1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
47 #define DEBUG_TYPE "regalloc-emitter"
49 //===----------------------------------------------------------------------===//
51 //===----------------------------------------------------------------------===//
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record
*R
, unsigned Enum
)
54 : TheDef(R
), EnumValue(Enum
), AllSuperRegsCovered(true), Artificial(true) {
55 Name
= std::string(R
->getName());
56 if (R
->getValue("Namespace"))
57 Namespace
= std::string(R
->getValueAsString("Namespace"));
58 Size
= R
->getValueAsInt("Size");
59 Offset
= R
->getValueAsInt("Offset");
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N
, StringRef Nspace
,
64 : TheDef(nullptr), Name(std::string(N
)), Namespace(std::string(Nspace
)),
65 Size(-1), Offset(-1), EnumValue(Enum
), AllSuperRegsCovered(true),
68 std::string
CodeGenSubRegIndex::getQualifiedName() const {
69 std::string N
= getNamespace();
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank
&RegBank
) {
80 std::vector
<Record
*> Comps
= TheDef
->getValueAsListOfDefs("ComposedOf");
82 if (Comps
.size() != 2)
83 PrintFatalError(TheDef
->getLoc(),
84 "ComposedOf must have exactly two entries");
85 CodeGenSubRegIndex
*A
= RegBank
.getSubRegIdx(Comps
[0]);
86 CodeGenSubRegIndex
*B
= RegBank
.getSubRegIdx(Comps
[1]);
87 CodeGenSubRegIndex
*X
= A
->addComposite(B
, this);
89 PrintFatalError(TheDef
->getLoc(), "Ambiguous ComposedOf entries");
92 std::vector
<Record
*> Parts
=
93 TheDef
->getValueAsListOfDefs("CoveringSubRegIndices");
96 PrintFatalError(TheDef
->getLoc(),
97 "CoveredBySubRegs must have two or more entries");
98 SmallVector
<CodeGenSubRegIndex
*, 8> IdxParts
;
99 for (Record
*Part
: Parts
)
100 IdxParts
.push_back(RegBank
.getSubRegIdx(Part
));
101 setConcatenationOf(IdxParts
);
105 LaneBitmask
CodeGenSubRegIndex::computeLaneMask() const {
110 // Recursion guard, shouldn't be required.
111 LaneMask
= LaneBitmask::getAll();
113 // The lane mask is simply the union of all sub-indices.
115 for (const auto &C
: Composed
)
116 M
|= C
.second
->computeLaneMask();
117 assert(M
.any() && "Missing lane mask, sub-register cycle?");
122 void CodeGenSubRegIndex::setConcatenationOf(
123 ArrayRef
<CodeGenSubRegIndex
*> Parts
) {
124 if (ConcatenationOf
.empty())
125 ConcatenationOf
.assign(Parts
.begin(), Parts
.end());
127 assert(std::equal(Parts
.begin(), Parts
.end(),
128 ConcatenationOf
.begin()) && "parts consistent");
131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132 for (SmallVectorImpl
<CodeGenSubRegIndex
*>::iterator
133 I
= ConcatenationOf
.begin(); I
!= ConcatenationOf
.end(); /*empty*/) {
134 CodeGenSubRegIndex
*SubIdx
= *I
;
135 SubIdx
->computeConcatTransitiveClosure();
137 for (CodeGenSubRegIndex
*SRI
: SubIdx
->ConcatenationOf
)
138 assert(SRI
->ConcatenationOf
.empty() && "No transitive closure?");
141 if (SubIdx
->ConcatenationOf
.empty()) {
144 I
= ConcatenationOf
.erase(I
);
145 I
= ConcatenationOf
.insert(I
, SubIdx
->ConcatenationOf
.begin(),
146 SubIdx
->ConcatenationOf
.end());
147 I
+= SubIdx
->ConcatenationOf
.size();
152 //===----------------------------------------------------------------------===//
154 //===----------------------------------------------------------------------===//
156 CodeGenRegister::CodeGenRegister(Record
*R
, unsigned Enum
)
157 : TheDef(R
), EnumValue(Enum
),
158 CostPerUse(R
->getValueAsListOfInts("CostPerUse")),
159 CoveredBySubRegs(R
->getValueAsBit("CoveredBySubRegs")),
160 HasDisjunctSubRegs(false), SubRegsComplete(false),
161 SuperRegsComplete(false), TopoSig(~0u) {
162 Artificial
= R
->getValueAsBit("isArtificial");
165 void CodeGenRegister::buildObjectGraph(CodeGenRegBank
&RegBank
) {
166 std::vector
<Record
*> SRIs
= TheDef
->getValueAsListOfDefs("SubRegIndices");
167 std::vector
<Record
*> SRs
= TheDef
->getValueAsListOfDefs("SubRegs");
169 if (SRIs
.size() != SRs
.size())
170 PrintFatalError(TheDef
->getLoc(),
171 "SubRegs and SubRegIndices must have the same size");
173 for (unsigned i
= 0, e
= SRIs
.size(); i
!= e
; ++i
) {
174 ExplicitSubRegIndices
.push_back(RegBank
.getSubRegIdx(SRIs
[i
]));
175 ExplicitSubRegs
.push_back(RegBank
.getReg(SRs
[i
]));
178 // Also compute leading super-registers. Each register has a list of
179 // covered-by-subregs super-registers where it appears as the first explicit
182 // This is used by computeSecondarySubRegs() to find candidates.
183 if (CoveredBySubRegs
&& !ExplicitSubRegs
.empty())
184 ExplicitSubRegs
.front()->LeadingSuperRegs
.push_back(this);
186 // Add ad hoc alias links. This is a symmetric relationship between two
187 // registers, so build a symmetric graph by adding links in both ends.
188 std::vector
<Record
*> Aliases
= TheDef
->getValueAsListOfDefs("Aliases");
189 for (Record
*Alias
: Aliases
) {
190 CodeGenRegister
*Reg
= RegBank
.getReg(Alias
);
191 ExplicitAliases
.push_back(Reg
);
192 Reg
->ExplicitAliases
.push_back(this);
196 StringRef
CodeGenRegister::getName() const {
197 assert(TheDef
&& "no def");
198 return TheDef
->getName();
203 // Iterate over all register units in a set of registers.
204 class RegUnitIterator
{
205 CodeGenRegister::Vec::const_iterator RegI
, RegE
;
206 CodeGenRegister::RegUnitList::iterator UnitI
, UnitE
;
209 RegUnitIterator(const CodeGenRegister::Vec
&Regs
):
210 RegI(Regs
.begin()), RegE(Regs
.end()) {
213 UnitI
= (*RegI
)->getRegUnits().begin();
214 UnitE
= (*RegI
)->getRegUnits().end();
219 bool isValid() const { return UnitI
!= UnitE
; }
221 unsigned operator* () const { assert(isValid()); return *UnitI
; }
223 const CodeGenRegister
*getReg() const { assert(isValid()); return *RegI
; }
225 /// Preincrement. Move to the next unit.
227 assert(isValid() && "Cannot advance beyond the last operand");
234 while (UnitI
== UnitE
) {
237 UnitI
= (*RegI
)->getRegUnits().begin();
238 UnitE
= (*RegI
)->getRegUnits().end();
243 } // end anonymous namespace
245 // Return true of this unit appears in RegUnits.
246 static bool hasRegUnit(CodeGenRegister::RegUnitList
&RegUnits
, unsigned Unit
) {
247 return RegUnits
.test(Unit
);
250 // Inherit register units from subregisters.
251 // Return true if the RegUnits changed.
252 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank
&RegBank
) {
253 bool changed
= false;
254 for (const auto &SubReg
: SubRegs
) {
255 CodeGenRegister
*SR
= SubReg
.second
;
256 // Merge the subregister's units into this register's RegUnits.
257 changed
|= (RegUnits
|= SR
->RegUnits
);
263 const CodeGenRegister::SubRegMap
&
264 CodeGenRegister::computeSubRegs(CodeGenRegBank
&RegBank
) {
265 // Only compute this map once.
268 SubRegsComplete
= true;
270 HasDisjunctSubRegs
= ExplicitSubRegs
.size() > 1;
272 // First insert the explicit subregs and make sure they are fully indexed.
273 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
274 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
275 CodeGenSubRegIndex
*Idx
= ExplicitSubRegIndices
[i
];
277 Idx
->Artificial
= false;
278 if (!SubRegs
.insert(std::make_pair(Idx
, SR
)).second
)
279 PrintFatalError(TheDef
->getLoc(), "SubRegIndex " + Idx
->getName() +
280 " appears twice in Register " + getName());
281 // Map explicit sub-registers first, so the names take precedence.
282 // The inherited sub-registers are mapped below.
283 SubReg2Idx
.insert(std::make_pair(SR
, Idx
));
286 // Keep track of inherited subregs and how they can be reached.
287 SmallPtrSet
<CodeGenRegister
*, 8> Orphans
;
289 // Clone inherited subregs and place duplicate entries in Orphans.
290 // Here the order is important - earlier subregs take precedence.
291 for (CodeGenRegister
*ESR
: ExplicitSubRegs
) {
292 const SubRegMap
&Map
= ESR
->computeSubRegs(RegBank
);
293 HasDisjunctSubRegs
|= ESR
->HasDisjunctSubRegs
;
295 for (const auto &SR
: Map
) {
296 if (!SubRegs
.insert(SR
).second
)
297 Orphans
.insert(SR
.second
);
301 // Expand any composed subreg indices.
302 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
303 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
304 // expanded subreg indices recursively.
305 SmallVector
<CodeGenSubRegIndex
*, 8> Indices
= ExplicitSubRegIndices
;
306 for (unsigned i
= 0; i
!= Indices
.size(); ++i
) {
307 CodeGenSubRegIndex
*Idx
= Indices
[i
];
308 const CodeGenSubRegIndex::CompMap
&Comps
= Idx
->getComposites();
309 CodeGenRegister
*SR
= SubRegs
[Idx
];
310 const SubRegMap
&Map
= SR
->computeSubRegs(RegBank
);
312 // Look at the possible compositions of Idx.
313 // They may not all be supported by SR.
314 for (auto Comp
: Comps
) {
315 SubRegMap::const_iterator SRI
= Map
.find(Comp
.first
);
316 if (SRI
== Map
.end())
317 continue; // Idx + I->first doesn't exist in SR.
318 // Add I->second as a name for the subreg SRI->second, assuming it is
319 // orphaned, and the name isn't already used for something else.
320 if (SubRegs
.count(Comp
.second
) || !Orphans
.erase(SRI
->second
))
322 // We found a new name for the orphaned sub-register.
323 SubRegs
.insert(std::make_pair(Comp
.second
, SRI
->second
));
324 Indices
.push_back(Comp
.second
);
328 // Now Orphans contains the inherited subregisters without a direct index.
329 // Create inferred indexes for all missing entries.
330 // Work backwards in the Indices vector in order to compose subregs bottom-up.
331 // Consider this subreg sequence:
333 // qsub_1 -> dsub_0 -> ssub_0
335 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
336 // can be reached in two different ways:
341 // We pick the latter composition because another register may have [dsub_0,
342 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
343 // dsub_2 -> ssub_0 composition can be shared.
344 while (!Indices
.empty() && !Orphans
.empty()) {
345 CodeGenSubRegIndex
*Idx
= Indices
.pop_back_val();
346 CodeGenRegister
*SR
= SubRegs
[Idx
];
347 const SubRegMap
&Map
= SR
->computeSubRegs(RegBank
);
348 for (const auto &SubReg
: Map
)
349 if (Orphans
.erase(SubReg
.second
))
350 SubRegs
[RegBank
.getCompositeSubRegIndex(Idx
, SubReg
.first
)] = SubReg
.second
;
353 // Compute the inverse SubReg -> Idx map.
354 for (const auto &SubReg
: SubRegs
) {
355 if (SubReg
.second
== this) {
358 Loc
= TheDef
->getLoc();
359 PrintFatalError(Loc
, "Register " + getName() +
360 " has itself as a sub-register");
363 // Compute AllSuperRegsCovered.
364 if (!CoveredBySubRegs
)
365 SubReg
.first
->AllSuperRegsCovered
= false;
367 // Ensure that every sub-register has a unique name.
