[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / GlobalISel / GIMatchTree.cpp
blobd08a83333c305072d4b181e3eda3d1797fb36b76
1 //===- GIMatchTree.cpp - A decision tree to match GIMatchDag's ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "GIMatchTree.h"
11 #include "../CodeGenInstruction.h"
13 #include "llvm/Support/Debug.h"
14 #include "llvm/Support/Format.h"
15 #include "llvm/Support/ScopedPrinter.h"
16 #include "llvm/Support/raw_ostream.h"
17 #include "llvm/TableGen/Error.h"
18 #include "llvm/TableGen/Record.h"
20 #define DEBUG_TYPE "gimatchtree"
22 using namespace llvm;
24 void GIMatchTree::writeDOTGraph(raw_ostream &OS) const {
25 OS << "digraph \"matchtree\" {\n";
26 writeDOTGraphNode(OS);
27 OS << "}\n";
30 void GIMatchTree::writeDOTGraphNode(raw_ostream &OS) const {
31 OS << format(" Node%p", this) << " [shape=record,label=\"{";
32 if (Partitioner) {
33 Partitioner->emitDescription(OS);
34 OS << "|" << Partitioner->getNumPartitions() << " partitions|";
35 } else
36 OS << "No partitioner|";
37 bool IsFullyTraversed = true;
38 bool IsFullyTested = true;
39 StringRef Separator = "";
40 for (const auto &Leaf : PossibleLeaves) {
41 OS << Separator << Leaf.getName();
42 Separator = ",";
43 if (!Leaf.isFullyTraversed())
44 IsFullyTraversed = false;
45 if (!Leaf.isFullyTested())
46 IsFullyTested = false;
48 if (!Partitioner && !IsFullyTraversed)
49 OS << "|Not fully traversed";
50 if (!Partitioner && !IsFullyTested) {
51 OS << "|Not fully tested";
52 if (IsFullyTraversed) {
53 for (const GIMatchTreeLeafInfo &Leaf : PossibleLeaves) {
54 if (Leaf.isFullyTested())
55 continue;
56 OS << "\\n" << Leaf.getName() << ": " << &Leaf;
57 for (const GIMatchDagPredicate *P : Leaf.untested_predicates())
58 OS << *P;
62 OS << "}\"";
63 if (!Partitioner &&
64 (!IsFullyTraversed || !IsFullyTested || PossibleLeaves.size() > 1))
65 OS << ",color=red";
66 OS << "]\n";
67 for (const auto &C : Children)
68 C.writeDOTGraphNode(OS);
69 writeDOTGraphEdges(OS);
72 void GIMatchTree::writeDOTGraphEdges(raw_ostream &OS) const {
73 for (const auto &Child : enumerate(Children)) {
74 OS << format(" Node%p", this) << " -> " << format("Node%p", &Child.value())
75 << " [label=\"#" << Child.index() << " ";
76 Partitioner->emitPartitionName(OS, Child.index());
77 OS << "\"]\n";
81 GIMatchTreeBuilderLeafInfo::GIMatchTreeBuilderLeafInfo(
82 GIMatchTreeBuilder &Builder, StringRef Name, unsigned RootIdx,
83 const GIMatchDag &MatchDag, void *Data)
84 : Builder(Builder), Info(Name, RootIdx, Data), MatchDag(MatchDag),
85 InstrNodeToInfo(),
86 RemainingInstrNodes(BitVector(MatchDag.getNumInstrNodes(), true)),
87 RemainingEdges(BitVector(MatchDag.getNumEdges(), true)),
88 RemainingPredicates(BitVector(MatchDag.getNumPredicates(), true)),
89 TraversableEdges(MatchDag.getNumEdges()),
90 TestablePredicates(MatchDag.getNumPredicates()) {
91 // Number all the predicates in this DAG
92 for (auto &P : enumerate(MatchDag.predicates())) {
93 PredicateIDs.insert(std::make_pair(P.value(), P.index()));
96 // Number all the predicate dependencies in this DAG and set up a bitvector
97 // for each predicate indicating the unsatisfied dependencies.
98 for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
99 PredicateDepIDs.insert(std::make_pair(Dep.value(), Dep.index()));
101 UnsatisfiedPredDepsForPred.resize(MatchDag.getNumPredicates(),
102 BitVector(PredicateDepIDs.size()));
103 for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
104 unsigned ID = PredicateIDs.lookup(Dep.value()->getPredicate());
105 UnsatisfiedPredDepsForPred[ID].set(Dep.index());
109 void GIMatchTreeBuilderLeafInfo::declareInstr(const GIMatchDagInstr *Instr, unsigned ID) {
110 // Record the assignment of this instr to the given ID.
