[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / CodeGenRegisters.cpp
blob930b7742103eb88a3efdfd9588e34d4ea4e158fe
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
45 using namespace llvm;
47 #define DEBUG_TYPE "regalloc-emitter"
49 //===----------------------------------------------------------------------===//
50 // CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55 Name = std::string(R->getName());
56 if (R->getValue("Namespace"))
57 Namespace = std::string(R->getValueAsString("Namespace"));
58 Size = R->getValueAsInt("Size");
59 Offset = R->getValueAsInt("Offset");
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63 unsigned Enum)
64 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
65 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
66 Artificial(true) {}
68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69 std::string N = getNamespace();
70 if (!N.empty())
71 N += "::";
72 N += getName();
73 return N;
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77 if (!TheDef)
78 return;
80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81 if (!Comps.empty()) {
82 if (Comps.size() != 2)
83 PrintFatalError(TheDef->getLoc(),
84 "ComposedOf must have exactly two entries");
85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87 CodeGenSubRegIndex *X = A->addComposite(B, this);
88 if (X)
89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
92 std::vector<Record*> Parts =
93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94 if (!Parts.empty()) {
95 if (Parts.size() < 2)
96 PrintFatalError(TheDef->getLoc(),
97 "CoveredBySubRegs must have two or more entries");
98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99 for (Record *Part : Parts)
100 IdxParts.push_back(RegBank.getSubRegIdx(Part));
101 setConcatenationOf(IdxParts);
105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106 // Already computed?
107 if (LaneMask.any())
108 return LaneMask;
110 // Recursion guard, shouldn't be required.
111 LaneMask = LaneBitmask::getAll();
113 // The lane mask is simply the union of all sub-indices.
114 LaneBitmask M;
115 for (const auto &C : Composed)
116 M |= C.second->computeLaneMask();
117 assert(M.any() && "Missing lane mask, sub-register cycle?");
118 LaneMask = M;
119 return LaneMask;
122 void CodeGenSubRegIndex::setConcatenationOf(
123 ArrayRef<CodeGenSubRegIndex*> Parts) {
124 if (ConcatenationOf.empty())
125 ConcatenationOf.assign(Parts.begin(), Parts.end());
126 else
127 assert(std::equal(Parts.begin(), Parts.end(),
128 ConcatenationOf.begin()) && "parts consistent");
131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134 CodeGenSubRegIndex *SubIdx = *I;
135 SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
141 if (SubIdx->ConcatenationOf.empty()) {
142 ++I;
143 } else {
144 I = ConcatenationOf.erase(I);
145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146 SubIdx->ConcatenationOf.end());
147 I += SubIdx->ConcatenationOf.size();
152 //===----------------------------------------------------------------------===//
153 // CodeGenRegister
154 //===----------------------------------------------------------------------===//
156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157 : TheDef(R), EnumValue(Enum),
158 CostPerUse(R->getValueAsListOfInts("CostPerUse")),
159 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
160 HasDisjunctSubRegs(false), SubRegsComplete(false),
161 SuperRegsComplete(false), TopoSig(~0u) {
162 Artificial = R->getValueAsBit("isArtificial");
165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
166 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
167 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
169 if (SRIs.size() != SRs.size())
170 PrintFatalError(TheDef->getLoc(),
171 "SubRegs and SubRegIndices must have the same size");
173 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
174 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
175 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
178 // Also compute leading super-registers. Each register has a list of
179 // covered-by-subregs super-registers where it appears as the first explicit
180 // sub-register.
182 // This is used by computeSecondarySubRegs() to find candidates.
183 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
184 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
186 // Add ad hoc alias links. This is a symmetric relationship between two
187 // registers, so build a symmetric graph by adding links in both ends.
188 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
189 for (Record *Alias : Aliases) {
190 CodeGenRegister *Reg = RegBank.getReg(Alias);
191 ExplicitAliases.push_back(Reg);
192 Reg->ExplicitAliases.push_back(this);
196 StringRef CodeGenRegister::getName() const {
197 assert(TheDef && "no def");
198 return TheDef->getName();
201 namespace {
203 // Iterate over all register units in a set of registers.
204 class RegUnitIterator {
205 CodeGenRegister::Vec::const_iterator RegI, RegE;
206 CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
208 public:
209 RegUnitIterator(const CodeGenRegister::Vec &Regs):
210 RegI(Regs.begin()), RegE(Regs.end()) {
212 if (RegI != RegE) {
213 UnitI = (*RegI)->getRegUnits().begin();
214 UnitE = (*RegI)->getRegUnits().end();
215 advance();
219 bool isValid() const { return UnitI != UnitE; }
221 unsigned operator* () const { assert(isValid()); return *UnitI; }
223 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
225 /// Preincrement. Move to the next unit.
226 void operator++() {
227 assert(isValid() && "Cannot advance beyond the last operand");
228 ++UnitI;
229 advance();
232 protected:
233 void advance() {
234 while (UnitI == UnitE) {
235 if (++RegI == RegE)
236 break;
237 UnitI = (*RegI)->getRegUnits().begin();
238 UnitE = (*RegI)->getRegUnits().end();
243 } // end anonymous namespace
245 // Return true of this unit appears in RegUnits.
246 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
247 return RegUnits.test(Unit);
250 // Inherit register units from subregisters.
251 // Return true if the RegUnits changed.
252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
253 bool changed = false;
254 for (const auto &SubReg : SubRegs) {
255 CodeGenRegister *SR = SubReg.second;
256 // Merge the subregister's units into this register's RegUnits.
257 changed |= (RegUnits |= SR->RegUnits);
260 return changed;
263 const CodeGenRegister::SubRegMap &
264 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
265 // Only compute this map once.
266 if (SubRegsComplete)
267 return SubRegs;
268 SubRegsComplete = true;
270 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
272 // First insert the explicit subregs and make sure they are fully indexed.
273 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
274 CodeGenRegister *SR = ExplicitSubRegs[i];
275 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
276 if (!SR->Artificial)
277 Idx->Artificial = false;
278 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
279 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
280 " appears twice in Register " + getName());
281 // Map explicit sub-registers first, so the names take precedence.
282 // The inherited sub-registers are mapped below.
283 SubReg2Idx.insert(std::make_pair(SR, Idx));
286 // Keep track of inherited subregs and how they can be reached.
287 SmallPtrSet<CodeGenRegister*, 8> Orphans;
289 // Clone inherited subregs and place duplicate entries in Orphans.
290 // Here the order is important - earlier subregs take precedence.
291 for (CodeGenRegister *ESR : ExplicitSubRegs) {
292 const SubRegMap &Map = ESR->computeSubRegs(RegBank);
293 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
295 for (const auto &SR : Map) {
296 if (!SubRegs.insert(SR).second)
297 Orphans.insert(SR.second);
301 // Expand any composed subreg indices.
302 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
303 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
304 // expanded subreg indices recursively.
305 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
306 for (unsigned i = 0; i != Indices.size(); ++i) {
307 CodeGenSubRegIndex *Idx = Indices[i];
308 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
309 CodeGenRegister *SR = SubRegs[Idx];
310 const SubRegMap &Map = SR->computeSubRegs(RegBank);
312 // Look at the possible compositions of Idx.
313 // They may not all be supported by SR.
314 for (auto Comp : Comps) {
315 SubRegMap::const_iterator SRI = Map.find(Comp.first);
316 if (SRI == Map.end())
317 continue; // Idx + I->first doesn't exist in SR.
318 // Add I->second as a name for the subreg SRI->second, assuming it is
319 // orphaned, and the name isn't already used for something else.
320 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
321 continue;
322 // We found a new name for the orphaned sub-register.
323 SubRegs.insert(std::make_pair(Comp.second, SRI->second));
324 Indices.push_back(Comp.second);
328 // Now Orphans contains the inherited subregisters without a direct index.
329 // Create inferred indexes for all missing entries.
330 // Work backwards in the Indices vector in order to compose subregs bottom-up.
331 // Consider this subreg sequence:
333 // qsub_1 -> dsub_0 -> ssub_0
335 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
336 // can be reached in two different ways:
338 // qsub_1 -> ssub_0
339 // dsub_2 -> ssub_0
341 // We pick the latter composition because another register may have [dsub_0,
342 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
343 // dsub_2 -> ssub_0 composition can be shared.
344 while (!Indices.empty() && !Orphans.empty()) {
345 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
346 CodeGenRegister *SR = SubRegs[Idx];
347 const SubRegMap &Map = SR->computeSubRegs(RegBank);
348 for (const auto &SubReg : Map)
349 if (Orphans.erase(SubReg.second))
350 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
353 // Compute the inverse SubReg -> Idx map.
354 for (const auto &SubReg : SubRegs) {
355 if (SubReg.second == this) {
356 ArrayRef<SMLoc> Loc;
357 if (TheDef)
358 Loc = TheDef->getLoc();
359 PrintFatalError(Loc, "Register " + getName() +
360 " has itself as a sub-register");
363 // Compute AllSuperRegsCovered.
364 if (!CoveredBySubRegs)
365 SubReg.first->AllSuperRegsCovered = false;
367 // Ensure that every sub-register has a unique name.
368 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
369 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
370 if (Ins->second == SubReg.first)
371 continue;
372 // Trouble: Two different names for SubReg.second.
