1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/TypeSize.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
34 #define DEBUG_TYPE "dag-patterns"
36 static inline bool isIntegerOrPtr(MVT VT
) {
37 return VT
.isInteger() || VT
== MVT::iPTR
;
39 static inline bool isFloatingPoint(MVT VT
) {
40 return VT
.isFloatingPoint();
42 static inline bool isVector(MVT VT
) {
45 static inline bool isScalar(MVT VT
) {
46 return !VT
.isVector();
49 template <typename Predicate
>
50 static bool berase_if(MachineValueTypeSet
&S
, Predicate P
) {
52 // It is ok to iterate over MachineValueTypeSet and remove elements from it
63 // --- TypeSetByHwMode
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef
<ValueTypeByHwMode
> VTList
) {
70 for (const ValueTypeByHwMode
&VVT
: VTList
) {
72 AddrSpaces
.push_back(VVT
.PtrAddrSpace
);
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty
) const {
77 for (const auto &I
: *this) {
78 if (I
.second
.size() > 1)
80 if (!AllowEmpty
&& I
.second
.empty())
86 ValueTypeByHwMode
TypeSetByHwMode::getValueTypeByHwMode() const {
87 assert(isValueTypeByHwMode(true) &&
88 "The type set has multiple types for at least one HW mode");
89 ValueTypeByHwMode VVT
;
90 auto ASI
= AddrSpaces
.begin();
92 for (const auto &I
: *this) {
93 MVT T
= I
.second
.empty() ? MVT::Other
: *I
.second
.begin();
94 VVT
.getOrCreateTypeForMode(I
.first
, T
);
95 if (ASI
!= AddrSpaces
.end())
96 VVT
.PtrAddrSpace
= *ASI
++;
101 bool TypeSetByHwMode::isPossible() const {
102 for (const auto &I
: *this)
103 if (!I
.second
.empty())
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode
&VVT
) {
109 bool Changed
= false;
110 bool ContainsDefault
= false;
113 for (const auto &P
: VVT
) {
114 unsigned M
= P
.first
;
115 // Make sure there exists a set for each specific mode from VVT.
116 Changed
|= getOrCreate(M
).insert(P
.second
).second
;
117 // Cache VVT's default mode.
118 if (DefaultMode
== M
) {
119 ContainsDefault
= true;
124 // If VVT has a default mode, add the corresponding type to all
125 // modes in "this" that do not exist in VVT.
127 for (auto &I
: *this)
128 if (!VVT
.hasMode(I
.first
))
129 Changed
|= I
.second
.insert(DT
).second
;
134 // Constrain the type set to be the intersection with VTS.
135 bool TypeSetByHwMode::constrain(const TypeSetByHwMode
&VTS
) {
136 bool Changed
= false;
138 for (const auto &I
: VTS
) {
139 unsigned M
= I
.first
;
140 if (M
== DefaultMode
|| hasMode(M
))
142 Map
.insert({M
, Map
.at(DefaultMode
)});
147 for (auto &I
: *this) {
148 unsigned M
= I
.first
;
149 SetType
&S
= I
.second
;
150 if (VTS
.hasMode(M
) || VTS
.hasDefault()) {
151 Changed
|= intersect(I
.second
, VTS
.get(M
));
152 } else if (!S
.empty()) {
160 template <typename Predicate
>
161 bool TypeSetByHwMode::constrain(Predicate P
) {
162 bool Changed
= false;
163 for (auto &I
: *this)
164 Changed
|= berase_if(I
.second
, [&P
](MVT VT
) { return !P(VT
); });
168 template <typename Predicate
>
169 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode
&VTS
, Predicate P
) {
171 for (const auto &I
: VTS
) {
172 SetType
&S
= getOrCreate(I
.first
);
173 for (auto J
: I
.second
)
180 void TypeSetByHwMode::writeToStream(raw_ostream
&OS
) const {
181 SmallVector
<unsigned, 4> Modes
;
182 Modes
.reserve(Map
.size());
184 for (const auto &I
: *this)
185 Modes
.push_back(I
.first
);
190 array_pod_sort(Modes
.begin(), Modes
.end());
193 for (unsigned M
: Modes
) {
194 OS
<< ' ' << getModeName(M
) << ':';
195 writeToStream(get(M
), OS
);
200 void TypeSetByHwMode::writeToStream(const SetType
&S
, raw_ostream
&OS
) {
201 SmallVector
<MVT
, 4> Types(S
.begin(), S
.end());
202 array_pod_sort(Types
.begin(), Types
.end());
205 ListSeparator
LS(" ");
206 for (const MVT
&T
: Types
)
207 OS
<< LS
<< ValueTypeByHwMode::getMVTName(T
);
211 bool TypeSetByHwMode::operator==(const TypeSetByHwMode
&VTS
) const {
212 // The isSimple call is much quicker than hasDefault - check this first.
213 bool IsSimple
= isSimple();
214 bool VTSIsSimple
= VTS
.isSimple();
215 if (IsSimple
&& VTSIsSimple
)
216 return *begin() == *VTS
.begin();
218 // Speedup: We have a default if the set is simple.
219 bool HaveDefault
= IsSimple
|| hasDefault();
220 bool VTSHaveDefault
= VTSIsSimple
|| VTS
.hasDefault();
221 if (HaveDefault
!= VTSHaveDefault
)
224 SmallSet
<unsigned, 4> Modes
;
225 for (auto &I
: *this)
226 Modes
.insert(I
.first
);
227 for (const auto &I
: VTS
)
228 Modes
.insert(I
.first
);
231 // Both sets have default mode.
232 for (unsigned M
: Modes
) {
233 if (get(M
) != VTS
.get(M
))
237 // Neither set has default mode.
238 for (unsigned M
: Modes
) {
239 // If there is no default mode, an empty set is equivalent to not having
240 // the corresponding mode.
241 bool NoModeThis
= !hasMode(M
) || get(M
).empty();
242 bool NoModeVTS
= !VTS
.hasMode(M
) || VTS
.get(M
).empty();
243 if (NoModeThis
!= NoModeVTS
)
246 if (get(M
) != VTS
.get(M
))
255 raw_ostream
&operator<<(raw_ostream
&OS
, const TypeSetByHwMode
&T
) {
262 void TypeSetByHwMode::dump() const {
263 dbgs() << *this << '\n';
266 bool TypeSetByHwMode::intersect(SetType
&Out
, const SetType
&In
) {
267 bool OutP
= Out
.count(MVT::iPTR
), InP
= In
.count(MVT::iPTR
);
268 auto Int
= [&In
](MVT T
) -> bool { return !In
.count(T
); };
271 return berase_if(Out
, Int
);
273 // Compute the intersection of scalars separately to account for only
274 // one set containing iPTR.
275 // The intersection of iPTR with a set of integer scalar types that does not
276 // include iPTR will result in the most specific scalar type:
277 // - iPTR is more specific than any set with two elements or more
278 // - iPTR is less specific than any single integer scalar type.
280 // { iPTR } * { i32 } -> { i32 }
281 // { iPTR } * { i32 i64 } -> { iPTR }
283 // { iPTR i32 } * { i32 } -> { i32 }
284 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
285 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
287 // Compute the difference between the two sets in such a way that the
288 // iPTR is in the set that is being subtracted. This is to see if there
289 // are any extra scalars in the set without iPTR that are not in the
290 // set containing iPTR. Then the iPTR could be considered a "wildcard"
291 // matching these scalars. If there is only one such scalar, it would
292 // replace the iPTR, if there are more, the iPTR would be retained.
296 berase_if(Diff
, [&In
](MVT T
) { return In
.count(T
); });
297 // Pre-remove these elements and rely only on InP/OutP to determine
298 // whether a change has been made.
299 berase_if(Out
, [&Diff
](MVT T
) { return Diff
.count(T
); });
302 berase_if(Diff
, [&Out
](MVT T
) { return Out
.count(T
); });
303 Out
.erase(MVT::iPTR
);
306 // The actual intersection.
307 bool Changed
= berase_if(Out
, Int
);
308 unsigned NumD
= Diff
.size();
313 Out
.insert(*Diff
.begin());
314 // This is a change only if Out was the one with iPTR (which is now
318 // Multiple elements from Out are now replaced with iPTR.
319 Out
.insert(MVT::iPTR
);
325 bool TypeSetByHwMode::validate() const {
329 bool AllEmpty
= true;
330 for (const auto &I
: *this)
331 AllEmpty
&= I
.second
.empty();
339 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode
&Out
,
340 const TypeSetByHwMode
&In
) {
341 ValidateOnExit
_1(Out
, *this);
343 if (In
.empty() || Out
== In
|| TP
.hasError())
350 bool Changed
= Out
.constrain(In
);
351 if (Changed
&& Out
.empty())
352 TP
.error("Type contradiction");
357 bool TypeInfer::forceArbitrary(TypeSetByHwMode
&Out
) {
358 ValidateOnExit
_1(Out
, *this);
361 assert(!Out
.empty() && "cannot pick from an empty set");
363 bool Changed
= false;
364 for (auto &I
: Out
) {
365 TypeSetByHwMode::SetType
&S
= I
.second
;
368 MVT T
= *S
.begin(); // Pick the first element.
376 bool TypeInfer::EnforceInteger(TypeSetByHwMode
&Out
) {
377 ValidateOnExit
_1(Out
, *this);
381 return Out
.constrain(isIntegerOrPtr
);
383 return Out
.assign_if(getLegalTypes(), isIntegerOrPtr
);
386 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode
&Out
) {
387 ValidateOnExit
_1(Out
, *this);
391 return Out
.constrain(isFloatingPoint
);
393 return Out
.assign_if(getLegalTypes(), isFloatingPoint
);
396 bool TypeInfer::EnforceScalar(TypeSetByHwMode
&Out
) {
397 ValidateOnExit
_1(Out
, *this);
401 return Out
.constrain(isScalar
);
403 return Out
.assign_if(getLegalTypes(), isScalar
);
406 bool TypeInfer::EnforceVector(TypeSetByHwMode
&Out
) {
407 ValidateOnExit
_1(Out
, *this);
411 return Out
.constrain(isVector
);
413 return Out
.assign_if(getLegalTypes(), isVector
);
416 bool TypeInfer::EnforceAny(TypeSetByHwMode
&Out
) {
417 ValidateOnExit
_1(Out
, *this);
418 if (TP
.hasError() || !Out
.empty())
421 Out
= getLegalTypes();
425 template <typename Iter
, typename Pred
, typename Less
>
426 static Iter
min_if(Iter B
, Iter E
, Pred P
, Less L
) {
430 for (Iter I
= B
; I
!= E
; ++I
) {
433 if (Min
== E
|| L(*I
, *Min
))
439 template <typename Iter
, typename Pred
, typename Less
>
440 static Iter
max_if(Iter B
, Iter E
, Pred P
, Less L
) {
444 for (Iter I
= B
; I
!= E
; ++I
) {
447 if (Max
== E
|| L(*Max
, *I
))
453 /// Make sure that for each type in Small, there exists a larger type in Big.
454 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode
&Small
,
455 TypeSetByHwMode
&Big
) {
456 ValidateOnExit
_1(Small
, *this), _2(Big
, *this);
459 bool Changed
= false;
462 Changed
|= EnforceAny(Small
);
464 Changed
|= EnforceAny(Big
);
466 assert(Small
.hasDefault() && Big
.hasDefault());
468 SmallVector
<unsigned, 4> Modes
;
469 union_modes(Small
, Big
, Modes
);
471 // 1. Only allow integer or floating point types and make sure that
472 // both sides are both integer or both floating point.
473 // 2. Make sure that either both sides have vector types, or neither
475 for (unsigned M
: Modes
) {
476 TypeSetByHwMode::SetType
&S
= Small
.get(M
);
477 TypeSetByHwMode::SetType
&B
= Big
.get(M
);
479 if (any_of(S
, isIntegerOrPtr
) && any_of(S
, isIntegerOrPtr
)) {
480 auto NotInt
= [](MVT VT
) { return !isIntegerOrPtr(VT
); };
481 Changed
|= berase_if(S
, NotInt
);
482 Changed
|= berase_if(B
, NotInt
);
483 } else if (any_of(S
, isFloatingPoint
) && any_of(B
, isFloatingPoint
)) {
484 auto NotFP
= [](MVT VT
) { return !isFloatingPoint(VT
); };
485 Changed
|= berase_if(S
, NotFP
);
486 Changed
|= berase_if(B
, NotFP
);
487 } else if (S
.empty() || B
.empty()) {
488 Changed
= !S
.empty() || !B
.empty();
492 TP
.error("Incompatible types");
496 if (none_of(S
, isVector
) || none_of(B
, isVector
)) {
497 Changed
|= berase_if(S
, isVector
);
498 Changed
|= berase_if(B
, isVector
);
502 auto LT
= [](MVT A
, MVT B
) -> bool {
503 // Always treat non-scalable MVTs as smaller than scalable MVTs for the
504 // purposes of ordering.
505 auto ASize
= std::make_tuple(A
.isScalableVector(), A
.getScalarSizeInBits(),
506 A
.getSizeInBits().getKnownMinSize());
507 auto BSize
= std::make_tuple(B
.isScalableVector(), B
.getScalarSizeInBits(),
508 B
.getSizeInBits().getKnownMinSize());
509 return ASize
< BSize
;
511 auto SameKindLE
= [](MVT A
, MVT B
) -> bool {
512 // This function is used when removing elements: when a vector is compared
513 // to a non-vector or a scalable vector to any non-scalable MVT, it should
514 // return false (to avoid removal).
515 if (std::make_tuple(A
.isVector(), A
.isScalableVector()) !=
516 std::make_tuple(B
.isVector(), B
.isScalableVector()))
519 return std::make_tuple(A
.getScalarSizeInBits(),
520 A
.getSizeInBits().getKnownMinSize()) <=
521 std::make_tuple(B
.getScalarSizeInBits(),
522 B
.getSizeInBits().getKnownMinSize());
525 for (unsigned M
: Modes
) {
526 TypeSetByHwMode::SetType
&S
= Small
.get(M
);
527 TypeSetByHwMode::SetType
&B
= Big
.get(M
);
528 // MinS = min scalar in Small, remove all scalars from Big that are
529 // smaller-or-equal than MinS.
530 auto MinS
= min_if(S
.begin(), S
.end(), isScalar
, LT
);
532 Changed
|= berase_if(B
, std::bind(SameKindLE
,
533 std::placeholders::_1
, *MinS
));
535 // MaxS = max scalar in Big, remove all scalars from Small that are
537 auto MaxS
= max_if(B
.begin(), B
.end(), isScalar
, LT
);
539 Changed
|= berase_if(S
, std::bind(SameKindLE
,
540 *MaxS
, std::placeholders::_1
));
542 // MinV = min vector in Small, remove all vectors from Big that are
543 // smaller-or-equal than MinV.
544 auto MinV
= min_if(S
.begin(), S
.end(), isVector
, LT
);
546 Changed
|= berase_if(B
, std::bind(SameKindLE
,
547 std::placeholders::_1
, *MinV
));
549 // MaxV = max vector in Big, remove all vectors from Small that are
551 auto MaxV
= max_if(B
.begin(), B
.end(), isVector
, LT
);
553 Changed
|= berase_if(S
, std::bind(SameKindLE
,
554 *MaxV
, std::placeholders::_1
));
560 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
561 /// for each type U in Elem, U is a scalar type.
562 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
563 /// type T in Vec, such that U is the element type of T.
564 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode
&Vec
,
565 TypeSetByHwMode
&Elem
) {
566 ValidateOnExit
_1(Vec
, *this), _2(Elem
, *this);
569 bool Changed
= false;
572 Changed
|= EnforceVector(Vec
);
574 Changed
|= EnforceScalar(Elem
);
576 SmallVector
<unsigned, 4> Modes
;
577 union_modes(Vec
, Elem
, Modes
);
578 for (unsigned M
: Modes
) {
579 TypeSetByHwMode::SetType
&V
= Vec
.get(M
);
580 TypeSetByHwMode::SetType
&E
= Elem
.get(M
);
582 Changed
|= berase_if(V
, isScalar
); // Scalar = !vector
583 Changed
|= berase_if(E
, isVector
); // Vector = !scalar
584 assert(!V
.empty() && !E
.empty());
586 MachineValueTypeSet VT
, ST
;
587 // Collect element types from the "vector" set.
589 VT
.insert(T
.getVectorElementType());
590 // Collect scalar types from the "element" set.
594 // Remove from V all (vector) types whose element type is not in S.
595 Changed
|= berase_if(V
, [&ST
](MVT T
) -> bool {
596 return !ST
.count(T
.getVectorElementType());
598 // Remove from E all (scalar) types, for which there is no corresponding
600 Changed
|= berase_if(E
, [&VT
](MVT T
) -> bool { return !VT
.count(T
); });
606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode
&Vec
,
607 const ValueTypeByHwMode
&VVT
) {
608 TypeSetByHwMode
Tmp(VVT
);
609 ValidateOnExit
_1(Vec
, *this), _2(Tmp
, *this);
610 return EnforceVectorEltTypeIs(Vec
, Tmp
);
613 /// Ensure that for each type T in Sub, T is a vector type, and there
614 /// exists a type U in Vec such that U is a vector type with the same
615 /// element type as T and at least as many elements as T.
616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode
&Vec
,
617 TypeSetByHwMode
&Sub
) {
618 ValidateOnExit
_1(Vec
, *this), _2(Sub
, *this);
622 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
623 auto IsSubVec
= [](MVT B
, MVT P
) -> bool {
624 if (!B
.isVector() || !P
.isVector())
626 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
627 // but until there are obvious use-cases for this, keep the
629 if (B
.isScalableVector() != P
.isScalableVector())
631 if (B
.getVectorElementType() != P
.getVectorElementType())
633 return B
.getVectorMinNumElements() < P
.getVectorMinNumElements();
636 /// Return true if S has no element (vector type) that T is a sub-vector of,
637 /// i.e. has the same element type as T and more elements.
638 auto NoSubV
= [&IsSubVec
](const TypeSetByHwMode::SetType
&S
, MVT T
) -> bool {
645 /// Return true if S has no element (vector type) that T is a super-vector
646 /// of, i.e. has the same element type as T and fewer elements.
647 auto NoSupV
= [&IsSubVec
](const TypeSetByHwMode::SetType
&S
, MVT T
) -> bool {
654 bool Changed
= false;
657 Changed
|= EnforceVector(Vec
);
659 Changed
|= EnforceVector(Sub
);
661 SmallVector
<unsigned, 4> Modes
;
662 union_modes(Vec
, Sub
, Modes
);
663 for (unsigned M
: Modes
) {
664 TypeSetByHwMode::SetType
&S
= Sub
.get(M
);
665 TypeSetByHwMode::SetType
&V
= Vec
.get(M
);
667 Changed
|= berase_if(S
, isScalar
);
669 // Erase all types from S that are not sub-vectors of a type in V.
670 Changed
|= berase_if(S
, std::bind(NoSubV
, V
, std::placeholders::_1
));
672 // Erase all types from V that are not super-vectors of a type in S.
673 Changed
|= berase_if(V
, std::bind(NoSupV
, S
, std::placeholders::_1
));
679 /// 1. Ensure that V has a scalar type iff W has a scalar type.
680 /// 2. Ensure that for each vector type T in V, there exists a vector
681 /// type U in W, such that T and U have the same number of elements.
682 /// 3. Ensure that for each vector type U in W, there exists a vector
683 /// type T in V, such that T and U have the same number of elements
685 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode
&V
, TypeSetByHwMode
&W
) {
686 ValidateOnExit
_1(V
, *this), _2(W
, *this);
690 bool Changed
= false;
692 Changed
|= EnforceAny(V
);
694 Changed
|= EnforceAny(W
);
696 // An actual vector type cannot have 0 elements, so we can treat scalars
697 // as zero-length vectors. This way both vectors and scalars can be
698 // processed identically.
699 auto NoLength
= [](const SmallDenseSet
<ElementCount
> &Lengths
,
701 return !Lengths
.count(T
.isVector() ? T
.getVectorElementCount()
702 : ElementCount::getNull());
705 SmallVector
<unsigned, 4> Modes
;
706 union_modes(V
, W
, Modes
);
707 for (unsigned M
: Modes
) {
708 TypeSetByHwMode::SetType
&VS
= V
.get(M
);
709 TypeSetByHwMode::SetType
&WS
= W
.get(M
);
711 SmallDenseSet
<ElementCount
> VN
, WN
;
713 VN
.insert(T
.isVector() ? T
.getVectorElementCount()
714 : ElementCount::getNull());
716 WN
.insert(T
.isVector() ? T
.getVectorElementCount()
717 : ElementCount::getNull());
719 Changed
|= berase_if(VS
, std::bind(NoLength
, WN
, std::placeholders::_1
));
720 Changed
|= berase_if(WS
, std::bind(NoLength
, VN
, std::placeholders::_1
));
726 struct TypeSizeComparator
{
727 bool operator()(const TypeSize
&LHS
, const TypeSize
&RHS
) const {
728 return std::make_tuple(LHS
.isScalable(), LHS
.getKnownMinValue()) <
729 std::make_tuple(RHS
.isScalable(), RHS
.getKnownMinValue());
732 } // end anonymous namespace
734 /// 1. Ensure that for each type T in A, there exists a type U in B,
735 /// such that T and U have equal size in bits.
