[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / FastISelEmitter.cpp
blobd64262124308a019ca0494bca5576f1466e41835
1 ///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits code for use by the "fast" instruction
10 // selection algorithm. See the comments at the top of
11 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
13 // This file scans through the target's tablegen instruction-info files
14 // and extracts instructions with obvious-looking patterns, and it emits
15 // code to look up these instructions by type and operator.
17 //===----------------------------------------------------------------------===//
19 #include "CodeGenDAGPatterns.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include "llvm/TableGen/TableGenBackend.h"
26 #include <utility>
27 using namespace llvm;
30 /// InstructionMemo - This class holds additional information about an
31 /// instruction needed to emit code for it.
32 ///
33 namespace {
34 struct InstructionMemo {
35 std::string Name;
36 const CodeGenRegisterClass *RC;
37 std::string SubRegNo;
38 std::vector<std::string> PhysRegs;
39 std::string PredicateCheck;
41 InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
42 std::string SubRegNo, std::vector<std::string> PhysRegs,
43 std::string PredicateCheck)
44 : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
45 PhysRegs(std::move(PhysRegs)),
46 PredicateCheck(std::move(PredicateCheck)) {}
48 // Make sure we do not copy InstructionMemo.
49 InstructionMemo(const InstructionMemo &Other) = delete;
50 InstructionMemo(InstructionMemo &&Other) = default;
52 } // End anonymous namespace
54 /// ImmPredicateSet - This uniques predicates (represented as a string) and
55 /// gives them unique (small) integer ID's that start at 0.
56 namespace {
57 class ImmPredicateSet {
58 DenseMap<TreePattern *, unsigned> ImmIDs;
59 std::vector<TreePredicateFn> PredsByName;
60 public:
62 unsigned getIDFor(TreePredicateFn Pred) {
63 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
64 if (Entry == 0) {
65 PredsByName.push_back(Pred);
66 Entry = PredsByName.size();
68 return Entry-1;
71 const TreePredicateFn &getPredicate(unsigned i) {
72 assert(i < PredsByName.size());
73 return PredsByName[i];
76 typedef std::vector<TreePredicateFn>::const_iterator iterator;
77 iterator begin() const { return PredsByName.begin(); }
78 iterator end() const { return PredsByName.end(); }
81 } // End anonymous namespace
83 /// OperandsSignature - This class holds a description of a list of operand
84 /// types. It has utility methods for emitting text based on the operands.
85 ///
86 namespace {
87 struct OperandsSignature {
88 class OpKind {
89 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
90 char Repr;
91 public:
93 OpKind() : Repr(OK_Invalid) {}
95 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
96 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
98 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
99 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
100 static OpKind getImm(unsigned V) {
101 assert((unsigned)OK_Imm+V < 128 &&
102 "Too many integer predicates for the 'Repr' char");
103 OpKind K; K.Repr = OK_Imm+V; return K;
106 bool isReg() const { return Repr == OK_Reg; }
107 bool isFP() const { return Repr == OK_FP; }
108 bool isImm() const { return Repr >= OK_Imm; }
110 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
112 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
113 bool StripImmCodes) const {
114 if (isReg())
115 OS << 'r';
116 else if (isFP())
117 OS << 'f';
118 else {
119 OS << 'i';
120 if (!StripImmCodes)
121 if (unsigned Code = getImmCode())
122 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
128 SmallVector<OpKind, 3> Operands;
130 bool operator<(const OperandsSignature &O) const {
131 return Operands < O.Operands;
133 bool operator==(const OperandsSignature &O) const {
134 return Operands == O.Operands;
137 bool empty() const { return Operands.empty(); }
139 bool hasAnyImmediateCodes() const {
140 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
141 if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
142 return true;
143 return false;
146 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
147 /// to zero.
148 OperandsSignature getWithoutImmCodes() const {
149 OperandsSignature Result;
150 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
151 if (!Operands[i].isImm())
152 Result.Operands.push_back(Operands[i]);
153 else
154 Result.Operands.push_back(OpKind::getImm(0));
155 return Result;
158 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
159 bool EmittedAnything = false;
160 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
161 if (!Operands[i].isImm()) continue;
163 unsigned Code = Operands[i].getImmCode();
164 if (Code == 0) continue;
166 if (EmittedAnything)
167 OS << " &&\n ";
169 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
171 // Emit the type check.