373 ArrayRef<SMLoc> Loc;
374 if (TheDef)
375 Loc = TheDef->getLoc();
376 PrintFatalError(Loc, "Sub-register can't have two names: " +
377 SubReg.second->getName() + " available as " +
378 SubReg.first->getName() + " and " + Ins->second->getName());
381 // Derive possible names for sub-register concatenations from any explicit
382 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
383 // that getConcatSubRegIndex() won't invent any concatenated indices that the
384 // user already specified.
385 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
386 CodeGenRegister *SR = ExplicitSubRegs[i];
387 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
388 SR->Artificial)
389 continue;
391 // SR is composed of multiple sub-regs. Find their names in this register.
392 SmallVector<CodeGenSubRegIndex*, 8> Parts;
393 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
394 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
395 if (!I.Artificial)
396 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
399 // Offer this as an existing spelling for the concatenation of Parts.
400 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
401 Idx.setConcatenationOf(Parts);
404 // Initialize RegUnitList. Because getSubRegs is called recursively, this
405 // processes the register hierarchy in postorder.
407 // Inherit all sub-register units. It is good enough to look at the explicit
408 // sub-registers, the other registers won't contribute any more units.
409 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
410 CodeGenRegister *SR = ExplicitSubRegs[i];
411 RegUnits |= SR->RegUnits;
414 // Absent any ad hoc aliasing, we create one register unit per leaf register.
415 // These units correspond to the maximal cliques in the register overlap
416 // graph which is optimal.
418 // When there is ad hoc aliasing, we simply create one unit per edge in the
419 // undirected ad hoc aliasing graph. Technically, we could do better by
420 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
421 // are extremely rare anyway (I've never seen one), so we don't bother with
422 // the added complexity.
423 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
424 CodeGenRegister *AR = ExplicitAliases[i];
425 // Only visit each edge once.
426 if (AR->SubRegsComplete)
427 continue;
428 // Create a RegUnit representing this alias edge, and add it to both
429 // registers.
430 unsigned Unit = RegBank.newRegUnit(this, AR);
431 RegUnits.set(Unit);
432 AR->RegUnits.set(Unit);
435 // Finally, create units for leaf registers without ad hoc aliases. Note that
436 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
437 // necessary. This means the aliasing leaf registers can share a single unit.
438 if (RegUnits.empty())
439 RegUnits.set(RegBank.newRegUnit(this));
441 // We have now computed the native register units. More may be adopted later
442 // for balancing purposes.
443 NativeRegUnits = RegUnits;
445 return SubRegs;
448 // In a register that is covered by its sub-registers, try to find redundant
449 // sub-registers. For example:
451 // QQ0 = {Q0, Q1}
452 // Q0 = {D0, D1}
453 // Q1 = {D2, D3}
455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
456 // the register definition.
458 // The explicitly specified registers form a tree. This function discovers
459 // sub-register relationships that would force a DAG.
461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
462 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
464 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
465 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
466 SubRegQueue.push(P);
468 // Look at the leading super-registers of each sub-register. Those are the
469 // candidates for new sub-registers, assuming they are fully contained in
470 // this register.
471 while (!SubRegQueue.empty()) {
472 CodeGenSubRegIndex *SubRegIdx;
473 const CodeGenRegister *SubReg;
474 std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
475 SubRegQueue.pop();
477 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
478 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
479 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
480 // Already got this sub-register?
481 if (Cand == this || getSubRegIndex(Cand))
482 continue;
483 // Check if each component of Cand is already a sub-register.
484 assert(!Cand->ExplicitSubRegs.empty() &&
485 "Super-register has no sub-registers");
486 if (Cand->ExplicitSubRegs.size() == 1)
487 continue;
488 SmallVector<CodeGenSubRegIndex*, 8> Parts;
489 // We know that the first component is (SubRegIdx,SubReg). However we
490 // may still need to split it into smaller subregister parts.
491 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
492 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
493 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
494 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
495 if (SubRegIdx->ConcatenationOf.empty())
496 Parts.push_back(SubRegIdx);
497 else
498 append_range(Parts, SubRegIdx->ConcatenationOf);
499 } else {
500 // Sub-register doesn't exist.
501 Parts.clear();
502 break;
505 // There is nothing to do if some Cand sub-register is not part of this
506 // register.
507 if (Parts.empty())
508 continue;
510 // Each part of Cand is a sub-register of this. Make the full Cand also
511 // a sub-register with a concatenated sub-register index.
512 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
513 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
514 std::make_pair(Concat, Cand);
516 if (!SubRegs.insert(NewSubReg).second)
517 continue;
519 // We inserted a new subregister.
520 NewSubRegs.push_back(NewSubReg);
521 SubRegQueue.push(NewSubReg);
522 SubReg2Idx.insert(std::make_pair(Cand, Concat));
526 // Create sub-register index composition maps for the synthesized indices.
527 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
528 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
529 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
530 for (auto SubReg : NewSubReg->SubRegs) {
531 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
532 if (!SubIdx)
533 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
534 SubReg.second->getName() +
535 " in " + getName());
536 NewIdx->addComposite(SubReg.first, SubIdx);
541 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
542 // Only visit each register once.
543 if (SuperRegsComplete)
544 return;
545 SuperRegsComplete = true;
547 // Make sure all sub-registers have been visited first, so the super-reg
548 // lists will be topologically ordered.
549 for (auto SubReg : SubRegs)
550 SubReg.second->computeSuperRegs(RegBank);
552 // Now add this as a super-register on all sub-registers.
553 // Also compute the TopoSigId in post-order.
554 TopoSigId Id;
555 for (auto SubReg : SubRegs) {
556 // Topological signature computed from SubIdx, TopoId(SubReg).
557 // Loops and idempotent indices have TopoSig = ~0u.
558 Id.push_back(SubReg.first->EnumValue);
559 Id.push_back(SubReg.second->TopoSig);
561 // Don't add duplicate entries.
562 if (!SubReg.second->SuperRegs.empty() &&
563 SubReg.second->SuperRegs.back() == this)
564 continue;
565 SubReg.second->SuperRegs.push_back(this);
567 TopoSig = RegBank.getTopoSig(Id);
570 void
571 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
572 CodeGenRegBank &RegBank) const {
573 assert(SubRegsComplete && "Must precompute sub-registers");
574 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
575 CodeGenRegister *SR = ExplicitSubRegs[i];
576 if (OSet.insert(SR))
577 SR->addSubRegsPreOrder(OSet, RegBank);
579 // Add any secondary sub-registers that weren't part of the explicit tree.
580 for (auto SubReg : SubRegs)
581 OSet.insert(SubReg.second);
584 // Get the sum of this register's unit weights.
585 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
586 unsigned Weight = 0;
587 for (unsigned RegUnit : RegUnits) {
588 Weight += RegBank.getRegUnit(RegUnit).Weight;
590 return Weight;
593 //===----------------------------------------------------------------------===//
594 // RegisterTuples
595 //===----------------------------------------------------------------------===//
597 // A RegisterTuples def is used to generate pseudo-registers from lists of
598 // sub-registers. We provide a SetTheory expander class that returns the new
599 // registers.
600 namespace {
602 struct TupleExpander : SetTheory::Expander {
603 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
604 // the synthesized definitions for their lifetime.
605 std::vector<std::unique_ptr<Record>> &SynthDefs;
607 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
608 : SynthDefs(SynthDefs) {}
610 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
611 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
612 unsigned Dim = Indices.size();
613 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
614 if (Dim != SubRegs->size())
615 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
616 if (Dim < 2)
617 PrintFatalError(Def->getLoc(),
618 "Tuples must have at least 2 sub-registers");
620 // Evaluate the sub-register lists to be zipped.
621 unsigned Length = ~0u;
622 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
623 for (unsigned i = 0; i != Dim; ++i) {
624 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
625 Length = std::min(Length, unsigned(Lists[i].size()));
628 if (Length == 0)
629 return;
631 // Precompute some types.
632 Record *RegisterCl = Def->getRecords().getClass("Register");
633 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
634 std::vector<StringRef> RegNames =
635 Def->getValueAsListOfStrings("RegAsmNames");
637 // Zip them up.
638 for (unsigned n = 0; n != Length; ++n) {
639 std::string Name;
640 Record *Proto = Lists[0][n];
641 std::vector<Init*> Tuple;
642 for (unsigned i = 0; i != Dim; ++i) {
643 Record *Reg = Lists[i][n];
644 if (i) Name += '_';
645 Name += Reg->getName();
646 Tuple.push_back(DefInit::get(Reg));
649 // Take the cost list of the first register in the tuple.
650 ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
651 SmallVector<Init *, 2> CostPerUse;
652 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
654 StringInit *AsmName = StringInit::get("");
655 if (!RegNames.empty()) {
656 if (RegNames.size() <= n)
657 PrintFatalError(Def->getLoc(),
658 "Register tuple definition missing name for '" +
659 Name + "'.");
660 AsmName = StringInit::get(RegNames[n]);
663 // Create a new Record representing the synthesized register. This record
664 // is only for consumption by CodeGenRegister, it is not added to the
665 // RecordKeeper.
666 SynthDefs.emplace_back(
667 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
668 Record *NewReg = SynthDefs.back().get();
669 Elts.insert(NewReg);
671 // Copy Proto super-classes.
672 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
673 for (const auto &SuperPair : Supers)
674 NewReg->addSuperClass(SuperPair.first, SuperPair.second);
676 // Copy Proto fields.
677 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
678 RecordVal RV = Proto->getValues()[i];
680 // Skip existing fields, like NAME.