736 /// 2. Ensure that for each type U in B, there exists a type T in A
737 /// such that T and U have equal size in bits (reverse of 1).
738 bool TypeInfer::EnforceSameSize(TypeSetByHwMode
&A
, TypeSetByHwMode
&B
) {
739 ValidateOnExit
_1(A
, *this), _2(B
, *this);
742 bool Changed
= false;
744 Changed
|= EnforceAny(A
);
746 Changed
|= EnforceAny(B
);
748 typedef SmallSet
<TypeSize
, 2, TypeSizeComparator
> TypeSizeSet
;
750 auto NoSize
= [](const TypeSizeSet
&Sizes
, MVT T
) -> bool {
751 return !Sizes
.count(T
.getSizeInBits());
754 SmallVector
<unsigned, 4> Modes
;
755 union_modes(A
, B
, Modes
);
756 for (unsigned M
: Modes
) {
757 TypeSetByHwMode::SetType
&AS
= A
.get(M
);
758 TypeSetByHwMode::SetType
&BS
= B
.get(M
);
762 AN
.insert(T
.getSizeInBits());
764 BN
.insert(T
.getSizeInBits());
766 Changed
|= berase_if(AS
, std::bind(NoSize
, BN
, std::placeholders::_1
));
767 Changed
|= berase_if(BS
, std::bind(NoSize
, AN
, std::placeholders::_1
));
773 void TypeInfer::expandOverloads(TypeSetByHwMode
&VTS
) {
774 ValidateOnExit
_1(VTS
, *this);
775 const TypeSetByHwMode
&Legal
= getLegalTypes();
776 assert(Legal
.isDefaultOnly() && "Default-mode only expected");
777 const TypeSetByHwMode::SetType
&LegalTypes
= Legal
.get(DefaultMode
);
780 expandOverloads(I
.second
, LegalTypes
);
783 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType
&Out
,
784 const TypeSetByHwMode::SetType
&Legal
) {
787 if (!T
.isOverloaded())
791 // MachineValueTypeSet allows iteration and erasing.
796 switch (Ov
.SimpleTy
) {
798 Out
.insert(MVT::iPTR
);
801 for (MVT T
: MVT::integer_valuetypes())
804 for (MVT T
: MVT::integer_fixedlen_vector_valuetypes())
807 for (MVT T
: MVT::integer_scalable_vector_valuetypes())
812 for (MVT T
: MVT::fp_valuetypes())
815 for (MVT T
: MVT::fp_fixedlen_vector_valuetypes())
818 for (MVT T
: MVT::fp_scalable_vector_valuetypes())
823 for (MVT T
: MVT::vector_valuetypes())
828 for (MVT T
: MVT::all_valuetypes())
838 const TypeSetByHwMode
&TypeInfer::getLegalTypes() {
839 if (!LegalTypesCached
) {
840 TypeSetByHwMode::SetType
&LegalTypes
= LegalCache
.getOrCreate(DefaultMode
);
841 // Stuff all types from all modes into the default mode.
842 const TypeSetByHwMode
<S
= TP
.getDAGPatterns().getLegalTypes();
843 for (const auto &I
: LTS
)
844 LegalTypes
.insert(I
.second
);
845 LegalTypesCached
= true;
847 assert(LegalCache
.isDefaultOnly() && "Default-mode only expected");
852 TypeInfer::ValidateOnExit::~ValidateOnExit() {
853 if (Infer
.Validate
&& !VTS
.validate()) {
854 dbgs() << "Type set is empty for each HW mode:\n"
855 "possible type contradiction in the pattern below "
856 "(use -print-records with llvm-tblgen to see all "
857 "expanded records).\n";
859 dbgs() << "Generated from record:\n";
860 Infer
.TP
.getRecord()->dump();
861 PrintFatalError(Infer
.TP
.getRecord()->getLoc(),
862 "Type set is empty for each HW mode in '" +
863 Infer
.TP
.getRecord()->getName() + "'");
869 //===----------------------------------------------------------------------===//
870 // ScopedName Implementation
871 //===----------------------------------------------------------------------===//
873 bool ScopedName::operator==(const ScopedName
&o
) const {
874 return Scope
== o
.Scope
&& Identifier
== o
.Identifier
;
877 bool ScopedName::operator!=(const ScopedName
&o
) const {
878 return !(*this == o
);
882 //===----------------------------------------------------------------------===//
883 // TreePredicateFn Implementation
884 //===----------------------------------------------------------------------===//
886 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
887 TreePredicateFn::TreePredicateFn(TreePattern
*N
) : PatFragRec(N
) {
889 (!hasPredCode() || !hasImmCode()) &&
890 ".td file corrupt: can't have a node predicate *and* an imm predicate");
893 bool TreePredicateFn::hasPredCode() const {
894 return isLoad() || isStore() || isAtomic() ||
895 !PatFragRec
->getRecord()->getValueAsString("PredicateCode").empty();
898 std::string
TreePredicateFn::getPredCode() const {
901 if (!isLoad() && !isStore() && !isAtomic()) {
902 Record
*MemoryVT
= getMemoryVT();
905 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906 "MemoryVT requires IsLoad or IsStore");
909 if (!isLoad() && !isStore()) {
911 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
912 "IsUnindexed requires IsLoad or IsStore");
914 Record
*ScalarMemoryVT
= getScalarMemoryVT();
917 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918 "ScalarMemoryVT requires IsLoad or IsStore");
921 if (isLoad() + isStore() + isAtomic() > 1)
922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
926 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
927 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
928 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
929 getMinAlignment() < 1)
930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931 "IsLoad cannot be used by itself");
934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935 "IsNonExtLoad requires IsLoad");
937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938 "IsAnyExtLoad requires IsLoad");
940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941 "IsSignExtLoad requires IsLoad");
943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944 "IsZeroExtLoad requires IsLoad");
948 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
949 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
950 getAddressSpaces() == nullptr && getMinAlignment() < 1)
951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952 "IsStore cannot be used by itself");
954 if (isNonTruncStore())
955 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956 "IsNonTruncStore requires IsStore");
958 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
959 "IsTruncStore requires IsStore");
963 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
964 getAddressSpaces() == nullptr &&
965 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
966 !isAtomicOrderingAcquireRelease() &&
967 !isAtomicOrderingSequentiallyConsistent() &&
968 !isAtomicOrderingAcquireOrStronger() &&
969 !isAtomicOrderingReleaseOrStronger() &&
970 !isAtomicOrderingWeakerThanAcquire() &&
971 !isAtomicOrderingWeakerThanRelease())
972 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973 "IsAtomic cannot be used by itself");
975 if (isAtomicOrderingMonotonic())
976 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
977 "IsAtomicOrderingMonotonic requires IsAtomic");
978 if (isAtomicOrderingAcquire())
979 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
980 "IsAtomicOrderingAcquire requires IsAtomic");
981 if (isAtomicOrderingRelease())
982 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
983 "IsAtomicOrderingRelease requires IsAtomic");
984 if (isAtomicOrderingAcquireRelease())
985 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
986 "IsAtomicOrderingAcquireRelease requires IsAtomic");
987 if (isAtomicOrderingSequentiallyConsistent())
988 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
989 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
990 if (isAtomicOrderingAcquireOrStronger())
991 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
992 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
993 if (isAtomicOrderingReleaseOrStronger())
994 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
995 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
996 if (isAtomicOrderingWeakerThanAcquire())
997 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
998 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1001 if (isLoad() || isStore() || isAtomic()) {
1002 if (ListInit
*AddressSpaces
= getAddressSpaces()) {
1003 Code
+= "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1006 ListSeparator
LS(" && ");
1007 for (Init
*Val
: AddressSpaces
->getValues()) {
1010 IntInit
*IntVal
= dyn_cast
<IntInit
>(Val
);
1012 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1013 "AddressSpaces element must be integer");
1016 Code
+= "AddrSpace != " + utostr(IntVal
->getValue());
1019 Code
+= ")\nreturn false;\n";
1022 int64_t MinAlign
= getMinAlignment();
1024 Code
+= "if (cast<MemSDNode>(N)->getAlign() < Align(";
1025 Code
+= utostr(MinAlign
);
1026 Code
+= "))\nreturn false;\n";
1029 Record
*MemoryVT
= getMemoryVT();
1032 Code
+= ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1033 MemoryVT
->getName() + ") return false;\n")
1037 if (isAtomic() && isAtomicOrderingMonotonic())
1038 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1039 "AtomicOrdering::Monotonic) return false;\n";
1040 if (isAtomic() && isAtomicOrderingAcquire())
1041 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1042 "AtomicOrdering::Acquire) return false;\n";
1043 if (isAtomic() && isAtomicOrderingRelease())
1044 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1045 "AtomicOrdering::Release) return false;\n";
1046 if (isAtomic() && isAtomicOrderingAcquireRelease())
1047 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1048 "AtomicOrdering::AcquireRelease) return false;\n";
1049 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1050 Code
+= "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1051 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1053 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1054 Code
+= "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1056 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1057 Code
+= "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1060 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1061 Code
+= "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1063 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1064 Code
+= "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1067 if (isLoad() || isStore()) {
1068 StringRef SDNodeName
= isLoad() ? "LoadSDNode" : "StoreSDNode";
1071 Code
+= ("if (cast<" + SDNodeName
+
1072 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1077 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1078 isZeroExtLoad()) > 1)
1079 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1080 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1081 "IsZeroExtLoad are mutually exclusive");
1083 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != "
1084 "ISD::NON_EXTLOAD) return false;\n";
1086 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1088 if (isSignExtLoad())
1089 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1091 if (isZeroExtLoad())
1092 Code
+= "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1095 if ((isNonTruncStore() + isTruncStore()) > 1)
1097 getOrigPatFragRecord()->getRecord()->getLoc(),
1098 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1099 if (isNonTruncStore())
1101 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1104 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1107 Record
*ScalarMemoryVT
= getScalarMemoryVT();
1110 Code
+= ("if (cast<" + SDNodeName
+
1111 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1112 ScalarMemoryVT
->getName() + ") return false;\n")
1116 std::string PredicateCode
=
1117 std::string(PatFragRec
->getRecord()->getValueAsString("PredicateCode"));
1119 Code
+= PredicateCode
;
1121 if (PredicateCode
.empty() && !Code
.empty())
1122 Code
+= "return true;\n";
1127 bool TreePredicateFn::hasImmCode() const {
1128 return !PatFragRec
->getRecord()->getValueAsString("ImmediateCode").empty();
1131 std::string
TreePredicateFn::getImmCode() const {
1133 PatFragRec
->getRecord()->getValueAsString("ImmediateCode"));
1136 bool TreePredicateFn::immCodeUsesAPInt() const {
1137 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1140 bool TreePredicateFn::immCodeUsesAPFloat() const {
1142 // The return value will be false when IsAPFloat is unset.
1143 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1147 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field
,
1151 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field
, Unset
);
1154 return Result
== Value
;
1156 bool TreePredicateFn::usesOperands() const {
1157 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1159 bool TreePredicateFn::isLoad() const {
1160 return isPredefinedPredicateEqualTo("IsLoad", true);
1162 bool TreePredicateFn::isStore() const {
1163 return isPredefinedPredicateEqualTo("IsStore", true);
1165 bool TreePredicateFn::isAtomic() const {
1166 return isPredefinedPredicateEqualTo("IsAtomic", true);
1168 bool TreePredicateFn::isUnindexed() const {
1169 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1171 bool TreePredicateFn::isNonExtLoad() const {
1172 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1174 bool TreePredicateFn::isAnyExtLoad() const {
1175 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1177 bool TreePredicateFn::isSignExtLoad() const {
1178 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1180 bool TreePredicateFn::isZeroExtLoad() const {
1181 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1183 bool TreePredicateFn::isNonTruncStore() const {
1184 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1186 bool TreePredicateFn::isTruncStore() const {
1187 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1189 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1190 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1192 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1193 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1195 bool TreePredicateFn::isAtomicOrderingRelease() const {
1196 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1198 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1199 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1201 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1202 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1205 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1206 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1208 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1209 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1211 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1212 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1214 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1215 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1217 Record
*TreePredicateFn::getMemoryVT() const {
1218 Record
*R
= getOrigPatFragRecord()->getRecord();
1219 if (R
->isValueUnset("MemoryVT"))
1221 return R
->getValueAsDef("MemoryVT");
1224 ListInit
*TreePredicateFn::getAddressSpaces() const {
1225 Record
*R
= getOrigPatFragRecord()->getRecord();
1226 if (R
->isValueUnset("AddressSpaces"))
1228 return R
->getValueAsListInit("AddressSpaces");
1231 int64_t TreePredicateFn::getMinAlignment() const {
1232 Record
*R
= getOrigPatFragRecord()->getRecord();
1233 if (R
->isValueUnset("MinAlignment"))
1235 return R
->getValueAsInt("MinAlignment");
1238 Record
*TreePredicateFn::getScalarMemoryVT() const {
1239 Record
*R
= getOrigPatFragRecord()->getRecord();
1240 if (R
->isValueUnset("ScalarMemoryVT"))
1242 return R
->getValueAsDef("ScalarMemoryVT");
1244 bool TreePredicateFn::hasGISelPredicateCode() const {
1245 return !PatFragRec
->getRecord()
1246 ->getValueAsString("GISelPredicateCode")
1249 std::string
TreePredicateFn::getGISelPredicateCode() const {
1251 PatFragRec
->getRecord()->getValueAsString("GISelPredicateCode"));
1254 StringRef
TreePredicateFn::getImmType() const {
1255 if (immCodeUsesAPInt())
1256 return "const APInt &";
1257 if (immCodeUsesAPFloat())
1258 return "const APFloat &";
1262 StringRef
TreePredicateFn::getImmTypeIdentifier() const {
1263 if (immCodeUsesAPInt())
1265 if (immCodeUsesAPFloat())
1270 /// isAlwaysTrue - Return true if this is a noop predicate.
1271 bool TreePredicateFn::isAlwaysTrue() const {
1272 return !hasPredCode() && !hasImmCode();
1275 /// Return the name to use in the generated code to reference this, this is
1276 /// "Predicate_foo" if from a pattern fragment "foo".
1277 std::string
TreePredicateFn::getFnName() const {
1278 return "Predicate_" + PatFragRec
->getRecord()->getName().str();
1281 /// getCodeToRunOnSDNode - Return the code for the function body that
1282 /// evaluates this predicate. The argument is expected to be in "Node",
1283 /// not N. This handles casting and conversion to a concrete node type as
1285 std::string
TreePredicateFn::getCodeToRunOnSDNode() const {
1286 // Handle immediate predicates first.
1287 std::string ImmCode
= getImmCode();
1288 if (!ImmCode
.empty()) {
1290 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1291 "IsLoad cannot be used with ImmLeaf or its subclasses");
1293 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1294 "IsStore cannot be used with ImmLeaf or its subclasses");
1297 getOrigPatFragRecord()->getRecord()->getLoc(),
1298 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1301 getOrigPatFragRecord()->getRecord()->getLoc(),
1302 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1305 getOrigPatFragRecord()->getRecord()->getLoc(),
1306 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1307 if (isSignExtLoad())
1309 getOrigPatFragRecord()->getRecord()->getLoc(),
1310 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1311 if (isZeroExtLoad())
1313 getOrigPatFragRecord()->getRecord()->getLoc(),
1314 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1315 if (isNonTruncStore())
1317 getOrigPatFragRecord()->getRecord()->getLoc(),
1318 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1321 getOrigPatFragRecord()->getRecord()->getLoc(),
1322 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1324 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1325 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1326 if (getScalarMemoryVT())
1328 getOrigPatFragRecord()->getRecord()->getLoc(),
1329 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1331 std::string Result
= (" " + getImmType() + " Imm = ").str();
1332 if (immCodeUsesAPFloat())
1333 Result
+= "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1334 else if (immCodeUsesAPInt())
1335 Result
+= "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1337 Result
+= "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1338 return Result
+ ImmCode
;
1341 // Handle arbitrary node predicates.
1342 assert(hasPredCode() && "Don't have any predicate code!");
1344 // If this is using PatFrags, there are multiple trees to search. They should
1345 // all have the same class. FIXME: Is there a way to find a common
1347 StringRef ClassName
;
1348 for (const auto &Tree
: PatFragRec
->getTrees()) {
1349 StringRef TreeClassName
;
1351 TreeClassName
= "SDNode";
1353 Record
*Op
= Tree
->getOperator();
1354 const SDNodeInfo
&Info
= PatFragRec
->getDAGPatterns().getSDNodeInfo(Op
);
1355 TreeClassName
= Info
.getSDClassName();
1358 if (ClassName
.empty())
1359 ClassName
= TreeClassName
;
1360 else if (ClassName
!= TreeClassName
) {
1361 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1362 "PatFrags trees do not have consistent class");
1367 if (ClassName
== "SDNode")
1368 Result
= " SDNode *N = Node;\n";
1370 Result
= " auto *N = cast<" + ClassName
.str() + ">(Node);\n";
1372 return (Twine(Result
) + " (void)N;\n" + getPredCode()).str();
1375 //===----------------------------------------------------------------------===//
1376 // PatternToMatch implementation
1379 static bool isImmAllOnesAllZerosMatch(const TreePatternNode
*P
) {
1382 DefInit
*DI
= dyn_cast
<DefInit
>(P
->getLeafValue());
1386 Record
*R
= DI
->getDef();
1387 return R
->getName() == "immAllOnesV" || R
->getName() == "immAllZerosV";
1390 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1391 /// patterns before small ones. This is used to determine the size of a
1393 static unsigned getPatternSize(const TreePatternNode
*P
,
1394 const CodeGenDAGPatterns
&CGP
) {
1395 unsigned Size
= 3; // The node itself.
1396 // If the root node is a ConstantSDNode, increases its size.
1397 // e.g. (set R32:$dst, 0).
1398 if (P
->isLeaf() && isa
<IntInit
>(P
->getLeafValue()))
1401 if (const ComplexPattern
*AM
= P
->getComplexPatternInfo(CGP
)) {
1402 Size
+= AM
->getComplexity();
1403 // We don't want to count any children twice, so return early.
1407 // If this node has some predicate function that must match, it adds to the
1408 // complexity of this node.
1409 if (!P
->getPredicateCalls().empty())
1412 // Count children in the count if they are also nodes.
1413 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
) {
1414 const TreePatternNode
*Child
= P
->getChild(i
);
1415 if (!Child
->isLeaf() && Child
->getNumTypes()) {
1416 const TypeSetByHwMode
&T0
= Child
->getExtType(0);
1417 // At this point, all variable type sets should be simple, i.e. only
1418 // have a default mode.
1419 if (T0
.getMachineValueType() != MVT::Other
) {
1420 Size
+= getPatternSize(Child
, CGP
);
1424 if (Child
->isLeaf()) {
1425 if (isa
<IntInit
>(Child
->getLeafValue()))
1426 Size
+= 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1427 else if (Child
->getComplexPatternInfo(CGP
))
1428 Size
+= getPatternSize(Child
, CGP
);
1429 else if (isImmAllOnesAllZerosMatch(Child
))
1430 Size
+= 4; // Matches a build_vector(+3) and a predicate (+1).
1431 else if (!Child
->getPredicateCalls().empty())
1439 /// Compute the complexity metric for the input pattern. This roughly
1440 /// corresponds to the number of nodes that are covered.
1441 int PatternToMatch::
1442 getPatternComplexity(const CodeGenDAGPatterns
&CGP
) const {
1443 return getPatternSize(getSrcPattern(), CGP
) + getAddedComplexity();
1446 void PatternToMatch::getPredicateRecords(
1447 SmallVectorImpl
<Record
*> &PredicateRecs
) const {
1448 for (Init
*I
: Predicates
->getValues()) {
1449 if (DefInit
*Pred
= dyn_cast
<DefInit
>(I
)) {
1450 Record
*Def
= Pred
->getDef();
1451 if (!Def
->isSubClassOf("Predicate")) {
1455 llvm_unreachable("Unknown predicate type!");
1457 PredicateRecs
.push_back(Def
);
1460 // Sort so that different orders get canonicalized to the same string.
1461 llvm::sort(PredicateRecs
, LessRecord());
1464 /// getPredicateCheck - Return a single string containing all of this
1465 /// pattern's predicates concatenated with "&&" operators.
