1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // It contains the tablegen backend that emits the decoder functions for
10 // targets with fixed length instruction set.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenInstruction.h"
15 #include "CodeGenTarget.h"
16 #include "InfoByHwMode.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/CachedHashString.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/MC/MCFixedLenDisassembler.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/FormattedStream.h"
31 #include "llvm/Support/LEB128.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/TableGen/Error.h"
34 #include "llvm/TableGen/Record.h"
48 #define DEBUG_TYPE "decoder-emitter"
52 STATISTIC(NumEncodings
, "Number of encodings considered");
53 STATISTIC(NumEncodingsLackingDisasm
, "Number of encodings without disassembler info");
54 STATISTIC(NumInstructions
, "Number of instructions considered");
55 STATISTIC(NumEncodingsSupported
, "Number of encodings supported");
56 STATISTIC(NumEncodingsOmitted
, "Number of encodings omitted");
58 struct EncodingField
{
59 unsigned Base
, Width
, Offset
;
60 EncodingField(unsigned B
, unsigned W
, unsigned O
)
61 : Base(B
), Width(W
), Offset(O
) { }
65 std::vector
<EncodingField
> Fields
;
67 bool HasCompleteDecoder
;
70 OperandInfo(std::string D
, bool HCD
)
71 : Decoder(std::move(D
)), HasCompleteDecoder(HCD
), InitValue(0) {}
73 void addField(unsigned Base
, unsigned Width
, unsigned Offset
) {
74 Fields
.push_back(EncodingField(Base
, Width
, Offset
));
77 unsigned numFields() const { return Fields
.size(); }
79 typedef std::vector
<EncodingField
>::const_iterator const_iterator
;
81 const_iterator
begin() const { return Fields
.begin(); }
82 const_iterator
end() const { return Fields
.end(); }
85 typedef std::vector
<uint8_t> DecoderTable
;
86 typedef uint32_t DecoderFixup
;
87 typedef std::vector
<DecoderFixup
> FixupList
;
88 typedef std::vector
<FixupList
> FixupScopeList
;
89 typedef SmallSetVector
<CachedHashString
, 16> PredicateSet
;
90 typedef SmallSetVector
<CachedHashString
, 16> DecoderSet
;
91 struct DecoderTableInfo
{
93 FixupScopeList FixupStack
;
94 PredicateSet Predicates
;
98 struct EncodingAndInst
{
99 const Record
*EncodingDef
;
100 const CodeGenInstruction
*Inst
;
101 StringRef HwModeName
;
103 EncodingAndInst(const Record
*EncodingDef
, const CodeGenInstruction
*Inst
,
104 StringRef HwModeName
= "")
105 : EncodingDef(EncodingDef
), Inst(Inst
), HwModeName(HwModeName
) {}
108 struct EncodingIDAndOpcode
{
112 EncodingIDAndOpcode() : EncodingID(0), Opcode(0) {}
113 EncodingIDAndOpcode(unsigned EncodingID
, unsigned Opcode
)
114 : EncodingID(EncodingID
), Opcode(Opcode
) {}
117 raw_ostream
&operator<<(raw_ostream
&OS
, const EncodingAndInst
&Value
) {
118 if (Value
.EncodingDef
!= Value
.Inst
->TheDef
)
119 OS
<< Value
.EncodingDef
->getName() << ":";
120 OS
<< Value
.Inst
->TheDef
->getName();
124 class FixedLenDecoderEmitter
{
126 std::vector
<EncodingAndInst
> NumberedEncodings
;
129 // Defaults preserved here for documentation, even though they aren't
130 // strictly necessary given the way that this is currently being called.
131 FixedLenDecoderEmitter(RecordKeeper
&R
, std::string PredicateNamespace
,
132 std::string GPrefix
= "if (",
133 std::string GPostfix
= " == MCDisassembler::Fail)",
134 std::string ROK
= "MCDisassembler::Success",
135 std::string RFail
= "MCDisassembler::Fail",
137 : RK(R
), Target(R
), PredicateNamespace(std::move(PredicateNamespace
)),
138 GuardPrefix(std::move(GPrefix
)), GuardPostfix(std::move(GPostfix
)),
139 ReturnOK(std::move(ROK
)), ReturnFail(std::move(RFail
)),
140 Locals(std::move(L
)) {}
142 // Emit the decoder state machine table.
143 void emitTable(formatted_raw_ostream
&o
, DecoderTable
&Table
,
144 unsigned Indentation
, unsigned BitWidth
,
145 StringRef Namespace
) const;
146 void emitPredicateFunction(formatted_raw_ostream
&OS
,
147 PredicateSet
&Predicates
,
148 unsigned Indentation
) const;
149 void emitDecoderFunction(formatted_raw_ostream
&OS
,
150 DecoderSet
&Decoders
,
151 unsigned Indentation
) const;
153 // run - Output the code emitter
154 void run(raw_ostream
&o
);
157 CodeGenTarget Target
;
160 std::string PredicateNamespace
;
161 std::string GuardPrefix
, GuardPostfix
;
162 std::string ReturnOK
, ReturnFail
;
166 } // end anonymous namespace
168 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
171 // BIT_UNFILTERED is used as the init value for a filter position. It is used
172 // only for filter processings.
177 BIT_UNFILTERED
// unfiltered
180 static bool ValueSet(bit_value_t V
) {
181 return (V
== BIT_TRUE
|| V
== BIT_FALSE
);
184 static bool ValueNotSet(bit_value_t V
) {
185 return (V
== BIT_UNSET
);
188 static int Value(bit_value_t V
) {
189 return ValueNotSet(V
) ? -1 : (V
== BIT_FALSE
? 0 : 1);
192 static bit_value_t
bitFromBits(const BitsInit
&bits
, unsigned index
) {
193 if (BitInit
*bit
= dyn_cast
<BitInit
>(bits
.getBit(index
)))
194 return bit
->getValue() ? BIT_TRUE
: BIT_FALSE
;
196 // The bit is uninitialized.
200 // Prints the bit value for each position.
201 static void dumpBits(raw_ostream
&o
, const BitsInit
&bits
) {
202 for (unsigned index
= bits
.getNumBits(); index
> 0; --index
) {
203 switch (bitFromBits(bits
, index
- 1)) {
214 llvm_unreachable("unexpected return value from bitFromBits");
219 static BitsInit
&getBitsField(const Record
&def
, StringRef str
) {
220 BitsInit
*bits
= def
.getValueAsBitsInit(str
);
224 // Representation of the instruction to work on.
225 typedef std::vector
<bit_value_t
> insn_t
;
229 static const uint64_t NO_FIXED_SEGMENTS_SENTINEL
= -1ULL;
233 /// Filter - Filter works with FilterChooser to produce the decoding tree for
236 /// It is useful to think of a Filter as governing the switch stmts of the
237 /// decoding tree in a certain level. Each case stmt delegates to an inferior
238 /// FilterChooser to decide what further decoding logic to employ, or in another
239 /// words, what other remaining bits to look at. The FilterChooser eventually
240 /// chooses a best Filter to do its job.
242 /// This recursive scheme ends when the number of Opcodes assigned to the
243 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
244 /// the Filter/FilterChooser combo does not know how to distinguish among the
245 /// Opcodes assigned.
247 /// An example of a conflict is
250 /// 111101000.00........00010000....
251 /// 111101000.00........0001........
252 /// 1111010...00........0001........
253 /// 1111010...00....................
254 /// 1111010.........................
255 /// 1111............................
256 /// ................................
257 /// VST4q8a 111101000_00________00010000____
258 /// VST4q8b 111101000_00________00010000____
260 /// The Debug output shows the path that the decoding tree follows to reach the
261 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
262 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
264 /// The encoding info in the .td files does not specify this meta information,
265 /// which could have been used by the decoder to resolve the conflict. The
266 /// decoder could try to decode the even/odd register numbering and assign to
267 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
268 /// version and return the Opcode since the two have the same Asm format string.
271 const FilterChooser
*Owner
;// points to the FilterChooser who owns this filter
272 unsigned StartBit
; // the starting bit position
273 unsigned NumBits
; // number of bits to filter
274 bool Mixed
; // a mixed region contains both set and unset bits
276 // Map of well-known segment value to the set of uid's with that value.
277 std::map
<uint64_t, std::vector
<EncodingIDAndOpcode
>>
278 FilteredInstructions
;
280 // Set of uid's with non-constant segment values.
281 std::vector
<EncodingIDAndOpcode
> VariableInstructions
;
283 // Map of well-known segment value to its delegate.
284 std::map
<uint64_t, std::unique_ptr
<const FilterChooser
>> FilterChooserMap
;
286 // Number of instructions which fall under FilteredInstructions category.
287 unsigned NumFiltered
;
289 // Keeps track of the last opcode in the filtered bucket.
290 EncodingIDAndOpcode LastOpcFiltered
;
294 Filter(FilterChooser
&owner
, unsigned startBit
, unsigned numBits
, bool mixed
);
298 unsigned getNumFiltered() const { return NumFiltered
; }
300 EncodingIDAndOpcode
getSingletonOpc() const {
301 assert(NumFiltered
== 1);
302 return LastOpcFiltered
;
305 // Return the filter chooser for the group of instructions without constant
307 const FilterChooser
&getVariableFC() const {
308 assert(NumFiltered
== 1);
309 assert(FilterChooserMap
.size() == 1);
310 return *(FilterChooserMap
.find(NO_FIXED_SEGMENTS_SENTINEL
)->second
);
313 // Divides the decoding task into sub tasks and delegates them to the
314 // inferior FilterChooser's.
316 // A special case arises when there's only one entry in the filtered
317 // instructions. In order to unambiguously decode the singleton, we need to
318 // match the remaining undecoded encoding bits against the singleton.
321 // Emit table entries to decode instructions given a segment or segments of
323 void emitTableEntry(DecoderTableInfo
&TableInfo
) const;
325 // Returns the number of fanout produced by the filter. More fanout implies
326 // the filter distinguishes more categories of instructions.
327 unsigned usefulness() const;
328 }; // end class Filter
330 } // end anonymous namespace
332 // These are states of our finite state machines used in FilterChooser's
333 // filterProcessor() which produces the filter candidates to use.
342 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
343 /// in order to perform the decoding of instructions at the current level.
345 /// Decoding proceeds from the top down. Based on the well-known encoding bits
346 /// of instructions available, FilterChooser builds up the possible Filters that
347 /// can further the task of decoding by distinguishing among the remaining
348 /// candidate instructions.
350 /// Once a filter has been chosen, it is called upon to divide the decoding task
351 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
354 /// It is useful to think of a Filter as governing the switch stmts of the
355 /// decoding tree. And each case is delegated to an inferior FilterChooser to
356 /// decide what further remaining bits to look at.
359 class FilterChooser
{
363 // Vector of codegen instructions to choose our filter.
364 ArrayRef
<EncodingAndInst
> AllInstructions
;
366 // Vector of uid's for this filter chooser to work on.
367 // The first member of the pair is the opcode id being decoded, the second is
368 // the opcode id that should be emitted.
369 const std::vector
<EncodingIDAndOpcode
> &Opcodes
;
371 // Lookup table for the operand decoding of instructions.
372 const std::map
<unsigned, std::vector
<OperandInfo
>> &Operands
;
374 // Vector of candidate filters.
375 std::vector
<Filter
> Filters
;
377 // Array of bit values passed down from our parent.
378 // Set to all BIT_UNFILTERED's for Parent == NULL.
379 std::vector
<bit_value_t
> FilterBitValues
;
381 // Links to the FilterChooser above us in the decoding tree.
