[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / GlobalISelEmitter.cpp
blob693073672fc11879d75722fc16ce25ca20528e61
1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This tablegen backend emits code for use by the GlobalISel instruction
11 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
12 ///
13 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
14 /// backend, filters out the ones that are unsupported, maps
15 /// SelectionDAG-specific constructs to their GlobalISel counterpart
16 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
17 ///
18 /// Not all patterns are supported: pass the tablegen invocation
19 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
20 /// as well as why.
21 ///
22 /// The generated file defines a single method:
23 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
24 /// intended to be used in InstructionSelector::select as the first-step
25 /// selector for the patterns that don't require complex C++.
26 ///
27 /// FIXME: We'll probably want to eventually define a base
28 /// "TargetGenInstructionSelector" class.
29 ///
30 //===----------------------------------------------------------------------===//
32 #include "CodeGenDAGPatterns.h"
33 #include "SubtargetFeatureInfo.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/CodeGenCoverage.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/LowLevelTypeImpl.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include "llvm/Support/ScopedPrinter.h"
43 #include "llvm/TableGen/Error.h"
44 #include "llvm/TableGen/Record.h"
45 #include "llvm/TableGen/TableGenBackend.h"
46 #include <numeric>
47 #include <string>
48 using namespace llvm;
50 #define DEBUG_TYPE "gisel-emitter"
52 STATISTIC(NumPatternTotal, "Total number of patterns");
53 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
54 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
55 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
56 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
58 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
60 static cl::opt<bool> WarnOnSkippedPatterns(
61 "warn-on-skipped-patterns",
62 cl::desc("Explain why a pattern was skipped for inclusion "
63 "in the GlobalISel selector"),
64 cl::init(false), cl::cat(GlobalISelEmitterCat));
66 static cl::opt<bool> GenerateCoverage(
67 "instrument-gisel-coverage",
68 cl::desc("Generate coverage instrumentation for GlobalISel"),
69 cl::init(false), cl::cat(GlobalISelEmitterCat));
71 static cl::opt<std::string> UseCoverageFile(
72 "gisel-coverage-file", cl::init(""),
73 cl::desc("Specify file to retrieve coverage information from"),
74 cl::cat(GlobalISelEmitterCat));
76 static cl::opt<bool> OptimizeMatchTable(
77 "optimize-match-table",
78 cl::desc("Generate an optimized version of the match table"),
79 cl::init(true), cl::cat(GlobalISelEmitterCat));
81 namespace {
82 //===- Helper functions ---------------------------------------------------===//
84 /// Get the name of the enum value used to number the predicate function.
85 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
86 if (Predicate.hasGISelPredicateCode())
87 return "GIPFP_MI_" + Predicate.getFnName();
88 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
89 Predicate.getFnName();
92 /// Get the opcode used to check this predicate.
93 std::string getMatchOpcodeForImmPredicate(const TreePredicateFn &Predicate) {
94 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
97 /// This class stands in for LLT wherever we want to tablegen-erate an
98 /// equivalent at compiler run-time.
99 class LLTCodeGen {
100 private:
101 LLT Ty;
103 public:
104 LLTCodeGen() = default;
105 LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
107 std::string getCxxEnumValue() const {
108 std::string Str;
109 raw_string_ostream OS(Str);
111 emitCxxEnumValue(OS);
112 return OS.str();
115 void emitCxxEnumValue(raw_ostream &OS) const {
116 if (Ty.isScalar()) {
117 OS << "GILLT_s" << Ty.getSizeInBits();
118 return;
120 if (Ty.isVector()) {
121 OS << (Ty.isScalable() ? "GILLT_nxv" : "GILLT_v")
122 << Ty.getElementCount().getKnownMinValue() << "s"
123 << Ty.getScalarSizeInBits();
124 return;
126 if (Ty.isPointer()) {
127 OS << "GILLT_p" << Ty.getAddressSpace();
128 if (Ty.getSizeInBits() > 0)
129 OS << "s" << Ty.getSizeInBits();
130 return;
132 llvm_unreachable("Unhandled LLT");
135 void emitCxxConstructorCall(raw_ostream &OS) const {
136 if (Ty.isScalar()) {
137 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
138 return;
140 if (Ty.isVector()) {
141 OS << "LLT::vector("
142 << (Ty.isScalable() ? "ElementCount::getScalable("
143 : "ElementCount::getFixed(")
144 << Ty.getElementCount().getKnownMinValue() << "), "
145 << Ty.getScalarSizeInBits() << ")";
146 return;
148 if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
149 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
150 << Ty.getSizeInBits() << ")";
151 return;
153 llvm_unreachable("Unhandled LLT");
156 const LLT &get() const { return Ty; }
158 /// This ordering is used for std::unique() and llvm::sort(). There's no
159 /// particular logic behind the order but either A < B or B < A must be
160 /// true if A != B.
161 bool operator<(const LLTCodeGen &Other) const {
162 if (Ty.isValid() != Other.Ty.isValid())
163 return Ty.isValid() < Other.Ty.isValid();
164 if (!Ty.isValid())
165 return false;
167 if (Ty.isVector() != Other.Ty.isVector())
168 return Ty.isVector() < Other.Ty.isVector();
169 if (Ty.isScalar() != Other.Ty.isScalar())
170 return Ty.isScalar() < Other.Ty.isScalar();
171 if (Ty.isPointer() != Other.Ty.isPointer())
172 return Ty.isPointer() < Other.Ty.isPointer();
174 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
175 return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
177 if (Ty.isVector() && Ty.getElementCount() != Other.Ty.getElementCount())
178 return std::make_tuple(Ty.isScalable(),
179 Ty.getElementCount().getKnownMinValue()) <
180 std::make_tuple(Other.Ty.isScalable(),
181 Other.Ty.getElementCount().getKnownMinValue());
183 assert((!Ty.isVector() || Ty.isScalable() == Other.Ty.isScalable()) &&
184 "Unexpected mismatch of scalable property");
185 return Ty.isVector()
186 ? std::make_tuple(Ty.isScalable(),
187 Ty.getSizeInBits().getKnownMinSize()) <
188 std::make_tuple(Other.Ty.isScalable(),
189 Other.Ty.getSizeInBits().getKnownMinSize())
190 : Ty.getSizeInBits().getFixedSize() <
191 Other.Ty.getSizeInBits().getFixedSize();
194 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
197 // Track all types that are used so we can emit the corresponding enum.