1467 std::string
PatternToMatch::getPredicateCheck() const {
1468 SmallVector
<Record
*, 4> PredicateRecs
;
1469 getPredicateRecords(PredicateRecs
);
1471 SmallString
<128> PredicateCheck
;
1472 for (Record
*Pred
: PredicateRecs
) {
1473 StringRef CondString
= Pred
->getValueAsString("CondString");
1474 if (CondString
.empty())
1476 if (!PredicateCheck
.empty())
1477 PredicateCheck
+= " && ";
1478 PredicateCheck
+= "(";
1479 PredicateCheck
+= CondString
;
1480 PredicateCheck
+= ")";
1483 if (!HwModeFeatures
.empty()) {
1484 if (!PredicateCheck
.empty())
1485 PredicateCheck
+= " && ";
1486 PredicateCheck
+= HwModeFeatures
;
1489 return std::string(PredicateCheck
);
1492 //===----------------------------------------------------------------------===//
1493 // SDTypeConstraint implementation
1496 SDTypeConstraint::SDTypeConstraint(Record
*R
, const CodeGenHwModes
&CGH
) {
1497 OperandNo
= R
->getValueAsInt("OperandNum");
1499 if (R
->isSubClassOf("SDTCisVT")) {
1500 ConstraintType
= SDTCisVT
;
1501 VVT
= getValueTypeByHwMode(R
->getValueAsDef("VT"), CGH
);
1502 for (const auto &P
: VVT
)
1503 if (P
.second
== MVT::isVoid
)
1504 PrintFatalError(R
->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1505 } else if (R
->isSubClassOf("SDTCisPtrTy")) {
1506 ConstraintType
= SDTCisPtrTy
;
1507 } else if (R
->isSubClassOf("SDTCisInt")) {
1508 ConstraintType
= SDTCisInt
;
1509 } else if (R
->isSubClassOf("SDTCisFP")) {
1510 ConstraintType
= SDTCisFP
;
1511 } else if (R
->isSubClassOf("SDTCisVec")) {
1512 ConstraintType
= SDTCisVec
;
1513 } else if (R
->isSubClassOf("SDTCisSameAs")) {
1514 ConstraintType
= SDTCisSameAs
;
1515 x
.SDTCisSameAs_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOperandNum");
1516 } else if (R
->isSubClassOf("SDTCisVTSmallerThanOp")) {
1517 ConstraintType
= SDTCisVTSmallerThanOp
;
1518 x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
=
1519 R
->getValueAsInt("OtherOperandNum");
1520 } else if (R
->isSubClassOf("SDTCisOpSmallerThanOp")) {
1521 ConstraintType
= SDTCisOpSmallerThanOp
;
1522 x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
=
1523 R
->getValueAsInt("BigOperandNum");
1524 } else if (R
->isSubClassOf("SDTCisEltOfVec")) {
1525 ConstraintType
= SDTCisEltOfVec
;
1526 x
.SDTCisEltOfVec_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOpNum");
1527 } else if (R
->isSubClassOf("SDTCisSubVecOfVec")) {
1528 ConstraintType
= SDTCisSubVecOfVec
;
1529 x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
=
1530 R
->getValueAsInt("OtherOpNum");
1531 } else if (R
->isSubClassOf("SDTCVecEltisVT")) {
1532 ConstraintType
= SDTCVecEltisVT
;
1533 VVT
= getValueTypeByHwMode(R
->getValueAsDef("VT"), CGH
);
1534 for (const auto &P
: VVT
) {
1537 PrintFatalError(R
->getLoc(),
1538 "Cannot use vector type as SDTCVecEltisVT");
1539 if (!T
.isInteger() && !T
.isFloatingPoint())
1540 PrintFatalError(R
->getLoc(), "Must use integer or floating point type "
1541 "as SDTCVecEltisVT");
1543 } else if (R
->isSubClassOf("SDTCisSameNumEltsAs")) {
1544 ConstraintType
= SDTCisSameNumEltsAs
;
1545 x
.SDTCisSameNumEltsAs_Info
.OtherOperandNum
=
1546 R
->getValueAsInt("OtherOperandNum");
1547 } else if (R
->isSubClassOf("SDTCisSameSizeAs")) {
1548 ConstraintType
= SDTCisSameSizeAs
;
1549 x
.SDTCisSameSizeAs_Info
.OtherOperandNum
=
1550 R
->getValueAsInt("OtherOperandNum");
1552 PrintFatalError(R
->getLoc(),
1553 "Unrecognized SDTypeConstraint '" + R
->getName() + "'!\n");
1557 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1558 /// N, and the result number in ResNo.
1559 static TreePatternNode
*getOperandNum(unsigned OpNo
, TreePatternNode
*N
,
1560 const SDNodeInfo
&NodeInfo
,
1562 unsigned NumResults
= NodeInfo
.getNumResults();
1563 if (OpNo
< NumResults
) {
1570 if (OpNo
>= N
->getNumChildren()) {
1572 raw_string_ostream
OS(S
);
1573 OS
<< "Invalid operand number in type constraint "
1574 << (OpNo
+NumResults
) << " ";
1576 PrintFatalError(OS
.str());
1579 return N
->getChild(OpNo
);
1582 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1583 /// constraint to the nodes operands. This returns true if it makes a
1584 /// change, false otherwise. If a type contradiction is found, flag an error.
1585 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode
*N
,
1586 const SDNodeInfo
&NodeInfo
,
1587 TreePattern
&TP
) const {
1591 unsigned ResNo
= 0; // The result number being referenced.
1592 TreePatternNode
*NodeToApply
= getOperandNum(OperandNo
, N
, NodeInfo
, ResNo
);
1593 TypeInfer
&TI
= TP
.getInfer();
1595 switch (ConstraintType
) {
1597 // Operand must be a particular type.
1598 return NodeToApply
->UpdateNodeType(ResNo
, VVT
, TP
);
1600 // Operand must be same as target pointer type.
1601 return NodeToApply
->UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
1603 // Require it to be one of the legal integer VTs.
1604 return TI
.EnforceInteger(NodeToApply
->getExtType(ResNo
));
1606 // Require it to be one of the legal fp VTs.
1607 return TI
.EnforceFloatingPoint(NodeToApply
->getExtType(ResNo
));
1609 // Require it to be one of the legal vector VTs.
1610 return TI
.EnforceVector(NodeToApply
->getExtType(ResNo
));
1611 case SDTCisSameAs
: {
1612 unsigned OResNo
= 0;
1613 TreePatternNode
*OtherNode
=
1614 getOperandNum(x
.SDTCisSameAs_Info
.OtherOperandNum
, N
, NodeInfo
, OResNo
);
1615 return NodeToApply
->UpdateNodeType(ResNo
, OtherNode
->getExtType(OResNo
),TP
)|
1616 OtherNode
->UpdateNodeType(OResNo
,NodeToApply
->getExtType(ResNo
),TP
);
1618 case SDTCisVTSmallerThanOp
: {
1619 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1620 // have an integer type that is smaller than the VT.
1621 if (!NodeToApply
->isLeaf() ||
1622 !isa
<DefInit
>(NodeToApply
->getLeafValue()) ||
1623 !static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef()
1624 ->isSubClassOf("ValueType")) {
1625 TP
.error(N
->getOperator()->getName() + " expects a VT operand!");
1628 DefInit
*DI
= static_cast<DefInit
*>(NodeToApply
->getLeafValue());
1629 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1630 auto VVT
= getValueTypeByHwMode(DI
->getDef(), T
.getHwModes());
1631 TypeSetByHwMode
TypeListTmp(VVT
);
1633 unsigned OResNo
= 0;
1634 TreePatternNode
*OtherNode
=
1635 getOperandNum(x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
, N
, NodeInfo
,
1638 return TI
.EnforceSmallerThan(TypeListTmp
, OtherNode
->getExtType(OResNo
));
1640 case SDTCisOpSmallerThanOp
: {
1641 unsigned BResNo
= 0;
1642 TreePatternNode
*BigOperand
=
1643 getOperandNum(x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
, N
, NodeInfo
,
1645 return TI
.EnforceSmallerThan(NodeToApply
->getExtType(ResNo
),
1646 BigOperand
->getExtType(BResNo
));
1648 case SDTCisEltOfVec
: {
1649 unsigned VResNo
= 0;
1650 TreePatternNode
*VecOperand
=
1651 getOperandNum(x
.SDTCisEltOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
1653 // Filter vector types out of VecOperand that don't have the right element
1655 return TI
.EnforceVectorEltTypeIs(VecOperand
->getExtType(VResNo
),
1656 NodeToApply
->getExtType(ResNo
));
1658 case SDTCisSubVecOfVec
: {
1659 unsigned VResNo
= 0;
1660 TreePatternNode
*BigVecOperand
=
1661 getOperandNum(x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
1664 // Filter vector types out of BigVecOperand that don't have the
1665 // right subvector type.
1666 return TI
.EnforceVectorSubVectorTypeIs(BigVecOperand
->getExtType(VResNo
),
1667 NodeToApply
->getExtType(ResNo
));
1669 case SDTCVecEltisVT
: {
1670 return TI
.EnforceVectorEltTypeIs(NodeToApply
->getExtType(ResNo
), VVT
);
1672 case SDTCisSameNumEltsAs
: {
1673 unsigned OResNo
= 0;
1674 TreePatternNode
*OtherNode
=
1675 getOperandNum(x
.SDTCisSameNumEltsAs_Info
.OtherOperandNum
,
1676 N
, NodeInfo
, OResNo
);
1677 return TI
.EnforceSameNumElts(OtherNode
->getExtType(OResNo
),
1678 NodeToApply
->getExtType(ResNo
));
1680 case SDTCisSameSizeAs
: {
1681 unsigned OResNo
= 0;
1682 TreePatternNode
*OtherNode
=
1683 getOperandNum(x
.SDTCisSameSizeAs_Info
.OtherOperandNum
,
1684 N
, NodeInfo
, OResNo
);
1685 return TI
.EnforceSameSize(OtherNode
->getExtType(OResNo
),
1686 NodeToApply
->getExtType(ResNo
));
1689 llvm_unreachable("Invalid ConstraintType!");
1692 // Update the node type to match an instruction operand or result as specified
1693 // in the ins or outs lists on the instruction definition. Return true if the
1694 // type was actually changed.
1695 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo
,
1698 // The 'unknown' operand indicates that types should be inferred from the
1700 if (Operand
->isSubClassOf("unknown_class"))
1703 // The Operand class specifies a type directly.
1704 if (Operand
->isSubClassOf("Operand")) {
1705 Record
*R
= Operand
->getValueAsDef("Type");
1706 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1707 return UpdateNodeType(ResNo
, getValueTypeByHwMode(R
, T
.getHwModes()), TP
);
1710 // PointerLikeRegClass has a type that is determined at runtime.
1711 if (Operand
->isSubClassOf("PointerLikeRegClass"))
1712 return UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
1714 // Both RegisterClass and RegisterOperand operands derive their types from a
1715 // register class def.
1716 Record
*RC
= nullptr;
1717 if (Operand
->isSubClassOf("RegisterClass"))
1719 else if (Operand
->isSubClassOf("RegisterOperand"))
1720 RC
= Operand
->getValueAsDef("RegClass");
1722 assert(RC
&& "Unknown operand type");
1723 CodeGenTarget
&Tgt
= TP
.getDAGPatterns().getTargetInfo();
1724 return UpdateNodeType(ResNo
, Tgt
.getRegisterClass(RC
).getValueTypes(), TP
);
1727 bool TreePatternNode::ContainsUnresolvedType(TreePattern
&TP
) const {
1728 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1729 if (!TP
.getInfer().isConcrete(Types
[i
], true))
1731 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1732 if (getChild(i
)->ContainsUnresolvedType(TP
))
1737 bool TreePatternNode::hasProperTypeByHwMode() const {
1738 for (const TypeSetByHwMode
&S
: Types
)
1739 if (!S
.isDefaultOnly())
1741 for (const TreePatternNodePtr
&C
: Children
)
1742 if (C
->hasProperTypeByHwMode())
1747 bool TreePatternNode::hasPossibleType() const {
1748 for (const TypeSetByHwMode
&S
: Types
)
1749 if (!S
.isPossible())
1751 for (const TreePatternNodePtr
&C
: Children
)
1752 if (!C
->hasPossibleType())
1757 bool TreePatternNode::setDefaultMode(unsigned Mode
) {
1758 for (TypeSetByHwMode
&S
: Types
) {
1760 // Check if the selected mode had a type conflict.
1761 if (S
.get(DefaultMode
).empty())
1764 for (const TreePatternNodePtr
&C
: Children
)
1765 if (!C
->setDefaultMode(Mode
))
1770 //===----------------------------------------------------------------------===//
1771 // SDNodeInfo implementation
1773 SDNodeInfo::SDNodeInfo(Record
*R
, const CodeGenHwModes
&CGH
) : Def(R
) {
1774 EnumName
= R
->getValueAsString("Opcode");
1775 SDClassName
= R
->getValueAsString("SDClass");
1776 Record
*TypeProfile
= R
->getValueAsDef("TypeProfile");
1777 NumResults
= TypeProfile
->getValueAsInt("NumResults");
1778 NumOperands
= TypeProfile
->getValueAsInt("NumOperands");
1780 // Parse the properties.
1781 Properties
= parseSDPatternOperatorProperties(R
);
1783 // Parse the type constraints.
1784 std::vector
<Record
*> ConstraintList
=
1785 TypeProfile
->getValueAsListOfDefs("Constraints");
1786 for (Record
*R
: ConstraintList
)
1787 TypeConstraints
.emplace_back(R
, CGH
);
1790 /// getKnownType - If the type constraints on this node imply a fixed type
1791 /// (e.g. all stores return void, etc), then return it as an
1792 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1793 MVT::SimpleValueType
SDNodeInfo::getKnownType(unsigned ResNo
) const {
1794 unsigned NumResults
= getNumResults();
1795 assert(NumResults
<= 1 &&
1796 "We only work with nodes with zero or one result so far!");
1797 assert(ResNo
== 0 && "Only handles single result nodes so far");
1799 for (const SDTypeConstraint
&Constraint
: TypeConstraints
) {
1800 // Make sure that this applies to the correct node result.
1801 if (Constraint
.OperandNo
>= NumResults
) // FIXME: need value #
1804 switch (Constraint
.ConstraintType
) {
1806 case SDTypeConstraint::SDTCisVT
:
1807 if (Constraint
.VVT
.isSimple())
1808 return Constraint
.VVT
.getSimple().SimpleTy
;
1810 case SDTypeConstraint::SDTCisPtrTy
:
1817 //===----------------------------------------------------------------------===//
1818 // TreePatternNode implementation
1821 static unsigned GetNumNodeResults(Record
*Operator
, CodeGenDAGPatterns
&CDP
) {
1822 if (Operator
->getName() == "set" ||
1823 Operator
->getName() == "implicit")
1824 return 0; // All return nothing.
1826 if (Operator
->isSubClassOf("Intrinsic"))
1827 return CDP
.getIntrinsic(Operator
).IS
.RetVTs
.size();
1829 if (Operator
->isSubClassOf("SDNode"))
1830 return CDP
.getSDNodeInfo(Operator
).getNumResults();
1832 if (Operator
->isSubClassOf("PatFrags")) {
1833 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1834 // the forward reference case where one pattern fragment references another
1835 // before it is processed.
1836 if (TreePattern
*PFRec
= CDP
.getPatternFragmentIfRead(Operator
)) {
1837 // The number of results of a fragment with alternative records is the
1838 // maximum number of results across all alternatives.
1839 unsigned NumResults
= 0;
1840 for (const auto &T
: PFRec
->getTrees())
1841 NumResults
= std::max(NumResults
, T
->getNumTypes());
1845 ListInit
*LI
= Operator
->getValueAsListInit("Fragments");
1846 assert(LI
&& "Invalid Fragment");
1847 unsigned NumResults
= 0;
1848 for (Init
*I
: LI
->getValues()) {
1849 Record
*Op
= nullptr;
1850 if (DagInit
*Dag
= dyn_cast
<DagInit
>(I
))
1851 if (DefInit
*DI
= dyn_cast
<DefInit
>(Dag
->getOperator()))
1853 assert(Op
&& "Invalid Fragment");
1854 NumResults
= std::max(NumResults
, GetNumNodeResults(Op
, CDP
));
1859 if (Operator
->isSubClassOf("Instruction")) {
1860 CodeGenInstruction
&InstInfo
= CDP
.getTargetInfo().getInstruction(Operator
);
1862 unsigned NumDefsToAdd
= InstInfo
.Operands
.NumDefs
;
1864 // Subtract any defaulted outputs.
1865 for (unsigned i
= 0; i
!= InstInfo
.Operands
.NumDefs
; ++i
) {
1866 Record
*OperandNode
= InstInfo
.Operands
[i
].Rec
;
1868 if (OperandNode
->isSubClassOf("OperandWithDefaultOps") &&
1869 !CDP
.getDefaultOperand(OperandNode
).DefaultOps
.empty())
1873 // Add on one implicit def if it has a resolvable type.
1874 if (InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo()) !=MVT::Other
)
1876 return NumDefsToAdd
;
1879 if (Operator
->isSubClassOf("SDNodeXForm"))
1880 return 1; // FIXME: Generalize SDNodeXForm
1882 if (Operator
->isSubClassOf("ValueType"))
1883 return 1; // A type-cast of one result.
1885 if (Operator
->isSubClassOf("ComplexPattern"))
1888 errs() << *Operator
;
1889 PrintFatalError("Unhandled node in GetNumNodeResults");
1892 void TreePatternNode::print(raw_ostream
&OS
) const {
1894 OS
<< *getLeafValue();
1896 OS
<< '(' << getOperator()->getName();
1898 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
) {
1900 getExtType(i
).writeToStream(OS
);
1904 if (getNumChildren() != 0) {
1907 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1909 getChild(i
)->print(OS
);
1915 for (const TreePredicateCall
&Pred
: PredicateCalls
) {
1918 OS
<< Pred
.Scope
<< ":";
1919 OS
<< Pred
.Fn
.getFnName() << ">>";
1922 OS
<< "<<X:" << TransformFn
->getName() << ">>";
1923 if (!getName().empty())
1924 OS
<< ":$" << getName();
1926 for (const ScopedName
&Name
: NamesAsPredicateArg
)
1927 OS
<< ":$pred:" << Name
.getScope() << ":" << Name
.getIdentifier();
1929 void TreePatternNode::dump() const {
1933 /// isIsomorphicTo - Return true if this node is recursively
1934 /// isomorphic to the specified node. For this comparison, the node's
1935 /// entire state is considered. The assigned name is ignored, since
1936 /// nodes with differing names are considered isomorphic. However, if
1937 /// the assigned name is present in the dependent variable set, then
1938 /// the assigned name is considered significant and the node is
1939 /// isomorphic if the names match.
1940 bool TreePatternNode::isIsomorphicTo(const TreePatternNode
*N
,
1941 const MultipleUseVarSet
&DepVars
) const {
1942 if (N
== this) return true;
1943 if (N
->isLeaf() != isLeaf() || getExtTypes() != N
->getExtTypes() ||
1944 getPredicateCalls() != N
->getPredicateCalls() ||
1945 getTransformFn() != N
->getTransformFn())
1949 if (DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue())) {
1950 if (DefInit
*NDI
= dyn_cast
<DefInit
>(N
->getLeafValue())) {
1951 return ((DI
->getDef() == NDI
->getDef())
1952 && (DepVars
.find(getName()) == DepVars
.end()
1953 || getName() == N
->getName()));
1956 return getLeafValue() == N
->getLeafValue();
1959 if (N
->getOperator() != getOperator() ||
1960 N
->getNumChildren() != getNumChildren()) return false;
1961 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1962 if (!getChild(i
)->isIsomorphicTo(N
->getChild(i
), DepVars
))
1967 /// clone - Make a copy of this tree and all of its children.
1969 TreePatternNodePtr
TreePatternNode::clone() const {
1970 TreePatternNodePtr New
;
1972 New
= std::make_shared
<TreePatternNode
>(getLeafValue(), getNumTypes());
1974 std::vector
<TreePatternNodePtr
> CChildren
;
1975 CChildren
.reserve(Children
.size());
1976 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1977 CChildren
.push_back(getChild(i
)->clone());
1978 New
= std::make_shared
<TreePatternNode
>(getOperator(), std::move(CChildren
),
1981 New
->setName(getName());
1982 New
->setNamesAsPredicateArg(getNamesAsPredicateArg());
1984 New
->setPredicateCalls(getPredicateCalls());
1985 New
->setTransformFn(getTransformFn());
1989 /// RemoveAllTypes - Recursively strip all the types of this tree.
1990 void TreePatternNode::RemoveAllTypes() {
1991 // Reset to unknown type.
1992 std::fill(Types
.begin(), Types
.end(), TypeSetByHwMode());
1993 if (isLeaf()) return;
1994 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1995 getChild(i
)->RemoveAllTypes();
1999 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2000 /// with actual values specified by ArgMap.
2001 void TreePatternNode::SubstituteFormalArguments(
2002 std::map
<std::string
, TreePatternNodePtr
> &ArgMap
) {
2003 if (isLeaf()) return;
2005 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
2006 TreePatternNode
*Child
= getChild(i
);
2007 if (Child
->isLeaf()) {
2008 Init
*Val
= Child
->getLeafValue();
2009 // Note that, when substituting into an output pattern, Val might be an
2011 if (isa
<UnsetInit
>(Val
) || (isa
<DefInit
>(Val
) &&
2012 cast
<DefInit
>(Val
)->getDef()->getName() == "node")) {
2013 // We found a use of a formal argument, replace it with its value.
2014 TreePatternNodePtr NewChild
= ArgMap
[Child
->getName()];
2015 assert(NewChild
&& "Couldn't find formal argument!");
2016 assert((Child
->getPredicateCalls().empty() ||
2017 NewChild
->getPredicateCalls() == Child
->getPredicateCalls()) &&
2018 "Non-empty child predicate clobbered!");
2019 setChild(i
, std::move(NewChild
));
2022 getChild(i
)->SubstituteFormalArguments(ArgMap
);
2028 /// InlinePatternFragments - If this pattern refers to any pattern
2029 /// fragments, return the set of inlined versions (this can be more than
2030 /// one if a PatFrags record has multiple alternatives).
2031 void TreePatternNode::InlinePatternFragments(
2032 TreePatternNodePtr T
, TreePattern
&TP
,
2033 std::vector
<TreePatternNodePtr
> &OutAlternatives
) {
2039 OutAlternatives
.push_back(T
); // nothing to do.