382 const FilterChooser
*Parent
;
384 // Index of the best filter from Filters.
387 // Width of instructions
391 const FixedLenDecoderEmitter
*Emitter
;
394 FilterChooser(ArrayRef
<EncodingAndInst
> Insts
,
395 const std::vector
<EncodingIDAndOpcode
> &IDs
,
396 const std::map
<unsigned, std::vector
<OperandInfo
>> &Ops
,
397 unsigned BW
, const FixedLenDecoderEmitter
*E
)
398 : AllInstructions(Insts
), Opcodes(IDs
), Operands(Ops
),
399 FilterBitValues(BW
, BIT_UNFILTERED
), Parent(nullptr), BestIndex(-1),
400 BitWidth(BW
), Emitter(E
) {
404 FilterChooser(ArrayRef
<EncodingAndInst
> Insts
,
405 const std::vector
<EncodingIDAndOpcode
> &IDs
,
406 const std::map
<unsigned, std::vector
<OperandInfo
>> &Ops
,
407 const std::vector
<bit_value_t
> &ParentFilterBitValues
,
408 const FilterChooser
&parent
)
409 : AllInstructions(Insts
), Opcodes(IDs
), Operands(Ops
),
410 FilterBitValues(ParentFilterBitValues
), Parent(&parent
), BestIndex(-1),
411 BitWidth(parent
.BitWidth
), Emitter(parent
.Emitter
) {
415 FilterChooser(const FilterChooser
&) = delete;
416 void operator=(const FilterChooser
&) = delete;
418 unsigned getBitWidth() const { return BitWidth
; }
421 // Populates the insn given the uid.
422 void insnWithID(insn_t
&Insn
, unsigned Opcode
) const {
423 BitsInit
&Bits
= getBitsField(*AllInstructions
[Opcode
].EncodingDef
, "Inst");
425 // We may have a SoftFail bitmask, which specifies a mask where an encoding
426 // may differ from the value in "Inst" and yet still be valid, but the
427 // disassembler should return SoftFail instead of Success.
429 // This is used for marking UNPREDICTABLE instructions in the ARM world.
431 AllInstructions
[Opcode
].EncodingDef
->getValueAsBitsInit("SoftFail");
433 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
434 if (SFBits
&& bitFromBits(*SFBits
, i
) == BIT_TRUE
)
435 Insn
.push_back(BIT_UNSET
);
437 Insn
.push_back(bitFromBits(Bits
, i
));
441 // Emit the name of the encoding/instruction pair.
442 void emitNameWithID(raw_ostream
&OS
, unsigned Opcode
) const {
443 const Record
*EncodingDef
= AllInstructions
[Opcode
].EncodingDef
;
444 const Record
*InstDef
= AllInstructions
[Opcode
].Inst
->TheDef
;
445 if (EncodingDef
!= InstDef
)
446 OS
<< EncodingDef
->getName() << ":";
447 OS
<< InstDef
->getName();
450 // Populates the field of the insn given the start position and the number of
451 // consecutive bits to scan for.
453 // Returns false if there exists any uninitialized bit value in the range.
454 // Returns true, otherwise.
455 bool fieldFromInsn(uint64_t &Field
, insn_t
&Insn
, unsigned StartBit
,
456 unsigned NumBits
) const;
458 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
459 /// filter array as a series of chars.
460 void dumpFilterArray(raw_ostream
&o
,
461 const std::vector
<bit_value_t
> & filter
) const;
463 /// dumpStack - dumpStack traverses the filter chooser chain and calls
464 /// dumpFilterArray on each filter chooser up to the top level one.
465 void dumpStack(raw_ostream
&o
, const char *prefix
) const;
467 Filter
&bestFilter() {
468 assert(BestIndex
!= -1 && "BestIndex not set");
469 return Filters
[BestIndex
];
472 bool PositionFiltered(unsigned i
) const {
473 return ValueSet(FilterBitValues
[i
]);
476 // Calculates the island(s) needed to decode the instruction.
477 // This returns a lit of undecoded bits of an instructions, for example,
478 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
479 // decoded bits in order to verify that the instruction matches the Opcode.
480 unsigned getIslands(std::vector
<unsigned> &StartBits
,
481 std::vector
<unsigned> &EndBits
,
482 std::vector
<uint64_t> &FieldVals
,
483 const insn_t
&Insn
) const;
485 // Emits code to check the Predicates member of an instruction are true.
486 // Returns true if predicate matches were emitted, false otherwise.
487 bool emitPredicateMatch(raw_ostream
&o
, unsigned &Indentation
,
490 bool doesOpcodeNeedPredicate(unsigned Opc
) const;
491 unsigned getPredicateIndex(DecoderTableInfo
&TableInfo
, StringRef P
) const;
492 void emitPredicateTableEntry(DecoderTableInfo
&TableInfo
,
495 void emitSoftFailTableEntry(DecoderTableInfo
&TableInfo
,
498 // Emits table entries to decode the singleton.
499 void emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
500 EncodingIDAndOpcode Opc
) const;
502 // Emits code to decode the singleton, and then to decode the rest.
503 void emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
504 const Filter
&Best
) const;
506 void emitBinaryParser(raw_ostream
&o
, unsigned &Indentation
,
507 const OperandInfo
&OpInfo
,
508 bool &OpHasCompleteDecoder
) const;
510 void emitDecoder(raw_ostream
&OS
, unsigned Indentation
, unsigned Opc
,
511 bool &HasCompleteDecoder
) const;
512 unsigned getDecoderIndex(DecoderSet
&Decoders
, unsigned Opc
,
513 bool &HasCompleteDecoder
) const;
515 // Assign a single filter and run with it.
516 void runSingleFilter(unsigned startBit
, unsigned numBit
, bool mixed
);
518 // reportRegion is a helper function for filterProcessor to mark a region as
519 // eligible for use as a filter region.
520 void reportRegion(bitAttr_t RA
, unsigned StartBit
, unsigned BitIndex
,
523 // FilterProcessor scans the well-known encoding bits of the instructions and
524 // builds up a list of candidate filters. It chooses the best filter and
525 // recursively descends down the decoding tree.
526 bool filterProcessor(bool AllowMixed
, bool Greedy
= true);
528 // Decides on the best configuration of filter(s) to use in order to decode
529 // the instructions. A conflict of instructions may occur, in which case we
530 // dump the conflict set to the standard error.
534 // emitTableEntries - Emit state machine entries to decode our share of
536 void emitTableEntries(DecoderTableInfo
&TableInfo
) const;
539 } // end anonymous namespace
541 ///////////////////////////
543 // Filter Implementation //
545 ///////////////////////////
547 Filter::Filter(Filter
&&f
)
548 : Owner(f
.Owner
), StartBit(f
.StartBit
), NumBits(f
.NumBits
), Mixed(f
.Mixed
),
549 FilteredInstructions(std::move(f
.FilteredInstructions
)),
550 VariableInstructions(std::move(f
.VariableInstructions
)),
551 FilterChooserMap(std::move(f
.FilterChooserMap
)), NumFiltered(f
.NumFiltered
),
552 LastOpcFiltered(f
.LastOpcFiltered
) {
555 Filter::Filter(FilterChooser
&owner
, unsigned startBit
, unsigned numBits
,
557 : Owner(&owner
), StartBit(startBit
), NumBits(numBits
), Mixed(mixed
) {
558 assert(StartBit
+ NumBits
- 1 < Owner
->BitWidth
);
561 LastOpcFiltered
= {0, 0};
563 for (unsigned i
= 0, e
= Owner
->Opcodes
.size(); i
!= e
; ++i
) {
566 // Populates the insn given the uid.
567 Owner
->insnWithID(Insn
, Owner
->Opcodes
[i
].EncodingID
);
570 // Scans the segment for possibly well-specified encoding bits.
571 bool ok
= Owner
->fieldFromInsn(Field
, Insn
, StartBit
, NumBits
);
574 // The encoding bits are well-known. Lets add the uid of the
575 // instruction into the bucket keyed off the constant field value.
576 LastOpcFiltered
= Owner
->Opcodes
[i
];
577 FilteredInstructions
[Field
].push_back(LastOpcFiltered
);
580 // Some of the encoding bit(s) are unspecified. This contributes to
581 // one additional member of "Variable" instructions.
582 VariableInstructions
.push_back(Owner
->Opcodes
[i
]);
586 assert((FilteredInstructions
.size() + VariableInstructions
.size() > 0)
587 && "Filter returns no instruction categories");
590 // Divides the decoding task into sub tasks and delegates them to the
591 // inferior FilterChooser's.
593 // A special case arises when there's only one entry in the filtered
594 // instructions. In order to unambiguously decode the singleton, we need to
595 // match the remaining undecoded encoding bits against the singleton.
596 void Filter::recurse() {
597 // Starts by inheriting our parent filter chooser's filter bit values.
598 std::vector
<bit_value_t
> BitValueArray(Owner
->FilterBitValues
);
600 if (!VariableInstructions
.empty()) {
601 // Conservatively marks each segment position as BIT_UNSET.
602 for (unsigned bitIndex
= 0; bitIndex
< NumBits
; ++bitIndex
)
603 BitValueArray
[StartBit
+ bitIndex
] = BIT_UNSET
;
605 // Delegates to an inferior filter chooser for further processing on this
606 // group of instructions whose segment values are variable.
607 FilterChooserMap
.insert(std::make_pair(NO_FIXED_SEGMENTS_SENTINEL
,
608 std::make_unique
<FilterChooser
>(Owner
->AllInstructions
,
609 VariableInstructions
, Owner
->Operands
, BitValueArray
, *Owner
)));
612 // No need to recurse for a singleton filtered instruction.
613 // See also Filter::emit*().
614 if (getNumFiltered() == 1) {
615 assert(FilterChooserMap
.size() == 1);
619 // Otherwise, create sub choosers.
620 for (const auto &Inst
: FilteredInstructions
) {
622 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
623 for (unsigned bitIndex
= 0; bitIndex
< NumBits
; ++bitIndex
) {
624 if (Inst
.first
& (1ULL << bitIndex
))
625 BitValueArray
[StartBit
+ bitIndex
] = BIT_TRUE
;
627 BitValueArray
[StartBit
+ bitIndex
] = BIT_FALSE
;
630 // Delegates to an inferior filter chooser for further processing on this
631 // category of instructions.
632 FilterChooserMap
.insert(std::make_pair(
633 Inst
.first
, std::make_unique
<FilterChooser
>(
634 Owner
->AllInstructions
, Inst
.second
,
635 Owner
->Operands
, BitValueArray
, *Owner
)));
639 static void resolveTableFixups(DecoderTable
&Table
, const FixupList
&Fixups
,
641 // Any NumToSkip fixups in the current scope can resolve to the
643 for (FixupList::const_reverse_iterator I
= Fixups
.rbegin(),
646 // Calculate the distance from the byte following the fixup entry byte
647 // to the destination. The Target is calculated from after the 16-bit
648 // NumToSkip entry itself, so subtract two from the displacement here
649 // to account for that.
650 uint32_t FixupIdx
= *I
;
651 uint32_t Delta
= DestIdx
- FixupIdx
- 3;
652 // Our NumToSkip entries are 24-bits. Make sure our table isn't too
654 assert(Delta
< (1u << 24));
655 Table
[FixupIdx
] = (uint8_t)Delta
;
656 Table
[FixupIdx
+ 1] = (uint8_t)(Delta
>> 8);
657 Table
[FixupIdx
+ 2] = (uint8_t)(Delta
>> 16);
661 // Emit table entries to decode instructions given a segment or segments
663 void Filter::emitTableEntry(DecoderTableInfo
&TableInfo
) const {
664 TableInfo
.Table
.push_back(MCD::OPC_ExtractField
);
665 TableInfo
.Table
.push_back(StartBit
);
666 TableInfo
.Table
.push_back(NumBits
);
668 // A new filter entry begins a new scope for fixup resolution.
