[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / FixedLenDecoderEmitter.cpp
blobc5dd1e6266965725b22270763ef569f704cf8b90
1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // It contains the tablegen backend that emits the decoder functions for
10 // targets with fixed length instruction set.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenInstruction.h"
15 #include "CodeGenTarget.h"
16 #include "InfoByHwMode.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/CachedHashString.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/MC/MCFixedLenDisassembler.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/FormattedStream.h"
31 #include "llvm/Support/LEB128.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/TableGen/Error.h"
34 #include "llvm/TableGen/Record.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <map>
40 #include <memory>
41 #include <set>
42 #include <string>
43 #include <utility>
44 #include <vector>
46 using namespace llvm;
48 #define DEBUG_TYPE "decoder-emitter"
50 namespace {
52 STATISTIC(NumEncodings, "Number of encodings considered");
53 STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info");
54 STATISTIC(NumInstructions, "Number of instructions considered");
55 STATISTIC(NumEncodingsSupported, "Number of encodings supported");
56 STATISTIC(NumEncodingsOmitted, "Number of encodings omitted");
58 struct EncodingField {
59 unsigned Base, Width, Offset;
60 EncodingField(unsigned B, unsigned W, unsigned O)
61 : Base(B), Width(W), Offset(O) { }
64 struct OperandInfo {
65 std::vector<EncodingField> Fields;
66 std::string Decoder;
67 bool HasCompleteDecoder;
68 uint64_t InitValue;
70 OperandInfo(std::string D, bool HCD)
71 : Decoder(std::move(D)), HasCompleteDecoder(HCD), InitValue(0) {}
73 void addField(unsigned Base, unsigned Width, unsigned Offset) {
74 Fields.push_back(EncodingField(Base, Width, Offset));
77 unsigned numFields() const { return Fields.size(); }
79 typedef std::vector<EncodingField>::const_iterator const_iterator;
81 const_iterator begin() const { return Fields.begin(); }
82 const_iterator end() const { return Fields.end(); }
85 typedef std::vector<uint8_t> DecoderTable;
86 typedef uint32_t DecoderFixup;
87 typedef std::vector<DecoderFixup> FixupList;
88 typedef std::vector<FixupList> FixupScopeList;
89 typedef SmallSetVector<CachedHashString, 16> PredicateSet;
90 typedef SmallSetVector<CachedHashString, 16> DecoderSet;
91 struct DecoderTableInfo {
92 DecoderTable Table;
93 FixupScopeList FixupStack;
94 PredicateSet Predicates;
95 DecoderSet Decoders;
98 struct EncodingAndInst {
99 const Record *EncodingDef;
100 const CodeGenInstruction *Inst;
101 StringRef HwModeName;
103 EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst,
104 StringRef HwModeName = "")
105 : EncodingDef(EncodingDef), Inst(Inst), HwModeName(HwModeName) {}
108 struct EncodingIDAndOpcode {
109 unsigned EncodingID;
110 unsigned Opcode;
112 EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
113 EncodingIDAndOpcode(unsigned EncodingID, unsigned Opcode)
114 : EncodingID(EncodingID), Opcode(Opcode) {}
117 raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
118 if (Value.EncodingDef != Value.Inst->TheDef)
119 OS << Value.EncodingDef->getName() << ":";
120 OS << Value.Inst->TheDef->getName();
121 return OS;
124 class FixedLenDecoderEmitter {
125 RecordKeeper &RK;
126 std::vector<EncodingAndInst> NumberedEncodings;
128 public:
129 // Defaults preserved here for documentation, even though they aren't
130 // strictly necessary given the way that this is currently being called.
131 FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
132 std::string GPrefix = "if (",
133 std::string GPostfix = " == MCDisassembler::Fail)",
134 std::string ROK = "MCDisassembler::Success",
135 std::string RFail = "MCDisassembler::Fail",
136 std::string L = "")
137 : RK(R), Target(R), PredicateNamespace(std::move(PredicateNamespace)),
138 GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
139 ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
140 Locals(std::move(L)) {}
142 // Emit the decoder state machine table.
143 void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
144 unsigned Indentation, unsigned BitWidth,
145 StringRef Namespace) const;
146 void emitPredicateFunction(formatted_raw_ostream &OS,
147 PredicateSet &Predicates,
148 unsigned Indentation) const;
149 void emitDecoderFunction(formatted_raw_ostream &OS,
150 DecoderSet &Decoders,
151 unsigned Indentation) const;
153 // run - Output the code emitter
154 void run(raw_ostream &o);
156 private:
157 CodeGenTarget Target;
159 public:
160 std::string PredicateNamespace;
161 std::string GuardPrefix, GuardPostfix;
162 std::string ReturnOK, ReturnFail;
163 std::string Locals;
166 } // end anonymous namespace
168 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
169 // for a bit value.
171 // BIT_UNFILTERED is used as the init value for a filter position. It is used
172 // only for filter processings.
173 typedef enum {
174 BIT_TRUE, // '1'
175 BIT_FALSE, // '0'
176 BIT_UNSET, // '?'
177 BIT_UNFILTERED // unfiltered
178 } bit_value_t;
180 static bool ValueSet(bit_value_t V) {
181 return (V == BIT_TRUE || V == BIT_FALSE);
184 static bool ValueNotSet(bit_value_t V) {
185 return (V == BIT_UNSET);
188 static int Value(bit_value_t V) {
189 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
192 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
193 if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
194 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
196 // The bit is uninitialized.
197 return BIT_UNSET;
200 // Prints the bit value for each position.
201 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
202 for (unsigned index = bits.getNumBits(); index > 0; --index) {
203 switch (bitFromBits(bits, index - 1)) {
204 case BIT_TRUE:
205 o << "1";
206 break;
207 case BIT_FALSE:
208 o << "0";
209 break;
210 case BIT_UNSET:
211 o << "_";
212 break;
213 default:
214 llvm_unreachable("unexpected return value from bitFromBits");
219 static BitsInit &getBitsField(const Record &def, StringRef str) {
220 BitsInit *bits = def.getValueAsBitsInit(str);
221 return *bits;
224 // Representation of the instruction to work on.
225 typedef std::vector<bit_value_t> insn_t;
227 namespace {
229 static const uint64_t NO_FIXED_SEGMENTS_SENTINEL = -1ULL;
231 class FilterChooser;
233 /// Filter - Filter works with FilterChooser to produce the decoding tree for
234 /// the ISA.
236 /// It is useful to think of a Filter as governing the switch stmts of the
237 /// decoding tree in a certain level. Each case stmt delegates to an inferior
238 /// FilterChooser to decide what further decoding logic to employ, or in another
239 /// words, what other remaining bits to look at. The FilterChooser eventually
240 /// chooses a best Filter to do its job.
242 /// This recursive scheme ends when the number of Opcodes assigned to the
243 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
244 /// the Filter/FilterChooser combo does not know how to distinguish among the
245 /// Opcodes assigned.
247 /// An example of a conflict is
249 /// Conflict:
250 /// 111101000.00........00010000....
251 /// 111101000.00........0001........
252 /// 1111010...00........0001........
253 /// 1111010...00....................
254 /// 1111010.........................
255 /// 1111............................
256 /// ................................
257 /// VST4q8a 111101000_00________00010000____
258 /// VST4q8b 111101000_00________00010000____
260 /// The Debug output shows the path that the decoding tree follows to reach the
261 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
262 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
264 /// The encoding info in the .td files does not specify this meta information,
265 /// which could have been used by the decoder to resolve the conflict. The
266 /// decoder could try to decode the even/odd register numbering and assign to
267 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
268 /// version and return the Opcode since the two have the same Asm format string.
269 class Filter {
270 protected:
271 const FilterChooser *Owner;// points to the FilterChooser who owns this filter
272 unsigned StartBit; // the starting bit position
273 unsigned NumBits; // number of bits to filter
274 bool Mixed; // a mixed region contains both set and unset bits
276 // Map of well-known segment value to the set of uid's with that value.
277 std::map<uint64_t, std::vector<EncodingIDAndOpcode>>
278 FilteredInstructions;
280 // Set of uid's with non-constant segment values.
281 std::vector<EncodingIDAndOpcode> VariableInstructions;
283 // Map of well-known segment value to its delegate.
284 std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap;
286 // Number of instructions which fall under FilteredInstructions category.
287 unsigned NumFiltered;
289 // Keeps track of the last opcode in the filtered bucket.
290 EncodingIDAndOpcode LastOpcFiltered;
292 public:
293 Filter(Filter &&f);
294 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
296 ~Filter() = default;
298 unsigned getNumFiltered() const { return NumFiltered; }
300 EncodingIDAndOpcode getSingletonOpc() const {
301 assert(NumFiltered == 1);
302 return LastOpcFiltered;
305 // Return the filter chooser for the group of instructions without constant
306 // segment values.
307 const FilterChooser &getVariableFC() const {
308 assert(NumFiltered == 1);
309 assert(FilterChooserMap.size() == 1);
310 return *(FilterChooserMap.find(NO_FIXED_SEGMENTS_SENTINEL)->second);
313 // Divides the decoding task into sub tasks and delegates them to the
314 // inferior FilterChooser's.
316 // A special case arises when there's only one entry in the filtered
317 // instructions. In order to unambiguously decode the singleton, we need to
318 // match the remaining undecoded encoding bits against the singleton.
319 void recurse();
321 // Emit table entries to decode instructions given a segment or segments of
322 // bits.
323 void emitTableEntry(DecoderTableInfo &TableInfo) const;
325 // Returns the number of fanout produced by the filter. More fanout implies
326 // the filter distinguishes more categories of instructions.
327 unsigned usefulness() const;
328 }; // end class Filter
330 } // end anonymous namespace
332 // These are states of our finite state machines used in FilterChooser's
333 // filterProcessor() which produces the filter candidates to use.
334 typedef enum {
335 ATTR_NONE,
336 ATTR_FILTERED,
337 ATTR_ALL_SET,
338 ATTR_ALL_UNSET,
339 ATTR_MIXED
340 } bitAttr_t;
342 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
343 /// in order to perform the decoding of instructions at the current level.
345 /// Decoding proceeds from the top down. Based on the well-known encoding bits
346 /// of instructions available, FilterChooser builds up the possible Filters that
347 /// can further the task of decoding by distinguishing among the remaining
348 /// candidate instructions.
350 /// Once a filter has been chosen, it is called upon to divide the decoding task
351 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
352 /// processings.
354 /// It is useful to think of a Filter as governing the switch stmts of the
355 /// decoding tree. And each case is delegated to an inferior FilterChooser to
356 /// decide what further remaining bits to look at.
357 namespace {
359 class FilterChooser {
360 protected:
361 friend class Filter;
363 // Vector of codegen instructions to choose our filter.