198 std::set<LLTCodeGen> KnownTypes;
200 class InstructionMatcher;
201 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
202 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
203 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
204 MVT VT(SVT);
206 if (VT.isVector() && !VT.getVectorElementCount().isScalar())
207 return LLTCodeGen(
208 LLT::vector(VT.getVectorElementCount(), VT.getScalarSizeInBits()));
210 if (VT.isInteger() || VT.isFloatingPoint())
211 return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
213 return None;
216 static std::string explainPredicates(const TreePatternNode *N) {
217 std::string Explanation;
218 StringRef Separator = "";
219 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
220 const TreePredicateFn &P = Call.Fn;
221 Explanation +=
222 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
223 Separator = ", ";
225 if (P.isAlwaysTrue())
226 Explanation += " always-true";
227 if (P.isImmediatePattern())
228 Explanation += " immediate";
230 if (P.isUnindexed())
231 Explanation += " unindexed";
233 if (P.isNonExtLoad())
234 Explanation += " non-extload";
235 if (P.isAnyExtLoad())
236 Explanation += " extload";
237 if (P.isSignExtLoad())
238 Explanation += " sextload";
239 if (P.isZeroExtLoad())
240 Explanation += " zextload";
242 if (P.isNonTruncStore())
243 Explanation += " non-truncstore";
244 if (P.isTruncStore())
245 Explanation += " truncstore";
247 if (Record *VT = P.getMemoryVT())
248 Explanation += (" MemVT=" + VT->getName()).str();
249 if (Record *VT = P.getScalarMemoryVT())
250 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
252 if (ListInit *AddrSpaces = P.getAddressSpaces()) {
253 raw_string_ostream OS(Explanation);
254 OS << " AddressSpaces=[";
256 StringRef AddrSpaceSeparator;
257 for (Init *Val : AddrSpaces->getValues()) {
258 IntInit *IntVal = dyn_cast<IntInit>(Val);
259 if (!IntVal)
260 continue;
262 OS << AddrSpaceSeparator << IntVal->getValue();
263 AddrSpaceSeparator = ", ";
266 OS << ']';
269 int64_t MinAlign = P.getMinAlignment();
270 if (MinAlign > 0)
271 Explanation += " MinAlign=" + utostr(MinAlign);
273 if (P.isAtomicOrderingMonotonic())
274 Explanation += " monotonic";
275 if (P.isAtomicOrderingAcquire())
276 Explanation += " acquire";
277 if (P.isAtomicOrderingRelease())
278 Explanation += " release";
279 if (P.isAtomicOrderingAcquireRelease())
280 Explanation += " acq_rel";
281 if (P.isAtomicOrderingSequentiallyConsistent())
282 Explanation += " seq_cst";
283 if (P.isAtomicOrderingAcquireOrStronger())
284 Explanation += " >=acquire";
285 if (P.isAtomicOrderingWeakerThanAcquire())
286 Explanation += " <acquire";
287 if (P.isAtomicOrderingReleaseOrStronger())
288 Explanation += " >=release";
289 if (P.isAtomicOrderingWeakerThanRelease())
290 Explanation += " <release";
292 return Explanation;
295 std::string explainOperator(Record *Operator) {
296 if (Operator->isSubClassOf("SDNode"))
297 return (" (" + Operator->getValueAsString("Opcode") + ")").str();
299 if (Operator->isSubClassOf("Intrinsic"))
300 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
302 if (Operator->isSubClassOf("ComplexPattern"))
303 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
304 ")")
305 .str();
307 if (Operator->isSubClassOf("SDNodeXForm"))
308 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
309 ")")
310 .str();
312 return (" (Operator " + Operator->getName() + " not understood)").str();
315 /// Helper function to let the emitter report skip reason error messages.
316 static Error failedImport(const Twine &Reason) {
317 return make_error<StringError>(Reason, inconvertibleErrorCode());
320 static Error isTrivialOperatorNode(const TreePatternNode *N) {
321 std::string Explanation;
322 std::string Separator;
324 bool HasUnsupportedPredicate = false;
325 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
326 const TreePredicateFn &Predicate = Call.Fn;
328 if (Predicate.isAlwaysTrue())
329 continue;
331 if (Predicate.isImmediatePattern())
332 continue;
334 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
335 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
336 continue;
338 if (Predicate.isNonTruncStore() || Predicate.isTruncStore())
339 continue;
341 if (Predicate.isLoad() && Predicate.getMemoryVT())
342 continue;
344 if (Predicate.isLoad() || Predicate.isStore()) {
345 if (Predicate.isUnindexed())
346 continue;
349 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
350 const ListInit *AddrSpaces = Predicate.getAddressSpaces();
351 if (AddrSpaces && !AddrSpaces->empty())
352 continue;
354 if (Predicate.getMinAlignment() > 0)
355 continue;
358 if (Predicate.isAtomic() && Predicate.getMemoryVT())
359 continue;
361 if (Predicate.isAtomic() &&
362 (Predicate.isAtomicOrderingMonotonic() ||
363 Predicate.isAtomicOrderingAcquire() ||
364 Predicate.isAtomicOrderingRelease() ||
365 Predicate.isAtomicOrderingAcquireRelease() ||
366 Predicate.isAtomicOrderingSequentiallyConsistent() ||
367 Predicate.isAtomicOrderingAcquireOrStronger() ||
368 Predicate.isAtomicOrderingWeakerThanAcquire() ||
369 Predicate.isAtomicOrderingReleaseOrStronger() ||
370 Predicate.isAtomicOrderingWeakerThanRelease()))
371 continue;
373 if (Predicate.hasGISelPredicateCode())
374 continue;
376 HasUnsupportedPredicate = true;
377 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
378 Separator = ", ";
379 Explanation += (Separator + "first-failing:" +
380 Predicate.getOrigPatFragRecord()->getRecord()->getName())
381 .str();
382 break;
385 if (!HasUnsupportedPredicate)
386 return Error::success();
388 return failedImport(Explanation);
391 static Record *getInitValueAsRegClass(Init *V) {
392 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
393 if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
394 return VDefInit->getDef()->getValueAsDef("RegClass");
395 if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
396 return VDefInit->getDef();
398 return nullptr;
401 std::string
402 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
403 std::string Name = "GIFBS";
404 for (const auto &Feature : FeatureBitset)
405 Name += ("_" + Feature->getName()).str();
406 return Name;
409 static std::string getScopedName(unsigned Scope, const std::string &Name) {
410 return ("pred:" + Twine(Scope) + ":" + Name).str();
413 //===- MatchTable Helpers -------------------------------------------------===//
415 class MatchTable;
417 /// A record to be stored in a MatchTable.