2043 Record
*Op
= getOperator();
2045 if (!Op
->isSubClassOf("PatFrags")) {
2046 if (getNumChildren() == 0) {
2047 OutAlternatives
.push_back(T
);
2051 // Recursively inline children nodes.
2052 std::vector
<std::vector
<TreePatternNodePtr
> > ChildAlternatives
;
2053 ChildAlternatives
.resize(getNumChildren());
2054 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
2055 TreePatternNodePtr Child
= getChildShared(i
);
2056 Child
->InlinePatternFragments(Child
, TP
, ChildAlternatives
[i
]);
2057 // If there are no alternatives for any child, there are no
2058 // alternatives for this expression as whole.
2059 if (ChildAlternatives
[i
].empty())
2062 assert((Child
->getPredicateCalls().empty() ||
2063 llvm::all_of(ChildAlternatives
[i
],
2064 [&](const TreePatternNodePtr
&NewChild
) {
2065 return NewChild
->getPredicateCalls() ==
2066 Child
->getPredicateCalls();
2068 "Non-empty child predicate clobbered!");
2071 // The end result is an all-pairs construction of the resultant pattern.
2072 std::vector
<unsigned> Idxs
;
2073 Idxs
.resize(ChildAlternatives
.size());
2076 // Create the variant and add it to the output list.
2077 std::vector
<TreePatternNodePtr
> NewChildren
;
2078 for (unsigned i
= 0, e
= ChildAlternatives
.size(); i
!= e
; ++i
)
2079 NewChildren
.push_back(ChildAlternatives
[i
][Idxs
[i
]]);
2080 TreePatternNodePtr R
= std::make_shared
<TreePatternNode
>(
2081 getOperator(), std::move(NewChildren
), getNumTypes());
2083 // Copy over properties.
2084 R
->setName(getName());
2085 R
->setNamesAsPredicateArg(getNamesAsPredicateArg());
2086 R
->setPredicateCalls(getPredicateCalls());
2087 R
->setTransformFn(getTransformFn());
2088 for (unsigned i
= 0, e
= getNumTypes(); i
!= e
; ++i
)
2089 R
->setType(i
, getExtType(i
));
2090 for (unsigned i
= 0, e
= getNumResults(); i
!= e
; ++i
)
2091 R
->setResultIndex(i
, getResultIndex(i
));
2093 // Register alternative.
2094 OutAlternatives
.push_back(R
);
2096 // Increment indices to the next permutation by incrementing the
2097 // indices from last index backward, e.g., generate the sequence
2098 // [0, 0], [0, 1], [1, 0], [1, 1].
2100 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
2101 if (++Idxs
[IdxsIdx
] == ChildAlternatives
[IdxsIdx
].size())
2106 NotDone
= (IdxsIdx
>= 0);
2112 // Otherwise, we found a reference to a fragment. First, look up its
2113 // TreePattern record.
2114 TreePattern
*Frag
= TP
.getDAGPatterns().getPatternFragment(Op
);
2116 // Verify that we are passing the right number of operands.
2117 if (Frag
->getNumArgs() != Children
.size()) {
2118 TP
.error("'" + Op
->getName() + "' fragment requires " +
2119 Twine(Frag
->getNumArgs()) + " operands!");
2123 TreePredicateFn
PredFn(Frag
);
2125 if (TreePredicateFn(Frag
).usesOperands())
2126 Scope
= TP
.getDAGPatterns().allocateScope();
2128 // Compute the map of formal to actual arguments.
2129 std::map
<std::string
, TreePatternNodePtr
> ArgMap
;
2130 for (unsigned i
= 0, e
= Frag
->getNumArgs(); i
!= e
; ++i
) {
2131 TreePatternNodePtr Child
= getChildShared(i
);
2133 Child
= Child
->clone();
2134 Child
->addNameAsPredicateArg(ScopedName(Scope
, Frag
->getArgName(i
)));
2136 ArgMap
[Frag
->getArgName(i
)] = Child
;
2139 // Loop over all fragment alternatives.
2140 for (const auto &Alternative
: Frag
->getTrees()) {
2141 TreePatternNodePtr FragTree
= Alternative
->clone();
2143 if (!PredFn
.isAlwaysTrue())
2144 FragTree
->addPredicateCall(PredFn
, Scope
);
2146 // Resolve formal arguments to their actual value.
2147 if (Frag
->getNumArgs())
2148 FragTree
->SubstituteFormalArguments(ArgMap
);
2150 // Transfer types. Note that the resolved alternative may have fewer
2151 // (but not more) results than the PatFrags node.
2152 FragTree
->setName(getName());
2153 for (unsigned i
= 0, e
= FragTree
->getNumTypes(); i
!= e
; ++i
)
2154 FragTree
->UpdateNodeType(i
, getExtType(i
), TP
);
2156 // Transfer in the old predicates.
2157 for (const TreePredicateCall
&Pred
: getPredicateCalls())
2158 FragTree
->addPredicateCall(Pred
);
2160 // The fragment we inlined could have recursive inlining that is needed. See
2161 // if there are any pattern fragments in it and inline them as needed.
2162 FragTree
->InlinePatternFragments(FragTree
, TP
, OutAlternatives
);
2166 /// getImplicitType - Check to see if the specified record has an implicit
2167 /// type which should be applied to it. This will infer the type of register
2168 /// references from the register file information, for example.
2170 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2171 /// the F8RC register class argument in:
2173 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
2175 /// When Unnamed is false, return the type of a named DAG operand such as the
2176 /// GPR:$src operand above.
2178 static TypeSetByHwMode
getImplicitType(Record
*R
, unsigned ResNo
,
2182 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
2184 // Check to see if this is a register operand.
2185 if (R
->isSubClassOf("RegisterOperand")) {
2186 assert(ResNo
== 0 && "Regoperand ref only has one result!");
2188 return TypeSetByHwMode(); // Unknown.
2189 Record
*RegClass
= R
->getValueAsDef("RegClass");
2190 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
2191 return TypeSetByHwMode(T
.getRegisterClass(RegClass
).getValueTypes());
2194 // Check to see if this is a register or a register class.
2195 if (R
->isSubClassOf("RegisterClass")) {
2196 assert(ResNo
== 0 && "Regclass ref only has one result!");
2197 // An unnamed register class represents itself as an i32 immediate, for
2198 // example on a COPY_TO_REGCLASS instruction.
2200 return TypeSetByHwMode(MVT::i32
);
2202 // In a named operand, the register class provides the possible set of
2205 return TypeSetByHwMode(); // Unknown.
2206 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
2207 return TypeSetByHwMode(T
.getRegisterClass(R
).getValueTypes());
2210 if (R
->isSubClassOf("PatFrags")) {
2211 assert(ResNo
== 0 && "FIXME: PatFrag with multiple results?");
2212 // Pattern fragment types will be resolved when they are inlined.
2213 return TypeSetByHwMode(); // Unknown.
2216 if (R
->isSubClassOf("Register")) {
2217 assert(ResNo
== 0 && "Registers only produce one result!");
2219 return TypeSetByHwMode(); // Unknown.
2220 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
2221 return TypeSetByHwMode(T
.getRegisterVTs(R
));
2224 if (R
->isSubClassOf("SubRegIndex")) {
2225 assert(ResNo
== 0 && "SubRegisterIndices only produce one result!");
2226 return TypeSetByHwMode(MVT::i32
);
2229 if (R
->isSubClassOf("ValueType")) {
2230 assert(ResNo
== 0 && "This node only has one result!");
2231 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2233 // (sext_inreg GPR:$src, i16)
2236 return TypeSetByHwMode(MVT::Other
);
2237 // With a name, the ValueType simply provides the type of the named
2240 // (sext_inreg i32:$src, i16)
2243 return TypeSetByHwMode(); // Unknown.
2244 const CodeGenHwModes
&CGH
= CDP
.getTargetInfo().getHwModes();
2245 return TypeSetByHwMode(getValueTypeByHwMode(R
, CGH
));
2248 if (R
->isSubClassOf("CondCode")) {
2249 assert(ResNo
== 0 && "This node only has one result!");
2250 // Using a CondCodeSDNode.
2251 return TypeSetByHwMode(MVT::Other
);
2254 if (R
->isSubClassOf("ComplexPattern")) {
2255 assert(ResNo
== 0 && "FIXME: ComplexPattern with multiple results?");
2257 return TypeSetByHwMode(); // Unknown.
2258 return TypeSetByHwMode(CDP
.getComplexPattern(R
).getValueType());
2260 if (R
->isSubClassOf("PointerLikeRegClass")) {
2261 assert(ResNo
== 0 && "Regclass can only have one result!");
2262 TypeSetByHwMode
VTS(MVT::iPTR
);
2263 TP
.getInfer().expandOverloads(VTS
);
2267 if (R
->getName() == "node" || R
->getName() == "srcvalue" ||
2268 R
->getName() == "zero_reg" || R
->getName() == "immAllOnesV" ||
2269 R
->getName() == "immAllZerosV" || R
->getName() == "undef_tied_input") {
2271 return TypeSetByHwMode(); // Unknown.
2274 if (R
->isSubClassOf("Operand")) {
2275 const CodeGenHwModes
&CGH
= CDP
.getTargetInfo().getHwModes();
2276 Record
*T
= R
->getValueAsDef("Type");
2277 return TypeSetByHwMode(getValueTypeByHwMode(T
, CGH
));
2280 TP
.error("Unknown node flavor used in pattern: " + R
->getName());
2281 return TypeSetByHwMode(MVT::Other
);
2285 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2286 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2287 const CodeGenIntrinsic
*TreePatternNode::
2288 getIntrinsicInfo(const CodeGenDAGPatterns
&CDP
) const {
2289 if (getOperator() != CDP
.get_intrinsic_void_sdnode() &&
2290 getOperator() != CDP
.get_intrinsic_w_chain_sdnode() &&
2291 getOperator() != CDP
.get_intrinsic_wo_chain_sdnode())
2294 unsigned IID
= cast
<IntInit
>(getChild(0)->getLeafValue())->getValue();
2295 return &CDP
.getIntrinsicInfo(IID
);
2298 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2299 /// return the ComplexPattern information, otherwise return null.
2300 const ComplexPattern
*
2301 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns
&CGP
) const {
2304 DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue());
2309 Rec
= getOperator();
2311 if (!Rec
->isSubClassOf("ComplexPattern"))
2313 return &CGP
.getComplexPattern(Rec
);
2316 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns
&CGP
) const {
2317 // A ComplexPattern specifically declares how many results it fills in.
2318 if (const ComplexPattern
*CP
= getComplexPatternInfo(CGP
))
2319 return CP
->getNumOperands();
2321 // If MIOperandInfo is specified, that gives the count.
2323 DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue());
2324 if (DI
&& DI
->getDef()->isSubClassOf("Operand")) {
2325 DagInit
*MIOps
= DI
->getDef()->getValueAsDag("MIOperandInfo");
2326 if (MIOps
->getNumArgs())
2327 return MIOps
->getNumArgs();
2331 // Otherwise there is just one result.
2335 /// NodeHasProperty - Return true if this node has the specified property.
2336 bool TreePatternNode::NodeHasProperty(SDNP Property
,
2337 const CodeGenDAGPatterns
&CGP
) const {
2339 if (const ComplexPattern
*CP
= getComplexPatternInfo(CGP
))
2340 return CP
->hasProperty(Property
);
2345 if (Property
!= SDNPHasChain
) {
2346 // The chain proprety is already present on the different intrinsic node
2347 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2348 // on the intrinsic. Anything else is specific to the individual intrinsic.
2349 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CGP
))
2350 return Int
->hasProperty(Property
);
2353 if (!Operator
->isSubClassOf("SDPatternOperator"))
2356 return CGP
.getSDNodeInfo(Operator
).hasProperty(Property
);
2362 /// TreeHasProperty - Return true if any node in this tree has the specified
2364 bool TreePatternNode::TreeHasProperty(SDNP Property
,
2365 const CodeGenDAGPatterns
&CGP
) const {
2366 if (NodeHasProperty(Property
, CGP
))
2368 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2369 if (getChild(i
)->TreeHasProperty(Property
, CGP
))
2374 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2375 /// commutative intrinsic.
2377 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns
&CDP
) const {
2378 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
))
2379 return Int
->isCommutative
;
2383 static bool isOperandClass(const TreePatternNode
*N
, StringRef Class
) {
2385 return N
->getOperator()->isSubClassOf(Class
);
2387 DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue());
2388 if (DI
&& DI
->getDef()->isSubClassOf(Class
))
2394 static void emitTooManyOperandsError(TreePattern
&TP
,
2398 TP
.error("Instruction '" + InstName
+ "' was provided " + Twine(Actual
) +
2399 " operands but expected only " + Twine(Expected
) + "!");
2402 static void emitTooFewOperandsError(TreePattern
&TP
,
2405 TP
.error("Instruction '" + InstName
+
2406 "' expects more than the provided " + Twine(Actual
) + " operands!");
2409 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2410 /// this node and its children in the tree. This returns true if it makes a
2411 /// change, false otherwise. If a type contradiction is found, flag an error.
2412 bool TreePatternNode::ApplyTypeConstraints(TreePattern
&TP
, bool NotRegisters
) {
2416 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
2418 if (DefInit
*DI
= dyn_cast
<DefInit
>(getLeafValue())) {
2419 // If it's a regclass or something else known, include the type.
2420 bool MadeChange
= false;
2421 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
2422 MadeChange
|= UpdateNodeType(i
, getImplicitType(DI
->getDef(), i
,
2424 !hasName(), TP
), TP
);
2428 if (IntInit
*II
= dyn_cast
<IntInit
>(getLeafValue())) {
2429 assert(Types
.size() == 1 && "Invalid IntInit");
2431 // Int inits are always integers. :)
2432 bool MadeChange
= TP
.getInfer().EnforceInteger(Types
[0]);
2434 if (!TP
.getInfer().isConcrete(Types
[0], false))
2437 ValueTypeByHwMode VVT
= TP
.getInfer().getConcrete(Types
[0], false);
2438 for (auto &P
: VVT
) {
2439 MVT::SimpleValueType VT
= P
.second
.SimpleTy
;
2440 if (VT
== MVT::iPTR
|| VT
== MVT::iPTRAny
)
2442 unsigned Size
= MVT(VT
).getFixedSizeInBits();
2443 // Make sure that the value is representable for this type.
2446 // Check that the value doesn't use more bits than we have. It must
2447 // either be a sign- or zero-extended equivalent of the original.
2448 int64_t SignBitAndAbove
= II
->getValue() >> (Size
- 1);
2449 if (SignBitAndAbove
== -1 || SignBitAndAbove
== 0 ||
2450 SignBitAndAbove
== 1)
2453 TP
.error("Integer value '" + Twine(II
->getValue()) +
2454 "' is out of range for type '" + getEnumName(VT
) + "'!");
2463 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
)) {
2464 bool MadeChange
= false;
2466 // Apply the result type to the node.
2467 unsigned NumRetVTs
= Int
->IS
.RetVTs
.size();
2468 unsigned NumParamVTs
= Int
->IS
.ParamVTs
.size();
2470 for (unsigned i
= 0, e
= NumRetVTs
; i
!= e
; ++i
)
2471 MadeChange
|= UpdateNodeType(i
, Int
->IS
.RetVTs
[i
], TP
);
2473 if (getNumChildren() != NumParamVTs
+ 1) {
2474 TP
.error("Intrinsic '" + Int
->Name
+ "' expects " + Twine(NumParamVTs
) +
2475 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2479 // Apply type info to the intrinsic ID.
2480 MadeChange
|= getChild(0)->UpdateNodeType(0, MVT::iPTR
, TP
);
2482 for (unsigned i
= 0, e
= getNumChildren()-1; i
!= e
; ++i
) {
2483 MadeChange
|= getChild(i
+1)->ApplyTypeConstraints(TP
, NotRegisters
);
2485 MVT::SimpleValueType OpVT
= Int
->IS
.ParamVTs
[i
];
2486 assert(getChild(i
+1)->getNumTypes() == 1 && "Unhandled case");
2487 MadeChange
|= getChild(i
+1)->UpdateNodeType(0, OpVT
, TP
);
2492 if (getOperator()->isSubClassOf("SDNode")) {
2493 const SDNodeInfo
&NI
= CDP
.getSDNodeInfo(getOperator());
2495 // Check that the number of operands is sane. Negative operands -> varargs.
2496 if (NI
.getNumOperands() >= 0 &&
2497 getNumChildren() != (unsigned)NI
.getNumOperands()) {
2498 TP
.error(getOperator()->getName() + " node requires exactly " +
2499 Twine(NI
.getNumOperands()) + " operands!");
2503 bool MadeChange
= false;
2504 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2505 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
2506 MadeChange
|= NI
.ApplyTypeConstraints(this, TP
);
2510 if (getOperator()->isSubClassOf("Instruction")) {
2511 const DAGInstruction
&Inst
= CDP
.getInstruction(getOperator());
2512 CodeGenInstruction
&InstInfo
=
2513 CDP
.getTargetInfo().getInstruction(getOperator());
2515 bool MadeChange
= false;
2517 // Apply the result types to the node, these come from the things in the
2518 // (outs) list of the instruction.
2519 unsigned NumResultsToAdd
= std::min(InstInfo
.Operands
.NumDefs
,
2520 Inst
.getNumResults());
2521 for (unsigned ResNo
= 0; ResNo
!= NumResultsToAdd
; ++ResNo
)
2522 MadeChange
|= UpdateNodeTypeFromInst(ResNo
, Inst
.getResult(ResNo
), TP
);
2524 // If the instruction has implicit defs, we apply the first one as a result.
2525 // FIXME: This sucks, it should apply all implicit defs.
2526 if (!InstInfo
.ImplicitDefs
.empty()) {
2527 unsigned ResNo
= NumResultsToAdd
;
2529 // FIXME: Generalize to multiple possible types and multiple possible
2531 MVT::SimpleValueType VT
=
2532 InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo());
2534 if (VT
!= MVT::Other
)
2535 MadeChange
|= UpdateNodeType(ResNo
, VT
, TP
);
2538 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2540 if (getOperator()->getName() == "INSERT_SUBREG") {
2541 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2542 MadeChange
|= UpdateNodeType(0, getChild(0)->getExtType(0), TP
);
2543 MadeChange
|= getChild(0)->UpdateNodeType(0, getExtType(0), TP
);
2544 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2545 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2548 unsigned NChild
= getNumChildren();
2550 TP
.error("REG_SEQUENCE requires at least 3 operands!");
2554 if (NChild
% 2 == 0) {
2555 TP
.error("REG_SEQUENCE requires an odd number of operands!");
2559 if (!isOperandClass(getChild(0), "RegisterClass")) {
2560 TP
.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2564 for (unsigned I
= 1; I
< NChild
; I
+= 2) {
2565 TreePatternNode
*SubIdxChild
= getChild(I
+ 1);
2566 if (!isOperandClass(SubIdxChild
, "SubRegIndex")) {
2567 TP
.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2568 Twine(I
+ 1) + "!");
2574 unsigned NumResults
= Inst
.getNumResults();
2575 unsigned NumFixedOperands
= InstInfo
.Operands
.size();
2577 // If one or more operands with a default value appear at the end of the
2578 // formal operand list for an instruction, we allow them to be overridden
2579 // by optional operands provided in the pattern.
2581 // But if an operand B without a default appears at any point after an
2582 // operand A with a default, then we don't allow A to be overridden,
2583 // because there would be no way to specify whether the next operand in
2584 // the pattern was intended to override A or skip it.
2585 unsigned NonOverridableOperands
= NumFixedOperands
;
2586 while (NonOverridableOperands
> NumResults
&&
2587 CDP
.operandHasDefault(InstInfo
.Operands
[NonOverridableOperands
-1].Rec
))
2588 --NonOverridableOperands
;
2590 unsigned ChildNo
= 0;
2591 assert(NumResults
<= NumFixedOperands
);
2592 for (unsigned i
= NumResults
, e
= NumFixedOperands
; i
!= e
; ++i
) {
2593 Record
*OperandNode
= InstInfo
.Operands
[i
].Rec
;
2595 // If the operand has a default value, do we use it? We must use the
2596 // default if we've run out of children of the pattern DAG to consume,
2597 // or if the operand is followed by a non-defaulted one.
2598 if (CDP
.operandHasDefault(OperandNode
) &&
2599 (i
< NonOverridableOperands
|| ChildNo
>= getNumChildren()))
2602 // If we have run out of child nodes and there _isn't_ a default
2603 // value we can use for the next operand, give an error.
2604 if (ChildNo
>= getNumChildren()) {
2605 emitTooFewOperandsError(TP
, getOperator()->getName(), getNumChildren());
2609 TreePatternNode
*Child
= getChild(ChildNo
++);
2610 unsigned ChildResNo
= 0; // Instructions always use res #0 of their op.
2612 // If the operand has sub-operands, they may be provided by distinct
2613 // child patterns, so attempt to match each sub-operand separately.
2614 if (OperandNode
->isSubClassOf("Operand")) {
2615 DagInit
*MIOpInfo
= OperandNode
->getValueAsDag("MIOperandInfo");
2616 if (unsigned NumArgs
= MIOpInfo
->getNumArgs()) {
2617 // But don't do that if the whole operand is being provided by
2618 // a single ComplexPattern-related Operand.