364 ArrayRef<EncodingAndInst> AllInstructions;
366 // Vector of uid's for this filter chooser to work on.
367 // The first member of the pair is the opcode id being decoded, the second is
368 // the opcode id that should be emitted.
369 const std::vector<EncodingIDAndOpcode> &Opcodes;
371 // Lookup table for the operand decoding of instructions.
372 const std::map<unsigned, std::vector<OperandInfo>> &Operands;
374 // Vector of candidate filters.
375 std::vector<Filter> Filters;
377 // Array of bit values passed down from our parent.
378 // Set to all BIT_UNFILTERED's for Parent == NULL.
379 std::vector<bit_value_t> FilterBitValues;
381 // Links to the FilterChooser above us in the decoding tree.
382 const FilterChooser *Parent;
384 // Index of the best filter from Filters.
385 int BestIndex;
387 // Width of instructions
388 unsigned BitWidth;
390 // Parent emitter
391 const FixedLenDecoderEmitter *Emitter;
393 public:
394 FilterChooser(ArrayRef<EncodingAndInst> Insts,
395 const std::vector<EncodingIDAndOpcode> &IDs,
396 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
397 unsigned BW, const FixedLenDecoderEmitter *E)
398 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
399 FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
400 BitWidth(BW), Emitter(E) {
401 doFilter();
404 FilterChooser(ArrayRef<EncodingAndInst> Insts,
405 const std::vector<EncodingIDAndOpcode> &IDs,
406 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
407 const std::vector<bit_value_t> &ParentFilterBitValues,
408 const FilterChooser &parent)
409 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
410 FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
411 BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
412 doFilter();
415 FilterChooser(const FilterChooser &) = delete;
416 void operator=(const FilterChooser &) = delete;
418 unsigned getBitWidth() const { return BitWidth; }
420 protected:
421 // Populates the insn given the uid.
422 void insnWithID(insn_t &Insn, unsigned Opcode) const {
423 BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
425 // We may have a SoftFail bitmask, which specifies a mask where an encoding
426 // may differ from the value in "Inst" and yet still be valid, but the
427 // disassembler should return SoftFail instead of Success.
429 // This is used for marking UNPREDICTABLE instructions in the ARM world.
430 BitsInit *SFBits =
431 AllInstructions[Opcode].EncodingDef->getValueAsBitsInit("SoftFail");
433 for (unsigned i = 0; i < BitWidth; ++i) {
434 if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
435 Insn.push_back(BIT_UNSET);
436 else
437 Insn.push_back(bitFromBits(Bits, i));
441 // Emit the name of the encoding/instruction pair.
442 void emitNameWithID(raw_ostream &OS, unsigned Opcode) const {
443 const Record *EncodingDef = AllInstructions[Opcode].EncodingDef;
444 const Record *InstDef = AllInstructions[Opcode].Inst->TheDef;
445 if (EncodingDef != InstDef)
446 OS << EncodingDef->getName() << ":";
447 OS << InstDef->getName();
450 // Populates the field of the insn given the start position and the number of
451 // consecutive bits to scan for.
453 // Returns false if there exists any uninitialized bit value in the range.
454 // Returns true, otherwise.
455 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
456 unsigned NumBits) const;
458 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
459 /// filter array as a series of chars.
460 void dumpFilterArray(raw_ostream &o,
461 const std::vector<bit_value_t> & filter) const;
463 /// dumpStack - dumpStack traverses the filter chooser chain and calls
464 /// dumpFilterArray on each filter chooser up to the top level one.
465 void dumpStack(raw_ostream &o, const char *prefix) const;
467 Filter &bestFilter() {
468 assert(BestIndex != -1 && "BestIndex not set");
469 return Filters[BestIndex];
472 bool PositionFiltered(unsigned i) const {
473 return ValueSet(FilterBitValues[i]);
476 // Calculates the island(s) needed to decode the instruction.
477 // This returns a lit of undecoded bits of an instructions, for example,
478 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
479 // decoded bits in order to verify that the instruction matches the Opcode.
480 unsigned getIslands(std::vector<unsigned> &StartBits,
481 std::vector<unsigned> &EndBits,
482 std::vector<uint64_t> &FieldVals,
483 const insn_t &Insn) const;
485 // Emits code to check the Predicates member of an instruction are true.
486 // Returns true if predicate matches were emitted, false otherwise.
487 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
488 unsigned Opc) const;
490 bool doesOpcodeNeedPredicate(unsigned Opc) const;
491 unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
492 void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
493 unsigned Opc) const;
495 void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
496 unsigned Opc) const;
498 // Emits table entries to decode the singleton.
499 void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
500 EncodingIDAndOpcode Opc) const;
502 // Emits code to decode the singleton, and then to decode the rest.
503 void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
504 const Filter &Best) const;
506 void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
507 const OperandInfo &OpInfo,
508 bool &OpHasCompleteDecoder) const;
510 void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
511 bool &HasCompleteDecoder) const;
512 unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
513 bool &HasCompleteDecoder) const;
515 // Assign a single filter and run with it.
516 void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
518 // reportRegion is a helper function for filterProcessor to mark a region as
519 // eligible for use as a filter region.
520 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
521 bool AllowMixed);
523 // FilterProcessor scans the well-known encoding bits of the instructions and
524 // builds up a list of candidate filters. It chooses the best filter and
525 // recursively descends down the decoding tree.
526 bool filterProcessor(bool AllowMixed, bool Greedy = true);
528 // Decides on the best configuration of filter(s) to use in order to decode
529 // the instructions. A conflict of instructions may occur, in which case we
530 // dump the conflict set to the standard error.
531 void doFilter();
533 public:
534 // emitTableEntries - Emit state machine entries to decode our share of
535 // instructions.
536 void emitTableEntries(DecoderTableInfo &TableInfo) const;
539 } // end anonymous namespace
541 ///////////////////////////
542 // //
543 // Filter Implementation //
544 // //
545 ///////////////////////////
547 Filter::Filter(Filter &&f)
548 : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
549 FilteredInstructions(std::move(f.FilteredInstructions)),
550 VariableInstructions(std::move(f.VariableInstructions)),
551 FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
552 LastOpcFiltered(f.LastOpcFiltered) {
555 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
556 bool mixed)
557 : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
558 assert(StartBit + NumBits - 1 < Owner->BitWidth);
560 NumFiltered = 0;
561 LastOpcFiltered = {0, 0};
563 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
564 insn_t Insn;
566 // Populates the insn given the uid.
567 Owner->insnWithID(Insn, Owner->Opcodes[i].EncodingID);
569 uint64_t Field;
570 // Scans the segment for possibly well-specified encoding bits.
571 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
573 if (ok) {
574 // The encoding bits are well-known. Lets add the uid of the
575 // instruction into the bucket keyed off the constant field value.
576 LastOpcFiltered = Owner->Opcodes[i];
577 FilteredInstructions[Field].push_back(LastOpcFiltered);
578 ++NumFiltered;
579 } else {
580 // Some of the encoding bit(s) are unspecified. This contributes to
581 // one additional member of "Variable" instructions.
582 VariableInstructions.push_back(Owner->Opcodes[i]);
586 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
587 && "Filter returns no instruction categories");
590 // Divides the decoding task into sub tasks and delegates them to the
591 // inferior FilterChooser's.
593 // A special case arises when there's only one entry in the filtered
594 // instructions. In order to unambiguously decode the singleton, we need to
595 // match the remaining undecoded encoding bits against the singleton.
596 void Filter::recurse() {
597 // Starts by inheriting our parent filter chooser's filter bit values.
598 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
600 if (!VariableInstructions.empty()) {
601 // Conservatively marks each segment position as BIT_UNSET.
602 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
603 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
605 // Delegates to an inferior filter chooser for further processing on this
606 // group of instructions whose segment values are variable.
607 FilterChooserMap.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL,
608 std::make_unique<FilterChooser>(Owner->AllInstructions,
609 VariableInstructions, Owner->Operands, BitValueArray, *Owner)));
612 // No need to recurse for a singleton filtered instruction.
613 // See also Filter::emit*().
614 if (getNumFiltered() == 1) {
615 assert(FilterChooserMap.size() == 1);
616 return;
619 // Otherwise, create sub choosers.
620 for (const auto &Inst : FilteredInstructions) {
622 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
623 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
624 if (Inst.first & (1ULL << bitIndex))
625 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
626 else
627 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
630 // Delegates to an inferior filter chooser for further processing on this
631 // category of instructions.
632 FilterChooserMap.insert(std::make_pair(
633 Inst.first, std::make_unique<FilterChooser>(
634 Owner->AllInstructions, Inst.second,
635 Owner->Operands, BitValueArray, *Owner)));
639 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
640 uint32_t DestIdx) {
641 // Any NumToSkip fixups in the current scope can resolve to the
642 // current location.
643 for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
644 E = Fixups.rend();
645 I != E; ++I) {
646 // Calculate the distance from the byte following the fixup entry byte
647 // to the destination. The Target is calculated from after the 16-bit
648 // NumToSkip entry itself, so subtract two from the displacement here
649 // to account for that.
650 uint32_t FixupIdx = *I;
651 uint32_t Delta = DestIdx - FixupIdx - 3;
652 // Our NumToSkip entries are 24-bits. Make sure our table isn't too
653 // big.
654 assert(Delta < (1u << 24));
655 Table[FixupIdx] = (uint8_t)Delta;
656 Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
657 Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
661 // Emit table entries to decode instructions given a segment or segments
662 // of bits.
663 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
664 TableInfo.Table.push_back(MCD::OPC_ExtractField);
665 TableInfo.Table.push_back(StartBit);
666 TableInfo.Table.push_back(NumBits);
668 // A new filter entry begins a new scope for fixup resolution.
669 TableInfo.FixupStack.emplace_back();
671 DecoderTable &Table = TableInfo.Table;
673 size_t PrevFilter = 0;
674 bool HasFallthrough = false;
675 for (auto &Filter : FilterChooserMap) {
676 // Field value -1 implies a non-empty set of variable instructions.
677 // See also recurse().
678 if (Filter.first == NO_FIXED_SEGMENTS_SENTINEL) {
679 HasFallthrough = true;
681 // Each scope should always have at least one filter value to check
682 // for.
683 assert(PrevFilter != 0 && "empty filter set!");
684 FixupList &CurScope = TableInfo.FixupStack.back();
685 // Resolve any NumToSkip fixups in the current scope.
686 resolveTableFixups(Table, CurScope, Table.size());
687 CurScope.clear();
688 PrevFilter = 0; // Don't re-process the filter's fallthrough.
689 } else {
690 Table.push_back(MCD::OPC_FilterValue);
691 // Encode and emit the value to filter against.
692 uint8_t Buffer[16];
693 unsigned Len = encodeULEB128(Filter.first, Buffer);
694 Table.insert(Table.end(), Buffer, Buffer + Len);
695 // Reserve space for the NumToSkip entry. We'll backpatch the value
696 // later.
