[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / DAGISelMatcherGen.cpp
blob2625595cf9d5fceb13db10f23d641984c1b29190
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "DAGISelMatcher.h"
10 #include "CodeGenDAGPatterns.h"
11 #include "CodeGenRegisters.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/TableGen/Error.h"
15 #include "llvm/TableGen/Record.h"
16 #include <utility>
17 using namespace llvm;
20 /// getRegisterValueType - Look up and return the ValueType of the specified
21 /// register. If the register is a member of multiple register classes which
22 /// have different associated types, return MVT::Other.
23 static MVT::SimpleValueType getRegisterValueType(Record *R,
24 const CodeGenTarget &T) {
25 bool FoundRC = false;
26 MVT::SimpleValueType VT = MVT::Other;
27 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
29 for (const auto &RC : T.getRegBank().getRegClasses()) {
30 if (!RC.contains(Reg))
31 continue;
33 if (!FoundRC) {
34 FoundRC = true;
35 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
36 if (VVT.isSimple())
37 VT = VVT.getSimple().SimpleTy;
38 continue;
41 #ifndef NDEBUG
42 // If this occurs in multiple register classes, they all have to agree.
43 const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
44 assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
45 "ValueType mismatch between register classes for this register");
46 #endif
48 return VT;
52 namespace {
53 class MatcherGen {
54 const PatternToMatch &Pattern;
55 const CodeGenDAGPatterns &CGP;
57 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
58 /// out with all of the types removed. This allows us to insert type checks
59 /// as we scan the tree.
60 TreePatternNodePtr PatWithNoTypes;
62 /// VariableMap - A map from variable names ('$dst') to the recorded operand
63 /// number that they were captured as. These are biased by 1 to make
64 /// insertion easier.
65 StringMap<unsigned> VariableMap;
67 /// This maintains the recorded operand number that OPC_CheckComplexPattern
68 /// drops each sub-operand into. We don't want to insert these into
69 /// VariableMap because that leads to identity checking if they are
70 /// encountered multiple times. Biased by 1 like VariableMap for
71 /// consistency.
72 StringMap<unsigned> NamedComplexPatternOperands;
74 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
75 /// the RecordedNodes array, this keeps track of which slot will be next to
76 /// record into.
77 unsigned NextRecordedOperandNo;
79 /// MatchedChainNodes - This maintains the position in the recorded nodes
80 /// array of all of the recorded input nodes that have chains.
81 SmallVector<unsigned, 2> MatchedChainNodes;
83 /// MatchedComplexPatterns - This maintains a list of all of the
84 /// ComplexPatterns that we need to check. The second element of each pair
85 /// is the recorded operand number of the input node.
86 SmallVector<std::pair<const TreePatternNode*,
87 unsigned>, 2> MatchedComplexPatterns;
89 /// PhysRegInputs - List list has an entry for each explicitly specified
90 /// physreg input to the pattern. The first elt is the Register node, the
91 /// second is the recorded slot number the input pattern match saved it in.
92 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
94 /// Matcher - This is the top level of the generated matcher, the result.
95 Matcher *TheMatcher;
97 /// CurPredicate - As we emit matcher nodes, this points to the latest check
98 /// which should have future checks stuck into its Next position.
99 Matcher *CurPredicate;
100 public:
101 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
103 bool EmitMatcherCode(unsigned Variant);
104 void EmitResultCode();
106 Matcher *GetMatcher() const { return TheMatcher; }
107 private:
108 void AddMatcher(Matcher *NewNode);
109 void InferPossibleTypes(unsigned ForceMode);
111 // Matcher Generation.
112 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
113 unsigned ForceMode);
114 void EmitLeafMatchCode(const TreePatternNode *N);
115 void EmitOperatorMatchCode(const TreePatternNode *N,
116 TreePatternNode *NodeNoTypes,
117 unsigned ForceMode);
119 /// If this is the first time a node with unique identifier Name has been
120 /// seen, record it. Otherwise, emit a check to make sure this is the same
121 /// node. Returns true if this is the first encounter.
122 bool recordUniqueNode(ArrayRef<std::string> Names);
124 // Result Code Generation.