368 DenseMap
<const CodeGenRegister
*, CodeGenSubRegIndex
*>::iterator Ins
=
369 SubReg2Idx
.insert(std::make_pair(SubReg
.second
, SubReg
.first
)).first
;
370 if (Ins
->second
== SubReg
.first
)
372 // Trouble: Two different names for SubReg.second.
375 Loc
= TheDef
->getLoc();
376 PrintFatalError(Loc
, "Sub-register can't have two names: " +
377 SubReg
.second
->getName() + " available as " +
378 SubReg
.first
->getName() + " and " + Ins
->second
->getName());
381 // Derive possible names for sub-register concatenations from any explicit
382 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
383 // that getConcatSubRegIndex() won't invent any concatenated indices that the
384 // user already specified.
385 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
386 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
387 if (!SR
->CoveredBySubRegs
|| SR
->ExplicitSubRegs
.size() <= 1 ||
391 // SR is composed of multiple sub-regs. Find their names in this register.
392 SmallVector
<CodeGenSubRegIndex
*, 8> Parts
;
393 for (unsigned j
= 0, e
= SR
->ExplicitSubRegs
.size(); j
!= e
; ++j
) {
394 CodeGenSubRegIndex
&I
= *SR
->ExplicitSubRegIndices
[j
];
396 Parts
.push_back(getSubRegIndex(SR
->ExplicitSubRegs
[j
]));
399 // Offer this as an existing spelling for the concatenation of Parts.
400 CodeGenSubRegIndex
&Idx
= *ExplicitSubRegIndices
[i
];
401 Idx
.setConcatenationOf(Parts
);
404 // Initialize RegUnitList. Because getSubRegs is called recursively, this
405 // processes the register hierarchy in postorder.
407 // Inherit all sub-register units. It is good enough to look at the explicit
408 // sub-registers, the other registers won't contribute any more units.
409 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
410 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
411 RegUnits
|= SR
->RegUnits
;
414 // Absent any ad hoc aliasing, we create one register unit per leaf register.
415 // These units correspond to the maximal cliques in the register overlap
416 // graph which is optimal.
418 // When there is ad hoc aliasing, we simply create one unit per edge in the
419 // undirected ad hoc aliasing graph. Technically, we could do better by
420 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
421 // are extremely rare anyway (I've never seen one), so we don't bother with
422 // the added complexity.
423 for (unsigned i
= 0, e
= ExplicitAliases
.size(); i
!= e
; ++i
) {
424 CodeGenRegister
*AR
= ExplicitAliases
[i
];
425 // Only visit each edge once.
426 if (AR
->SubRegsComplete
)
428 // Create a RegUnit representing this alias edge, and add it to both
430 unsigned Unit
= RegBank
.newRegUnit(this, AR
);
432 AR
->RegUnits
.set(Unit
);
435 // Finally, create units for leaf registers without ad hoc aliases. Note that
436 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
437 // necessary. This means the aliasing leaf registers can share a single unit.
438 if (RegUnits
.empty())
439 RegUnits
.set(RegBank
.newRegUnit(this));
441 // We have now computed the native register units. More may be adopted later
442 // for balancing purposes.
443 NativeRegUnits
= RegUnits
;
448 // In a register that is covered by its sub-registers, try to find redundant
449 // sub-registers. For example:
455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
456 // the register definition.
458 // The explicitly specified registers form a tree. This function discovers
459 // sub-register relationships that would force a DAG.
461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank
&RegBank
) {
462 SmallVector
<SubRegMap::value_type
, 8> NewSubRegs
;
464 std::queue
<std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*>> SubRegQueue
;
465 for (std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*> P
: SubRegs
)
468 // Look at the leading super-registers of each sub-register. Those are the
469 // candidates for new sub-registers, assuming they are fully contained in
471 while (!SubRegQueue
.empty()) {
472 CodeGenSubRegIndex
*SubRegIdx
;
473 const CodeGenRegister
*SubReg
;
474 std::tie(SubRegIdx
, SubReg
) = SubRegQueue
.front();
477 const CodeGenRegister::SuperRegList
&Leads
= SubReg
->LeadingSuperRegs
;
478 for (unsigned i
= 0, e
= Leads
.size(); i
!= e
; ++i
) {
479 CodeGenRegister
*Cand
= const_cast<CodeGenRegister
*>(Leads
[i
]);
480 // Already got this sub-register?
481 if (Cand
== this || getSubRegIndex(Cand
))
483 // Check if each component of Cand is already a sub-register.
484 assert(!Cand
->ExplicitSubRegs
.empty() &&
485 "Super-register has no sub-registers");
486 if (Cand
->ExplicitSubRegs
.size() == 1)
488 SmallVector
<CodeGenSubRegIndex
*, 8> Parts
;
489 // We know that the first component is (SubRegIdx,SubReg). However we
490 // may still need to split it into smaller subregister parts.
491 assert(Cand
->ExplicitSubRegs
[0] == SubReg
&& "LeadingSuperRegs correct");
492 assert(getSubRegIndex(SubReg
) == SubRegIdx
&& "LeadingSuperRegs correct");
493 for (CodeGenRegister
*SubReg
: Cand
->ExplicitSubRegs
) {
494 if (CodeGenSubRegIndex
*SubRegIdx
= getSubRegIndex(SubReg
)) {
495 if (SubRegIdx
->ConcatenationOf
.empty())
496 Parts
.push_back(SubRegIdx
);
498 append_range(Parts
, SubRegIdx
->ConcatenationOf
);
500 // Sub-register doesn't exist.
505 // There is nothing to do if some Cand sub-register is not part of this
510 // Each part of Cand is a sub-register of this. Make the full Cand also
511 // a sub-register with a concatenated sub-register index.
512 CodeGenSubRegIndex
*Concat
= RegBank
.getConcatSubRegIndex(Parts
);
513 std::pair
<CodeGenSubRegIndex
*,CodeGenRegister
*> NewSubReg
=
514 std::make_pair(Concat
, Cand
);
516 if (!SubRegs
.insert(NewSubReg
).second
)
519 // We inserted a new subregister.
520 NewSubRegs
.push_back(NewSubReg
);
521 SubRegQueue
.push(NewSubReg
);
522 SubReg2Idx
.insert(std::make_pair(Cand
, Concat
));
526 // Create sub-register index composition maps for the synthesized indices.
527 for (unsigned i
= 0, e
= NewSubRegs
.size(); i
!= e
; ++i
) {
528 CodeGenSubRegIndex
*NewIdx
= NewSubRegs
[i
].first
;
529 CodeGenRegister
*NewSubReg
= NewSubRegs
[i
].second
;
530 for (auto SubReg
: NewSubReg
->SubRegs
) {
531 CodeGenSubRegIndex
*SubIdx
= getSubRegIndex(SubReg
.second
);
533 PrintFatalError(TheDef
->getLoc(), "No SubRegIndex for " +
534 SubReg
.second
->getName() +
536 NewIdx
->addComposite(SubReg
.first
, SubIdx
);
541 void CodeGenRegister::computeSuperRegs(CodeGenRegBank
&RegBank
) {
542 // Only visit each register once.
543 if (SuperRegsComplete
)
545 SuperRegsComplete
= true;
547 // Make sure all sub-registers have been visited first, so the super-reg
548 // lists will be topologically ordered.
549 for (auto SubReg
: SubRegs
)
550 SubReg
.second
->computeSuperRegs(RegBank
);
552 // Now add this as a super-register on all sub-registers.
553 // Also compute the TopoSigId in post-order.
555 for (auto SubReg
: SubRegs
) {
556 // Topological signature computed from SubIdx, TopoId(SubReg).
557 // Loops and idempotent indices have TopoSig = ~0u.
558 Id
.push_back(SubReg
.first
->EnumValue
);
559 Id
.push_back(SubReg
.second
->TopoSig
);
561 // Don't add duplicate entries.
562 if (!SubReg
.second
->SuperRegs
.empty() &&
563 SubReg
.second
->SuperRegs
.back() == this)
565 SubReg
.second
->SuperRegs
.push_back(this);
567 TopoSig
= RegBank
.getTopoSig(Id
);
571 CodeGenRegister::addSubRegsPreOrder(SetVector
<const CodeGenRegister
*> &OSet
,
572 CodeGenRegBank
&RegBank
) const {
573 assert(SubRegsComplete
&& "Must precompute sub-registers");
574 for (unsigned i
= 0, e
= ExplicitSubRegs
.size(); i
!= e
; ++i
) {
575 CodeGenRegister
*SR
= ExplicitSubRegs
[i
];
577 SR
->addSubRegsPreOrder(OSet
, RegBank
);
579 // Add any secondary sub-registers that weren't part of the explicit tree.
580 for (auto SubReg
: SubRegs
)
581 OSet
.insert(SubReg
.second
);
584 // Get the sum of this register's unit weights.
585 unsigned CodeGenRegister::getWeight(const CodeGenRegBank
&RegBank
) const {
587 for (unsigned RegUnit
: RegUnits
) {
588 Weight
+= RegBank
.getRegUnit(RegUnit
).Weight
;
593 //===----------------------------------------------------------------------===//
595 //===----------------------------------------------------------------------===//
597 // A RegisterTuples def is used to generate pseudo-registers from lists of
598 // sub-registers. We provide a SetTheory expander class that returns the new
602 struct TupleExpander
: SetTheory::Expander
{
603 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
604 // the synthesized definitions for their lifetime.
605 std::vector
<std::unique_ptr
<Record
>> &SynthDefs
;
607 TupleExpander(std::vector
<std::unique_ptr
<Record
>> &SynthDefs
)
608 : SynthDefs(SynthDefs
) {}
610 void expand(SetTheory
&ST
, Record
*Def
, SetTheory::RecSet
&Elts
) override
{
611 std::vector
<Record
*> Indices
= Def
->getValueAsListOfDefs("SubRegIndices");
612 unsigned Dim
= Indices
.size();
613 ListInit
*SubRegs
= Def
->getValueAsListInit("SubRegs");
614 if (Dim
!= SubRegs
->size())
615 PrintFatalError(Def
->getLoc(), "SubRegIndices and SubRegs size mismatch");
617 PrintFatalError(Def
->getLoc(),
618 "Tuples must have at least 2 sub-registers");
620 // Evaluate the sub-register lists to be zipped.
621 unsigned Length
= ~0u;
622 SmallVector
<SetTheory::RecSet
, 4> Lists(Dim
);
623 for (unsigned i
= 0; i
!= Dim
; ++i
) {
624 ST
.evaluate(SubRegs
->getElement(i
), Lists
[i
], Def
->getLoc());
625 Length
= std::min(Length
, unsigned(Lists
[i
].size()));
631 // Precompute some types.
632 Record
*RegisterCl
= Def
->getRecords().getClass("Register");
633 RecTy
*RegisterRecTy
= RecordRecTy::get(RegisterCl
);
634 std::vector
<StringRef
> RegNames
=
635 Def
->getValueAsListOfStrings("RegAsmNames");
638 for (unsigned n
= 0; n
!= Length
; ++n
) {
640 Record
*Proto
= Lists
[0][n
];
641 std::vector
<Init
*> Tuple
;
642 for (unsigned i
= 0; i
!= Dim
; ++i
) {
643 Record
*Reg
= Lists
[i
][n
];
645 Name
+= Reg
->getName();
646 Tuple
.push_back(DefInit::get(Reg
));
649 // Take the cost list of the first register in the tuple.
650 ListInit
*CostList
= Proto
->getValueAsListInit("CostPerUse");
651 SmallVector
<Init
*, 2> CostPerUse
;
652 CostPerUse
.insert(CostPerUse
.end(), CostList
->begin(), CostList
->end());
654 StringInit
*AsmName
= StringInit::get("");
655 if (!RegNames
.empty()) {
656 if (RegNames
.size() <= n
)
657 PrintFatalError(Def
->getLoc(),
658 "Register tuple definition missing name for '" +
660 AsmName
= StringInit::get(RegNames
[n
]);
663 // Create a new Record representing the synthesized register. This record
664 // is only for consumption by CodeGenRegister, it is not added to the
666 SynthDefs
.emplace_back(
667 std::make_unique
<Record
>(Name
, Def
->getLoc(), Def
->getRecords()));
668 Record
*NewReg
= SynthDefs
.back().get();
671 // Copy Proto super-classes.