111 auto InfoI = InstrNodeToInfo.insert(std::make_pair(
112 Instr, GIMatchTreeInstrInfo(ID, Instr)));
113 InstrIDToInfo.insert(std::make_pair(ID, &InfoI.first->second));
115 if (Instr == nullptr)
116 return;
118 if (!Instr->getUserAssignedName().empty())
119 Info.bindInstrVariable(Instr->getUserAssignedName(), ID);
120 for (const auto &VarBinding : Instr->user_assigned_operand_names())
121 Info.bindOperandVariable(VarBinding.second, ID, VarBinding.first);
123 // Clear the bit indicating we haven't visited this instr.
124 const auto &NodeI = find(MatchDag.instr_nodes(), Instr);
125 assert(NodeI != MatchDag.instr_nodes_end() && "Instr isn't in this DAG");
126 unsigned InstrIdx = MatchDag.getInstrNodeIdx(NodeI);
127 RemainingInstrNodes.reset(InstrIdx);
129 // When we declare an instruction, we don't expose any traversable edges just
130 // yet. A partitioner has to check they exist and are registers before they
131 // are traversable.
133 // When we declare an instruction, we potentially activate some predicates.
134 // Mark the dependencies that are now satisfied as a result of this
135 // instruction and mark any predicates whose dependencies are fully
136 // satisfied.
137 for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
138 if (Dep.value()->getRequiredMI() == Instr &&
139 Dep.value()->getRequiredMO() == nullptr) {
140 for (auto &DepsFor : enumerate(UnsatisfiedPredDepsForPred)) {
141 DepsFor.value().reset(Dep.index());
142 if (DepsFor.value().none())
143 TestablePredicates.set(DepsFor.index());
149 void GIMatchTreeBuilderLeafInfo::declareOperand(unsigned InstrID,
150 unsigned OpIdx) {
151 const GIMatchDagInstr *Instr = InstrIDToInfo.lookup(InstrID)->getInstrNode();
153 OperandIDToInfo.insert(std::make_pair(
154 std::make_pair(InstrID, OpIdx),
155 GIMatchTreeOperandInfo(Instr, OpIdx)));
157 // When an operand becomes reachable, we potentially activate some traversals.
158 // Record the edges that can now be followed as a result of this
159 // instruction.
160 for (auto &E : enumerate(MatchDag.edges())) {
161 if (E.value()->getFromMI() == Instr &&
162 E.value()->getFromMO()->getIdx() == OpIdx) {
163 TraversableEdges.set(E.index());
167 // When an operand becomes reachable, we potentially activate some predicates.
168 // Clear the dependencies that are now satisfied as a result of this
169 // operand and activate any predicates whose dependencies are fully
170 // satisfied.
171 for (auto &Dep : enumerate(MatchDag.predicate_edges())) {
172 if (Dep.value()->getRequiredMI() == Instr && Dep.value()->getRequiredMO() &&
173 Dep.value()->getRequiredMO()->getIdx() == OpIdx) {
174 for (auto &DepsFor : enumerate(UnsatisfiedPredDepsForPred)) {
175 DepsFor.value().reset(Dep.index());
176 if (DepsFor.value().none())
177 TestablePredicates.set(DepsFor.index());
183 void GIMatchTreeBuilder::addPartitionersForInstr(unsigned InstrIdx) {
184 // Find the partitioners that can be used now that this node is
185 // uncovered. Our choices are:
186 // - Test the opcode
187 addPartitioner(std::make_unique<GIMatchTreeOpcodePartitioner>(InstrIdx));
190 void GIMatchTreeBuilder::addPartitionersForOperand(unsigned InstrID,
191 unsigned OpIdx) {
192 LLVM_DEBUG(dbgs() << "Add partitioners for Instrs[" << InstrID
193 << "].getOperand(" << OpIdx << ")\n");
194 addPartitioner(
195 std::make_unique<GIMatchTreeVRegDefPartitioner>(InstrID, OpIdx));
198 void GIMatchTreeBuilder::filterRedundantPartitioners() {
199 // TODO: Filter partitioners for facts that are already known
200 // - If we know the opcode, we can elide the num operand check so long as
201 // the instruction has a fixed number of operands.