669 TableInfo
.FixupStack
.emplace_back();
671 DecoderTable
&Table
= TableInfo
.Table
;
673 size_t PrevFilter
= 0;
674 bool HasFallthrough
= false;
675 for (auto &Filter
: FilterChooserMap
) {
676 // Field value -1 implies a non-empty set of variable instructions.
677 // See also recurse().
678 if (Filter
.first
== NO_FIXED_SEGMENTS_SENTINEL
) {
679 HasFallthrough
= true;
681 // Each scope should always have at least one filter value to check
683 assert(PrevFilter
!= 0 && "empty filter set!");
684 FixupList
&CurScope
= TableInfo
.FixupStack
.back();
685 // Resolve any NumToSkip fixups in the current scope.
686 resolveTableFixups(Table
, CurScope
, Table
.size());
688 PrevFilter
= 0; // Don't re-process the filter's fallthrough.
690 Table
.push_back(MCD::OPC_FilterValue
);
691 // Encode and emit the value to filter against.
693 unsigned Len
= encodeULEB128(Filter
.first
, Buffer
);
694 Table
.insert(Table
.end(), Buffer
, Buffer
+ Len
);
695 // Reserve space for the NumToSkip entry. We'll backpatch the value
697 PrevFilter
= Table
.size();
703 // We arrive at a category of instructions with the same segment value.
704 // Now delegate to the sub filter chooser for further decodings.
705 // The case may fallthrough, which happens if the remaining well-known
706 // encoding bits do not match exactly.
707 Filter
.second
->emitTableEntries(TableInfo
);
709 // Now that we've emitted the body of the handler, update the NumToSkip
710 // of the filter itself to be able to skip forward when false. Subtract
711 // two as to account for the width of the NumToSkip field itself.
713 uint32_t NumToSkip
= Table
.size() - PrevFilter
- 3;
714 assert(NumToSkip
< (1u << 24) && "disassembler decoding table too large!");
715 Table
[PrevFilter
] = (uint8_t)NumToSkip
;
716 Table
[PrevFilter
+ 1] = (uint8_t)(NumToSkip
>> 8);
717 Table
[PrevFilter
+ 2] = (uint8_t)(NumToSkip
>> 16);
721 // Any remaining unresolved fixups bubble up to the parent fixup scope.
722 assert(TableInfo
.FixupStack
.size() > 1 && "fixup stack underflow!");
723 FixupScopeList::iterator Source
= TableInfo
.FixupStack
.end() - 1;
724 FixupScopeList::iterator Dest
= Source
- 1;
725 llvm::append_range(*Dest
, *Source
);
726 TableInfo
.FixupStack
.pop_back();
728 // If there is no fallthrough, then the final filter should get fixed
729 // up according to the enclosing scope rather than the current position.
731 TableInfo
.FixupStack
.back().push_back(PrevFilter
);
734 // Returns the number of fanout produced by the filter. More fanout implies
735 // the filter distinguishes more categories of instructions.
736 unsigned Filter::usefulness() const {
737 if (!VariableInstructions
.empty())
738 return FilteredInstructions
.size();
740 return FilteredInstructions
.size() + 1;
743 //////////////////////////////////
745 // Filterchooser Implementation //
747 //////////////////////////////////
749 // Emit the decoder state machine table.
750 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream
&OS
,
752 unsigned Indentation
,
754 StringRef Namespace
) const {
755 OS
.indent(Indentation
) << "static const uint8_t DecoderTable" << Namespace
756 << BitWidth
<< "[] = {\n";
760 // FIXME: We may be able to use the NumToSkip values to recover
761 // appropriate indentation levels.
762 DecoderTable::const_iterator I
= Table
.begin();
763 DecoderTable::const_iterator E
= Table
.end();
765 assert (I
< E
&& "incomplete decode table entry!");
767 uint64_t Pos
= I
- Table
.begin();
768 OS
<< "/* " << Pos
<< " */";
773 PrintFatalError("invalid decode table opcode");
774 case MCD::OPC_ExtractField
: {
776 unsigned Start
= *I
++;
778 OS
.indent(Indentation
) << "MCD::OPC_ExtractField, " << Start
<< ", "
779 << Len
<< ", // Inst{";
781 OS
<< (Start
+ Len
- 1) << "-";
782 OS
<< Start
<< "} ...\n";
785 case MCD::OPC_FilterValue
: {
787 OS
.indent(Indentation
) << "MCD::OPC_FilterValue, ";
788 // The filter value is ULEB128 encoded.
790 OS
<< (unsigned)*I
++ << ", ";
791 OS
<< (unsigned)*I
++ << ", ";
793 // 24-bit numtoskip value.
795 uint32_t NumToSkip
= Byte
;
796 OS
<< (unsigned)Byte
<< ", ";
798 OS
<< (unsigned)Byte
<< ", ";
799 NumToSkip
|= Byte
<< 8;
801 OS
<< utostr(Byte
) << ", ";
802 NumToSkip
|= Byte
<< 16;
803 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
806 case MCD::OPC_CheckField
: {
808 unsigned Start
= *I
++;
810 OS
.indent(Indentation
) << "MCD::OPC_CheckField, " << Start
<< ", "
811 << Len
<< ", ";// << Val << ", " << NumToSkip << ",\n";
812 // ULEB128 encoded field value.
813 for (; *I
>= 128; ++I
)
814 OS
<< (unsigned)*I
<< ", ";
815 OS
<< (unsigned)*I
++ << ", ";
816 // 24-bit numtoskip value.
818 uint32_t NumToSkip
= Byte
;
819 OS
<< (unsigned)Byte
<< ", ";
821 OS
<< (unsigned)Byte
<< ", ";
822 NumToSkip
|= Byte
<< 8;
824 OS
<< utostr(Byte
) << ", ";
825 NumToSkip
|= Byte
<< 16;
826 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
829 case MCD::OPC_CheckPredicate
: {
831 OS
.indent(Indentation
) << "MCD::OPC_CheckPredicate, ";
832 for (; *I
>= 128; ++I
)
833 OS
<< (unsigned)*I
<< ", ";
834 OS
<< (unsigned)*I
++ << ", ";
836 // 24-bit numtoskip value.
838 uint32_t NumToSkip
= Byte
;
839 OS
<< (unsigned)Byte
<< ", ";
841 OS
<< (unsigned)Byte
<< ", ";
842 NumToSkip
|= Byte
<< 8;
844 OS
<< utostr(Byte
) << ", ";
845 NumToSkip
|= Byte
<< 16;
846 OS
<< "// Skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
849 case MCD::OPC_Decode
:
850 case MCD::OPC_TryDecode
: {
851 bool IsTry
= *I
== MCD::OPC_TryDecode
;
853 // Extract the ULEB128 encoded Opcode to a buffer.
854 uint8_t Buffer
[16], *p
= Buffer
;
855 while ((*p
++ = *I
++) >= 128)
856 assert((p
- Buffer
) <= (ptrdiff_t)sizeof(Buffer
)
857 && "ULEB128 value too large!");
858 // Decode the Opcode value.
859 unsigned Opc
= decodeULEB128(Buffer
);
860 OS
.indent(Indentation
) << "MCD::OPC_" << (IsTry
? "Try" : "")
862 for (p
= Buffer
; *p
>= 128; ++p
)
863 OS
<< (unsigned)*p
<< ", ";
864 OS
<< (unsigned)*p
<< ", ";
867 for (; *I
>= 128; ++I
)
868 OS
<< (unsigned)*I
<< ", ";
869 OS
<< (unsigned)*I
++ << ", ";
872 OS
<< "// Opcode: " << NumberedEncodings
[Opc
] << "\n";
876 // Fallthrough for OPC_TryDecode.
878 // 24-bit numtoskip value.
880 uint32_t NumToSkip
= Byte
;
881 OS
<< (unsigned)Byte
<< ", ";
883 OS
<< (unsigned)Byte
<< ", ";
884 NumToSkip
|= Byte
<< 8;
886 OS
<< utostr(Byte
) << ", ";
887 NumToSkip
|= Byte
<< 16;
889 OS
<< "// Opcode: " << NumberedEncodings
[Opc
]
890 << ", skip to: " << ((I
- Table
.begin()) + NumToSkip
) << "\n";
893 case MCD::OPC_SoftFail
: {
895 OS
.indent(Indentation
) << "MCD::OPC_SoftFail";
900 OS
<< ", " << (unsigned)*I
;
901 Value
+= (*I
& 0x7f) << Shift
;
903 } while (*I
++ >= 128);
913 OS
<< ", " << (unsigned)*I
;
914 Value
+= (*I
& 0x7f) << Shift
;
916 } while (*I
++ >= 128);
925 case MCD::OPC_Fail
: {
927 OS
.indent(Indentation
) << "MCD::OPC_Fail,\n";
932 OS
.indent(Indentation
) << "0\n";
936 OS
.indent(Indentation
) << "};\n\n";
939 void FixedLenDecoderEmitter::
940 emitPredicateFunction(formatted_raw_ostream
&OS
, PredicateSet
&Predicates
,
941 unsigned Indentation
) const {
942 // The predicate function is just a big switch statement based on the
943 // input predicate index.
944 OS
.indent(Indentation
) << "static bool checkDecoderPredicate(unsigned Idx, "
945 << "const FeatureBitset &Bits) {\n";
947 if (!Predicates
.empty()) {
948 OS
.indent(Indentation
) << "switch (Idx) {\n";
949 OS
.indent(Indentation
) << "default: llvm_unreachable(\"Invalid index!\");\n";
951 for (const auto &Predicate
: Predicates
) {
952 OS
.indent(Indentation
) << "case " << Index
++ << ":\n";
953 OS
.indent(Indentation
+2) << "return (" << Predicate
<< ");\n";
955 OS
.indent(Indentation
) << "}\n";
957 // No case statement to emit
958 OS
.indent(Indentation
) << "llvm_unreachable(\"Invalid index!\");\n";
961 OS
.indent(Indentation
) << "}\n\n";
964 void FixedLenDecoderEmitter::
965 emitDecoderFunction(formatted_raw_ostream
&OS
, DecoderSet
&Decoders
,
966 unsigned Indentation
) const {
967 // The decoder function is just a big switch statement based on the
968 // input decoder index.
969 OS
.indent(Indentation
) << "template <typename InsnType>\n";
970 OS
.indent(Indentation
) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
971 << " unsigned Idx, InsnType insn, MCInst &MI,\n";
972 OS
.indent(Indentation
) << " uint64_t "
973 << "Address, const void *Decoder, bool &DecodeComplete) {\n";
975 OS
.indent(Indentation
) << "DecodeComplete = true;\n";
976 // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits
977 // It would be better for emitBinaryParser to use a 64-bit tmp whenever
978 // possible but fall back to an InsnType-sized tmp for truly large fields.
979 OS
.indent(Indentation
) << "using TmpType = "
980 "std::conditional_t<std::is_integral<InsnType>::"
981 "value, InsnType, uint64_t>;\n";
982 OS
.indent(Indentation
) << "TmpType tmp;\n";
983 OS
.indent(Indentation
) << "switch (Idx) {\n";
984 OS
.indent(Indentation
) << "default: llvm_unreachable(\"Invalid index!\");\n";
986 for (const auto &Decoder
: Decoders
) {
987 OS
.indent(Indentation
) << "case " << Index
++ << ":\n";
989 OS
.indent(Indentation
+2) << "return S;\n";
991 OS
.indent(Indentation
) << "}\n";
993 OS
.indent(Indentation
) << "}\n\n";
996 // Populates the field of the insn given the start position and the number of
997 // consecutive bits to scan for.
