1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -slp-threshold=-6 -slp-vectorizer -instcombine -mattr=+sse2 -S | FileCheck %s --check-prefixes=CHECK,SSE
3 ; RUN: opt < %s -slp-threshold=-6 -slp-vectorizer -instcombine -mattr=+avx -S | FileCheck %s --check-prefixes=CHECK,AVX
4 ; RUN: opt < %s -slp-threshold=-6 -slp-vectorizer -instcombine -mattr=+avx2 -S | FileCheck %s --check-prefixes=CHECK,AVX
6 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
7 target triple = "x86_64-unknown-linux-gnu"
9 ; These tests ensure that we do not regress due to PR31243. Note that we set
10 ; the SLP threshold to force vectorization even when not profitable.
12 ; When computing minimum sizes, if we can prove the sign bit is zero, we can
13 ; zero-extend the roots back to their original sizes.
15 define i8 @PR31243_zext(i8 %v0, i8 %v1, i8 %v2, i8 %v3, i8* %ptr) {
16 ; CHECK-LABEL: @PR31243_zext(
18 ; CHECK-NEXT: [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i32 0
19 ; CHECK-NEXT: [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i32 1
20 ; CHECK-NEXT: [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1>
21 ; CHECK-NEXT: [[TMP3:%.*]] = extractelement <2 x i8> [[TMP2]], i32 0
22 ; CHECK-NEXT: [[TMP4:%.*]] = zext i8 [[TMP3]] to i64
23 ; CHECK-NEXT: [[TMP_4:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i64 [[TMP4]]
24 ; CHECK-NEXT: [[TMP5:%.*]] = extractelement <2 x i8> [[TMP2]], i32 1
25 ; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i64
26 ; CHECK-NEXT: [[TMP_5:%.*]] = getelementptr inbounds i8, i8* [[PTR]], i64 [[TMP6]]
27 ; CHECK-NEXT: [[TMP_6:%.*]] = load i8, i8* [[TMP_4]], align 1
28 ; CHECK-NEXT: [[TMP_7:%.*]] = load i8, i8* [[TMP_5]], align 1
29 ; CHECK-NEXT: [[TMP_8:%.*]] = add i8 [[TMP_6]], [[TMP_7]]
30 ; CHECK-NEXT: ret i8 [[TMP_8]]
33 %tmp_0 = zext i8 %v0 to i32
34 %tmp_1 = zext i8 %v1 to i32
35 %tmp_2 = or i32 %tmp_0, 1
36 %tmp_3 = or i32 %tmp_1, 1
37 %tmp_4 = getelementptr inbounds i8, i8* %ptr, i32 %tmp_2
38 %tmp_5 = getelementptr inbounds i8, i8* %ptr, i32 %tmp_3
39 %tmp_6 = load i8, i8* %tmp_4
40 %tmp_7 = load i8, i8* %tmp_5
41 %tmp_8 = add i8 %tmp_6, %tmp_7
45 ; When computing minimum sizes, if we cannot prove the sign bit is zero, we
46 ; have to include one extra bit for signedness since we will sign-extend the
49 ; FIXME: This test is suboptimal since the compuation can be performed in i8.
50 ; In general, we need to add an extra bit to the maximum bit width only
51 ; if we can't prove that the upper bit of the original type is equal to
52 ; the upper bit of the proposed smaller type. If these two bits are the
53 ; same (either zero or one) we know that sign-extending from the smaller
54 ; type will result in the same value. Since we don't yet perform this
55 ; optimization, we make the proposed smaller type (i8) larger (i16) to
58 define i8 @PR31243_sext(i8 %v0, i8 %v1, i8 %v2, i8 %v3, i8* %ptr) {
59 ; SSE-LABEL: @PR31243_sext(
61 ; SSE-NEXT: [[TMP0:%.*]] = or i8 [[V0:%.*]], 1
62 ; SSE-NEXT: [[TMP1:%.*]] = or i8 [[V1:%.*]], 1
63 ; SSE-NEXT: [[TMP2:%.*]] = sext i8 [[TMP0]] to i64
64 ; SSE-NEXT: [[TMP4:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i64 [[TMP2]]
65 ; SSE-NEXT: [[TMP3:%.*]] = sext i8 [[TMP1]] to i64
66 ; SSE-NEXT: [[TMP5:%.*]] = getelementptr inbounds i8, i8* [[PTR]], i64 [[TMP3]]
67 ; SSE-NEXT: [[TMP6:%.*]] = load i8, i8* [[TMP4]], align 1
68 ; SSE-NEXT: [[TMP7:%.*]] = load i8, i8* [[TMP5]], align 1
69 ; SSE-NEXT: [[TMP8:%.*]] = add i8 [[TMP6]], [[TMP7]]
70 ; SSE-NEXT: ret i8 [[TMP8]]
72 ; AVX-LABEL: @PR31243_sext(
74 ; AVX-NEXT: [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i32 0
75 ; AVX-NEXT: [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i32 1
76 ; AVX-NEXT: [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1>
77 ; AVX-NEXT: [[TMP3:%.*]] = sext <2 x i8> [[TMP2]] to <2 x i16>
78 ; AVX-NEXT: [[TMP4:%.*]] = extractelement <2 x i16> [[TMP3]], i32 0
79 ; AVX-NEXT: [[TMP5:%.*]] = sext i16 [[TMP4]] to i64
80 ; AVX-NEXT: [[TMP4:%.*]] = getelementptr inbounds i8, i8* [[PTR:%.*]], i64 [[TMP5]]
81 ; AVX-NEXT: [[TMP6:%.*]] = extractelement <2 x i16> [[TMP3]], i32 1
82 ; AVX-NEXT: [[TMP7:%.*]] = sext i16 [[TMP6]] to i64
83 ; AVX-NEXT: [[TMP5:%.*]] = getelementptr inbounds i8, i8* [[PTR]], i64 [[TMP7]]
84 ; AVX-NEXT: [[TMP6:%.*]] = load i8, i8* [[TMP4]], align 1
85 ; AVX-NEXT: [[TMP7:%.*]] = load i8, i8* [[TMP5]], align 1
86 ; AVX-NEXT: [[TMP8:%.*]] = add i8 [[TMP6]], [[TMP7]]
87 ; AVX-NEXT: ret i8 [[TMP8]]
90 %tmp0 = sext i8 %v0 to i32
91 %tmp1 = sext i8 %v1 to i32
92 %tmp2 = or i32 %tmp0, 1
93 %tmp3 = or i32 %tmp1, 1
94 %tmp4 = getelementptr inbounds i8, i8* %ptr, i32 %tmp2
95 %tmp5 = getelementptr inbounds i8, i8* %ptr, i32 %tmp3
96 %tmp6 = load i8, i8* %tmp4
97 %tmp7 = load i8, i8* %tmp5
98 %tmp8 = add i8 %tmp6, %tmp7