172 TreePattern *TP = PredFn.getOrigPatFragRecord();
173 ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
174 assert(VVT.isSimple() &&
175 "Cannot use variable value types with fast isel");
176 OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
178 OS << PredFn.getFnName() << "(imm" << i <<')';
179 EmittedAnything = true;
183 /// initialize - Examine the given pattern and initialize the contents
184 /// of the Operands array accordingly. Return true if all the operands
185 /// are supported, false otherwise.
187 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
188 MVT::SimpleValueType VT,
189 ImmPredicateSet &ImmediatePredicates,
190 const CodeGenRegisterClass *OrigDstRC) {
191 if (InstPatNode->isLeaf())
192 return false;
194 if (InstPatNode->getOperator()->getName() == "imm") {
195 Operands.push_back(OpKind::getImm(0));
196 return true;
199 if (InstPatNode->getOperator()->getName() == "fpimm") {
200 Operands.push_back(OpKind::getFP());
201 return true;
204 const CodeGenRegisterClass *DstRC = nullptr;
206 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
207 TreePatternNode *Op = InstPatNode->getChild(i);
209 // Handle imm operands specially.
210 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
211 unsigned PredNo = 0;
212 if (!Op->getPredicateCalls().empty()) {
213 TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
214 // If there is more than one predicate weighing in on this operand
215 // then we don't handle it. This doesn't typically happen for
216 // immediates anyway.
217 if (Op->getPredicateCalls().size() > 1 ||
218 !PredFn.isImmediatePattern() || PredFn.usesOperands())
219 return false;
220 // Ignore any instruction with 'FastIselShouldIgnore', these are
221 // not needed and just bloat the fast instruction selector. For
222 // example, X86 doesn't need to generate code to match ADD16ri8 since
223 // ADD16ri will do just fine.
224 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
225 if (Rec->getValueAsBit("FastIselShouldIgnore"))
226 return false;
228 PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
231 Operands.push_back(OpKind::getImm(PredNo));
232 continue;
236 // For now, filter out any operand with a predicate.
237 // For now, filter out any operand with multiple values.
238 if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
239 return false;
241 if (!Op->isLeaf()) {
242 if (Op->getOperator()->getName() == "fpimm") {
243 Operands.push_back(OpKind::getFP());
244 continue;
246 // For now, ignore other non-leaf nodes.
247 return false;
250 assert(Op->hasConcreteType(0) && "Type infererence not done?");
252 // For now, all the operands must have the same type (if they aren't
253 // immediates). Note that this causes us to reject variable sized shifts
254 // on X86.
255 if (Op->getSimpleType(0) != VT)
256 return false;
258 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
259 if (!OpDI)
260 return false;
261 Record *OpLeafRec = OpDI->getDef();
263 // For now, the only other thing we accept is register operands.
264 const CodeGenRegisterClass *RC = nullptr;
265 if (OpLeafRec->isSubClassOf("RegisterOperand"))
266 OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
267 if (OpLeafRec->isSubClassOf("RegisterClass"))
268 RC = &Target.getRegisterClass(OpLeafRec);
269 else if (OpLeafRec->isSubClassOf("Register"))
270 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
271 else if (OpLeafRec->isSubClassOf("ValueType")) {
272 RC = OrigDstRC;
273 } else
274 return false;
276 // For now, this needs to be a register class of some sort.
277 if (!RC)
278 return false;
280 // For now, all the operands must have the same register class or be
281 // a strict subclass of the destination.
282 if (DstRC) {
283 if (DstRC != RC && !DstRC->hasSubClass(RC))
284 return false;
285 } else
286 DstRC = RC;
287 Operands.push_back(OpKind::getReg());
289 return true;
292 void PrintParameters(raw_ostream &OS) const {
293 ListSeparator LS;
294 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
295 OS << LS;
296 if (Operands[i].isReg()) {
297 OS << "unsigned Op" << i;
298 } else if (Operands[i].isImm()) {
299 OS << "uint64_t imm" << i;
300 } else if (Operands[i].isFP()) {
301 OS << "const ConstantFP *f" << i;
302 } else {
303 llvm_unreachable("Unknown operand kind!");
308 void PrintArguments(raw_ostream &OS,
309 const std::vector<std::string> &PR) const {
310 assert(PR.size() == Operands.size());
311 ListSeparator LS;
312 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
313 if (PR[i] != "")
314 // Implicit physical register operand.