2620 if (Child
->getNumMIResults(CDP
) < NumArgs
) {
2621 // Match first sub-operand against the child we already have.
2622 Record
*SubRec
= cast
<DefInit
>(MIOpInfo
->getArg(0))->getDef();
2624 Child
->UpdateNodeTypeFromInst(ChildResNo
, SubRec
, TP
);
2626 // And the remaining sub-operands against subsequent children.
2627 for (unsigned Arg
= 1; Arg
< NumArgs
; ++Arg
) {
2628 if (ChildNo
>= getNumChildren()) {
2629 emitTooFewOperandsError(TP
, getOperator()->getName(),
2633 Child
= getChild(ChildNo
++);
2635 SubRec
= cast
<DefInit
>(MIOpInfo
->getArg(Arg
))->getDef();
2637 Child
->UpdateNodeTypeFromInst(ChildResNo
, SubRec
, TP
);
2644 // If we didn't match by pieces above, attempt to match the whole
2646 MadeChange
|= Child
->UpdateNodeTypeFromInst(ChildResNo
, OperandNode
, TP
);
2649 if (!InstInfo
.Operands
.isVariadic
&& ChildNo
!= getNumChildren()) {
2650 emitTooManyOperandsError(TP
, getOperator()->getName(),
2651 ChildNo
, getNumChildren());
2655 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2656 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
2660 if (getOperator()->isSubClassOf("ComplexPattern")) {
2661 bool MadeChange
= false;
2663 for (unsigned i
= 0; i
< getNumChildren(); ++i
)
2664 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
2669 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2671 // Node transforms always take one operand.
2672 if (getNumChildren() != 1) {
2673 TP
.error("Node transform '" + getOperator()->getName() +
2674 "' requires one operand!");
2678 bool MadeChange
= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
2682 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2683 /// RHS of a commutative operation, not the on LHS.
2684 static bool OnlyOnRHSOfCommutative(TreePatternNode
*N
) {
2685 if (!N
->isLeaf() && N
->getOperator()->getName() == "imm")
2687 if (N
->isLeaf() && isa
<IntInit
>(N
->getLeafValue()))
2689 if (isImmAllOnesAllZerosMatch(N
))
2695 /// canPatternMatch - If it is impossible for this pattern to match on this
2696 /// target, fill in Reason and return false. Otherwise, return true. This is
2697 /// used as a sanity check for .td files (to prevent people from writing stuff
2698 /// that can never possibly work), and to prevent the pattern permuter from
2699 /// generating stuff that is useless.
2700 bool TreePatternNode::canPatternMatch(std::string
&Reason
,
2701 const CodeGenDAGPatterns
&CDP
) {
2702 if (isLeaf()) return true;
2704 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
2705 if (!getChild(i
)->canPatternMatch(Reason
, CDP
))
2708 // If this is an intrinsic, handle cases that would make it not match. For
2709 // example, if an operand is required to be an immediate.
2710 if (getOperator()->isSubClassOf("Intrinsic")) {
2715 if (getOperator()->isSubClassOf("ComplexPattern"))
2718 // If this node is a commutative operator, check that the LHS isn't an
2720 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(getOperator());
2721 bool isCommIntrinsic
= isCommutativeIntrinsic(CDP
);
2722 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
2723 // Scan all of the operands of the node and make sure that only the last one
2724 // is a constant node, unless the RHS also is.
2725 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2726 unsigned Skip
= isCommIntrinsic
? 1 : 0; // First operand is intrinsic id.
2727 for (unsigned i
= Skip
, e
= getNumChildren()-1; i
!= e
; ++i
)
2728 if (OnlyOnRHSOfCommutative(getChild(i
))) {
2729 Reason
="Immediate value must be on the RHS of commutative operators!";
2738 //===----------------------------------------------------------------------===//
2739 // TreePattern implementation
2742 TreePattern::TreePattern(Record
*TheRec
, ListInit
*RawPat
, bool isInput
,
2743 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
),
2744 isInputPattern(isInput
), HasError(false),
2746 for (Init
*I
: RawPat
->getValues())
2747 Trees
.push_back(ParseTreePattern(I
, ""));
2750 TreePattern::TreePattern(Record
*TheRec
, DagInit
*Pat
, bool isInput
,
2751 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
),
2752 isInputPattern(isInput
), HasError(false),
2754 Trees
.push_back(ParseTreePattern(Pat
, ""));
2757 TreePattern::TreePattern(Record
*TheRec
, TreePatternNodePtr Pat
, bool isInput
,
2758 CodeGenDAGPatterns
&cdp
)
2759 : TheRecord(TheRec
), CDP(cdp
), isInputPattern(isInput
), HasError(false),
2761 Trees
.push_back(Pat
);
2764 void TreePattern::error(const Twine
&Msg
) {
2768 PrintError(TheRecord
->getLoc(), "In " + TheRecord
->getName() + ": " + Msg
);
2772 void TreePattern::ComputeNamedNodes() {
2773 for (TreePatternNodePtr
&Tree
: Trees
)
2774 ComputeNamedNodes(Tree
.get());
2777 void TreePattern::ComputeNamedNodes(TreePatternNode
*N
) {
2778 if (!N
->getName().empty())
2779 NamedNodes
[N
->getName()].push_back(N
);
2781 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2782 ComputeNamedNodes(N
->getChild(i
));
2785 TreePatternNodePtr
TreePattern::ParseTreePattern(Init
*TheInit
,
2787 if (DefInit
*DI
= dyn_cast
<DefInit
>(TheInit
)) {
2788 Record
*R
= DI
->getDef();
2790 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2791 // TreePatternNode of its own. For example:
2792 /// (foo GPR, imm) -> (foo GPR, (imm))
2793 if (R
->isSubClassOf("SDNode") || R
->isSubClassOf("PatFrags"))
2794 return ParseTreePattern(
2795 DagInit::get(DI
, nullptr,
2796 std::vector
<std::pair
<Init
*, StringInit
*> >()),
2800 TreePatternNodePtr Res
= std::make_shared
<TreePatternNode
>(DI
, 1);
2801 if (R
->getName() == "node" && !OpName
.empty()) {
2803 error("'node' argument requires a name to match with operand list");
2804 Args
.push_back(std::string(OpName
));
2807 Res
->setName(OpName
);
2811 // ?:$name or just $name.
2812 if (isa
<UnsetInit
>(TheInit
)) {
2814 error("'?' argument requires a name to match with operand list");
2815 TreePatternNodePtr Res
= std::make_shared
<TreePatternNode
>(TheInit
, 1);
2816 Args
.push_back(std::string(OpName
));
2817 Res
->setName(OpName
);
2821 if (isa
<IntInit
>(TheInit
) || isa
<BitInit
>(TheInit
)) {
2822 if (!OpName
.empty())
2823 error("Constant int or bit argument should not have a name!");
2824 if (isa
<BitInit
>(TheInit
))
2825 TheInit
= TheInit
->convertInitializerTo(IntRecTy::get());
2826 return std::make_shared
<TreePatternNode
>(TheInit
, 1);
2829 if (BitsInit
*BI
= dyn_cast
<BitsInit
>(TheInit
)) {
2830 // Turn this into an IntInit.
2831 Init
*II
= BI
->convertInitializerTo(IntRecTy::get());
2832 if (!II
|| !isa
<IntInit
>(II
))
2833 error("Bits value must be constants!");
2834 return ParseTreePattern(II
, OpName
);
2837 DagInit
*Dag
= dyn_cast
<DagInit
>(TheInit
);
2839 TheInit
->print(errs());
2840 error("Pattern has unexpected init kind!");
2842 DefInit
*OpDef
= dyn_cast
<DefInit
>(Dag
->getOperator());
2843 if (!OpDef
) error("Pattern has unexpected operator type!");
2844 Record
*Operator
= OpDef
->getDef();
2846 if (Operator
->isSubClassOf("ValueType")) {
2847 // If the operator is a ValueType, then this must be "type cast" of a leaf
2849 if (Dag
->getNumArgs() != 1)
2850 error("Type cast only takes one operand!");
2852 TreePatternNodePtr New
=
2853 ParseTreePattern(Dag
->getArg(0), Dag
->getArgNameStr(0));
2855 // Apply the type cast.
2856 if (New
->getNumTypes() != 1)
2857 error("Type cast can only have one type!");
2858 const CodeGenHwModes
&CGH
= getDAGPatterns().getTargetInfo().getHwModes();
2859 New
->UpdateNodeType(0, getValueTypeByHwMode(Operator
, CGH
), *this);
2861 if (!OpName
.empty())
2862 error("ValueType cast should not have a name!");
2866 // Verify that this is something that makes sense for an operator.
2867 if (!Operator
->isSubClassOf("PatFrags") &&
2868 !Operator
->isSubClassOf("SDNode") &&
2869 !Operator
->isSubClassOf("Instruction") &&
2870 !Operator
->isSubClassOf("SDNodeXForm") &&
2871 !Operator
->isSubClassOf("Intrinsic") &&
2872 !Operator
->isSubClassOf("ComplexPattern") &&
2873 Operator
->getName() != "set" &&
2874 Operator
->getName() != "implicit")
2875 error("Unrecognized node '" + Operator
->getName() + "'!");
2877 // Check to see if this is something that is illegal in an input pattern.
2878 if (isInputPattern
) {
2879 if (Operator
->isSubClassOf("Instruction") ||
2880 Operator
->isSubClassOf("SDNodeXForm"))
2881 error("Cannot use '" + Operator
->getName() + "' in an input pattern!");
2883 if (Operator
->isSubClassOf("Intrinsic"))
2884 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
2886 if (Operator
->isSubClassOf("SDNode") &&
2887 Operator
->getName() != "imm" &&
2888 Operator
->getName() != "timm" &&
2889 Operator
->getName() != "fpimm" &&
2890 Operator
->getName() != "tglobaltlsaddr" &&
2891 Operator
->getName() != "tconstpool" &&
2892 Operator
->getName() != "tjumptable" &&
2893 Operator
->getName() != "tframeindex" &&
2894 Operator
->getName() != "texternalsym" &&
2895 Operator
->getName() != "tblockaddress" &&
2896 Operator
->getName() != "tglobaladdr" &&
2897 Operator
->getName() != "bb" &&
2898 Operator
->getName() != "vt" &&
2899 Operator
->getName() != "mcsym")
2900 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
2903 std::vector
<TreePatternNodePtr
> Children
;
2905 // Parse all the operands.
2906 for (unsigned i
= 0, e
= Dag
->getNumArgs(); i
!= e
; ++i
)
2907 Children
.push_back(ParseTreePattern(Dag
->getArg(i
), Dag
->getArgNameStr(i
)));
2909 // Get the actual number of results before Operator is converted to an intrinsic
2910 // node (which is hard-coded to have either zero or one result).
2911 unsigned NumResults
= GetNumNodeResults(Operator
, CDP
);
2913 // If the operator is an intrinsic, then this is just syntactic sugar for
2914 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2915 // convert the intrinsic name to a number.
2916 if (Operator
->isSubClassOf("Intrinsic")) {
2917 const CodeGenIntrinsic
&Int
= getDAGPatterns().getIntrinsic(Operator
);
2918 unsigned IID
= getDAGPatterns().getIntrinsicID(Operator
)+1;
2920 // If this intrinsic returns void, it must have side-effects and thus a
2922 if (Int
.IS
.RetVTs
.empty())
2923 Operator
= getDAGPatterns().get_intrinsic_void_sdnode();
2924 else if (Int
.ModRef
!= CodeGenIntrinsic::NoMem
|| Int
.hasSideEffects
)
2925 // Has side-effects, requires chain.
2926 Operator
= getDAGPatterns().get_intrinsic_w_chain_sdnode();
2927 else // Otherwise, no chain.
2928 Operator
= getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2930 Children
.insert(Children
.begin(),
2931 std::make_shared
<TreePatternNode
>(IntInit::get(IID
), 1));
2934 if (Operator
->isSubClassOf("ComplexPattern")) {
2935 for (unsigned i
= 0; i
< Children
.size(); ++i
) {
2936 TreePatternNodePtr Child
= Children
[i
];
2938 if (Child
->getName().empty())
2939 error("All arguments to a ComplexPattern must be named");
2941 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2942 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2943 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2944 auto OperandId
= std::make_pair(Operator
, i
);
2945 auto PrevOp
= ComplexPatternOperands
.find(Child
->getName());
2946 if (PrevOp
!= ComplexPatternOperands
.end()) {
2947 if (PrevOp
->getValue() != OperandId
)
2948 error("All ComplexPattern operands must appear consistently: "
2949 "in the same order in just one ComplexPattern instance.");
2951 ComplexPatternOperands
[Child
->getName()] = OperandId
;
2955 TreePatternNodePtr Result
=
2956 std::make_shared
<TreePatternNode
>(Operator
, std::move(Children
),
2958 Result
->setName(OpName
);
2960 if (Dag
->getName()) {
2961 assert(Result
->getName().empty());
2962 Result
->setName(Dag
->getNameStr());
2967 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2968 /// will never match in favor of something obvious that will. This is here
2969 /// strictly as a convenience to target authors because it allows them to write
2970 /// more type generic things and have useless type casts fold away.
2972 /// This returns true if any change is made.
2973 static bool SimplifyTree(TreePatternNodePtr
&N
) {
2977 // If we have a bitconvert with a resolved type and if the source and
2978 // destination types are the same, then the bitconvert is useless, remove it.
2980 // We make an exception if the types are completely empty. This can come up
2981 // when the pattern being simplified is in the Fragments list of a PatFrags,
2982 // so that the operand is just an untyped "node". In that situation we leave
2983 // bitconverts unsimplified, and simplify them later once the fragment is
2984 // expanded into its true context.
2985 if (N
->getOperator()->getName() == "bitconvert" &&
2986 N
->getExtType(0).isValueTypeByHwMode(false) &&
2987 !N
->getExtType(0).empty() &&
2988 N
->getExtType(0) == N
->getChild(0)->getExtType(0) &&
2989 N
->getName().empty()) {
2990 N
= N
->getChildShared(0);
2995 // Walk all children.
2996 bool MadeChange
= false;
2997 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
2998 TreePatternNodePtr Child
= N
->getChildShared(i
);
2999 MadeChange
|= SimplifyTree(Child
);
3000 N
->setChild(i
, std::move(Child
));
3007 /// InferAllTypes - Infer/propagate as many types throughout the expression
3008 /// patterns as possible. Return true if all types are inferred, false
3009 /// otherwise. Flags an error if a type contradiction is found.
3011 InferAllTypes(const StringMap
<SmallVector
<TreePatternNode
*,1> > *InNamedTypes
) {
3012 if (NamedNodes
.empty())
3013 ComputeNamedNodes();
3015 bool MadeChange
= true;
3016 while (MadeChange
) {
3018 for (TreePatternNodePtr
&Tree
: Trees
) {
3019 MadeChange
|= Tree
->ApplyTypeConstraints(*this, false);
3020 MadeChange
|= SimplifyTree(Tree
);
3023 // If there are constraints on our named nodes, apply them.
3024 for (auto &Entry
: NamedNodes
) {
3025 SmallVectorImpl
<TreePatternNode
*> &Nodes
= Entry
.second
;
3027 // If we have input named node types, propagate their types to the named
3030 if (!InNamedTypes
->count(Entry
.getKey())) {
3031 error("Node '" + std::string(Entry
.getKey()) +
3032 "' in output pattern but not input pattern");
3036 const SmallVectorImpl
<TreePatternNode
*> &InNodes
=
3037 InNamedTypes
->find(Entry
.getKey())->second
;
3039 // The input types should be fully resolved by now.
3040 for (TreePatternNode
*Node
: Nodes
) {
3041 // If this node is a register class, and it is the root of the pattern
3042 // then we're mapping something onto an input register. We allow
3043 // changing the type of the input register in this case. This allows
3044 // us to match things like:
3045 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3046 if (Node
== Trees
[0].get() && Node
->isLeaf()) {
3047 DefInit
*DI
= dyn_cast
<DefInit
>(Node
->getLeafValue());
3048 if (DI
&& (DI
->getDef()->isSubClassOf("RegisterClass") ||
3049 DI
->getDef()->isSubClassOf("RegisterOperand")))
3053 assert(Node
->getNumTypes() == 1 &&
3054 InNodes
[0]->getNumTypes() == 1 &&
3055 "FIXME: cannot name multiple result nodes yet");
3056 MadeChange
|= Node
->UpdateNodeType(0, InNodes
[0]->getExtType(0),
3061 // If there are multiple nodes with the same name, they must all have the
3063 if (Entry
.second
.size() > 1) {
3064 for (unsigned i
= 0, e
= Nodes
.size()-1; i
!= e
; ++i
) {
3065 TreePatternNode
*N1
= Nodes
[i
], *N2
= Nodes
[i
+1];
3066 assert(N1
->getNumTypes() == 1 && N2
->getNumTypes() == 1 &&
3067 "FIXME: cannot name multiple result nodes yet");
3069 MadeChange
|= N1
->UpdateNodeType(0, N2
->getExtType(0), *this);
3070 MadeChange
|= N2
->UpdateNodeType(0, N1
->getExtType(0), *this);
3076 bool HasUnresolvedTypes
= false;
3077 for (const TreePatternNodePtr
&Tree
: Trees
)
3078 HasUnresolvedTypes
|= Tree
->ContainsUnresolvedType(*this);
3079 return !HasUnresolvedTypes
;
3082 void TreePattern::print(raw_ostream
&OS
) const {
3083 OS
<< getRecord()->getName();
3084 if (!Args
.empty()) {
3087 for (const std::string
&Arg
: Args
)
3093 if (Trees
.size() > 1)
3095 for (const TreePatternNodePtr
&Tree
: Trees
) {
3101 if (Trees
.size() > 1)
3105 void TreePattern::dump() const { print(errs()); }
3107 //===----------------------------------------------------------------------===//
3108 // CodeGenDAGPatterns implementation
3111 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper
&R
,
3112 PatternRewriterFn PatternRewriter
)
3113 : Records(R
), Target(R
), LegalVTS(Target
.getLegalValueTypes()),
3114 PatternRewriter(PatternRewriter
) {
3116 Intrinsics
= CodeGenIntrinsicTable(Records
);
3118 ParseNodeTransforms();
3119 ParseComplexPatterns();
3120 ParsePatternFragments();
3121 ParseDefaultOperands();
3122 ParseInstructions();
3123 ParsePatternFragments(/*OutFrags*/true);
3126 // Generate variants. For example, commutative patterns can match
3127 // multiple ways. Add them to PatternsToMatch as well.
3130 // Break patterns with parameterized types into a series of patterns,
3131 // where each one has a fixed type and is predicated on the conditions
3132 // of the associated HW mode.
3133 ExpandHwModeBasedTypes();
3135 // Infer instruction flags. For example, we can detect loads,
3136 // stores, and side effects in many cases by examining an
3137 // instruction's pattern.
3138 InferInstructionFlags();
3140 // Verify that instruction flags match the patterns.
3141 VerifyInstructionFlags();
3144 Record
*CodeGenDAGPatterns::getSDNodeNamed(StringRef Name
) const {
3145 Record
*N
= Records
.getDef(Name
);
3146 if (!N
|| !N
->isSubClassOf("SDNode"))
3147 PrintFatalError("Error getting SDNode '" + Name
+ "'!");
3152 // Parse all of the SDNode definitions for the target, populating SDNodes.
3153 void CodeGenDAGPatterns::ParseNodeInfo() {
3154 std::vector
<Record
*> Nodes
= Records
.getAllDerivedDefinitions("SDNode");
3155 const CodeGenHwModes
&CGH
= getTargetInfo().getHwModes();
3157 while (!Nodes
.empty()) {
3158 Record
*R
= Nodes
.back();
3159 SDNodes
.insert(std::make_pair(R
, SDNodeInfo(R
, CGH
)));
3163 // Get the builtin intrinsic nodes.
3164 intrinsic_void_sdnode
= getSDNodeNamed("intrinsic_void");
3165 intrinsic_w_chain_sdnode
= getSDNodeNamed("intrinsic_w_chain");
3166 intrinsic_wo_chain_sdnode
= getSDNodeNamed("intrinsic_wo_chain");
3169 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3170 /// map, and emit them to the file as functions.
3171 void CodeGenDAGPatterns::ParseNodeTransforms() {
3172 std::vector
<Record
*> Xforms
= Records
.getAllDerivedDefinitions("SDNodeXForm");
3173 while (!Xforms
.empty()) {
3174 Record
*XFormNode
= Xforms
.back();
3175 Record
*SDNode
= XFormNode
->getValueAsDef("Opcode");
3176 StringRef Code
= XFormNode
->getValueAsString("XFormFunction");
3177 SDNodeXForms
.insert(
3178 std::make_pair(XFormNode
, NodeXForm(SDNode
, std::string(Code
))));
3184 void CodeGenDAGPatterns::ParseComplexPatterns() {
3185 std::vector
<Record
*> AMs
= Records
.getAllDerivedDefinitions("ComplexPattern");
3186 while (!AMs
.empty()) {
3187 ComplexPatterns
.insert(std::make_pair(AMs
.back(), AMs
.back()));
3193 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3194 /// file, building up the PatternFragments map. After we've collected them all,
3195 /// inline fragments together as necessary, so that there are no references left
3196 /// inside a pattern fragment to a pattern fragment.
