1
407 %inc.12 = or i32 %i.07, 2
408 %arrayidx.2 = getelementptr inbounds i8, i8* %a, i32 %inc.12
409 %4 = load i8, i8* %arrayidx.2, align 1
410 %conv5.2 = zext i8 %4 to i32
411 %arrayidx1.2 = getelementptr inbounds i8, i8* %b, i32 %inc.12
412 %5 = load i8, i8* %arrayidx1.2, align 1
413 %conv26.2 = zext i8 %5 to i32
414 %add.2 = add nsw i32 %conv26.2, %conv5.2
415 %conv3.2 = trunc i32 %add.2 to i8
416 %arrayidx4.2 = getelementptr inbounds i8, i8* %c, i32 %inc.12
417 store i8 %conv3.2, i8* %arrayidx4.2, align 1
418 %inc.23 = or i32 %i.07, 3
419 %arrayidx.3 = getelementptr inbounds i8, i8* %a, i32 %inc.23
420 %6 = load i8, i8* %arrayidx.3, align 1
421 %conv5.3 = zext i8 %6 to i32
422 %arrayidx1.3 = getelementptr inbounds i8, i8* %b, i32 %inc.23
423 %7 = load i8, i8* %arrayidx1.3, align 1
424 %conv26.3 = zext i8 %7 to i32
425 %add.3 = add nsw i32 %conv26.3, %conv5.3
426 %conv3.3 = trunc i32 %add.3 to i8
427 %arrayidx4.3 = getelementptr inbounds i8, i8* %c, i32 %inc.23
428 store i8 %conv3.3, i8* %arrayidx4.3, align 1
429 %inc.3 = add nsw i32 %i.07, 4
430 %exitcond.3 = icmp eq i32 %inc.3, 400
431 br i1 %exitcond.3, label %for.end, label %for.body
433 for.end: ; preds = %for.body
437 ; @multioper tests instructions with multiple IV user operands. We
438 ; should be able to chain them independent of each other.
440 define void @multioper(i32* %a, i32 %n) nounwind {
441 ; X64-LABEL: multioper:
442 ; X64: # %bb.0: # %entry
443 ; X64-NEXT: xorl %eax, %eax
444 ; X64-NEXT: .p2align 4, 0x90
445 ; X64-NEXT: .LBB4_1: # %for.body
446 ; X64-NEXT: # =>This Inner Loop Header: Depth=1
447 ; X64-NEXT: movl %eax, (%rdi,%rax,4)
448 ; X64-NEXT: leal 1(%rax), %ecx
449 ; X64-NEXT: movl %ecx, 4(%rdi,%rax,4)
450 ; X64-NEXT: leal 2(%rax), %ecx
451 ; X64-NEXT: movl %ecx, 8(%rdi,%rax,4)
452 ; X64-NEXT: leal 3(%rax), %ecx
453 ; X64-NEXT: movl %ecx, 12(%rdi,%rax,4)
454 ; X64-NEXT: addq $4, %rax
455 ; X64-NEXT: cmpl %esi, %eax
456 ; X64-NEXT: jl .LBB4_1
457 ; X64-NEXT: # %bb.2: # %exit
460 ; X32-LABEL: multioper:
461 ; X32: # %bb.0: # %entry
462 ; X32-NEXT: pushl %esi
463 ; X32-NEXT: xorl %eax, %eax
464 ; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
465 ; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
466 ; X32-NEXT: .p2align 4, 0x90
467 ; X32-NEXT: .LBB4_1: # %for.body
468 ; X32-NEXT: # =>This Inner Loop Header: Depth=1
469 ; X32-NEXT: movl %eax, (%edx,%eax,4)
470 ; X32-NEXT: leal 1(%eax), %esi
471 ; X32-NEXT: movl %esi, 4(%edx,%eax,4)
472 ; X32-NEXT: leal 2(%eax), %esi
473 ; X32-NEXT: movl %esi, 8(%edx,%eax,4)
474 ; X32-NEXT: leal 3(%eax), %esi
475 ; X32-NEXT: movl %esi, 12(%edx,%eax,4)
476 ; X32-NEXT: addl $4, %eax
477 ; X32-NEXT: cmpl %ecx, %eax
478 ; X32-NEXT: jl .LBB4_1
479 ; X32-NEXT: # %bb.2: # %exit
480 ; X32-NEXT: popl %esi
486 %p = phi i32* [ %p.next, %for.body ], [ %a, %entry ]
487 %i = phi i32 [ %inc4, %for.body ], [ 0, %entry ]
488 store i32 %i, i32* %p, align 4
490 %add.ptr.i1 = getelementptr inbounds i32, i32* %p, i32 1