125 unsigned getNamedArgumentSlot(StringRef Name) {
126 unsigned VarMapEntry = VariableMap[Name];
127 assert(VarMapEntry != 0 &&
128 "Variable referenced but not defined and not caught earlier!");
129 return VarMapEntry-1;
132 void EmitResultOperand(const TreePatternNode *N,
133 SmallVectorImpl<unsigned> &ResultOps);
134 void EmitResultOfNamedOperand(const TreePatternNode *N,
135 SmallVectorImpl<unsigned> &ResultOps);
136 void EmitResultLeafAsOperand(const TreePatternNode *N,
137 SmallVectorImpl<unsigned> &ResultOps);
138 void EmitResultInstructionAsOperand(const TreePatternNode *N,
139 SmallVectorImpl<unsigned> &ResultOps);
140 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
141 SmallVectorImpl<unsigned> &ResultOps);
144 } // end anonymous namespace
146 MatcherGen::MatcherGen(const PatternToMatch &pattern,
147 const CodeGenDAGPatterns &cgp)
148 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
149 TheMatcher(nullptr), CurPredicate(nullptr) {
150 // We need to produce the matcher tree for the patterns source pattern. To do
151 // this we need to match the structure as well as the types. To do the type
152 // matching, we want to figure out the fewest number of type checks we need to
153 // emit. For example, if there is only one integer type supported by a
154 // target, there should be no type comparisons at all for integer patterns!
156 // To figure out the fewest number of type checks needed, clone the pattern,
157 // remove the types, then perform type inference on the pattern as a whole.
158 // If there are unresolved types, emit an explicit check for those types,
159 // apply the type to the tree, then rerun type inference. Iterate until all
160 // types are resolved.
162 PatWithNoTypes = Pattern.getSrcPattern()->clone();
163 PatWithNoTypes->RemoveAllTypes();
165 // If there are types that are manifestly known, infer them.
166 InferPossibleTypes(Pattern.getForceMode());
169 /// InferPossibleTypes - As we emit the pattern, we end up generating type
170 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
171 /// want to propagate implied types as far throughout the tree as possible so
172 /// that we avoid doing redundant type checks. This does the type propagation.
173 void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
174 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
175 // diagnostics, which we know are impossible at this point.
176 TreePattern &TP = *CGP.pf_begin()->second;
177 TP.getInfer().CodeGen = true;
178 TP.getInfer().ForceMode = ForceMode;
180 bool MadeChange = true;
181 while (MadeChange)
182 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
183 true/*Ignore reg constraints*/);
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189 if (CurPredicate)
190 CurPredicate->setNext(NewNode);
191 else
192 TheMatcher = NewNode;
193 CurPredicate = NewNode;
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
203 assert(N->isLeaf() && "Not a leaf?");
205 // Direct match against an integer constant.
206 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
207 // If this is the root of the dag we're matching, we emit a redundant opcode
208 // check to ensure that this gets folded into the normal top-level
209 // OpcodeSwitch.
210 if (N == Pattern.getSrcPattern()) {
211 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
212 AddMatcher(new CheckOpcodeMatcher(NI));
215 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
218 // An UnsetInit represents a named node without any constraints.
219 if (isa<UnsetInit>(N->getLeafValue())) {
220 assert(N->hasName() && "Unnamed ? leaf");
221 return;
224 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
225 if (!DI) {
226 errs() << "Unknown leaf kind: " << *N << "\n";
227 abort();
230 Record *LeafRec = DI->getDef();
232 // A ValueType leaf node can represent a register when named, or itself when
233 // unnamed.
234 if (LeafRec->isSubClassOf("ValueType")) {
235 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
236 if (N->hasName())
237 return;
238 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
242 if (// Handle register references. Nothing to do here, they always match.
243 LeafRec->isSubClassOf("RegisterClass") ||
244 LeafRec->isSubClassOf("RegisterOperand") ||
245 LeafRec->isSubClassOf("PointerLikeRegClass") ||
246 LeafRec->isSubClassOf("SubRegIndex") ||
247 // Place holder for SRCVALUE nodes. Nothing to do here.
248 LeafRec->getName() == "srcvalue")
249 return;
251 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252 // record the register
253 if (LeafRec->isSubClassOf("Register")) {
254 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
255 NextRecordedOperandNo));
256 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
257 return;
260 if (LeafRec->isSubClassOf("CondCode"))
261 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
263 if (LeafRec->isSubClassOf("ComplexPattern")) {
264 // We can't model ComplexPattern uses that don't have their name taken yet.
265 // The OPC_CheckComplexPattern operation implicitly records the results.