3198 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags
) {
3199 std::vector
<Record
*> Fragments
= Records
.getAllDerivedDefinitions("PatFrags");
3201 // First step, parse all of the fragments.
3202 for (Record
*Frag
: Fragments
) {
3203 if (OutFrags
!= Frag
->isSubClassOf("OutPatFrag"))
3206 ListInit
*LI
= Frag
->getValueAsListInit("Fragments");
3208 (PatternFragments
[Frag
] = std::make_unique
<TreePattern
>(
3209 Frag
, LI
, !Frag
->isSubClassOf("OutPatFrag"),
3212 // Validate the argument list, converting it to set, to discard duplicates.
3213 std::vector
<std::string
> &Args
= P
->getArgList();
3214 // Copy the args so we can take StringRefs to them.
3215 auto ArgsCopy
= Args
;
3216 SmallDenseSet
<StringRef
, 4> OperandsSet
;
3217 OperandsSet
.insert(ArgsCopy
.begin(), ArgsCopy
.end());
3219 if (OperandsSet
.count(""))
3220 P
->error("Cannot have unnamed 'node' values in pattern fragment!");
3222 // Parse the operands list.
3223 DagInit
*OpsList
= Frag
->getValueAsDag("Operands");
3224 DefInit
*OpsOp
= dyn_cast
<DefInit
>(OpsList
->getOperator());
3225 // Special cases: ops == outs == ins. Different names are used to
3226 // improve readability.
3228 (OpsOp
->getDef()->getName() != "ops" &&
3229 OpsOp
->getDef()->getName() != "outs" &&
3230 OpsOp
->getDef()->getName() != "ins"))
3231 P
->error("Operands list should start with '(ops ... '!");
3233 // Copy over the arguments.
3235 for (unsigned j
= 0, e
= OpsList
->getNumArgs(); j
!= e
; ++j
) {
3236 if (!isa
<DefInit
>(OpsList
->getArg(j
)) ||
3237 cast
<DefInit
>(OpsList
->getArg(j
))->getDef()->getName() != "node")
3238 P
->error("Operands list should all be 'node' values.");
3239 if (!OpsList
->getArgName(j
))
3240 P
->error("Operands list should have names for each operand!");
3241 StringRef ArgNameStr
= OpsList
->getArgNameStr(j
);
3242 if (!OperandsSet
.count(ArgNameStr
))
3243 P
->error("'" + ArgNameStr
+
3244 "' does not occur in pattern or was multiply specified!");
3245 OperandsSet
.erase(ArgNameStr
);
3246 Args
.push_back(std::string(ArgNameStr
));
3249 if (!OperandsSet
.empty())
3250 P
->error("Operands list does not contain an entry for operand '" +
3251 *OperandsSet
.begin() + "'!");
3253 // If there is a node transformation corresponding to this, keep track of
3255 Record
*Transform
= Frag
->getValueAsDef("OperandTransform");
3256 if (!getSDNodeTransform(Transform
).second
.empty()) // not noop xform?
3257 for (const auto &T
: P
->getTrees())
3258 T
->setTransformFn(Transform
);
3261 // Now that we've parsed all of the tree fragments, do a closure on them so
3262 // that there are not references to PatFrags left inside of them.
3263 for (Record
*Frag
: Fragments
) {
3264 if (OutFrags
!= Frag
->isSubClassOf("OutPatFrag"))
3267 TreePattern
&ThePat
= *PatternFragments
[Frag
];
3268 ThePat
.InlinePatternFragments();
3270 // Infer as many types as possible. Don't worry about it if we don't infer
3271 // all of them, some may depend on the inputs of the pattern. Also, don't
3272 // validate type sets; validation may cause spurious failures e.g. if a
3273 // fragment needs floating-point types but the current target does not have
3274 // any (this is only an error if that fragment is ever used!).
3276 TypeInfer::SuppressValidation
SV(ThePat
.getInfer());
3277 ThePat
.InferAllTypes();
3278 ThePat
.resetError();
3281 // If debugging, print out the pattern fragment result.
3282 LLVM_DEBUG(ThePat
.dump());
3286 void CodeGenDAGPatterns::ParseDefaultOperands() {
3287 std::vector
<Record
*> DefaultOps
;
3288 DefaultOps
= Records
.getAllDerivedDefinitions("OperandWithDefaultOps");
3290 // Find some SDNode.
3291 assert(!SDNodes
.empty() && "No SDNodes parsed?");
3292 Init
*SomeSDNode
= DefInit::get(SDNodes
.begin()->first
);
3294 for (unsigned i
= 0, e
= DefaultOps
.size(); i
!= e
; ++i
) {
3295 DagInit
*DefaultInfo
= DefaultOps
[i
]->getValueAsDag("DefaultOps");
3297 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3298 // SomeSDnode so that we can parse this.
3299 std::vector
<std::pair
<Init
*, StringInit
*> > Ops
;
3300 for (unsigned op
= 0, e
= DefaultInfo
->getNumArgs(); op
!= e
; ++op
)
3301 Ops
.push_back(std::make_pair(DefaultInfo
->getArg(op
),
3302 DefaultInfo
->getArgName(op
)));
3303 DagInit
*DI
= DagInit::get(SomeSDNode
, nullptr, Ops
);
3305 // Create a TreePattern to parse this.
3306 TreePattern
P(DefaultOps
[i
], DI
, false, *this);
3307 assert(P
.getNumTrees() == 1 && "This ctor can only produce one tree!");
3309 // Copy the operands over into a DAGDefaultOperand.
3310 DAGDefaultOperand DefaultOpInfo
;
3312 const TreePatternNodePtr
&T
= P
.getTree(0);
3313 for (unsigned op
= 0, e
= T
->getNumChildren(); op
!= e
; ++op
) {
3314 TreePatternNodePtr TPN
= T
->getChildShared(op
);
3315 while (TPN
->ApplyTypeConstraints(P
, false))
3316 /* Resolve all types */;
3318 if (TPN
->ContainsUnresolvedType(P
)) {
3319 PrintFatalError("Value #" + Twine(i
) + " of OperandWithDefaultOps '" +
3320 DefaultOps
[i
]->getName() +
3321 "' doesn't have a concrete type!");
3323 DefaultOpInfo
.DefaultOps
.push_back(std::move(TPN
));
3326 // Insert it into the DefaultOperands map so we can find it later.
3327 DefaultOperands
[DefaultOps
[i
]] = DefaultOpInfo
;
3331 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3332 /// instruction input. Return true if this is a real use.
3333 static bool HandleUse(TreePattern
&I
, TreePatternNodePtr Pat
,
3334 std::map
<std::string
, TreePatternNodePtr
> &InstInputs
) {
3335 // No name -> not interesting.
3336 if (Pat
->getName().empty()) {
3337 if (Pat
->isLeaf()) {
3338 DefInit
*DI
= dyn_cast
<DefInit
>(Pat
->getLeafValue());
3339 if (DI
&& (DI
->getDef()->isSubClassOf("RegisterClass") ||
3340 DI
->getDef()->isSubClassOf("RegisterOperand")))
3341 I
.error("Input " + DI
->getDef()->getName() + " must be named!");
3347 if (Pat
->isLeaf()) {
3348 DefInit
*DI
= dyn_cast
<DefInit
>(Pat
->getLeafValue());
3350 I
.error("Input $" + Pat
->getName() + " must be an identifier!");
3353 Rec
= Pat
->getOperator();
3356 // SRCVALUE nodes are ignored.
3357 if (Rec
->getName() == "srcvalue")
3360 TreePatternNodePtr
&Slot
= InstInputs
[Pat
->getName()];
3366 if (Slot
->isLeaf()) {
3367 SlotRec
= cast
<DefInit
>(Slot
->getLeafValue())->getDef();
3369 assert(Slot
->getNumChildren() == 0 && "can't be a use with children!");
3370 SlotRec
= Slot
->getOperator();
3373 // Ensure that the inputs agree if we've already seen this input.
3375 I
.error("All $" + Pat
->getName() + " inputs must agree with each other");
3376 // Ensure that the types can agree as well.
3377 Slot
->UpdateNodeType(0, Pat
->getExtType(0), I
);
3378 Pat
->UpdateNodeType(0, Slot
->getExtType(0), I
);
3379 if (Slot
->getExtTypes() != Pat
->getExtTypes())
3380 I
.error("All $" + Pat
->getName() + " inputs must agree with each other");
3384 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3385 /// part of "I", the instruction), computing the set of inputs and outputs of
3386 /// the pattern. Report errors if we see anything naughty.
3387 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3388 TreePattern
&I
, TreePatternNodePtr Pat
,
3389 std::map
<std::string
, TreePatternNodePtr
> &InstInputs
,
3390 MapVector
<std::string
, TreePatternNodePtr
, std::map
<std::string
, unsigned>>
3392 std::vector
<Record
*> &InstImpResults
) {
3394 // The instruction pattern still has unresolved fragments. For *named*
3395 // nodes we must resolve those here. This may not result in multiple
3397 if (!Pat
->getName().empty()) {
3398 TreePattern
SrcPattern(I
.getRecord(), Pat
, true, *this);
3399 SrcPattern
.InlinePatternFragments();
3400 SrcPattern
.InferAllTypes();
3401 Pat
= SrcPattern
.getOnlyTree();
3404 if (Pat
->isLeaf()) {
3405 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
3406 if (!isUse
&& Pat
->getTransformFn())
3407 I
.error("Cannot specify a transform function for a non-input value!");
3411 if (Pat
->getOperator()->getName() == "implicit") {
3412 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
3413 TreePatternNode
*Dest
= Pat
->getChild(i
);
3414 if (!Dest
->isLeaf())
3415 I
.error("implicitly defined value should be a register!");
3417 DefInit
*Val
= dyn_cast
<DefInit
>(Dest
->getLeafValue());
3418 if (!Val
|| !Val
->getDef()->isSubClassOf("Register"))
3419 I
.error("implicitly defined value should be a register!");
3420 InstImpResults
.push_back(Val
->getDef());
3425 if (Pat
->getOperator()->getName() != "set") {
3426 // If this is not a set, verify that the children nodes are not void typed,
3428 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
3429 if (Pat
->getChild(i
)->getNumTypes() == 0)
3430 I
.error("Cannot have void nodes inside of patterns!");
3431 FindPatternInputsAndOutputs(I
, Pat
->getChildShared(i
), InstInputs
,
3432 InstResults
, InstImpResults
);
3435 // If this is a non-leaf node with no children, treat it basically as if
3436 // it were a leaf. This handles nodes like (imm).
3437 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
3439 if (!isUse
&& Pat
->getTransformFn())
3440 I
.error("Cannot specify a transform function for a non-input value!");
3444 // Otherwise, this is a set, validate and collect instruction results.
3445 if (Pat
->getNumChildren() == 0)
3446 I
.error("set requires operands!");
3448 if (Pat
->getTransformFn())
3449 I
.error("Cannot specify a transform function on a set node!");
3451 // Check the set destinations.
3452 unsigned NumDests
= Pat
->getNumChildren()-1;
3453 for (unsigned i
= 0; i
!= NumDests
; ++i
) {
3454 TreePatternNodePtr Dest
= Pat
->getChildShared(i
);
3455 // For set destinations we also must resolve fragments here.
3456 TreePattern
DestPattern(I
.getRecord(), Dest
, false, *this);
3457 DestPattern
.InlinePatternFragments();
3458 DestPattern
.InferAllTypes();
3459 Dest
= DestPattern
.getOnlyTree();
3461 if (!Dest
->isLeaf())
3462 I
.error("set destination should be a register!");
3464 DefInit
*Val
= dyn_cast
<DefInit
>(Dest
->getLeafValue());
3466 I
.error("set destination should be a register!");
3470 if (Val
->getDef()->isSubClassOf("RegisterClass") ||
3471 Val
->getDef()->isSubClassOf("ValueType") ||
3472 Val
->getDef()->isSubClassOf("RegisterOperand") ||
3473 Val
->getDef()->isSubClassOf("PointerLikeRegClass")) {
3474 if (Dest
->getName().empty())
3475 I
.error("set destination must have a name!");
3476 if (InstResults
.count(Dest
->getName()))
3477 I
.error("cannot set '" + Dest
->getName() + "' multiple times");
3478 InstResults
[Dest
->getName()] = Dest
;
3479 } else if (Val
->getDef()->isSubClassOf("Register")) {
3480 InstImpResults
.push_back(Val
->getDef());
3482 I
.error("set destination should be a register!");
3486 // Verify and collect info from the computation.
3487 FindPatternInputsAndOutputs(I
, Pat
->getChildShared(NumDests
), InstInputs
,
3488 InstResults
, InstImpResults
);
3491 //===----------------------------------------------------------------------===//
3492 // Instruction Analysis
3493 //===----------------------------------------------------------------------===//
3495 class InstAnalyzer
{
3496 const CodeGenDAGPatterns
&CDP
;
3498 bool hasSideEffects
;
3505 InstAnalyzer(const CodeGenDAGPatterns
&cdp
)
3506 : CDP(cdp
), hasSideEffects(false), mayStore(false), mayLoad(false),
3507 isBitcast(false), isVariadic(false), hasChain(false) {}
3509 void Analyze(const PatternToMatch
&Pat
) {
3510 const TreePatternNode
*N
= Pat
.getSrcPattern();
3512 // These properties are detected only on the root node.
3513 isBitcast
= IsNodeBitcast(N
);
3517 bool IsNodeBitcast(const TreePatternNode
*N
) const {
3518 if (hasSideEffects
|| mayLoad
|| mayStore
|| isVariadic
)
3523 if (N
->getNumChildren() != 1 || !N
->getChild(0)->isLeaf())
3526 if (N
->getOperator()->isSubClassOf("ComplexPattern"))
3529 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N
->getOperator());
3530 if (OpInfo
.getNumResults() != 1 || OpInfo
.getNumOperands() != 1)
3532 return OpInfo
.getEnumName() == "ISD::BITCAST";
3536 void AnalyzeNode(const TreePatternNode
*N
) {
3538 if (DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue())) {
3539 Record
*LeafRec
= DI
->getDef();
3540 // Handle ComplexPattern leaves.
3541 if (LeafRec
->isSubClassOf("ComplexPattern")) {
3542 const ComplexPattern
&CP
= CDP
.getComplexPattern(LeafRec
);
3543 if (CP
.hasProperty(SDNPMayStore
)) mayStore
= true;
3544 if (CP
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
3545 if (CP
.hasProperty(SDNPSideEffect
)) hasSideEffects
= true;
3551 // Analyze children.
3552 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
3553 AnalyzeNode(N
->getChild(i
));
3555 // Notice properties of the node.
3556 if (N
->NodeHasProperty(SDNPMayStore
, CDP
)) mayStore
= true;
3557 if (N
->NodeHasProperty(SDNPMayLoad
, CDP
)) mayLoad
= true;
3558 if (N
->NodeHasProperty(SDNPSideEffect
, CDP
)) hasSideEffects
= true;
3559 if (N
->NodeHasProperty(SDNPVariadic
, CDP
)) isVariadic
= true;
3560 if (N
->NodeHasProperty(SDNPHasChain
, CDP
)) hasChain
= true;
3562 if (const CodeGenIntrinsic
*IntInfo
= N
->getIntrinsicInfo(CDP
)) {
3563 // If this is an intrinsic, analyze it.
3564 if (IntInfo
->ModRef
& CodeGenIntrinsic::MR_Ref
)
3565 mayLoad
= true;// These may load memory.
3567 if (IntInfo
->ModRef
& CodeGenIntrinsic::MR_Mod
)
3568 mayStore
= true;// Intrinsics that can write to memory are 'mayStore'.
3570 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadWriteMem
||
3571 IntInfo
->hasSideEffects
)
3572 // ReadWriteMem intrinsics can have other strange effects.
3573 hasSideEffects
= true;
3579 static bool InferFromPattern(CodeGenInstruction
&InstInfo
,
3580 const InstAnalyzer
&PatInfo
,
3584 // Remember where InstInfo got its flags.
3585 if (InstInfo
.hasUndefFlags())
3586 InstInfo
.InferredFrom
= PatDef
;
3588 // Check explicitly set flags for consistency.
3589 if (InstInfo
.hasSideEffects
!= PatInfo
.hasSideEffects
&&
3590 !InstInfo
.hasSideEffects_Unset
) {
3591 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3592 // the pattern has no side effects. That could be useful for div/rem
3593 // instructions that may trap.
3594 if (!InstInfo
.hasSideEffects
) {
3596 PrintError(PatDef
->getLoc(), "Pattern doesn't match hasSideEffects = " +
3597 Twine(InstInfo
.hasSideEffects
));
3601 if (InstInfo
.mayStore
!= PatInfo
.mayStore
&& !InstInfo
.mayStore_Unset
) {
3603 PrintError(PatDef
->getLoc(), "Pattern doesn't match mayStore = " +
3604 Twine(InstInfo
.mayStore
));
3607 if (InstInfo
.mayLoad
!= PatInfo
.mayLoad
&& !InstInfo
.mayLoad_Unset
) {
3608 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3609 // Some targets translate immediates to loads.
3610 if (!InstInfo
.mayLoad
) {
3612 PrintError(PatDef
->getLoc(), "Pattern doesn't match mayLoad = " +
3613 Twine(InstInfo
.mayLoad
));
3617 // Transfer inferred flags.
3618 InstInfo
.hasSideEffects
|= PatInfo
.hasSideEffects
;
3619 InstInfo
.mayStore
|= PatInfo
.mayStore
;
3620 InstInfo
.mayLoad
|= PatInfo
.mayLoad
;
3622 // These flags are silently added without any verification.
3623 // FIXME: To match historical behavior of TableGen, for now add those flags
3624 // only when we're inferring from the primary instruction pattern.
3625 if (PatDef
->isSubClassOf("Instruction")) {
3626 InstInfo
.isBitcast
|= PatInfo
.isBitcast
;
3627 InstInfo
.hasChain
|= PatInfo
.hasChain
;
3628 InstInfo
.hasChain_Inferred
= true;
3631 // Don't infer isVariadic. This flag means something different on SDNodes and
3632 // instructions. For example, a CALL SDNode is variadic because it has the
3633 // call arguments as operands, but a CALL instruction is not variadic - it
3634 // has argument registers as implicit, not explicit uses.
3639 /// hasNullFragReference - Return true if the DAG has any reference to the
3640 /// null_frag operator.
3641 static bool hasNullFragReference(DagInit
*DI
) {
3642 DefInit
*OpDef
= dyn_cast
<DefInit
>(DI
->getOperator());
3643 if (!OpDef
) return false;
3644 Record
*Operator
= OpDef
->getDef();
3646 // If this is the null fragment, return true.
3647 if (Operator
->getName() == "null_frag") return true;
3648 // If any of the arguments reference the null fragment, return true.
3649 for (unsigned i
= 0, e
= DI
->getNumArgs(); i
!= e
; ++i
) {
3650 if (auto Arg
= dyn_cast
<DefInit
>(DI
->getArg(i
)))
3651 if (Arg
->getDef()->getName() == "null_frag")
3653 DagInit
*Arg
= dyn_cast
<DagInit
>(DI
->getArg(i
));
3654 if (Arg
&& hasNullFragReference(Arg
))
3661 /// hasNullFragReference - Return true if any DAG in the list references
3662 /// the null_frag operator.
3663 static bool hasNullFragReference(ListInit
*LI
) {
3664 for (Init
*I
: LI
->getValues()) {
3665 DagInit
*DI
= dyn_cast
<DagInit
>(I
);
3666 assert(DI
&& "non-dag in an instruction Pattern list?!");
3667 if (hasNullFragReference(DI
))
3673 /// Get all the instructions in a tree.
3675 getInstructionsInTree(TreePatternNode
*Tree
, SmallVectorImpl
<Record
*> &Instrs
) {
3678 if (Tree
->getOperator()->isSubClassOf("Instruction"))
3679 Instrs
.push_back(Tree
->getOperator());
3680 for (unsigned i
= 0, e
= Tree
->getNumChildren(); i
!= e
; ++i
)
3681 getInstructionsInTree(Tree
->getChild(i
), Instrs
);
3684 /// Check the class of a pattern leaf node against the instruction operand it
3686 static bool checkOperandClass(CGIOperandList::OperandInfo
&OI
,
3691 // Allow direct value types to be used in instruction set patterns.
3692 // The type will be checked later.
3693 if (Leaf
->isSubClassOf("ValueType"))
3696 // Patterns can also be ComplexPattern instances.
3697 if (Leaf
->isSubClassOf("ComplexPattern"))
3703 void CodeGenDAGPatterns::parseInstructionPattern(
3704 CodeGenInstruction
&CGI
, ListInit
*Pat
, DAGInstMap
&DAGInsts
) {
3706 assert(!DAGInsts
.count(CGI
.TheDef
) && "Instruction already parsed!");
3708 // Parse the instruction.
3709 TreePattern
I(CGI
.TheDef
, Pat
, true, *this);
3711 // InstInputs - Keep track of all of the inputs of the instruction, along
3712 // with the record they are declared as.
3713 std::map
<std::string
, TreePatternNodePtr
> InstInputs
;
3715 // InstResults - Keep track of all the virtual registers that are 'set'
3716 // in the instruction, including what reg class they are.
3717 MapVector
<std::string
, TreePatternNodePtr
, std::map
<std::string
, unsigned>>
3720 std::vector
<Record
*> InstImpResults
;
3722 // Verify that the top-level forms in the instruction are of void type, and
3723 // fill in the InstResults map.