315 continue;
317 OS << LS;
318 if (Operands[i].isReg()) {
319 OS << "Op" << i;
320 } else if (Operands[i].isImm()) {
321 OS << "imm" << i;
322 } else if (Operands[i].isFP()) {
323 OS << "f" << i;
324 } else {
325 llvm_unreachable("Unknown operand kind!");
330 void PrintArguments(raw_ostream &OS) const {
331 ListSeparator LS;
332 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
333 OS << LS;
334 if (Operands[i].isReg()) {
335 OS << "Op" << i;
336 } else if (Operands[i].isImm()) {
337 OS << "imm" << i;
338 } else if (Operands[i].isFP()) {
339 OS << "f" << i;
340 } else {
341 llvm_unreachable("Unknown operand kind!");
347 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
348 ImmPredicateSet &ImmPredicates,
349 bool StripImmCodes = false) const {
350 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
351 if (PR[i] != "")
352 // Implicit physical register operand. e.g. Instruction::Mul expect to
353 // select to a binary op. On x86, mul may take a single operand with
354 // the other operand being implicit. We must emit something that looks
355 // like a binary instruction except for the very inner fastEmitInst_*
356 // call.
357 continue;
358 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
362 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
363 bool StripImmCodes = false) const {
364 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
365 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
368 } // End anonymous namespace
370 namespace {
371 class FastISelMap {
372 // A multimap is needed instead of a "plain" map because the key is
373 // the instruction's complexity (an int) and they are not unique.
374 typedef std::multimap<int, InstructionMemo> PredMap;
375 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
376 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
377 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
378 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
379 OperandsOpcodeTypeRetPredMap;
381 OperandsOpcodeTypeRetPredMap SimplePatterns;
383 // This is used to check that there are no duplicate predicates
384 typedef std::multimap<std::string, bool> PredCheckMap;
385 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
386 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
387 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
388 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
389 OperandsOpcodeTypeRetPredCheckMap;
391 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
393 std::map<OperandsSignature, std::vector<OperandsSignature> >
394 SignaturesWithConstantForms;
396 StringRef InstNS;
397 ImmPredicateSet ImmediatePredicates;
398 public:
399 explicit FastISelMap(StringRef InstNS);
401 void collectPatterns(CodeGenDAGPatterns &CGP);
402 void printImmediatePredicates(raw_ostream &OS);
403 void printFunctionDefinitions(raw_ostream &OS);
404 private:
405 void emitInstructionCode(raw_ostream &OS,
406 const OperandsSignature &Operands,
407 const PredMap &PM,
408 const std::string &RetVTName);
410 } // End anonymous namespace
412 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
413 return std::string(CGP.getSDNodeInfo(Op).getEnumName());
416 static std::string getLegalCName(std::string OpName) {
417 std::string::size_type pos = OpName.find("::");
418 if (pos != std::string::npos)
419 OpName.replace(pos, 2, "_");
420 return OpName;
423 FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
425 static std::string PhyRegForNode(TreePatternNode *Op,
426 const CodeGenTarget &Target) {
427 std::string PhysReg;
429 if (!Op->isLeaf())
430 return PhysReg;
432 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
433 if (!OpLeafRec->isSubClassOf("Register"))
434 return PhysReg;
436 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
437 ->getValue();
438 PhysReg += "::";
439 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
440 return PhysReg;
443 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
444 const CodeGenTarget &Target = CGP.getTargetInfo();
446 // Scan through all the patterns and record the simple ones.
447 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
448 E = CGP.ptm_end(); I != E; ++I) {
449 const PatternToMatch &Pattern = *I;
451 // For now, just look at Instructions, so that we don't have to worry
452 // about emitting multiple instructions for a pattern.
453 TreePatternNode *Dst = Pattern.getDstPattern();
454 if (Dst->isLeaf()) continue;
455 Record *Op = Dst->getOperator();
456 if (!Op->isSubClassOf("Instruction"))
457 continue;
458 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
459 if (II.Operands.empty())
460 continue;
462 // Allow instructions to be marked as unavailable for FastISel for
463 // certain cases, i.e. an ISA has two 'and' instruction which differ
464 // by what registers they can use but are otherwise identical for
465 // codegen purposes.
466 if (II.FastISelShouldIgnore)
467 continue;
469 // For now, ignore multi-instruction patterns.