672 ArrayRef
<std::pair
<Record
*, SMRange
>> Supers
= Proto
->getSuperClasses();
673 for (const auto &SuperPair
: Supers
)
674 NewReg
->addSuperClass(SuperPair
.first
, SuperPair
.second
);
676 // Copy Proto fields.
677 for (unsigned i
= 0, e
= Proto
->getValues().size(); i
!= e
; ++i
) {
678 RecordVal RV
= Proto
->getValues()[i
];
680 // Skip existing fields, like NAME.
681 if (NewReg
->getValue(RV
.getNameInit()))
684 StringRef Field
= RV
.getName();
686 // Replace the sub-register list with Tuple.
687 if (Field
== "SubRegs")
688 RV
.setValue(ListInit::get(Tuple
, RegisterRecTy
));
690 if (Field
== "AsmName")
691 RV
.setValue(AsmName
);
693 // CostPerUse is aggregated from all Tuple members.
694 if (Field
== "CostPerUse")
695 RV
.setValue(ListInit::get(CostPerUse
, CostList
->getElementType()));
697 // Composite registers are always covered by sub-registers.
698 if (Field
== "CoveredBySubRegs")
699 RV
.setValue(BitInit::get(true));
701 // Copy fields from the RegisterTuples def.
702 if (Field
== "SubRegIndices" ||
703 Field
== "CompositeIndices") {
704 NewReg
->addValue(*Def
->getValue(Field
));
708 // Some fields get their default uninitialized value.
709 if (Field
== "DwarfNumbers" ||
710 Field
== "DwarfAlias" ||
711 Field
== "Aliases") {
712 if (const RecordVal
*DefRV
= RegisterCl
->getValue(Field
))
713 NewReg
->addValue(*DefRV
);
717 // Everything else is copied from Proto.
718 NewReg
->addValue(RV
);
724 } // end anonymous namespace
726 //===----------------------------------------------------------------------===//
727 // CodeGenRegisterClass
728 //===----------------------------------------------------------------------===//
730 static void sortAndUniqueRegisters(CodeGenRegister::Vec
&M
) {
731 llvm::sort(M
, deref
<std::less
<>>());
732 M
.erase(std::unique(M
.begin(), M
.end(), deref
<std::equal_to
<>>()), M
.end());
735 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank
&RegBank
, Record
*R
)
736 : TheDef(R
), Name(std::string(R
->getName())),
737 TopoSigs(RegBank
.getNumTopoSigs()), EnumValue(-1) {
738 GeneratePressureSet
= R
->getValueAsBit("GeneratePressureSet");
739 std::vector
<Record
*> TypeList
= R
->getValueAsListOfDefs("RegTypes");
740 if (TypeList
.empty())
741 PrintFatalError(R
->getLoc(), "RegTypes list must not be empty!");
742 for (unsigned i
= 0, e
= TypeList
.size(); i
!= e
; ++i
) {
743 Record
*Type
= TypeList
[i
];
744 if (!Type
->isSubClassOf("ValueType"))
745 PrintFatalError(R
->getLoc(),
746 "RegTypes list member '" + Type
->getName() +
747 "' does not derive from the ValueType class!");
748 VTs
.push_back(getValueTypeByHwMode(Type
, RegBank
.getHwModes()));
751 // Allocation order 0 is the full set. AltOrders provides others.
752 const SetTheory::RecVec
*Elements
= RegBank
.getSets().expand(R
);
753 ListInit
*AltOrders
= R
->getValueAsListInit("AltOrders");
754 Orders
.resize(1 + AltOrders
->size());
756 // Default allocation order always contains all registers.
758 for (unsigned i
= 0, e
= Elements
->size(); i
!= e
; ++i
) {
759 Orders
[0].push_back((*Elements
)[i
]);
760 const CodeGenRegister
*Reg
= RegBank
.getReg((*Elements
)[i
]);
761 Members
.push_back(Reg
);
762 Artificial
&= Reg
->Artificial
;
763 TopoSigs
.set(Reg
->getTopoSig());
765 sortAndUniqueRegisters(Members
);
767 // Alternative allocation orders may be subsets.
768 SetTheory::RecSet Order
;
769 for (unsigned i
= 0, e
= AltOrders
->size(); i
!= e
; ++i
) {
770 RegBank
.getSets().evaluate(AltOrders
->getElement(i
), Order
, R
->getLoc());
771 Orders
[1 + i
].append(Order
.begin(), Order
.end());
772 // Verify that all altorder members are regclass members.
773 while (!Order
.empty()) {
774 CodeGenRegister
*Reg
= RegBank
.getReg(Order
.back());
777 PrintFatalError(R
->getLoc(), " AltOrder register " + Reg
->getName() +
778 " is not a class member");
782 Namespace
= R
->getValueAsString("Namespace");
784 if (const RecordVal
*RV
= R
->getValue("RegInfos"))
785 if (DefInit
*DI
= dyn_cast_or_null
<DefInit
>(RV
->getValue()))
786 RSI
= RegSizeInfoByHwMode(DI
->getDef(), RegBank
.getHwModes());
787 unsigned Size
= R
->getValueAsInt("Size");
788 assert((RSI
.hasDefault() || Size
!= 0 || VTs
[0].isSimple()) &&
789 "Impossible to determine register size");
790 if (!RSI
.hasDefault()) {
792 RI
.RegSize
= RI
.SpillSize
= Size
? Size
793 : VTs
[0].getSimple().getSizeInBits();
794 RI
.SpillAlignment
= R
->getValueAsInt("Alignment");
795 RSI
.insertRegSizeForMode(DefaultMode
, RI
);
798 CopyCost
= R
->getValueAsInt("CopyCost");
799 Allocatable
= R
->getValueAsBit("isAllocatable");
800 AltOrderSelect
= R
->getValueAsString("AltOrderSelect");
801 int AllocationPriority
= R
->getValueAsInt("AllocationPriority");
802 if (AllocationPriority
< 0 || AllocationPriority
> 63)
803 PrintFatalError(R
->getLoc(), "AllocationPriority out of range [0,63]");
804 this->AllocationPriority
= AllocationPriority
;
807 // Create an inferred register class that was missing from the .td files.
808 // Most properties will be inherited from the closest super-class after the
809 // class structure has been computed.
810 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank
&RegBank
,
811 StringRef Name
, Key Props
)
812 : Members(*Props
.Members
), TheDef(nullptr), Name(std::string(Name
)),
813 TopoSigs(RegBank
.getNumTopoSigs()), EnumValue(-1), RSI(Props
.RSI
),
814 CopyCost(0), Allocatable(true), AllocationPriority(0) {
816 GeneratePressureSet
= false;
817 for (const auto R
: Members
) {
818 TopoSigs
.set(R
->getTopoSig());
819 Artificial
&= R
->Artificial
;
823 // Compute inherited propertied for a synthesized register class.
824 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank
&RegBank
) {
825 assert(!getDef() && "Only synthesized classes can inherit properties");
826 assert(!SuperClasses
.empty() && "Synthesized class without super class");
828 // The last super-class is the smallest one.
829 CodeGenRegisterClass
&Super
= *SuperClasses
.back();
831 // Most properties are copied directly.
832 // Exceptions are members, size, and alignment
833 Namespace
= Super
.Namespace
;
835 CopyCost
= Super
.CopyCost
;
836 // Check for allocatable superclasses.
837 Allocatable
= any_of(SuperClasses
, [&](const CodeGenRegisterClass
*S
) {
838 return S
->Allocatable
;
840 AltOrderSelect
= Super
.AltOrderSelect
;
841 AllocationPriority
= Super
.AllocationPriority
;
842 GeneratePressureSet
|= Super
.GeneratePressureSet
;
844 // Copy all allocation orders, filter out foreign registers from the larger
846 Orders
.resize(Super
.Orders
.size());
847 for (unsigned i
= 0, ie
= Super
.Orders
.size(); i
!= ie
; ++i
)
848 for (unsigned j
= 0, je
= Super
.Orders
[i
].size(); j
!= je
; ++j
)
849 if (contains(RegBank
.getReg(Super
.Orders
[i
][j
])))
850 Orders
[i
].push_back(Super
.Orders
[i
][j
]);
853 bool CodeGenRegisterClass::contains(const CodeGenRegister
*Reg
) const {
854 return std::binary_search(Members
.begin(), Members
.end(), Reg
,
855 deref
<std::less
<>>());
858 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank
& RegBank
) const {
859 if (TheDef
&& !TheDef
->isValueUnset("Weight"))
860 return TheDef
->getValueAsInt("Weight");
862 if (Members
.empty() || Artificial
)
865 return (*Members
.begin())->getWeight(RegBank
);
870 raw_ostream
&operator<<(raw_ostream
&OS
, const CodeGenRegisterClass::Key
&K
) {
872 for (const auto R
: *K
.Members
)
873 OS
<< ", " << R
->getName();
877 } // end namespace llvm
879 // This is a simple lexicographical order that can be used to search for sets.
880 // It is not the same as the topological order provided by TopoOrderRC.
881 bool CodeGenRegisterClass::Key::
882 operator<(const CodeGenRegisterClass::Key
&B
) const {
883 assert(Members
&& B
.Members
);
884 return std::tie(*Members
, RSI
) < std::tie(*B
.Members
, B
.RSI
);
887 // Returns true if RC is a strict subclass.
888 // RC is a sub-class of this class if it is a valid replacement for any
889 // instruction operand where a register of this classis required. It must
890 // satisfy these conditions:
892 // 1. All RC registers are also in this.
893 // 2. The RC spill size must not be smaller than our spill size.
894 // 3. RC spill alignment must be compatible with ours.
896 static bool testSubClass(const CodeGenRegisterClass
*A
,
897 const CodeGenRegisterClass
*B
) {
898 return A
->RSI
.isSubClassOf(B
->RSI
) &&
899 std::includes(A
->getMembers().begin(), A
->getMembers().end(),
900 B
->getMembers().begin(), B
->getMembers().end(),
901 deref
<std::less
<>>());
904 /// Sorting predicate for register classes. This provides a topological
905 /// ordering that arranges all register classes before their sub-classes.
907 /// Register classes with the same registers, spill size, and alignment form a
908 /// clique. They will be ordered alphabetically.
910 static bool TopoOrderRC(const CodeGenRegisterClass
&PA
,
911 const CodeGenRegisterClass
&PB
) {
919 if (A
->RSI
!= B
->RSI
)
922 // Order by descending set size. Note that the classes' allocation order may
923 // not have been computed yet. The Members set is always vaild.
924 if (A
->getMembers().size() > B
->getMembers().size())
926 if (A
->getMembers().size() < B
->getMembers().size())
929 // Finally order by name as a tie breaker.
930 return StringRef(A
->getName()) < B
->getName();
933 std::string
CodeGenRegisterClass::getQualifiedName() const {
934 if (Namespace
.empty())
937 return (Namespace
+ "::" + getName()).str();
940 // Compute sub-classes of all register classes.
941 // Assume the classes are ordered topologically.
942 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank
&RegBank
) {
943 auto &RegClasses
= RegBank
.getRegClasses();
945 // Visit backwards so sub-classes are seen first.
946 for (auto I
= RegClasses
.rbegin(), E
= RegClasses
.rend(); I
!= E
; ++I
) {
947 CodeGenRegisterClass
&RC
= *I
;
948 RC
.SubClasses
.resize(RegClasses
.size());
949 RC
.SubClasses
.set(RC
.EnumValue
);
953 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
954 for (auto I2
= I
.base(), E2
= RegClasses
.end(); I2
!= E2
; ++I2
) {
955 CodeGenRegisterClass
&SubRC
= *I2
;
956 if (RC
.SubClasses
.test(SubRC
.EnumValue
))
958 if (!testSubClass(&RC
, &SubRC
))
960 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
962 RC
.SubClasses
|= SubRC
.SubClasses
;
965 // Sweep up missed clique members. They will be immediately preceding RC.
966 for (auto I2
= std::next(I
); I2
!= E
&& testSubClass(&RC
, &*I2
); ++I2
)
967 RC
.SubClasses
.set(I2
->EnumValue
);
970 // Compute the SuperClasses lists from the SubClasses vectors.
