2 ; RUN: opt -mtriple=aarch64-none-linux-gnu -mattr=+sve -loop-vectorize -S -scalable-vectorization=on < %s 2>&1 | FileCheck %s
3 ; RUN: opt -mtriple=aarch64-none-linux-gnu -mattr=+sve -loop-vectorize -pass-remarks-analysis=loop-vectorize -debug-only=loop-vectorize -S -scalable-vectorization=on < %s 2>&1 | FileCheck --check-prefix=CHECK-DBG %s
4 ; RUN: opt -mtriple=aarch64-none-linux-gnu -loop-vectorize -pass-remarks-analysis=loop-vectorize -debug-only=loop-vectorize -S -scalable-vectorization=on < %s 2>%t | FileCheck --check-prefix=CHECK-NO-SVE %s
5 ; RUN: cat %t | FileCheck %s -check-prefix=CHECK-NO-SVE-REMARKS
7 target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
9 ; These tests validate the behaviour of scalable vectorization factor hints,
10 ; where the following applies:
12 ; * If the backend does not support scalable vectors, ignore the hint and let
13 ; the vectorizer pick a VF.
14 ; * If there are no dependencies and assuming the VF is a power of 2 the VF
15 ; should be accepted. This applies to both fixed and scalable VFs.
16 ; * If the dependency is too small to use scalable vectors, change the VF to
17 ; fixed, where existing behavior applies (clamping).
18 ; * If scalable vectorization is feasible given the dependency and the VF is
19 ; valid, accept it. Otherwise, clamp to the max scalable VF.
23 ; Scalable vectorization unfeasible, clamp VF from (4, scalable) -> (4, fixed).
25 ; The pragma applied to this loop implies a scalable vector <vscale x 4 x i32>
26 ; be used for vectorization. For fixed vectors the MaxVF=8, otherwise there
27 ; would be a dependence between vector lanes for vectors greater than 256 bits.
29 ; void test1(int *a, int *b, int N) {
30 ; #pragma clang loop vectorize(enable) vectorize_width(4, scalable)
31 ; for (int i=0; i<N; ++i) {
32 ; a[i + 8] = a[i] + b[i];
36 ; For scalable vectorization 'vscale' has to be considered, for this example
37 ; unless max(vscale)=2 it's unsafe to vectorize. For SVE max(vscale)=16, check
38 ; fixed-width vectorization is used instead.
40 ; CHECK-DBG: LV: Checking a loop in "test1"
41 ; CHECK-DBG: LV: Scalable vectorization is available
42 ; CHECK-DBG: LV: Max legal vector width too small, scalable vectorization unfeasible.
43 ; CHECK-DBG: remark: <unknown>:0:0: Max legal vector width too small, scalable vectorization unfeasible.
44 ; CHECK-DBG: LV: The max safe fixed VF is: 8.
45 ; CHECK-DBG: LV: Selecting VF: 4.
48 define void @test1(i32* %a, i32* %b) #0 {
53 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
54 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
55 %0 = load i32, i32* %arrayidx, align 4
56 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
57 %1 = load i32, i32* %arrayidx2, align 4
58 %add = add nsw i32 %1, %0
59 %2 = add nuw nsw i64 %iv, 8
60 %arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %2
61 store i32 %add, i32* %arrayidx5, align 4
62 %iv.next = add nuw nsw i64 %iv, 1
63 %exitcond.not = icmp eq i64 %iv.next, 1024
64 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !0
71 !1 = !{!"llvm.loop.vectorize.width", i32 4}
72 !2 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
76 ; Scalable vectorization unfeasible, clamp VF from (8, scalable) -> (4, fixed).
78 ; void test2(int *a, int *b, int N) {
79 ; #pragma clang loop vectorize(enable) vectorize_width(8, scalable)
80 ; for (int i=0; i<N; ++i) {
81 ; a[i + 4] = a[i] + b[i];
85 ; CHECK-DBG: LV: Checking a loop in "test2"
86 ; CHECK-DBG: LV: Scalable vectorization is available
87 ; CHECK-DBG: LV: Max legal vector width too small, scalable vectorization unfeasible.
88 ; CHECK-DBG: LV: The max safe fixed VF is: 4.
89 ; CHECK-DBG: LV: User VF=vscale x 8 is unsafe. Ignoring scalable UserVF.
90 ; CHECK-DBG: LV: Selecting VF: 4.
93 define void @test2(i32* %a, i32* %b) #0 {
98 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
99 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
100 %0 = load i32, i32* %arrayidx, align 4
101 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
102 %1 = load i32, i32* %arrayidx2, align 4
103 %add = add nsw i32 %1, %0
104 %2 = add nuw nsw i64 %iv, 4
105 %arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %2
106 store i32 %add, i32* %arrayidx5, align 4
107 %iv.next = add nuw nsw i64 %iv, 1
108 %exitcond.not = icmp eq i64 %iv.next, 1024
109 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !3
116 !4 = !{!"llvm.loop.vectorize.width", i32 8}
117 !5 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
121 ; Scalable vectorization feasible and the VF is valid.
