1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "DAGISelMatcher.h"
10 #include "CodeGenDAGPatterns.h"
11 #include "CodeGenRegisters.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/TableGen/Error.h"
15 #include "llvm/TableGen/Record.h"
20 /// getRegisterValueType - Look up and return the ValueType of the specified
21 /// register. If the register is a member of multiple register classes which
22 /// have different associated types, return MVT::Other.
23 static MVT::SimpleValueType
getRegisterValueType(Record
*R
,
24 const CodeGenTarget
&T
) {
26 MVT::SimpleValueType VT
= MVT::Other
;
27 const CodeGenRegister
*Reg
= T
.getRegBank().getReg(R
);
29 for (const auto &RC
: T
.getRegBank().getRegClasses()) {
30 if (!RC
.contains(Reg
))
35 const ValueTypeByHwMode
&VVT
= RC
.getValueTypeNum(0);
37 VT
= VVT
.getSimple().SimpleTy
;
42 // If this occurs in multiple register classes, they all have to agree.
43 const ValueTypeByHwMode
&T
= RC
.getValueTypeNum(0);
44 assert((!T
.isSimple() || T
.getSimple().SimpleTy
== VT
) &&
45 "ValueType mismatch between register classes for this register");
54 const PatternToMatch
&Pattern
;
55 const CodeGenDAGPatterns
&CGP
;
57 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
58 /// out with all of the types removed. This allows us to insert type checks
59 /// as we scan the tree.
60 TreePatternNodePtr PatWithNoTypes
;
62 /// VariableMap - A map from variable names ('$dst') to the recorded operand
63 /// number that they were captured as. These are biased by 1 to make
65 StringMap
<unsigned> VariableMap
;
67 /// This maintains the recorded operand number that OPC_CheckComplexPattern
68 /// drops each sub-operand into. We don't want to insert these into
69 /// VariableMap because that leads to identity checking if they are
70 /// encountered multiple times. Biased by 1 like VariableMap for
72 StringMap
<unsigned> NamedComplexPatternOperands
;
74 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
75 /// the RecordedNodes array, this keeps track of which slot will be next to
77 unsigned NextRecordedOperandNo
;
79 /// MatchedChainNodes - This maintains the position in the recorded nodes
80 /// array of all of the recorded input nodes that have chains.
81 SmallVector
<unsigned, 2> MatchedChainNodes
;
83 /// MatchedComplexPatterns - This maintains a list of all of the
84 /// ComplexPatterns that we need to check. The second element of each pair
85 /// is the recorded operand number of the input node.
86 SmallVector
<std::pair
<const TreePatternNode
*,
87 unsigned>, 2> MatchedComplexPatterns
;
89 /// PhysRegInputs - List list has an entry for each explicitly specified
90 /// physreg input to the pattern. The first elt is the Register node, the
91 /// second is the recorded slot number the input pattern match saved it in.
92 SmallVector
<std::pair
<Record
*, unsigned>, 2> PhysRegInputs
;
94 /// Matcher - This is the top level of the generated matcher, the result.
97 /// CurPredicate - As we emit matcher nodes, this points to the latest check
98 /// which should have future checks stuck into its Next position.
99 Matcher
*CurPredicate
;
101 MatcherGen(const PatternToMatch
&pattern
, const CodeGenDAGPatterns
&cgp
);
103 bool EmitMatcherCode(unsigned Variant
);
104 void EmitResultCode();
106 Matcher
*GetMatcher() const { return TheMatcher
; }
108 void AddMatcher(Matcher
*NewNode
);
109 void InferPossibleTypes(unsigned ForceMode
);
111 // Matcher Generation.
112 void EmitMatchCode(const TreePatternNode
*N
, TreePatternNode
*NodeNoTypes
,
114 void EmitLeafMatchCode(const TreePatternNode
*N
);
115 void EmitOperatorMatchCode(const TreePatternNode
*N
,
116 TreePatternNode
*NodeNoTypes
,
119 /// If this is the first time a node with unique identifier Name has been
120 /// seen, record it. Otherwise, emit a check to make sure this is the same
121 /// node. Returns true if this is the first encounter.
122 bool recordUniqueNode(ArrayRef
<std::string
> Names
);
124 // Result Code Generation.
125 unsigned getNamedArgumentSlot(StringRef Name
) {
126 unsigned VarMapEntry
= VariableMap
[Name
];
127 assert(VarMapEntry
!= 0 &&
128 "Variable referenced but not defined and not caught earlier!");
129 return VarMapEntry
-1;
132 void EmitResultOperand(const TreePatternNode
*N
,
133 SmallVectorImpl
<unsigned> &ResultOps
);
134 void EmitResultOfNamedOperand(const TreePatternNode
*N
,
135 SmallVectorImpl
<unsigned> &ResultOps
);
136 void EmitResultLeafAsOperand(const TreePatternNode
*N
,
137 SmallVectorImpl
<unsigned> &ResultOps
);
138 void EmitResultInstructionAsOperand(const TreePatternNode
*N
,
139 SmallVectorImpl
<unsigned> &ResultOps
);
140 void EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
141 SmallVectorImpl
<unsigned> &ResultOps
);
144 } // end anonymous namespace
146 MatcherGen::MatcherGen(const PatternToMatch
&pattern
,
147 const CodeGenDAGPatterns
&cgp
)
148 : Pattern(pattern
), CGP(cgp
), NextRecordedOperandNo(0),
149 TheMatcher(nullptr), CurPredicate(nullptr) {
150 // We need to produce the matcher tree for the patterns source pattern. To do
151 // this we need to match the structure as well as the types. To do the type
152 // matching, we want to figure out the fewest number of type checks we need to
153 // emit. For example, if there is only one integer type supported by a
154 // target, there should be no type comparisons at all for integer patterns!