681 if (NewReg->getValue(RV.getNameInit()))
682 continue;
684 StringRef Field = RV.getName();
686 // Replace the sub-register list with Tuple.
687 if (Field == "SubRegs")
688 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
690 if (Field == "AsmName")
691 RV.setValue(AsmName);
693 // CostPerUse is aggregated from all Tuple members.
694 if (Field == "CostPerUse")
695 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
697 // Composite registers are always covered by sub-registers.
698 if (Field == "CoveredBySubRegs")
699 RV.setValue(BitInit::get(true));
701 // Copy fields from the RegisterTuples def.
702 if (Field == "SubRegIndices" ||
703 Field == "CompositeIndices") {
704 NewReg->addValue(*Def->getValue(Field));
705 continue;
708 // Some fields get their default uninitialized value.
709 if (Field == "DwarfNumbers" ||
710 Field == "DwarfAlias" ||
711 Field == "Aliases") {
712 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
713 NewReg->addValue(*DefRV);
714 continue;
717 // Everything else is copied from Proto.
718 NewReg->addValue(RV);
724 } // end anonymous namespace
726 //===----------------------------------------------------------------------===//
727 // CodeGenRegisterClass
728 //===----------------------------------------------------------------------===//
730 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
731 llvm::sort(M, deref<std::less<>>());
732 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
735 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
736 : TheDef(R), Name(std::string(R->getName())),
737 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) {
738 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
739 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
740 if (TypeList.empty())
741 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
742 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
743 Record *Type = TypeList[i];
744 if (!Type->isSubClassOf("ValueType"))
745 PrintFatalError(R->getLoc(),
746 "RegTypes list member '" + Type->getName() +
747 "' does not derive from the ValueType class!");
748 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
751 // Allocation order 0 is the full set. AltOrders provides others.
752 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
753 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
754 Orders.resize(1 + AltOrders->size());
756 // Default allocation order always contains all registers.
757 Artificial = true;
758 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
759 Orders[0].push_back((*Elements)[i]);
760 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
761 Members.push_back(Reg);
762 Artificial &= Reg->Artificial;
763 TopoSigs.set(Reg->getTopoSig());
765 sortAndUniqueRegisters(Members);
767 // Alternative allocation orders may be subsets.
768 SetTheory::RecSet Order;
769 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
770 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
771 Orders[1 + i].append(Order.begin(), Order.end());
772 // Verify that all altorder members are regclass members.
773 while (!Order.empty()) {
774 CodeGenRegister *Reg = RegBank.getReg(Order.back());
775 Order.pop_back();
776 if (!contains(Reg))
777 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
778 " is not a class member");
782 Namespace = R->getValueAsString("Namespace");
784 if (const RecordVal *RV = R->getValue("RegInfos"))
785 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
786 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
787 unsigned Size = R->getValueAsInt("Size");
788 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
789 "Impossible to determine register size");
790 if (!RSI.hasDefault()) {
791 RegSizeInfo RI;
792 RI.RegSize = RI.SpillSize = Size ? Size
793 : VTs[0].getSimple().getSizeInBits();
794 RI.SpillAlignment = R->getValueAsInt("Alignment");
795 RSI.insertRegSizeForMode(DefaultMode, RI);
798 CopyCost = R->getValueAsInt("CopyCost");
799 Allocatable = R->getValueAsBit("isAllocatable");
800 AltOrderSelect = R->getValueAsString("AltOrderSelect");
801 int AllocationPriority = R->getValueAsInt("AllocationPriority");
802 if (AllocationPriority < 0 || AllocationPriority > 63)
803 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
804 this->AllocationPriority = AllocationPriority;
807 // Create an inferred register class that was missing from the .td files.
808 // Most properties will be inherited from the closest super-class after the
809 // class structure has been computed.
810 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
811 StringRef Name, Key Props)
812 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
813 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
814 CopyCost(0), Allocatable(true), AllocationPriority(0) {
815 Artificial = true;
816 GeneratePressureSet = false;
817 for (const auto R : Members) {
818 TopoSigs.set(R->getTopoSig());
819 Artificial &= R->Artificial;
823 // Compute inherited propertied for a synthesized register class.
824 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
825 assert(!getDef() && "Only synthesized classes can inherit properties");
826 assert(!SuperClasses.empty() && "Synthesized class without super class");
828 // The last super-class is the smallest one.
829 CodeGenRegisterClass &Super = *SuperClasses.back();
831 // Most properties are copied directly.
832 // Exceptions are members, size, and alignment
833 Namespace = Super.Namespace;
834 VTs = Super.VTs;
835 CopyCost = Super.CopyCost;
836 // Check for allocatable superclasses.
837 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
838 return S->Allocatable;
840 AltOrderSelect = Super.AltOrderSelect;
841 AllocationPriority = Super.AllocationPriority;
842 GeneratePressureSet |= Super.GeneratePressureSet;
844 // Copy all allocation orders, filter out foreign registers from the larger
845 // super-class.
846 Orders.resize(Super.Orders.size());
847 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
848 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
849 if (contains(RegBank.getReg(Super.Orders[i][j])))
850 Orders[i].push_back(Super.Orders[i][j]);
853 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
854 return std::binary_search(Members.begin(), Members.end(), Reg,
855 deref<std::less<>>());
858 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
859 if (TheDef && !TheDef->isValueUnset("Weight"))
860 return TheDef->getValueAsInt("Weight");
862 if (Members.empty() || Artificial)
863 return 0;
865 return (*Members.begin())->getWeight(RegBank);
868 namespace llvm {
870 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
871 OS << "{ " << K.RSI;
872 for (const auto R : *K.Members)
873 OS << ", " << R->getName();
874 return OS << " }";
877 } // end namespace llvm
879 // This is a simple lexicographical order that can be used to search for sets.
880 // It is not the same as the topological order provided by TopoOrderRC.
881 bool CodeGenRegisterClass::Key::
882 operator<(const CodeGenRegisterClass::Key &B) const {
883 assert(Members && B.Members);
884 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
887 // Returns true if RC is a strict subclass.
888 // RC is a sub-class of this class if it is a valid replacement for any
889 // instruction operand where a register of this classis required. It must
890 // satisfy these conditions:
892 // 1. All RC registers are also in this.
893 // 2. The RC spill size must not be smaller than our spill size.
894 // 3. RC spill alignment must be compatible with ours.
896 static bool testSubClass(const CodeGenRegisterClass *A,
897 const CodeGenRegisterClass *B) {
898 return A->RSI.isSubClassOf(B->RSI) &&
899 std::includes(A->getMembers().begin(), A->getMembers().end(),
900 B->getMembers().begin(), B->getMembers().end(),
901 deref<std::less<>>());
904 /// Sorting predicate for register classes. This provides a topological
905 /// ordering that arranges all register classes before their sub-classes.
907 /// Register classes with the same registers, spill size, and alignment form a
908 /// clique. They will be ordered alphabetically.
910 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
911 const CodeGenRegisterClass &PB) {
912 auto *A = &PA;
913 auto *B = &PB;
914 if (A == B)
915 return false;
917 if (A->RSI < B->RSI)
918 return true;
919 if (A->RSI != B->RSI)
920 return false;
922 // Order by descending set size. Note that the classes' allocation order may
923 // not have been computed yet. The Members set is always vaild.
924 if (A->getMembers().size() > B->getMembers().size())
925 return true;
926 if (A->getMembers().size() < B->getMembers().size())
927 return false;
929 // Finally order by name as a tie breaker.
930 return StringRef(A->getName()) < B->getName();
933 std::string CodeGenRegisterClass::getQualifiedName() const {
934 if (Namespace.empty())
935 return getName();
936 else
937 return (Namespace + "::" + getName()).str();
940 // Compute sub-classes of all register classes.
941 // Assume the classes are ordered topologically.
942 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
943 auto &RegClasses = RegBank.getRegClasses();
945 // Visit backwards so sub-classes are seen first.
946 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
947 CodeGenRegisterClass &RC = *I;
948 RC.SubClasses.resize(RegClasses.size());
949 RC.SubClasses.set(RC.EnumValue);
950 if (RC.Artificial)
951 continue;
953 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
954 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
955 CodeGenRegisterClass &SubRC = *I2;
956 if (RC.SubClasses.test(SubRC.EnumValue))
957 continue;
958 if (!testSubClass(&RC, &SubRC))
959 continue;
960 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
961 // check them again.
962 RC.SubClasses |= SubRC.SubClasses;
965 // Sweep up missed clique members. They will be immediately preceding RC.
966 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
967 RC.SubClasses.set(I2->EnumValue);
970 // Compute the SuperClasses lists from the SubClasses vectors.
971 for (auto &RC : RegClasses) {
972 const BitVector &SC = RC.getSubClasses();
973 auto I = RegClasses.begin();
974 for (int s = 0, next_s = SC.find_first(); next_s != -1;
975 next_s = SC.find_next(s)) {
976 std::advance(I, next_s - s);
977 s = next_s;
978 if (&*I == &RC)
979 continue;
980 I->SuperClasses.push_back(&RC);
984 // With the class hierarchy in place, let synthesized register classes inherit
985 // properties from their closest super-class. The iteration order here can
986 // propagate properties down multiple levels.
987 for (auto &RC : RegClasses)
988 if (!RC.getDef())
989 RC.inheritProperties(RegBank);
992 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
993 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
994 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
995 auto SizeOrder = [this](const CodeGenRegisterClass *A,
996 const CodeGenRegisterClass *B) {
997 // If there are multiple, identical register classes, prefer the original
998 // register class.