971 for (auto &RC
: RegClasses
) {
972 const BitVector
&SC
= RC
.getSubClasses();
973 auto I
= RegClasses
.begin();
974 for (int s
= 0, next_s
= SC
.find_first(); next_s
!= -1;
975 next_s
= SC
.find_next(s
)) {
976 std::advance(I
, next_s
- s
);
980 I
->SuperClasses
.push_back(&RC
);
984 // With the class hierarchy in place, let synthesized register classes inherit
985 // properties from their closest super-class. The iteration order here can
986 // propagate properties down multiple levels.
987 for (auto &RC
: RegClasses
)
989 RC
.inheritProperties(RegBank
);
992 Optional
<std::pair
<CodeGenRegisterClass
*, CodeGenRegisterClass
*>>
993 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
994 CodeGenRegBank
&RegBank
, const CodeGenSubRegIndex
*SubIdx
) const {
995 auto SizeOrder
= [this](const CodeGenRegisterClass
*A
,
996 const CodeGenRegisterClass
*B
) {
997 // If there are multiple, identical register classes, prefer the original
1001 if (A
->getMembers().size() == B
->getMembers().size())
1003 return A
->getMembers().size() > B
->getMembers().size();
1006 auto &RegClasses
= RegBank
.getRegClasses();
1008 // Find all the subclasses of this one that fully support the sub-register
1009 // index and order them by size. BiggestSuperRC should always be first.
1010 CodeGenRegisterClass
*BiggestSuperRegRC
= getSubClassWithSubReg(SubIdx
);
1011 if (!BiggestSuperRegRC
)
1013 BitVector SuperRegRCsBV
= BiggestSuperRegRC
->getSubClasses();
1014 std::vector
<CodeGenRegisterClass
*> SuperRegRCs
;
1015 for (auto &RC
: RegClasses
)
1016 if (SuperRegRCsBV
[RC
.EnumValue
])
1017 SuperRegRCs
.emplace_back(&RC
);
1018 llvm::stable_sort(SuperRegRCs
, SizeOrder
);
1020 assert(SuperRegRCs
.front() == BiggestSuperRegRC
&&
1021 "Biggest class wasn't first");
1023 // Find all the subreg classes and order them by size too.
1024 std::vector
<std::pair
<CodeGenRegisterClass
*, BitVector
>> SuperRegClasses
;
1025 for (auto &RC
: RegClasses
) {
1026 BitVector
SuperRegClassesBV(RegClasses
.size());
1027 RC
.getSuperRegClasses(SubIdx
, SuperRegClassesBV
);
1028 if (SuperRegClassesBV
.any())
1029 SuperRegClasses
.push_back(std::make_pair(&RC
, SuperRegClassesBV
));
1031 llvm::sort(SuperRegClasses
,
1032 [&](const std::pair
<CodeGenRegisterClass
*, BitVector
> &A
,
1033 const std::pair
<CodeGenRegisterClass
*, BitVector
> &B
) {
1034 return SizeOrder(A
.first
, B
.first
);
1037 // Find the biggest subclass and subreg class such that R:subidx is in the
1038 // subreg class for all R in subclass.
1041 // All registers in X86's GR64 have a sub_32bit subregister but no class
1042 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1043 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1044 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1045 // having excluded RIP, we are able to find a SubRegRC (GR32).
1046 CodeGenRegisterClass
*ChosenSuperRegClass
= nullptr;
1047 CodeGenRegisterClass
*SubRegRC
= nullptr;
1048 for (auto *SuperRegRC
: SuperRegRCs
) {
1049 for (const auto &SuperRegClassPair
: SuperRegClasses
) {
1050 const BitVector
&SuperRegClassBV
= SuperRegClassPair
.second
;
1051 if (SuperRegClassBV
[SuperRegRC
->EnumValue
]) {
1052 SubRegRC
= SuperRegClassPair
.first
;
1053 ChosenSuperRegClass
= SuperRegRC
;
1055 // If SubRegRC is bigger than SuperRegRC then there are members of
1056 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1057 // find a better fit and fall back on this one if there isn't one.
1059 // This is intended to prevent X86 from making odd choices such as
1060 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1061 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1062 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1064 if (SuperRegRC
->getMembers().size() >= SubRegRC
->getMembers().size())
1065 return std::make_pair(ChosenSuperRegClass
, SubRegRC
);
1069 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1070 // registers, then we're done.
1071 if (ChosenSuperRegClass
)
1072 return std::make_pair(ChosenSuperRegClass
, SubRegRC
);
1078 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex
*SubIdx
,
1079 BitVector
&Out
) const {
1080 auto FindI
= SuperRegClasses
.find(SubIdx
);
1081 if (FindI
== SuperRegClasses
.end())
1083 for (CodeGenRegisterClass
*RC
: FindI
->second
)
1084 Out
.set(RC
->EnumValue
);
1087 // Populate a unique sorted list of units from a register set.
1088 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank
&RegBank
,
1089 std::vector
<unsigned> &RegUnits
) const {
1090 std::vector
<unsigned> TmpUnits
;
1091 for (RegUnitIterator
UnitI(Members
); UnitI
.isValid(); ++UnitI
) {
1092 const RegUnit
&RU
= RegBank
.getRegUnit(*UnitI
);
1094 TmpUnits
.push_back(*UnitI
);
1096 llvm::sort(TmpUnits
);
1097 std::unique_copy(TmpUnits
.begin(), TmpUnits
.end(),
1098 std::back_inserter(RegUnits
));
1101 //===----------------------------------------------------------------------===//
1103 //===----------------------------------------------------------------------===//
1105 CodeGenRegBank::CodeGenRegBank(RecordKeeper
&Records
,
1106 const CodeGenHwModes
&Modes
) : CGH(Modes
) {
1107 // Configure register Sets to understand register classes and tuples.
1108 Sets
.addFieldExpander("RegisterClass", "MemberList");
1109 Sets
.addFieldExpander("CalleeSavedRegs", "SaveList");
1110 Sets
.addExpander("RegisterTuples",
1111 std::make_unique
<TupleExpander
>(SynthDefs
));
1113 // Read in the user-defined (named) sub-register indices.
1114 // More indices will be synthesized later.
1115 std::vector
<Record
*> SRIs
= Records
.getAllDerivedDefinitions("SubRegIndex");
1116 llvm::sort(SRIs
, LessRecord());
1117 for (unsigned i
= 0, e
= SRIs
.size(); i
!= e
; ++i
)
1118 getSubRegIdx(SRIs
[i
]);
1119 // Build composite maps from ComposedOf fields.
1120 for (auto &Idx
: SubRegIndices
)
1121 Idx
.updateComponents(*this);
1123 // Read in the register definitions.
1124 std::vector
<Record
*> Regs
= Records
.getAllDerivedDefinitions("Register");
1125 llvm::sort(Regs
, LessRecordRegister());
1126 // Assign the enumeration values.
1127 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
)
1130 // Expand tuples and number the new registers.
1131 std::vector
<Record
*> Tups
=
1132 Records
.getAllDerivedDefinitions("RegisterTuples");
1134 for (Record
*R
: Tups
) {
1135 std::vector
<Record
*> TupRegs
= *Sets
.expand(R
);
1136 llvm::sort(TupRegs
, LessRecordRegister());
1137 for (Record
*RC
: TupRegs
)
1141 // Now all the registers are known. Build the object graph of explicit
1142 // register-register references.
1143 for (auto &Reg
: Registers
)
1144 Reg
.buildObjectGraph(*this);
1146 // Compute register name map.
1147 for (auto &Reg
: Registers
)
1148 // FIXME: This could just be RegistersByName[name] = register, except that
1149 // causes some failures in MIPS - perhaps they have duplicate register name
1150 // entries? (or maybe there's a reason for it - I don't know much about this
1151 // code, just drive-by refactoring)
1152 RegistersByName
.insert(
1153 std::make_pair(Reg
.TheDef
->getValueAsString("AsmName"), &Reg
));
1155 // Precompute all sub-register maps.
1156 // This will create Composite entries for all inferred sub-register indices.
1157 for (auto &Reg
: Registers
)
1158 Reg
.computeSubRegs(*this);
1160 // Compute transitive closure of subregister index ConcatenationOf vectors
1161 // and initialize ConcatIdx map.
1162 for (CodeGenSubRegIndex
&SRI
: SubRegIndices
) {
1163 SRI
.computeConcatTransitiveClosure();
1164 if (!SRI
.ConcatenationOf
.empty())
1165 ConcatIdx
.insert(std::make_pair(
1166 SmallVector
<CodeGenSubRegIndex
*,8>(SRI
.ConcatenationOf
.begin(),
1167 SRI
.ConcatenationOf
.end()), &SRI
));
1170 // Infer even more sub-registers by combining leading super-registers.
1171 for (auto &Reg
: Registers
)
1172 if (Reg
.CoveredBySubRegs
)
1173 Reg
.computeSecondarySubRegs(*this);
1175 // After the sub-register graph is complete, compute the topologically
1176 // ordered SuperRegs list.
1177 for (auto &Reg
: Registers
)
1178 Reg
.computeSuperRegs(*this);
1180 // For each pair of Reg:SR, if both are non-artificial, mark the
1181 // corresponding sub-register index as non-artificial.
1182 for (auto &Reg
: Registers
) {
1185 for (auto P
: Reg
.getSubRegs()) {
1186 const CodeGenRegister
*SR
= P
.second
;
1187 if (!SR
->Artificial
)
1188 P
.first
->Artificial
= false;
1192 // Native register units are associated with a leaf register. They've all been
1194 NumNativeRegUnits
= RegUnits
.size();
1196 // Read in register class definitions.
1197 std::vector
<Record
*> RCs
= Records
.getAllDerivedDefinitions("RegisterClass");
1199 PrintFatalError("No 'RegisterClass' subclasses defined!");
1201 // Allocate user-defined register classes.
1202 for (auto *R
: RCs
) {
1203 RegClasses
.emplace_back(*this, R
);
1204 CodeGenRegisterClass
&RC
= RegClasses
.back();
1209 // Infer missing classes to create a full algebra.
1210 computeInferredRegisterClasses();
1212 // Order register classes topologically and assign enum values.
1213 RegClasses
.sort(TopoOrderRC
);
1215 for (auto &RC
: RegClasses
)
1217 CodeGenRegisterClass::computeSubClasses(*this);
1220 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1222 CodeGenRegBank::createSubRegIndex(StringRef Name
, StringRef Namespace
) {
1223 SubRegIndices
.emplace_back(Name
, Namespace
, SubRegIndices
.size() + 1);
1224 return &SubRegIndices
.back();
1227 CodeGenSubRegIndex
*CodeGenRegBank::getSubRegIdx(Record
*Def
) {
1228 CodeGenSubRegIndex
*&Idx
= Def2SubRegIdx
[Def
];
1231 SubRegIndices
.emplace_back(Def
, SubRegIndices
.size() + 1);
1232 Idx
= &SubRegIndices
.back();
1236 const CodeGenSubRegIndex
*
1237 CodeGenRegBank::findSubRegIdx(const Record
* Def
) const {
1238 return Def2SubRegIdx
.lookup(Def
);
1241 CodeGenRegister
*CodeGenRegBank::getReg(Record
*Def
) {
1242 CodeGenRegister
*&Reg
= Def2Reg
[Def
];
1245 Registers
.emplace_back(Def
, Registers
.size() + 1);
1246 Reg
= &Registers
.back();
1250 void CodeGenRegBank::addToMaps(CodeGenRegisterClass
*RC
) {
1251 if (Record
*Def
= RC
->getDef())
1252 Def2RC
.insert(std::make_pair(Def
, RC
));
1254 // Duplicate classes are rejected by insert().
1255 // That's OK, we only care about the properties handled by CGRC::Key.
1256 CodeGenRegisterClass::Key
K(*RC
);
1257 Key2RC
.insert(std::make_pair(K
, RC
));
1260 // Create a synthetic sub-class if it is missing.
1261 CodeGenRegisterClass
*
1262 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass
*RC
,
1263 const CodeGenRegister::Vec
*Members
,
1265 // Synthetic sub-class has the same size and alignment as RC.