419 /// This class represents any and all output that may be required to emit the
420 /// MatchTable. Instances are most often configured to represent an opcode or
421 /// value that will be emitted to the table with some formatting but it can also
422 /// represent commas, comments, and other formatting instructions.
423 struct MatchTableRecord {
424 enum RecordFlagsBits {
425 MTRF_None = 0x0,
426 /// Causes EmitStr to be formatted as comment when emitted.
427 MTRF_Comment = 0x1,
428 /// Causes the record value to be followed by a comma when emitted.
429 MTRF_CommaFollows = 0x2,
430 /// Causes the record value to be followed by a line break when emitted.
431 MTRF_LineBreakFollows = 0x4,
432 /// Indicates that the record defines a label and causes an additional
433 /// comment to be emitted containing the index of the label.
434 MTRF_Label = 0x8,
435 /// Causes the record to be emitted as the index of the label specified by
436 /// LabelID along with a comment indicating where that label is.
437 MTRF_JumpTarget = 0x10,
438 /// Causes the formatter to add a level of indentation before emitting the
439 /// record.
440 MTRF_Indent = 0x20,
441 /// Causes the formatter to remove a level of indentation after emitting the
442 /// record.
443 MTRF_Outdent = 0x40,
446 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
447 /// reference or define.
448 unsigned LabelID;
449 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
450 /// value, a label name.
451 std::string EmitStr;
453 private:
454 /// The number of MatchTable elements described by this record. Comments are 0
455 /// while values are typically 1. Values >1 may occur when we need to emit
456 /// values that exceed the size of a MatchTable element.
457 unsigned NumElements;
459 public:
460 /// A bitfield of RecordFlagsBits flags.
461 unsigned Flags;
463 /// The actual run-time value, if known
464 int64_t RawValue;
466 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
467 unsigned NumElements, unsigned Flags,
468 int64_t RawValue = std::numeric_limits<int64_t>::min())
469 : LabelID(LabelID_.getValueOr(~0u)), EmitStr(EmitStr),
470 NumElements(NumElements), Flags(Flags), RawValue(RawValue) {
471 assert((!LabelID_.hasValue() || LabelID != ~0u) &&
472 "This value is reserved for non-labels");
474 MatchTableRecord(const MatchTableRecord &Other) = default;
475 MatchTableRecord(MatchTableRecord &&Other) = default;
477 /// Useful if a Match Table Record gets optimized out
478 void turnIntoComment() {
479 Flags |= MTRF_Comment;
480 Flags &= ~MTRF_CommaFollows;
481 NumElements = 0;
484 /// For Jump Table generation purposes
485 bool operator<(const MatchTableRecord &Other) const {
486 return RawValue < Other.RawValue;
488 int64_t getRawValue() const { return RawValue; }
490 void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
491 const MatchTable &Table) const;
492 unsigned size() const { return NumElements; }
495 class Matcher;
497 /// Holds the contents of a generated MatchTable to enable formatting and the
498 /// necessary index tracking needed to support GIM_Try.
499 class MatchTable {
500 /// An unique identifier for the table. The generated table will be named
501 /// MatchTable${ID}.
502 unsigned ID;
503 /// The records that make up the table. Also includes comments describing the
504 /// values being emitted and line breaks to format it.
505 std::vector<MatchTableRecord> Contents;
506 /// The currently defined labels.
507 DenseMap<unsigned, unsigned> LabelMap;
508 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
509 unsigned CurrentSize = 0;
510 /// A unique identifier for a MatchTable label.
511 unsigned CurrentLabelID = 0;
512 /// Determines if the table should be instrumented for rule coverage tracking.