3724 SmallString
<32> TypesString
;
3725 for (unsigned j
= 0, e
= I
.getNumTrees(); j
!= e
; ++j
) {
3726 TypesString
.clear();
3727 TreePatternNodePtr Pat
= I
.getTree(j
);
3728 if (Pat
->getNumTypes() != 0) {
3729 raw_svector_ostream
OS(TypesString
);
3731 for (unsigned k
= 0, ke
= Pat
->getNumTypes(); k
!= ke
; ++k
) {
3733 Pat
->getExtType(k
).writeToStream(OS
);
3735 I
.error("Top-level forms in instruction pattern should have"
3736 " void types, has types " +
3740 // Find inputs and outputs, and verify the structure of the uses/defs.
3741 FindPatternInputsAndOutputs(I
, Pat
, InstInputs
, InstResults
,
3745 // Now that we have inputs and outputs of the pattern, inspect the operands
3746 // list for the instruction. This determines the order that operands are
3747 // added to the machine instruction the node corresponds to.
3748 unsigned NumResults
= InstResults
.size();
3750 // Parse the operands list from the (ops) list, validating it.
3751 assert(I
.getArgList().empty() && "Args list should still be empty here!");
3753 // Check that all of the results occur first in the list.
3754 std::vector
<Record
*> Results
;
3755 std::vector
<unsigned> ResultIndices
;
3756 SmallVector
<TreePatternNodePtr
, 2> ResNodes
;
3757 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3758 if (i
== CGI
.Operands
.size()) {
3759 const std::string
&OpName
=
3762 [](const std::pair
<std::string
, TreePatternNodePtr
> &P
) {
3767 I
.error("'" + OpName
+ "' set but does not appear in operand list!");
3770 const std::string
&OpName
= CGI
.Operands
[i
].Name
;
3772 // Check that it exists in InstResults.
3773 auto InstResultIter
= InstResults
.find(OpName
);
3774 if (InstResultIter
== InstResults
.end() || !InstResultIter
->second
)
3775 I
.error("Operand $" + OpName
+ " does not exist in operand list!");
3777 TreePatternNodePtr RNode
= InstResultIter
->second
;
3778 Record
*R
= cast
<DefInit
>(RNode
->getLeafValue())->getDef();
3779 ResNodes
.push_back(std::move(RNode
));
3781 I
.error("Operand $" + OpName
+ " should be a set destination: all "
3782 "outputs must occur before inputs in operand list!");
3784 if (!checkOperandClass(CGI
.Operands
[i
], R
))
3785 I
.error("Operand $" + OpName
+ " class mismatch!");
3787 // Remember the return type.
3788 Results
.push_back(CGI
.Operands
[i
].Rec
);
3790 // Remember the result index.
3791 ResultIndices
.push_back(std::distance(InstResults
.begin(), InstResultIter
));
3793 // Okay, this one checks out.
3794 InstResultIter
->second
= nullptr;
3797 // Loop over the inputs next.
3798 std::vector
<TreePatternNodePtr
> ResultNodeOperands
;
3799 std::vector
<Record
*> Operands
;
3800 for (unsigned i
= NumResults
, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
3801 CGIOperandList::OperandInfo
&Op
= CGI
.Operands
[i
];
3802 const std::string
&OpName
= Op
.Name
;
3804 I
.error("Operand #" + Twine(i
) + " in operands list has no name!");
3806 if (!InstInputs
.count(OpName
)) {
3807 // If this is an operand with a DefaultOps set filled in, we can ignore
3808 // this. When we codegen it, we will do so as always executed.
3809 if (Op
.Rec
->isSubClassOf("OperandWithDefaultOps")) {
3810 // Does it have a non-empty DefaultOps field? If so, ignore this
3812 if (!getDefaultOperand(Op
.Rec
).DefaultOps
.empty())
3815 I
.error("Operand $" + OpName
+
3816 " does not appear in the instruction pattern");
3818 TreePatternNodePtr InVal
= InstInputs
[OpName
];
3819 InstInputs
.erase(OpName
); // It occurred, remove from map.
3821 if (InVal
->isLeaf() && isa
<DefInit
>(InVal
->getLeafValue())) {
3822 Record
*InRec
= static_cast<DefInit
*>(InVal
->getLeafValue())->getDef();
3823 if (!checkOperandClass(Op
, InRec
))
3824 I
.error("Operand $" + OpName
+ "'s register class disagrees"
3825 " between the operand and pattern");
3827 Operands
.push_back(Op
.Rec
);
3829 // Construct the result for the dest-pattern operand list.
3830 TreePatternNodePtr OpNode
= InVal
->clone();
3832 // No predicate is useful on the result.
3833 OpNode
->clearPredicateCalls();
3835 // Promote the xform function to be an explicit node if set.
3836 if (Record
*Xform
= OpNode
->getTransformFn()) {
3837 OpNode
->setTransformFn(nullptr);
3838 std::vector
<TreePatternNodePtr
> Children
;
3839 Children
.push_back(OpNode
);
3840 OpNode
= std::make_shared
<TreePatternNode
>(Xform
, std::move(Children
),
3841 OpNode
->getNumTypes());
3844 ResultNodeOperands
.push_back(std::move(OpNode
));
3847 if (!InstInputs
.empty())
3848 I
.error("Input operand $" + InstInputs
.begin()->first
+
3849 " occurs in pattern but not in operands list!");
3851 TreePatternNodePtr ResultPattern
= std::make_shared
<TreePatternNode
>(
3852 I
.getRecord(), std::move(ResultNodeOperands
),
3853 GetNumNodeResults(I
.getRecord(), *this));
3854 // Copy fully inferred output node types to instruction result pattern.
3855 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
3856 assert(ResNodes
[i
]->getNumTypes() == 1 && "FIXME: Unhandled");
3857 ResultPattern
->setType(i
, ResNodes
[i
]->getExtType(0));
3858 ResultPattern
->setResultIndex(i
, ResultIndices
[i
]);
3861 // FIXME: Assume only the first tree is the pattern. The others are clobber
3863 TreePatternNodePtr Pattern
= I
.getTree(0);
3864 TreePatternNodePtr SrcPattern
;
3865 if (Pattern
->getOperator()->getName() == "set") {
3866 SrcPattern
= Pattern
->getChild(Pattern
->getNumChildren()-1)->clone();
3868 // Not a set (store or something?)
3869 SrcPattern
= Pattern
;
3872 // Create and insert the instruction.
3873 // FIXME: InstImpResults should not be part of DAGInstruction.
3874 Record
*R
= I
.getRecord();
3875 DAGInsts
.emplace(std::piecewise_construct
, std::forward_as_tuple(R
),
3876 std::forward_as_tuple(Results
, Operands
, InstImpResults
,
3877 SrcPattern
, ResultPattern
));
3879 LLVM_DEBUG(I
.dump());
3882 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3883 /// any fragments involved. This populates the Instructions list with fully
3884 /// resolved instructions.
3885 void CodeGenDAGPatterns::ParseInstructions() {
3886 std::vector
<Record
*> Instrs
= Records
.getAllDerivedDefinitions("Instruction");
3888 for (Record
*Instr
: Instrs
) {
3889 ListInit
*LI
= nullptr;
3891 if (isa
<ListInit
>(Instr
->getValueInit("Pattern")))
3892 LI
= Instr
->getValueAsListInit("Pattern");
3894 // If there is no pattern, only collect minimal information about the
3895 // instruction for its operand list. We have to assume that there is one
3896 // result, as we have no detailed info. A pattern which references the
3897 // null_frag operator is as-if no pattern were specified. Normally this
3898 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3900 if (!LI
|| LI
->empty() || hasNullFragReference(LI
)) {
3901 std::vector
<Record
*> Results
;
3902 std::vector
<Record
*> Operands
;
3904 CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instr
);
3906 if (InstInfo
.Operands
.size() != 0) {
3907 for (unsigned j
= 0, e
= InstInfo
.Operands
.NumDefs
; j
< e
; ++j
)
3908 Results
.push_back(InstInfo
.Operands
[j
].Rec
);
3910 // The rest are inputs.
3911 for (unsigned j
= InstInfo
.Operands
.NumDefs
,
3912 e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
3913 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
3916 // Create and insert the instruction.
3917 std::vector
<Record
*> ImpResults
;
3918 Instructions
.insert(std::make_pair(Instr
,
3919 DAGInstruction(Results
, Operands
, ImpResults
)));
3920 continue; // no pattern.
3923 CodeGenInstruction
&CGI
= Target
.getInstruction(Instr
);
3924 parseInstructionPattern(CGI
, LI
, Instructions
);
3927 // If we can, convert the instructions to be patterns that are matched!
3928 for (auto &Entry
: Instructions
) {
3929 Record
*Instr
= Entry
.first
;
3930 DAGInstruction
&TheInst
= Entry
.second
;
3931 TreePatternNodePtr SrcPattern
= TheInst
.getSrcPattern();
3932 TreePatternNodePtr ResultPattern
= TheInst
.getResultPattern();
3934 if (SrcPattern
&& ResultPattern
) {
3935 TreePattern
Pattern(Instr
, SrcPattern
, true, *this);
3936 TreePattern
Result(Instr
, ResultPattern
, false, *this);
3937 ParseOnePattern(Instr
, Pattern
, Result
, TheInst
.getImpResults());
3942 typedef std::pair
<TreePatternNode
*, unsigned> NameRecord
;
3944 static void FindNames(TreePatternNode
*P
,
3945 std::map
<std::string
, NameRecord
> &Names
,
3946 TreePattern
*PatternTop
) {
3947 if (!P
->getName().empty()) {
3948 NameRecord
&Rec
= Names
[P
->getName()];
3949 // If this is the first instance of the name, remember the node.
3950 if (Rec
.second
++ == 0)
3952 else if (Rec
.first
->getExtTypes() != P
->getExtTypes())
3953 PatternTop
->error("repetition of value: $" + P
->getName() +
3954 " where different uses have different types!");
3958 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
)
3959 FindNames(P
->getChild(i
), Names
, PatternTop
);
3963 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern
*Pattern
,
3964 PatternToMatch
&&PTM
) {
3965 // Do some sanity checking on the pattern we're about to match.
3967 if (!PTM
.getSrcPattern()->canPatternMatch(Reason
, *this)) {
3968 PrintWarning(Pattern
->getRecord()->getLoc(),
3969 Twine("Pattern can never match: ") + Reason
);
3973 // If the source pattern's root is a complex pattern, that complex pattern
3974 // must specify the nodes it can potentially match.
3975 if (const ComplexPattern
*CP
=
3976 PTM
.getSrcPattern()->getComplexPatternInfo(*this))
3977 if (CP
->getRootNodes().empty())
3978 Pattern
->error("ComplexPattern at root must specify list of opcodes it"
3982 // Find all of the named values in the input and output, ensure they have the
3984 std::map
<std::string
, NameRecord
> SrcNames
, DstNames
;
3985 FindNames(PTM
.getSrcPattern(), SrcNames
, Pattern
);
3986 FindNames(PTM
.getDstPattern(), DstNames
, Pattern
);
3988 // Scan all of the named values in the destination pattern, rejecting them if
3989 // they don't exist in the input pattern.
3990 for (const auto &Entry
: DstNames
) {
3991 if (SrcNames
[Entry
.first
].first
== nullptr)
3992 Pattern
->error("Pattern has input without matching name in output: $" +
3996 // Scan all of the named values in the source pattern, rejecting them if the
3997 // name isn't used in the dest, and isn't used to tie two values together.
3998 for (const auto &Entry
: SrcNames
)
3999 if (DstNames
[Entry
.first
].first
== nullptr &&
4000 SrcNames
[Entry
.first
].second
== 1)
4001 Pattern
->error("Pattern has dead named input: $" + Entry
.first
);
4003 PatternsToMatch
.push_back(std::move(PTM
));
4006 void CodeGenDAGPatterns::InferInstructionFlags() {
4007 ArrayRef
<const CodeGenInstruction
*> Instructions
=
4008 Target
.getInstructionsByEnumValue();
4010 unsigned Errors
= 0;
4012 // Try to infer flags from all patterns in PatternToMatch. These include
4013 // both the primary instruction patterns (which always come first) and
4014 // patterns defined outside the instruction.
4015 for (const PatternToMatch
&PTM
: ptms()) {
4016 // We can only infer from single-instruction patterns, otherwise we won't
4017 // know which instruction should get the flags.
4018 SmallVector
<Record
*, 8> PatInstrs
;
4019 getInstructionsInTree(PTM
.getDstPattern(), PatInstrs
);
4020 if (PatInstrs
.size() != 1)
4023 // Get the single instruction.
4024 CodeGenInstruction
&InstInfo
= Target
.getInstruction(PatInstrs
.front());
4026 // Only infer properties from the first pattern. We'll verify the others.
4027 if (InstInfo
.InferredFrom
)
4030 InstAnalyzer
PatInfo(*this);
4031 PatInfo
.Analyze(PTM
);
4032 Errors
+= InferFromPattern(InstInfo
, PatInfo
, PTM
.getSrcRecord());
4036 PrintFatalError("pattern conflicts");
4038 // If requested by the target, guess any undefined properties.
4039 if (Target
.guessInstructionProperties()) {
4040 for (unsigned i
= 0, e
= Instructions
.size(); i
!= e
; ++i
) {
4041 CodeGenInstruction
*InstInfo
=
4042 const_cast<CodeGenInstruction
*>(Instructions
[i
]);
4043 if (InstInfo
->InferredFrom
)
4045 // The mayLoad and mayStore flags default to false.
4046 // Conservatively assume hasSideEffects if it wasn't explicit.
4047 if (InstInfo
->hasSideEffects_Unset
)
4048 InstInfo
->hasSideEffects
= true;
4053 // Complain about any flags that are still undefined.
4054 for (unsigned i
= 0, e
= Instructions
.size(); i
!= e
; ++i
) {
4055 CodeGenInstruction
*InstInfo
=
4056 const_cast<CodeGenInstruction
*>(Instructions
[i
]);
4057 if (InstInfo
->InferredFrom
)
4059 if (InstInfo
->hasSideEffects_Unset
)
4060 PrintError(InstInfo
->TheDef
->getLoc(),
4061 "Can't infer hasSideEffects from patterns");
4062 if (InstInfo
->mayStore_Unset
)
4063 PrintError(InstInfo
->TheDef
->getLoc(),
4064 "Can't infer mayStore from patterns");
4065 if (InstInfo
->mayLoad_Unset
)
4066 PrintError(InstInfo
->TheDef
->getLoc(),
4067 "Can't infer mayLoad from patterns");
4072 /// Verify instruction flags against pattern node properties.
4073 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4074 unsigned Errors
= 0;
4075 for (const PatternToMatch
&PTM
: ptms()) {
4076 SmallVector
<Record
*, 8> Instrs
;
4077 getInstructionsInTree(PTM
.getDstPattern(), Instrs
);
4081 // Count the number of instructions with each flag set.
4082 unsigned NumSideEffects
= 0;
4083 unsigned NumStores
= 0;
4084 unsigned NumLoads
= 0;
4085 for (const Record
*Instr
: Instrs
) {
4086 const CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instr
);
4087 NumSideEffects
+= InstInfo
.hasSideEffects
;
4088 NumStores
+= InstInfo
.mayStore
;
4089 NumLoads
+= InstInfo
.mayLoad
;
4092 // Analyze the source pattern.
4093 InstAnalyzer
PatInfo(*this);
4094 PatInfo
.Analyze(PTM
);
4096 // Collect error messages.
4097 SmallVector
<std::string
, 4> Msgs
;
4099 // Check for missing flags in the output.
4100 // Permit extra flags for now at least.
4101 if (PatInfo
.hasSideEffects
&& !NumSideEffects
)
4102 Msgs
.push_back("pattern has side effects, but hasSideEffects isn't set");
4104 // Don't verify store flags on instructions with side effects. At least for
4105 // intrinsics, side effects implies mayStore.
4106 if (!PatInfo
.hasSideEffects
&& PatInfo
.mayStore
&& !NumStores
)
4107 Msgs
.push_back("pattern may store, but mayStore isn't set");
4109 // Similarly, mayStore implies mayLoad on intrinsics.
4110 if (!PatInfo
.mayStore
&& PatInfo
.mayLoad
&& !NumLoads
)
4111 Msgs
.push_back("pattern may load, but mayLoad isn't set");
4113 // Print error messages.
4118 for (const std::string
&Msg
: Msgs
)
4119 PrintError(PTM
.getSrcRecord()->getLoc(), Twine(Msg
) + " on the " +
4120 (Instrs
.size() == 1 ?
4121 "instruction" : "output instructions"));
4122 // Provide the location of the relevant instruction definitions.
4123 for (const Record
*Instr
: Instrs
) {
4124 if (Instr
!= PTM
.getSrcRecord())
4125 PrintError(Instr
->getLoc(), "defined here");
4126 const CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instr
);
4127 if (InstInfo
.InferredFrom
&&
4128 InstInfo
.InferredFrom
!= InstInfo
.TheDef
&&
4129 InstInfo
.InferredFrom
!= PTM
.getSrcRecord())
4130 PrintError(InstInfo
.InferredFrom
->getLoc(), "inferred from pattern");
4134 PrintFatalError("Errors in DAG patterns");
4137 /// Given a pattern result with an unresolved type, see if we can find one
4138 /// instruction with an unresolved result type. Force this result type to an
4139 /// arbitrary element if it's possible types to converge results.
4140 static bool ForceArbitraryInstResultType(TreePatternNode
*N
, TreePattern
&TP
) {
4144 // Analyze children.
4145 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4146 if (ForceArbitraryInstResultType(N
->getChild(i
), TP
))
4149 if (!N
->getOperator()->isSubClassOf("Instruction"))
4152 // If this type is already concrete or completely unknown we can't do
4154 TypeInfer
&TI
= TP
.getInfer();
4155 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
) {
4156 if (N
->getExtType(i
).empty() || TI
.isConcrete(N
->getExtType(i
), false))
4159 // Otherwise, force its type to an arbitrary choice.
4160 if (TI
.forceArbitrary(N
->getExtType(i
)))
4167 // Promote xform function to be an explicit node wherever set.
4168 static TreePatternNodePtr
PromoteXForms(TreePatternNodePtr N
) {
4169 if (Record
*Xform
= N
->getTransformFn()) {
4170 N
->setTransformFn(nullptr);
4171 std::vector
<TreePatternNodePtr
> Children
;
4172 Children
.push_back(PromoteXForms(N
));
4173 return std::make_shared
<TreePatternNode
>(Xform
, std::move(Children
),
4178 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
4179 TreePatternNodePtr Child
= N
->getChildShared(i
);
4180 N
->setChild(i
, PromoteXForms(Child
));
4185 void CodeGenDAGPatterns::ParseOnePattern(Record
*TheDef
,
4186 TreePattern
&Pattern
, TreePattern
&Result
,
4187 const std::vector
<Record
*> &InstImpResults
) {
4189 // Inline pattern fragments and expand multiple alternatives.
4190 Pattern
.InlinePatternFragments();
4191 Result
.InlinePatternFragments();
4193 if (Result
.getNumTrees() != 1)
4194 Result
.error("Cannot use multi-alternative fragments in result pattern!");
4197 bool IterateInference
;
4198 bool InferredAllPatternTypes
, InferredAllResultTypes
;
4200 // Infer as many types as possible. If we cannot infer all of them, we
4201 // can never do anything with this pattern: report it to the user.
4202 InferredAllPatternTypes
=
4203 Pattern
.InferAllTypes(&Pattern
.getNamedNodesMap());
4205 // Infer as many types as possible. If we cannot infer all of them, we
4206 // can never do anything with this pattern: report it to the user.
4207 InferredAllResultTypes
=
4208 Result
.InferAllTypes(&Pattern
.getNamedNodesMap());
4210 IterateInference
= false;
4212 // Apply the type of the result to the source pattern. This helps us
4213 // resolve cases where the input type is known to be a pointer type (which
4214 // is considered resolved), but the result knows it needs to be 32- or
4215 // 64-bits. Infer the other way for good measure.
4216 for (const auto &T
: Pattern
.getTrees())
4217 for (unsigned i
= 0, e
= std::min(Result
.getOnlyTree()->getNumTypes(),
4220 IterateInference
|= T
->UpdateNodeType(
4221 i
, Result
.getOnlyTree()->getExtType(i
), Result
);
4222 IterateInference
|= Result
.getOnlyTree()->UpdateNodeType(
4223 i
, T
->getExtType(i
), Result
);
4226 // If our iteration has converged and the input pattern's types are fully
4227 // resolved but the result pattern is not fully resolved, we may have a
4228 // situation where we have two instructions in the result pattern and
4229 // the instructions require a common register class, but don't care about
4230 // what actual MVT is used. This is actually a bug in our modelling:
4231 // output patterns should have register classes, not MVTs.
4233 // In any case, to handle this, we just go through and disambiguate some
4234 // arbitrary types to the result pattern's nodes.
4235 if (!IterateInference
&& InferredAllPatternTypes
&&
4236 !InferredAllResultTypes
)
4238 ForceArbitraryInstResultType(Result
.getTree(0).get(), Result
);
4239 } while (IterateInference
);
4241 // Verify that we inferred enough types that we can do something with the
4242 // pattern and result. If these fire the user has to add type casts.