999 // Returns false if and on the first uninitialized bit value encountered.
1000 // Returns true, otherwise.
1001 bool FilterChooser::fieldFromInsn(uint64_t &Field
, insn_t
&Insn
,
1002 unsigned StartBit
, unsigned NumBits
) const {
1005 for (unsigned i
= 0; i
< NumBits
; ++i
) {
1006 if (Insn
[StartBit
+ i
] == BIT_UNSET
)
1009 if (Insn
[StartBit
+ i
] == BIT_TRUE
)
1010 Field
= Field
| (1ULL << i
);
1016 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
1017 /// filter array as a series of chars.
1018 void FilterChooser::dumpFilterArray(raw_ostream
&o
,
1019 const std::vector
<bit_value_t
> &filter
) const {
1020 for (unsigned bitIndex
= BitWidth
; bitIndex
> 0; bitIndex
--) {
1021 switch (filter
[bitIndex
- 1]) {
1022 case BIT_UNFILTERED
:
1038 /// dumpStack - dumpStack traverses the filter chooser chain and calls
1039 /// dumpFilterArray on each filter chooser up to the top level one.
1040 void FilterChooser::dumpStack(raw_ostream
&o
, const char *prefix
) const {
1041 const FilterChooser
*current
= this;
1045 dumpFilterArray(o
, current
->FilterBitValues
);
1047 current
= current
->Parent
;
1051 // Calculates the island(s) needed to decode the instruction.
1052 // This returns a list of undecoded bits of an instructions, for example,
1053 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1054 // decoded bits in order to verify that the instruction matches the Opcode.
1055 unsigned FilterChooser::getIslands(std::vector
<unsigned> &StartBits
,
1056 std::vector
<unsigned> &EndBits
,
1057 std::vector
<uint64_t> &FieldVals
,
1058 const insn_t
&Insn
) const {
1059 unsigned Num
, BitNo
;
1062 uint64_t FieldVal
= 0;
1065 // 1: Water (the bit value does not affect decoding)
1066 // 2: Island (well-known bit value needed for decoding)
1069 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
1070 int64_t Val
= Value(Insn
[i
]);
1071 bool Filtered
= PositionFiltered(i
);
1073 default: llvm_unreachable("Unreachable code!");
1076 if (Filtered
|| Val
== -1)
1077 State
= 1; // Still in Water
1079 State
= 2; // Into the Island
1081 StartBits
.push_back(i
);
1086 if (Filtered
|| Val
== -1) {
1087 State
= 1; // Into the Water
1088 EndBits
.push_back(i
- 1);
1089 FieldVals
.push_back(FieldVal
);
1092 State
= 2; // Still in Island
1094 FieldVal
= FieldVal
| Val
<< BitNo
;
1099 // If we are still in Island after the loop, do some housekeeping.
1101 EndBits
.push_back(BitWidth
- 1);
1102 FieldVals
.push_back(FieldVal
);
1106 assert(StartBits
.size() == Num
&& EndBits
.size() == Num
&&
1107 FieldVals
.size() == Num
);
1111 void FilterChooser::emitBinaryParser(raw_ostream
&o
, unsigned &Indentation
,
1112 const OperandInfo
&OpInfo
,
1113 bool &OpHasCompleteDecoder
) const {
1114 const std::string
&Decoder
= OpInfo
.Decoder
;
1116 bool UseInsertBits
= OpInfo
.numFields() != 1 || OpInfo
.InitValue
!= 0;
1118 if (UseInsertBits
) {
1119 o
.indent(Indentation
) << "tmp = 0x";
1120 o
.write_hex(OpInfo
.InitValue
);
1124 for (const EncodingField
&EF
: OpInfo
) {
1125 o
.indent(Indentation
);
1127 o
<< "insertBits(tmp, ";
1130 o
<< "fieldFromInstruction(insn, " << EF
.Base
<< ", " << EF
.Width
<< ')';
1132 o
<< ", " << EF
.Offset
<< ", " << EF
.Width
<< ')';
1133 else if (EF
.Offset
!= 0)
1134 o
<< " << " << EF
.Offset
;
1138 if (Decoder
!= "") {
1139 OpHasCompleteDecoder
= OpInfo
.HasCompleteDecoder
;
1140 o
.indent(Indentation
) << Emitter
->GuardPrefix
<< Decoder
1141 << "(MI, tmp, Address, Decoder)"
1142 << Emitter
->GuardPostfix
1143 << " { " << (OpHasCompleteDecoder
? "" : "DecodeComplete = false; ")
1144 << "return MCDisassembler::Fail; }\n";
1146 OpHasCompleteDecoder
= true;
1147 o
.indent(Indentation
) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1151 void FilterChooser::emitDecoder(raw_ostream
&OS
, unsigned Indentation
,
1152 unsigned Opc
, bool &HasCompleteDecoder
) const {
1153 HasCompleteDecoder
= true;
1155 for (const auto &Op
: Operands
.find(Opc
)->second
) {
1156 // If a custom instruction decoder was specified, use that.
1157 if (Op
.numFields() == 0 && !Op
.Decoder
.empty()) {
1158 HasCompleteDecoder
= Op
.HasCompleteDecoder
;
1159 OS
.indent(Indentation
) << Emitter
->GuardPrefix
<< Op
.Decoder
1160 << "(MI, insn, Address, Decoder)"
1161 << Emitter
->GuardPostfix
1162 << " { " << (HasCompleteDecoder
? "" : "DecodeComplete = false; ")
1163 << "return MCDisassembler::Fail; }\n";
1167 bool OpHasCompleteDecoder
;
1168 emitBinaryParser(OS
, Indentation
, Op
, OpHasCompleteDecoder
);
1169 if (!OpHasCompleteDecoder
)
1170 HasCompleteDecoder
= false;
1174 unsigned FilterChooser::getDecoderIndex(DecoderSet
&Decoders
,
1176 bool &HasCompleteDecoder
) const {
1177 // Build up the predicate string.
1178 SmallString
<256> Decoder
;
1179 // FIXME: emitDecoder() function can take a buffer directly rather than
1181 raw_svector_ostream
S(Decoder
);
1183 emitDecoder(S
, I
, Opc
, HasCompleteDecoder
);
1185 // Using the full decoder string as the key value here is a bit
1186 // heavyweight, but is effective. If the string comparisons become a
1187 // performance concern, we can implement a mangling of the predicate
1188 // data easily enough with a map back to the actual string. That's
1189 // overkill for now, though.
1191 // Make sure the predicate is in the table.
1192 Decoders
.insert(CachedHashString(Decoder
));
1193 // Now figure out the index for when we write out the table.
1194 DecoderSet::const_iterator P
= find(Decoders
, Decoder
.str());
1195 return (unsigned)(P
- Decoders
.begin());
1198 bool FilterChooser::emitPredicateMatch(raw_ostream
&o
, unsigned &Indentation
,
1199 unsigned Opc
) const {
1200 ListInit
*Predicates
=
1201 AllInstructions
[Opc
].EncodingDef
->getValueAsListInit("Predicates");
1202 bool IsFirstEmission
= true;
1203 for (unsigned i
= 0; i
< Predicates
->size(); ++i
) {
1204 Record
*Pred
= Predicates
->getElementAsRecord(i
);
1205 if (!Pred
->getValue("AssemblerMatcherPredicate"))
1208 if (!isa
<DagInit
>(Pred
->getValue("AssemblerCondDag")->getValue()))
1211 const DagInit
*D
= Pred
->getValueAsDag("AssemblerCondDag");
1212 std::string CombineType
= D
->getOperator()->getAsString();
1213 if (CombineType
!= "any_of" && CombineType
!= "all_of")
1214 PrintFatalError(Pred
->getLoc(), "Invalid AssemblerCondDag!");
1215 if (D
->getNumArgs() == 0)
1216 PrintFatalError(Pred
->getLoc(), "Invalid AssemblerCondDag!");
1217 bool IsOr
= CombineType
== "any_of";
1219 if (!IsFirstEmission
)
1225 ListSeparator
LS(IsOr
? " || " : " && ");
1226 for (auto *Arg
: D
->getArgs()) {
1228 if (auto *NotArg
= dyn_cast
<DagInit
>(Arg
)) {
1229 if (NotArg
->getOperator()->getAsString() != "not" ||
1230 NotArg
->getNumArgs() != 1)
1231 PrintFatalError(Pred
->getLoc(), "Invalid AssemblerCondDag!");
1232 Arg
= NotArg
->getArg(0);
1235 if (!isa
<DefInit
>(Arg
) ||
1236 !cast
<DefInit
>(Arg
)->getDef()->isSubClassOf("SubtargetFeature"))
1237 PrintFatalError(Pred
->getLoc(), "Invalid AssemblerCondDag!");
1238 o
<< "Bits[" << Emitter
->PredicateNamespace
<< "::" << Arg
->getAsString()
1245 IsFirstEmission
= false;
1247 return !Predicates
->empty();
1250 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc
) const {
1251 ListInit
*Predicates
=
1252 AllInstructions
[Opc
].EncodingDef
->getValueAsListInit("Predicates");
1253 for (unsigned i
= 0; i
< Predicates
->size(); ++i
) {
1254 Record
*Pred
= Predicates
->getElementAsRecord(i
);
1255 if (!Pred
->getValue("AssemblerMatcherPredicate"))
1258 if (isa
<DagInit
>(Pred
->getValue("AssemblerCondDag")->getValue()))
1264 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo
&TableInfo
,
1265 StringRef Predicate
) const {
1266 // Using the full predicate string as the key value here is a bit
1267 // heavyweight, but is effective. If the string comparisons become a
1268 // performance concern, we can implement a mangling of the predicate
1269 // data easily enough with a map back to the actual string. That's
1270 // overkill for now, though.
1272 // Make sure the predicate is in the table.
1273 TableInfo
.Predicates
.insert(CachedHashString(Predicate
));
1274 // Now figure out the index for when we write out the table.
1275 PredicateSet::const_iterator P
= find(TableInfo
.Predicates
, Predicate
);
1276 return (unsigned)(P
- TableInfo
.Predicates
.begin());
1279 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo
&TableInfo
,
1280 unsigned Opc
) const {
1281 if (!doesOpcodeNeedPredicate(Opc
))
1284 // Build up the predicate string.
1285 SmallString
<256> Predicate
;
1286 // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1288 raw_svector_ostream
PS(Predicate
);
1290 emitPredicateMatch(PS
, I
, Opc
);
1292 // Figure out the index into the predicate table for the predicate just
1294 unsigned PIdx
= getPredicateIndex(TableInfo
, PS
.str());
1295 SmallString
<16> PBytes
;
1296 raw_svector_ostream
S(PBytes
);
1297 encodeULEB128(PIdx
, S
);
1299 TableInfo
.Table
.push_back(MCD::OPC_CheckPredicate
);
1301 for (unsigned i
= 0, e
= PBytes
.size(); i
!= e
; ++i
)
1302 TableInfo
.Table
.push_back(PBytes
[i
]);
1303 // Push location for NumToSkip backpatching.