202 // - If we know an exact number of operands then we can elide further number
203 // of operand checks.
204 // - If the current min number of operands exceeds the one we want to check
205 // then we can elide it.
208 void GIMatchTreeBuilder::evaluatePartitioners() {
209 // Determine the partitioning the partitioner would produce
210 for (auto &Partitioner : Partitioners) {
211 LLVM_DEBUG(dbgs() << " Weighing up ";
212 Partitioner->emitDescription(dbgs()); dbgs() << "\n");
213 Partitioner->repartition(Leaves);
214 LLVM_DEBUG(Partitioner->emitPartitionResults(dbgs()));
218 void GIMatchTreeBuilder::runStep() {
219 LLVM_DEBUG(dbgs() << "Building match tree node for " << TreeNode << "\n");
220 LLVM_DEBUG(dbgs() << " Rules reachable at this node:\n");
221 for (const auto &Leaf : Leaves) {
222 LLVM_DEBUG(dbgs() << " " << Leaf.getName() << " (" << &Leaf.getInfo() << "\n");
223 TreeNode->addPossibleLeaf(Leaf.getInfo(), Leaf.isFullyTraversed(),
224 Leaf.isFullyTested());
227 LLVM_DEBUG(dbgs() << " Partitioners available at this node:\n");
228 #ifndef NDEBUG
229 for (const auto &Partitioner : Partitioners)
230 LLVM_DEBUG(dbgs() << " "; Partitioner->emitDescription(dbgs());
231 dbgs() << "\n");
232 #endif // ifndef NDEBUG
234 // Check for unreachable rules. Rules are unreachable if they are preceeded by
235 // a fully tested rule.
236 // Note: This is only true for the current algorithm, if we allow the
237 // algorithm to compare equally valid rules then they will become
238 // reachable.
240 auto FullyTestedLeafI = Leaves.end();
241 for (auto LeafI = Leaves.begin(), LeafE = Leaves.end();
242 LeafI != LeafE; ++LeafI) {
243 if (LeafI->isFullyTraversed() && LeafI->isFullyTested())
244 FullyTestedLeafI = LeafI;
245 else if (FullyTestedLeafI != Leaves.end()) {
246 PrintError("Leaf " + LeafI->getName() + " is unreachable");
247 PrintNote("Leaf " + FullyTestedLeafI->getName() +
248 " will have already matched");
253 LLVM_DEBUG(dbgs() << " Eliminating redundant partitioners:\n");
254 filterRedundantPartitioners();
255 LLVM_DEBUG(dbgs() << " Partitioners remaining:\n");
256 #ifndef NDEBUG
257 for (const auto &Partitioner : Partitioners)
258 LLVM_DEBUG(dbgs() << " "; Partitioner->emitDescription(dbgs());
259 dbgs() << "\n");
260 #endif // ifndef NDEBUG
262 if (Partitioners.empty()) {
263 // Nothing left to do but check we really did identify a single rule.
264 if (Leaves.size() > 1) {
265 LLVM_DEBUG(dbgs() << "Leaf contains multiple rules, drop after the first "
266 "fully tested rule\n");
267 auto FirstFullyTested =
268 llvm::find_if(Leaves, [](const GIMatchTreeBuilderLeafInfo &X) {
269 return X.isFullyTraversed() && X.isFullyTested() &&
270 !X.getMatchDag().hasPostMatchPredicate();
272 if (FirstFullyTested != Leaves.end())
273 FirstFullyTested++;
275 #ifndef NDEBUG
276 for (auto &Leaf : make_range(Leaves.begin(), FirstFullyTested))
277 LLVM_DEBUG(dbgs() << " Kept " << Leaf.getName() << "\n");
278 for (const auto &Leaf : make_range(FirstFullyTested, Leaves.end()))
279 LLVM_DEBUG(dbgs() << " Dropped " << Leaf.getName() << "\n");
280 #endif // ifndef NDEBUG
281 TreeNode->dropLeavesAfter(
282 std::distance(Leaves.begin(), FirstFullyTested));
284 for (const auto &Leaf : Leaves) {
285 if (!Leaf.isFullyTraversed()) {
286 PrintError("Leaf " + Leaf.getName() + " is not fully traversed");
287 PrintNote("This indicates a missing partitioner within tblgen");
288 Leaf.dump(errs());
289 for (unsigned InstrIdx : Leaf.untested_instrs())
290 PrintNote("Instr " + llvm::to_string(*Leaf.getInstr(InstrIdx)));
291 for (unsigned EdgeIdx : Leaf.untested_edges())
292 PrintNote("Edge " + llvm::to_string(*Leaf.getEdge(EdgeIdx)));
296 // Copy out information about untested predicates so the user of the tree
297 // can deal with them.