470 bool MultiInsts = false;
471 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
472 TreePatternNode *ChildOp = Dst->getChild(i);
473 if (ChildOp->isLeaf())
474 continue;
475 if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
476 MultiInsts = true;
477 break;
480 if (MultiInsts)
481 continue;
483 // For now, ignore instructions where the first operand is not an
484 // output register.
485 const CodeGenRegisterClass *DstRC = nullptr;
486 std::string SubRegNo;
487 if (Op->getName() != "EXTRACT_SUBREG") {
488 Record *Op0Rec = II.Operands[0].Rec;
489 if (Op0Rec->isSubClassOf("RegisterOperand"))
490 Op0Rec = Op0Rec->getValueAsDef("RegClass");
491 if (!Op0Rec->isSubClassOf("RegisterClass"))
492 continue;
493 DstRC = &Target.getRegisterClass(Op0Rec);
494 if (!DstRC)
495 continue;
496 } else {
497 // If this isn't a leaf, then continue since the register classes are
498 // a bit too complicated for now.
499 if (!Dst->getChild(1)->isLeaf()) continue;
501 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
502 if (SR)
503 SubRegNo = getQualifiedName(SR->getDef());
504 else
505 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
508 // Inspect the pattern.
509 TreePatternNode *InstPatNode = Pattern.getSrcPattern();
510 if (!InstPatNode) continue;
511 if (InstPatNode->isLeaf()) continue;
513 // Ignore multiple result nodes for now.
514 if (InstPatNode->getNumTypes() > 1) continue;
516 Record *InstPatOp = InstPatNode->getOperator();
517 std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
518 MVT::SimpleValueType RetVT = MVT::isVoid;
519 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
520 MVT::SimpleValueType VT = RetVT;
521 if (InstPatNode->getNumChildren()) {
522 assert(InstPatNode->getChild(0)->getNumTypes() == 1);
523 VT = InstPatNode->getChild(0)->getSimpleType(0);
526 // For now, filter out any instructions with predicates.
527 if (!InstPatNode->getPredicateCalls().empty())
528 continue;
530 // Check all the operands.
531 OperandsSignature Operands;
532 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
533 DstRC))
534 continue;
536 std::vector<std::string> PhysRegInputs;
537 if (InstPatNode->getOperator()->getName() == "imm" ||
538 InstPatNode->getOperator()->getName() == "fpimm")
539 PhysRegInputs.push_back("");
540 else {
541 // Compute the PhysRegs used by the given pattern, and check that
542 // the mapping from the src to dst patterns is simple.
543 bool FoundNonSimplePattern = false;
544 unsigned DstIndex = 0;
545 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
546 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
547 if (PhysReg.empty()) {
548 if (DstIndex >= Dst->getNumChildren() ||
549 Dst->getChild(DstIndex)->getName() !=
550 InstPatNode->getChild(i)->getName()) {
551 FoundNonSimplePattern = true;
552 break;
554 ++DstIndex;
557 PhysRegInputs.push_back(PhysReg);
560 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
561 FoundNonSimplePattern = true;
563 if (FoundNonSimplePattern)
564 continue;
567 // Check if the operands match one of the patterns handled by FastISel.
568 std::string ManglingSuffix;
569 raw_string_ostream SuffixOS(ManglingSuffix);
570 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
571 SuffixOS.flush();
572 if (!StringSwitch<bool>(ManglingSuffix)
573 .Cases("", "r", "rr", "ri", "i", "f", true)
574 .Default(false))
575 continue;
577 // Get the predicate that guards this pattern.
578 std::string PredicateCheck = Pattern.getPredicateCheck();
580 // Ok, we found a pattern that we can handle. Remember it.
581 InstructionMemo Memo(
582 Pattern.getDstPattern()->getOperator()->getName(),
583 DstRC,
584 SubRegNo,
585 PhysRegInputs,
586 PredicateCheck
589 int complexity = Pattern.getPatternComplexity(CGP);
591 if (SimplePatternsCheck[Operands][OpcodeName][VT]
592 [RetVT].count(PredicateCheck)) {
593 PrintFatalError(Pattern.getSrcRecord()->getLoc(),
594 "Duplicate predicate in FastISel table!");
596 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
597 std::make_pair(PredicateCheck, true));
599 // Note: Instructions with the same complexity will appear in the order
600 // that they are encountered.