123 ; Specifies a vector of <vscale x 2 x i32>, i.e. maximum of 32 x i32 with 2
124 ; words per 128-bits (unpacked).
126 ; void test3(int *a, int *b, int N) {
127 ; #pragma clang loop vectorize(enable) vectorize_width(2, scalable)
128 ; for (int i=0; i<N; ++i) {
129 ; a[i + 32] = a[i] + b[i];
133 ; Max fixed VF=32, Max scalable VF=2, safe to vectorize.
135 ; CHECK-DBG-LABEL: LV: Checking a loop in "test3"
136 ; CHECK-DBG: LV: Scalable vectorization is available
137 ; CHECK-DBG: LV: The max safe scalable VF is: vscale x 2.
138 ; CHECK-DBG: LV: Using user VF vscale x 2.
139 ; CHECK-LABEL: @test3
140 ; CHECK: <vscale x 2 x i32>
141 define void @test3(i32* %a, i32* %b) #0 {
146 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
147 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
148 %0 = load i32, i32* %arrayidx, align 4
149 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
150 %1 = load i32, i32* %arrayidx2, align 4
151 %add = add nsw i32 %1, %0
152 %2 = add nuw nsw i64 %iv, 32
153 %arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %2
154 store i32 %add, i32* %arrayidx5, align 4
155 %iv.next = add nuw nsw i64 %iv, 1
156 %exitcond.not = icmp eq i64 %iv.next, 1024
157 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !6
164 !7 = !{!"llvm.loop.vectorize.width", i32 2}
165 !8 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
169 ; Scalable vectorization feasible, but the given VF is unsafe. Should ignore
170 ; the hint and leave it to the vectorizer to pick a more suitable VF.
172 ; Specifies a vector of <vscale x 4 x i32>, i.e. maximum of 64 x i32 with 4
173 ; words per 128-bits (packed).
175 ; void test4(int *a, int *b, int N) {
176 ; #pragma clang loop vectorize(enable) vectorize_width(4, scalable)
177 ; for (int i=0; i<N; ++i) {
178 ; a[i + 32] = a[i] + b[i];
182 ; Max fixed VF=32, Max scalable VF=2, unsafe to vectorize.
184 ; CHECK-DBG-LABEL: LV: Checking a loop in "test4"
185 ; CHECK-DBG: LV: Scalable vectorization is available
186 ; CHECK-DBG: LV: The max safe scalable VF is: vscale x 2.
187 ; CHECK-DBG: LV: User VF=vscale x 4 is unsafe. Ignoring scalable UserVF.
188 ; CHECK-DBG: remark: <unknown>:0:0: User-specified vectorization factor vscale x 4 is unsafe. Ignoring the hint to let the compiler pick a more suitable value.
189 ; CHECK-DBG: Found feasible scalable VF = vscale x 2
190 ; CHECK-DBG: LV: Selecting VF: 4.
191 ; CHECK-LABEL: @test4
193 define void @test4(i32* %a, i32* %b) #0 {
198 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
199 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
200 %0 = load i32, i32* %arrayidx, align 4
201 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
202 %1 = load i32, i32* %arrayidx2, align 4
203 %add = add nsw i32 %1, %0
204 %2 = add nuw nsw i64 %iv, 32
205 %arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %2
206 store i32 %add, i32* %arrayidx5, align 4
207 %iv.next = add nuw nsw i64 %iv, 1
208 %exitcond.not = icmp eq i64 %iv.next, 1024
209 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !9
216 !10 = !{!"llvm.loop.vectorize.width", i32 4}
217 !11 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
221 ; Scalable vectorization feasible and the VF is valid.
223 ; Specifies a vector of <vscale x 4 x i32>, i.e. maximum of 64 x i32 with 4
224 ; words per 128-bits (packed).
226 ; void test5(int *a, int *b, int N) {
227 ; #pragma clang loop vectorize(enable) vectorize_width(4, scalable)
228 ; for (int i=0; i<N; ++i) {
229 ; a[i + 128] = a[i] + b[i];
233 ; Max fixed VF=128, Max scalable VF=8, safe to vectorize.
235 ; CHECK-DBG-LABEL: LV: Checking a loop in "test5"
236 ; CHECK-DBG: LV: Scalable vectorization is available
237 ; CHECK-DBG: LV: The max safe scalable VF is: vscale x 8.
238 ; CHECK-DBG: LV: Using user VF vscale x 4
239 ; CHECK-LABEL: @test5
240 ; CHECK: <vscale x 4 x i32>
241 define void @test5(i32* %a, i32* %b) #0 {
246 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
247 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
248 %0 = load i32, i32* %arrayidx, align 4
249 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
250 %1 = load i32, i32* %arrayidx2, align 4
251 %add = add nsw i32 %1, %0
252 %2 = add nuw nsw i64 %iv, 128
253 %arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %2
254 store i32 %add, i32* %arrayidx5, align 4
255 %iv.next = add nuw nsw i64 %iv, 1
256 %exitcond.not = icmp eq i64 %iv.next, 1024
257 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !12
263 !12 = !{!12, !13, !14}
264 !13 = !{!"llvm.loop.vectorize.width", i32 4}
265 !14 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
269 ; Scalable vectorization feasible, but the VF is unsafe. Should ignore
270 ; the hint and leave it to the vectorizer to pick a more suitable VF.