1304 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1305 TableInfo
.Table
.push_back(0);
1306 TableInfo
.Table
.push_back(0);
1307 TableInfo
.Table
.push_back(0);
1310 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo
&TableInfo
,
1311 unsigned Opc
) const {
1313 AllInstructions
[Opc
].EncodingDef
->getValueAsBitsInit("SoftFail");
1314 if (!SFBits
) return;
1315 BitsInit
*InstBits
=
1316 AllInstructions
[Opc
].EncodingDef
->getValueAsBitsInit("Inst");
1318 APInt
PositiveMask(BitWidth
, 0ULL);
1319 APInt
NegativeMask(BitWidth
, 0ULL);
1320 for (unsigned i
= 0; i
< BitWidth
; ++i
) {
1321 bit_value_t B
= bitFromBits(*SFBits
, i
);
1322 bit_value_t IB
= bitFromBits(*InstBits
, i
);
1324 if (B
!= BIT_TRUE
) continue;
1328 // The bit is meant to be false, so emit a check to see if it is true.
1329 PositiveMask
.setBit(i
);
1332 // The bit is meant to be true, so emit a check to see if it is false.
1333 NegativeMask
.setBit(i
);
1336 // The bit is not set; this must be an error!
1337 errs() << "SoftFail Conflict: bit SoftFail{" << i
<< "} in "
1338 << AllInstructions
[Opc
] << " is set but Inst{" << i
1340 << " - You can only mark a bit as SoftFail if it is fully defined"
1341 << " (1/0 - not '?') in Inst\n";
1346 bool NeedPositiveMask
= PositiveMask
.getBoolValue();
1347 bool NeedNegativeMask
= NegativeMask
.getBoolValue();
1349 if (!NeedPositiveMask
&& !NeedNegativeMask
)
1352 TableInfo
.Table
.push_back(MCD::OPC_SoftFail
);
1354 SmallString
<16> MaskBytes
;
1355 raw_svector_ostream
S(MaskBytes
);
1356 if (NeedPositiveMask
) {
1357 encodeULEB128(PositiveMask
.getZExtValue(), S
);
1358 for (unsigned i
= 0, e
= MaskBytes
.size(); i
!= e
; ++i
)
1359 TableInfo
.Table
.push_back(MaskBytes
[i
]);
1361 TableInfo
.Table
.push_back(0);
1362 if (NeedNegativeMask
) {
1364 encodeULEB128(NegativeMask
.getZExtValue(), S
);
1365 for (unsigned i
= 0, e
= MaskBytes
.size(); i
!= e
; ++i
)
1366 TableInfo
.Table
.push_back(MaskBytes
[i
]);
1368 TableInfo
.Table
.push_back(0);
1371 // Emits table entries to decode the singleton.
1372 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
1373 EncodingIDAndOpcode Opc
) const {
1374 std::vector
<unsigned> StartBits
;
1375 std::vector
<unsigned> EndBits
;
1376 std::vector
<uint64_t> FieldVals
;
1378 insnWithID(Insn
, Opc
.EncodingID
);
1380 // Look for islands of undecoded bits of the singleton.
1381 getIslands(StartBits
, EndBits
, FieldVals
, Insn
);
1383 unsigned Size
= StartBits
.size();
1385 // Emit the predicate table entry if one is needed.
1386 emitPredicateTableEntry(TableInfo
, Opc
.EncodingID
);
1388 // Check any additional encoding fields needed.
1389 for (unsigned I
= Size
; I
!= 0; --I
) {
1390 unsigned NumBits
= EndBits
[I
-1] - StartBits
[I
-1] + 1;
1391 TableInfo
.Table
.push_back(MCD::OPC_CheckField
);
1392 TableInfo
.Table
.push_back(StartBits
[I
-1]);
1393 TableInfo
.Table
.push_back(NumBits
);
1394 uint8_t Buffer
[16], *p
;
1395 encodeULEB128(FieldVals
[I
-1], Buffer
);
1396 for (p
= Buffer
; *p
>= 128 ; ++p
)
1397 TableInfo
.Table
.push_back(*p
);
1398 TableInfo
.Table
.push_back(*p
);
1399 // Push location for NumToSkip backpatching.
1400 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1401 // The fixup is always 24-bits, so go ahead and allocate the space
1402 // in the table so all our relative position calculations work OK even
1403 // before we fully resolve the real value here.
1404 TableInfo
.Table
.push_back(0);
1405 TableInfo
.Table
.push_back(0);
1406 TableInfo
.Table
.push_back(0);
1409 // Check for soft failure of the match.
1410 emitSoftFailTableEntry(TableInfo
, Opc
.EncodingID
);
1412 bool HasCompleteDecoder
;
1414 getDecoderIndex(TableInfo
.Decoders
, Opc
.EncodingID
, HasCompleteDecoder
);
1416 // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1417 // whether the instruction decoder is complete or not. If it is complete
1418 // then it handles all possible values of remaining variable/unfiltered bits
1419 // and for any value can determine if the bitpattern is a valid instruction
1420 // or not. This means OPC_Decode will be the final step in the decoding
1421 // process. If it is not complete, then the Fail return code from the
1422 // decoder method indicates that additional processing should be done to see
1423 // if there is any other instruction that also matches the bitpattern and
1425 TableInfo
.Table
.push_back(HasCompleteDecoder
? MCD::OPC_Decode
:
1426 MCD::OPC_TryDecode
);
1427 NumEncodingsSupported
++;
1428 uint8_t Buffer
[16], *p
;
1429 encodeULEB128(Opc
.Opcode
, Buffer
);
1430 for (p
= Buffer
; *p
>= 128 ; ++p
)
1431 TableInfo
.Table
.push_back(*p
);
1432 TableInfo
.Table
.push_back(*p
);
1434 SmallString
<16> Bytes
;
1435 raw_svector_ostream
S(Bytes
);
1436 encodeULEB128(DIdx
, S
);
1439 for (unsigned i
= 0, e
= Bytes
.size(); i
!= e
; ++i
)
1440 TableInfo
.Table
.push_back(Bytes
[i
]);
1442 if (!HasCompleteDecoder
) {
1443 // Push location for NumToSkip backpatching.
1444 TableInfo
.FixupStack
.back().push_back(TableInfo
.Table
.size());
1445 // Allocate the space for the fixup.
1446 TableInfo
.Table
.push_back(0);
1447 TableInfo
.Table
.push_back(0);
1448 TableInfo
.Table
.push_back(0);
1452 // Emits table entries to decode the singleton, and then to decode the rest.
1453 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo
&TableInfo
,
1454 const Filter
&Best
) const {
1455 EncodingIDAndOpcode Opc
= Best
.getSingletonOpc();
1457 // complex singletons need predicate checks from the first singleton
1458 // to refer forward to the variable filterchooser that follows.
1459 TableInfo
.FixupStack
.emplace_back();
1461 emitSingletonTableEntry(TableInfo
, Opc
);
1463 resolveTableFixups(TableInfo
.Table
, TableInfo
.FixupStack
.back(),
1464 TableInfo
.Table
.size());
1465 TableInfo
.FixupStack
.pop_back();
1467 Best
.getVariableFC().emitTableEntries(TableInfo
);
1470 // Assign a single filter and run with it. Top level API client can initialize
1471 // with a single filter to start the filtering process.
1472 void FilterChooser::runSingleFilter(unsigned startBit
, unsigned numBit
,
1475 Filters
.emplace_back(*this, startBit
, numBit
, true);
1476 BestIndex
= 0; // Sole Filter instance to choose from.
1477 bestFilter().recurse();
1480 // reportRegion is a helper function for filterProcessor to mark a region as
1481 // eligible for use as a filter region.
1482 void FilterChooser::reportRegion(bitAttr_t RA
, unsigned StartBit
,
1483 unsigned BitIndex
, bool AllowMixed
) {
1484 if (RA
== ATTR_MIXED
&& AllowMixed
)
1485 Filters
.emplace_back(*this, StartBit
, BitIndex
- StartBit
, true);
1486 else if (RA
== ATTR_ALL_SET
&& !AllowMixed
)
1487 Filters
.emplace_back(*this, StartBit
, BitIndex
- StartBit
, false);
1490 // FilterProcessor scans the well-known encoding bits of the instructions and
1491 // builds up a list of candidate filters. It chooses the best filter and
1492 // recursively descends down the decoding tree.
1493 bool FilterChooser::filterProcessor(bool AllowMixed
, bool Greedy
) {
1496 unsigned numInstructions
= Opcodes
.size();
1498 assert(numInstructions
&& "Filter created with no instructions");
1500 // No further filtering is necessary.
1501 if (numInstructions
== 1)
1504 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1505 // instructions is 3.
1506 if (AllowMixed
&& !Greedy
) {
1507 assert(numInstructions
== 3);
1509 for (auto Opcode
: Opcodes
) {
1510 std::vector
<unsigned> StartBits
;
1511 std::vector
<unsigned> EndBits
;
1512 std::vector
<uint64_t> FieldVals
;
1515 insnWithID(Insn
, Opcode
.EncodingID
);
1517 // Look for islands of undecoded bits of any instruction.
1518 if (getIslands(StartBits
, EndBits
, FieldVals
, Insn
) > 0) {
1519 // Found an instruction with island(s). Now just assign a filter.
1520 runSingleFilter(StartBits
[0], EndBits
[0] - StartBits
[0] + 1, true);
1528 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1529 // The automaton consumes the corresponding bit from each
1532 // Input symbols: 0, 1, and _ (unset).
1533 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1534 // Initial state: NONE.
1536 // (NONE) ------- [01] -> (ALL_SET)
1537 // (NONE) ------- _ ----> (ALL_UNSET)
1538 // (ALL_SET) ---- [01] -> (ALL_SET)
1539 // (ALL_SET) ---- _ ----> (MIXED)
1540 // (ALL_UNSET) -- [01] -> (MIXED)
1541 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1542 // (MIXED) ------ . ----> (MIXED)
1543 // (FILTERED)---- . ----> (FILTERED)
1545 std::vector
<bitAttr_t
> bitAttrs
;
1547 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1548 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1549 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
)
1550 if (FilterBitValues
[BitIndex
] == BIT_TRUE
||
1551 FilterBitValues
[BitIndex
] == BIT_FALSE
)
1552 bitAttrs
.push_back(ATTR_FILTERED
);
1554 bitAttrs
.push_back(ATTR_NONE
);
1556 for (unsigned InsnIndex
= 0; InsnIndex
< numInstructions
; ++InsnIndex
) {
1559 insnWithID(insn
, Opcodes
[InsnIndex
].EncodingID
);
1561 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
) {
1562 switch (bitAttrs
[BitIndex
]) {
1564 if (insn
[BitIndex
] == BIT_UNSET
)
1565 bitAttrs
[BitIndex
] = ATTR_ALL_UNSET
;
1567 bitAttrs
[BitIndex
] = ATTR_ALL_SET
;
1570 if (insn
[BitIndex
] == BIT_UNSET
)
1571 bitAttrs
[BitIndex
] = ATTR_MIXED
;
1573 case ATTR_ALL_UNSET
:
1574 if (insn
[BitIndex
] != BIT_UNSET
)
1575 bitAttrs
[BitIndex
] = ATTR_MIXED
;
1584 // The regionAttr automaton consumes the bitAttrs automatons' state,
1585 // lowest-to-highest.