601 SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
602 std::move(Memo));
604 // If any of the operands were immediates with predicates on them, strip
605 // them down to a signature that doesn't have predicates so that we can
606 // associate them with the stripped predicate version.
607 if (Operands.hasAnyImmediateCodes()) {
608 SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
609 .push_back(Operands);
614 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
615 if (ImmediatePredicates.begin() == ImmediatePredicates.end())
616 return;
618 OS << "\n// FastEmit Immediate Predicate functions.\n";
619 for (auto ImmediatePredicate : ImmediatePredicates) {
620 OS << "static bool " << ImmediatePredicate.getFnName()
621 << "(int64_t Imm) {\n";
622 OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
625 OS << "\n\n";
628 void FastISelMap::emitInstructionCode(raw_ostream &OS,
629 const OperandsSignature &Operands,
630 const PredMap &PM,
631 const std::string &RetVTName) {
632 // Emit code for each possible instruction. There may be
633 // multiple if there are subtarget concerns. A reverse iterator
634 // is used to produce the ones with highest complexity first.
636 bool OneHadNoPredicate = false;
637 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
638 PI != PE; ++PI) {
639 const InstructionMemo &Memo = PI->second;
640 std::string PredicateCheck = Memo.PredicateCheck;
642 if (PredicateCheck.empty()) {
643 assert(!OneHadNoPredicate &&
644 "Multiple instructions match and more than one had "
645 "no predicate!");
646 OneHadNoPredicate = true;
647 } else {
648 if (OneHadNoPredicate) {
649 PrintFatalError("Multiple instructions match and one with no "
650 "predicate came before one with a predicate! "
651 "name:" + Memo.Name + " predicate: " + PredicateCheck);
653 OS << " if (" + PredicateCheck + ") {\n";
654 OS << " ";
657 for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
658 if (Memo.PhysRegs[i] != "")
659 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
660 << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
661 << ").addReg(Op" << i << ");\n";
664 OS << " return fastEmitInst_";
665 if (Memo.SubRegNo.empty()) {
666 Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
667 true);
668 OS << "(" << InstNS << "::" << Memo.Name << ", ";
669 OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
670 if (!Operands.empty())
671 OS << ", ";
672 Operands.PrintArguments(OS, Memo.PhysRegs);
673 OS << ");\n";
674 } else {
675 OS << "extractsubreg(" << RetVTName
676 << ", Op0, " << Memo.SubRegNo << ");\n";
679 if (!PredicateCheck.empty()) {
680 OS << " }\n";
683 // Return 0 if all of the possibilities had predicates but none
684 // were satisfied.
685 if (!OneHadNoPredicate)
686 OS << " return 0;\n";
687 OS << "}\n";
688 OS << "\n";
692 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
693 // Now emit code for all the patterns that we collected.
694 for (const auto &SimplePattern : SimplePatterns) {
695 const OperandsSignature &Operands = SimplePattern.first;
696 const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
698 for (const auto &I : OTM) {
699 const std::string &Opcode = I.first;
700 const TypeRetPredMap &TM = I.second;
702 OS << "// FastEmit functions for " << Opcode << ".\n";
703 OS << "\n";
705 // Emit one function for each opcode,type pair.
706 for (const auto &TI : TM) {
707 MVT::SimpleValueType VT = TI.first;
708 const RetPredMap &RM = TI.second;
709 if (RM.size() != 1) {
710 for (const auto &RI : RM) {
711 MVT::SimpleValueType RetVT = RI.first;
712 const PredMap &PM = RI.second;
714 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
715 << getLegalCName(std::string(getName(VT))) << "_"
716 << getLegalCName(std::string(getName(RetVT))) << "_";
717 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
718 OS << "(";
719 Operands.PrintParameters(OS);
720 OS << ") {\n";
722 emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
725 // Emit one function for the type that demultiplexes on return type.
726 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
727 << getLegalCName(std::string(getName(VT))) << "_";
728 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
729 OS << "(MVT RetVT";
730 if (!Operands.empty())
731 OS << ", ";
732 Operands.PrintParameters(OS);
733 OS << ") {\nswitch (RetVT.SimpleTy) {\n";
734 for (const auto &RI : RM) {
735 MVT::SimpleValueType RetVT = RI.first;
736 OS << " case " << getName(RetVT) << ": return fastEmit_"
737 << getLegalCName(Opcode) << "_"
738 << getLegalCName(std::string(getName(VT))) << "_"
739 << getLegalCName(std::string(getName(RetVT))) << "_";
740 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
741 OS << "(";
742 Operands.PrintArguments(OS);
743 OS << ");\n";
745 OS << " default: return 0;\n}\n}\n\n";
747 } else {
748 // Non-variadic return type.