156 // To figure out the fewest number of type checks needed, clone the pattern,
157 // remove the types, then perform type inference on the pattern as a whole.
158 // If there are unresolved types, emit an explicit check for those types,
159 // apply the type to the tree, then rerun type inference. Iterate until all
160 // types are resolved.
162 PatWithNoTypes
= Pattern
.getSrcPattern()->clone();
163 PatWithNoTypes
->RemoveAllTypes();
165 // If there are types that are manifestly known, infer them.
166 InferPossibleTypes(Pattern
.getForceMode());
169 /// InferPossibleTypes - As we emit the pattern, we end up generating type
170 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
171 /// want to propagate implied types as far throughout the tree as possible so
172 /// that we avoid doing redundant type checks. This does the type propagation.
173 void MatcherGen::InferPossibleTypes(unsigned ForceMode
) {
174 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
175 // diagnostics, which we know are impossible at this point.
176 TreePattern
&TP
= *CGP
.pf_begin()->second
;
177 TP
.getInfer().CodeGen
= true;
178 TP
.getInfer().ForceMode
= ForceMode
;
180 bool MadeChange
= true;
182 MadeChange
= PatWithNoTypes
->ApplyTypeConstraints(TP
,
183 true/*Ignore reg constraints*/);
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher
*NewNode
) {
190 CurPredicate
->setNext(NewNode
);
192 TheMatcher
= NewNode
;
193 CurPredicate
= NewNode
;
197 //===----------------------------------------------------------------------===//
198 // Pattern Match Generation
199 //===----------------------------------------------------------------------===//
201 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
202 void MatcherGen::EmitLeafMatchCode(const TreePatternNode
*N
) {
203 assert(N
->isLeaf() && "Not a leaf?");
205 // Direct match against an integer constant.
206 if (IntInit
*II
= dyn_cast
<IntInit
>(N
->getLeafValue())) {
207 // If this is the root of the dag we're matching, we emit a redundant opcode
208 // check to ensure that this gets folded into the normal top-level
210 if (N
== Pattern
.getSrcPattern()) {
211 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed("imm"));
212 AddMatcher(new CheckOpcodeMatcher(NI
));
215 return AddMatcher(new CheckIntegerMatcher(II
->getValue()));
218 // An UnsetInit represents a named node without any constraints.
219 if (isa
<UnsetInit
>(N
->getLeafValue())) {
220 assert(N
->hasName() && "Unnamed ? leaf");
224 DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue());
226 errs() << "Unknown leaf kind: " << *N
<< "\n";
230 Record
*LeafRec
= DI
->getDef();
232 // A ValueType leaf node can represent a register when named, or itself when
234 if (LeafRec
->isSubClassOf("ValueType")) {
235 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
238 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
239 return AddMatcher(new CheckValueTypeMatcher(LeafRec
->getName()));
242 if (// Handle register references. Nothing to do here, they always match.
243 LeafRec
->isSubClassOf("RegisterClass") ||
244 LeafRec
->isSubClassOf("RegisterOperand") ||
245 LeafRec
->isSubClassOf("PointerLikeRegClass") ||
246 LeafRec
->isSubClassOf("SubRegIndex") ||
247 // Place holder for SRCVALUE nodes. Nothing to do here.
248 LeafRec
->getName() == "srcvalue")
251 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
252 // record the register
253 if (LeafRec
->isSubClassOf("Register")) {
254 AddMatcher(new RecordMatcher("physreg input "+LeafRec
->getName().str(),
255 NextRecordedOperandNo
));
256 PhysRegInputs
.push_back(std::make_pair(LeafRec
, NextRecordedOperandNo
++));
260 if (LeafRec
->isSubClassOf("CondCode"))
261 return AddMatcher(new CheckCondCodeMatcher(LeafRec
->getName()));
263 if (LeafRec
->isSubClassOf("ComplexPattern")) {
264 // We can't model ComplexPattern uses that don't have their name taken yet.
265 // The OPC_CheckComplexPattern operation implicitly records the results.
266 if (N
->getName().empty()) {
268 raw_string_ostream
OS(S
);
269 OS
<< "We expect complex pattern uses to have names: " << *N
;
270 PrintFatalError(OS
.str());
273 // Remember this ComplexPattern so that we can emit it after all the other
274 // structural matches are done.