266 if (N->getName().empty()) {
267 std::string S;
268 raw_string_ostream OS(S);
269 OS << "We expect complex pattern uses to have names: " << *N;
270 PrintFatalError(OS.str());
273 // Remember this ComplexPattern so that we can emit it after all the other
274 // structural matches are done.
275 unsigned InputOperand = VariableMap[N->getName()] - 1;
276 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
277 return;
280 if (LeafRec->getName() == "immAllOnesV") {
281 // If this is the root of the dag we're matching, we emit a redundant opcode
282 // check to ensure that this gets folded into the normal top-level
283 // OpcodeSwitch.
284 if (N == Pattern.getSrcPattern()) {
285 MVT VT = N->getSimpleType(0);
286 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
287 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
288 AddMatcher(new CheckOpcodeMatcher(NI));
290 return AddMatcher(new CheckImmAllOnesVMatcher());
292 if (LeafRec->getName() == "immAllZerosV") {
293 // If this is the root of the dag we're matching, we emit a redundant opcode
294 // check to ensure that this gets folded into the normal top-level
295 // OpcodeSwitch.
296 if (N == Pattern.getSrcPattern()) {
297 MVT VT = N->getSimpleType(0);
298 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
299 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
300 AddMatcher(new CheckOpcodeMatcher(NI));
302 return AddMatcher(new CheckImmAllZerosVMatcher());
305 errs() << "Unknown leaf kind: " << *N << "\n";
306 abort();
309 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
310 TreePatternNode *NodeNoTypes,
311 unsigned ForceMode) {
312 assert(!N->isLeaf() && "Not an operator?");
314 if (N->getOperator()->isSubClassOf("ComplexPattern")) {
315 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
316 // "MY_PAT:op1:op2". We should already have validated that the uses are
317 // consistent.
318 std::string PatternName = std::string(N->getOperator()->getName());
319 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
320 PatternName += ":";
321 PatternName += N->getChild(i)->getName();
324 if (recordUniqueNode(PatternName)) {
325 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
326 MatchedComplexPatterns.push_back(NodeAndOpNum);
329 return;
332 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
334 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
335 // a constant without a predicate fn that has more than one bit set, handle
336 // this as a special case. This is usually for targets that have special
337 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
338 // handling stuff). Using these instructions is often far more efficient
339 // than materializing the constant. Unfortunately, both the instcombiner
340 // and the dag combiner can often infer that bits are dead, and thus drop
341 // them from the mask in the dag. For example, it might turn 'AND X, 255'
342 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
343 // to handle this.
344 if ((N->getOperator()->getName() == "and" ||
345 N->getOperator()->getName() == "or") &&
346 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
347 N->getPredicateCalls().empty()) {
348 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
349 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
350 // If this is at the root of the pattern, we emit a redundant
351 // CheckOpcode so that the following checks get factored properly under
352 // a single opcode check.
353 if (N == Pattern.getSrcPattern())
354 AddMatcher(new CheckOpcodeMatcher(CInfo));
356 // Emit the CheckAndImm/CheckOrImm node.
357 if (N->getOperator()->getName() == "and")
358 AddMatcher(new CheckAndImmMatcher(II->getValue()));
359 else
360 AddMatcher(new CheckOrImmMatcher(II->getValue()));
362 // Match the LHS of the AND as appropriate.
363 AddMatcher(new MoveChildMatcher(0));
364 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
365 AddMatcher(new MoveParentMatcher());
366 return;
371 // Check that the current opcode lines up.
372 AddMatcher(new CheckOpcodeMatcher(CInfo));
374 // If this node has memory references (i.e. is a load or store), tell the
375 // interpreter to capture them in the memref array.
376 if (N->NodeHasProperty(SDNPMemOperand, CGP))
377 AddMatcher(new RecordMemRefMatcher());
379 // If this node has a chain, then the chain is operand #0 is the SDNode, and
380 // the child numbers of the node are all offset by one.
381 unsigned OpNo = 0;
382 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
383 // Record the node and remember it in our chained nodes list.
384 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
385 "' chained node",
386 NextRecordedOperandNo));
387 // Remember all of the input chains our pattern will match.
388 MatchedChainNodes.push_back(NextRecordedOperandNo++);
390 // Don't look at the input chain when matching the tree pattern to the
391 // SDNode.
392 OpNo = 1;
394 // If this node is not the root and the subtree underneath it produces a
395 // chain, then the result of matching the node is also produce a chain.
396 // Beyond that, this means that we're also folding (at least) the root node
397 // into the node that produce the chain (for example, matching
398 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
399 // problematic, if the 'reg' node also uses the load (say, its chain).