999 if (A == B)
1000 return false;
1001 if (A->getMembers().size() == B->getMembers().size())
1002 return A == this;
1003 return A->getMembers().size() > B->getMembers().size();
1006 auto &RegClasses = RegBank.getRegClasses();
1008 // Find all the subclasses of this one that fully support the sub-register
1009 // index and order them by size. BiggestSuperRC should always be first.
1010 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1011 if (!BiggestSuperRegRC)
1012 return None;
1013 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1014 std::vector<CodeGenRegisterClass *> SuperRegRCs;
1015 for (auto &RC : RegClasses)
1016 if (SuperRegRCsBV[RC.EnumValue])
1017 SuperRegRCs.emplace_back(&RC);
1018 llvm::stable_sort(SuperRegRCs, SizeOrder);
1020 assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1021 "Biggest class wasn't first");
1023 // Find all the subreg classes and order them by size too.
1024 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1025 for (auto &RC: RegClasses) {
1026 BitVector SuperRegClassesBV(RegClasses.size());
1027 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1028 if (SuperRegClassesBV.any())
1029 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1031 llvm::sort(SuperRegClasses,
1032 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1033 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1034 return SizeOrder(A.first, B.first);
1037 // Find the biggest subclass and subreg class such that R:subidx is in the
1038 // subreg class for all R in subclass.
1040 // For example:
1041 // All registers in X86's GR64 have a sub_32bit subregister but no class
1042 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1043 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1044 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1045 // having excluded RIP, we are able to find a SubRegRC (GR32).
1046 CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1047 CodeGenRegisterClass *SubRegRC = nullptr;
1048 for (auto *SuperRegRC : SuperRegRCs) {
1049 for (const auto &SuperRegClassPair : SuperRegClasses) {
1050 const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1051 if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1052 SubRegRC = SuperRegClassPair.first;
1053 ChosenSuperRegClass = SuperRegRC;
1055 // If SubRegRC is bigger than SuperRegRC then there are members of
1056 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1057 // find a better fit and fall back on this one if there isn't one.
1059 // This is intended to prevent X86 from making odd choices such as
1060 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1061 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1062 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1063 // mapping.
1064 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1065 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1069 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1070 // registers, then we're done.
1071 if (ChosenSuperRegClass)
1072 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1075 return None;
1078 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1079 BitVector &Out) const {
1080 auto FindI = SuperRegClasses.find(SubIdx);
1081 if (FindI == SuperRegClasses.end())
1082 return;
1083 for (CodeGenRegisterClass *RC : FindI->second)
1084 Out.set(RC->EnumValue);
1087 // Populate a unique sorted list of units from a register set.
1088 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1089 std::vector<unsigned> &RegUnits) const {
1090 std::vector<unsigned> TmpUnits;
1091 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1092 const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1093 if (!RU.Artificial)
1094 TmpUnits.push_back(*UnitI);
1096 llvm::sort(TmpUnits);
1097 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1098 std::back_inserter(RegUnits));
1101 //===----------------------------------------------------------------------===//
1102 // CodeGenRegBank
1103 //===----------------------------------------------------------------------===//
1105 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1106 const CodeGenHwModes &Modes) : CGH(Modes) {
1107 // Configure register Sets to understand register classes and tuples.
1108 Sets.addFieldExpander("RegisterClass", "MemberList");
1109 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1110 Sets.addExpander("RegisterTuples",
1111 std::make_unique<TupleExpander>(SynthDefs));
1113 // Read in the user-defined (named) sub-register indices.
1114 // More indices will be synthesized later.
1115 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1116 llvm::sort(SRIs, LessRecord());
1117 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1118 getSubRegIdx(SRIs[i]);
1119 // Build composite maps from ComposedOf fields.
1120 for (auto &Idx : SubRegIndices)
1121 Idx.updateComponents(*this);
1123 // Read in the register definitions.
1124 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1125 llvm::sort(Regs, LessRecordRegister());
1126 // Assign the enumeration values.
1127 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1128 getReg(Regs[i]);
1130 // Expand tuples and number the new registers.
1131 std::vector<Record*> Tups =
1132 Records.getAllDerivedDefinitions("RegisterTuples");
1134 for (Record *R : Tups) {
1135 std::vector<Record *> TupRegs = *Sets.expand(R);
1136 llvm::sort(TupRegs, LessRecordRegister());
1137 for (Record *RC : TupRegs)
1138 getReg(RC);
1141 // Now all the registers are known. Build the object graph of explicit
1142 // register-register references.
1143 for (auto &Reg : Registers)
1144 Reg.buildObjectGraph(*this);
1146 // Compute register name map.
1147 for (auto &Reg : Registers)
1148 // FIXME: This could just be RegistersByName[name] = register, except that
1149 // causes some failures in MIPS - perhaps they have duplicate register name
1150 // entries? (or maybe there's a reason for it - I don't know much about this
1151 // code, just drive-by refactoring)
1152 RegistersByName.insert(
1153 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1155 // Precompute all sub-register maps.
1156 // This will create Composite entries for all inferred sub-register indices.
1157 for (auto &Reg : Registers)
1158 Reg.computeSubRegs(*this);
1160 // Compute transitive closure of subregister index ConcatenationOf vectors
1161 // and initialize ConcatIdx map.
1162 for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1163 SRI.computeConcatTransitiveClosure();
1164 if (!SRI.ConcatenationOf.empty())
1165 ConcatIdx.insert(std::make_pair(
1166 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1167 SRI.ConcatenationOf.end()), &SRI));
1170 // Infer even more sub-registers by combining leading super-registers.
1171 for (auto &Reg : Registers)
1172 if (Reg.CoveredBySubRegs)
1173 Reg.computeSecondarySubRegs(*this);
1175 // After the sub-register graph is complete, compute the topologically
1176 // ordered SuperRegs list.
1177 for (auto &Reg : Registers)
1178 Reg.computeSuperRegs(*this);
1180 // For each pair of Reg:SR, if both are non-artificial, mark the
1181 // corresponding sub-register index as non-artificial.
1182 for (auto &Reg : Registers) {
1183 if (Reg.Artificial)
1184 continue;
1185 for (auto P : Reg.getSubRegs()) {
1186 const CodeGenRegister *SR = P.second;
1187 if (!SR->Artificial)
1188 P.first->Artificial = false;
1192 // Native register units are associated with a leaf register. They've all been
1193 // discovered now.
1194 NumNativeRegUnits = RegUnits.size();
1196 // Read in register class definitions.
1197 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1198 if (RCs.empty())
1199 PrintFatalError("No 'RegisterClass' subclasses defined!");
1201 // Allocate user-defined register classes.
1202 for (auto *R : RCs) {
1203 RegClasses.emplace_back(*this, R);
1204 CodeGenRegisterClass &RC = RegClasses.back();
1205 if (!RC.Artificial)
1206 addToMaps(&RC);
1209 // Infer missing classes to create a full algebra.
1210 computeInferredRegisterClasses();
1212 // Order register classes topologically and assign enum values.
1213 RegClasses.sort(TopoOrderRC);
1214 unsigned i = 0;
1215 for (auto &RC : RegClasses)
1216 RC.EnumValue = i++;
1217 CodeGenRegisterClass::computeSubClasses(*this);
1220 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1221 CodeGenSubRegIndex*
1222 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1223 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1224 return &SubRegIndices.back();
1227 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1228 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1229 if (Idx)
1230 return Idx;
1231 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1232 Idx = &SubRegIndices.back();
1233 return Idx;
1236 const CodeGenSubRegIndex *
1237 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1238 return Def2SubRegIdx.lookup(Def);
1241 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1242 CodeGenRegister *&Reg = Def2Reg[Def];
1243 if (Reg)
1244 return Reg;
1245 Registers.emplace_back(Def, Registers.size() + 1);
1246 Reg = &Registers.back();
1247 return Reg;
1250 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1251 if (Record *Def = RC->getDef())
1252 Def2RC.insert(std::make_pair(Def, RC));
1254 // Duplicate classes are rejected by insert().
1255 // That's OK, we only care about the properties handled by CGRC::Key.
1256 CodeGenRegisterClass::Key K(*RC);
1257 Key2RC.insert(std::make_pair(K, RC));
1260 // Create a synthetic sub-class if it is missing.
1261 CodeGenRegisterClass*
1262 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1263 const CodeGenRegister::Vec *Members,
1264 StringRef Name) {
1265 // Synthetic sub-class has the same size and alignment as RC.
1266 CodeGenRegisterClass::Key K(Members, RC->RSI);
1267 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1268 if (FoundI != Key2RC.end())
1269 return FoundI->second;
1271 // Sub-class doesn't exist, create a new one.
1272 RegClasses.emplace_back(*this, Name, K);
1273 addToMaps(&RegClasses.back());
1274 return &RegClasses.back();
1277 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1278 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1279 return RC;
1281 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1284 CodeGenSubRegIndex*
1285 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1286 CodeGenSubRegIndex *B) {
1287 // Look for an existing entry.
1288 CodeGenSubRegIndex *Comp = A->compose(B);
1289 if (Comp)
1290 return Comp;
1292 // None exists, synthesize one.
1293 std::string Name = A->getName() + "_then_" + B->getName();
1294 Comp = createSubRegIndex(Name, A->getNamespace());
1295 A->addComposite(B, Comp);
1296 return Comp;
1299 CodeGenSubRegIndex *CodeGenRegBank::
1300 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1301 assert(Parts.size() > 1 && "Need two parts to concatenate");
1302 #ifndef NDEBUG
1303 for (CodeGenSubRegIndex *Idx : Parts) {
1304 assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1306 #endif
1308 // Look for an existing entry.