1266 CodeGenRegisterClass::Key
K(Members
, RC
->RSI
);
1267 RCKeyMap::const_iterator FoundI
= Key2RC
.find(K
);
1268 if (FoundI
!= Key2RC
.end())
1269 return FoundI
->second
;
1271 // Sub-class doesn't exist, create a new one.
1272 RegClasses
.emplace_back(*this, Name
, K
);
1273 addToMaps(&RegClasses
.back());
1274 return &RegClasses
.back();
1277 CodeGenRegisterClass
*CodeGenRegBank::getRegClass(const Record
*Def
) const {
1278 if (CodeGenRegisterClass
*RC
= Def2RC
.lookup(Def
))
1281 PrintFatalError(Def
->getLoc(), "Not a known RegisterClass!");
1285 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex
*A
,
1286 CodeGenSubRegIndex
*B
) {
1287 // Look for an existing entry.
1288 CodeGenSubRegIndex
*Comp
= A
->compose(B
);
1292 // None exists, synthesize one.
1293 std::string Name
= A
->getName() + "_then_" + B
->getName();
1294 Comp
= createSubRegIndex(Name
, A
->getNamespace());
1295 A
->addComposite(B
, Comp
);
1299 CodeGenSubRegIndex
*CodeGenRegBank::
1300 getConcatSubRegIndex(const SmallVector
<CodeGenSubRegIndex
*, 8> &Parts
) {
1301 assert(Parts
.size() > 1 && "Need two parts to concatenate");
1303 for (CodeGenSubRegIndex
*Idx
: Parts
) {
1304 assert(Idx
->ConcatenationOf
.empty() && "No transitive closure?");
1308 // Look for an existing entry.
1309 CodeGenSubRegIndex
*&Idx
= ConcatIdx
[Parts
];
1313 // None exists, synthesize one.
1314 std::string Name
= Parts
.front()->getName();
1315 // Determine whether all parts are contiguous.
1316 bool isContinuous
= true;
1317 unsigned Size
= Parts
.front()->Size
;
1318 unsigned LastOffset
= Parts
.front()->Offset
;
1319 unsigned LastSize
= Parts
.front()->Size
;
1320 for (unsigned i
= 1, e
= Parts
.size(); i
!= e
; ++i
) {
1322 Name
+= Parts
[i
]->getName();
1323 Size
+= Parts
[i
]->Size
;
1324 if (Parts
[i
]->Offset
!= (LastOffset
+ LastSize
))
1325 isContinuous
= false;
1326 LastOffset
= Parts
[i
]->Offset
;
1327 LastSize
= Parts
[i
]->Size
;
1329 Idx
= createSubRegIndex(Name
, Parts
.front()->getNamespace());
1331 Idx
->Offset
= isContinuous
? Parts
.front()->Offset
: -1;
1332 Idx
->ConcatenationOf
.assign(Parts
.begin(), Parts
.end());
1336 void CodeGenRegBank::computeComposites() {
1337 using RegMap
= std::map
<const CodeGenRegister
*, const CodeGenRegister
*>;
1339 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1340 // register to (sub)register associated with the action of the left-hand
1341 // side subregister.
1342 std::map
<const CodeGenSubRegIndex
*, RegMap
> SubRegAction
;
1343 for (const CodeGenRegister
&R
: Registers
) {
1344 const CodeGenRegister::SubRegMap
&SM
= R
.getSubRegs();
1345 for (std::pair
<const CodeGenSubRegIndex
*, const CodeGenRegister
*> P
: SM
)
1346 SubRegAction
[P
.first
].insert({&R
, P
.second
});
1349 // Calculate the composition of two subregisters as compositions of their
1350 // associated actions.
1351 auto compose
= [&SubRegAction
] (const CodeGenSubRegIndex
*Sub1
,
1352 const CodeGenSubRegIndex
*Sub2
) {
1354 const RegMap
&Img1
= SubRegAction
.at(Sub1
);
1355 const RegMap
&Img2
= SubRegAction
.at(Sub2
);
1356 for (std::pair
<const CodeGenRegister
*, const CodeGenRegister
*> P
: Img1
) {
1357 auto F
= Img2
.find(P
.second
);
1358 if (F
!= Img2
.end())
1359 C
.insert({P
.first
, F
->second
});
1364 // Check if the two maps agree on the intersection of their domains.
1365 auto agree
= [] (const RegMap
&Map1
, const RegMap
&Map2
) {
1366 // Technically speaking, an empty map agrees with any other map, but
1367 // this could flag false positives. We're interested in non-vacuous
1369 if (Map1
.empty() || Map2
.empty())
1371 for (std::pair
<const CodeGenRegister
*, const CodeGenRegister
*> P
: Map1
) {
1372 auto F
= Map2
.find(P
.first
);
1373 if (F
== Map2
.end() || P
.second
!= F
->second
)
1379 using CompositePair
= std::pair
<const CodeGenSubRegIndex
*,
1380 const CodeGenSubRegIndex
*>;
1381 SmallSet
<CompositePair
,4> UserDefined
;
1382 for (const CodeGenSubRegIndex
&Idx
: SubRegIndices
)
1383 for (auto P
: Idx
.getComposites())
1384 UserDefined
.insert(std::make_pair(&Idx
, P
.first
));
1386 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1387 // and many registers will share TopoSigs on regular architectures.
1388 BitVector
TopoSigs(getNumTopoSigs());
1390 for (const auto &Reg1
: Registers
) {
1391 // Skip identical subreg structures already processed.
1392 if (TopoSigs
.test(Reg1
.getTopoSig()))
1394 TopoSigs
.set(Reg1
.getTopoSig());
1396 const CodeGenRegister::SubRegMap
&SRM1
= Reg1
.getSubRegs();
1397 for (auto I1
: SRM1
) {
1398 CodeGenSubRegIndex
*Idx1
= I1
.first
;
1399 CodeGenRegister
*Reg2
= I1
.second
;
1400 // Ignore identity compositions.
1403 const CodeGenRegister::SubRegMap
&SRM2
= Reg2
->getSubRegs();
1404 // Try composing Idx1 with another SubRegIndex.
1405 for (auto I2
: SRM2
) {
1406 CodeGenSubRegIndex
*Idx2
= I2
.first
;
1407 CodeGenRegister
*Reg3
= I2
.second
;
1408 // Ignore identity compositions.
1411 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1412 CodeGenSubRegIndex
*Idx3
= Reg1
.getSubRegIndex(Reg3
);
1413 assert(Idx3
&& "Sub-register doesn't have an index");
1415 // Conflicting composition? Emit a warning but allow it.
1416 if (CodeGenSubRegIndex
*Prev
= Idx1
->addComposite(Idx2
, Idx3
)) {
1417 // If the composition was not user-defined, always emit a warning.
1418 if (!UserDefined
.count({Idx1
, Idx2
}) ||
1419 agree(compose(Idx1
, Idx2
), SubRegAction
.at(Idx3
)))
1420 PrintWarning(Twine("SubRegIndex ") + Idx1
->getQualifiedName() +
1421 " and " + Idx2
->getQualifiedName() +
1422 " compose ambiguously as " + Prev
->getQualifiedName() +
1423 " or " + Idx3
->getQualifiedName());
1430 // Compute lane masks. This is similar to register units, but at the
1431 // sub-register index level. Each bit in the lane mask is like a register unit
1432 // class, and two lane masks will have a bit in common if two sub-register
1433 // indices overlap in some register.
1435 // Conservatively share a lane mask bit if two sub-register indices overlap in
1436 // some registers, but not in others. That shouldn't happen a lot.
1437 void CodeGenRegBank::computeSubRegLaneMasks() {
1438 // First assign individual bits to all the leaf indices.
1440 // Determine mask of lanes that cover their registers.
1441 CoveringLanes
= LaneBitmask::getAll();
1442 for (auto &Idx
: SubRegIndices
) {
1443 if (Idx
.getComposites().empty()) {
1444 if (Bit
> LaneBitmask::BitWidth
) {
1446 Twine("Ran out of lanemask bits to represent subregister ")
1449 Idx
.LaneMask
= LaneBitmask::getLane(Bit
);
1452 Idx
.LaneMask
= LaneBitmask::getNone();
1456 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1457 // here is that for each possible target subregister we look at the leafs
1458 // in the subregister graph that compose for this target and create
1459 // transformation sequences for the lanemasks. Each step in the sequence
1460 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1461 // are usually the same for many subregisters we can easily combine the steps
1462 // by combining the masks.
1463 for (const auto &Idx
: SubRegIndices
) {
1464 const auto &Composites
= Idx
.getComposites();
1465 auto &LaneTransforms
= Idx
.CompositionLaneMaskTransform
;
1467 if (Composites
.empty()) {
1468 // Moving from a class with no subregisters we just had a single lane:
1469 // The subregister must be a leaf subregister and only occupies 1 bit.
1470 // Move the bit from the class without subregisters into that position.
1471 unsigned DstBit
= Idx
.LaneMask
.getHighestLane();
1472 assert(Idx
.LaneMask
== LaneBitmask::getLane(DstBit
) &&
1473 "Must be a leaf subregister");
1474 MaskRolPair MaskRol
= { LaneBitmask::getLane(0), (uint8_t)DstBit
};
1475 LaneTransforms
.push_back(MaskRol
);
1477 // Go through all leaf subregisters and find the ones that compose with
1478 // Idx. These make out all possible valid bits in the lane mask we want to
1479 // transform. Looking only at the leafs ensure that only a single bit in
1481 unsigned NextBit
= 0;
1482 for (auto &Idx2
: SubRegIndices
) {
1483 // Skip non-leaf subregisters.
1484 if (!Idx2
.getComposites().empty())
1486 // Replicate the behaviour from the lane mask generation loop above.
1487 unsigned SrcBit
= NextBit
;
1488 LaneBitmask SrcMask
= LaneBitmask::getLane(SrcBit
);
1489 if (NextBit
< LaneBitmask::BitWidth
-1)
1491 assert(Idx2
.LaneMask
== SrcMask
);
1493 // Get the composed subregister if there is any.
1494 auto C
= Composites
.find(&Idx2
);
1495 if (C
== Composites
.end())
1497 const CodeGenSubRegIndex
*Composite
= C
->second
;
1498 // The Composed subreg should be a leaf subreg too
1499 assert(Composite
->getComposites().empty());
1501 // Create Mask+Rotate operation and merge with existing ops if possible.
1502 unsigned DstBit
= Composite
->LaneMask
.getHighestLane();
1503 int Shift
= DstBit
- SrcBit
;
1504 uint8_t RotateLeft
= Shift
>= 0 ? (uint8_t)Shift
1505 : LaneBitmask::BitWidth
+ Shift
;
1506 for (auto &I
: LaneTransforms
) {
1507 if (I
.RotateLeft
== RotateLeft
) {
1509 SrcMask
= LaneBitmask::getNone();
1512 if (SrcMask
.any()) {
1513 MaskRolPair MaskRol
= { SrcMask
, RotateLeft
};
1514 LaneTransforms
.push_back(MaskRol
);
1519 // Optimize if the transformation consists of one step only: Set mask to
1520 // 0xffffffff (including some irrelevant invalid bits) so that it should
1521 // merge with more entries later while compressing the table.
1522 if (LaneTransforms
.size() == 1)
1523 LaneTransforms
[0].Mask
= LaneBitmask::getAll();
1525 // Further compression optimization: For invalid compositions resulting
1526 // in a sequence with 0 entries we can just pick any other. Choose
1527 // Mask 0xffffffff with Rotation 0.
1528 if (LaneTransforms
.size() == 0) {
1529 MaskRolPair P
= { LaneBitmask::getAll(), 0 };
1530 LaneTransforms
.push_back(P
);
1534 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1535 // by the sub-register graph? This doesn't occur in any known targets.
1537 // Inherit lanes from composites.
1538 for (const auto &Idx
: SubRegIndices
) {
1539 LaneBitmask Mask
= Idx
.computeLaneMask();
1540 // If some super-registers without CoveredBySubRegs use this index, we can
1541 // no longer assume that the lanes are covering their registers.
1542 if (!Idx
.AllSuperRegsCovered
)
1543 CoveringLanes
&= ~Mask
;
1546 // Compute lane mask combinations for register classes.