697 PrevFilter = Table.size();
698 Table.push_back(0);
699 Table.push_back(0);
700 Table.push_back(0);
703 // We arrive at a category of instructions with the same segment value.
704 // Now delegate to the sub filter chooser for further decodings.
705 // The case may fallthrough, which happens if the remaining well-known
706 // encoding bits do not match exactly.
707 Filter.second->emitTableEntries(TableInfo);
709 // Now that we've emitted the body of the handler, update the NumToSkip
710 // of the filter itself to be able to skip forward when false. Subtract
711 // two as to account for the width of the NumToSkip field itself.
712 if (PrevFilter) {
713 uint32_t NumToSkip = Table.size() - PrevFilter - 3;
714 assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
715 Table[PrevFilter] = (uint8_t)NumToSkip;
716 Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
717 Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
721 // Any remaining unresolved fixups bubble up to the parent fixup scope.
722 assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
723 FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
724 FixupScopeList::iterator Dest = Source - 1;
725 llvm::append_range(*Dest, *Source);
726 TableInfo.FixupStack.pop_back();
728 // If there is no fallthrough, then the final filter should get fixed
729 // up according to the enclosing scope rather than the current position.
730 if (!HasFallthrough)
731 TableInfo.FixupStack.back().push_back(PrevFilter);
734 // Returns the number of fanout produced by the filter. More fanout implies
735 // the filter distinguishes more categories of instructions.
736 unsigned Filter::usefulness() const {
737 if (!VariableInstructions.empty())
738 return FilteredInstructions.size();
739 else
740 return FilteredInstructions.size() + 1;
743 //////////////////////////////////
744 // //
745 // Filterchooser Implementation //
746 // //
747 //////////////////////////////////
749 // Emit the decoder state machine table.
750 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
751 DecoderTable &Table,
752 unsigned Indentation,
753 unsigned BitWidth,
754 StringRef Namespace) const {
755 OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
756 << BitWidth << "[] = {\n";
758 Indentation += 2;
760 // FIXME: We may be able to use the NumToSkip values to recover
761 // appropriate indentation levels.
762 DecoderTable::const_iterator I = Table.begin();
763 DecoderTable::const_iterator E = Table.end();
764 while (I != E) {
765 assert (I < E && "incomplete decode table entry!");
767 uint64_t Pos = I - Table.begin();
768 OS << "/* " << Pos << " */";
769 OS.PadToColumn(12);
771 switch (*I) {
772 default:
773 PrintFatalError("invalid decode table opcode");
774 case MCD::OPC_ExtractField: {
775 ++I;
776 unsigned Start = *I++;
777 unsigned Len = *I++;
778 OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
779 << Len << ", // Inst{";
780 if (Len > 1)
781 OS << (Start + Len - 1) << "-";
782 OS << Start << "} ...\n";
783 break;
785 case MCD::OPC_FilterValue: {
786 ++I;
787 OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
788 // The filter value is ULEB128 encoded.
789 while (*I >= 128)
790 OS << (unsigned)*I++ << ", ";
791 OS << (unsigned)*I++ << ", ";
793 // 24-bit numtoskip value.
794 uint8_t Byte = *I++;
795 uint32_t NumToSkip = Byte;
796 OS << (unsigned)Byte << ", ";
797 Byte = *I++;
798 OS << (unsigned)Byte << ", ";
799 NumToSkip |= Byte << 8;
800 Byte = *I++;
801 OS << utostr(Byte) << ", ";
802 NumToSkip |= Byte << 16;
803 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
804 break;
806 case MCD::OPC_CheckField: {
807 ++I;
808 unsigned Start = *I++;
809 unsigned Len = *I++;
810 OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
811 << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
812 // ULEB128 encoded field value.
813 for (; *I >= 128; ++I)
814 OS << (unsigned)*I << ", ";
815 OS << (unsigned)*I++ << ", ";
816 // 24-bit numtoskip value.
817 uint8_t Byte = *I++;
818 uint32_t NumToSkip = Byte;
819 OS << (unsigned)Byte << ", ";
820 Byte = *I++;
821 OS << (unsigned)Byte << ", ";
822 NumToSkip |= Byte << 8;
823 Byte = *I++;
824 OS << utostr(Byte) << ", ";
825 NumToSkip |= Byte << 16;
826 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
827 break;
829 case MCD::OPC_CheckPredicate: {
830 ++I;
831 OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
832 for (; *I >= 128; ++I)
833 OS << (unsigned)*I << ", ";
834 OS << (unsigned)*I++ << ", ";
836 // 24-bit numtoskip value.
837 uint8_t Byte = *I++;
838 uint32_t NumToSkip = Byte;
839 OS << (unsigned)Byte << ", ";
840 Byte = *I++;
841 OS << (unsigned)Byte << ", ";
842 NumToSkip |= Byte << 8;
843 Byte = *I++;
844 OS << utostr(Byte) << ", ";
845 NumToSkip |= Byte << 16;
846 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
847 break;
849 case MCD::OPC_Decode:
850 case MCD::OPC_TryDecode: {
851 bool IsTry = *I == MCD::OPC_TryDecode;
852 ++I;
853 // Extract the ULEB128 encoded Opcode to a buffer.
854 uint8_t Buffer[16], *p = Buffer;
855 while ((*p++ = *I++) >= 128)
856 assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
857 && "ULEB128 value too large!");
858 // Decode the Opcode value.
859 unsigned Opc = decodeULEB128(Buffer);
860 OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
861 << "Decode, ";
862 for (p = Buffer; *p >= 128; ++p)
863 OS << (unsigned)*p << ", ";
864 OS << (unsigned)*p << ", ";
866 // Decoder index.
867 for (; *I >= 128; ++I)
868 OS << (unsigned)*I << ", ";
869 OS << (unsigned)*I++ << ", ";
871 if (!IsTry) {
872 OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
873 break;
876 // Fallthrough for OPC_TryDecode.
878 // 24-bit numtoskip value.
879 uint8_t Byte = *I++;
880 uint32_t NumToSkip = Byte;
881 OS << (unsigned)Byte << ", ";
882 Byte = *I++;
883 OS << (unsigned)Byte << ", ";
884 NumToSkip |= Byte << 8;
885 Byte = *I++;
886 OS << utostr(Byte) << ", ";
887 NumToSkip |= Byte << 16;
889 OS << "// Opcode: " << NumberedEncodings[Opc]
890 << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
891 break;
893 case MCD::OPC_SoftFail: {
894 ++I;
895 OS.indent(Indentation) << "MCD::OPC_SoftFail";
896 // Positive mask
897 uint64_t Value = 0;
898 unsigned Shift = 0;
899 do {
900 OS << ", " << (unsigned)*I;
901 Value += (*I & 0x7f) << Shift;
902 Shift += 7;
903 } while (*I++ >= 128);
904 if (Value > 127) {
905 OS << " /* 0x";
906 OS.write_hex(Value);
907 OS << " */";
909 // Negative mask
910 Value = 0;
911 Shift = 0;
912 do {
913 OS << ", " << (unsigned)*I;
914 Value += (*I & 0x7f) << Shift;
915 Shift += 7;
916 } while (*I++ >= 128);
917 if (Value > 127) {
918 OS << " /* 0x";
919 OS.write_hex(Value);
920 OS << " */";
922 OS << ",\n";
923 break;
925 case MCD::OPC_Fail: {
926 ++I;
927 OS.indent(Indentation) << "MCD::OPC_Fail,\n";
928 break;
932 OS.indent(Indentation) << "0\n";
934 Indentation -= 2;
936 OS.indent(Indentation) << "};\n\n";
939 void FixedLenDecoderEmitter::
940 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
941 unsigned Indentation) const {
942 // The predicate function is just a big switch statement based on the
943 // input predicate index.
944 OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
945 << "const FeatureBitset &Bits) {\n";
946 Indentation += 2;
947 if (!Predicates.empty()) {
948 OS.indent(Indentation) << "switch (Idx) {\n";
949 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
950 unsigned Index = 0;
951 for (const auto &Predicate : Predicates) {
952 OS.indent(Indentation) << "case " << Index++ << ":\n";
953 OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
955 OS.indent(Indentation) << "}\n";
956 } else {
957 // No case statement to emit
958 OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
960 Indentation -= 2;
961 OS.indent(Indentation) << "}\n\n";
964 void FixedLenDecoderEmitter::
965 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
966 unsigned Indentation) const {
967 // The decoder function is just a big switch statement based on the
968 // input decoder index.
969 OS.indent(Indentation) << "template <typename InsnType>\n";
970 OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
971 << " unsigned Idx, InsnType insn, MCInst &MI,\n";
972 OS.indent(Indentation) << " uint64_t "
973 << "Address, const void *Decoder, bool &DecodeComplete) {\n";
974 Indentation += 2;
975 OS.indent(Indentation) << "DecodeComplete = true;\n";
976 // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
977 // It would be better for emitBinaryParser to use a 64-bit tmp whenever
978 // possible but fall back to an InsnType-sized tmp for truly large fields.
979 OS.indent(Indentation) << "using TmpType = "
980 "std::conditional_t<std::is_integral<InsnType>::"
981 "value, InsnType, uint64_t>;\n";
982 OS.indent(Indentation) << "TmpType tmp;\n";
983 OS.indent(Indentation) << "switch (Idx) {\n";
984 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
985 unsigned Index = 0;
986 for (const auto &Decoder : Decoders) {
987 OS.indent(Indentation) << "case " << Index++ << ":\n";
988 OS << Decoder;
989 OS.indent(Indentation+2) << "return S;\n";
991 OS.indent(Indentation) << "}\n";
992 Indentation -= 2;
993 OS.indent(Indentation) << "}\n\n";
996 // Populates the field of the insn given the start position and the number of
997 // consecutive bits to scan for.
999 // Returns false if and on the first uninitialized bit value encountered.
1000 // Returns true, otherwise.
1001 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
1002 unsigned StartBit, unsigned NumBits) const {
1003 Field = 0;
1005 for (unsigned i = 0; i < NumBits; ++i) {
1006 if (Insn[StartBit + i] == BIT_UNSET)
1007 return false;
1009 if (Insn[StartBit + i] == BIT_TRUE)
1010 Field = Field | (1ULL << i);
1013 return true;
1016 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1017 /// filter array as a series of chars.
1018 void FilterChooser::dumpFilterArray(raw_ostream &o,
1019 const std::vector<bit_value_t> &filter) const {
1020 for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
1021 switch (filter[bitIndex - 1]) {
1022 case BIT_UNFILTERED:
1023 o << ".";
1024 break;
1025 case BIT_UNSET:
1026 o << "_";
1027 break;
1028 case BIT_TRUE:
1029 o << "1";
1030 break;
1031 case BIT_FALSE:
1032 o << "0";
1033 break;
1038 /// dumpStack - dumpStack traverses the filter chooser chain and calls
1039 /// dumpFilterArray on each filter chooser up to the top level one.