1309 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1310 if (Idx)
1311 return Idx;
1313 // None exists, synthesize one.
1314 std::string Name = Parts.front()->getName();
1315 // Determine whether all parts are contiguous.
1316 bool isContinuous = true;
1317 unsigned Size = Parts.front()->Size;
1318 unsigned LastOffset = Parts.front()->Offset;
1319 unsigned LastSize = Parts.front()->Size;
1320 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1321 Name += '_';
1322 Name += Parts[i]->getName();
1323 Size += Parts[i]->Size;
1324 if (Parts[i]->Offset != (LastOffset + LastSize))
1325 isContinuous = false;
1326 LastOffset = Parts[i]->Offset;
1327 LastSize = Parts[i]->Size;
1329 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1330 Idx->Size = Size;
1331 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1332 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1333 return Idx;
1336 void CodeGenRegBank::computeComposites() {
1337 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1339 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1340 // register to (sub)register associated with the action of the left-hand
1341 // side subregister.
1342 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1343 for (const CodeGenRegister &R : Registers) {
1344 const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1345 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1346 SubRegAction[P.first].insert({&R, P.second});
1349 // Calculate the composition of two subregisters as compositions of their
1350 // associated actions.
1351 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1352 const CodeGenSubRegIndex *Sub2) {
1353 RegMap C;
1354 const RegMap &Img1 = SubRegAction.at(Sub1);
1355 const RegMap &Img2 = SubRegAction.at(Sub2);
1356 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1357 auto F = Img2.find(P.second);
1358 if (F != Img2.end())
1359 C.insert({P.first, F->second});
1361 return C;
1364 // Check if the two maps agree on the intersection of their domains.
1365 auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1366 // Technically speaking, an empty map agrees with any other map, but
1367 // this could flag false positives. We're interested in non-vacuous
1368 // agreements.
1369 if (Map1.empty() || Map2.empty())
1370 return false;
1371 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1372 auto F = Map2.find(P.first);
1373 if (F == Map2.end() || P.second != F->second)
1374 return false;
1376 return true;
1379 using CompositePair = std::pair<const CodeGenSubRegIndex*,
1380 const CodeGenSubRegIndex*>;
1381 SmallSet<CompositePair,4> UserDefined;
1382 for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1383 for (auto P : Idx.getComposites())
1384 UserDefined.insert(std::make_pair(&Idx, P.first));
1386 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1387 // and many registers will share TopoSigs on regular architectures.
1388 BitVector TopoSigs(getNumTopoSigs());
1390 for (const auto &Reg1 : Registers) {
1391 // Skip identical subreg structures already processed.
1392 if (TopoSigs.test(Reg1.getTopoSig()))
1393 continue;
1394 TopoSigs.set(Reg1.getTopoSig());
1396 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1397 for (auto I1 : SRM1) {
1398 CodeGenSubRegIndex *Idx1 = I1.first;
1399 CodeGenRegister *Reg2 = I1.second;
1400 // Ignore identity compositions.
1401 if (&Reg1 == Reg2)
1402 continue;
1403 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1404 // Try composing Idx1 with another SubRegIndex.
1405 for (auto I2 : SRM2) {
1406 CodeGenSubRegIndex *Idx2 = I2.first;
1407 CodeGenRegister *Reg3 = I2.second;
1408 // Ignore identity compositions.
1409 if (Reg2 == Reg3)
1410 continue;
1411 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1412 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1413 assert(Idx3 && "Sub-register doesn't have an index");
1415 // Conflicting composition? Emit a warning but allow it.
1416 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1417 // If the composition was not user-defined, always emit a warning.
1418 if (!UserDefined.count({Idx1, Idx2}) ||
1419 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1420 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1421 " and " + Idx2->getQualifiedName() +
1422 " compose ambiguously as " + Prev->getQualifiedName() +
1423 " or " + Idx3->getQualifiedName());
1430 // Compute lane masks. This is similar to register units, but at the
1431 // sub-register index level. Each bit in the lane mask is like a register unit
1432 // class, and two lane masks will have a bit in common if two sub-register
1433 // indices overlap in some register.
1435 // Conservatively share a lane mask bit if two sub-register indices overlap in
1436 // some registers, but not in others. That shouldn't happen a lot.
1437 void CodeGenRegBank::computeSubRegLaneMasks() {
1438 // First assign individual bits to all the leaf indices.
1439 unsigned Bit = 0;
1440 // Determine mask of lanes that cover their registers.
1441 CoveringLanes = LaneBitmask::getAll();
1442 for (auto &Idx : SubRegIndices) {
1443 if (Idx.getComposites().empty()) {
1444 if (Bit > LaneBitmask::BitWidth) {
1445 PrintFatalError(
1446 Twine("Ran out of lanemask bits to represent subregister ")
1447 + Idx.getName());
1449 Idx.LaneMask = LaneBitmask::getLane(Bit);
1450 ++Bit;
1451 } else {
1452 Idx.LaneMask = LaneBitmask::getNone();
1456 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1457 // here is that for each possible target subregister we look at the leafs
1458 // in the subregister graph that compose for this target and create
1459 // transformation sequences for the lanemasks. Each step in the sequence
1460 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1461 // are usually the same for many subregisters we can easily combine the steps
1462 // by combining the masks.
1463 for (const auto &Idx : SubRegIndices) {
1464 const auto &Composites = Idx.getComposites();
1465 auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1467 if (Composites.empty()) {
1468 // Moving from a class with no subregisters we just had a single lane:
1469 // The subregister must be a leaf subregister and only occupies 1 bit.
1470 // Move the bit from the class without subregisters into that position.
1471 unsigned DstBit = Idx.LaneMask.getHighestLane();
1472 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1473 "Must be a leaf subregister");
1474 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1475 LaneTransforms.push_back(MaskRol);
1476 } else {
1477 // Go through all leaf subregisters and find the ones that compose with
1478 // Idx. These make out all possible valid bits in the lane mask we want to
1479 // transform. Looking only at the leafs ensure that only a single bit in
1480 // the mask is set.
1481 unsigned NextBit = 0;
1482 for (auto &Idx2 : SubRegIndices) {
1483 // Skip non-leaf subregisters.
1484 if (!Idx2.getComposites().empty())
1485 continue;
1486 // Replicate the behaviour from the lane mask generation loop above.
1487 unsigned SrcBit = NextBit;
1488 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1489 if (NextBit < LaneBitmask::BitWidth-1)
1490 ++NextBit;
1491 assert(Idx2.LaneMask == SrcMask);
1493 // Get the composed subregister if there is any.
1494 auto C = Composites.find(&Idx2);
1495 if (C == Composites.end())
1496 continue;
1497 const CodeGenSubRegIndex *Composite = C->second;
1498 // The Composed subreg should be a leaf subreg too
1499 assert(Composite->getComposites().empty());
1501 // Create Mask+Rotate operation and merge with existing ops if possible.
1502 unsigned DstBit = Composite->LaneMask.getHighestLane();
1503 int Shift = DstBit - SrcBit;
1504 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1505 : LaneBitmask::BitWidth + Shift;
1506 for (auto &I : LaneTransforms) {
1507 if (I.RotateLeft == RotateLeft) {
1508 I.Mask |= SrcMask;
1509 SrcMask = LaneBitmask::getNone();
1512 if (SrcMask.any()) {
1513 MaskRolPair MaskRol = { SrcMask, RotateLeft };
1514 LaneTransforms.push_back(MaskRol);
1519 // Optimize if the transformation consists of one step only: Set mask to
1520 // 0xffffffff (including some irrelevant invalid bits) so that it should
1521 // merge with more entries later while compressing the table.
1522 if (LaneTransforms.size() == 1)
1523 LaneTransforms[0].Mask = LaneBitmask::getAll();
1525 // Further compression optimization: For invalid compositions resulting
1526 // in a sequence with 0 entries we can just pick any other. Choose
1527 // Mask 0xffffffff with Rotation 0.
1528 if (LaneTransforms.size() == 0) {
1529 MaskRolPair P = { LaneBitmask::getAll(), 0 };
1530 LaneTransforms.push_back(P);
1534 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1535 // by the sub-register graph? This doesn't occur in any known targets.
1537 // Inherit lanes from composites.
1538 for (const auto &Idx : SubRegIndices) {
1539 LaneBitmask Mask = Idx.computeLaneMask();
1540 // If some super-registers without CoveredBySubRegs use this index, we can
1541 // no longer assume that the lanes are covering their registers.
1542 if (!Idx.AllSuperRegsCovered)
1543 CoveringLanes &= ~Mask;
1546 // Compute lane mask combinations for register classes.
1547 for (auto &RegClass : RegClasses) {
1548 LaneBitmask LaneMask;
1549 for (const auto &SubRegIndex : SubRegIndices) {
1550 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1551 continue;
1552 LaneMask |= SubRegIndex.LaneMask;
1555 // For classes without any subregisters set LaneMask to 1 instead of 0.
1556 // This makes it easier for client code to handle classes uniformly.
1557 if (LaneMask.none())
1558 LaneMask = LaneBitmask::getLane(0);
1560 RegClass.LaneMask = LaneMask;
1564 namespace {
1566 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1567 // the transitive closure of the union of overlapping register
1568 // classes. Together, the UberRegSets form a partition of the registers. If we
1569 // consider overlapping register classes to be connected, then each UberRegSet
1570 // is a set of connected components.