275 unsigned InputOperand
= VariableMap
[N
->getName()] - 1;
276 MatchedComplexPatterns
.push_back(std::make_pair(N
, InputOperand
));
280 if (LeafRec
->getName() == "immAllOnesV") {
281 // If this is the root of the dag we're matching, we emit a redundant opcode
282 // check to ensure that this gets folded into the normal top-level
284 if (N
== Pattern
.getSrcPattern()) {
285 MVT VT
= N
->getSimpleType(0);
286 StringRef Name
= VT
.isScalableVector() ? "splat_vector" : "build_vector";
287 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed(Name
));
288 AddMatcher(new CheckOpcodeMatcher(NI
));
290 return AddMatcher(new CheckImmAllOnesVMatcher());
292 if (LeafRec
->getName() == "immAllZerosV") {
293 // If this is the root of the dag we're matching, we emit a redundant opcode
294 // check to ensure that this gets folded into the normal top-level
296 if (N
== Pattern
.getSrcPattern()) {
297 MVT VT
= N
->getSimpleType(0);
298 StringRef Name
= VT
.isScalableVector() ? "splat_vector" : "build_vector";
299 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed(Name
));
300 AddMatcher(new CheckOpcodeMatcher(NI
));
302 return AddMatcher(new CheckImmAllZerosVMatcher());
305 errs() << "Unknown leaf kind: " << *N
<< "\n";
309 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode
*N
,
310 TreePatternNode
*NodeNoTypes
,
311 unsigned ForceMode
) {
312 assert(!N
->isLeaf() && "Not an operator?");
314 if (N
->getOperator()->isSubClassOf("ComplexPattern")) {
315 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
316 // "MY_PAT:op1:op2". We should already have validated that the uses are
318 std::string PatternName
= std::string(N
->getOperator()->getName());
319 for (unsigned i
= 0; i
< N
->getNumChildren(); ++i
) {
321 PatternName
+= N
->getChild(i
)->getName();
324 if (recordUniqueNode(PatternName
)) {
325 auto NodeAndOpNum
= std::make_pair(N
, NextRecordedOperandNo
- 1);
326 MatchedComplexPatterns
.push_back(NodeAndOpNum
);
332 const SDNodeInfo
&CInfo
= CGP
.getSDNodeInfo(N
->getOperator());
334 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
335 // a constant without a predicate fn that has more than one bit set, handle
336 // this as a special case. This is usually for targets that have special
337 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
338 // handling stuff). Using these instructions is often far more efficient
339 // than materializing the constant. Unfortunately, both the instcombiner
340 // and the dag combiner can often infer that bits are dead, and thus drop
341 // them from the mask in the dag. For example, it might turn 'AND X, 255'
342 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
344 if ((N
->getOperator()->getName() == "and" ||
345 N
->getOperator()->getName() == "or") &&
346 N
->getChild(1)->isLeaf() && N
->getChild(1)->getPredicateCalls().empty() &&
347 N
->getPredicateCalls().empty()) {
348 if (IntInit
*II
= dyn_cast
<IntInit
>(N
->getChild(1)->getLeafValue())) {
349 if (!isPowerOf2_32(II
->getValue())) { // Don't bother with single bits.
350 // If this is at the root of the pattern, we emit a redundant
351 // CheckOpcode so that the following checks get factored properly under
352 // a single opcode check.
353 if (N
== Pattern
.getSrcPattern())
354 AddMatcher(new CheckOpcodeMatcher(CInfo
));
356 // Emit the CheckAndImm/CheckOrImm node.
357 if (N
->getOperator()->getName() == "and")
358 AddMatcher(new CheckAndImmMatcher(II
->getValue()));
360 AddMatcher(new CheckOrImmMatcher(II
->getValue()));
362 // Match the LHS of the AND as appropriate.
363 AddMatcher(new MoveChildMatcher(0));
364 EmitMatchCode(N
->getChild(0), NodeNoTypes
->getChild(0), ForceMode
);
365 AddMatcher(new MoveParentMatcher());
371 // Check that the current opcode lines up.
372 AddMatcher(new CheckOpcodeMatcher(CInfo
));
374 // If this node has memory references (i.e. is a load or store), tell the
375 // interpreter to capture them in the memref array.
376 if (N
->NodeHasProperty(SDNPMemOperand
, CGP
))
377 AddMatcher(new RecordMemRefMatcher());
379 // If this node has a chain, then the chain is operand #0 is the SDNode, and
380 // the child numbers of the node are all offset by one.
382 if (N
->NodeHasProperty(SDNPHasChain
, CGP
)) {
383 // Record the node and remember it in our chained nodes list.
384 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName().str() +
386 NextRecordedOperandNo
));
387 // Remember all of the input chains our pattern will match.
388 MatchedChainNodes
.push_back(NextRecordedOperandNo
++);
390 // Don't look at the input chain when matching the tree pattern to the
394 // If this node is not the root and the subtree underneath it produces a
395 // chain, then the result of matching the node is also produce a chain.
396 // Beyond that, this means that we're also folding (at least) the root node
397 // into the node that produce the chain (for example, matching
398 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
399 // problematic, if the 'reg' node also uses the load (say, its chain).
404 // | \ DAG's like cheese.
410 // It would be invalid to fold XX and LD. In this case, folding the two
411 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
412 // To prevent this, we emit a dynamic check for legality before allowing
413 // this to be folded.
415 const TreePatternNode
*Root
= Pattern
.getSrcPattern();
416 if (N
!= Root
) { // Not the root of the pattern.
417 // If there is a node between the root and this node, then we definitely
418 // need to emit the check.
419 bool NeedCheck
= !Root
->hasChild(N
);
421 // If it *is* an immediate child of the root, we can still need a check if
422 // the root SDNode has multiple inputs. For us, this means that it is an
423 // intrinsic, has multiple operands, or has other inputs like chain or
426 const SDNodeInfo
&PInfo
= CGP
.getSDNodeInfo(Root
->getOperator());
428 Root
->getOperator() == CGP
.get_intrinsic_void_sdnode() ||
429 Root
->getOperator() == CGP
.get_intrinsic_w_chain_sdnode() ||
430 Root
->getOperator() == CGP
.get_intrinsic_wo_chain_sdnode() ||
431 PInfo
.getNumOperands() > 1 ||
432 PInfo
.hasProperty(SDNPHasChain
) ||
433 PInfo
.hasProperty(SDNPInGlue
) ||
434 PInfo
.hasProperty(SDNPOptInGlue
);
438 AddMatcher(new CheckFoldableChainNodeMatcher());
442 // If this node has an output glue and isn't the root, remember it.