1040 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
1041 const FilterChooser *current = this;
1043 while (current) {
1044 o << prefix;
1045 dumpFilterArray(o, current->FilterBitValues);
1046 o << '\n';
1047 current = current->Parent;
1051 // Calculates the island(s) needed to decode the instruction.
1052 // This returns a list of undecoded bits of an instructions, for example,
1053 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1054 // decoded bits in order to verify that the instruction matches the Opcode.
1055 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1056 std::vector<unsigned> &EndBits,
1057 std::vector<uint64_t> &FieldVals,
1058 const insn_t &Insn) const {
1059 unsigned Num, BitNo;
1060 Num = BitNo = 0;
1062 uint64_t FieldVal = 0;
1064 // 0: Init
1065 // 1: Water (the bit value does not affect decoding)
1066 // 2: Island (well-known bit value needed for decoding)
1067 int State = 0;
1069 for (unsigned i = 0; i < BitWidth; ++i) {
1070 int64_t Val = Value(Insn[i]);
1071 bool Filtered = PositionFiltered(i);
1072 switch (State) {
1073 default: llvm_unreachable("Unreachable code!");
1074 case 0:
1075 case 1:
1076 if (Filtered || Val == -1)
1077 State = 1; // Still in Water
1078 else {
1079 State = 2; // Into the Island
1080 BitNo = 0;
1081 StartBits.push_back(i);
1082 FieldVal = Val;
1084 break;
1085 case 2:
1086 if (Filtered || Val == -1) {
1087 State = 1; // Into the Water
1088 EndBits.push_back(i - 1);
1089 FieldVals.push_back(FieldVal);
1090 ++Num;
1091 } else {
1092 State = 2; // Still in Island
1093 ++BitNo;
1094 FieldVal = FieldVal | Val << BitNo;
1096 break;
1099 // If we are still in Island after the loop, do some housekeeping.
1100 if (State == 2) {
1101 EndBits.push_back(BitWidth - 1);
1102 FieldVals.push_back(FieldVal);
1103 ++Num;
1106 assert(StartBits.size() == Num && EndBits.size() == Num &&
1107 FieldVals.size() == Num);
1108 return Num;
1111 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1112 const OperandInfo &OpInfo,
1113 bool &OpHasCompleteDecoder) const {
1114 const std::string &Decoder = OpInfo.Decoder;
1116 bool UseInsertBits = OpInfo.numFields() != 1 || OpInfo.InitValue != 0;
1118 if (UseInsertBits) {
1119 o.indent(Indentation) << "tmp = 0x";
1120 o.write_hex(OpInfo.InitValue);
1121 o << ";\n";
1124 for (const EncodingField &EF : OpInfo) {
1125 o.indent(Indentation);
1126 if (UseInsertBits)
1127 o << "insertBits(tmp, ";
1128 else
1129 o << "tmp = ";
1130 o << "fieldFromInstruction(insn, " << EF.Base << ", " << EF.Width << ')';
1131 if (UseInsertBits)
1132 o << ", " << EF.Offset << ", " << EF.Width << ')';
1133 else if (EF.Offset != 0)
1134 o << " << " << EF.Offset;
1135 o << ";\n";
1138 if (Decoder != "") {
1139 OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1140 o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1141 << "(MI, tmp, Address, Decoder)"
1142 << Emitter->GuardPostfix
1143 << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
1144 << "return MCDisassembler::Fail; }\n";
1145 } else {
1146 OpHasCompleteDecoder = true;
1147 o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1151 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1152 unsigned Opc, bool &HasCompleteDecoder) const {
1153 HasCompleteDecoder = true;
1155 for (const auto &Op : Operands.find(Opc)->second) {
1156 // If a custom instruction decoder was specified, use that.
1157 if (Op.numFields() == 0 && !Op.Decoder.empty()) {
1158 HasCompleteDecoder = Op.HasCompleteDecoder;
1159 OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1160 << "(MI, insn, Address, Decoder)"
1161 << Emitter->GuardPostfix
1162 << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1163 << "return MCDisassembler::Fail; }\n";
1164 break;
1167 bool OpHasCompleteDecoder;
1168 emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1169 if (!OpHasCompleteDecoder)
1170 HasCompleteDecoder = false;
1174 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1175 unsigned Opc,
1176 bool &HasCompleteDecoder) const {
1177 // Build up the predicate string.
1178 SmallString<256> Decoder;
1179 // FIXME: emitDecoder() function can take a buffer directly rather than
1180 // a stream.
1181 raw_svector_ostream S(Decoder);
1182 unsigned I = 4;
1183 emitDecoder(S, I, Opc, HasCompleteDecoder);
1185 // Using the full decoder string as the key value here is a bit
1186 // heavyweight, but is effective. If the string comparisons become a
1187 // performance concern, we can implement a mangling of the predicate
1188 // data easily enough with a map back to the actual string. That's
1189 // overkill for now, though.
1191 // Make sure the predicate is in the table.
1192 Decoders.insert(CachedHashString(Decoder));
1193 // Now figure out the index for when we write out the table.
1194 DecoderSet::const_iterator P = find(Decoders, Decoder.str());
1195 return (unsigned)(P - Decoders.begin());
1198 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1199 unsigned Opc) const {
1200 ListInit *Predicates =
1201 AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1202 bool IsFirstEmission = true;
1203 for (unsigned i = 0; i < Predicates->size(); ++i) {
1204 Record *Pred = Predicates->getElementAsRecord(i);
1205 if (!Pred->getValue("AssemblerMatcherPredicate"))
1206 continue;
1208 if (!isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1209 continue;
1211 const DagInit *D = Pred->getValueAsDag("AssemblerCondDag");
1212 std::string CombineType = D->getOperator()->getAsString();
1213 if (CombineType != "any_of" && CombineType != "all_of")
1214 PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1215 if (D->getNumArgs() == 0)
1216 PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1217 bool IsOr = CombineType == "any_of";
1219 if (!IsFirstEmission)
1220 o << " && ";
1222 if (IsOr)
1223 o << "(";
1225 ListSeparator LS(IsOr ? " || " : " && ");
1226 for (auto *Arg : D->getArgs()) {
1227 o << LS;
1228 if (auto *NotArg = dyn_cast<DagInit>(Arg)) {
1229 if (NotArg->getOperator()->getAsString() != "not" ||
1230 NotArg->getNumArgs() != 1)
1231 PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1232 Arg = NotArg->getArg(0);
1233 o << "!";
1235 if (!isa<DefInit>(Arg) ||
1236 !cast<DefInit>(Arg)->getDef()->isSubClassOf("SubtargetFeature"))
1237 PrintFatalError(Pred->getLoc(), "Invalid AssemblerCondDag!");
1238 o << "Bits[" << Emitter->PredicateNamespace << "::" << Arg->getAsString()
1239 << "]";
1242 if (IsOr)
1243 o << ")";
1245 IsFirstEmission = false;
1247 return !Predicates->empty();
1250 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1251 ListInit *Predicates =
1252 AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1253 for (unsigned i = 0; i < Predicates->size(); ++i) {
1254 Record *Pred = Predicates->getElementAsRecord(i);
1255 if (!Pred->getValue("AssemblerMatcherPredicate"))
1256 continue;
1258 if (isa<DagInit>(Pred->getValue("AssemblerCondDag")->getValue()))
1259 return true;
1261 return false;
1264 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1265 StringRef Predicate) const {
1266 // Using the full predicate string as the key value here is a bit
1267 // heavyweight, but is effective. If the string comparisons become a
1268 // performance concern, we can implement a mangling of the predicate
1269 // data easily enough with a map back to the actual string. That's
1270 // overkill for now, though.
1272 // Make sure the predicate is in the table.
1273 TableInfo.Predicates.insert(CachedHashString(Predicate));
1274 // Now figure out the index for when we write out the table.
1275 PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
1276 return (unsigned)(P - TableInfo.Predicates.begin());
1279 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1280 unsigned Opc) const {
1281 if (!doesOpcodeNeedPredicate(Opc))
1282 return;
1284 // Build up the predicate string.
1285 SmallString<256> Predicate;
1286 // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1287 // than a stream.
1288 raw_svector_ostream PS(Predicate);
1289 unsigned I = 0;
1290 emitPredicateMatch(PS, I, Opc);
1292 // Figure out the index into the predicate table for the predicate just
1293 // computed.
1294 unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1295 SmallString<16> PBytes;
1296 raw_svector_ostream S(PBytes);
1297 encodeULEB128(PIdx, S);
1299 TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1300 // Predicate index
1301 for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1302 TableInfo.Table.push_back(PBytes[i]);
1303 // Push location for NumToSkip backpatching.
1304 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1305 TableInfo.Table.push_back(0);
1306 TableInfo.Table.push_back(0);
1307 TableInfo.Table.push_back(0);
1310 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1311 unsigned Opc) const {
1312 BitsInit *SFBits =
1313 AllInstructions[Opc].EncodingDef->getValueAsBitsInit("SoftFail");
1314 if (!SFBits) return;
1315 BitsInit *InstBits =
1316 AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
1318 APInt PositiveMask(BitWidth, 0ULL);
1319 APInt NegativeMask(BitWidth, 0ULL);
1320 for (unsigned i = 0; i < BitWidth; ++i) {
1321 bit_value_t B = bitFromBits(*SFBits, i);
1322 bit_value_t IB = bitFromBits(*InstBits, i);
1324 if (B != BIT_TRUE) continue;
1326 switch (IB) {
1327 case BIT_FALSE:
1328 // The bit is meant to be false, so emit a check to see if it is true.
1329 PositiveMask.setBit(i);
1330 break;
1331 case BIT_TRUE:
1332 // The bit is meant to be true, so emit a check to see if it is false.
1333 NegativeMask.setBit(i);
1334 break;
1335 default:
1336 // The bit is not set; this must be an error!
1337 errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
1338 << AllInstructions[Opc] << " is set but Inst{" << i
1339 << "} is unset!\n"
1340 << " - You can only mark a bit as SoftFail if it is fully defined"
1341 << " (1/0 - not '?') in Inst\n";
1342 return;
1346 bool NeedPositiveMask = PositiveMask.getBoolValue();
1347 bool NeedNegativeMask = NegativeMask.getBoolValue();
1349 if (!NeedPositiveMask && !NeedNegativeMask)
1350 return;
1352 TableInfo.Table.push_back(MCD::OPC_SoftFail);
1354 SmallString<16> MaskBytes;
1355 raw_svector_ostream S(MaskBytes);
1356 if (NeedPositiveMask) {
1357 encodeULEB128(PositiveMask.getZExtValue(), S);
1358 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1359 TableInfo.Table.push_back(MaskBytes[i]);
1360 } else
1361 TableInfo.Table.push_back(0);
1362 if (NeedNegativeMask) {
1363 MaskBytes.clear();
1364 encodeULEB128(NegativeMask.getZExtValue(), S);
1365 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1366 TableInfo.Table.push_back(MaskBytes[i]);
1367 } else
1368 TableInfo.Table.push_back(0);
1371 // Emits table entries to decode the singleton.