1572 // An UberRegSet will likely be a horizontal slice of register names of
1573 // the same width. Nontrivial subregisters should then be in a separate
1574 // UberRegSet. But this property isn't required for valid computation of
1575 // register unit weights.
1577 // A Weight field caches the max per-register unit weight in each UberRegSet.
1579 // A set of SingularDeterminants flags single units of some register in this set
1580 // for which the unit weight equals the set weight. These units should not have
1581 // their weight increased.
1582 struct UberRegSet {
1583 CodeGenRegister::Vec Regs;
1584 unsigned Weight = 0;
1585 CodeGenRegister::RegUnitList SingularDeterminants;
1587 UberRegSet() = default;
1590 } // end anonymous namespace
1592 // Partition registers into UberRegSets, where each set is the transitive
1593 // closure of the union of overlapping register classes.
1595 // UberRegSets[0] is a special non-allocatable set.
1596 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1597 std::vector<UberRegSet*> &RegSets,
1598 CodeGenRegBank &RegBank) {
1599 const auto &Registers = RegBank.getRegisters();
1601 // The Register EnumValue is one greater than its index into Registers.
1602 assert(Registers.size() == Registers.back().EnumValue &&
1603 "register enum value mismatch");
1605 // For simplicitly make the SetID the same as EnumValue.
1606 IntEqClasses UberSetIDs(Registers.size()+1);
1607 std::set<unsigned> AllocatableRegs;
1608 for (auto &RegClass : RegBank.getRegClasses()) {
1609 if (!RegClass.Allocatable)
1610 continue;
1612 const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1613 if (Regs.empty())
1614 continue;
1616 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1617 assert(USetID && "register number 0 is invalid");
1619 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1620 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1621 AllocatableRegs.insert((*I)->EnumValue);
1622 UberSetIDs.join(USetID, (*I)->EnumValue);
1625 // Combine non-allocatable regs.
1626 for (const auto &Reg : Registers) {
1627 unsigned RegNum = Reg.EnumValue;
1628 if (AllocatableRegs.count(RegNum))
1629 continue;
1631 UberSetIDs.join(0, RegNum);
1633 UberSetIDs.compress();
1635 // Make the first UberSet a special unallocatable set.
1636 unsigned ZeroID = UberSetIDs[0];
1638 // Insert Registers into the UberSets formed by union-find.
1639 // Do not resize after this.
1640 UberSets.resize(UberSetIDs.getNumClasses());
1641 unsigned i = 0;
1642 for (const CodeGenRegister &Reg : Registers) {
1643 unsigned USetID = UberSetIDs[Reg.EnumValue];
1644 if (!USetID)
1645 USetID = ZeroID;
1646 else if (USetID == ZeroID)
1647 USetID = 0;
1649 UberRegSet *USet = &UberSets[USetID];
1650 USet->Regs.push_back(&Reg);
1651 sortAndUniqueRegisters(USet->Regs);
1652 RegSets[i++] = USet;
1656 // Recompute each UberSet weight after changing unit weights.
1657 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1658 CodeGenRegBank &RegBank) {
1659 // Skip the first unallocatable set.
1660 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1661 E = UberSets.end(); I != E; ++I) {
1663 // Initialize all unit weights in this set, and remember the max units/reg.
1664 const CodeGenRegister *Reg = nullptr;
1665 unsigned MaxWeight = 0, Weight = 0;
1666 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1667 if (Reg != UnitI.getReg()) {
1668 if (Weight > MaxWeight)
1669 MaxWeight = Weight;
1670 Reg = UnitI.getReg();
1671 Weight = 0;
1673 if (!RegBank.getRegUnit(*UnitI).Artificial) {
1674 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1675 if (!UWeight) {
1676 UWeight = 1;
1677 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1679 Weight += UWeight;
1682 if (Weight > MaxWeight)
1683 MaxWeight = Weight;
1684 if (I->Weight != MaxWeight) {
1685 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1686 << MaxWeight;
1687 for (auto &Unit
1688 : I->Regs) dbgs()
1689 << " " << Unit->getName();
1690 dbgs() << "\n");
1691 // Update the set weight.
1692 I->Weight = MaxWeight;
1695 // Find singular determinants.
1696 for (const auto R : I->Regs) {
1697 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1698 I->SingularDeterminants |= R->getRegUnits();
1704 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1705 // a register and its subregisters so that they have the same weight as their
1706 // UberSet. Self-recursion processes the subregister tree in postorder so
1707 // subregisters are normalized first.
1709 // Side effects:
1710 // - creates new adopted register units
1711 // - causes superregisters to inherit adopted units
1712 // - increases the weight of "singular" units
1713 // - induces recomputation of UberWeights.
1714 static bool normalizeWeight(CodeGenRegister *Reg,
1715 std::vector<UberRegSet> &UberSets,
1716 std::vector<UberRegSet*> &RegSets,
1717 BitVector &NormalRegs,
1718 CodeGenRegister::RegUnitList &NormalUnits,
1719 CodeGenRegBank &RegBank) {
1720 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1721 if (NormalRegs.test(Reg->EnumValue))
1722 return false;
1723 NormalRegs.set(Reg->EnumValue);
1725 bool Changed = false;
1726 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1727 for (auto SRI : SRM) {
1728 if (SRI.second == Reg)
1729 continue; // self-cycles happen
1731 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1732 NormalUnits, RegBank);
1734 // Postorder register normalization.
1736 // Inherit register units newly adopted by subregisters.
1737 if (Reg->inheritRegUnits(RegBank))
1738 computeUberWeights(UberSets, RegBank);
1740 // Check if this register is too skinny for its UberRegSet.
1741 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1743 unsigned RegWeight = Reg->getWeight(RegBank);
1744 if (UberSet->Weight > RegWeight) {
1745 // A register unit's weight can be adjusted only if it is the singular unit
1746 // for this register, has not been used to normalize a subregister's set,
1747 // and has not already been used to singularly determine this UberRegSet.
1748 unsigned AdjustUnit = *Reg->getRegUnits().begin();
1749 if (Reg->getRegUnits().count() != 1
1750 || hasRegUnit(NormalUnits, AdjustUnit)
1751 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1752 // We don't have an adjustable unit, so adopt a new one.
1753 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1754 Reg->adoptRegUnit(AdjustUnit);
1755 // Adopting a unit does not immediately require recomputing set weights.
1757 else {
1758 // Adjust the existing single unit.
1759 if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1760 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1761 // The unit may be shared among sets and registers within this set.
1762 computeUberWeights(UberSets, RegBank);
1764 Changed = true;
1767 // Mark these units normalized so superregisters can't change their weights.
1768 NormalUnits |= Reg->getRegUnits();
1770 return Changed;
1773 // Compute a weight for each register unit created during getSubRegs.
1775 // The goal is that two registers in the same class will have the same weight,
1776 // where each register's weight is defined as sum of its units' weights.
1777 void CodeGenRegBank::computeRegUnitWeights() {
1778 std::vector<UberRegSet> UberSets;
1779 std::vector<UberRegSet*> RegSets(Registers.size());
1780 computeUberSets(UberSets, RegSets, *this);
1781 // UberSets and RegSets are now immutable.
1783 computeUberWeights(UberSets, *this);
1785 // Iterate over each Register, normalizing the unit weights until reaching
1786 // a fix point.
1787 unsigned NumIters = 0;
1788 for (bool Changed = true; Changed; ++NumIters) {
1789 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1790 Changed = false;
1791 for (auto &Reg : Registers) {
1792 CodeGenRegister::RegUnitList NormalUnits;
1793 BitVector NormalRegs;
1794 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1795 NormalUnits, *this);
1800 // Find a set in UniqueSets with the same elements as Set.
1801 // Return an iterator into UniqueSets.
1802 static std::vector<RegUnitSet>::const_iterator
1803 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1804 const RegUnitSet &Set) {
1805 std::vector<RegUnitSet>::const_iterator
1806 I = UniqueSets.begin(), E = UniqueSets.end();
1807 for(;I != E; ++I) {
1808 if (I->Units == Set.Units)
1809 break;
1811 return I;
1814 // Return true if the RUSubSet is a subset of RUSuperSet.
1815 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1816 const std::vector<unsigned> &RUSuperSet) {
1817 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1818 RUSubSet.begin(), RUSubSet.end());
1821 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1822 /// but with one or two registers removed. We occasionally have registers like
1823 /// APSR and PC thrown in with the general registers. We also see many
1824 /// special-purpose register subsets, such as tail-call and Thumb
1825 /// encodings. Generating all possible overlapping sets is combinatorial and
1826 /// overkill for modeling pressure. Ideally we could fix this statically in
1827 /// tablegen by (1) having the target define register classes that only include
1828 /// the allocatable registers and marking other classes as non-allocatable and
1829 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1830 /// the purpose of pressure. However, we make an attempt to handle targets that
1831 /// are not nicely defined by merging nearly identical register unit sets
1832 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1833 /// set limit by filtering the reserved registers.
1835 /// Merge sets only if the units have the same weight. For example, on ARM,
1836 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1837 /// should not expand the S set to include D regs.
1838 void CodeGenRegBank::pruneUnitSets() {
1839 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1841 // Form an equivalence class of UnitSets with no significant difference.