443 if (N
->NodeHasProperty(SDNPOutGlue
, CGP
) &&
444 N
!= Pattern
.getSrcPattern()) {
445 // TODO: This redundantly records nodes with both glues and chains.
447 // Record the node and remember it in our chained nodes list.
448 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName().str() +
449 "' glue output node",
450 NextRecordedOperandNo
));
453 // If this node is known to have an input glue or if it *might* have an input
454 // glue, capture it as the glue input of the pattern.
455 if (N
->NodeHasProperty(SDNPOptInGlue
, CGP
) ||
456 N
->NodeHasProperty(SDNPInGlue
, CGP
))
457 AddMatcher(new CaptureGlueInputMatcher());
459 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
, ++OpNo
) {
460 // Get the code suitable for matching this child. Move to the child, check
461 // it then move back to the parent.
462 AddMatcher(new MoveChildMatcher(OpNo
));
463 EmitMatchCode(N
->getChild(i
), NodeNoTypes
->getChild(i
), ForceMode
);
464 AddMatcher(new MoveParentMatcher());
468 bool MatcherGen::recordUniqueNode(ArrayRef
<std::string
> Names
) {
470 for (const std::string
&Name
: Names
) {
471 unsigned &VarMapEntry
= VariableMap
[Name
];
474 assert(Entry
== VarMapEntry
);
477 bool NewRecord
= false;
479 // If it is a named node, we must emit a 'Record' opcode.
481 for (const std::string
&Name
: Names
) {
482 if (!WhatFor
.empty())
484 WhatFor
+= "$" + Name
;
486 AddMatcher(new RecordMatcher(WhatFor
, NextRecordedOperandNo
));
487 Entry
= ++NextRecordedOperandNo
;
490 // If we get here, this is a second reference to a specific name. Since
491 // we already have checked that the first reference is valid, we don't
492 // have to recursively match it, just check that it's the same as the
493 // previously named thing.
494 AddMatcher(new CheckSameMatcher(Entry
-1));
497 for (const std::string
&Name
: Names
)
498 VariableMap
[Name
] = Entry
;
503 void MatcherGen::EmitMatchCode(const TreePatternNode
*N
,
504 TreePatternNode
*NodeNoTypes
,
505 unsigned ForceMode
) {
506 // If N and NodeNoTypes don't agree on a type, then this is a case where we
507 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
508 // reinfer any correlated types.
509 SmallVector
<unsigned, 2> ResultsToTypeCheck
;
511 for (unsigned i
= 0, e
= NodeNoTypes
->getNumTypes(); i
!= e
; ++i
) {
512 if (NodeNoTypes
->getExtType(i
) == N
->getExtType(i
)) continue;
513 NodeNoTypes
->setType(i
, N
->getExtType(i
));
514 InferPossibleTypes(ForceMode
);
515 ResultsToTypeCheck
.push_back(i
);
518 // If this node has a name associated with it, capture it in VariableMap. If
519 // we already saw this in the pattern, emit code to verify dagness.
520 SmallVector
<std::string
, 4> Names
;
521 if (!N
->getName().empty())
522 Names
.push_back(N
->getName());
524 for (const ScopedName
&Name
: N
->getNamesAsPredicateArg()) {
525 Names
.push_back(("pred:" + Twine(Name
.getScope()) + ":" + Name
.getIdentifier()).str());
528 if (!Names
.empty()) {
529 if (!recordUniqueNode(Names
))
534 EmitLeafMatchCode(N
);
536 EmitOperatorMatchCode(N
, NodeNoTypes
, ForceMode
);
538 // If there are node predicates for this node, generate their checks.
539 for (unsigned i
= 0, e
= N
->getPredicateCalls().size(); i
!= e
; ++i
) {
540 const TreePredicateCall
&Pred
= N
->getPredicateCalls()[i
];
541 SmallVector
<unsigned, 4> Operands
;
542 if (Pred
.Fn
.usesOperands()) {
543 TreePattern
*TP
= Pred
.Fn
.getOrigPatFragRecord();
544 for (unsigned i
= 0; i
< TP
->getNumArgs(); ++i
) {
546 ("pred:" + Twine(Pred
.Scope
) + ":" + TP
->getArgName(i
)).str();
547 Operands
.push_back(getNamedArgumentSlot(Name
));
550 AddMatcher(new CheckPredicateMatcher(Pred
.Fn
, Operands
));
553 for (unsigned i
= 0, e
= ResultsToTypeCheck
.size(); i
!= e
; ++i
)
554 AddMatcher(new CheckTypeMatcher(N
->getSimpleType(ResultsToTypeCheck
[i
]),
555 ResultsToTypeCheck
[i
]));
558 /// EmitMatcherCode - Generate the code that matches the predicate of this
559 /// pattern for the specified Variant. If the variant is invalid this returns
560 /// true and does not generate code, if it is valid, it returns false.
561 bool MatcherGen::EmitMatcherCode(unsigned Variant
) {
562 // If the root of the pattern is a ComplexPattern and if it is specified to
563 // match some number of root opcodes, these are considered to be our variants.
564 // Depending on which variant we're generating code for, emit the root opcode
566 if (const ComplexPattern
*CP
=
567 Pattern
.getSrcPattern()->getComplexPatternInfo(CGP
)) {
568 const std::vector
<Record
*> &OpNodes
= CP
->getRootNodes();
569 assert(!OpNodes
.empty() &&"Complex Pattern must specify what it can match");
570 if (Variant
>= OpNodes
.size()) return true;
572 AddMatcher(new CheckOpcodeMatcher(CGP
.getSDNodeInfo(OpNodes
[Variant
])));
574 if (Variant
!= 0) return true;
577 // Emit the matcher for the pattern structure and types.