513 bool IsWithCoverage;
515 public:
516 static MatchTableRecord LineBreak;
517 static MatchTableRecord Comment(StringRef Comment) {
518 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
520 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
521 unsigned ExtraFlags = 0;
522 if (IndentAdjust > 0)
523 ExtraFlags |= MatchTableRecord::MTRF_Indent;
524 if (IndentAdjust < 0)
525 ExtraFlags |= MatchTableRecord::MTRF_Outdent;
527 return MatchTableRecord(None, Opcode, 1,
528 MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
530 static MatchTableRecord NamedValue(StringRef NamedValue) {
531 return MatchTableRecord(None, NamedValue, 1,
532 MatchTableRecord::MTRF_CommaFollows);
534 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
535 return MatchTableRecord(None, NamedValue, 1,
536 MatchTableRecord::MTRF_CommaFollows, RawValue);
538 static MatchTableRecord NamedValue(StringRef Namespace,
539 StringRef NamedValue) {
540 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
541 MatchTableRecord::MTRF_CommaFollows);
543 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
544 int64_t RawValue) {
545 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
546 MatchTableRecord::MTRF_CommaFollows, RawValue);
548 static MatchTableRecord IntValue(int64_t IntValue) {
549 return MatchTableRecord(None, llvm::to_string(IntValue), 1,
550 MatchTableRecord::MTRF_CommaFollows);
552 static MatchTableRecord Label(unsigned LabelID) {
553 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
554 MatchTableRecord::MTRF_Label |
555 MatchTableRecord::MTRF_Comment |
556 MatchTableRecord::MTRF_LineBreakFollows);
558 static MatchTableRecord JumpTarget(unsigned LabelID) {
559 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
560 MatchTableRecord::MTRF_JumpTarget |
561 MatchTableRecord::MTRF_Comment |
562 MatchTableRecord::MTRF_CommaFollows);
565 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
567 MatchTable(bool WithCoverage, unsigned ID = 0)
568 : ID(ID), IsWithCoverage(WithCoverage) {}
570 bool isWithCoverage() const { return IsWithCoverage; }
572 void push_back(const MatchTableRecord &Value) {
573 if (Value.Flags & MatchTableRecord::MTRF_Label)
574 defineLabel(Value.LabelID);
575 Contents.push_back(Value);
576 CurrentSize += Value.size();
579 unsigned allocateLabelID() { return CurrentLabelID++; }
581 void defineLabel(unsigned LabelID) {
582 LabelMap.insert(std::make_pair(LabelID, CurrentSize));
585 unsigned getLabelIndex(unsigned LabelID) const {
586 const auto I = LabelMap.find(LabelID);
587 assert(I != LabelMap.end() && "Use of undeclared label");
588 return I->second;
591 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
593 void emitDeclaration(raw_ostream &OS) const {
594 unsigned Indentation = 4;
595 OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
596 LineBreak.emit(OS, true, *this);
597 OS << std::string(Indentation, ' ');
599 for (auto I = Contents.begin(), E = Contents.end(); I != E;
600 ++I) {
601 bool LineBreakIsNext = false;
602 const auto &NextI = std::next(I);
604 if (NextI != E) {
605 if (NextI->EmitStr == "" &&
606 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
607 LineBreakIsNext = true;
610 if (I->Flags & MatchTableRecord::MTRF_Indent)
611 Indentation += 2;
613 I->emit(OS, LineBreakIsNext, *this);
614 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
615 OS << std::string(Indentation, ' ');
617 if (I->Flags & MatchTableRecord::MTRF_Outdent)
618 Indentation -= 2;
620 OS << "};\n";
624 MatchTableRecord MatchTable::LineBreak = {
625 None, "" /* Emit String */, 0 /* Elements */,
626 MatchTableRecord::MTRF_LineBreakFollows};
628 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
629 const MatchTable &Table) const {
630 bool UseLineComment =
631 LineBreakIsNextAfterThis || (Flags & MTRF_LineBreakFollows);
632 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
633 UseLineComment = false;
635 if (Flags & MTRF_Comment)
636 OS << (UseLineComment ? "// " : "/*");
638 OS << EmitStr;
639 if (Flags & MTRF_Label)
640 OS << ": @" << Table.getLabelIndex(LabelID);
642 if ((Flags & MTRF_Comment) && !UseLineComment)
643 OS << "*/";
645 if (Flags & MTRF_JumpTarget) {
646 if (Flags & MTRF_Comment)
647 OS << " ";
648 OS << Table.getLabelIndex(LabelID);
651 if (Flags & MTRF_CommaFollows) {
652 OS << ",";
653 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
654 OS << " ";
657 if (Flags & MTRF_LineBreakFollows)
658 OS << "\n";
661 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
662 Table.push_back(Value);
663 return Table;
666 //===- Matchers -----------------------------------------------------------===//
668 class OperandMatcher;
669 class MatchAction;
670 class PredicateMatcher;
671 class RuleMatcher;
673 class Matcher {
674 public:
675 virtual ~Matcher() = default;
676 virtual void optimize() {}
677 virtual void emit(MatchTable &Table) = 0;
679 virtual bool hasFirstCondition() const = 0;
680 virtual const PredicateMatcher &getFirstCondition() const = 0;
681 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
684 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
685 bool WithCoverage) {
686 MatchTable Table(WithCoverage);
687 for (Matcher *Rule : Rules)
688 Rule->emit(Table);
690 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
693 class GroupMatcher final : public Matcher {
694 /// Conditions that form a common prefix of all the matchers contained.
695 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
697 /// All the nested matchers, sharing a common prefix.
698 std::vector<Matcher *> Matchers;
700 /// An owning collection for any auxiliary matchers created while optimizing
701 /// nested matchers contained.
702 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
704 public:
705 /// Add a matcher to the collection of nested matchers if it meets the
706 /// requirements, and return true. If it doesn't, do nothing and return false.
708 /// Expected to preserve its argument, so it could be moved out later on.
709 bool addMatcher(Matcher &Candidate);
711 /// Mark the matcher as fully-built and ensure any invariants expected by both
712 /// optimize() and emit(...) methods. Generally, both sequences of calls
713 /// are expected to lead to a sensible result:
715 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
716 /// addMatcher(...)*; finalize(); emit(...);
718 /// or generally
720 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
722 /// Multiple calls to optimize() are expected to be handled gracefully, though
723 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
724 /// aren't generally supported. emit(...) is expected to be non-mutating and
725 /// producing the exact same results upon repeated calls.
727 /// addMatcher() calls after the finalize() call are not supported.
729 /// finalize() and optimize() are both allowed to mutate the contained
730 /// matchers, so moving them out after finalize() is not supported.
731 void finalize();
732 void optimize() override;
733 void emit(MatchTable &Table) override;
735 /// Could be used to move out the matchers added previously, unless finalize()
736 /// has been already called. If any of the matchers are moved out, the group
737 /// becomes safe to destroy, but not safe to re-use for anything else.