1842 std::vector<unsigned> SuperSetIDs;
1843 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1844 SubIdx != EndIdx; ++SubIdx) {
1845 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1846 unsigned SuperIdx = 0;
1847 for (; SuperIdx != EndIdx; ++SuperIdx) {
1848 if (SuperIdx == SubIdx)
1849 continue;
1851 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1852 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1853 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1854 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1855 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1856 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1857 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1858 << "\n");
1859 // We can pick any of the set names for the merged set. Go for the
1860 // shortest one to avoid picking the name of one of the classes that are
1861 // artificially created by tablegen. So "FPR128_lo" instead of
1862 // "QQQQ_with_qsub3_in_FPR128_lo".
1863 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1864 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1865 break;
1868 if (SuperIdx == EndIdx)
1869 SuperSetIDs.push_back(SubIdx);
1871 // Populate PrunedUnitSets with each equivalence class's superset.
1872 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1873 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1874 unsigned SuperIdx = SuperSetIDs[i];
1875 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1876 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1878 RegUnitSets.swap(PrunedUnitSets);
1881 // Create a RegUnitSet for each RegClass that contains all units in the class
1882 // including adopted units that are necessary to model register pressure. Then
1883 // iteratively compute RegUnitSets such that the union of any two overlapping
1884 // RegUnitSets is repreresented.
1886 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1887 // RegUnitSet that is a superset of that RegUnitClass.
1888 void CodeGenRegBank::computeRegUnitSets() {
1889 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1891 // Compute a unique RegUnitSet for each RegClass.
1892 auto &RegClasses = getRegClasses();
1893 for (auto &RC : RegClasses) {
1894 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1895 continue;
1897 // Speculatively grow the RegUnitSets to hold the new set.
1898 RegUnitSets.resize(RegUnitSets.size() + 1);
1899 RegUnitSets.back().Name = RC.getName();
1901 // Compute a sorted list of units in this class.
1902 RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1904 // Find an existing RegUnitSet.
1905 std::vector<RegUnitSet>::const_iterator SetI =
1906 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1907 if (SetI != std::prev(RegUnitSets.end()))
1908 RegUnitSets.pop_back();
1911 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1912 USEnd = RegUnitSets.size();
1913 USIdx < USEnd; ++USIdx) {
1914 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1915 for (auto &U : RegUnitSets[USIdx].Units)
1916 printRegUnitName(U);
1917 dbgs() << "\n";
1920 // Iteratively prune unit sets.
1921 pruneUnitSets();
1923 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1924 USEnd = RegUnitSets.size();
1925 USIdx < USEnd; ++USIdx) {
1926 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1927 for (auto &U : RegUnitSets[USIdx].Units)
1928 printRegUnitName(U);
1929 dbgs() << "\n";
1930 } dbgs() << "\nUnion sets:\n");
1932 // Iterate over all unit sets, including new ones added by this loop.
1933 unsigned NumRegUnitSubSets = RegUnitSets.size();
1934 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1935 // In theory, this is combinatorial. In practice, it needs to be bounded
1936 // by a small number of sets for regpressure to be efficient.
1937 // If the assert is hit, we need to implement pruning.
1938 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1940 // Compare new sets with all original classes.
1941 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1942 SearchIdx != EndIdx; ++SearchIdx) {
1943 std::set<unsigned> Intersection;
1944 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1945 RegUnitSets[Idx].Units.end(),
1946 RegUnitSets[SearchIdx].Units.begin(),
1947 RegUnitSets[SearchIdx].Units.end(),
1948 std::inserter(Intersection, Intersection.begin()));
1949 if (Intersection.empty())
1950 continue;
1952 // Speculatively grow the RegUnitSets to hold the new set.
1953 RegUnitSets.resize(RegUnitSets.size() + 1);
1954 RegUnitSets.back().Name =
1955 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
1957 std::set_union(RegUnitSets[Idx].Units.begin(),
1958 RegUnitSets[Idx].Units.end(),
1959 RegUnitSets[SearchIdx].Units.begin(),
1960 RegUnitSets[SearchIdx].Units.end(),
1961 std::inserter(RegUnitSets.back().Units,
1962 RegUnitSets.back().Units.begin()));
1964 // Find an existing RegUnitSet, or add the union to the unique sets.
1965 std::vector<RegUnitSet>::const_iterator SetI =
1966 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1967 if (SetI != std::prev(RegUnitSets.end()))
1968 RegUnitSets.pop_back();
1969 else {
1970 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1971 << RegUnitSets.back().Name << ":";
1972 for (auto &U
1973 : RegUnitSets.back().Units) printRegUnitName(U);
1974 dbgs() << "\n";);
1979 // Iteratively prune unit sets after inferring supersets.
1980 pruneUnitSets();
1982 LLVM_DEBUG(
1983 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1984 USIdx < USEnd; ++USIdx) {
1985 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1986 for (auto &U : RegUnitSets[USIdx].Units)
1987 printRegUnitName(U);
1988 dbgs() << "\n";
1991 // For each register class, list the UnitSets that are supersets.
1992 RegClassUnitSets.resize(RegClasses.size());
1993 int RCIdx = -1;
1994 for (auto &RC : RegClasses) {
1995 ++RCIdx;
1996 if (!RC.Allocatable)
1997 continue;
1999 // Recompute the sorted list of units in this class.
2000 std::vector<unsigned> RCRegUnits;
2001 RC.buildRegUnitSet(*this, RCRegUnits);
2003 // Don't increase pressure for unallocatable regclasses.
2004 if (RCRegUnits.empty())
2005 continue;
2007 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2008 for (auto U
2009 : RCRegUnits) printRegUnitName(U);
2010 dbgs() << "\n UnitSetIDs:");
2012 // Find all supersets.
2013 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2014 USIdx != USEnd; ++USIdx) {
2015 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2016 LLVM_DEBUG(dbgs() << " " << USIdx);
2017 RegClassUnitSets[RCIdx].push_back(USIdx);
2020 LLVM_DEBUG(dbgs() << "\n");
2021 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
2024 // For each register unit, ensure that we have the list of UnitSets that
2025 // contain the unit. Normally, this matches an existing list of UnitSets for a
2026 // register class. If not, we create a new entry in RegClassUnitSets as a
2027 // "fake" register class.
2028 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2029 UnitIdx < UnitEnd; ++UnitIdx) {
2030 std::vector<unsigned> RUSets;
2031 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2032 RegUnitSet &RUSet = RegUnitSets[i];
2033 if (!is_contained(RUSet.Units, UnitIdx))
2034 continue;
2035 RUSets.push_back(i);
2037 unsigned RCUnitSetsIdx = 0;
2038 for (unsigned e = RegClassUnitSets.size();
2039 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2040 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2041 break;
2044 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2045 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2046 // Create a new list of UnitSets as a "fake" register class.
2047 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2048 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2053 void CodeGenRegBank::computeRegUnitLaneMasks() {
2054 for (auto &Register : Registers) {
2055 // Create an initial lane mask for all register units.
2056 const auto &RegUnits = Register.getRegUnits();
2057 CodeGenRegister::RegUnitLaneMaskList
2058 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2059 // Iterate through SubRegisters.
2060 typedef CodeGenRegister::SubRegMap SubRegMap;
2061 const SubRegMap &SubRegs = Register.getSubRegs();
2062 for (auto S : SubRegs) {
2063 CodeGenRegister *SubReg = S.second;
2064 // Ignore non-leaf subregisters, their lane masks are fully covered by
2065 // the leaf subregisters anyway.
2066 if (!SubReg->getSubRegs().empty())
2067 continue;
2068 CodeGenSubRegIndex *SubRegIndex = S.first;
2069 const CodeGenRegister *SubRegister = S.second;
2070 LaneBitmask LaneMask = SubRegIndex->LaneMask;
2071 // Distribute LaneMask to Register Units touched.
2072 for (unsigned SUI : SubRegister->getRegUnits()) {
2073 bool Found = false;
2074 unsigned u = 0;
2075 for (unsigned RU : RegUnits) {
2076 if (SUI == RU) {
2077 RegUnitLaneMasks[u] |= LaneMask;
2078 assert(!Found);
2079 Found = true;
2081 ++u;
2083 (void)Found;
2084 assert(Found);
2087 Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2091 void CodeGenRegBank::computeDerivedInfo() {
2092 computeComposites();
2093 computeSubRegLaneMasks();
2095 // Compute a weight for each register unit created during getSubRegs.
2096 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2097 computeRegUnitWeights();
2099 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2100 // supersets for the union of overlapping sets.
2101 computeRegUnitSets();
2103 computeRegUnitLaneMasks();
2105 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2106 for (CodeGenRegisterClass &RC : RegClasses) {
2107 RC.HasDisjunctSubRegs = false;
2108 RC.CoveredBySubRegs = true;
2109 for (const CodeGenRegister *Reg : RC.getMembers()) {
2110 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2111 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2115 // Get the weight of each set.
2116 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2117 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2119 // Find the order of each set.
2120 RegUnitSetOrder.reserve(RegUnitSets.size());
2121 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2122 RegUnitSetOrder.push_back(Idx);
2124 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2125 return getRegPressureSet(ID1).Units.size() <
2126 getRegPressureSet(ID2).Units.size();
2128 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2129 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2134 // Synthesize missing register class intersections.
2136 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2137 // returns a maximal register class for all X.
2139 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2140 assert(!RegClasses.empty());
2141 // Stash the iterator to the last element so that this loop doesn't visit
2142 // elements added by the getOrCreateSubClass call within it.