272 ; Specifies a vector of <vscale x 16 x i32>, i.e. maximum of 256 x i32.
274 ; void test6(int *a, int *b, int N) {
275 ; #pragma clang loop vectorize(enable) vectorize_width(16, scalable)
276 ; for (int i=0; i<N; ++i) {
277 ; a[i + 128] = a[i] + b[i];
281 ; Max fixed VF=128, Max scalable VF=8, unsafe to vectorize.
283 ; CHECK-DBG-LABEL: LV: Checking a loop in "test6"
284 ; CHECK-DBG: LV: Scalable vectorization is available
285 ; CHECK-DBG: LV: The max safe scalable VF is: vscale x 8.
286 ; CHECK-DBG: LV: User VF=vscale x 16 is unsafe. Ignoring scalable UserVF.
287 ; CHECK-DBG: remark: <unknown>:0:0: User-specified vectorization factor vscale x 16 is unsafe. Ignoring the hint to let the compiler pick a more suitable value.
288 ; CHECK-DBG: LV: Found feasible scalable VF = vscale x 4
289 ; CHECK-DBG: Selecting VF: vscale x 4.
290 ; CHECK-LABEL: @test6
291 ; CHECK: <vscale x 4 x i32>
292 define void @test6(i32* %a, i32* %b) #0 {
297 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
298 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
299 %0 = load i32, i32* %arrayidx, align 4
300 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
301 %1 = load i32, i32* %arrayidx2, align 4
302 %add = add nsw i32 %1, %0
303 %2 = add nuw nsw i64 %iv, 128
304 %arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %2
305 store i32 %add, i32* %arrayidx5, align 4
306 %iv.next = add nuw nsw i64 %iv, 1
307 %exitcond.not = icmp eq i64 %iv.next, 1024
308 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !15
314 !15 = !{!15, !16, !17}
315 !16 = !{!"llvm.loop.vectorize.width", i32 16}
316 !17 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
318 ; CHECK-NO-SVE-REMARKS-LABEL: LV: Checking a loop in "test_no_sve"
319 ; CHECK-NO-SVE-REMARKS: LV: User VF=vscale x 4 is ignored because scalable vectors are not available.
320 ; CHECK-NO-SVE-REMARKS: remark: <unknown>:0:0: User-specified vectorization factor vscale x 4 is ignored because the target does not support scalable vectors. The compiler will pick a more suitable value.
321 ; CHECK-NO-SVE-REMARKS: LV: Selecting VF: 4.
322 ; CHECK-NO-SVE-LABEL: @test_no_sve
323 ; CHECK-NO-SVE: <4 x i32>
324 ; CHECK-NO-SVE-NOT: <vscale x 4 x i32>
325 define void @test_no_sve(i32* %a, i32* %b) #0 {
330 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
331 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
332 %0 = load i32, i32* %arrayidx, align 4
333 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
334 %1 = load i32, i32* %arrayidx2, align 4
335 %add = add nsw i32 %1, %0
336 store i32 %add, i32* %arrayidx, align 4
337 %iv.next = add nuw nsw i64 %iv, 1
338 %exitcond.not = icmp eq i64 %iv.next, 1024
339 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !18
345 !18 = !{!18, !19, !20}
346 !19 = !{!"llvm.loop.vectorize.width", i32 4}
347 !20 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
349 ; Test the LV falls back to fixed-width vectorization if scalable vectors are
350 ; supported but max vscale is undefined.
352 ; CHECK-DBG-LABEL: LV: Checking a loop in "test_no_max_vscale"
353 ; CHECK-DBG: LV: Scalable vectorization is available
354 ; CHECK-DBG: The max safe fixed VF is: 4.
355 ; CHECK-DBG: LV: User VF=vscale x 4 is unsafe. Ignoring scalable UserVF.
356 ; CHECK-DBG: LV: Selecting VF: 4.
357 ; CHECK-LABEL: @test_no_max_vscale
359 define void @test_no_max_vscale(i32* %a, i32* %b) #0 {
364 %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
365 %arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
366 %0 = load i32, i32* %arrayidx, align 4
367 %arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %iv
368 %1 = load i32, i32* %arrayidx2, align 4
369 %add = add nsw i32 %1, %0
370 %2 = add nuw nsw i64 %iv, 4
371 %arrayidx5 = getelementptr inbounds i32, i32* %a, i64 %2
372 store i32 %add, i32* %arrayidx5, align 4
373 %iv.next = add nuw nsw i64 %iv, 1
374 %exitcond.not = icmp eq i64 %iv.next, 1024
375 br i1 %exitcond.not, label %exit, label %loop, !llvm.loop !21
381 attributes #0 = { vscale_range(0, 16) }
382 !21 = !{!21, !22, !23}
383 !22 = !{!"llvm.loop.vectorize.width", i32 4}
384 !23 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}