1372 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1373 EncodingIDAndOpcode Opc) const {
1374 std::vector<unsigned> StartBits;
1375 std::vector<unsigned> EndBits;
1376 std::vector<uint64_t> FieldVals;
1377 insn_t Insn;
1378 insnWithID(Insn, Opc.EncodingID);
1380 // Look for islands of undecoded bits of the singleton.
1381 getIslands(StartBits, EndBits, FieldVals, Insn);
1383 unsigned Size = StartBits.size();
1385 // Emit the predicate table entry if one is needed.
1386 emitPredicateTableEntry(TableInfo, Opc.EncodingID);
1388 // Check any additional encoding fields needed.
1389 for (unsigned I = Size; I != 0; --I) {
1390 unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1391 TableInfo.Table.push_back(MCD::OPC_CheckField);
1392 TableInfo.Table.push_back(StartBits[I-1]);
1393 TableInfo.Table.push_back(NumBits);
1394 uint8_t Buffer[16], *p;
1395 encodeULEB128(FieldVals[I-1], Buffer);
1396 for (p = Buffer; *p >= 128 ; ++p)
1397 TableInfo.Table.push_back(*p);
1398 TableInfo.Table.push_back(*p);
1399 // Push location for NumToSkip backpatching.
1400 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1401 // The fixup is always 24-bits, so go ahead and allocate the space
1402 // in the table so all our relative position calculations work OK even
1403 // before we fully resolve the real value here.
1404 TableInfo.Table.push_back(0);
1405 TableInfo.Table.push_back(0);
1406 TableInfo.Table.push_back(0);
1409 // Check for soft failure of the match.
1410 emitSoftFailTableEntry(TableInfo, Opc.EncodingID);
1412 bool HasCompleteDecoder;
1413 unsigned DIdx =
1414 getDecoderIndex(TableInfo.Decoders, Opc.EncodingID, HasCompleteDecoder);
1416 // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1417 // whether the instruction decoder is complete or not. If it is complete
1418 // then it handles all possible values of remaining variable/unfiltered bits
1419 // and for any value can determine if the bitpattern is a valid instruction
1420 // or not. This means OPC_Decode will be the final step in the decoding
1421 // process. If it is not complete, then the Fail return code from the
1422 // decoder method indicates that additional processing should be done to see
1423 // if there is any other instruction that also matches the bitpattern and
1424 // can decode it.
1425 TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1426 MCD::OPC_TryDecode);
1427 NumEncodingsSupported++;
1428 uint8_t Buffer[16], *p;
1429 encodeULEB128(Opc.Opcode, Buffer);
1430 for (p = Buffer; *p >= 128 ; ++p)
1431 TableInfo.Table.push_back(*p);
1432 TableInfo.Table.push_back(*p);
1434 SmallString<16> Bytes;
1435 raw_svector_ostream S(Bytes);
1436 encodeULEB128(DIdx, S);
1438 // Decoder index
1439 for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1440 TableInfo.Table.push_back(Bytes[i]);
1442 if (!HasCompleteDecoder) {
1443 // Push location for NumToSkip backpatching.
1444 TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1445 // Allocate the space for the fixup.
1446 TableInfo.Table.push_back(0);
1447 TableInfo.Table.push_back(0);
1448 TableInfo.Table.push_back(0);
1452 // Emits table entries to decode the singleton, and then to decode the rest.
1453 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1454 const Filter &Best) const {
1455 EncodingIDAndOpcode Opc = Best.getSingletonOpc();
1457 // complex singletons need predicate checks from the first singleton
1458 // to refer forward to the variable filterchooser that follows.
1459 TableInfo.FixupStack.emplace_back();
1461 emitSingletonTableEntry(TableInfo, Opc);
1463 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1464 TableInfo.Table.size());
1465 TableInfo.FixupStack.pop_back();
1467 Best.getVariableFC().emitTableEntries(TableInfo);
1470 // Assign a single filter and run with it. Top level API client can initialize
1471 // with a single filter to start the filtering process.
1472 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1473 bool mixed) {
1474 Filters.clear();
1475 Filters.emplace_back(*this, startBit, numBit, true);
1476 BestIndex = 0; // Sole Filter instance to choose from.
1477 bestFilter().recurse();
1480 // reportRegion is a helper function for filterProcessor to mark a region as
1481 // eligible for use as a filter region.
1482 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1483 unsigned BitIndex, bool AllowMixed) {
1484 if (RA == ATTR_MIXED && AllowMixed)
1485 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1486 else if (RA == ATTR_ALL_SET && !AllowMixed)
1487 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1490 // FilterProcessor scans the well-known encoding bits of the instructions and
1491 // builds up a list of candidate filters. It chooses the best filter and
1492 // recursively descends down the decoding tree.
1493 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1494 Filters.clear();
1495 BestIndex = -1;
1496 unsigned numInstructions = Opcodes.size();
1498 assert(numInstructions && "Filter created with no instructions");
1500 // No further filtering is necessary.
1501 if (numInstructions == 1)
1502 return true;
1504 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1505 // instructions is 3.
1506 if (AllowMixed && !Greedy) {
1507 assert(numInstructions == 3);
1509 for (auto Opcode : Opcodes) {
1510 std::vector<unsigned> StartBits;
1511 std::vector<unsigned> EndBits;
1512 std::vector<uint64_t> FieldVals;
1513 insn_t Insn;
1515 insnWithID(Insn, Opcode.EncodingID);
1517 // Look for islands of undecoded bits of any instruction.
1518 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1519 // Found an instruction with island(s). Now just assign a filter.
1520 runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1521 return true;
1526 unsigned BitIndex;
1528 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1529 // The automaton consumes the corresponding bit from each
1530 // instruction.
1532 // Input symbols: 0, 1, and _ (unset).
1533 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1534 // Initial state: NONE.
1536 // (NONE) ------- [01] -> (ALL_SET)
1537 // (NONE) ------- _ ----> (ALL_UNSET)
1538 // (ALL_SET) ---- [01] -> (ALL_SET)
1539 // (ALL_SET) ---- _ ----> (MIXED)
1540 // (ALL_UNSET) -- [01] -> (MIXED)
1541 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1542 // (MIXED) ------ . ----> (MIXED)
1543 // (FILTERED)---- . ----> (FILTERED)
1545 std::vector<bitAttr_t> bitAttrs;
1547 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1548 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1549 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1550 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1551 FilterBitValues[BitIndex] == BIT_FALSE)
1552 bitAttrs.push_back(ATTR_FILTERED);
1553 else
1554 bitAttrs.push_back(ATTR_NONE);
1556 for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1557 insn_t insn;
1559 insnWithID(insn, Opcodes[InsnIndex].EncodingID);
1561 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1562 switch (bitAttrs[BitIndex]) {
1563 case ATTR_NONE:
1564 if (insn[BitIndex] == BIT_UNSET)
1565 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1566 else
1567 bitAttrs[BitIndex] = ATTR_ALL_SET;
1568 break;
1569 case ATTR_ALL_SET:
1570 if (insn[BitIndex] == BIT_UNSET)
1571 bitAttrs[BitIndex] = ATTR_MIXED;
1572 break;
1573 case ATTR_ALL_UNSET:
1574 if (insn[BitIndex] != BIT_UNSET)
1575 bitAttrs[BitIndex] = ATTR_MIXED;
1576 break;
1577 case ATTR_MIXED:
1578 case ATTR_FILTERED:
1579 break;
1584 // The regionAttr automaton consumes the bitAttrs automatons' state,
1585 // lowest-to-highest.
1587 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1588 // States: NONE, ALL_SET, MIXED
1589 // Initial state: NONE
1591 // (NONE) ----- F --> (NONE)
1592 // (NONE) ----- S --> (ALL_SET) ; and set region start
1593 // (NONE) ----- U --> (NONE)
1594 // (NONE) ----- M --> (MIXED) ; and set region start
1595 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1596 // (ALL_SET) -- S --> (ALL_SET)
1597 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1598 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1599 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1600 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1601 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1602 // (MIXED) ---- M --> (MIXED)
1604 bitAttr_t RA = ATTR_NONE;
1605 unsigned StartBit = 0;
1607 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1608 bitAttr_t bitAttr = bitAttrs[BitIndex];
1610 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1612 switch (RA) {
1613 case ATTR_NONE:
1614 switch (bitAttr) {
1615 case ATTR_FILTERED:
1616 break;
1617 case ATTR_ALL_SET:
1618 StartBit = BitIndex;
1619 RA = ATTR_ALL_SET;
1620 break;
1621 case ATTR_ALL_UNSET:
1622 break;
1623 case ATTR_MIXED:
1624 StartBit = BitIndex;
1625 RA = ATTR_MIXED;
1626 break;
1627 default:
1628 llvm_unreachable("Unexpected bitAttr!");
1630 break;
1631 case ATTR_ALL_SET:
1632 switch (bitAttr) {
1633 case ATTR_FILTERED:
1634 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1635 RA = ATTR_NONE;
1636 break;
1637 case ATTR_ALL_SET:
1638 break;
1639 case ATTR_ALL_UNSET:
1640 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1641 RA = ATTR_NONE;
1642 break;
1643 case ATTR_MIXED:
1644 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1645 StartBit = BitIndex;
1646 RA = ATTR_MIXED;
1647 break;
1648 default:
1649 llvm_unreachable("Unexpected bitAttr!");
1651 break;
1652 case ATTR_MIXED:
1653 switch (bitAttr) {
1654 case ATTR_FILTERED:
1655 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1656 StartBit = BitIndex;
1657 RA = ATTR_NONE;
1658 break;
1659 case ATTR_ALL_SET:
1660 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1661 StartBit = BitIndex;
1662 RA = ATTR_ALL_SET;
1663 break;
1664 case ATTR_ALL_UNSET:
1665 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1666 RA = ATTR_NONE;
1667 break;
1668 case ATTR_MIXED:
1669 break;
1670 default:
1671 llvm_unreachable("Unexpected bitAttr!");
1673 break;
1674 case ATTR_ALL_UNSET:
1675 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1676 case ATTR_FILTERED:
1677 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1681 // At the end, if we're still in ALL_SET or MIXED states, report a region
1682 switch (RA) {
1683 case ATTR_NONE:
1684 break;
1685 case ATTR_FILTERED:
1686 break;
1687 case ATTR_ALL_SET:
1688 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1689 break;
1690 case ATTR_ALL_UNSET:
1691 break;
1692 case ATTR_MIXED:
1693 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1694 break;
1697 // We have finished with the filter processings. Now it's time to choose
1698 // the best performing filter.