298 for (auto LeafPair : zip(Leaves, TreeNode->possible_leaves())) {
299 const GIMatchTreeBuilderLeafInfo &BuilderLeaf = std::get<0>(LeafPair);
300 GIMatchTreeLeafInfo &TreeLeaf = std::get<1>(LeafPair);
301 if (!BuilderLeaf.isFullyTested())
302 for (unsigned PredicateIdx : BuilderLeaf.untested_predicates())
303 TreeLeaf.addUntestedPredicate(BuilderLeaf.getPredicate(PredicateIdx));
305 return;
308 LLVM_DEBUG(dbgs() << " Weighing up partitioners:\n");
309 evaluatePartitioners();
311 // Select the best partitioner by its ability to partition
312 // - Prefer partitioners that don't distinguish between partitions. This
313 // is to fail early on decisions that must go a single way.
314 auto PartitionerI = std::max_element(
315 Partitioners.begin(), Partitioners.end(),
316 [](const std::unique_ptr<GIMatchTreePartitioner> &A,
317 const std::unique_ptr<GIMatchTreePartitioner> &B) {
318 // We generally want partitioners that subdivide the
319 // ruleset as much as possible since these take fewer
320 // checks to converge on a particular rule. However,
321 // it's important to note that one leaf can end up in
322 // multiple partitions if the check isn't mutually
323 // exclusive (e.g. getVRegDef() vs isReg()).
324 // We therefore minimize average leaves per partition.
325 return (double)A->getNumLeavesWithDupes() / A->getNumPartitions() >
326 (double)B->getNumLeavesWithDupes() / B->getNumPartitions();
329 // Select a partitioner and partition the ruleset
330 // Note that it's possible for a single rule to end up in multiple
331 // partitions. For example, an opcode test on a rule without an opcode
332 // predicate will result in it being passed to all partitions.
333 std::unique_ptr<GIMatchTreePartitioner> Partitioner = std::move(*PartitionerI);
334 Partitioners.erase(PartitionerI);
335 LLVM_DEBUG(dbgs() << " Selected partitioner: ";
336 Partitioner->emitDescription(dbgs()); dbgs() << "\n");
338 assert(Partitioner->getNumPartitions() > 0 &&
339 "Must always partition into at least one partition");
341 TreeNode->setNumChildren(Partitioner->getNumPartitions());
342 for (auto &C : enumerate(TreeNode->children())) {
343 SubtreeBuilders.emplace_back(&C.value(), NextInstrID);
344 Partitioner->applyForPartition(C.index(), *this, SubtreeBuilders.back());
347 TreeNode->setPartitioner(std::move(Partitioner));
349 // Recurse into the subtree builders. Each one must get a copy of the
350 // remaining partitioners as each path has to check everything.
351 for (auto &SubtreeBuilder : SubtreeBuilders) {
352 for (const auto &Partitioner : Partitioners)
353 SubtreeBuilder.addPartitioner(Partitioner->clone());
354 SubtreeBuilder.runStep();
358 std::unique_ptr<GIMatchTree> GIMatchTreeBuilder::run() {
359 unsigned NewInstrID = allocInstrID();
360 // Start by recording the root instruction as instr #0 and set up the initial
361 // partitioners.