738 iterator_range<std::vector<Matcher *>::iterator> matchers() {
739 return make_range(Matchers.begin(), Matchers.end());
741 size_t size() const { return Matchers.size(); }
742 bool empty() const { return Matchers.empty(); }
744 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
745 assert(!Conditions.empty() &&
746 "Trying to pop a condition from a condition-less group");
747 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
748 Conditions.erase(Conditions.begin());
749 return P;
751 const PredicateMatcher &getFirstCondition() const override {
752 assert(!Conditions.empty() &&
753 "Trying to get a condition from a condition-less group");
754 return *Conditions.front();
756 bool hasFirstCondition() const override { return !Conditions.empty(); }
758 private:
759 /// See if a candidate matcher could be added to this group solely by
760 /// analyzing its first condition.
761 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
764 class SwitchMatcher : public Matcher {
765 /// All the nested matchers, representing distinct switch-cases. The first
766 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
767 /// matchers must share the same type and path to a value they check, in other
768 /// words, be isIdenticalDownToValue, but have different values they check
769 /// against.
770 std::vector<Matcher *> Matchers;
772 /// The representative condition, with a type and a path (InsnVarID and OpIdx
773 /// in most cases) shared by all the matchers contained.
774 std::unique_ptr<PredicateMatcher> Condition = nullptr;
776 /// Temporary set used to check that the case values don't repeat within the
777 /// same switch.
778 std::set<MatchTableRecord> Values;
780 /// An owning collection for any auxiliary matchers created while optimizing
781 /// nested matchers contained.
782 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
784 public:
785 bool addMatcher(Matcher &Candidate);
787 void finalize();
788 void emit(MatchTable &Table) override;
790 iterator_range<std::vector<Matcher *>::iterator> matchers() {
791 return make_range(Matchers.begin(), Matchers.end());
793 size_t size() const { return Matchers.size(); }
794 bool empty() const { return Matchers.empty(); }
796 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
797 // SwitchMatcher doesn't have a common first condition for its cases, as all
798 // the cases only share a kind of a value (a type and a path to it) they
799 // match, but deliberately differ in the actual value they match.
800 llvm_unreachable("Trying to pop a condition from a condition-less group");
802 const PredicateMatcher &getFirstCondition() const override {
803 llvm_unreachable("Trying to pop a condition from a condition-less group");
805 bool hasFirstCondition() const override { return false; }
807 private:
808 /// See if the predicate type has a Switch-implementation for it.
809 static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
811 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
813 /// emit()-helper
814 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
815 MatchTable &Table);
818 /// Generates code to check that a match rule matches.
819 class RuleMatcher : public Matcher {
820 public:
821 using ActionList = std::list<std::unique_ptr<MatchAction>>;
822 using action_iterator = ActionList::iterator;
824 protected:
825 /// A list of matchers that all need to succeed for the current rule to match.
826 /// FIXME: This currently supports a single match position but could be
827 /// extended to support multiple positions to support div/rem fusion or
828 /// load-multiple instructions.
829 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
830 MatchersTy Matchers;
832 /// A list of actions that need to be taken when all predicates in this rule
833 /// have succeeded.
834 ActionList Actions;
836 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
838 /// A map of instruction matchers to the local variables
839 DefinedInsnVariablesMap InsnVariableIDs;
841 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
843 // The set of instruction matchers that have not yet been claimed for mutation
844 // by a BuildMI.
845 MutatableInsnSet MutatableInsns;
847 /// A map of named operands defined by the matchers that may be referenced by
848 /// the renderers.
849 StringMap<OperandMatcher *> DefinedOperands;
851 /// A map of anonymous physical register operands defined by the matchers that
852 /// may be referenced by the renderers.
853 DenseMap<Record *, OperandMatcher *> PhysRegOperands;
855 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
856 unsigned NextInsnVarID;
858 /// ID for the next output instruction allocated with allocateOutputInsnID()
859 unsigned NextOutputInsnID;
861 /// ID for the next temporary register ID allocated with allocateTempRegID()
862 unsigned NextTempRegID;
864 std::vector<Record *> RequiredFeatures;
865 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
867 ArrayRef<SMLoc> SrcLoc;
869 typedef std::tuple<Record *, unsigned, unsigned>
870 DefinedComplexPatternSubOperand;
871 typedef StringMap<DefinedComplexPatternSubOperand>
872 DefinedComplexPatternSubOperandMap;
873 /// A map of Symbolic Names to ComplexPattern sub-operands.
874 DefinedComplexPatternSubOperandMap ComplexSubOperands;
875 /// A map used to for multiple referenced error check of ComplexSubOperand.
876 /// ComplexSubOperand can't be referenced multiple from different operands,
877 /// however multiple references from same operand are allowed since that is
878 /// how 'same operand checks' are generated.
879 StringMap<std::string> ComplexSubOperandsParentName;
881 uint64_t RuleID;
882 static uint64_t NextRuleID;
884 public:
885 RuleMatcher(ArrayRef<SMLoc> SrcLoc)
886 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
887 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
888 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
889 RuleID(NextRuleID++) {}
890 RuleMatcher(RuleMatcher &&Other) = default;
891 RuleMatcher &operator=(RuleMatcher &&Other) = default;
893 uint64_t getRuleID() const { return RuleID; }
895 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
896 void addRequiredFeature(Record *Feature);
897 const std::vector<Record *> &getRequiredFeatures() const;
899 template <class Kind, class... Args> Kind &addAction(Args &&... args);
900 template <class Kind, class... Args>
901 action_iterator insertAction(action_iterator InsertPt, Args &&... args);
903 /// Define an instruction without emitting any code to do so.