1547 for (auto &RegClass
: RegClasses
) {
1548 LaneBitmask LaneMask
;
1549 for (const auto &SubRegIndex
: SubRegIndices
) {
1550 if (RegClass
.getSubClassWithSubReg(&SubRegIndex
) == nullptr)
1552 LaneMask
|= SubRegIndex
.LaneMask
;
1555 // For classes without any subregisters set LaneMask to 1 instead of 0.
1556 // This makes it easier for client code to handle classes uniformly.
1557 if (LaneMask
.none())
1558 LaneMask
= LaneBitmask::getLane(0);
1560 RegClass
.LaneMask
= LaneMask
;
1566 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1567 // the transitive closure of the union of overlapping register
1568 // classes. Together, the UberRegSets form a partition of the registers. If we
1569 // consider overlapping register classes to be connected, then each UberRegSet
1570 // is a set of connected components.
1572 // An UberRegSet will likely be a horizontal slice of register names of
1573 // the same width. Nontrivial subregisters should then be in a separate
1574 // UberRegSet. But this property isn't required for valid computation of
1575 // register unit weights.
1577 // A Weight field caches the max per-register unit weight in each UberRegSet.
1579 // A set of SingularDeterminants flags single units of some register in this set
1580 // for which the unit weight equals the set weight. These units should not have
1581 // their weight increased.
1583 CodeGenRegister::Vec Regs
;
1584 unsigned Weight
= 0;
1585 CodeGenRegister::RegUnitList SingularDeterminants
;
1587 UberRegSet() = default;
1590 } // end anonymous namespace
1592 // Partition registers into UberRegSets, where each set is the transitive
1593 // closure of the union of overlapping register classes.
1595 // UberRegSets[0] is a special non-allocatable set.
1596 static void computeUberSets(std::vector
<UberRegSet
> &UberSets
,
1597 std::vector
<UberRegSet
*> &RegSets
,
1598 CodeGenRegBank
&RegBank
) {
1599 const auto &Registers
= RegBank
.getRegisters();
1601 // The Register EnumValue is one greater than its index into Registers.
1602 assert(Registers
.size() == Registers
.back().EnumValue
&&
1603 "register enum value mismatch");
1605 // For simplicitly make the SetID the same as EnumValue.
1606 IntEqClasses
UberSetIDs(Registers
.size()+1);
1607 std::set
<unsigned> AllocatableRegs
;
1608 for (auto &RegClass
: RegBank
.getRegClasses()) {
1609 if (!RegClass
.Allocatable
)
1612 const CodeGenRegister::Vec
&Regs
= RegClass
.getMembers();
1616 unsigned USetID
= UberSetIDs
.findLeader((*Regs
.begin())->EnumValue
);
1617 assert(USetID
&& "register number 0 is invalid");
1619 AllocatableRegs
.insert((*Regs
.begin())->EnumValue
);
1620 for (auto I
= std::next(Regs
.begin()), E
= Regs
.end(); I
!= E
; ++I
) {
1621 AllocatableRegs
.insert((*I
)->EnumValue
);
1622 UberSetIDs
.join(USetID
, (*I
)->EnumValue
);
1625 // Combine non-allocatable regs.
1626 for (const auto &Reg
: Registers
) {
1627 unsigned RegNum
= Reg
.EnumValue
;
1628 if (AllocatableRegs
.count(RegNum
))
1631 UberSetIDs
.join(0, RegNum
);
1633 UberSetIDs
.compress();
1635 // Make the first UberSet a special unallocatable set.
1636 unsigned ZeroID
= UberSetIDs
[0];
1638 // Insert Registers into the UberSets formed by union-find.
1639 // Do not resize after this.
1640 UberSets
.resize(UberSetIDs
.getNumClasses());
1642 for (const CodeGenRegister
&Reg
: Registers
) {
1643 unsigned USetID
= UberSetIDs
[Reg
.EnumValue
];
1646 else if (USetID
== ZeroID
)
1649 UberRegSet
*USet
= &UberSets
[USetID
];
1650 USet
->Regs
.push_back(&Reg
);
1651 sortAndUniqueRegisters(USet
->Regs
);
1652 RegSets
[i
++] = USet
;
1656 // Recompute each UberSet weight after changing unit weights.
1657 static void computeUberWeights(std::vector
<UberRegSet
> &UberSets
,
1658 CodeGenRegBank
&RegBank
) {
1659 // Skip the first unallocatable set.
1660 for (std::vector
<UberRegSet
>::iterator I
= std::next(UberSets
.begin()),
1661 E
= UberSets
.end(); I
!= E
; ++I
) {
1663 // Initialize all unit weights in this set, and remember the max units/reg.
1664 const CodeGenRegister
*Reg
= nullptr;
1665 unsigned MaxWeight
= 0, Weight
= 0;
1666 for (RegUnitIterator
UnitI(I
->Regs
); UnitI
.isValid(); ++UnitI
) {
1667 if (Reg
!= UnitI
.getReg()) {
1668 if (Weight
> MaxWeight
)
1670 Reg
= UnitI
.getReg();
1673 if (!RegBank
.getRegUnit(*UnitI
).Artificial
) {
1674 unsigned UWeight
= RegBank
.getRegUnit(*UnitI
).Weight
;
1677 RegBank
.increaseRegUnitWeight(*UnitI
, UWeight
);
1682 if (Weight
> MaxWeight
)
1684 if (I
->Weight
!= MaxWeight
) {
1685 LLVM_DEBUG(dbgs() << "UberSet " << I
- UberSets
.begin() << " Weight "
1689 << " " << Unit
->getName();
1691 // Update the set weight.
1692 I
->Weight
= MaxWeight
;
1695 // Find singular determinants.
1696 for (const auto R
: I
->Regs
) {
1697 if (R
->getRegUnits().count() == 1 && R
->getWeight(RegBank
) == I
->Weight
) {
1698 I
->SingularDeterminants
|= R
->getRegUnits();
1704 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1705 // a register and its subregisters so that they have the same weight as their
1706 // UberSet. Self-recursion processes the subregister tree in postorder so
1707 // subregisters are normalized first.
1710 // - creates new adopted register units
1711 // - causes superregisters to inherit adopted units
1712 // - increases the weight of "singular" units
1713 // - induces recomputation of UberWeights.
1714 static bool normalizeWeight(CodeGenRegister
*Reg
,
1715 std::vector
<UberRegSet
> &UberSets
,
1716 std::vector
<UberRegSet
*> &RegSets
,
1717 BitVector
&NormalRegs
,
1718 CodeGenRegister::RegUnitList
&NormalUnits
,
1719 CodeGenRegBank
&RegBank
) {
1720 NormalRegs
.resize(std::max(Reg
->EnumValue
+ 1, NormalRegs
.size()));
1721 if (NormalRegs
.test(Reg
->EnumValue
))
1723 NormalRegs
.set(Reg
->EnumValue
);
1725 bool Changed
= false;
1726 const CodeGenRegister::SubRegMap
&SRM
= Reg
->getSubRegs();
1727 for (auto SRI
: SRM
) {
1728 if (SRI
.second
== Reg
)
1729 continue; // self-cycles happen
1731 Changed
|= normalizeWeight(SRI
.second
, UberSets
, RegSets
, NormalRegs
,
1732 NormalUnits
, RegBank
);
1734 // Postorder register normalization.
1736 // Inherit register units newly adopted by subregisters.
1737 if (Reg
->inheritRegUnits(RegBank
))
1738 computeUberWeights(UberSets
, RegBank
);
1740 // Check if this register is too skinny for its UberRegSet.
1741 UberRegSet
*UberSet
= RegSets
[RegBank
.getRegIndex(Reg
)];
1743 unsigned RegWeight
= Reg
->getWeight(RegBank
);
1744 if (UberSet
->Weight
> RegWeight
) {
1745 // A register unit's weight can be adjusted only if it is the singular unit
1746 // for this register, has not been used to normalize a subregister's set,
1747 // and has not already been used to singularly determine this UberRegSet.
1748 unsigned AdjustUnit
= *Reg
->getRegUnits().begin();
1749 if (Reg
->getRegUnits().count() != 1
1750 || hasRegUnit(NormalUnits
, AdjustUnit
)
1751 || hasRegUnit(UberSet
->SingularDeterminants
, AdjustUnit
)) {
1752 // We don't have an adjustable unit, so adopt a new one.
1753 AdjustUnit
= RegBank
.newRegUnit(UberSet
->Weight
- RegWeight
);
1754 Reg
->adoptRegUnit(AdjustUnit
);
1755 // Adopting a unit does not immediately require recomputing set weights.
1758 // Adjust the existing single unit.
1759 if (!RegBank
.getRegUnit(AdjustUnit
).Artificial
)
1760 RegBank
.increaseRegUnitWeight(AdjustUnit
, UberSet
->Weight
- RegWeight
);
1761 // The unit may be shared among sets and registers within this set.
1762 computeUberWeights(UberSets
, RegBank
);
1767 // Mark these units normalized so superregisters can't change their weights.
1768 NormalUnits
|= Reg
->getRegUnits();
1773 // Compute a weight for each register unit created during getSubRegs.
1775 // The goal is that two registers in the same class will have the same weight,
1776 // where each register's weight is defined as sum of its units' weights.
1777 void CodeGenRegBank::computeRegUnitWeights() {
1778 std::vector
<UberRegSet
> UberSets
;
1779 std::vector
<UberRegSet
*> RegSets(Registers
.size());
1780 computeUberSets(UberSets
, RegSets
, *this);
1781 // UberSets and RegSets are now immutable.
1783 computeUberWeights(UberSets
, *this);
1785 // Iterate over each Register, normalizing the unit weights until reaching
1787 unsigned NumIters
= 0;
1788 for (bool Changed
= true; Changed
; ++NumIters
) {
1789 assert(NumIters
<= NumNativeRegUnits
&& "Runaway register unit weights");
1791 for (auto &Reg
: Registers
) {
1792 CodeGenRegister::RegUnitList NormalUnits
;
1793 BitVector NormalRegs
;
1794 Changed
|= normalizeWeight(&Reg
, UberSets
, RegSets
, NormalRegs
,
1795 NormalUnits
, *this);
1800 // Find a set in UniqueSets with the same elements as Set.
1801 // Return an iterator into UniqueSets.
1802 static std::vector
<RegUnitSet
>::const_iterator
1803 findRegUnitSet(const std::vector
<RegUnitSet
> &UniqueSets
,
1804 const RegUnitSet
&Set
) {
1805 std::vector
<RegUnitSet
>::const_iterator
1806 I
= UniqueSets
.begin(), E
= UniqueSets
.end();
1808 if (I
->Units
== Set
.Units
)
1814 // Return true if the RUSubSet is a subset of RUSuperSet.
1815 static bool isRegUnitSubSet(const std::vector
<unsigned> &RUSubSet
,
1816 const std::vector
<unsigned> &RUSuperSet
) {
1817 return std::includes(RUSuperSet
.begin(), RUSuperSet
.end(),
1818 RUSubSet
.begin(), RUSubSet
.end());
1821 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1822 /// but with one or two registers removed. We occasionally have registers like
1823 /// APSR and PC thrown in with the general registers. We also see many
1824 /// special-purpose register subsets, such as tail-call and Thumb
1825 /// encodings. Generating all possible overlapping sets is combinatorial and
1826 /// overkill for modeling pressure. Ideally we could fix this statically in
1827 /// tablegen by (1) having the target define register classes that only include
1828 /// the allocatable registers and marking other classes as non-allocatable and
1829 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1830 /// the purpose of pressure. However, we make an attempt to handle targets that
1831 /// are not nicely defined by merging nearly identical register unit sets
1832 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1833 /// set limit by filtering the reserved registers.
1835 /// Merge sets only if the units have the same weight. For example, on ARM,
1836 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1837 /// should not expand the S set to include D regs.
1838 void CodeGenRegBank::pruneUnitSets() {
1839 assert(RegClassUnitSets
.empty() && "this invalidates RegClassUnitSets");
1841 // Form an equivalence class of UnitSets with no significant difference.