749 OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
750 << getLegalCName(std::string(getName(VT))) << "_";
751 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
752 OS << "(MVT RetVT";
753 if (!Operands.empty())
754 OS << ", ";
755 Operands.PrintParameters(OS);
756 OS << ") {\n";
758 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
759 << ")\n return 0;\n";
761 const PredMap &PM = RM.begin()->second;
763 emitInstructionCode(OS, Operands, PM, "RetVT");
767 // Emit one function for the opcode that demultiplexes based on the type.
768 OS << "unsigned fastEmit_"
769 << getLegalCName(Opcode) << "_";
770 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
771 OS << "(MVT VT, MVT RetVT";
772 if (!Operands.empty())
773 OS << ", ";
774 Operands.PrintParameters(OS);
775 OS << ") {\n";
776 OS << " switch (VT.SimpleTy) {\n";
777 for (const auto &TI : TM) {
778 MVT::SimpleValueType VT = TI.first;
779 std::string TypeName = std::string(getName(VT));
780 OS << " case " << TypeName << ": return fastEmit_"
781 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
782 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
783 OS << "(RetVT";
784 if (!Operands.empty())
785 OS << ", ";
786 Operands.PrintArguments(OS);
787 OS << ");\n";
789 OS << " default: return 0;\n";
790 OS << " }\n";
791 OS << "}\n";
792 OS << "\n";
795 OS << "// Top-level FastEmit function.\n";
796 OS << "\n";
798 // Emit one function for the operand signature that demultiplexes based
799 // on opcode and type.
800 OS << "unsigned fastEmit_";
801 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
802 OS << "(MVT VT, MVT RetVT, unsigned Opcode";
803 if (!Operands.empty())
804 OS << ", ";
805 Operands.PrintParameters(OS);
806 OS << ") ";
807 if (!Operands.hasAnyImmediateCodes())
808 OS << "override ";
809 OS << "{\n";
811 // If there are any forms of this signature available that operate on
812 // constrained forms of the immediate (e.g., 32-bit sext immediate in a
813 // 64-bit operand), check them first.
815 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
816 = SignaturesWithConstantForms.find(Operands);
817 if (MI != SignaturesWithConstantForms.end()) {
818 // Unique any duplicates out of the list.
819 llvm::sort(MI->second);
820 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
821 MI->second.end());
823 // Check each in order it was seen. It would be nice to have a good
824 // relative ordering between them, but we're not going for optimality
825 // here.
826 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
827 OS << " if (";
828 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
829 OS << ")\n if (unsigned Reg = fastEmit_";
830 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
831 OS << "(VT, RetVT, Opcode";
832 if (!MI->second[i].empty())
833 OS << ", ";
834 MI->second[i].PrintArguments(OS);
835 OS << "))\n return Reg;\n\n";
838 // Done with this, remove it.
839 SignaturesWithConstantForms.erase(MI);
842 OS << " switch (Opcode) {\n";
843 for (const auto &I : OTM) {
844 const std::string &Opcode = I.first;
846 OS << " case " << Opcode << ": return fastEmit_"
847 << getLegalCName(Opcode) << "_";
848 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
849 OS << "(VT, RetVT";
850 if (!Operands.empty())
851 OS << ", ";
852 Operands.PrintArguments(OS);
853 OS << ");\n";
855 OS << " default: return 0;\n";
856 OS << " }\n";
857 OS << "}\n";
858 OS << "\n";
861 // TODO: SignaturesWithConstantForms should be empty here.
864 namespace llvm {
866 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
867 CodeGenDAGPatterns CGP(RK);
868 const CodeGenTarget &Target = CGP.getTargetInfo();
869 emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
870 Target.getName().str() + " target", OS);
872 // Determine the target's namespace name.
873 StringRef InstNS = Target.getInstNamespace();
874 assert(!InstNS.empty() && "Can't determine target-specific namespace!");
876 FastISelMap F(InstNS);
877 F.collectPatterns(CGP);
878 F.printImmediatePredicates(OS);
879 F.printFunctionDefinitions(OS);
882 } // End llvm namespace