1587 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1588 // States: NONE, ALL_SET, MIXED
1589 // Initial state: NONE
1591 // (NONE) ----- F --> (NONE)
1592 // (NONE) ----- S --> (ALL_SET) ; and set region start
1593 // (NONE) ----- U --> (NONE)
1594 // (NONE) ----- M --> (MIXED) ; and set region start
1595 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1596 // (ALL_SET) -- S --> (ALL_SET)
1597 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1598 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1599 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1600 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1601 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1602 // (MIXED) ---- M --> (MIXED)
1604 bitAttr_t RA
= ATTR_NONE
;
1605 unsigned StartBit
= 0;
1607 for (BitIndex
= 0; BitIndex
< BitWidth
; ++BitIndex
) {
1608 bitAttr_t bitAttr
= bitAttrs
[BitIndex
];
1610 assert(bitAttr
!= ATTR_NONE
&& "Bit without attributes");
1618 StartBit
= BitIndex
;
1621 case ATTR_ALL_UNSET
:
1624 StartBit
= BitIndex
;
1628 llvm_unreachable("Unexpected bitAttr!");
1634 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1639 case ATTR_ALL_UNSET
:
1640 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1644 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1645 StartBit
= BitIndex
;
1649 llvm_unreachable("Unexpected bitAttr!");
1655 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1656 StartBit
= BitIndex
;
1660 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1661 StartBit
= BitIndex
;
1664 case ATTR_ALL_UNSET
:
1665 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1671 llvm_unreachable("Unexpected bitAttr!");
1674 case ATTR_ALL_UNSET
:
1675 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1677 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1681 // At the end, if we're still in ALL_SET or MIXED states, report a region
1688 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1690 case ATTR_ALL_UNSET
:
1693 reportRegion(RA
, StartBit
, BitIndex
, AllowMixed
);
1697 // We have finished with the filter processings. Now it's time to choose
1698 // the best performing filter.
1700 bool AllUseless
= true;
1701 unsigned BestScore
= 0;
1703 for (unsigned i
= 0, e
= Filters
.size(); i
!= e
; ++i
) {
1704 unsigned Usefulness
= Filters
[i
].usefulness();
1709 if (Usefulness
> BestScore
) {
1711 BestScore
= Usefulness
;
1716 bestFilter().recurse();
1719 } // end of FilterChooser::filterProcessor(bool)
1721 // Decides on the best configuration of filter(s) to use in order to decode
1722 // the instructions. A conflict of instructions may occur, in which case we
1723 // dump the conflict set to the standard error.
1724 void FilterChooser::doFilter() {
1725 unsigned Num
= Opcodes
.size();
1726 assert(Num
&& "FilterChooser created with no instructions");
1728 // Try regions of consecutive known bit values first.
1729 if (filterProcessor(false))
1732 // Then regions of mixed bits (both known and unitialized bit values allowed).
1733 if (filterProcessor(true))
1736 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1737 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1738 // well-known encoding pattern. In such case, we backtrack and scan for the
1739 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1740 if (Num
== 3 && filterProcessor(true, false))
1743 // If we come to here, the instruction decoding has failed.
1744 // Set the BestIndex to -1 to indicate so.
1748 // emitTableEntries - Emit state machine entries to decode our share of
1750 void FilterChooser::emitTableEntries(DecoderTableInfo
&TableInfo
) const {
1751 if (Opcodes
.size() == 1) {
1752 // There is only one instruction in the set, which is great!
1753 // Call emitSingletonDecoder() to see whether there are any remaining
1755 emitSingletonTableEntry(TableInfo
, Opcodes
[0]);
1759 // Choose the best filter to do the decodings!
1760 if (BestIndex
!= -1) {
1761 const Filter
&Best
= Filters
[BestIndex
];
1762 if (Best
.getNumFiltered() == 1)
1763 emitSingletonTableEntry(TableInfo
, Best
);
1765 Best
.emitTableEntry(TableInfo
);
1769 // We don't know how to decode these instructions! Dump the
1770 // conflict set and bail.
1772 // Print out useful conflict information for postmortem analysis.
1773 errs() << "Decoding Conflict:\n";
1775 dumpStack(errs(), "\t\t");
1777 for (auto Opcode
: Opcodes
) {
1779 emitNameWithID(errs(), Opcode
.EncodingID
);
1783 getBitsField(*AllInstructions
[Opcode
.EncodingID
].EncodingDef
, "Inst"));
1788 static std::string
findOperandDecoderMethod(TypedInit
*TI
) {
1789 std::string Decoder
;
1791 Record
*Record
= cast
<DefInit
>(TI
)->getDef();
1793 RecordVal
*DecoderString
= Record
->getValue("DecoderMethod");
1794 StringInit
*String
= DecoderString
?
1795 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1797 Decoder
= std::string(String
->getValue());
1798 if (!Decoder
.empty())
1802 if (Record
->isSubClassOf("RegisterOperand"))
1803 Record
= Record
->getValueAsDef("RegClass");
1805 if (Record
->isSubClassOf("RegisterClass")) {
1806 Decoder
= "Decode" + Record
->getName().str() + "RegisterClass";
1807 } else if (Record
->isSubClassOf("PointerLikeRegClass")) {
1808 Decoder
= "DecodePointerLikeRegClass" +
1809 utostr(Record
->getValueAsInt("RegClassKind"));
1816 populateInstruction(CodeGenTarget
&Target
, const Record
&EncodingDef
,
1817 const CodeGenInstruction
&CGI
, unsigned Opc
,
1818 std::map
<unsigned, std::vector
<OperandInfo
>> &Operands
) {
1819 const Record
&Def
= *CGI
.TheDef
;
1820 // If all the bit positions are not specified; do not decode this instruction.
1821 // We are bound to fail! For proper disassembly, the well-known encoding bits
1822 // of the instruction must be fully specified.
1824 BitsInit
&Bits
= getBitsField(EncodingDef
, "Inst");
1825 if (Bits
.allInComplete()) return false;
1827 std::vector
<OperandInfo
> InsnOperands
;
1829 // If the instruction has specified a custom decoding hook, use that instead
1830 // of trying to auto-generate the decoder.
1831 StringRef InstDecoder
= EncodingDef
.getValueAsString("DecoderMethod");
1832 if (InstDecoder
!= "") {
1833 bool HasCompleteInstDecoder
= EncodingDef
.getValueAsBit("hasCompleteDecoder");
1834 InsnOperands
.push_back(
1835 OperandInfo(std::string(InstDecoder
), HasCompleteInstDecoder
));
1836 Operands
[Opc
] = InsnOperands
;
1840 // Generate a description of the operand of the instruction that we know
1841 // how to decode automatically.
1842 // FIXME: We'll need to have a way to manually override this as needed.
1844 // Gather the outputs/inputs of the instruction, so we can find their
1845 // positions in the encoding. This assumes for now that they appear in the
1846 // MCInst in the order that they're listed.
1847 std::vector
<std::pair
<Init
*, StringRef
>> InOutOperands
;
1848 DagInit
*Out
= Def
.getValueAsDag("OutOperandList");
1849 DagInit
*In
= Def
.getValueAsDag("InOperandList");
1850 for (unsigned i
= 0; i
< Out
->getNumArgs(); ++i
)
1851 InOutOperands
.push_back(std::make_pair(Out
->getArg(i
),
1852 Out
->getArgNameStr(i
)));
1853 for (unsigned i
= 0; i
< In
->getNumArgs(); ++i
)
1854 InOutOperands
.push_back(std::make_pair(In
->getArg(i
),
1855 In
->getArgNameStr(i
)));
1857 // Search for tied operands, so that we can correctly instantiate
1858 // operands that are not explicitly represented in the encoding.
1859 std::map
<std::string
, std::string
> TiedNames
;
1860 for (unsigned i
= 0; i
< CGI
.Operands
.size(); ++i
) {
1861 int tiedTo
= CGI
.Operands
[i
].getTiedRegister();
1863 std::pair
<unsigned, unsigned> SO
=
1864 CGI
.Operands
.getSubOperandNumber(tiedTo
);
1865 TiedNames
[std::string(InOutOperands
[i
].second
)] =
1866 std::string(InOutOperands
[SO
.first
].second
);
1867 TiedNames
[std::string(InOutOperands
[SO
.first
].second
)] =
1868 std::string(InOutOperands
[i
].second
);
1872 std::map
<std::string
, std::vector
<OperandInfo
>> NumberedInsnOperands
;
1873 std::set
<std::string
> NumberedInsnOperandsNoTie
;
1874 if (Target
.getInstructionSet()->
1875 getValueAsBit("decodePositionallyEncodedOperands")) {
1876 const std::vector
<RecordVal
> &Vals
= Def
.getValues();
1877 unsigned NumberedOp
= 0;
1879 std::set
<unsigned> NamedOpIndices
;
1880 if (Target
.getInstructionSet()->
1881 getValueAsBit("noNamedPositionallyEncodedOperands"))
1882 // Collect the set of operand indices that might correspond to named
1883 // operand, and skip these when assigning operands based on position.
1884 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
1886 if (!CGI
.Operands
.hasOperandNamed(Vals
[i
].getName(), OpIdx
))
1889 NamedOpIndices
.insert(OpIdx
);
1892 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
1893 // Ignore fixed fields in the record, we're looking for values like:
1894 // bits<5> RST = { ?, ?, ?, ?, ? };
1895 if (Vals
[i
].isNonconcreteOK() || Vals
[i
].getValue()->isComplete())
1898 // Determine if Vals[i] actually contributes to the Inst encoding.
1900 for (; bi
< Bits
.getNumBits(); ++bi
) {
1901 VarInit
*Var
= nullptr;
1902 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
1904 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
1906 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
1908 if (Var
&& Var
->getName() == Vals
[i
].getName())
1912 if (bi
== Bits
.getNumBits())
1915 // Skip variables that correspond to explicitly-named operands.
1917 if (CGI
.Operands
.hasOperandNamed(Vals
[i
].getName(), OpIdx
))
1920 // Get the bit range for this operand:
1921 unsigned bitStart
= bi
++, bitWidth
= 1;
1922 for (; bi
< Bits
.getNumBits(); ++bi
) {
1923 VarInit
*Var
= nullptr;
1924 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
1926 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
1928 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
1933 if (Var
->getName() != Vals
[i
].getName())
1939 unsigned NumberOps
= CGI
.Operands
.size();
1940 while (NumberedOp
< NumberOps
&&
1941 (CGI
.Operands
.isFlatOperandNotEmitted(NumberedOp
) ||
1942 (!NamedOpIndices
.empty() && NamedOpIndices
.count(
1943 CGI
.Operands
.getSubOperandNumber(NumberedOp
).first
))))
1946 OpIdx
= NumberedOp
++;
1948 // OpIdx now holds the ordered operand number of Vals[i].
1949 std::pair
<unsigned, unsigned> SO
=
1950 CGI
.Operands
.getSubOperandNumber(OpIdx
);
1951 const std::string
&Name
= CGI
.Operands
[SO
.first
].Name
;
1953 LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def
.getName()
1954 << ": " << Name
<< "(" << SO
.first
<< ", " << SO
.second
1955 << ") => " << Vals
[i
].getName() << "\n");
1957 std::string Decoder
;
1958 Record
*TypeRecord
= CGI
.Operands
[SO
.first
].Rec
;
1960 RecordVal
*DecoderString
= TypeRecord
->getValue("DecoderMethod");
1961 StringInit
*String
= DecoderString
?