904 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
906 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
907 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
908 return InsnVariableIDs.begin();
910 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
911 return InsnVariableIDs.end();
913 iterator_range<typename DefinedInsnVariablesMap::const_iterator>
914 defined_insn_vars() const {
915 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
918 MutatableInsnSet::const_iterator mutatable_insns_begin() const {
919 return MutatableInsns.begin();
921 MutatableInsnSet::const_iterator mutatable_insns_end() const {
922 return MutatableInsns.end();
924 iterator_range<typename MutatableInsnSet::const_iterator>
925 mutatable_insns() const {
926 return make_range(mutatable_insns_begin(), mutatable_insns_end());
928 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
929 bool R = MutatableInsns.erase(InsnMatcher);
930 assert(R && "Reserving a mutatable insn that isn't available");
931 (void)R;
934 action_iterator actions_begin() { return Actions.begin(); }
935 action_iterator actions_end() { return Actions.end(); }
936 iterator_range<action_iterator> actions() {
937 return make_range(actions_begin(), actions_end());
940 void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
942 void definePhysRegOperand(Record *Reg, OperandMatcher &OM);
944 Error defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
945 unsigned RendererID, unsigned SubOperandID,
946 StringRef ParentSymbolicName) {
947 std::string ParentName(ParentSymbolicName);
948 if (ComplexSubOperands.count(SymbolicName)) {
949 const std::string &RecordedParentName =
950 ComplexSubOperandsParentName[SymbolicName];
951 if (RecordedParentName != ParentName)
952 return failedImport("Error: Complex suboperand " + SymbolicName +
953 " referenced by different operands: " +
954 RecordedParentName + " and " + ParentName + ".");
955 // Complex suboperand referenced more than once from same the operand is
956 // used to generate 'same operand check'. Emitting of
957 // GIR_ComplexSubOperandRenderer for them is already handled.
958 return Error::success();
961 ComplexSubOperands[SymbolicName] =
962 std::make_tuple(ComplexPattern, RendererID, SubOperandID);
963 ComplexSubOperandsParentName[SymbolicName] = ParentName;
965 return Error::success();
968 Optional<DefinedComplexPatternSubOperand>
969 getComplexSubOperand(StringRef SymbolicName) const {
970 const auto &I = ComplexSubOperands.find(SymbolicName);
971 if (I == ComplexSubOperands.end())
972 return None;
973 return I->second;
976 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
977 const OperandMatcher &getOperandMatcher(StringRef Name) const;
978 const OperandMatcher &getPhysRegOperandMatcher(Record *) const;
980 void optimize() override;
981 void emit(MatchTable &Table) override;
983 /// Compare the priority of this object and B.
985 /// Returns true if this object is more important than B.
986 bool isHigherPriorityThan(const RuleMatcher &B) const;
988 /// Report the maximum number of temporary operands needed by the rule
989 /// matcher.
990 unsigned countRendererFns() const;
992 std::unique_ptr<PredicateMatcher> popFirstCondition() override;
993 const PredicateMatcher &getFirstCondition() const override;
994 LLTCodeGen getFirstConditionAsRootType();
995 bool hasFirstCondition() const override;
996 unsigned getNumOperands() const;
997 StringRef getOpcode() const;
999 // FIXME: Remove this as soon as possible
1000 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
1002 unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
1003 unsigned allocateTempRegID() { return NextTempRegID++; }
1005 iterator_range<MatchersTy::iterator> insnmatchers() {
1006 return make_range(Matchers.begin(), Matchers.end());
1008 bool insnmatchers_empty() const { return Matchers.empty(); }
1009 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
1012 uint64_t RuleMatcher::NextRuleID = 0;
1014 using action_iterator = RuleMatcher::action_iterator;
1016 template <class PredicateTy> class PredicateListMatcher {
1017 private:
1018 /// Template instantiations should specialize this to return a string to use
1019 /// for the comment emitted when there are no predicates.
1020 std::string getNoPredicateComment() const;
1022 protected:
1023 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
1024 PredicatesTy Predicates;
1026 /// Track if the list of predicates was manipulated by one of the optimization
1027 /// methods.
1028 bool Optimized = false;
1030 public:
1031 typename PredicatesTy::iterator predicates_begin() {
1032 return Predicates.begin();
1034 typename PredicatesTy::iterator predicates_end() {
1035 return Predicates.end();
1037 iterator_range<typename PredicatesTy::iterator> predicates() {
1038 return make_range(predicates_begin(), predicates_end());
1040 typename PredicatesTy::size_type predicates_size() const {
1041 return Predicates.size();
1043 bool predicates_empty() const { return Predicates.empty(); }
1045 std::unique_ptr<PredicateTy> predicates_pop_front() {
1046 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
1047 Predicates.pop_front();
1048 Optimized = true;
1049 return Front;
1052 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
1053 Predicates.push_front(std::move(Predicate));
1056 void eraseNullPredicates() {
1057 const auto NewEnd =
1058 std::stable_partition(Predicates.begin(), Predicates.end(),
1059 std::logical_not<std::unique_ptr<PredicateTy>>());
1060 if (NewEnd != Predicates.begin()) {
1061 Predicates.erase(Predicates.begin(), NewEnd);
1062 Optimized = true;
1066 /// Emit MatchTable opcodes that tests whether all the predicates are met.
1067 template <class... Args>
1068 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
1069 if (Predicates.empty() && !Optimized) {
1070 Table << MatchTable::Comment(getNoPredicateComment())
1071 << MatchTable::LineBreak;
1072 return;
1075 for (const auto &Predicate : predicates())
1076 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1079 /// Provide a function to avoid emitting certain predicates. This is used to
1080 /// defer some predicate checks until after others
1081 using PredicateFilterFunc = std::function<bool(const PredicateTy&)>;
1083 /// Emit MatchTable opcodes for predicates which satisfy \p
1084 /// ShouldEmitPredicate. This should be called multiple times to ensure all
1085 /// predicates are eventually added to the match table.
1086 template <class... Args>
1087 void emitFilteredPredicateListOpcodes(PredicateFilterFunc ShouldEmitPredicate,
1088 MatchTable &Table, Args &&... args) {
1089 if (Predicates.empty() && !Optimized) {
1090 Table << MatchTable::Comment(getNoPredicateComment())
1091 << MatchTable::LineBreak;
1092 return;
1095 for (const auto &Predicate : predicates()) {
1096 if (ShouldEmitPredicate(*Predicate))
1097 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1102 class PredicateMatcher {
1103 public:
1104 /// This enum is used for RTTI and also defines the priority that is given to
1105 /// the predicate when generating the matcher code. Kinds with higher priority
1106 /// must be tested first.