1699 BestIndex = 0;
1700 bool AllUseless = true;
1701 unsigned BestScore = 0;
1703 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1704 unsigned Usefulness = Filters[i].usefulness();
1706 if (Usefulness)
1707 AllUseless = false;
1709 if (Usefulness > BestScore) {
1710 BestIndex = i;
1711 BestScore = Usefulness;
1715 if (!AllUseless)
1716 bestFilter().recurse();
1718 return !AllUseless;
1719 } // end of FilterChooser::filterProcessor(bool)
1721 // Decides on the best configuration of filter(s) to use in order to decode
1722 // the instructions. A conflict of instructions may occur, in which case we
1723 // dump the conflict set to the standard error.
1724 void FilterChooser::doFilter() {
1725 unsigned Num = Opcodes.size();
1726 assert(Num && "FilterChooser created with no instructions");
1728 // Try regions of consecutive known bit values first.
1729 if (filterProcessor(false))
1730 return;
1732 // Then regions of mixed bits (both known and unitialized bit values allowed).
1733 if (filterProcessor(true))
1734 return;
1736 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1737 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1738 // well-known encoding pattern. In such case, we backtrack and scan for the
1739 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1740 if (Num == 3 && filterProcessor(true, false))
1741 return;
1743 // If we come to here, the instruction decoding has failed.
1744 // Set the BestIndex to -1 to indicate so.
1745 BestIndex = -1;
1748 // emitTableEntries - Emit state machine entries to decode our share of
1749 // instructions.
1750 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1751 if (Opcodes.size() == 1) {
1752 // There is only one instruction in the set, which is great!
1753 // Call emitSingletonDecoder() to see whether there are any remaining
1754 // encodings bits.
1755 emitSingletonTableEntry(TableInfo, Opcodes[0]);
1756 return;
1759 // Choose the best filter to do the decodings!
1760 if (BestIndex != -1) {
1761 const Filter &Best = Filters[BestIndex];
1762 if (Best.getNumFiltered() == 1)
1763 emitSingletonTableEntry(TableInfo, Best);
1764 else
1765 Best.emitTableEntry(TableInfo);
1766 return;
1769 // We don't know how to decode these instructions! Dump the
1770 // conflict set and bail.
1772 // Print out useful conflict information for postmortem analysis.
1773 errs() << "Decoding Conflict:\n";
1775 dumpStack(errs(), "\t\t");
1777 for (auto Opcode : Opcodes) {
1778 errs() << '\t';
1779 emitNameWithID(errs(), Opcode.EncodingID);
1780 errs() << " ";
1781 dumpBits(
1782 errs(),
1783 getBitsField(*AllInstructions[Opcode.EncodingID].EncodingDef, "Inst"));
1784 errs() << '\n';
1788 static std::string findOperandDecoderMethod(TypedInit *TI) {
1789 std::string Decoder;
1791 Record *Record = cast<DefInit>(TI)->getDef();
1793 RecordVal *DecoderString = Record->getValue("DecoderMethod");
1794 StringInit *String = DecoderString ?
1795 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1796 if (String) {
1797 Decoder = std::string(String->getValue());
1798 if (!Decoder.empty())
1799 return Decoder;
1802 if (Record->isSubClassOf("RegisterOperand"))
1803 Record = Record->getValueAsDef("RegClass");
1805 if (Record->isSubClassOf("RegisterClass")) {
1806 Decoder = "Decode" + Record->getName().str() + "RegisterClass";
1807 } else if (Record->isSubClassOf("PointerLikeRegClass")) {
1808 Decoder = "DecodePointerLikeRegClass" +
1809 utostr(Record->getValueAsInt("RegClassKind"));
1812 return Decoder;
1815 static bool
1816 populateInstruction(CodeGenTarget &Target, const Record &EncodingDef,
1817 const CodeGenInstruction &CGI, unsigned Opc,
1818 std::map<unsigned, std::vector<OperandInfo>> &Operands) {
1819 const Record &Def = *CGI.TheDef;
1820 // If all the bit positions are not specified; do not decode this instruction.
1821 // We are bound to fail! For proper disassembly, the well-known encoding bits
1822 // of the instruction must be fully specified.
1824 BitsInit &Bits = getBitsField(EncodingDef, "Inst");
1825 if (Bits.allInComplete()) return false;
1827 std::vector<OperandInfo> InsnOperands;
1829 // If the instruction has specified a custom decoding hook, use that instead
1830 // of trying to auto-generate the decoder.
1831 StringRef InstDecoder = EncodingDef.getValueAsString("DecoderMethod");
1832 if (InstDecoder != "") {
1833 bool HasCompleteInstDecoder = EncodingDef.getValueAsBit("hasCompleteDecoder");
1834 InsnOperands.push_back(
1835 OperandInfo(std::string(InstDecoder), HasCompleteInstDecoder));
1836 Operands[Opc] = InsnOperands;
1837 return true;
1840 // Generate a description of the operand of the instruction that we know
1841 // how to decode automatically.
1842 // FIXME: We'll need to have a way to manually override this as needed.
1844 // Gather the outputs/inputs of the instruction, so we can find their
1845 // positions in the encoding. This assumes for now that they appear in the
1846 // MCInst in the order that they're listed.
1847 std::vector<std::pair<Init*, StringRef>> InOutOperands;
1848 DagInit *Out = Def.getValueAsDag("OutOperandList");
1849 DagInit *In = Def.getValueAsDag("InOperandList");
1850 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1851 InOutOperands.push_back(std::make_pair(Out->getArg(i),
1852 Out->getArgNameStr(i)));
1853 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1854 InOutOperands.push_back(std::make_pair(In->getArg(i),
1855 In->getArgNameStr(i)));
1857 // Search for tied operands, so that we can correctly instantiate
1858 // operands that are not explicitly represented in the encoding.
1859 std::map<std::string, std::string> TiedNames;
1860 for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1861 int tiedTo = CGI.Operands[i].getTiedRegister();
1862 if (tiedTo != -1) {
1863 std::pair<unsigned, unsigned> SO =
1864 CGI.Operands.getSubOperandNumber(tiedTo);
1865 TiedNames[std::string(InOutOperands[i].second)] =
1866 std::string(InOutOperands[SO.first].second);
1867 TiedNames[std::string(InOutOperands[SO.first].second)] =
1868 std::string(InOutOperands[i].second);
1872 std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
1873 std::set<std::string> NumberedInsnOperandsNoTie;
1874 if (Target.getInstructionSet()->
1875 getValueAsBit("decodePositionallyEncodedOperands")) {
1876 const std::vector<RecordVal> &Vals = Def.getValues();
1877 unsigned NumberedOp = 0;
1879 std::set<unsigned> NamedOpIndices;
1880 if (Target.getInstructionSet()->
1881 getValueAsBit("noNamedPositionallyEncodedOperands"))
1882 // Collect the set of operand indices that might correspond to named
1883 // operand, and skip these when assigning operands based on position.
1884 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1885 unsigned OpIdx;
1886 if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1887 continue;
1889 NamedOpIndices.insert(OpIdx);
1892 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1893 // Ignore fixed fields in the record, we're looking for values like:
1894 // bits<5> RST = { ?, ?, ?, ?, ? };
1895 if (Vals[i].isNonconcreteOK() || Vals[i].getValue()->isComplete())
1896 continue;
1898 // Determine if Vals[i] actually contributes to the Inst encoding.
1899 unsigned bi = 0;
1900 for (; bi < Bits.getNumBits(); ++bi) {
1901 VarInit *Var = nullptr;
1902 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1903 if (BI)
1904 Var = dyn_cast<VarInit>(BI->getBitVar());
1905 else
1906 Var = dyn_cast<VarInit>(Bits.getBit(bi));
1908 if (Var && Var->getName() == Vals[i].getName())
1909 break;
1912 if (bi == Bits.getNumBits())
1913 continue;
1915 // Skip variables that correspond to explicitly-named operands.
1916 unsigned OpIdx;
1917 if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1918 continue;
1920 // Get the bit range for this operand:
1921 unsigned bitStart = bi++, bitWidth = 1;
1922 for (; bi < Bits.getNumBits(); ++bi) {
1923 VarInit *Var = nullptr;
1924 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1925 if (BI)
1926 Var = dyn_cast<VarInit>(BI->getBitVar());
1927 else
1928 Var = dyn_cast<VarInit>(Bits.getBit(bi));
1930 if (!Var)
1931 break;
1933 if (Var->getName() != Vals[i].getName())
1934 break;
1936 ++bitWidth;
1939 unsigned NumberOps = CGI.Operands.size();
1940 while (NumberedOp < NumberOps &&
1941 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
1942 (!NamedOpIndices.empty() && NamedOpIndices.count(
1943 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
1944 ++NumberedOp;
1946 OpIdx = NumberedOp++;
1948 // OpIdx now holds the ordered operand number of Vals[i].
1949 std::pair<unsigned, unsigned> SO =
1950 CGI.Operands.getSubOperandNumber(OpIdx);
1951 const std::string &Name = CGI.Operands[SO.first].Name;
1953 LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
1954 << ": " << Name << "(" << SO.first << ", " << SO.second
1955 << ") => " << Vals[i].getName() << "\n");
1957 std::string Decoder;
1958 Record *TypeRecord = CGI.Operands[SO.first].Rec;
1960 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1961 StringInit *String = DecoderString ?
1962 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1963 if (String && String->getValue() != "")
1964 Decoder = std::string(String->getValue());
1966 if (Decoder == "" &&
1967 CGI.Operands[SO.first].MIOperandInfo &&
1968 CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
1969 Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
1970 getArg(SO.second);
1971 if (DefInit *DI = cast<DefInit>(Arg))
1972 TypeRecord = DI->getDef();
1975 bool isReg = false;
1976 if (TypeRecord->isSubClassOf("RegisterOperand"))
1977 TypeRecord = TypeRecord->getValueAsDef("RegClass");
1978 if (TypeRecord->isSubClassOf("RegisterClass")) {
1979 Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
1980 isReg = true;
1981 } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1982 Decoder = "DecodePointerLikeRegClass" +
1983 utostr(TypeRecord->getValueAsInt("RegClassKind"));
1984 isReg = true;
1987 DecoderString = TypeRecord->getValue("DecoderMethod");
1988 String = DecoderString ?
1989 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1990 if (!isReg && String && String->getValue() != "")
1991 Decoder = std::string(String->getValue());
1993 RecordVal *HasCompleteDecoderVal =
1994 TypeRecord->getValue("hasCompleteDecoder");
1995 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
1996 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
1997 bool HasCompleteDecoder = HasCompleteDecoderBit ?