1962 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1963 if (String
&& String
->getValue() != "")
1964 Decoder
= std::string(String
->getValue());
1966 if (Decoder
== "" &&
1967 CGI
.Operands
[SO
.first
].MIOperandInfo
&&
1968 CGI
.Operands
[SO
.first
].MIOperandInfo
->getNumArgs()) {
1969 Init
*Arg
= CGI
.Operands
[SO
.first
].MIOperandInfo
->
1971 if (DefInit
*DI
= cast
<DefInit
>(Arg
))
1972 TypeRecord
= DI
->getDef();
1976 if (TypeRecord
->isSubClassOf("RegisterOperand"))
1977 TypeRecord
= TypeRecord
->getValueAsDef("RegClass");
1978 if (TypeRecord
->isSubClassOf("RegisterClass")) {
1979 Decoder
= "Decode" + TypeRecord
->getName().str() + "RegisterClass";
1981 } else if (TypeRecord
->isSubClassOf("PointerLikeRegClass")) {
1982 Decoder
= "DecodePointerLikeRegClass" +
1983 utostr(TypeRecord
->getValueAsInt("RegClassKind"));
1987 DecoderString
= TypeRecord
->getValue("DecoderMethod");
1988 String
= DecoderString
?
1989 dyn_cast
<StringInit
>(DecoderString
->getValue()) : nullptr;
1990 if (!isReg
&& String
&& String
->getValue() != "")
1991 Decoder
= std::string(String
->getValue());
1993 RecordVal
*HasCompleteDecoderVal
=
1994 TypeRecord
->getValue("hasCompleteDecoder");
1995 BitInit
*HasCompleteDecoderBit
= HasCompleteDecoderVal
?
1996 dyn_cast
<BitInit
>(HasCompleteDecoderVal
->getValue()) : nullptr;
1997 bool HasCompleteDecoder
= HasCompleteDecoderBit
?
1998 HasCompleteDecoderBit
->getValue() : true;
2000 OperandInfo
OpInfo(Decoder
, HasCompleteDecoder
);
2001 OpInfo
.addField(bitStart
, bitWidth
, 0);
2003 NumberedInsnOperands
[Name
].push_back(OpInfo
);
2005 // FIXME: For complex operands with custom decoders we can't handle tied
2006 // sub-operands automatically. Skip those here and assume that this is
2007 // fixed up elsewhere.
2008 if (CGI
.Operands
[SO
.first
].MIOperandInfo
&&
2009 CGI
.Operands
[SO
.first
].MIOperandInfo
->getNumArgs() > 1 &&
2010 String
&& String
->getValue() != "")
2011 NumberedInsnOperandsNoTie
.insert(Name
);
2015 // For each operand, see if we can figure out where it is encoded.
2016 for (const auto &Op
: InOutOperands
) {
2017 if (!NumberedInsnOperands
[std::string(Op
.second
)].empty()) {
2018 llvm::append_range(InsnOperands
,
2019 NumberedInsnOperands
[std::string(Op
.second
)]);
2022 if (!NumberedInsnOperands
[TiedNames
[std::string(Op
.second
)]].empty()) {
2023 if (!NumberedInsnOperandsNoTie
.count(TiedNames
[std::string(Op
.second
)])) {
2024 // Figure out to which (sub)operand we're tied.
2026 CGI
.Operands
.getOperandNamed(TiedNames
[std::string(Op
.second
)]);
2027 int tiedTo
= CGI
.Operands
[i
].getTiedRegister();
2029 i
= CGI
.Operands
.getOperandNamed(Op
.second
);
2030 tiedTo
= CGI
.Operands
[i
].getTiedRegister();
2034 std::pair
<unsigned, unsigned> SO
=
2035 CGI
.Operands
.getSubOperandNumber(tiedTo
);
2037 InsnOperands
.push_back(
2038 NumberedInsnOperands
[TiedNames
[std::string(Op
.second
)]]
2045 TypedInit
*TI
= cast
<TypedInit
>(Op
.first
);
2047 // At this point, we can locate the decoder field, but we need to know how
2048 // to interpret it. As a first step, require the target to provide
2049 // callbacks for decoding register classes.
2050 std::string Decoder
= findOperandDecoderMethod(TI
);
2051 Record
*TypeRecord
= cast
<DefInit
>(TI
)->getDef();
2053 RecordVal
*HasCompleteDecoderVal
=
2054 TypeRecord
->getValue("hasCompleteDecoder");
2055 BitInit
*HasCompleteDecoderBit
= HasCompleteDecoderVal
?
2056 dyn_cast
<BitInit
>(HasCompleteDecoderVal
->getValue()) : nullptr;
2057 bool HasCompleteDecoder
= HasCompleteDecoderBit
?
2058 HasCompleteDecoderBit
->getValue() : true;
2060 OperandInfo
OpInfo(Decoder
, HasCompleteDecoder
);
2062 // Some bits of the operand may be required to be 1 depending on the
2063 // instruction's encoding. Collect those bits.
2064 if (const RecordVal
*EncodedValue
= EncodingDef
.getValue(Op
.second
))
2065 if (const BitsInit
*OpBits
= dyn_cast
<BitsInit
>(EncodedValue
->getValue()))
2066 for (unsigned I
= 0; I
< OpBits
->getNumBits(); ++I
)
2067 if (const BitInit
*OpBit
= dyn_cast
<BitInit
>(OpBits
->getBit(I
)))
2068 if (OpBit
->getValue())
2069 OpInfo
.InitValue
|= 1ULL << I
;
2071 unsigned Base
= ~0U;
2073 unsigned Offset
= 0;
2075 for (unsigned bi
= 0; bi
< Bits
.getNumBits(); ++bi
) {
2076 VarInit
*Var
= nullptr;
2077 VarBitInit
*BI
= dyn_cast
<VarBitInit
>(Bits
.getBit(bi
));
2079 Var
= dyn_cast
<VarInit
>(BI
->getBitVar());
2081 Var
= dyn_cast
<VarInit
>(Bits
.getBit(bi
));
2085 OpInfo
.addField(Base
, Width
, Offset
);
2093 if (Var
->getName() != Op
.second
&&
2094 Var
->getName() != TiedNames
[std::string(Op
.second
)]) {
2096 OpInfo
.addField(Base
, Width
, Offset
);
2107 Offset
= BI
? BI
->getBitNum() : 0;
2108 } else if (BI
&& BI
->getBitNum() != Offset
+ Width
) {
2109 OpInfo
.addField(Base
, Width
, Offset
);
2112 Offset
= BI
->getBitNum();
2119 OpInfo
.addField(Base
, Width
, Offset
);
2121 if (OpInfo
.numFields() > 0)
2122 InsnOperands
.push_back(OpInfo
);
2125 Operands
[Opc
] = InsnOperands
;
2129 // Dumps the instruction encoding bits.
2130 dumpBits(errs(), Bits
);
2134 // Dumps the list of operand info.
2135 for (unsigned i
= 0, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
2136 const CGIOperandList::OperandInfo
&Info
= CGI
.Operands
[i
];
2137 const std::string
&OperandName
= Info
.Name
;
2138 const Record
&OperandDef
= *Info
.Rec
;
2140 errs() << "\t" << OperandName
<< " (" << OperandDef
.getName() << ")\n";
2148 // emitFieldFromInstruction - Emit the templated helper function
2149 // fieldFromInstruction().
2150 // On Windows we make sure that this function is not inlined when
2151 // using the VS compiler. It has a bug which causes the function
2152 // to be optimized out in some circustances. See llvm.org/pr38292
2153 static void emitFieldFromInstruction(formatted_raw_ostream
&OS
) {
2154 OS
<< "// Helper functions for extracting fields from encoded instructions.\n"
2155 << "// InsnType must either be integral or an APInt-like object that "
2157 << "// * be default-constructible and copy-constructible\n"
2158 << "// * be constructible from a uint64_t\n"
2159 << "// * be constructible from an APInt (this can be private)\n"
2160 << "// * Support insertBits(bits, startBit, numBits)\n"
2161 << "// * Support extractBitsAsZExtValue(numBits, startBit)\n"
2162 << "// * be convertible to bool\n"
2163 << "// * Support the ~, &, ==, and != operators with other objects of "
2165 << "// * Support put (<<) to raw_ostream&\n"
2166 << "template <typename InsnType>\n"
2167 << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2168 << "__declspec(noinline)\n"
2170 << "static std::enable_if_t<std::is_integral<InsnType>::value, InsnType>\n"
2171 << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2172 << " unsigned numBits) {\n"
2173 << " assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2174 "extractions!\");\n"
2175 << " assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2176 << " \"Instruction field out of bounds!\");\n"
2177 << " InsnType fieldMask;\n"
2178 << " if (numBits == sizeof(InsnType) * 8)\n"
2179 << " fieldMask = (InsnType)(-1LL);\n"
2181 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2182 << " return (insn & fieldMask) >> startBit;\n"
2185 << "template <typename InsnType>\n"
2186 << "static std::enable_if_t<!std::is_integral<InsnType>::value, "
2188 << "fieldFromInstruction(const InsnType &insn, unsigned startBit,\n"
2189 << " unsigned numBits) {\n"
2190 << " return insn.extractBitsAsZExtValue(numBits, startBit);\n"
2194 // emitInsertBits - Emit the templated helper function insertBits().
2195 static void emitInsertBits(formatted_raw_ostream
&OS
) {
2196 OS
<< "// Helper function for inserting bits extracted from an encoded "
2197 "instruction into\n"
2199 << "template <typename InsnType>\n"
2200 << "static std::enable_if_t<std::is_integral<InsnType>::value>\n"
2201 << "insertBits(InsnType &field, InsnType bits, unsigned startBit, "
2202 "unsigned numBits) {\n"
2203 << " assert(startBit + numBits <= sizeof field * 8);\n"
2204 << " field |= (InsnType)bits << startBit;\n"
2207 << "template <typename InsnType>\n"
2208 << "static std::enable_if_t<!std::is_integral<InsnType>::value>\n"
2209 << "insertBits(InsnType &field, uint64_t bits, unsigned startBit, "
2210 "unsigned numBits) {\n"
2211 << " field.insertBits(bits, startBit, numBits);\n"
2215 // emitDecodeInstruction - Emit the templated helper function
2216 // decodeInstruction().