1842 std::vector
<unsigned> SuperSetIDs
;
1843 for (unsigned SubIdx
= 0, EndIdx
= RegUnitSets
.size();
1844 SubIdx
!= EndIdx
; ++SubIdx
) {
1845 const RegUnitSet
&SubSet
= RegUnitSets
[SubIdx
];
1846 unsigned SuperIdx
= 0;
1847 for (; SuperIdx
!= EndIdx
; ++SuperIdx
) {
1848 if (SuperIdx
== SubIdx
)
1851 unsigned UnitWeight
= RegUnits
[SubSet
.Units
[0]].Weight
;
1852 const RegUnitSet
&SuperSet
= RegUnitSets
[SuperIdx
];
1853 if (isRegUnitSubSet(SubSet
.Units
, SuperSet
.Units
)
1854 && (SubSet
.Units
.size() + 3 > SuperSet
.Units
.size())
1855 && UnitWeight
== RegUnits
[SuperSet
.Units
[0]].Weight
1856 && UnitWeight
== RegUnits
[SuperSet
.Units
.back()].Weight
) {
1857 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx
<< " subsumed by " << SuperIdx
1859 // We can pick any of the set names for the merged set. Go for the
1860 // shortest one to avoid picking the name of one of the classes that are
1861 // artificially created by tablegen. So "FPR128_lo" instead of
1862 // "QQQQ_with_qsub3_in_FPR128_lo".
1863 if (RegUnitSets
[SubIdx
].Name
.size() < RegUnitSets
[SuperIdx
].Name
.size())
1864 RegUnitSets
[SuperIdx
].Name
= RegUnitSets
[SubIdx
].Name
;
1868 if (SuperIdx
== EndIdx
)
1869 SuperSetIDs
.push_back(SubIdx
);
1871 // Populate PrunedUnitSets with each equivalence class's superset.
1872 std::vector
<RegUnitSet
> PrunedUnitSets(SuperSetIDs
.size());
1873 for (unsigned i
= 0, e
= SuperSetIDs
.size(); i
!= e
; ++i
) {
1874 unsigned SuperIdx
= SuperSetIDs
[i
];
1875 PrunedUnitSets
[i
].Name
= RegUnitSets
[SuperIdx
].Name
;
1876 PrunedUnitSets
[i
].Units
.swap(RegUnitSets
[SuperIdx
].Units
);
1878 RegUnitSets
.swap(PrunedUnitSets
);
1881 // Create a RegUnitSet for each RegClass that contains all units in the class
1882 // including adopted units that are necessary to model register pressure. Then
1883 // iteratively compute RegUnitSets such that the union of any two overlapping
1884 // RegUnitSets is repreresented.
1886 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1887 // RegUnitSet that is a superset of that RegUnitClass.
1888 void CodeGenRegBank::computeRegUnitSets() {
1889 assert(RegUnitSets
.empty() && "dirty RegUnitSets");
1891 // Compute a unique RegUnitSet for each RegClass.
1892 auto &RegClasses
= getRegClasses();
1893 for (auto &RC
: RegClasses
) {
1894 if (!RC
.Allocatable
|| RC
.Artificial
|| !RC
.GeneratePressureSet
)
1897 // Speculatively grow the RegUnitSets to hold the new set.
1898 RegUnitSets
.resize(RegUnitSets
.size() + 1);
1899 RegUnitSets
.back().Name
= RC
.getName();
1901 // Compute a sorted list of units in this class.
1902 RC
.buildRegUnitSet(*this, RegUnitSets
.back().Units
);
1904 // Find an existing RegUnitSet.
1905 std::vector
<RegUnitSet
>::const_iterator SetI
=
1906 findRegUnitSet(RegUnitSets
, RegUnitSets
.back());
1907 if (SetI
!= std::prev(RegUnitSets
.end()))
1908 RegUnitSets
.pop_back();
1911 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx
= 0,
1912 USEnd
= RegUnitSets
.size();
1913 USIdx
< USEnd
; ++USIdx
) {
1914 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
1915 for (auto &U
: RegUnitSets
[USIdx
].Units
)
1916 printRegUnitName(U
);
1920 // Iteratively prune unit sets.
1923 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx
= 0,
1924 USEnd
= RegUnitSets
.size();
1925 USIdx
< USEnd
; ++USIdx
) {
1926 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
1927 for (auto &U
: RegUnitSets
[USIdx
].Units
)
1928 printRegUnitName(U
);
1930 } dbgs() << "\nUnion sets:\n");
1932 // Iterate over all unit sets, including new ones added by this loop.
1933 unsigned NumRegUnitSubSets
= RegUnitSets
.size();
1934 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
) {
1935 // In theory, this is combinatorial. In practice, it needs to be bounded
1936 // by a small number of sets for regpressure to be efficient.
1937 // If the assert is hit, we need to implement pruning.
1938 assert(Idx
< (2*NumRegUnitSubSets
) && "runaway unit set inference");
1940 // Compare new sets with all original classes.
1941 for (unsigned SearchIdx
= (Idx
>= NumRegUnitSubSets
) ? 0 : Idx
+1;
1942 SearchIdx
!= EndIdx
; ++SearchIdx
) {
1943 std::set
<unsigned> Intersection
;
1944 std::set_intersection(RegUnitSets
[Idx
].Units
.begin(),
1945 RegUnitSets
[Idx
].Units
.end(),
1946 RegUnitSets
[SearchIdx
].Units
.begin(),
1947 RegUnitSets
[SearchIdx
].Units
.end(),
1948 std::inserter(Intersection
, Intersection
.begin()));
1949 if (Intersection
.empty())
1952 // Speculatively grow the RegUnitSets to hold the new set.
1953 RegUnitSets
.resize(RegUnitSets
.size() + 1);
1954 RegUnitSets
.back().Name
=
1955 RegUnitSets
[Idx
].Name
+ "_with_" + RegUnitSets
[SearchIdx
].Name
;
1957 std::set_union(RegUnitSets
[Idx
].Units
.begin(),
1958 RegUnitSets
[Idx
].Units
.end(),
1959 RegUnitSets
[SearchIdx
].Units
.begin(),
1960 RegUnitSets
[SearchIdx
].Units
.end(),
1961 std::inserter(RegUnitSets
.back().Units
,
1962 RegUnitSets
.back().Units
.begin()));
1964 // Find an existing RegUnitSet, or add the union to the unique sets.
1965 std::vector
<RegUnitSet
>::const_iterator SetI
=
1966 findRegUnitSet(RegUnitSets
, RegUnitSets
.back());
1967 if (SetI
!= std::prev(RegUnitSets
.end()))
1968 RegUnitSets
.pop_back();
1970 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets
.size() - 1 << " "
1971 << RegUnitSets
.back().Name
<< ":";
1973 : RegUnitSets
.back().Units
) printRegUnitName(U
);
1979 // Iteratively prune unit sets after inferring supersets.
1983 dbgs() << "\n"; for (unsigned USIdx
= 0, USEnd
= RegUnitSets
.size();
1984 USIdx
< USEnd
; ++USIdx
) {
1985 dbgs() << "UnitSet " << USIdx
<< " " << RegUnitSets
[USIdx
].Name
<< ":";
1986 for (auto &U
: RegUnitSets
[USIdx
].Units
)
1987 printRegUnitName(U
);
1991 // For each register class, list the UnitSets that are supersets.
1992 RegClassUnitSets
.resize(RegClasses
.size());
1994 for (auto &RC
: RegClasses
) {
1996 if (!RC
.Allocatable
)
1999 // Recompute the sorted list of units in this class.
2000 std::vector
<unsigned> RCRegUnits
;
2001 RC
.buildRegUnitSet(*this, RCRegUnits
);
2003 // Don't increase pressure for unallocatable regclasses.
2004 if (RCRegUnits
.empty())
2007 LLVM_DEBUG(dbgs() << "RC " << RC
.getName() << " Units:\n";
2009 : RCRegUnits
) printRegUnitName(U
);
2010 dbgs() << "\n UnitSetIDs:");
2012 // Find all supersets.
2013 for (unsigned USIdx
= 0, USEnd
= RegUnitSets
.size();
2014 USIdx
!= USEnd
; ++USIdx
) {
2015 if (isRegUnitSubSet(RCRegUnits
, RegUnitSets
[USIdx
].Units
)) {
2016 LLVM_DEBUG(dbgs() << " " << USIdx
);
2017 RegClassUnitSets
[RCIdx
].push_back(USIdx
);
2020 LLVM_DEBUG(dbgs() << "\n");
2021 assert(!RegClassUnitSets
[RCIdx
].empty() && "missing unit set for regclass");
2024 // For each register unit, ensure that we have the list of UnitSets that
2025 // contain the unit. Normally, this matches an existing list of UnitSets for a
2026 // register class. If not, we create a new entry in RegClassUnitSets as a
2027 // "fake" register class.
2028 for (unsigned UnitIdx
= 0, UnitEnd
= NumNativeRegUnits
;
2029 UnitIdx
< UnitEnd
; ++UnitIdx
) {
2030 std::vector
<unsigned> RUSets
;
2031 for (unsigned i
= 0, e
= RegUnitSets
.size(); i
!= e
; ++i
) {
2032 RegUnitSet
&RUSet
= RegUnitSets
[i
];
2033 if (!is_contained(RUSet
.Units
, UnitIdx
))
2035 RUSets
.push_back(i
);
2037 unsigned RCUnitSetsIdx
= 0;
2038 for (unsigned e
= RegClassUnitSets
.size();
2039 RCUnitSetsIdx
!= e
; ++RCUnitSetsIdx
) {
2040 if (RegClassUnitSets
[RCUnitSetsIdx
] == RUSets
) {
2044 RegUnits
[UnitIdx
].RegClassUnitSetsIdx
= RCUnitSetsIdx
;
2045 if (RCUnitSetsIdx
== RegClassUnitSets
.size()) {
2046 // Create a new list of UnitSets as a "fake" register class.
2047 RegClassUnitSets
.resize(RCUnitSetsIdx
+ 1);
2048 RegClassUnitSets
[RCUnitSetsIdx
].swap(RUSets
);
2053 void CodeGenRegBank::computeRegUnitLaneMasks() {
2054 for (auto &Register
: Registers
) {
2055 // Create an initial lane mask for all register units.
2056 const auto &RegUnits
= Register
.getRegUnits();
2057 CodeGenRegister::RegUnitLaneMaskList
2058 RegUnitLaneMasks(RegUnits
.count(), LaneBitmask::getNone());
2059 // Iterate through SubRegisters.
2060 typedef CodeGenRegister::SubRegMap SubRegMap
;
2061 const SubRegMap
&SubRegs
= Register
.getSubRegs();
2062 for (auto S
: SubRegs
) {
2063 CodeGenRegister
*SubReg
= S
.second
;
2064 // Ignore non-leaf subregisters, their lane masks are fully covered by
2065 // the leaf subregisters anyway.
2066 if (!SubReg
->getSubRegs().empty())
2068 CodeGenSubRegIndex
*SubRegIndex
= S
.first
;
2069 const CodeGenRegister
*SubRegister
= S
.second
;
2070 LaneBitmask LaneMask
= SubRegIndex
->LaneMask
;
2071 // Distribute LaneMask to Register Units touched.
2072 for (unsigned SUI
: SubRegister
->getRegUnits()) {
2075 for (unsigned RU
: RegUnits
) {
2077 RegUnitLaneMasks
[u
] |= LaneMask
;
2087 Register
.setRegUnitLaneMasks(RegUnitLaneMasks
);
2091 void CodeGenRegBank::computeDerivedInfo() {
2092 computeComposites();
2093 computeSubRegLaneMasks();
2095 // Compute a weight for each register unit created during getSubRegs.
2096 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2097 computeRegUnitWeights();
2099 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2100 // supersets for the union of overlapping sets.
2101 computeRegUnitSets();
2103 computeRegUnitLaneMasks();
2105 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2106 for (CodeGenRegisterClass
&RC
: RegClasses
) {
2107 RC
.HasDisjunctSubRegs
= false;
2108 RC
.CoveredBySubRegs
= true;
2109 for (const CodeGenRegister
*Reg
: RC
.getMembers()) {
2110 RC
.HasDisjunctSubRegs
|= Reg
->HasDisjunctSubRegs
;
2111 RC
.CoveredBySubRegs
&= Reg
->CoveredBySubRegs
;
2115 // Get the weight of each set.