578 EmitMatchCode(Pattern
.getSrcPattern(), PatWithNoTypes
.get(),
579 Pattern
.getForceMode());
581 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
582 // feature is around, do the check).
583 if (!Pattern
.getPredicateCheck().empty())
584 AddMatcher(new CheckPatternPredicateMatcher(Pattern
.getPredicateCheck()));
586 // Now that we've completed the structural type match, emit any ComplexPattern
587 // checks (e.g. addrmode matches). We emit this after the structural match
588 // because they are generally more expensive to evaluate and more difficult to
590 for (unsigned i
= 0, e
= MatchedComplexPatterns
.size(); i
!= e
; ++i
) {
591 auto N
= MatchedComplexPatterns
[i
].first
;
593 // Remember where the results of this match get stuck.
595 NamedComplexPatternOperands
[N
->getName()] = NextRecordedOperandNo
+ 1;
597 unsigned CurOp
= NextRecordedOperandNo
;
598 for (unsigned i
= 0; i
< N
->getNumChildren(); ++i
) {
599 NamedComplexPatternOperands
[N
->getChild(i
)->getName()] = CurOp
+ 1;
600 CurOp
+= N
->getChild(i
)->getNumMIResults(CGP
);
604 // Get the slot we recorded the value in from the name on the node.
605 unsigned RecNodeEntry
= MatchedComplexPatterns
[i
].second
;
607 const ComplexPattern
&CP
= *N
->getComplexPatternInfo(CGP
);
609 // Emit a CheckComplexPat operation, which does the match (aborting if it
610 // fails) and pushes the matched operands onto the recorded nodes list.
611 AddMatcher(new CheckComplexPatMatcher(CP
, RecNodeEntry
,
612 N
->getName(), NextRecordedOperandNo
));
614 // Record the right number of operands.
615 NextRecordedOperandNo
+= CP
.getNumOperands();
616 if (CP
.hasProperty(SDNPHasChain
)) {
617 // If the complex pattern has a chain, then we need to keep track of the
618 // fact that we just recorded a chain input. The chain input will be
619 // matched as the last operand of the predicate if it was successful.
620 ++NextRecordedOperandNo
; // Chained node operand.
622 // It is the last operand recorded.
623 assert(NextRecordedOperandNo
> 1 &&
624 "Should have recorded input/result chains at least!");
625 MatchedChainNodes
.push_back(NextRecordedOperandNo
-1);
628 // TODO: Complex patterns can't have output glues, if they did, we'd want
636 //===----------------------------------------------------------------------===//
637 // Node Result Generation
638 //===----------------------------------------------------------------------===//
640 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode
*N
,
641 SmallVectorImpl
<unsigned> &ResultOps
){
642 assert(!N
->getName().empty() && "Operand not named!");
644 if (unsigned SlotNo
= NamedComplexPatternOperands
[N
->getName()]) {
645 // Complex operands have already been completely selected, just find the
646 // right slot ant add the arguments directly.
647 for (unsigned i
= 0; i
< N
->getNumMIResults(CGP
); ++i
)
648 ResultOps
.push_back(SlotNo
- 1 + i
);
653 unsigned SlotNo
= getNamedArgumentSlot(N
->getName());
655 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
656 // version of the immediate so that it doesn't get selected due to some other
659 StringRef OperatorName
= N
->getOperator()->getName();
660 if (OperatorName
== "imm" || OperatorName
== "fpimm") {
661 AddMatcher(new EmitConvertToTargetMatcher(SlotNo
));
662 ResultOps
.push_back(NextRecordedOperandNo
++);
667 for (unsigned i
= 0; i
< N
->getNumMIResults(CGP
); ++i
)
668 ResultOps
.push_back(SlotNo
+ i
);
671 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode
*N
,
672 SmallVectorImpl
<unsigned> &ResultOps
) {
673 assert(N
->isLeaf() && "Must be a leaf");
675 if (IntInit
*II
= dyn_cast
<IntInit
>(N
->getLeafValue())) {
676 AddMatcher(new EmitIntegerMatcher(II
->getValue(), N
->getSimpleType(0)));
677 ResultOps
.push_back(NextRecordedOperandNo
++);
681 // If this is an explicit register reference, handle it.
682 if (DefInit
*DI
= dyn_cast
<DefInit
>(N
->getLeafValue())) {
683 Record
*Def
= DI
->getDef();
684 if (Def
->isSubClassOf("Register")) {
685 const CodeGenRegister
*Reg
=
686 CGP
.getTargetInfo().getRegBank().getReg(Def
);
687 AddMatcher(new EmitRegisterMatcher(Reg
, N
->getSimpleType(0)));
688 ResultOps
.push_back(NextRecordedOperandNo
++);
692 if (Def
->getName() == "zero_reg") {
693 AddMatcher(new EmitRegisterMatcher(nullptr, N
->getSimpleType(0)));
694 ResultOps
.push_back(NextRecordedOperandNo
++);
698 if (Def
->getName() == "undef_tied_input") {
699 std::array
<MVT::SimpleValueType
, 1> ResultVTs
= {{ N
->getSimpleType(0) }};
700 std::array
<unsigned, 0> InstOps
;
701 auto IDOperandNo
= NextRecordedOperandNo
++;
702 AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
703 ResultVTs
, InstOps
, false, false, false,
704 false, -1, IDOperandNo
));
705 ResultOps
.push_back(IDOperandNo
);
709 // Handle a reference to a register class. This is used
710 // in COPY_TO_SUBREG instructions.