362 for (auto &Leaf : Leaves) {
363 LLVM_DEBUG(Leaf.getMatchDag().writeDOTGraph(dbgs(), Leaf.getName()));
364 GIMatchDagInstr *Root =
365 *(Leaf.getMatchDag().roots().begin() + Leaf.getRootIdx());
366 Leaf.declareInstr(Root, NewInstrID);
369 addPartitionersForInstr(NewInstrID);
371 std::unique_ptr<GIMatchTree> TreeRoot = std::make_unique<GIMatchTree>();
372 TreeNode = TreeRoot.get();
373 runStep();
375 return TreeRoot;
378 void GIMatchTreeOpcodePartitioner::emitPartitionName(raw_ostream &OS, unsigned Idx) const {
379 if (PartitionToInstr[Idx] == nullptr) {
380 OS << "* or nullptr";
381 return;
383 OS << PartitionToInstr[Idx]->Namespace
384 << "::" << PartitionToInstr[Idx]->TheDef->getName();
387 void GIMatchTreeOpcodePartitioner::repartition(
388 GIMatchTreeBuilder::LeafVec &Leaves) {
389 Partitions.clear();
390 InstrToPartition.clear();
391 PartitionToInstr.clear();
392 TestedPredicates.clear();
394 for (const auto &Leaf : enumerate(Leaves)) {
395 bool AllOpcodes = true;
396 GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
397 BitVector TestedPredicatesForLeaf(
398 Leaf.value().getMatchDag().getNumPredicates());
400 // If the instruction isn't declared then we don't care about it. Ignore
401 // it for now and add it to all partitions later once we know what
402 // partitions we have.
403 if (!InstrInfo) {
404 LLVM_DEBUG(dbgs() << " " << Leaf.value().getName()
405 << " doesn't care about Instr[" << InstrID << "]\n");
406 assert(TestedPredicatesForLeaf.size() == Leaf.value().getMatchDag().getNumPredicates());
407 TestedPredicates.push_back(TestedPredicatesForLeaf);
408 continue;
411 // If the opcode is available to test then any opcode predicates will have
412 // been enabled too.
413 for (unsigned PIdx : Leaf.value().TestablePredicates.set_bits()) {
414 const auto &P = Leaf.value().getPredicate(PIdx);
415 SmallVector<const CodeGenInstruction *, 1> OpcodesForThisPredicate;
416 if (const auto *OpcodeP = dyn_cast<const GIMatchDagOpcodePredicate>(P)) {
417 // We've found _an_ opcode predicate, but we don't know if it's
418 // checking this instruction yet.
419 bool IsThisPredicate = false;
420 for (const auto &PDep : Leaf.value().getMatchDag().predicate_edges()) {
421 if (PDep->getRequiredMI() == InstrInfo->getInstrNode() &&
422 PDep->getRequiredMO() == nullptr && PDep->getPredicate() == P) {
423 IsThisPredicate = true;
424 break;
427 if (!IsThisPredicate)
428 continue;
430 // If we get here twice then we've somehow ended up with two opcode
431 // predicates for one instruction in the same DAG. That should be
432 // impossible.
433 assert(AllOpcodes && "Conflicting opcode predicates");
434 const CodeGenInstruction *Expected = OpcodeP->getInstr();
435 OpcodesForThisPredicate.push_back(Expected);
438 if (const auto *OpcodeP =
439 dyn_cast<const GIMatchDagOneOfOpcodesPredicate>(P)) {
440 // We've found _an_ oneof(opcodes) predicate, but we don't know if it's
441 // checking this instruction yet.
442 bool IsThisPredicate = false;
443 for (const auto &PDep : Leaf.value().getMatchDag().predicate_edges()) {
444 if (PDep->getRequiredMI() == InstrInfo->getInstrNode() &&
445 PDep->getRequiredMO() == nullptr && PDep->getPredicate() == P) {
446 IsThisPredicate = true;
447 break;
450 if (!IsThisPredicate)
451 continue;
453 // If we get here twice then we've somehow ended up with two opcode
454 // predicates for one instruction in the same DAG. That should be
455 // impossible.
456 assert(AllOpcodes && "Conflicting opcode predicates");
457 append_range(OpcodesForThisPredicate, OpcodeP->getInstrs());
460 for (const CodeGenInstruction *Expected : OpcodesForThisPredicate) {
461 // Mark this predicate as one we're testing.
462 TestedPredicatesForLeaf.set(PIdx);
464 // Partitions must be numbered 0, 1, .., N but instructions don't meet
465 // that requirement. Assign a partition number to each opcode if we
466 // lack one ...
467 auto Partition = InstrToPartition.find(Expected);
468 if (Partition == InstrToPartition.end()) {
469 BitVector Contents(Leaves.size());
470 Partition = InstrToPartition
471 .insert(std::make_pair(Expected, Partitions.size()))
472 .first;
473 PartitionToInstr.push_back(Expected);
474 Partitions.insert(std::make_pair(Partitions.size(), Contents));
476 // ... and mark this leaf as being in that partition.