2116 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
)
2117 RegUnitSets
[Idx
].Weight
= getRegUnitSetWeight(RegUnitSets
[Idx
].Units
);
2119 // Find the order of each set.
2120 RegUnitSetOrder
.reserve(RegUnitSets
.size());
2121 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
)
2122 RegUnitSetOrder
.push_back(Idx
);
2124 llvm::stable_sort(RegUnitSetOrder
, [this](unsigned ID1
, unsigned ID2
) {
2125 return getRegPressureSet(ID1
).Units
.size() <
2126 getRegPressureSet(ID2
).Units
.size();
2128 for (unsigned Idx
= 0, EndIdx
= RegUnitSets
.size(); Idx
!= EndIdx
; ++Idx
) {
2129 RegUnitSets
[RegUnitSetOrder
[Idx
]].Order
= Idx
;
2134 // Synthesize missing register class intersections.
2136 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2137 // returns a maximal register class for all X.
2139 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass
*RC
) {
2140 assert(!RegClasses
.empty());
2141 // Stash the iterator to the last element so that this loop doesn't visit
2142 // elements added by the getOrCreateSubClass call within it.
2143 for (auto I
= RegClasses
.begin(), E
= std::prev(RegClasses
.end());
2144 I
!= std::next(E
); ++I
) {
2145 CodeGenRegisterClass
*RC1
= RC
;
2146 CodeGenRegisterClass
*RC2
= &*I
;
2150 // Compute the set intersection of RC1 and RC2.
2151 const CodeGenRegister::Vec
&Memb1
= RC1
->getMembers();
2152 const CodeGenRegister::Vec
&Memb2
= RC2
->getMembers();
2153 CodeGenRegister::Vec Intersection
;
2154 std::set_intersection(Memb1
.begin(), Memb1
.end(), Memb2
.begin(),
2156 std::inserter(Intersection
, Intersection
.begin()),
2157 deref
<std::less
<>>());
2159 // Skip disjoint class pairs.
2160 if (Intersection
.empty())
2163 // If RC1 and RC2 have different spill sizes or alignments, use the
2164 // stricter one for sub-classing. If they are equal, prefer RC1.
2165 if (RC2
->RSI
.hasStricterSpillThan(RC1
->RSI
))
2166 std::swap(RC1
, RC2
);
2168 getOrCreateSubClass(RC1
, &Intersection
,
2169 RC1
->getName() + "_and_" + RC2
->getName());
2174 // Synthesize missing sub-classes for getSubClassWithSubReg().
2176 // Make sure that the set of registers in RC with a given SubIdx sub-register
2177 // form a register class. Update RC->SubClassWithSubReg.
2179 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass
*RC
) {
2180 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2181 typedef std::map
<const CodeGenSubRegIndex
*, CodeGenRegister::Vec
,
2185 // Compute the set of registers supporting each SubRegIndex.
2186 SubReg2SetMap SRSets
;
2187 for (const auto R
: RC
->getMembers()) {
2190 const CodeGenRegister::SubRegMap
&SRM
= R
->getSubRegs();
2191 for (auto I
: SRM
) {
2192 if (!I
.first
->Artificial
)
2193 SRSets
[I
.first
].push_back(R
);
2197 for (auto I
: SRSets
)
2198 sortAndUniqueRegisters(I
.second
);
2200 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2201 // numerical order to visit synthetic indices last.
2202 for (const auto &SubIdx
: SubRegIndices
) {
2203 if (SubIdx
.Artificial
)
2205 SubReg2SetMap::const_iterator I
= SRSets
.find(&SubIdx
);
2206 // Unsupported SubRegIndex. Skip it.
2207 if (I
== SRSets
.end())
2209 // In most cases, all RC registers support the SubRegIndex.
2210 if (I
->second
.size() == RC
->getMembers().size()) {
2211 RC
->setSubClassWithSubReg(&SubIdx
, RC
);
2214 // This is a real subset. See if we have a matching class.
2215 CodeGenRegisterClass
*SubRC
=
2216 getOrCreateSubClass(RC
, &I
->second
,
2217 RC
->getName() + "_with_" + I
->first
->getName());
2218 RC
->setSubClassWithSubReg(&SubIdx
, SubRC
);
2223 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2225 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2226 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2229 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass
*RC
,
2230 std::list
<CodeGenRegisterClass
>::iterator FirstSubRegRC
) {
2231 SmallVector
<std::pair
<const CodeGenRegister
*,
2232 const CodeGenRegister
*>, 16> SSPairs
;
2233 BitVector
TopoSigs(getNumTopoSigs());
2235 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2236 for (auto &SubIdx
: SubRegIndices
) {
2237 // Skip indexes that aren't fully supported by RC's registers. This was
2238 // computed by inferSubClassWithSubReg() above which should have been
2240 if (RC
->getSubClassWithSubReg(&SubIdx
) != RC
)
2243 // Build list of (Super, Sub) pairs for this SubIdx.
2246 for (const auto Super
: RC
->getMembers()) {
2247 const CodeGenRegister
*Sub
= Super
->getSubRegs().find(&SubIdx
)->second
;
2248 assert(Sub
&& "Missing sub-register");
2249 SSPairs
.push_back(std::make_pair(Super
, Sub
));
2250 TopoSigs
.set(Sub
->getTopoSig());
2253 // Iterate over sub-register class candidates. Ignore classes created by
2254 // this loop. They will never be useful.
2255 // Store an iterator to the last element (not end) so that this loop doesn't
2256 // visit newly inserted elements.
2257 assert(!RegClasses
.empty());
2258 for (auto I
= FirstSubRegRC
, E
= std::prev(RegClasses
.end());
2259 I
!= std::next(E
); ++I
) {
2260 CodeGenRegisterClass
&SubRC
= *I
;
2261 if (SubRC
.Artificial
)
2263 // Topological shortcut: SubRC members have the wrong shape.
2264 if (!TopoSigs
.anyCommon(SubRC
.getTopoSigs()))
2266 // Compute the subset of RC that maps into SubRC.
2267 CodeGenRegister::Vec SubSetVec
;
2268 for (unsigned i
= 0, e
= SSPairs
.size(); i
!= e
; ++i
)
2269 if (SubRC
.contains(SSPairs
[i
].second
))
2270 SubSetVec
.push_back(SSPairs
[i
].first
);
2272 if (SubSetVec
.empty())
2275 // RC injects completely into SubRC.
2276 sortAndUniqueRegisters(SubSetVec
);
2277 if (SubSetVec
.size() == SSPairs
.size()) {
2278 SubRC
.addSuperRegClass(&SubIdx
, RC
);
2282 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2284 getOrCreateSubClass(RC
, &SubSetVec
, RC
->getName() + "_with_" +
2285 SubIdx
.getName() + "_in_" +
2292 // Infer missing register classes.
2294 void CodeGenRegBank::computeInferredRegisterClasses() {
2295 assert(!RegClasses
.empty());
2296 // When this function is called, the register classes have not been sorted
2297 // and assigned EnumValues yet. That means getSubClasses(),
2298 // getSuperClasses(), and hasSubClass() functions are defunct.
2300 // Use one-before-the-end so it doesn't move forward when new elements are
2302 auto FirstNewRC
= std::prev(RegClasses
.end());
2304 // Visit all register classes, including the ones being added by the loop.
2305 // Watch out for iterator invalidation here.
2306 for (auto I
= RegClasses
.begin(), E
= RegClasses
.end(); I
!= E
; ++I
) {
2307 CodeGenRegisterClass
*RC
= &*I
;
2311 // Synthesize answers for getSubClassWithSubReg().
2312 inferSubClassWithSubReg(RC
);
2314 // Synthesize answers for getCommonSubClass().
2315 inferCommonSubClass(RC
);
2317 // Synthesize answers for getMatchingSuperRegClass().
2318 inferMatchingSuperRegClass(RC
);
2320 // New register classes are created while this loop is running, and we need
2321 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2322 // to match old super-register classes with sub-register classes created
2323 // after inferMatchingSuperRegClass was called. At this point,
2324 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2325 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2326 if (I
== FirstNewRC
) {
2327 auto NextNewRC
= std::prev(RegClasses
.end());
2328 for (auto I2
= RegClasses
.begin(), E2
= std::next(FirstNewRC
); I2
!= E2
;
2330 inferMatchingSuperRegClass(&*I2
, E2
);
2331 FirstNewRC
= NextNewRC
;
2336 /// getRegisterClassForRegister - Find the register class that contains the
2337 /// specified physical register. If the register is not in a register class,
2338 /// return null. If the register is in multiple classes, and the classes have a
2339 /// superset-subset relationship and the same set of types, return the
2340 /// superclass. Otherwise return null.
2341 const CodeGenRegisterClass
*
2342 CodeGenRegBank::getRegClassForRegister(Record
*R
) {
2343 const CodeGenRegister
*Reg
= getReg(R
);
2344 const CodeGenRegisterClass
*FoundRC
= nullptr;
2345 for (const auto &RC
: getRegClasses()) {
2346 if (!RC
.contains(Reg
))
2349 // If this is the first class that contains the register,
2350 // make a note of it and go on to the next class.
2356 // If a register's classes have different types, return null.
2357 if (RC
.getValueTypes() != FoundRC
->getValueTypes())
2360 // Check to see if the previously found class that contains
2361 // the register is a subclass of the current class. If so,
2362 // prefer the superclass.
2363 if (RC
.hasSubClass(FoundRC
)) {
2368 // Check to see if the previously found class that contains
2369 // the register is a superclass of the current class. If so,
2370 // prefer the superclass.
2371 if (FoundRC
->hasSubClass(&RC
))
2374 // Multiple classes, and neither is a superclass of the other.
2381 const CodeGenRegisterClass
*
2382 CodeGenRegBank::getMinimalPhysRegClass(Record
*RegRecord
,
2383 ValueTypeByHwMode
*VT
) {
2384 const CodeGenRegister
*Reg
= getReg(RegRecord
);
2385 const CodeGenRegisterClass
*BestRC
= nullptr;
2386 for (const auto &RC
: getRegClasses()) {
2387 if ((!VT
|| RC
.hasType(*VT
)) &&
2388 RC
.contains(Reg
) && (!BestRC
|| BestRC
->hasSubClass(&RC
)))
2392 assert(BestRC
&& "Couldn't find the register class");
2396 BitVector
CodeGenRegBank::computeCoveredRegisters(ArrayRef
<Record
*> Regs
) {
2397 SetVector
<const CodeGenRegister
*> Set
;
2399 // First add Regs with all sub-registers.
2400 for (unsigned i
= 0, e
= Regs
.size(); i
!= e
; ++i
) {
2401 CodeGenRegister
*Reg
= getReg(Regs
[i
]);
2402 if (Set
.insert(Reg
))
2403 // Reg is new, add all sub-registers.
2404 // The pre-ordering is not important here.
2405 Reg
->addSubRegsPreOrder(Set
, *this);
2408 // Second, find all super-registers that are completely covered by the set.
2409 for (unsigned i
= 0; i
!= Set
.size(); ++i
) {
2410 const CodeGenRegister::SuperRegList
&SR
= Set
[i
]->getSuperRegs();
2411 for (unsigned j
= 0, e
= SR
.size(); j
!= e
; ++j
) {
2412 const CodeGenRegister
*Super
= SR
[j
];
2413 if (!Super
->CoveredBySubRegs
|| Set
.count(Super
))
2415 // This new super-register is covered by its sub-registers.
2416 bool AllSubsInSet
= true;
2417 const CodeGenRegister::SubRegMap
&SRM
= Super
->getSubRegs();
2419 if (!Set
.count(I
.second
)) {
2420 AllSubsInSet
= false;
2423 // All sub-registers in Set, add Super as well.
2424 // We will visit Super later to recheck its super-registers.
2430 // Convert to BitVector.
2431 BitVector
BV(Registers
.size() + 1);
2432 for (unsigned i
= 0, e
= Set
.size(); i
!= e
; ++i
)
2433 BV
.set(Set
[i
]->EnumValue
);
2437 void CodeGenRegBank::printRegUnitName(unsigned Unit
) const {
2438 if (Unit
< NumNativeRegUnits
)
2439 dbgs() << ' ' << RegUnits
[Unit
].Roots
[0]->getName();
2441 dbgs() << " #" << Unit
;