1108 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1109 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1110 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1112 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1113 /// are currently not compared between each other.
1114 enum PredicateKind {
1115 IPM_Opcode,
1116 IPM_NumOperands,
1117 IPM_ImmPredicate,
1118 IPM_Imm,
1119 IPM_AtomicOrderingMMO,
1120 IPM_MemoryLLTSize,
1121 IPM_MemoryVsLLTSize,
1122 IPM_MemoryAddressSpace,
1123 IPM_MemoryAlignment,
1124 IPM_VectorSplatImm,
1125 IPM_GenericPredicate,
1126 OPM_SameOperand,
1127 OPM_ComplexPattern,
1128 OPM_IntrinsicID,
1129 OPM_CmpPredicate,
1130 OPM_Instruction,
1131 OPM_Int,
1132 OPM_LiteralInt,
1133 OPM_LLT,
1134 OPM_PointerToAny,
1135 OPM_RegBank,
1136 OPM_MBB,
1137 OPM_RecordNamedOperand,
1140 protected:
1141 PredicateKind Kind;
1142 unsigned InsnVarID;
1143 unsigned OpIdx;
1145 public:
1146 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1147 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1149 unsigned getInsnVarID() const { return InsnVarID; }
1150 unsigned getOpIdx() const { return OpIdx; }
1152 virtual ~PredicateMatcher() = default;
1153 /// Emit MatchTable opcodes that check the predicate for the given operand.
1154 virtual void emitPredicateOpcodes(MatchTable &Table,
1155 RuleMatcher &Rule) const = 0;
1157 PredicateKind getKind() const { return Kind; }
1159 bool dependsOnOperands() const {
1160 // Custom predicates really depend on the context pattern of the
1161 // instruction, not just the individual instruction. This therefore
1162 // implicitly depends on all other pattern constraints.
1163 return Kind == IPM_GenericPredicate;
1166 virtual bool isIdentical(const PredicateMatcher &B) const {
1167 return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1168 OpIdx == B.OpIdx;
1171 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1172 return hasValue() && PredicateMatcher::isIdentical(B);
1175 virtual MatchTableRecord getValue() const {
1176 assert(hasValue() && "Can not get a value of a value-less predicate!");
1177 llvm_unreachable("Not implemented yet");
1179 virtual bool hasValue() const { return false; }
1181 /// Report the maximum number of temporary operands needed by the predicate
1182 /// matcher.
1183 virtual unsigned countRendererFns() const { return 0; }
1186 /// Generates code to check a predicate of an operand.
1188 /// Typical predicates include:
1189 /// * Operand is a particular register.
1190 /// * Operand is assigned a particular register bank.
1191 /// * Operand is an MBB.
1192 class OperandPredicateMatcher : public PredicateMatcher {
1193 public:
1194 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1195 unsigned OpIdx)
1196 : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
1197 virtual ~OperandPredicateMatcher() {}
1199 /// Compare the priority of this object and B.
1201 /// Returns true if this object is more important than B.
1202 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1205 template <>
1206 std::string
1207 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1208 return "No operand predicates";
1211 /// Generates code to check that a register operand is defined by the same exact
1212 /// one as another.
1213 class SameOperandMatcher : public OperandPredicateMatcher {
1214 std::string MatchingName;
1216 public:
1217 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
1218 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1219 MatchingName(MatchingName) {}
1221 static bool classof(const PredicateMatcher *P) {
1222 return P->getKind() == OPM_SameOperand;
1225 void emitPredicateOpcodes(MatchTable &Table,
1226 RuleMatcher &Rule) const override;
1228 bool isIdentical(const PredicateMatcher &B) const override {
1229 return OperandPredicateMatcher::isIdentical(B) &&
1230 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1234 /// Generates code to check that an operand is a particular LLT.
1235 class LLTOperandMatcher : public OperandPredicateMatcher {
1236 protected:
1237 LLTCodeGen Ty;
1239 public:
1240 static std::map<LLTCodeGen, unsigned> TypeIDValues;
1242 static void initTypeIDValuesMap() {
1243 TypeIDValues.clear();
1245 unsigned ID = 0;
1246 for (const LLTCodeGen &LLTy : KnownTypes)
1247 TypeIDValues[LLTy] = ID++;
1250 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1251 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1252 KnownTypes.insert(Ty);
1255 static bool classof(const PredicateMatcher *P) {
1256 return P->getKind() == OPM_LLT;
1258 bool isIdentical(const PredicateMatcher &B) const override {
1259 return OperandPredicateMatcher::isIdentical(B) &&
1260 Ty == cast<LLTOperandMatcher>(&B)->Ty;
1262 MatchTableRecord getValue() const override {
1263 const auto VI = TypeIDValues.find(Ty);
1264 if (VI == TypeIDValues.end())
1265 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1266 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1268 bool hasValue() const override {
1269 if (TypeIDValues.size() != KnownTypes.size())
1270 initTypeIDValuesMap();
1271 return TypeIDValues.count(Ty);
1274 LLTCodeGen getTy() const { return Ty; }
1276 void emitPredicateOpcodes(MatchTable &Table,
1277 RuleMatcher &Rule) const override {
1278 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1279 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1280 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1281 << getValue() << MatchTable::LineBreak;
1285 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1287 /// Generates code to check that an operand is a pointer to any address space.
1289 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1290 /// result, iN is used to describe a pointer of N bits to any address space and
1291 /// PatFrag predicates are typically used to constrain the address space. There's
1292 /// no reliable means to derive the missing type information from the pattern so
1293 /// imported rules must test the components of a pointer separately.
1295 /// If SizeInBits is zero, then the pointer size will be obtained from the
1296 /// subtarget.