477 Partitions.find(Partition->second)->second.set(Leaf.index());
478 AllOpcodes = false;
479 LLVM_DEBUG(dbgs() << " " << Leaf.value().getName()
480 << " is in partition " << Partition->second << "\n");
483 // TODO: This is where we would handle multiple choices of opcode
484 // the end result will be that this leaf ends up in multiple
485 // partitions similarly to AllOpcodes.
488 // If we never check the opcode, add it to every partition.
489 if (AllOpcodes) {
490 // Add a partition for the default case if we don't already have one.
491 if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
492 PartitionToInstr.push_back(nullptr);
493 BitVector Contents(Leaves.size());
494 Partitions.insert(std::make_pair(Partitions.size(), Contents));
496 LLVM_DEBUG(dbgs() << " " << Leaf.value().getName()
497 << " is in all partitions (opcode not checked)\n");
498 for (auto &Partition : Partitions)
499 Partition.second.set(Leaf.index());
502 assert(TestedPredicatesForLeaf.size() == Leaf.value().getMatchDag().getNumPredicates());
503 TestedPredicates.push_back(TestedPredicatesForLeaf);
506 if (Partitions.size() == 0) {
507 // Add a partition for the default case if we don't already have one.
508 if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
509 PartitionToInstr.push_back(nullptr);
510 BitVector Contents(Leaves.size());
511 Partitions.insert(std::make_pair(Partitions.size(), Contents));
515 // Add any leaves that don't care about this instruction to all partitions.
516 for (const auto &Leaf : enumerate(Leaves)) {
517 GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
518 if (!InstrInfo) {
519 // Add a partition for the default case if we don't already have one.
520 if (InstrToPartition.insert(std::make_pair(nullptr, 0)).second) {
521 PartitionToInstr.push_back(nullptr);
522 BitVector Contents(Leaves.size());
523 Partitions.insert(std::make_pair(Partitions.size(), Contents));
525 for (auto &Partition : Partitions)
526 Partition.second.set(Leaf.index());
532 void GIMatchTreeOpcodePartitioner::applyForPartition(
533 unsigned PartitionIdx, GIMatchTreeBuilder &Builder, GIMatchTreeBuilder &SubBuilder) {
534 LLVM_DEBUG(dbgs() << " Making partition " << PartitionIdx << "\n");
535 const CodeGenInstruction *CGI = PartitionToInstr[PartitionIdx];
537 BitVector PossibleLeaves = getPossibleLeavesForPartition(PartitionIdx);
538 // Consume any predicates we handled.
539 for (auto &EnumeratedLeaf : enumerate(Builder.getPossibleLeaves())) {
540 if (!PossibleLeaves[EnumeratedLeaf.index()])
541 continue;
543 auto &Leaf = EnumeratedLeaf.value();
544 const auto &TestedPredicatesForLeaf =
545 TestedPredicates[EnumeratedLeaf.index()];
547 for (unsigned PredIdx : TestedPredicatesForLeaf.set_bits()) {
548 LLVM_DEBUG(dbgs() << " " << Leaf.getName() << " tested predicate #"
549 << PredIdx << " of " << TestedPredicatesForLeaf.size()
550 << " " << *Leaf.getPredicate(PredIdx) << "\n");
551 Leaf.RemainingPredicates.reset(PredIdx);
552 Leaf.TestablePredicates.reset(PredIdx);
554 SubBuilder.addLeaf(Leaf);
557 // Nothing to do, we don't know anything about this instruction as a result
558 // of this partitioner.
559 if (CGI == nullptr)
560 return;
562 GIMatchTreeBuilder::LeafVec &NewLeaves = SubBuilder.getPossibleLeaves();
563 // Find all the operands we know to exist and are referenced. This will
564 // usually be all the referenced operands but there are some cases where
565 // instructions are variadic. Such operands must be handled by partitioners
566 // that check the number of operands.
567 BitVector ReferencedOperands(1);
568 for (auto &Leaf : NewLeaves) {
569 GIMatchTreeInstrInfo *InstrInfo = Leaf.getInstrInfo(InstrID);
570 // Skip any leaves that don't care about this instruction.