1998 HasCompleteDecoderBit->getValue() : true;
2000 OperandInfo OpInfo(Decoder, HasCompleteDecoder);
2001 OpInfo.addField(bitStart, bitWidth, 0);
2003 NumberedInsnOperands[Name].push_back(OpInfo);
2005 // FIXME: For complex operands with custom decoders we can't handle tied
2006 // sub-operands automatically. Skip those here and assume that this is
2007 // fixed up elsewhere.
2008 if (CGI.Operands[SO.first].MIOperandInfo &&
2009 CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
2010 String && String->getValue() != "")
2011 NumberedInsnOperandsNoTie.insert(Name);
2015 // For each operand, see if we can figure out where it is encoded.
2016 for (const auto &Op : InOutOperands) {
2017 if (!NumberedInsnOperands[std::string(Op.second)].empty()) {
2018 llvm::append_range(InsnOperands,
2019 NumberedInsnOperands[std::string(Op.second)]);
2020 continue;
2022 if (!NumberedInsnOperands[TiedNames[std::string(Op.second)]].empty()) {
2023 if (!NumberedInsnOperandsNoTie.count(TiedNames[std::string(Op.second)])) {
2024 // Figure out to which (sub)operand we're tied.
2025 unsigned i =
2026 CGI.Operands.getOperandNamed(TiedNames[std::string(Op.second)]);
2027 int tiedTo = CGI.Operands[i].getTiedRegister();
2028 if (tiedTo == -1) {
2029 i = CGI.Operands.getOperandNamed(Op.second);
2030 tiedTo = CGI.Operands[i].getTiedRegister();
2033 if (tiedTo != -1) {
2034 std::pair<unsigned, unsigned> SO =
2035 CGI.Operands.getSubOperandNumber(tiedTo);
2037 InsnOperands.push_back(
2038 NumberedInsnOperands[TiedNames[std::string(Op.second)]]
2039 [SO.second]);
2042 continue;
2045 TypedInit *TI = cast<TypedInit>(Op.first);
2047 // At this point, we can locate the decoder field, but we need to know how
2048 // to interpret it. As a first step, require the target to provide
2049 // callbacks for decoding register classes.
2050 std::string Decoder = findOperandDecoderMethod(TI);
2051 Record *TypeRecord = cast<DefInit>(TI)->getDef();
2053 RecordVal *HasCompleteDecoderVal =
2054 TypeRecord->getValue("hasCompleteDecoder");
2055 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
2056 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
2057 bool HasCompleteDecoder = HasCompleteDecoderBit ?
2058 HasCompleteDecoderBit->getValue() : true;
2060 OperandInfo OpInfo(Decoder, HasCompleteDecoder);
2062 // Some bits of the operand may be required to be 1 depending on the
2063 // instruction's encoding. Collect those bits.
2064 if (const RecordVal *EncodedValue = EncodingDef.getValue(Op.second))
2065 if (const BitsInit *OpBits = dyn_cast<BitsInit>(EncodedValue->getValue()))
2066 for (unsigned I = 0; I < OpBits->getNumBits(); ++I)
2067 if (const BitInit *OpBit = dyn_cast<BitInit>(OpBits->getBit(I)))
2068 if (OpBit->getValue())
2069 OpInfo.InitValue |= 1ULL << I;
2071 unsigned Base = ~0U;
2072 unsigned Width = 0;
2073 unsigned Offset = 0;
2075 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
2076 VarInit *Var = nullptr;
2077 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2078 if (BI)
2079 Var = dyn_cast<VarInit>(BI->getBitVar());
2080 else
2081 Var = dyn_cast<VarInit>(Bits.getBit(bi));
2083 if (!Var) {
2084 if (Base != ~0U) {
2085 OpInfo.addField(Base, Width, Offset);
2086 Base = ~0U;
2087 Width = 0;
2088 Offset = 0;
2090 continue;
2093 if (Var->getName() != Op.second &&
2094 Var->getName() != TiedNames[std::string(Op.second)]) {
2095 if (Base != ~0U) {
2096 OpInfo.addField(Base, Width, Offset);
2097 Base = ~0U;
2098 Width = 0;
2099 Offset = 0;
2101 continue;
2104 if (Base == ~0U) {
2105 Base = bi;
2106 Width = 1;
2107 Offset = BI ? BI->getBitNum() : 0;
2108 } else if (BI && BI->getBitNum() != Offset + Width) {
2109 OpInfo.addField(Base, Width, Offset);
2110 Base = bi;
2111 Width = 1;
2112 Offset = BI->getBitNum();
2113 } else {
2114 ++Width;
2118 if (Base != ~0U)
2119 OpInfo.addField(Base, Width, Offset);
2121 if (OpInfo.numFields() > 0)
2122 InsnOperands.push_back(OpInfo);
2125 Operands[Opc] = InsnOperands;
2127 #if 0
2128 LLVM_DEBUG({
2129 // Dumps the instruction encoding bits.
2130 dumpBits(errs(), Bits);
2132 errs() << '\n';
2134 // Dumps the list of operand info.
2135 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2136 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2137 const std::string &OperandName = Info.Name;
2138 const Record &OperandDef = *Info.Rec;
2140 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2143 #endif
2145 return true;
2148 // emitFieldFromInstruction - Emit the templated helper function
2149 // fieldFromInstruction().
2150 // On Windows we make sure that this function is not inlined when
2151 // using the VS compiler. It has a bug which causes the function
2152 // to be optimized out in some circustances. See llvm.org/pr38292
2153 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2154 OS << "// Helper functions for extracting fields from encoded instructions.\n"
2155 << "// InsnType must either be integral or an APInt-like object that "
2156 "must:\n"
2157 << "// * be default-constructible and copy-constructible\n"
2158 << "// * be constructible from a uint64_t\n"
2159 << "// * be constructible from an APInt (this can be private)\n"
2160 << "// * Support insertBits(bits, startBit, numBits)\n"
2161 << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
2162 << "// * be convertible to bool\n"
2163 << "// * Support the ~, &, ==, and != operators with other objects of "
2164 "the same type\n"
2165 << "// * Support put (<<) to raw_ostream&\n"
2166 << "template <typename InsnType>\n"
2167 << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2168 << "__declspec(noinline)\n"
2169 << "#endif\n"
2170 << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
2171 << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2172 << " unsigned numBits) {\n"
2173 << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2174 "extractions!\");\n"
2175 << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2176 << " \"Instruction field out of bounds!\");\n"
2177 << " InsnType fieldMask;\n"
2178 << " if (numBits == sizeof(InsnType) * 8)\n"
2179 << " fieldMask = (InsnType)(-1LL);\n"
2180 << " else\n"
2181 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2182 << " return (insn & fieldMask) >> startBit;\n"
2183 << "}\n"
2184 << "\n"
2185 << "template <typename InsnType>\n"
2186 << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
2187 "uint64_t>\n"
2188 << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2189 << " unsigned numBits) {\n"
2190 << " return insn.extractBitsAsZExtValue(numBits, startBit);\n"
2191 << "}\n\n";
2194 // emitInsertBits - Emit the templated helper function insertBits().
2195 static void emitInsertBits(formatted_raw_ostream &OS) {
2196 OS << "// Helper function for inserting bits extracted from an encoded "
2197 "instruction into\n"
2198 << "// a field.\n"
2199 << "template <typename InsnType>\n"
2200 << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
2201 << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
2202 "unsigned numBits) {\n"
2203 << " assert(startBit + numBits <= sizeof field * 8);\n"
2204 << " field |= (InsnType)bits << startBit;\n"
2205 << "}\n"
2206 << "\n"
2207 << "template <typename InsnType>\n"
2208 << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
2209 << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
2210 "unsigned numBits) {\n"
2211 << " field.insertBits(bits, startBit, numBits);\n"
2212 << "}\n\n";
2215 // emitDecodeInstruction - Emit the templated helper function
2216 // decodeInstruction().