711 if (Def
->isSubClassOf("RegisterOperand"))
712 Def
= Def
->getValueAsDef("RegClass");
713 if (Def
->isSubClassOf("RegisterClass")) {
714 // If the register class has an enum integer value greater than 127, the
715 // encoding overflows the limit of 7 bits, which precludes the use of
716 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
717 const CodeGenRegisterClass
&RC
=
718 CGP
.getTargetInfo().getRegisterClass(Def
);
719 if (RC
.EnumValue
<= 127) {
720 std::string Value
= getQualifiedName(Def
) + "RegClassID";
721 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
722 ResultOps
.push_back(NextRecordedOperandNo
++);
724 AddMatcher(new EmitIntegerMatcher(RC
.EnumValue
, MVT::i32
));
725 ResultOps
.push_back(NextRecordedOperandNo
++);
730 // Handle a subregister index. This is used for INSERT_SUBREG etc.
731 if (Def
->isSubClassOf("SubRegIndex")) {
732 const CodeGenRegBank
&RB
= CGP
.getTargetInfo().getRegBank();
733 // If we have more than 127 subreg indices the encoding can overflow
734 // 7 bit and we cannot use StringInteger.
735 if (RB
.getSubRegIndices().size() > 127) {
736 const CodeGenSubRegIndex
*I
= RB
.findSubRegIdx(Def
);
737 assert(I
&& "Cannot find subreg index by name!");
738 if (I
->EnumValue
> 127) {
739 AddMatcher(new EmitIntegerMatcher(I
->EnumValue
, MVT::i32
));
740 ResultOps
.push_back(NextRecordedOperandNo
++);
744 std::string Value
= getQualifiedName(Def
);
745 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
746 ResultOps
.push_back(NextRecordedOperandNo
++);
751 errs() << "unhandled leaf node:\n";
756 mayInstNodeLoadOrStore(const TreePatternNode
*N
,
757 const CodeGenDAGPatterns
&CGP
) {
758 Record
*Op
= N
->getOperator();
759 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
760 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
761 return II
.mayLoad
|| II
.mayStore
;
765 numNodesThatMayLoadOrStore(const TreePatternNode
*N
,
766 const CodeGenDAGPatterns
&CGP
) {
770 Record
*OpRec
= N
->getOperator();
771 if (!OpRec
->isSubClassOf("Instruction"))
775 if (mayInstNodeLoadOrStore(N
, CGP
))
778 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
779 Count
+= numNodesThatMayLoadOrStore(N
->getChild(i
), CGP
);
785 EmitResultInstructionAsOperand(const TreePatternNode
*N
,
786 SmallVectorImpl
<unsigned> &OutputOps
) {
787 Record
*Op
= N
->getOperator();
788 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
789 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
790 const DAGInstruction
&Inst
= CGP
.getInstruction(Op
);
792 bool isRoot
= N
== Pattern
.getDstPattern();
794 // TreeHasOutGlue - True if this tree has glue.
795 bool TreeHasInGlue
= false, TreeHasOutGlue
= false;
797 const TreePatternNode
*SrcPat
= Pattern
.getSrcPattern();
798 TreeHasInGlue
= SrcPat
->TreeHasProperty(SDNPOptInGlue
, CGP
) ||
799 SrcPat
->TreeHasProperty(SDNPInGlue
, CGP
);
801 // FIXME2: this is checking the entire pattern, not just the node in
802 // question, doing this just for the root seems like a total hack.
803 TreeHasOutGlue
= SrcPat
->TreeHasProperty(SDNPOutGlue
, CGP
);
806 // NumResults - This is the number of results produced by the instruction in
808 unsigned NumResults
= Inst
.getNumResults();
810 // Number of operands we know the output instruction must have. If it is
811 // variadic, we could have more operands.
812 unsigned NumFixedOperands
= II
.Operands
.size();
814 SmallVector
<unsigned, 8> InstOps
;
816 // Loop over all of the fixed operands of the instruction pattern, emitting
817 // code to fill them all in. The node 'N' usually has number children equal to
818 // the number of input operands of the instruction. However, in cases where
819 // there are predicate operands for an instruction, we need to fill in the
820 // 'execute always' values. Match up the node operands to the instruction
821 // operands to do this.
822 unsigned ChildNo
= 0;
824 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
825 // number of operands at the end of the list which have default values.
826 // Those can come from the pattern if it provides enough arguments, or be
827 // filled in with the default if the pattern hasn't provided them. But any
828 // operand with a default value _before_ the last mandatory one will be
829 // filled in with their defaults unconditionally.
830 unsigned NonOverridableOperands
= NumFixedOperands
;
831 while (NonOverridableOperands
> NumResults
&&
832 CGP
.operandHasDefault(II
.Operands
[NonOverridableOperands
-1].Rec
))
833 --NonOverridableOperands
;
835 for (unsigned InstOpNo
= NumResults
, e
= NumFixedOperands
;
836 InstOpNo
!= e
; ++InstOpNo
) {
837 // Determine what to emit for this operand.
838 Record
*OperandNode
= II
.Operands
[InstOpNo
].Rec
;
839 if (CGP
.operandHasDefault(OperandNode
) &&
840 (InstOpNo
< NonOverridableOperands
|| ChildNo
>= N
->getNumChildren())) {
841 // This is a predicate or optional def operand which the pattern has not
842 // overridden, or which we aren't letting it override; emit the 'default
844 const DAGDefaultOperand
&DefaultOp
845 = CGP
.getDefaultOperand(OperandNode
);
846 for (unsigned i
= 0, e
= DefaultOp
.DefaultOps
.size(); i
!= e
; ++i
)
847 EmitResultOperand(DefaultOp
.DefaultOps
[i
].get(), InstOps
);
851 // Otherwise this is a normal operand or a predicate operand without
852 // 'execute always'; emit it.