571 if (!InstrInfo)
572 continue;
573 const GIMatchDagInstr *Instr = InstrInfo->getInstrNode();
574 for (auto &E : enumerate(Leaf.getMatchDag().edges())) {
575 if (E.value()->getFromMI() == Instr &&
576 E.value()->getFromMO()->getIdx() < CGI->Operands.size()) {
577 ReferencedOperands.resize(E.value()->getFromMO()->getIdx() + 1);
578 ReferencedOperands.set(E.value()->getFromMO()->getIdx());
582 for (auto &Leaf : NewLeaves) {
583 for (unsigned OpIdx : ReferencedOperands.set_bits()) {
584 Leaf.declareOperand(InstrID, OpIdx);
587 for (unsigned OpIdx : ReferencedOperands.set_bits()) {
588 SubBuilder.addPartitionersForOperand(InstrID, OpIdx);
592 void GIMatchTreeOpcodePartitioner::emitPartitionResults(
593 raw_ostream &OS) const {
594 OS << "Partitioning by opcode would produce " << Partitions.size()
595 << " partitions\n";
596 for (const auto &Partition : InstrToPartition) {
597 if (Partition.first == nullptr)
598 OS << "Default: ";
599 else
600 OS << Partition.first->TheDef->getName() << ": ";
601 StringRef Separator = "";
602 for (unsigned I : Partitions.find(Partition.second)->second.set_bits()) {
603 OS << Separator << I;
604 Separator = ", ";
606 OS << "\n";
610 void GIMatchTreeOpcodePartitioner::generatePartitionSelectorCode(
611 raw_ostream &OS, StringRef Indent) const {
612 // Make sure not to emit empty switch or switch with just default
613 if (PartitionToInstr.size() == 1 && PartitionToInstr[0] == nullptr) {
614 OS << Indent << "Partition = 0;\n";
615 } else if (PartitionToInstr.size()) {
616 OS << Indent << "Partition = -1;\n"
617 << Indent << "switch (MIs[" << InstrID << "]->getOpcode()) {\n";
618 for (const auto &EnumInstr : enumerate(PartitionToInstr)) {
619 if (EnumInstr.value() == nullptr)
620 OS << Indent << "default:";
621 else
622 OS << Indent << "case " << EnumInstr.value()->Namespace
623 << "::" << EnumInstr.value()->TheDef->getName() << ":";
624 OS << " Partition = " << EnumInstr.index() << "; break;\n";
626 OS << Indent << "}\n";
628 OS << Indent
629 << "// Default case but without conflicting with potential default case "
630 "in selection.\n"
631 << Indent << "if (Partition == -1) return false;\n";
634 void GIMatchTreeVRegDefPartitioner::addToPartition(bool Result,
635 unsigned LeafIdx) {
636 auto I = ResultToPartition.find(Result);
637 if (I == ResultToPartition.end()) {
638 ResultToPartition.insert(std::make_pair(Result, PartitionToResult.size()));
639 PartitionToResult.push_back(Result);
641 I = ResultToPartition.find(Result);
642 auto P = Partitions.find(I->second);
643 if (P == Partitions.end())
644 P = Partitions.insert(std::make_pair(I->second, BitVector())).first;
645 P->second.resize(LeafIdx + 1);
646 P->second.set(LeafIdx);
649 void GIMatchTreeVRegDefPartitioner::repartition(
650 GIMatchTreeBuilder::LeafVec &Leaves) {
651 Partitions.clear();
653 for (const auto &Leaf : enumerate(Leaves)) {
654 GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
655 BitVector TraversedEdgesForLeaf(Leaf.value().getMatchDag().getNumEdges());
657 // If the instruction isn't declared then we don't care about it. Ignore
658 // it for now and add it to all partitions later once we know what
659 // partitions we have.
660 if (!InstrInfo) {
661 TraversedEdges.push_back(TraversedEdgesForLeaf);
662 continue;
665 // If this node has an use -> def edge from this operand then this
666 // instruction must be in partition 1 (isVRegDef()).
667 bool WantsEdge = false;
668 for (unsigned EIdx : Leaf.value().TraversableEdges.set_bits()) {
669 const auto &E = Leaf.value().getEdge(EIdx);
670 if (E->getFromMI() != InstrInfo->getInstrNode() ||
671 E->getFromMO()->getIdx() != OpIdx || E->isDefToUse())
672 continue;
674 // We're looking at the right edge. This leaf wants a vreg def so we'll
675 // put it in partition 1.
676 addToPartition(true, Leaf.index());
677 TraversedEdgesForLeaf.set(EIdx);
678 WantsEdge = true;
681 bool isNotReg = false;
682 if (!WantsEdge && isNotReg) {
683 // If this leaf doesn't have an edge and we _don't_ want a register,
684 // then add it to partition 0.