2217 static void emitDecodeInstruction(formatted_raw_ostream
&OS
) {
2218 OS
<< "template <typename InsnType>\n"
2219 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2221 << " InsnType insn, uint64_t "
2223 << " const void *DisAsm,\n"
2224 << " const MCSubtargetInfo &STI) {\n"
2225 << " const FeatureBitset &Bits = STI.getFeatureBits();\n"
2227 << " const uint8_t *Ptr = DecodeTable;\n"
2228 << " InsnType CurFieldValue = 0;\n"
2229 << " DecodeStatus S = MCDisassembler::Success;\n"
2230 << " while (true) {\n"
2231 << " ptrdiff_t Loc = Ptr - DecodeTable;\n"
2232 << " switch (*Ptr) {\n"
2234 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2235 << " return MCDisassembler::Fail;\n"
2236 << " case MCD::OPC_ExtractField: {\n"
2237 << " unsigned Start = *++Ptr;\n"
2238 << " unsigned Len = *++Ptr;\n"
2240 << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2241 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2243 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2246 << " case MCD::OPC_FilterValue: {\n"
2247 << " // Decode the field value.\n"
2248 << " unsigned Len;\n"
2249 << " InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2251 << " // NumToSkip is a plain 24-bit integer.\n"
2252 << " unsigned NumToSkip = *Ptr++;\n"
2253 << " NumToSkip |= (*Ptr++) << 8;\n"
2254 << " NumToSkip |= (*Ptr++) << 16;\n"
2256 << " // Perform the filter operation.\n"
2257 << " if (Val != CurFieldValue)\n"
2258 << " Ptr += NumToSkip;\n"
2259 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2260 "\", \" << NumToSkip\n"
2261 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2263 << " << \" continuing at \" << (Ptr - DecodeTable) << "
2268 << " case MCD::OPC_CheckField: {\n"
2269 << " unsigned Start = *++Ptr;\n"
2270 << " unsigned Len = *++Ptr;\n"
2271 << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2272 << " // Decode the field value.\n"
2273 << " InsnType ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2275 << " // NumToSkip is a plain 24-bit integer.\n"
2276 << " unsigned NumToSkip = *Ptr++;\n"
2277 << " NumToSkip |= (*Ptr++) << 8;\n"
2278 << " NumToSkip |= (*Ptr++) << 16;\n"
2280 << " // If the actual and expected values don't match, skip.\n"
2281 << " if (ExpectedValue != FieldValue)\n"
2282 << " Ptr += NumToSkip;\n"
2283 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2285 << " << Len << \", \" << ExpectedValue << \", \" << "
2287 << " << \"): FieldValue = \" << FieldValue << \", "
2288 "ExpectedValue = \"\n"
2289 << " << ExpectedValue << \": \"\n"
2290 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2294 << " case MCD::OPC_CheckPredicate: {\n"
2295 << " unsigned Len;\n"
2296 << " // Decode the Predicate Index value.\n"
2297 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2299 << " // NumToSkip is a plain 24-bit integer.\n"
2300 << " unsigned NumToSkip = *Ptr++;\n"
2301 << " NumToSkip |= (*Ptr++) << 8;\n"
2302 << " NumToSkip |= (*Ptr++) << 16;\n"
2303 << " // Check the predicate.\n"
2305 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2306 << " Ptr += NumToSkip;\n"
2308 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2310 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2314 << " case MCD::OPC_Decode: {\n"
2315 << " unsigned Len;\n"
2316 << " // Decode the Opcode value.\n"
2317 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2319 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2323 << " MI.setOpcode(Opc);\n"
2324 << " bool DecodeComplete;\n"
2325 << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2326 "DecodeComplete);\n"
2327 << " assert(DecodeComplete);\n"
2329 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2330 << " << \", using decoder \" << DecodeIdx << \": \"\n"
2331 << " << (S != MCDisassembler::Fail ? \"PASS\" : "
2332 "\"FAIL\") << \"\\n\");\n"
2335 << " case MCD::OPC_TryDecode: {\n"
2336 << " unsigned Len;\n"
2337 << " // Decode the Opcode value.\n"
2338 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2340 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2342 << " // NumToSkip is a plain 24-bit integer.\n"
2343 << " unsigned NumToSkip = *Ptr++;\n"
2344 << " NumToSkip |= (*Ptr++) << 8;\n"
2345 << " NumToSkip |= (*Ptr++) << 16;\n"
2347 << " // Perform the decode operation.\n"
2348 << " MCInst TmpMI;\n"
2349 << " TmpMI.setOpcode(Opc);\n"
2350 << " bool DecodeComplete;\n"
2351 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2352 "DecodeComplete);\n"
2353 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2355 << " << \", using decoder \" << DecodeIdx << \": \");\n"
2357 << " if (DecodeComplete) {\n"
2358 << " // Decoding complete.\n"
2359 << " LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2360 "\"FAIL\") << \"\\n\");\n"
2364 << " assert(S == MCDisassembler::Fail);\n"
2365 << " // If the decoding was incomplete, skip.\n"
2366 << " Ptr += NumToSkip;\n"
2367 << " LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2368 "DecodeTable) << \"\\n\");\n"
2369 << " // Reset decode status. This also drops a SoftFail status "
2371 << " // set before the decode attempt.\n"
2372 << " S = MCDisassembler::Success;\n"
2376 << " case MCD::OPC_SoftFail: {\n"
2377 << " // Decode the mask values.\n"
2378 << " unsigned Len;\n"
2379 << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2381 << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2383 << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2385 << " S = MCDisassembler::SoftFail;\n"
2386 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2387 "\"FAIL\\n\" : \"PASS\\n\"));\n"
2390 << " case MCD::OPC_Fail: {\n"
2391 << " LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2392 << " return MCDisassembler::Fail;\n"
2396 << " llvm_unreachable(\"bogosity detected in disassembler state "
2401 // Emits disassembler code for instruction decoding.
2402 void FixedLenDecoderEmitter::run(raw_ostream
&o
) {
2403 formatted_raw_ostream
OS(o
);
2404 OS
<< "#include \"llvm/MC/MCInst.h\"\n";
2405 OS
<< "#include \"llvm/Support/DataTypes.h\"\n";
2406 OS
<< "#include \"llvm/Support/Debug.h\"\n";
2407 OS
<< "#include \"llvm/Support/LEB128.h\"\n";
2408 OS
<< "#include \"llvm/Support/raw_ostream.h\"\n";
2409 OS
<< "#include <assert.h>\n";
2411 OS
<< "namespace llvm {\n\n";
2413 emitFieldFromInstruction(OS
);
2416 Target
.reverseBitsForLittleEndianEncoding();
2418 // Parameterize the decoders based on namespace and instruction width.
2419 std::set
<StringRef
> HwModeNames
;
2420 const auto &NumberedInstructions
= Target
.getInstructionsByEnumValue();
2421 NumberedEncodings
.reserve(NumberedInstructions
.size());
2422 DenseMap
<Record
*, unsigned> IndexOfInstruction
;
2423 // First, collect all HwModes referenced by the target.
2424 for (const auto &NumberedInstruction
: NumberedInstructions
) {
2425 IndexOfInstruction
[NumberedInstruction
->TheDef
] = NumberedEncodings
.size();
2427 if (const RecordVal
*RV
=
2428 NumberedInstruction
->TheDef
->getValue("EncodingInfos")) {
2429 if (auto *DI
= dyn_cast_or_null
<DefInit
>(RV
->getValue())) {
2430 const CodeGenHwModes
&HWM
= Target
.getHwModes();
2431 EncodingInfoByHwMode
EBM(DI
->getDef(), HWM
);
2432 for (auto &KV
: EBM
)
2433 HwModeNames
.insert(HWM
.getMode(KV
.first
).Name
);
2438 // If HwModeNames is empty, add the empty string so we always have one HwMode.
2439 if (HwModeNames
.empty())
2440 HwModeNames
.insert("");
2442 for (const auto &NumberedInstruction
: NumberedInstructions
) {
2443 IndexOfInstruction
[NumberedInstruction
->TheDef
] = NumberedEncodings
.size();
2445 if (const RecordVal
*RV
=
2446 NumberedInstruction
->TheDef
->getValue("EncodingInfos")) {
2447 if (DefInit
*DI
= dyn_cast_or_null
<DefInit
>(RV
->getValue())) {
2448 const CodeGenHwModes
&HWM
= Target
.getHwModes();
2449 EncodingInfoByHwMode
EBM(DI
->getDef(), HWM
);
2450 for (auto &KV
: EBM
) {
2451 NumberedEncodings
.emplace_back(KV
.second
, NumberedInstruction
,
2452 HWM
.getMode(KV
.first
).Name
);
2453 HwModeNames
.insert(HWM
.getMode(KV
.first
).Name
);
2458 // This instruction is encoded the same on all HwModes. Emit it for all
2460 for (StringRef HwModeName
: HwModeNames
)
2461 NumberedEncodings
.emplace_back(NumberedInstruction
->TheDef
,
2462 NumberedInstruction
, HwModeName
);
2464 for (const auto &NumberedAlias
: RK
.getAllDerivedDefinitions("AdditionalEncoding"))
2465 NumberedEncodings
.emplace_back(
2467 &Target
.getInstruction(NumberedAlias
->getValueAsDef("AliasOf")));
2469 std::map
<std::pair
<std::string
, unsigned>, std::vector
<EncodingIDAndOpcode
>>
2471 std::map
<unsigned, std::vector
<OperandInfo
>> Operands
;
2473 for (unsigned i
= 0; i
< NumberedEncodings
.size(); ++i
) {
2474 const Record
*EncodingDef
= NumberedEncodings
[i
].EncodingDef
;
2475 const CodeGenInstruction
*Inst
= NumberedEncodings
[i
].Inst
;
2476 const Record
*Def
= Inst
->TheDef
;
2477 unsigned Size
= EncodingDef
->getValueAsInt("Size");
2478 if (Def
->getValueAsString("Namespace") == "TargetOpcode" ||
2479 Def
->getValueAsBit("isPseudo") ||
2480 Def
->getValueAsBit("isAsmParserOnly") ||
2481 Def
->getValueAsBit("isCodeGenOnly")) {
2482 NumEncodingsLackingDisasm
++;
2486 if (i
< NumberedInstructions
.size())
2493 if (populateInstruction(Target
, *EncodingDef
, *Inst
, i
, Operands
)) {
2494 std::string DecoderNamespace
=
2495 std::string(EncodingDef
->getValueAsString("DecoderNamespace"));
2496 if (!NumberedEncodings
[i
].HwModeName
.empty())
2498 std::string("_") + NumberedEncodings
[i
].HwModeName
.str();
2499 OpcMap
[std::make_pair(DecoderNamespace
, Size
)].emplace_back(
2500 i
, IndexOfInstruction
.find(Def
)->second
);
2502 NumEncodingsOmitted
++;
2506 DecoderTableInfo TableInfo
;
2507 for (const auto &Opc
: OpcMap
) {
2508 // Emit the decoder for this namespace+width combination.
2509 ArrayRef
<EncodingAndInst
> NumberedEncodingsRef(
2510 NumberedEncodings
.data(), NumberedEncodings
.size());
2511 FilterChooser
FC(NumberedEncodingsRef
, Opc
.second
, Operands
,
2512 8 * Opc
.first
.second
, this);
2514 // The decode table is cleared for each top level decoder function. The
2515 // predicates and decoders themselves, however, are shared across all
2516 // decoders to give more opportunities for uniqueing.
2517 TableInfo
.Table
.clear();
2518 TableInfo
.FixupStack
.clear();
2519 TableInfo
.Table
.reserve(16384);
2520 TableInfo
.FixupStack
.emplace_back();
2521 FC
.emitTableEntries(TableInfo
);
2522 // Any NumToSkip fixups in the top level scope can resolve to the
2523 // OPC_Fail at the end of the table.
2524 assert(TableInfo
.FixupStack
.size() == 1 && "fixup stack phasing error!");
2525 // Resolve any NumToSkip fixups in the current scope.
2526 resolveTableFixups(TableInfo
.Table
, TableInfo
.FixupStack
.back(),
2527 TableInfo
.Table
.size());
2528 TableInfo
.FixupStack
.clear();
2530 TableInfo
.Table
.push_back(MCD::OPC_Fail
);
2532 // Print the table to the output stream.
2533 emitTable(OS
, TableInfo
.Table
, 0, FC
.getBitWidth(), Opc
.first
.first
);
2537 // Emit the predicate function.
2538 emitPredicateFunction(OS
, TableInfo
.Predicates
, 0);
2540 // Emit the decoder function.
2541 emitDecoderFunction(OS
, TableInfo
.Decoders
, 0);
2543 // Emit the main entry point for the decoder, decodeInstruction().
2544 emitDecodeInstruction(OS
);
2546 OS
<< "\n} // end namespace llvm\n";
2551 void EmitFixedLenDecoder(RecordKeeper
&RK
, raw_ostream
&OS
,
2552 const std::string
&PredicateNamespace
,
2553 const std::string
&GPrefix
,
2554 const std::string
&GPostfix
, const std::string
&ROK
,
2555 const std::string
&RFail
, const std::string
&L
) {
2556 FixedLenDecoderEmitter(RK
, PredicateNamespace
, GPrefix
, GPostfix
,
2557 ROK
, RFail
, L
).run(OS
);
2560 } // end namespace llvm