400 // Graphically:
402 // [LD]
403 // ^ ^
404 // | \ DAG's like cheese.
405 // / |
406 // / [YY]
407 // | ^
408 // [XX]--/
410 // It would be invalid to fold XX and LD. In this case, folding the two
411 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
412 // To prevent this, we emit a dynamic check for legality before allowing
413 // this to be folded.
415 const TreePatternNode *Root = Pattern.getSrcPattern();
416 if (N != Root) { // Not the root of the pattern.
417 // If there is a node between the root and this node, then we definitely
418 // need to emit the check.
419 bool NeedCheck = !Root->hasChild(N);
421 // If it *is* an immediate child of the root, we can still need a check if
422 // the root SDNode has multiple inputs. For us, this means that it is an
423 // intrinsic, has multiple operands, or has other inputs like chain or
424 // glue).
425 if (!NeedCheck) {
426 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
427 NeedCheck =
428 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
429 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
430 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
431 PInfo.getNumOperands() > 1 ||
432 PInfo.hasProperty(SDNPHasChain) ||
433 PInfo.hasProperty(SDNPInGlue) ||
434 PInfo.hasProperty(SDNPOptInGlue);
437 if (NeedCheck)
438 AddMatcher(new CheckFoldableChainNodeMatcher());
442 // If this node has an output glue and isn't the root, remember it.
443 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
444 N != Pattern.getSrcPattern()) {
445 // TODO: This redundantly records nodes with both glues and chains.
447 // Record the node and remember it in our chained nodes list.
448 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
449 "' glue output node",
450 NextRecordedOperandNo));
453 // If this node is known to have an input glue or if it *might* have an input
454 // glue, capture it as the glue input of the pattern.
455 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
456 N->NodeHasProperty(SDNPInGlue, CGP))
457 AddMatcher(new CaptureGlueInputMatcher());
459 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
460 // Get the code suitable for matching this child. Move to the child, check
461 // it then move back to the parent.
462 AddMatcher(new MoveChildMatcher(OpNo));
463 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
464 AddMatcher(new MoveParentMatcher());
468 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
469 unsigned Entry = 0;
470 for (const std::string &Name : Names) {
471 unsigned &VarMapEntry = VariableMap[Name];
472 if (!Entry)
473 Entry = VarMapEntry;
474 assert(Entry == VarMapEntry);
477 bool NewRecord = false;
478 if (Entry == 0) {
479 // If it is a named node, we must emit a 'Record' opcode.
480 std::string WhatFor;
481 for (const std::string &Name : Names) {
482 if (!WhatFor.empty())
483 WhatFor += ',';
484 WhatFor += "$" + Name;
486 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
487 Entry = ++NextRecordedOperandNo;
488 NewRecord = true;
489 } else {
490 // If we get here, this is a second reference to a specific name. Since
491 // we already have checked that the first reference is valid, we don't
492 // have to recursively match it, just check that it's the same as the
493 // previously named thing.
494 AddMatcher(new CheckSameMatcher(Entry-1));
497 for (const std::string &Name : Names)
498 VariableMap[Name] = Entry;
500 return NewRecord;
503 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
504 TreePatternNode *NodeNoTypes,
505 unsigned ForceMode) {
506 // If N and NodeNoTypes don't agree on a type, then this is a case where we
507 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
508 // reinfer any correlated types.
509 SmallVector<unsigned, 2> ResultsToTypeCheck;
511 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
512 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
513 NodeNoTypes->setType(i, N->getExtType(i));
514 InferPossibleTypes(ForceMode);
515 ResultsToTypeCheck.push_back(i);
518 // If this node has a name associated with it, capture it in VariableMap. If
519 // we already saw this in the pattern, emit code to verify dagness.
520 SmallVector<std::string, 4> Names;
521 if (!N->getName().empty())
522 Names.push_back(N->getName());
524 for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
525 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
528 if (!Names.empty()) {
529 if (!recordUniqueNode(Names))
530 return;
533 if (N->isLeaf())
534 EmitLeafMatchCode(N);
535 else
536 EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
538 // If there are node predicates for this node, generate their checks.