2217 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
2218 OS << "template <typename InsnType>\n"
2219 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2220 "MCInst &MI,\n"
2221 << " InsnType insn, uint64_t "
2222 "Address,\n"
2223 << " const void *DisAsm,\n"
2224 << " const MCSubtargetInfo &STI) {\n"
2225 << " const FeatureBitset &Bits = STI.getFeatureBits();\n"
2226 << "\n"
2227 << " const uint8_t *Ptr = DecodeTable;\n"
2228 << " InsnType CurFieldValue = 0;\n"
2229 << " DecodeStatus S = MCDisassembler::Success;\n"
2230 << " while (true) {\n"
2231 << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
2232 << " switch (*Ptr) {\n"
2233 << " default:\n"
2234 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2235 << " return MCDisassembler::Fail;\n"
2236 << " case MCD::OPC_ExtractField: {\n"
2237 << " unsigned Start = *++Ptr;\n"
2238 << " unsigned Len = *++Ptr;\n"
2239 << " ++Ptr;\n"
2240 << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2241 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2242 "\", \"\n"
2243 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2244 << " break;\n"
2245 << " }\n"
2246 << " case MCD::OPC_FilterValue: {\n"
2247 << " // Decode the field value.\n"
2248 << " unsigned Len;\n"
2249 << " InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2250 << " Ptr += Len;\n"
2251 << " // NumToSkip is a plain 24-bit integer.\n"
2252 << " unsigned NumToSkip = *Ptr++;\n"
2253 << " NumToSkip |= (*Ptr++) << 8;\n"
2254 << " NumToSkip |= (*Ptr++) << 16;\n"
2255 << "\n"
2256 << " // Perform the filter operation.\n"
2257 << " if (Val != CurFieldValue)\n"
2258 << " Ptr += NumToSkip;\n"
2259 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2260 "\", \" << NumToSkip\n"
2261 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2262 ": \"PASS:\")\n"
2263 << " << \" continuing at \" << (Ptr - DecodeTable) << "
2264 "\"\\n\");\n"
2265 << "\n"
2266 << " break;\n"
2267 << " }\n"
2268 << " case MCD::OPC_CheckField: {\n"
2269 << " unsigned Start = *++Ptr;\n"
2270 << " unsigned Len = *++Ptr;\n"
2271 << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2272 << " // Decode the field value.\n"
2273 << " InsnType ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2274 << " Ptr += Len;\n"
2275 << " // NumToSkip is a plain 24-bit integer.\n"
2276 << " unsigned NumToSkip = *Ptr++;\n"
2277 << " NumToSkip |= (*Ptr++) << 8;\n"
2278 << " NumToSkip |= (*Ptr++) << 16;\n"
2279 << "\n"
2280 << " // If the actual and expected values don't match, skip.\n"
2281 << " if (ExpectedValue != FieldValue)\n"
2282 << " Ptr += NumToSkip;\n"
2283 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2284 "\", \"\n"
2285 << " << Len << \", \" << ExpectedValue << \", \" << "
2286 "NumToSkip\n"
2287 << " << \"): FieldValue = \" << FieldValue << \", "
2288 "ExpectedValue = \"\n"
2289 << " << ExpectedValue << \": \"\n"
2290 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2291 "\"FAIL\\n\"));\n"
2292 << " break;\n"
2293 << " }\n"
2294 << " case MCD::OPC_CheckPredicate: {\n"
2295 << " unsigned Len;\n"
2296 << " // Decode the Predicate Index value.\n"
2297 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2298 << " Ptr += Len;\n"
2299 << " // NumToSkip is a plain 24-bit integer.\n"
2300 << " unsigned NumToSkip = *Ptr++;\n"
2301 << " NumToSkip |= (*Ptr++) << 8;\n"
2302 << " NumToSkip |= (*Ptr++) << 16;\n"
2303 << " // Check the predicate.\n"
2304 << " bool Pred;\n"
2305 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2306 << " Ptr += NumToSkip;\n"
2307 << " (void)Pred;\n"
2308 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2309 "<< \"): \"\n"
2310 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2311 << "\n"
2312 << " break;\n"
2313 << " }\n"
2314 << " case MCD::OPC_Decode: {\n"
2315 << " unsigned Len;\n"
2316 << " // Decode the Opcode value.\n"
2317 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2318 << " Ptr += Len;\n"
2319 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2320 << " Ptr += Len;\n"
2321 << "\n"
2322 << " MI.clear();\n"
2323 << " MI.setOpcode(Opc);\n"
2324 << " bool DecodeComplete;\n"
2325 << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2326 "DecodeComplete);\n"
2327 << " assert(DecodeComplete);\n"
2328 << "\n"
2329 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2330 << " << \", using decoder \" << DecodeIdx << \": \"\n"
2331 << " << (S != MCDisassembler::Fail ? \"PASS\" : "
2332 "\"FAIL\") << \"\\n\");\n"
2333 << " return S;\n"
2334 << " }\n"
2335 << " case MCD::OPC_TryDecode: {\n"
2336 << " unsigned Len;\n"
2337 << " // Decode the Opcode value.\n"
2338 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2339 << " Ptr += Len;\n"
2340 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2341 << " Ptr += Len;\n"
2342 << " // NumToSkip is a plain 24-bit integer.\n"
2343 << " unsigned NumToSkip = *Ptr++;\n"
2344 << " NumToSkip |= (*Ptr++) << 8;\n"
2345 << " NumToSkip |= (*Ptr++) << 16;\n"
2346 << "\n"
2347 << " // Perform the decode operation.\n"
2348 << " MCInst TmpMI;\n"
2349 << " TmpMI.setOpcode(Opc);\n"
2350 << " bool DecodeComplete;\n"
2351 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2352 "DecodeComplete);\n"
2353 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2354 "Opc\n"
2355 << " << \", using decoder \" << DecodeIdx << \": \");\n"
2356 << "\n"
2357 << " if (DecodeComplete) {\n"
2358 << " // Decoding complete.\n"
2359 << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2360 "\"FAIL\") << \"\\n\");\n"
2361 << " MI = TmpMI;\n"
2362 << " return S;\n"
2363 << " } else {\n"
2364 << " assert(S == MCDisassembler::Fail);\n"
2365 << " // If the decoding was incomplete, skip.\n"
2366 << " Ptr += NumToSkip;\n"
2367 << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2368 "DecodeTable) << \"\\n\");\n"
2369 << " // Reset decode status. This also drops a SoftFail status "
2370 "that could be\n"
2371 << " // set before the decode attempt.\n"
2372 << " S = MCDisassembler::Success;\n"
2373 << " }\n"
2374 << " break;\n"
2375 << " }\n"
2376 << " case MCD::OPC_SoftFail: {\n"
2377 << " // Decode the mask values.\n"
2378 << " unsigned Len;\n"
2379 << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2380 << " Ptr += Len;\n"
2381 << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2382 << " Ptr += Len;\n"
2383 << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2384 << " if (Fail)\n"
2385 << " S = MCDisassembler::SoftFail;\n"
2386 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2387 "\"FAIL\\n\" : \"PASS\\n\"));\n"
2388 << " break;\n"
2389 << " }\n"
2390 << " case MCD::OPC_Fail: {\n"
2391 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2392 << " return MCDisassembler::Fail;\n"
2393 << " }\n"
2394 << " }\n"
2395 << " }\n"
2396 << " llvm_unreachable(\"bogosity detected in disassembler state "
2397 "machine!\");\n"
2398 << "}\n\n";
2401 // Emits disassembler code for instruction decoding.
2402 void FixedLenDecoderEmitter::run(raw_ostream &o) {
2403 formatted_raw_ostream OS(o);
2404 OS << "#include \"llvm/MC/MCInst.h\"\n";
2405 OS << "#include \"llvm/Support/DataTypes.h\"\n";
2406 OS << "#include \"llvm/Support/Debug.h\"\n";
2407 OS << "#include \"llvm/Support/LEB128.h\"\n";
2408 OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2409 OS << "#include <assert.h>\n";
2410 OS << '\n';
2411 OS << "namespace llvm {\n\n";
2413 emitFieldFromInstruction(OS);
2414 emitInsertBits(OS);
2416 Target.reverseBitsForLittleEndianEncoding();
2418 // Parameterize the decoders based on namespace and instruction width.
2419 std::set<StringRef> HwModeNames;
2420 const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
2421 NumberedEncodings.reserve(NumberedInstructions.size());
2422 DenseMap<Record *, unsigned> IndexOfInstruction;
2423 // First, collect all HwModes referenced by the target.
2424 for (const auto &NumberedInstruction : NumberedInstructions) {
2425 IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2427 if (const RecordVal *RV =
2428 NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2429 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2430 const CodeGenHwModes &HWM = Target.getHwModes();
2431 EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2432 for (auto &KV : EBM)
2433 HwModeNames.insert(HWM.getMode(KV.first).Name);
2438 // If HwModeNames is empty, add the empty string so we always have one HwMode.
2439 if (HwModeNames.empty())
2440 HwModeNames.insert("");
2442 for (const auto &NumberedInstruction : NumberedInstructions) {
2443 IndexOfInstruction[NumberedInstruction->TheDef] = NumberedEncodings.size();
2445 if (const RecordVal *RV =
2446 NumberedInstruction->TheDef->getValue("EncodingInfos")) {
2447 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
2448 const CodeGenHwModes &HWM = Target.getHwModes();
2449 EncodingInfoByHwMode EBM(DI->getDef(), HWM);
2450 for (auto &KV : EBM) {
2451 NumberedEncodings.emplace_back(KV.second, NumberedInstruction,
2452 HWM.getMode(KV.first).Name);
2453 HwModeNames.insert(HWM.getMode(KV.first).Name);
2455 continue;
2458 // This instruction is encoded the same on all HwModes. Emit it for all
2459 // HwModes.
2460 for (StringRef HwModeName : HwModeNames)
2461 NumberedEncodings.emplace_back(NumberedInstruction->TheDef,
2462 NumberedInstruction, HwModeName);
2464 for (const auto &NumberedAlias : RK.getAllDerivedDefinitions("AdditionalEncoding"))
2465 NumberedEncodings.emplace_back(
2466 NumberedAlias,
2467 &Target.getInstruction(NumberedAlias->getValueAsDef("AliasOf")));
2469 std::map<std::pair<std::string, unsigned>, std::vector<EncodingIDAndOpcode>>
2470 OpcMap;
2471 std::map<unsigned, std::vector<OperandInfo>> Operands;
2473 for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
2474 const Record *EncodingDef = NumberedEncodings[i].EncodingDef;
2475 const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
2476 const Record *Def = Inst->TheDef;
2477 unsigned Size = EncodingDef->getValueAsInt("Size");
2478 if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2479 Def->getValueAsBit("isPseudo") ||
2480 Def->getValueAsBit("isAsmParserOnly") ||
2481 Def->getValueAsBit("isCodeGenOnly")) {
2482 NumEncodingsLackingDisasm++;
2483 continue;
2486 if (i < NumberedInstructions.size())
2487 NumInstructions++;
2488 NumEncodings++;
2490 if (!Size)
2491 continue;
2493 if (populateInstruction(Target, *EncodingDef, *Inst, i, Operands)) {
2494 std::string DecoderNamespace =
2495 std::string(EncodingDef->getValueAsString("DecoderNamespace"));
2496 if (!NumberedEncodings[i].HwModeName.empty())
2497 DecoderNamespace +=
2498 std::string("_") + NumberedEncodings[i].HwModeName.str();
2499 OpcMap[std::make_pair(DecoderNamespace, Size)].emplace_back(
2500 i, IndexOfInstruction.find(Def)->second);
2501 } else {
2502 NumEncodingsOmitted++;
2506 DecoderTableInfo TableInfo;
2507 for (const auto &Opc : OpcMap) {
2508 // Emit the decoder for this namespace+width combination.
2509 ArrayRef<EncodingAndInst> NumberedEncodingsRef(
2510 NumberedEncodings.data(), NumberedEncodings.size());
2511 FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
2512 8 * Opc.first.second, this);
2514 // The decode table is cleared for each top level decoder function. The
2515 // predicates and decoders themselves, however, are shared across all
2516 // decoders to give more opportunities for uniqueing.
2517 TableInfo.Table.clear();
2518 TableInfo.FixupStack.clear();
2519 TableInfo.Table.reserve(16384);
2520 TableInfo.FixupStack.emplace_back();
2521 FC.emitTableEntries(TableInfo);
2522 // Any NumToSkip fixups in the top level scope can resolve to the
2523 // OPC_Fail at the end of the table.
2524 assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2525 // Resolve any NumToSkip fixups in the current scope.
2526 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2527 TableInfo.Table.size());
2528 TableInfo.FixupStack.clear();
2530 TableInfo.Table.push_back(MCD::OPC_Fail);
2532 // Print the table to the output stream.
2533 emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2534 OS.flush();
2537 // Emit the predicate function.
2538 emitPredicateFunction(OS, TableInfo.Predicates, 0);
2540 // Emit the decoder function.
2541 emitDecoderFunction(OS, TableInfo.Decoders, 0);
2543 // Emit the main entry point for the decoder, decodeInstruction().
2544 emitDecodeInstruction(OS);
2546 OS << "\n} // end namespace llvm\n";
2549 namespace llvm {
2551 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
2552 const std::string &PredicateNamespace,
2553 const std::string &GPrefix,
2554 const std::string &GPostfix, const std::string &ROK,
2555 const std::string &RFail, const std::string &L) {
2556 FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
2557 ROK, RFail, L).run(OS);
2560 } // end namespace llvm