685 addToPartition(false, Leaf.index());
686 } else if (!WantsEdge) {
687 // If this leaf doesn't have an edge and we don't know what we want,
688 // then add it to partition 0 and 1.
689 addToPartition(false, Leaf.index());
690 addToPartition(true, Leaf.index());
693 TraversedEdges.push_back(TraversedEdgesForLeaf);
696 // Add any leaves that don't care about this instruction to all partitions.
697 for (const auto &Leaf : enumerate(Leaves)) {
698 GIMatchTreeInstrInfo *InstrInfo = Leaf.value().getInstrInfo(InstrID);
699 if (!InstrInfo)
700 for (auto &Partition : Partitions)
701 Partition.second.set(Leaf.index());
705 void GIMatchTreeVRegDefPartitioner::applyForPartition(
706 unsigned PartitionIdx, GIMatchTreeBuilder &Builder,
707 GIMatchTreeBuilder &SubBuilder) {
708 BitVector PossibleLeaves = getPossibleLeavesForPartition(PartitionIdx);
710 std::vector<BitVector> TraversedEdgesByNewLeaves;
711 // Consume any edges we handled.
712 for (auto &EnumeratedLeaf : enumerate(Builder.getPossibleLeaves())) {
713 if (!PossibleLeaves[EnumeratedLeaf.index()])
714 continue;
716 auto &Leaf = EnumeratedLeaf.value();
717 const auto &TraversedEdgesForLeaf = TraversedEdges[EnumeratedLeaf.index()];
718 TraversedEdgesByNewLeaves.push_back(TraversedEdgesForLeaf);
719 Leaf.RemainingEdges.reset(TraversedEdgesForLeaf);
720 Leaf.TraversableEdges.reset(TraversedEdgesForLeaf);
721 SubBuilder.addLeaf(Leaf);
724 // Nothing to do. The only thing we know is that it isn't a vreg-def.
725 if (PartitionToResult[PartitionIdx] == false)
726 return;
728 NewInstrID = SubBuilder.allocInstrID();
730 GIMatchTreeBuilder::LeafVec &NewLeaves = SubBuilder.getPossibleLeaves();
731 for (const auto I : zip(NewLeaves, TraversedEdgesByNewLeaves)) {
732 auto &Leaf = std::get<0>(I);
733 auto &TraversedEdgesForLeaf = std::get<1>(I);
734 GIMatchTreeInstrInfo *InstrInfo = Leaf.getInstrInfo(InstrID);
735 // Skip any leaves that don't care about this instruction.
736 if (!InstrInfo)
737 continue;
738 for (unsigned EIdx : TraversedEdgesForLeaf.set_bits()) {
739 const GIMatchDagEdge *E = Leaf.getEdge(EIdx);
740 Leaf.declareInstr(E->getToMI(), NewInstrID);
743 SubBuilder.addPartitionersForInstr(NewInstrID);
746 void GIMatchTreeVRegDefPartitioner::emitPartitionResults(
747 raw_ostream &OS) const {
748 OS << "Partitioning by vreg-def would produce " << Partitions.size()
749 << " partitions\n";
750 for (const auto &Partition : Partitions) {
751 OS << Partition.first << " (";
752 emitPartitionName(OS, Partition.first);
753 OS << "): ";
754 StringRef Separator = "";
755 for (unsigned I : Partition.second.set_bits()) {
756 OS << Separator << I;
757 Separator = ", ";
759 OS << "\n";
763 void GIMatchTreeVRegDefPartitioner::generatePartitionSelectorCode(
764 raw_ostream &OS, StringRef Indent) const {
765 OS << Indent << "Partition = -1\n"
766 << Indent << "if (MIs.size() <= NewInstrID) MIs.resize(NewInstrID + 1);\n"
767 << Indent << "MIs[" << NewInstrID << "] = nullptr;\n"
768 << Indent << "if (MIs[" << InstrID << "].getOperand(" << OpIdx
769 << ").isReg()))\n"
770 << Indent << " MIs[" << NewInstrID << "] = MRI.getVRegDef(MIs[" << InstrID
771 << "].getOperand(" << OpIdx << ").getReg()));\n";
773 for (const auto &Pair : ResultToPartition)
774 OS << Indent << "if (MIs[" << NewInstrID << "] "
775 << (Pair.first ? "==" : "!=")
776 << " nullptr) Partition = " << Pair.second << ";\n";
778 OS << Indent << "if (Partition == -1) return false;\n";