539 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
540 const TreePredicateCall &Pred = N->getPredicateCalls()[i];
541 SmallVector<unsigned, 4> Operands;
542 if (Pred.Fn.usesOperands()) {
543 TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
544 for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
545 std::string Name =
546 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
547 Operands.push_back(getNamedArgumentSlot(Name));
550 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
553 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
554 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
555 ResultsToTypeCheck[i]));
558 /// EmitMatcherCode - Generate the code that matches the predicate of this
559 /// pattern for the specified Variant. If the variant is invalid this returns
560 /// true and does not generate code, if it is valid, it returns false.
561 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
562 // If the root of the pattern is a ComplexPattern and if it is specified to
563 // match some number of root opcodes, these are considered to be our variants.
564 // Depending on which variant we're generating code for, emit the root opcode
565 // check.
566 if (const ComplexPattern *CP =
567 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
568 const std::vector<Record*> &OpNodes = CP->getRootNodes();
569 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
570 if (Variant >= OpNodes.size()) return true;
572 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
573 } else {
574 if (Variant != 0) return true;
577 // Emit the matcher for the pattern structure and types.
578 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
579 Pattern.getForceMode());
581 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
582 // feature is around, do the check).
583 if (!Pattern.getPredicateCheck().empty())
584 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
586 // Now that we've completed the structural type match, emit any ComplexPattern
587 // checks (e.g. addrmode matches). We emit this after the structural match
588 // because they are generally more expensive to evaluate and more difficult to
589 // factor.
590 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
591 auto N = MatchedComplexPatterns[i].first;
593 // Remember where the results of this match get stuck.
594 if (N->isLeaf()) {
595 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
596 } else {
597 unsigned CurOp = NextRecordedOperandNo;
598 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
599 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
600 CurOp += N->getChild(i)->getNumMIResults(CGP);
604 // Get the slot we recorded the value in from the name on the node.
605 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
607 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
609 // Emit a CheckComplexPat operation, which does the match (aborting if it
610 // fails) and pushes the matched operands onto the recorded nodes list.
611 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
612 N->getName(), NextRecordedOperandNo));
614 // Record the right number of operands.
615 NextRecordedOperandNo += CP.getNumOperands();
616 if (CP.hasProperty(SDNPHasChain)) {
617 // If the complex pattern has a chain, then we need to keep track of the
618 // fact that we just recorded a chain input. The chain input will be
619 // matched as the last operand of the predicate if it was successful.
620 ++NextRecordedOperandNo; // Chained node operand.
622 // It is the last operand recorded.
623 assert(NextRecordedOperandNo > 1 &&
624 "Should have recorded input/result chains at least!");
625 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
628 // TODO: Complex patterns can't have output glues, if they did, we'd want
629 // to record them.
632 return false;
636 //===----------------------------------------------------------------------===//
637 // Node Result Generation
638 //===----------------------------------------------------------------------===//
640 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
641 SmallVectorImpl<unsigned> &ResultOps){
642 assert(!N->getName().empty() && "Operand not named!");
644 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
645 // Complex operands have already been completely selected, just find the
646 // right slot ant add the arguments directly.
647 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
648 ResultOps.push_back(SlotNo - 1 + i);
650 return;
653 unsigned SlotNo = getNamedArgumentSlot(N->getName());
655 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
656 // version of the immediate so that it doesn't get selected due to some other
657 // node use.
658 if (!N->isLeaf()) {
659 StringRef OperatorName = N->getOperator()->getName();
660 if (OperatorName == "imm" || OperatorName == "fpimm") {
661 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
662 ResultOps.push_back(NextRecordedOperandNo++);
663 return;
667 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
668 ResultOps.push_back(SlotNo + i);
671 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
672 SmallVectorImpl<unsigned> &ResultOps) {
673 assert(N->isLeaf() && "Must be a leaf");
675 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
676 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
677 ResultOps.push_back(NextRecordedOperandNo++);
678 return;
681 // If this is an explicit register reference, handle it.
682 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
683 Record *Def = DI->getDef();
684 if (Def->isSubClassOf("Register")) {
685 const CodeGenRegister *Reg =
686 CGP.getTargetInfo().getRegBank().getReg(Def);
687 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
688 ResultOps.push_back(NextRecordedOperandNo++);
689 return;
692 if (Def->getName() == "zero_reg") {
693 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
694 ResultOps.push_back(NextRecordedOperandNo++);
695 return;
698 if (Def->getName() == "undef_tied_input") {
699 std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
700 std::array<unsigned, 0> InstOps;
701 auto IDOperandNo = NextRecordedOperandNo++;
702 AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
703 ResultVTs, InstOps, false, false, false,
704 false, -1, IDOperandNo));
705 ResultOps.push_back(IDOperandNo);
706 return;
709 // Handle a reference to a register class. This is used
710 // in COPY_TO_SUBREG instructions.