854 // For operands with multiple sub-operands we may need to emit
855 // multiple child patterns to cover them all. However, ComplexPattern
856 // children may themselves emit multiple MI operands.
857 unsigned NumSubOps
= 1;
858 if (OperandNode
->isSubClassOf("Operand")) {
859 DagInit
*MIOpInfo
= OperandNode
->getValueAsDag("MIOperandInfo");
860 if (unsigned NumArgs
= MIOpInfo
->getNumArgs())
864 unsigned FinalNumOps
= InstOps
.size() + NumSubOps
;
865 while (InstOps
.size() < FinalNumOps
) {
866 const TreePatternNode
*Child
= N
->getChild(ChildNo
);
867 unsigned BeforeAddingNumOps
= InstOps
.size();
868 EmitResultOperand(Child
, InstOps
);
869 assert(InstOps
.size() > BeforeAddingNumOps
&& "Didn't add any operands");
871 // If the operand is an instruction and it produced multiple results, just
872 // take the first one.
873 if (!Child
->isLeaf() && Child
->getOperator()->isSubClassOf("Instruction"))
874 InstOps
.resize(BeforeAddingNumOps
+1);
880 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
881 // expand suboperands, use default operands, or other features determined from
882 // the CodeGenInstruction after the fixed operands, which were handled
883 // above. Emit the remaining instructions implicitly added by the use for
885 if (II
.Operands
.isVariadic
) {
886 for (unsigned I
= ChildNo
, E
= N
->getNumChildren(); I
< E
; ++I
)
887 EmitResultOperand(N
->getChild(I
), InstOps
);
890 // If this node has input glue or explicitly specified input physregs, we
891 // need to add chained and glued copyfromreg nodes and materialize the glue
893 if (isRoot
&& !PhysRegInputs
.empty()) {
894 // Emit all of the CopyToReg nodes for the input physical registers. These
895 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
896 for (unsigned i
= 0, e
= PhysRegInputs
.size(); i
!= e
; ++i
) {
897 const CodeGenRegister
*Reg
=
898 CGP
.getTargetInfo().getRegBank().getReg(PhysRegInputs
[i
].first
);
899 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs
[i
].second
,
903 // Even if the node has no other glue inputs, the resultant node must be
904 // glued to the CopyFromReg nodes we just generated.
905 TreeHasInGlue
= true;
908 // Result order: node results, chain, glue
910 // Determine the result types.
911 SmallVector
<MVT::SimpleValueType
, 4> ResultVTs
;
912 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
)
913 ResultVTs
.push_back(N
->getSimpleType(i
));
915 // If this is the root instruction of a pattern that has physical registers in
916 // its result pattern, add output VTs for them. For example, X86 has:
917 // (set AL, (mul ...))
918 // This also handles implicit results like:
920 if (isRoot
&& !Pattern
.getDstRegs().empty()) {
921 // If the root came from an implicit def in the instruction handling stuff,
923 Record
*HandledReg
= nullptr;
924 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
925 HandledReg
= II
.ImplicitDefs
[0];
927 for (Record
*Reg
: Pattern
.getDstRegs()) {
928 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
929 ResultVTs
.push_back(getRegisterValueType(Reg
, CGT
));
933 // If this is the root of the pattern and the pattern we're matching includes
934 // a node that is variadic, mark the generated node as variadic so that it
935 // gets the excess operands from the input DAG.
936 int NumFixedArityOperands
= -1;
938 Pattern
.getSrcPattern()->NodeHasProperty(SDNPVariadic
, CGP
))
939 NumFixedArityOperands
= Pattern
.getSrcPattern()->getNumChildren();
941 // If this is the root node and multiple matched nodes in the input pattern
942 // have MemRefs in them, have the interpreter collect them and plop them onto
943 // this node. If there is just one node with MemRefs, leave them on that node
944 // even if it is not the root.
946 // FIXME3: This is actively incorrect for result patterns with multiple
947 // memory-referencing instructions.
948 bool PatternHasMemOperands
=
949 Pattern
.getSrcPattern()->TreeHasProperty(SDNPMemOperand
, CGP
);
951 bool NodeHasMemRefs
= false;
952 if (PatternHasMemOperands
) {
953 unsigned NumNodesThatLoadOrStore
=
954 numNodesThatMayLoadOrStore(Pattern
.getDstPattern(), CGP
);
955 bool NodeIsUniqueLoadOrStore
= mayInstNodeLoadOrStore(N
, CGP
) &&
956 NumNodesThatLoadOrStore
== 1;
958 NodeIsUniqueLoadOrStore
|| (isRoot
&& (mayInstNodeLoadOrStore(N
, CGP
) ||
959 NumNodesThatLoadOrStore
!= 1));
962 // Determine whether we need to attach a chain to this node.
963 bool NodeHasChain
= false;
964 if (Pattern
.getSrcPattern()->TreeHasProperty(SDNPHasChain
, CGP
)) {
965 // For some instructions, we were able to infer from the pattern whether
966 // they should have a chain. Otherwise, attach the chain to the root.
968 // FIXME2: This is extremely dubious for several reasons, not the least of
969 // which it gives special status to instructions with patterns that Pat<>
970 // nodes can't duplicate.
971 if (II
.hasChain_Inferred
)
972 NodeHasChain
= II
.hasChain
;
974 NodeHasChain
= isRoot
;
975 // Instructions which load and store from memory should have a chain,
976 // regardless of whether they happen to have a pattern saying so.