4243 if (!InferredAllPatternTypes
)
4244 Pattern
.error("Could not infer all types in pattern!");
4245 if (!InferredAllResultTypes
) {
4247 Result
.error("Could not infer all types in pattern result!");
4250 // Promote xform function to be an explicit node wherever set.
4251 TreePatternNodePtr DstShared
= PromoteXForms(Result
.getOnlyTree());
4253 TreePattern
Temp(Result
.getRecord(), DstShared
, false, *this);
4254 Temp
.InferAllTypes();
4256 ListInit
*Preds
= TheDef
->getValueAsListInit("Predicates");
4257 int Complexity
= TheDef
->getValueAsInt("AddedComplexity");
4259 if (PatternRewriter
)
4260 PatternRewriter(&Pattern
);
4262 // A pattern may end up with an "impossible" type, i.e. a situation
4263 // where all types have been eliminated for some node in this pattern.
4264 // This could occur for intrinsics that only make sense for a specific
4265 // value type, and use a specific register class. If, for some mode,
4266 // that register class does not accept that type, the type inference
4267 // will lead to a contradiction, which is not an error however, but
4268 // a sign that this pattern will simply never match.
4269 if (Temp
.getOnlyTree()->hasPossibleType())
4270 for (const auto &T
: Pattern
.getTrees())
4271 if (T
->hasPossibleType())
4272 AddPatternToMatch(&Pattern
,
4273 PatternToMatch(TheDef
, Preds
, T
, Temp
.getOnlyTree(),
4274 InstImpResults
, Complexity
,
4278 void CodeGenDAGPatterns::ParsePatterns() {
4279 std::vector
<Record
*> Patterns
= Records
.getAllDerivedDefinitions("Pattern");
4281 for (Record
*CurPattern
: Patterns
) {
4282 DagInit
*Tree
= CurPattern
->getValueAsDag("PatternToMatch");
4284 // If the pattern references the null_frag, there's nothing to do.
4285 if (hasNullFragReference(Tree
))
4288 TreePattern
Pattern(CurPattern
, Tree
, true, *this);
4290 ListInit
*LI
= CurPattern
->getValueAsListInit("ResultInstrs");
4291 if (LI
->empty()) continue; // no pattern.
4293 // Parse the instruction.
4294 TreePattern
Result(CurPattern
, LI
, false, *this);
4296 if (Result
.getNumTrees() != 1)
4297 Result
.error("Cannot handle instructions producing instructions "
4298 "with temporaries yet!");
4300 // Validate that the input pattern is correct.
4301 std::map
<std::string
, TreePatternNodePtr
> InstInputs
;
4302 MapVector
<std::string
, TreePatternNodePtr
, std::map
<std::string
, unsigned>>
4304 std::vector
<Record
*> InstImpResults
;
4305 for (unsigned j
= 0, ee
= Pattern
.getNumTrees(); j
!= ee
; ++j
)
4306 FindPatternInputsAndOutputs(Pattern
, Pattern
.getTree(j
), InstInputs
,
4307 InstResults
, InstImpResults
);
4309 ParseOnePattern(CurPattern
, Pattern
, Result
, InstImpResults
);
4313 static void collectModes(std::set
<unsigned> &Modes
, const TreePatternNode
*N
) {
4314 for (const TypeSetByHwMode
&VTS
: N
->getExtTypes())
4315 for (const auto &I
: VTS
)
4316 Modes
.insert(I
.first
);
4318 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4319 collectModes(Modes
, N
->getChild(i
));
4322 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4323 const CodeGenHwModes
&CGH
= getTargetInfo().getHwModes();
4324 std::vector
<PatternToMatch
> Copy
;
4325 PatternsToMatch
.swap(Copy
);
4327 auto AppendPattern
= [this](PatternToMatch
&P
, unsigned Mode
,
4329 TreePatternNodePtr NewSrc
= P
.getSrcPattern()->clone();
4330 TreePatternNodePtr NewDst
= P
.getDstPattern()->clone();
4331 if (!NewSrc
->setDefaultMode(Mode
) || !NewDst
->setDefaultMode(Mode
)) {
4335 PatternsToMatch
.emplace_back(P
.getSrcRecord(), P
.getPredicates(),
4336 std::move(NewSrc
), std::move(NewDst
),
4337 P
.getDstRegs(), P
.getAddedComplexity(),
4338 Record::getNewUID(), Mode
, Check
);
4341 for (PatternToMatch
&P
: Copy
) {
4342 TreePatternNodePtr SrcP
= nullptr, DstP
= nullptr;
4343 if (P
.getSrcPattern()->hasProperTypeByHwMode())
4344 SrcP
= P
.getSrcPatternShared();
4345 if (P
.getDstPattern()->hasProperTypeByHwMode())
4346 DstP
= P
.getDstPatternShared();
4347 if (!SrcP
&& !DstP
) {
4348 PatternsToMatch
.push_back(P
);
4352 std::set
<unsigned> Modes
;
4354 collectModes(Modes
, SrcP
.get());
4356 collectModes(Modes
, DstP
.get());
4358 // The predicate for the default mode needs to be constructed for each
4359 // pattern separately.
4360 // Since not all modes must be present in each pattern, if a mode m is
4361 // absent, then there is no point in constructing a check for m. If such
4362 // a check was created, it would be equivalent to checking the default
4363 // mode, except not all modes' predicates would be a part of the checking
4364 // code. The subsequently generated check for the default mode would then
4365 // have the exact same patterns, but a different predicate code. To avoid
4366 // duplicated patterns with different predicate checks, construct the
4367 // default check as a negation of all predicates that are actually present
4368 // in the source/destination patterns.
4369 SmallString
<128> DefaultCheck
;
4371 for (unsigned M
: Modes
) {
4372 if (M
== DefaultMode
)
4375 // Fill the map entry for this mode.
4376 const HwMode
&HM
= CGH
.getMode(M
);
4377 AppendPattern(P
, M
, "(MF->getSubtarget().checkFeatures(\"" + HM
.Features
+ "\"))");
4379 // Add negations of the HM's predicates to the default predicate.
4380 if (!DefaultCheck
.empty())
4381 DefaultCheck
+= " && ";
4382 DefaultCheck
+= "(!(MF->getSubtarget().checkFeatures(\"";
4383 DefaultCheck
+= HM
.Features
;
4384 DefaultCheck
+= "\")))";
4387 bool HasDefault
= Modes
.count(DefaultMode
);
4389 AppendPattern(P
, DefaultMode
, DefaultCheck
);
4393 /// Dependent variable map for CodeGenDAGPattern variant generation
4394 typedef StringMap
<int> DepVarMap
;
4396 static void FindDepVarsOf(TreePatternNode
*N
, DepVarMap
&DepMap
) {
4398 if (N
->hasName() && isa
<DefInit
>(N
->getLeafValue()))
4399 DepMap
[N
->getName()]++;
4401 for (size_t i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4402 FindDepVarsOf(N
->getChild(i
), DepMap
);
4406 /// Find dependent variables within child patterns
4407 static void FindDepVars(TreePatternNode
*N
, MultipleUseVarSet
&DepVars
) {
4408 DepVarMap depcounts
;
4409 FindDepVarsOf(N
, depcounts
);
4410 for (const auto &Pair
: depcounts
) {
4411 if (Pair
.getValue() > 1)
4412 DepVars
.insert(Pair
.getKey());
4417 /// Dump the dependent variable set:
4418 static void DumpDepVars(MultipleUseVarSet
&DepVars
) {
4419 if (DepVars
.empty()) {
4420 LLVM_DEBUG(errs() << "<empty set>");
4422 LLVM_DEBUG(errs() << "[ ");
4423 for (const auto &DepVar
: DepVars
) {
4424 LLVM_DEBUG(errs() << DepVar
.getKey() << " ");
4426 LLVM_DEBUG(errs() << "]");
4432 /// CombineChildVariants - Given a bunch of permutations of each child of the
4433 /// 'operator' node, put them together in all possible ways.
4434 static void CombineChildVariants(
4435 TreePatternNodePtr Orig
,
4436 const std::vector
<std::vector
<TreePatternNodePtr
>> &ChildVariants
,
4437 std::vector
<TreePatternNodePtr
> &OutVariants
, CodeGenDAGPatterns
&CDP
,
4438 const MultipleUseVarSet
&DepVars
) {
4439 // Make sure that each operand has at least one variant to choose from.
4440 for (const auto &Variants
: ChildVariants
)
4441 if (Variants
.empty())
4444 // The end result is an all-pairs construction of the resultant pattern.
4445 std::vector
<unsigned> Idxs
;
4446 Idxs
.resize(ChildVariants
.size());
4450 LLVM_DEBUG(if (!Idxs
.empty()) {
4451 errs() << Orig
->getOperator()->getName() << ": Idxs = [ ";
4452 for (unsigned Idx
: Idxs
) {
4453 errs() << Idx
<< " ";
4458 // Create the variant and add it to the output list.
4459 std::vector
<TreePatternNodePtr
> NewChildren
;
4460 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
4461 NewChildren
.push_back(ChildVariants
[i
][Idxs
[i
]]);
4462 TreePatternNodePtr R
= std::make_shared
<TreePatternNode
>(
4463 Orig
->getOperator(), std::move(NewChildren
), Orig
->getNumTypes());
4465 // Copy over properties.
4466 R
->setName(Orig
->getName());
4467 R
->setNamesAsPredicateArg(Orig
->getNamesAsPredicateArg());
4468 R
->setPredicateCalls(Orig
->getPredicateCalls());
4469 R
->setTransformFn(Orig
->getTransformFn());
4470 for (unsigned i
= 0, e
= Orig
->getNumTypes(); i
!= e
; ++i
)
4471 R
->setType(i
, Orig
->getExtType(i
));
4473 // If this pattern cannot match, do not include it as a variant.
4474 std::string ErrString
;
4475 // Scan to see if this pattern has already been emitted. We can get
4476 // duplication due to things like commuting:
4477 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4478 // which are the same pattern. Ignore the dups.
4479 if (R
->canPatternMatch(ErrString
, CDP
) &&
4480 none_of(OutVariants
, [&](TreePatternNodePtr Variant
) {
4481 return R
->isIsomorphicTo(Variant
.get(), DepVars
);
4483 OutVariants
.push_back(R
);
4485 // Increment indices to the next permutation by incrementing the
4486 // indices from last index backward, e.g., generate the sequence
4487 // [0, 0], [0, 1], [1, 0], [1, 1].
4489 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
4490 if (++Idxs
[IdxsIdx
] == ChildVariants
[IdxsIdx
].size())
4495 NotDone
= (IdxsIdx
>= 0);
4499 /// CombineChildVariants - A helper function for binary operators.
4501 static void CombineChildVariants(TreePatternNodePtr Orig
,
4502 const std::vector
<TreePatternNodePtr
> &LHS
,
4503 const std::vector
<TreePatternNodePtr
> &RHS
,
4504 std::vector
<TreePatternNodePtr
> &OutVariants
,
4505 CodeGenDAGPatterns
&CDP
,
4506 const MultipleUseVarSet
&DepVars
) {
4507 std::vector
<std::vector
<TreePatternNodePtr
>> ChildVariants
;
4508 ChildVariants
.push_back(LHS
);
4509 ChildVariants
.push_back(RHS
);
4510 CombineChildVariants(Orig
, ChildVariants
, OutVariants
, CDP
, DepVars
);
4514 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N
,
4515 std::vector
<TreePatternNodePtr
> &Children
) {
4516 assert(N
->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4517 Record
*Operator
= N
->getOperator();
4519 // Only permit raw nodes.
4520 if (!N
->getName().empty() || !N
->getPredicateCalls().empty() ||
4521 N
->getTransformFn()) {
4522 Children
.push_back(N
);
4526 if (N
->getChild(0)->isLeaf() || N
->getChild(0)->getOperator() != Operator
)
4527 Children
.push_back(N
->getChildShared(0));
4529 GatherChildrenOfAssociativeOpcode(N
->getChildShared(0), Children
);
4531 if (N
->getChild(1)->isLeaf() || N
->getChild(1)->getOperator() != Operator
)
4532 Children
.push_back(N
->getChildShared(1));
4534 GatherChildrenOfAssociativeOpcode(N
->getChildShared(1), Children
);
4537 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4538 /// the (potentially recursive) pattern by using algebraic laws.
4540 static void GenerateVariantsOf(TreePatternNodePtr N
,
4541 std::vector
<TreePatternNodePtr
> &OutVariants
,
4542 CodeGenDAGPatterns
&CDP
,
4543 const MultipleUseVarSet
&DepVars
) {
4544 // We cannot permute leaves or ComplexPattern uses.
4545 if (N
->isLeaf() || N
->getOperator()->isSubClassOf("ComplexPattern")) {
4546 OutVariants
.push_back(N
);
4550 // Look up interesting info about the node.
4551 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(N
->getOperator());
4553 // If this node is associative, re-associate.
4554 if (NodeInfo
.hasProperty(SDNPAssociative
)) {
4555 // Re-associate by pulling together all of the linked operators
4556 std::vector
<TreePatternNodePtr
> MaximalChildren
;
4557 GatherChildrenOfAssociativeOpcode(N
, MaximalChildren
);
4559 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4561 if (MaximalChildren
.size() == 3) {
4562 // Find the variants of all of our maximal children.
4563 std::vector
<TreePatternNodePtr
> AVariants
, BVariants
, CVariants
;
4564 GenerateVariantsOf(MaximalChildren
[0], AVariants
, CDP
, DepVars
);
4565 GenerateVariantsOf(MaximalChildren
[1], BVariants
, CDP
, DepVars
);
4566 GenerateVariantsOf(MaximalChildren
[2], CVariants
, CDP
, DepVars
);
4568 // There are only two ways we can permute the tree:
4569 // (A op B) op C and A op (B op C)
4570 // Within these forms, we can also permute A/B/C.
4572 // Generate legal pair permutations of A/B/C.
4573 std::vector
<TreePatternNodePtr
> ABVariants
;
4574 std::vector
<TreePatternNodePtr
> BAVariants
;
4575 std::vector
<TreePatternNodePtr
> ACVariants
;
4576 std::vector
<TreePatternNodePtr
> CAVariants
;
4577 std::vector
<TreePatternNodePtr
> BCVariants
;
4578 std::vector
<TreePatternNodePtr
> CBVariants
;
4579 CombineChildVariants(N
, AVariants
, BVariants
, ABVariants
, CDP
, DepVars
);
4580 CombineChildVariants(N
, BVariants
, AVariants
, BAVariants
, CDP
, DepVars
);
4581 CombineChildVariants(N
, AVariants
, CVariants
, ACVariants
, CDP
, DepVars
);
4582 CombineChildVariants(N
, CVariants
, AVariants
, CAVariants
, CDP
, DepVars
);
4583 CombineChildVariants(N
, BVariants
, CVariants
, BCVariants
, CDP
, DepVars
);
4584 CombineChildVariants(N
, CVariants
, BVariants
, CBVariants
, CDP
, DepVars
);
4586 // Combine those into the result: (x op x) op x
4587 CombineChildVariants(N
, ABVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
4588 CombineChildVariants(N
, BAVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
4589 CombineChildVariants(N
, ACVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
4590 CombineChildVariants(N
, CAVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
4591 CombineChildVariants(N
, BCVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
4592 CombineChildVariants(N
, CBVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
4594 // Combine those into the result: x op (x op x)
4595 CombineChildVariants(N
, CVariants
, ABVariants
, OutVariants
, CDP
, DepVars
);
4596 CombineChildVariants(N
, CVariants
, BAVariants
, OutVariants
, CDP
, DepVars
);
4597 CombineChildVariants(N
, BVariants
, ACVariants
, OutVariants
, CDP
, DepVars
);
4598 CombineChildVariants(N
, BVariants
, CAVariants
, OutVariants
, CDP
, DepVars
);
4599 CombineChildVariants(N
, AVariants
, BCVariants
, OutVariants
, CDP
, DepVars
);
4600 CombineChildVariants(N
, AVariants
, CBVariants
, OutVariants
, CDP
, DepVars
);
4605 // Compute permutations of all children.
4606 std::vector
<std::vector
<TreePatternNodePtr
>> ChildVariants
;
4607 ChildVariants
.resize(N
->getNumChildren());
4608 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
4609 GenerateVariantsOf(N
->getChildShared(i
), ChildVariants
[i
], CDP
, DepVars
);
4611 // Build all permutations based on how the children were formed.
4612 CombineChildVariants(N
, ChildVariants
, OutVariants
, CDP
, DepVars
);
4614 // If this node is commutative, consider the commuted order.
4615 bool isCommIntrinsic
= N
->isCommutativeIntrinsic(CDP
);
4616 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
4617 assert((N
->getNumChildren()>=2 || isCommIntrinsic
) &&
4618 "Commutative but doesn't have 2 children!");
4619 // Don't count children which are actually register references.
4621 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
4622 TreePatternNode
*Child
= N
->getChild(i
);
4623 if (Child
->isLeaf())
4624 if (DefInit
*DI
= dyn_cast
<DefInit
>(Child
->getLeafValue())) {
4625 Record
*RR
= DI
->getDef();
4626 if (RR
->isSubClassOf("Register"))
4631 // Consider the commuted order.
4632 if (isCommIntrinsic
) {
4633 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4634 // operands are the commutative operands, and there might be more operands
4637 "Commutative intrinsic should have at least 3 children!");
4638 std::vector
<std::vector
<TreePatternNodePtr
>> Variants
;
4639 Variants
.push_back(std::move(ChildVariants
[0])); // Intrinsic id.
4640 Variants
.push_back(std::move(ChildVariants
[2]));
4641 Variants
.push_back(std::move(ChildVariants
[1]));
4642 for (unsigned i
= 3; i
!= NC
; ++i
)
4643 Variants
.push_back(std::move(ChildVariants
[i
]));
4644 CombineChildVariants(N
, Variants
, OutVariants
, CDP
, DepVars
);
4645 } else if (NC
== N
->getNumChildren()) {
4646 std::vector
<std::vector
<TreePatternNodePtr
>> Variants
;
4647 Variants
.push_back(std::move(ChildVariants
[1]));
4648 Variants
.push_back(std::move(ChildVariants
[0]));
4649 for (unsigned i
= 2; i
!= NC
; ++i
)
4650 Variants
.push_back(std::move(ChildVariants
[i
]));
4651 CombineChildVariants(N
, Variants
, OutVariants
, CDP
, DepVars
);
4657 // GenerateVariants - Generate variants. For example, commutative patterns can
4658 // match multiple ways. Add them to PatternsToMatch as well.
4659 void CodeGenDAGPatterns::GenerateVariants() {
4660 LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4662 // Loop over all of the patterns we've collected, checking to see if we can
4663 // generate variants of the instruction, through the exploitation of
4664 // identities. This permits the target to provide aggressive matching without
4665 // the .td file having to contain tons of variants of instructions.
4667 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4668 // intentionally do not reconsider these. Any variants of added patterns have
4669 // already been added.
4671 for (unsigned i
= 0, e
= PatternsToMatch
.size(); i
!= e
; ++i
) {
4672 MultipleUseVarSet DepVars
;
4673 std::vector
<TreePatternNodePtr
> Variants
;
4674 FindDepVars(PatternsToMatch
[i
].getSrcPattern(), DepVars
);
4675 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4676 LLVM_DEBUG(DumpDepVars(DepVars
));
4677 LLVM_DEBUG(errs() << "\n");
4678 GenerateVariantsOf(PatternsToMatch
[i
].getSrcPatternShared(), Variants
,
4681 assert(PatternsToMatch
[i
].getHwModeFeatures().empty() &&
4682 "HwModes should not have been expanded yet!");
4684 assert(!Variants
.empty() && "Must create at least original variant!");
4685 if (Variants
.size() == 1) // No additional variants for this pattern.
4688 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4689 PatternsToMatch
[i
].getSrcPattern()->dump(); errs() << "\n");
4691 for (unsigned v
= 0, e
= Variants
.size(); v
!= e
; ++v
) {
4692 TreePatternNodePtr Variant
= Variants
[v
];
4694 LLVM_DEBUG(errs() << " VAR#" << v
<< ": "; Variant
->dump();
4697 // Scan to see if an instruction or explicit pattern already matches this.
4698 bool AlreadyExists
= false;
4699 for (unsigned p
= 0, e
= PatternsToMatch
.size(); p
!= e
; ++p
) {
4700 // Skip if the top level predicates do not match.
4701 if ((i
!= p
) && (PatternsToMatch
[i
].getPredicates() !=
4702 PatternsToMatch
[p
].getPredicates()))
4704 // Check to see if this variant already exists.
4705 if (Variant
->isIsomorphicTo(PatternsToMatch
[p
].getSrcPattern(),
4707 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
4708 AlreadyExists
= true;
4712 // If we already have it, ignore the variant.
4713 if (AlreadyExists
) continue;
4715 // Otherwise, add it to the list of patterns we have.
4716 PatternsToMatch
.emplace_back(
4717 PatternsToMatch
[i
].getSrcRecord(), PatternsToMatch
[i
].getPredicates(),
4718 Variant
, PatternsToMatch
[i
].getDstPatternShared(),
4719 PatternsToMatch
[i
].getDstRegs(),
4720 PatternsToMatch
[i
].getAddedComplexity(), Record::getNewUID(),
4721 PatternsToMatch
[i
].getForceMode(),
4722 PatternsToMatch
[i
].getHwModeFeatures());
4725 LLVM_DEBUG(errs() << "\n");