711 if (Def->isSubClassOf("RegisterOperand"))
712 Def = Def->getValueAsDef("RegClass");
713 if (Def->isSubClassOf("RegisterClass")) {
714 // If the register class has an enum integer value greater than 127, the
715 // encoding overflows the limit of 7 bits, which precludes the use of
716 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
717 const CodeGenRegisterClass &RC =
718 CGP.getTargetInfo().getRegisterClass(Def);
719 if (RC.EnumValue <= 127) {
720 std::string Value = getQualifiedName(Def) + "RegClassID";
721 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
722 ResultOps.push_back(NextRecordedOperandNo++);
723 } else {
724 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
725 ResultOps.push_back(NextRecordedOperandNo++);
727 return;
730 // Handle a subregister index. This is used for INSERT_SUBREG etc.
731 if (Def->isSubClassOf("SubRegIndex")) {
732 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
733 // If we have more than 127 subreg indices the encoding can overflow
734 // 7 bit and we cannot use StringInteger.
735 if (RB.getSubRegIndices().size() > 127) {
736 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
737 assert(I && "Cannot find subreg index by name!");
738 if (I->EnumValue > 127) {
739 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
740 ResultOps.push_back(NextRecordedOperandNo++);
741 return;
744 std::string Value = getQualifiedName(Def);
745 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
746 ResultOps.push_back(NextRecordedOperandNo++);
747 return;
751 errs() << "unhandled leaf node:\n";
752 N->dump();
755 static bool
756 mayInstNodeLoadOrStore(const TreePatternNode *N,
757 const CodeGenDAGPatterns &CGP) {
758 Record *Op = N->getOperator();
759 const CodeGenTarget &CGT = CGP.getTargetInfo();
760 CodeGenInstruction &II = CGT.getInstruction(Op);
761 return II.mayLoad || II.mayStore;
764 static unsigned
765 numNodesThatMayLoadOrStore(const TreePatternNode *N,
766 const CodeGenDAGPatterns &CGP) {
767 if (N->isLeaf())
768 return 0;
770 Record *OpRec = N->getOperator();
771 if (!OpRec->isSubClassOf("Instruction"))
772 return 0;
774 unsigned Count = 0;
775 if (mayInstNodeLoadOrStore(N, CGP))
776 ++Count;
778 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
779 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
781 return Count;
784 void MatcherGen::
785 EmitResultInstructionAsOperand(const TreePatternNode *N,
786 SmallVectorImpl<unsigned> &OutputOps) {
787 Record *Op = N->getOperator();
788 const CodeGenTarget &CGT = CGP.getTargetInfo();
789 CodeGenInstruction &II = CGT.getInstruction(Op);
790 const DAGInstruction &Inst = CGP.getInstruction(Op);
792 bool isRoot = N == Pattern.getDstPattern();
794 // TreeHasOutGlue - True if this tree has glue.
795 bool TreeHasInGlue = false, TreeHasOutGlue = false;
796 if (isRoot) {
797 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
798 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
799 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
801 // FIXME2: this is checking the entire pattern, not just the node in
802 // question, doing this just for the root seems like a total hack.
803 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
806 // NumResults - This is the number of results produced by the instruction in
807 // the "outs" list.
808 unsigned NumResults = Inst.getNumResults();
810 // Number of operands we know the output instruction must have. If it is
811 // variadic, we could have more operands.
812 unsigned NumFixedOperands = II.Operands.size();
814 SmallVector<unsigned, 8> InstOps;
816 // Loop over all of the fixed operands of the instruction pattern, emitting
817 // code to fill them all in. The node 'N' usually has number children equal to
818 // the number of input operands of the instruction. However, in cases where
819 // there are predicate operands for an instruction, we need to fill in the
820 // 'execute always' values. Match up the node operands to the instruction
821 // operands to do this.
822 unsigned ChildNo = 0;
824 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
825 // number of operands at the end of the list which have default values.
826 // Those can come from the pattern if it provides enough arguments, or be
827 // filled in with the default if the pattern hasn't provided them. But any
828 // operand with a default value _before_ the last mandatory one will be
829 // filled in with their defaults unconditionally.
830 unsigned NonOverridableOperands = NumFixedOperands;
831 while (NonOverridableOperands > NumResults &&
832 CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
833 --NonOverridableOperands;
835 for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
836 InstOpNo != e; ++InstOpNo) {
837 // Determine what to emit for this operand.