977 if (II
.hasCtrlDep
|| II
.mayLoad
|| II
.mayStore
|| II
.canFoldAsLoad
||
982 assert((!ResultVTs
.empty() || TreeHasOutGlue
|| NodeHasChain
) &&
983 "Node has no result");
985 AddMatcher(new EmitNodeMatcher(II
.Namespace
.str()+"::"+II
.TheDef
->getName().str(),
987 NodeHasChain
, TreeHasInGlue
, TreeHasOutGlue
,
988 NodeHasMemRefs
, NumFixedArityOperands
,
989 NextRecordedOperandNo
));
991 // The non-chain and non-glue results of the newly emitted node get recorded.
992 for (unsigned i
= 0, e
= ResultVTs
.size(); i
!= e
; ++i
) {
993 if (ResultVTs
[i
] == MVT::Other
|| ResultVTs
[i
] == MVT::Glue
) break;
994 OutputOps
.push_back(NextRecordedOperandNo
++);
999 EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
1000 SmallVectorImpl
<unsigned> &ResultOps
) {
1001 assert(N
->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
1003 // Emit the operand.
1004 SmallVector
<unsigned, 8> InputOps
;
1006 // FIXME2: Could easily generalize this to support multiple inputs and outputs
1007 // to the SDNodeXForm. For now we just support one input and one output like
1008 // the old instruction selector.
1009 assert(N
->getNumChildren() == 1);
1010 EmitResultOperand(N
->getChild(0), InputOps
);
1012 // The input currently must have produced exactly one result.
1013 assert(InputOps
.size() == 1 && "Unexpected input to SDNodeXForm");
1015 AddMatcher(new EmitNodeXFormMatcher(InputOps
[0], N
->getOperator()));
1016 ResultOps
.push_back(NextRecordedOperandNo
++);
1019 void MatcherGen::EmitResultOperand(const TreePatternNode
*N
,
1020 SmallVectorImpl
<unsigned> &ResultOps
) {
1021 // This is something selected from the pattern we matched.
1022 if (!N
->getName().empty())
1023 return EmitResultOfNamedOperand(N
, ResultOps
);
1026 return EmitResultLeafAsOperand(N
, ResultOps
);
1028 Record
*OpRec
= N
->getOperator();
1029 if (OpRec
->isSubClassOf("Instruction"))
1030 return EmitResultInstructionAsOperand(N
, ResultOps
);
1031 if (OpRec
->isSubClassOf("SDNodeXForm"))
1032 return EmitResultSDNodeXFormAsOperand(N
, ResultOps
);
1033 errs() << "Unknown result node to emit code for: " << *N
<< '\n';
1034 PrintFatalError("Unknown node in result pattern!");
1037 void MatcherGen::EmitResultCode() {
1038 // Patterns that match nodes with (potentially multiple) chain inputs have to
1039 // merge them together into a token factor. This informs the generated code
1040 // what all the chained nodes are.
1041 if (!MatchedChainNodes
.empty())
1042 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes
));
1044 // Codegen the root of the result pattern, capturing the resulting values.
1045 SmallVector
<unsigned, 8> Ops
;
1046 EmitResultOperand(Pattern
.getDstPattern(), Ops
);
1048 // At this point, we have however many values the result pattern produces.
1049 // However, the input pattern might not need all of these. If there are
1050 // excess values at the end (such as implicit defs of condition codes etc)
1051 // just lop them off. This doesn't need to worry about glue or chains, just
1052 // explicit results.
1054 unsigned NumSrcResults
= Pattern
.getSrcPattern()->getNumTypes();
1056 // If the pattern also has (implicit) results, count them as well.
1057 if (!Pattern
.getDstRegs().empty()) {
1058 // If the root came from an implicit def in the instruction handling stuff,
1060 Record
*HandledReg
= nullptr;
1061 const TreePatternNode
*DstPat
= Pattern
.getDstPattern();
1062 if (!DstPat
->isLeaf() &&DstPat
->getOperator()->isSubClassOf("Instruction")){
1063 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
1064 CodeGenInstruction
&II
= CGT
.getInstruction(DstPat
->getOperator());
1066 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
1067 HandledReg
= II
.ImplicitDefs
[0];
1070 for (Record
*Reg
: Pattern
.getDstRegs()) {
1071 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
1076 SmallVector
<unsigned, 8> Results(Ops
);
1078 // Apply result permutation.
1079 for (unsigned ResNo
= 0; ResNo
< Pattern
.getDstPattern()->getNumResults();
1081 Results
[ResNo
] = Ops
[Pattern
.getDstPattern()->getResultIndex(ResNo
)];
1084 Results
.resize(NumSrcResults
);
1085 AddMatcher(new CompleteMatchMatcher(Results
, Pattern
));
1089 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1090 /// the specified variant. If the variant number is invalid, this returns null.
1091 Matcher
*llvm::ConvertPatternToMatcher(const PatternToMatch
&Pattern
,
1093 const CodeGenDAGPatterns
&CGP
) {
1094 MatcherGen
Gen(Pattern
, CGP
);
1096 // Generate the code for the matcher.
1097 if (Gen
.EmitMatcherCode(Variant
))
1100 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1101 // FIXME2: Split result code out to another table, and make the matcher end
1102 // with an "Emit <index>" command. This allows result generation stuff to be
1103 // shared and factored?
1105 // If the match succeeds, then we generate Pattern.
1106 Gen
.EmitResultCode();
1108 // Unconditional match.
1109 return Gen
.GetMatcher();