2143 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2144 I != std::next(E); ++I) {
2145 CodeGenRegisterClass *RC1 = RC;
2146 CodeGenRegisterClass *RC2 = &*I;
2147 if (RC1 == RC2)
2148 continue;
2150 // Compute the set intersection of RC1 and RC2.
2151 const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2152 const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2153 CodeGenRegister::Vec Intersection;
2154 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2155 Memb2.end(),
2156 std::inserter(Intersection, Intersection.begin()),
2157 deref<std::less<>>());
2159 // Skip disjoint class pairs.
2160 if (Intersection.empty())
2161 continue;
2163 // If RC1 and RC2 have different spill sizes or alignments, use the
2164 // stricter one for sub-classing. If they are equal, prefer RC1.
2165 if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2166 std::swap(RC1, RC2);
2168 getOrCreateSubClass(RC1, &Intersection,
2169 RC1->getName() + "_and_" + RC2->getName());
2174 // Synthesize missing sub-classes for getSubClassWithSubReg().
2176 // Make sure that the set of registers in RC with a given SubIdx sub-register
2177 // form a register class. Update RC->SubClassWithSubReg.
2179 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2180 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2181 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2182 deref<std::less<>>>
2183 SubReg2SetMap;
2185 // Compute the set of registers supporting each SubRegIndex.
2186 SubReg2SetMap SRSets;
2187 for (const auto R : RC->getMembers()) {
2188 if (R->Artificial)
2189 continue;
2190 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2191 for (auto I : SRM) {
2192 if (!I.first->Artificial)
2193 SRSets[I.first].push_back(R);
2197 for (auto I : SRSets)
2198 sortAndUniqueRegisters(I.second);
2200 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2201 // numerical order to visit synthetic indices last.
2202 for (const auto &SubIdx : SubRegIndices) {
2203 if (SubIdx.Artificial)
2204 continue;
2205 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2206 // Unsupported SubRegIndex. Skip it.
2207 if (I == SRSets.end())
2208 continue;
2209 // In most cases, all RC registers support the SubRegIndex.
2210 if (I->second.size() == RC->getMembers().size()) {
2211 RC->setSubClassWithSubReg(&SubIdx, RC);
2212 continue;
2214 // This is a real subset. See if we have a matching class.
2215 CodeGenRegisterClass *SubRC =
2216 getOrCreateSubClass(RC, &I->second,
2217 RC->getName() + "_with_" + I->first->getName());
2218 RC->setSubClassWithSubReg(&SubIdx, SubRC);
2223 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2225 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2226 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2229 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2230 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2231 SmallVector<std::pair<const CodeGenRegister*,
2232 const CodeGenRegister*>, 16> SSPairs;
2233 BitVector TopoSigs(getNumTopoSigs());
2235 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2236 for (auto &SubIdx : SubRegIndices) {
2237 // Skip indexes that aren't fully supported by RC's registers. This was
2238 // computed by inferSubClassWithSubReg() above which should have been
2239 // called first.
2240 if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2241 continue;
2243 // Build list of (Super, Sub) pairs for this SubIdx.
2244 SSPairs.clear();
2245 TopoSigs.reset();
2246 for (const auto Super : RC->getMembers()) {
2247 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2248 assert(Sub && "Missing sub-register");
2249 SSPairs.push_back(std::make_pair(Super, Sub));
2250 TopoSigs.set(Sub->getTopoSig());
2253 // Iterate over sub-register class candidates. Ignore classes created by
2254 // this loop. They will never be useful.
2255 // Store an iterator to the last element (not end) so that this loop doesn't
2256 // visit newly inserted elements.
2257 assert(!RegClasses.empty());
2258 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2259 I != std::next(E); ++I) {
2260 CodeGenRegisterClass &SubRC = *I;
2261 if (SubRC.Artificial)
2262 continue;
2263 // Topological shortcut: SubRC members have the wrong shape.
2264 if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2265 continue;
2266 // Compute the subset of RC that maps into SubRC.
2267 CodeGenRegister::Vec SubSetVec;
2268 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2269 if (SubRC.contains(SSPairs[i].second))
2270 SubSetVec.push_back(SSPairs[i].first);
2272 if (SubSetVec.empty())
2273 continue;
2275 // RC injects completely into SubRC.
2276 sortAndUniqueRegisters(SubSetVec);
2277 if (SubSetVec.size() == SSPairs.size()) {
2278 SubRC.addSuperRegClass(&SubIdx, RC);
2279 continue;
2282 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2283 // class.
2284 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2285 SubIdx.getName() + "_in_" +
2286 SubRC.getName());
2292 // Infer missing register classes.
2294 void CodeGenRegBank::computeInferredRegisterClasses() {
2295 assert(!RegClasses.empty());
2296 // When this function is called, the register classes have not been sorted
2297 // and assigned EnumValues yet. That means getSubClasses(),
2298 // getSuperClasses(), and hasSubClass() functions are defunct.
2300 // Use one-before-the-end so it doesn't move forward when new elements are
2301 // added.
2302 auto FirstNewRC = std::prev(RegClasses.end());
2304 // Visit all register classes, including the ones being added by the loop.
2305 // Watch out for iterator invalidation here.
2306 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2307 CodeGenRegisterClass *RC = &*I;
2308 if (RC->Artificial)
2309 continue;
2311 // Synthesize answers for getSubClassWithSubReg().
2312 inferSubClassWithSubReg(RC);
2314 // Synthesize answers for getCommonSubClass().
2315 inferCommonSubClass(RC);
2317 // Synthesize answers for getMatchingSuperRegClass().
2318 inferMatchingSuperRegClass(RC);
2320 // New register classes are created while this loop is running, and we need
2321 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2322 // to match old super-register classes with sub-register classes created
2323 // after inferMatchingSuperRegClass was called. At this point,
2324 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2325 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2326 if (I == FirstNewRC) {
2327 auto NextNewRC = std::prev(RegClasses.end());
2328 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2329 ++I2)
2330 inferMatchingSuperRegClass(&*I2, E2);
2331 FirstNewRC = NextNewRC;
2336 /// getRegisterClassForRegister - Find the register class that contains the
2337 /// specified physical register. If the register is not in a register class,
2338 /// return null. If the register is in multiple classes, and the classes have a
2339 /// superset-subset relationship and the same set of types, return the
2340 /// superclass. Otherwise return null.
2341 const CodeGenRegisterClass*
2342 CodeGenRegBank::getRegClassForRegister(Record *R) {
2343 const CodeGenRegister *Reg = getReg(R);
2344 const CodeGenRegisterClass *FoundRC = nullptr;
2345 for (const auto &RC : getRegClasses()) {
2346 if (!RC.contains(Reg))
2347 continue;
2349 // If this is the first class that contains the register,
2350 // make a note of it and go on to the next class.
2351 if (!FoundRC) {
2352 FoundRC = &RC;
2353 continue;
2356 // If a register's classes have different types, return null.
2357 if (RC.getValueTypes() != FoundRC->getValueTypes())
2358 return nullptr;
2360 // Check to see if the previously found class that contains
2361 // the register is a subclass of the current class. If so,
2362 // prefer the superclass.
2363 if (RC.hasSubClass(FoundRC)) {
2364 FoundRC = &RC;
2365 continue;
2368 // Check to see if the previously found class that contains
2369 // the register is a superclass of the current class. If so,
2370 // prefer the superclass.
2371 if (FoundRC->hasSubClass(&RC))
2372 continue;
2374 // Multiple classes, and neither is a superclass of the other.
2375 // Return null.
2376 return nullptr;
2378 return FoundRC;
2381 const CodeGenRegisterClass *
2382 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2383 ValueTypeByHwMode *VT) {
2384 const CodeGenRegister *Reg = getReg(RegRecord);
2385 const CodeGenRegisterClass *BestRC = nullptr;
2386 for (const auto &RC : getRegClasses()) {
2387 if ((!VT || RC.hasType(*VT)) &&
2388 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2389 BestRC = &RC;
2392 assert(BestRC && "Couldn't find the register class");
2393 return BestRC;
2396 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2397 SetVector<const CodeGenRegister*> Set;
2399 // First add Regs with all sub-registers.
2400 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2401 CodeGenRegister *Reg = getReg(Regs[i]);
2402 if (Set.insert(Reg))
2403 // Reg is new, add all sub-registers.
2404 // The pre-ordering is not important here.
2405 Reg->addSubRegsPreOrder(Set, *this);
2408 // Second, find all super-registers that are completely covered by the set.
2409 for (unsigned i = 0; i != Set.size(); ++i) {
2410 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2411 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2412 const CodeGenRegister *Super = SR[j];
2413 if (!Super->CoveredBySubRegs || Set.count(Super))
2414 continue;
2415 // This new super-register is covered by its sub-registers.
2416 bool AllSubsInSet = true;
2417 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2418 for (auto I : SRM)
2419 if (!Set.count(I.second)) {
2420 AllSubsInSet = false;
2421 break;
2423 // All sub-registers in Set, add Super as well.
2424 // We will visit Super later to recheck its super-registers.
2425 if (AllSubsInSet)
2426 Set.insert(Super);
2430 // Convert to BitVector.
2431 BitVector BV(Registers.size() + 1);
2432 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2433 BV.set(Set[i]->EnumValue);
2434 return BV;
2437 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2438 if (Unit < NumNativeRegUnits)
2439 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2440 else
2441 dbgs() << " #" << Unit;