838 Record *OperandNode = II.Operands[InstOpNo].Rec;
839 if (CGP.operandHasDefault(OperandNode) &&
840 (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
841 // This is a predicate or optional def operand which the pattern has not
842 // overridden, or which we aren't letting it override; emit the 'default
843 // ops' operands.
844 const DAGDefaultOperand &DefaultOp
845 = CGP.getDefaultOperand(OperandNode);
846 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
847 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
848 continue;
851 // Otherwise this is a normal operand or a predicate operand without
852 // 'execute always'; emit it.
854 // For operands with multiple sub-operands we may need to emit
855 // multiple child patterns to cover them all. However, ComplexPattern
856 // children may themselves emit multiple MI operands.
857 unsigned NumSubOps = 1;
858 if (OperandNode->isSubClassOf("Operand")) {
859 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
860 if (unsigned NumArgs = MIOpInfo->getNumArgs())
861 NumSubOps = NumArgs;
864 unsigned FinalNumOps = InstOps.size() + NumSubOps;
865 while (InstOps.size() < FinalNumOps) {
866 const TreePatternNode *Child = N->getChild(ChildNo);
867 unsigned BeforeAddingNumOps = InstOps.size();
868 EmitResultOperand(Child, InstOps);
869 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
871 // If the operand is an instruction and it produced multiple results, just
872 // take the first one.
873 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
874 InstOps.resize(BeforeAddingNumOps+1);
876 ++ChildNo;
880 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
881 // expand suboperands, use default operands, or other features determined from
882 // the CodeGenInstruction after the fixed operands, which were handled
883 // above. Emit the remaining instructions implicitly added by the use for
884 // variable_ops.
885 if (II.Operands.isVariadic) {
886 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
887 EmitResultOperand(N->getChild(I), InstOps);
890 // If this node has input glue or explicitly specified input physregs, we
891 // need to add chained and glued copyfromreg nodes and materialize the glue
892 // input.
893 if (isRoot && !PhysRegInputs.empty()) {
894 // Emit all of the CopyToReg nodes for the input physical registers. These
895 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
896 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
897 const CodeGenRegister *Reg =
898 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
899 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
900 Reg));
903 // Even if the node has no other glue inputs, the resultant node must be
904 // glued to the CopyFromReg nodes we just generated.
905 TreeHasInGlue = true;
908 // Result order: node results, chain, glue
910 // Determine the result types.
911 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
912 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
913 ResultVTs.push_back(N->getSimpleType(i));
915 // If this is the root instruction of a pattern that has physical registers in
916 // its result pattern, add output VTs for them. For example, X86 has:
917 // (set AL, (mul ...))
918 // This also handles implicit results like:
919 // (implicit EFLAGS)
920 if (isRoot && !Pattern.getDstRegs().empty()) {
921 // If the root came from an implicit def in the instruction handling stuff,
922 // don't re-add it.
923 Record *HandledReg = nullptr;
924 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
925 HandledReg = II.ImplicitDefs[0];
927 for (Record *Reg : Pattern.getDstRegs()) {
928 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
929 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
933 // If this is the root of the pattern and the pattern we're matching includes
934 // a node that is variadic, mark the generated node as variadic so that it
935 // gets the excess operands from the input DAG.
936 int NumFixedArityOperands = -1;
937 if (isRoot &&
938 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
939 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
941 // If this is the root node and multiple matched nodes in the input pattern
942 // have MemRefs in them, have the interpreter collect them and plop them onto
943 // this node. If there is just one node with MemRefs, leave them on that node
944 // even if it is not the root.
946 // FIXME3: This is actively incorrect for result patterns with multiple
947 // memory-referencing instructions.
948 bool PatternHasMemOperands =
949 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
951 bool NodeHasMemRefs = false;
952 if (PatternHasMemOperands) {
953 unsigned NumNodesThatLoadOrStore =
954 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
955 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
956 NumNodesThatLoadOrStore == 1;
957 NodeHasMemRefs =
958 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
959 NumNodesThatLoadOrStore != 1));
962 // Determine whether we need to attach a chain to this node.
963 bool NodeHasChain = false;
964 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
965 // For some instructions, we were able to infer from the pattern whether
966 // they should have a chain. Otherwise, attach the chain to the root.