491 store i32 %inc1, i32* %add.ptr.i1, align 4
492 %inc2 = add nsw i32 %i, 2
493 %add.ptr.i2 = getelementptr inbounds i32, i32* %p, i32 2
494 store i32 %inc2, i32* %add.ptr.i2, align 4
495 %inc3 = add nsw i32 %i, 3
496 %add.ptr.i3 = getelementptr inbounds i32, i32* %p, i32 3
497 store i32 %inc3, i32* %add.ptr.i3, align 4
498 %p.next = getelementptr inbounds i32, i32* %p, i32 4
499 %inc4 = add nsw i32 %i, 4
500 %cmp = icmp slt i32 %inc4, %n
501 br i1 %cmp, label %for.body, label %exit
507 ; @testCmpZero has a ICmpZero LSR use that should not be hidden from
508 ; LSR. Profitable chains should have more than one nonzero increment
511 define void @testCmpZero(i8* %src, i8* %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp {
512 ; X64-LABEL: testCmpZero:
513 ; X64: # %bb.0: # %entry
514 ; X64-NEXT: movslq %edx, %rdx
515 ; X64-NEXT: addq %rdx, %rdi
516 ; X64-NEXT: movslq %ecx, %r9
517 ; X64-NEXT: addq %rsi, %r9
518 ; X64-NEXT: addl %edx, %r8d
519 ; X64-NEXT: movslq %r8d, %rcx
520 ; X64-NEXT: subq %rdx, %rcx
521 ; X64-NEXT: xorl %edx, %edx
522 ; X64-NEXT: .p2align 4, 0x90
523 ; X64-NEXT: .LBB5_1: # %for.body82.us
524 ; X64-NEXT: # =>This Inner Loop Header: Depth=1
525 ; X64-NEXT: movzbl (%r9,%rdx,4), %eax
526 ; X64-NEXT: movb %al, (%rdi,%rdx)
527 ; X64-NEXT: incq %rdx
528 ; X64-NEXT: cmpq %rdx, %rcx
529 ; X64-NEXT: jne .LBB5_1
530 ; X64-NEXT: # %bb.2: # %return
533 ; X32-LABEL: testCmpZero:
534 ; X32: # %bb.0: # %entry
535 ; X32-NEXT: pushl %ebx
536 ; X32-NEXT: pushl %esi
537 ; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
538 ; X32-NEXT: movl {{[0-9]+}}(%esp), %ecx
539 ; X32-NEXT: addl {{[0-9]+}}(%esp), %ecx
540 ; X32-NEXT: movl {{[0-9]+}}(%esp), %edx
541 ; X32-NEXT: addl {{[0-9]+}}(%esp), %edx
542 ; X32-NEXT: xorl %esi, %esi
543 ; X32-NEXT: .p2align 4, 0x90
544 ; X32-NEXT: .LBB5_1: # %for.body82.us
545 ; X32-NEXT: # =>This Inner Loop Header: Depth=1
546 ; X32-NEXT: movzbl (%edx,%esi,4), %ebx
547 ; X32-NEXT: movb %bl, (%ecx,%esi)
548 ; X32-NEXT: incl %esi
549 ; X32-NEXT: cmpl %esi, %eax
550 ; X32-NEXT: jne .LBB5_1
551 ; X32-NEXT: # %bb.2: # %return
552 ; X32-NEXT: popl %esi
553 ; X32-NEXT: popl %ebx
556 %dest0 = getelementptr inbounds i8, i8* %src, i32 %srcidx
557 %source0 = getelementptr inbounds i8, i8* %dst, i32 %dstidx
558 %add.ptr79.us.sum = add i32 %srcidx, %len
559 %lftr.limit = getelementptr i8, i8* %src, i32 %add.ptr79.us.sum
560 br label %for.body82.us
563 %dest = phi i8* [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ]
564 %source = phi i8* [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ]
565 %0 = bitcast i8* %source to i32*
566 %1 = load i32, i32* %0, align 4
567 %trunc = trunc i32 %1 to i8
568 %add.ptr83.us = getelementptr inbounds i8, i8* %source, i32 4
569 %incdec.ptr91.us = getelementptr inbounds i8, i8* %dest, i32 1
570 store i8 %trunc, i8* %dest, align 1
571 %exitcond = icmp eq i8* %incdec.ptr91.us, %lftr.limit
572 br i1 %exitcond, label %return, label %for.body82.us