968 // FIXME2: This is extremely dubious for several reasons, not the least of
969 // which it gives special status to instructions with patterns that Pat<>
970 // nodes can't duplicate.
971 if (II.hasChain_Inferred)
972 NodeHasChain = II.hasChain;
973 else
974 NodeHasChain = isRoot;
975 // Instructions which load and store from memory should have a chain,
976 // regardless of whether they happen to have a pattern saying so.
977 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
978 II.hasSideEffects)
979 NodeHasChain = true;
982 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
983 "Node has no result");
985 AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
986 ResultVTs, InstOps,
987 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
988 NodeHasMemRefs, NumFixedArityOperands,
989 NextRecordedOperandNo));
991 // The non-chain and non-glue results of the newly emitted node get recorded.
992 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
993 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
994 OutputOps.push_back(NextRecordedOperandNo++);
998 void MatcherGen::
999 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
1000 SmallVectorImpl<unsigned> &ResultOps) {
1001 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
1003 // Emit the operand.
1004 SmallVector<unsigned, 8> InputOps;
1006 // FIXME2: Could easily generalize this to support multiple inputs and outputs
1007 // to the SDNodeXForm. For now we just support one input and one output like
1008 // the old instruction selector.
1009 assert(N->getNumChildren() == 1);
1010 EmitResultOperand(N->getChild(0), InputOps);
1012 // The input currently must have produced exactly one result.
1013 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
1015 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
1016 ResultOps.push_back(NextRecordedOperandNo++);
1019 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
1020 SmallVectorImpl<unsigned> &ResultOps) {
1021 // This is something selected from the pattern we matched.
1022 if (!N->getName().empty())
1023 return EmitResultOfNamedOperand(N, ResultOps);
1025 if (N->isLeaf())
1026 return EmitResultLeafAsOperand(N, ResultOps);
1028 Record *OpRec = N->getOperator();
1029 if (OpRec->isSubClassOf("Instruction"))
1030 return EmitResultInstructionAsOperand(N, ResultOps);
1031 if (OpRec->isSubClassOf("SDNodeXForm"))
1032 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1033 errs() << "Unknown result node to emit code for: " << *N << '\n';
1034 PrintFatalError("Unknown node in result pattern!");
1037 void MatcherGen::EmitResultCode() {
1038 // Patterns that match nodes with (potentially multiple) chain inputs have to
1039 // merge them together into a token factor. This informs the generated code
1040 // what all the chained nodes are.
1041 if (!MatchedChainNodes.empty())
1042 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1044 // Codegen the root of the result pattern, capturing the resulting values.
1045 SmallVector<unsigned, 8> Ops;
1046 EmitResultOperand(Pattern.getDstPattern(), Ops);
1048 // At this point, we have however many values the result pattern produces.
1049 // However, the input pattern might not need all of these. If there are
1050 // excess values at the end (such as implicit defs of condition codes etc)
1051 // just lop them off. This doesn't need to worry about glue or chains, just
1052 // explicit results.
1054 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
1056 // If the pattern also has (implicit) results, count them as well.
1057 if (!Pattern.getDstRegs().empty()) {
1058 // If the root came from an implicit def in the instruction handling stuff,
1059 // don't re-add it.
1060 Record *HandledReg = nullptr;
1061 const TreePatternNode *DstPat = Pattern.getDstPattern();
1062 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
1063 const CodeGenTarget &CGT = CGP.getTargetInfo();
1064 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
1066 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1067 HandledReg = II.ImplicitDefs[0];
1070 for (Record *Reg : Pattern.getDstRegs()) {
1071 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
1072 ++NumSrcResults;
1076 SmallVector<unsigned, 8> Results(Ops);
1078 // Apply result permutation.
1079 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1080 ++ResNo) {
1081 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1084 Results.resize(NumSrcResults);
1085 AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1089 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1090 /// the specified variant. If the variant number is invalid, this returns null.
1091 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1092 unsigned Variant,
1093 const CodeGenDAGPatterns &CGP) {
1094 MatcherGen Gen(Pattern, CGP);
1096 // Generate the code for the matcher.
1097 if (Gen.EmitMatcherCode(Variant))
1098 return nullptr;
1100 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1101 // FIXME2: Split result code out to another table, and make the matcher end
1102 // with an "Emit <index>" command. This allows result generation stuff to be
1103 // shared and factored?
1105 // If the match succeeds, then we generate Pattern.
1106 Gen.EmitResultCode();
1108 // Unconditional match.
1109 return Gen.GetMatcher();