1297 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1298 protected:
1299 unsigned SizeInBits;
1301 public:
1302 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1303 unsigned SizeInBits)
1304 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1305 SizeInBits(SizeInBits) {}
1307 static bool classof(const PredicateMatcher *P) {
1308 return P->getKind() == OPM_PointerToAny;
1311 bool isIdentical(const PredicateMatcher &B) const override {
1312 return OperandPredicateMatcher::isIdentical(B) &&
1313 SizeInBits == cast<PointerToAnyOperandMatcher>(&B)->SizeInBits;
1316 void emitPredicateOpcodes(MatchTable &Table,
1317 RuleMatcher &Rule) const override {
1318 Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1319 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1320 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1321 << MatchTable::Comment("SizeInBits")
1322 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1326 /// Generates code to record named operand in RecordedOperands list at StoreIdx.
1327 /// Predicates with 'let PredicateCodeUsesOperands = 1' get RecordedOperands as
1328 /// an argument to predicate's c++ code once all operands have been matched.
1329 class RecordNamedOperandMatcher : public OperandPredicateMatcher {
1330 protected:
1331 unsigned StoreIdx;
1332 std::string Name;
1334 public:
1335 RecordNamedOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1336 unsigned StoreIdx, StringRef Name)
1337 : OperandPredicateMatcher(OPM_RecordNamedOperand, InsnVarID, OpIdx),
1338 StoreIdx(StoreIdx), Name(Name) {}
1340 static bool classof(const PredicateMatcher *P) {
1341 return P->getKind() == OPM_RecordNamedOperand;
1344 bool isIdentical(const PredicateMatcher &B) const override {
1345 return OperandPredicateMatcher::isIdentical(B) &&
1346 StoreIdx == cast<RecordNamedOperandMatcher>(&B)->StoreIdx &&
1347 Name == cast<RecordNamedOperandMatcher>(&B)->Name;
1350 void emitPredicateOpcodes(MatchTable &Table,
1351 RuleMatcher &Rule) const override {
1352 Table << MatchTable::Opcode("GIM_RecordNamedOperand")
1353 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1354 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1355 << MatchTable::Comment("StoreIdx") << MatchTable::IntValue(StoreIdx)
1356 << MatchTable::Comment("Name : " + Name) << MatchTable::LineBreak;
1360 /// Generates code to check that an operand is a particular target constant.
1361 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1362 protected:
1363 const OperandMatcher &Operand;
1364 const Record &TheDef;
1366 unsigned getAllocatedTemporariesBaseID() const;
1368 public:
1369 bool isIdentical(const PredicateMatcher &B) const override { return false; }
1371 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1372 const OperandMatcher &Operand,
1373 const Record &TheDef)
1374 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1375 Operand(Operand), TheDef(TheDef) {}
1377 static bool classof(const PredicateMatcher *P) {
1378 return P->getKind() == OPM_ComplexPattern;
1381 void emitPredicateOpcodes(MatchTable &Table,
1382 RuleMatcher &Rule) const override {
1383 unsigned ID = getAllocatedTemporariesBaseID();
1384 Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1385 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1386 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1387 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1388 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1389 << MatchTable::LineBreak;
1392 unsigned countRendererFns() const override {
1393 return 1;
1397 /// Generates code to check that an operand is in a particular register bank.
1398 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1399 protected:
1400 const CodeGenRegisterClass &RC;
1402 public:
1403 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1404 const CodeGenRegisterClass &RC)
1405 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1407 bool isIdentical(const PredicateMatcher &B) const override {
1408 return OperandPredicateMatcher::isIdentical(B) &&
1409 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1412 static bool classof(const PredicateMatcher *P) {
1413 return P->getKind() == OPM_RegBank;
1416 void emitPredicateOpcodes(MatchTable &Table,
1417 RuleMatcher &Rule) const override {
1418 Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1419 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1420 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1421 << MatchTable::Comment("RC")
1422 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1423 << MatchTable::LineBreak;
1427 /// Generates code to check that an operand is a basic block.
1428 class MBBOperandMatcher : public OperandPredicateMatcher {
1429 public:
1430 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1431 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1433 static bool classof(const PredicateMatcher *P) {
1434 return P->getKind() == OPM_MBB;
1437 void emitPredicateOpcodes(MatchTable &Table,
1438 RuleMatcher &Rule) const override {
1439 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1440 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1441 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1445 class ImmOperandMatcher : public OperandPredicateMatcher {
1446 public:
1447 ImmOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1448 : OperandPredicateMatcher(IPM_Imm, InsnVarID, OpIdx) {}
1450 static bool classof(const PredicateMatcher *P) {
1451 return P->getKind() == IPM_Imm;
1454 void emitPredicateOpcodes(MatchTable &Table,
1455 RuleMatcher &Rule) const override {
1456 Table << MatchTable::Opcode("GIM_CheckIsImm") << MatchTable::Comment("MI")
1457 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1458 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1462 /// Generates code to check that an operand is a G_CONSTANT with a particular
1463 /// int.
1464 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1465 protected:
1466 int64_t Value;
1468 public:
1469 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1470 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1472 bool isIdentical(const PredicateMatcher &B) const override {
1473 return OperandPredicateMatcher::isIdentical(B) &&
1474 Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1477 static bool classof(const PredicateMatcher *P) {
1478 return P->getKind() == OPM_Int;
1481 void emitPredicateOpcodes(MatchTable &Table,
1482 RuleMatcher &Rule) const override {
1483 Table << MatchTable::Opcode("GIM_CheckConstantInt")
1484 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1485 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1486 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1490 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1491 /// MO.isCImm() is true).
1492 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1493 protected:
1494 int64_t Value;
1496 public:
1497 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1498 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1499 Value(Value) {}
1501 bool isIdentical(const PredicateMatcher &B) const override {
1502 return OperandPredicateMatcher::isIdentical(B) &&
1503 Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1506 static bool classof(const PredicateMatcher *P) {
1507 return P->getKind() == OPM_LiteralInt;
1510 void emitPredicateOpcodes(MatchTable &Table,
1511 RuleMatcher &Rule) const override {
1512 Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1513 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1514 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1515 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1519 /// Generates code to check that an operand is an CmpInst predicate
1520 class CmpPredicateOperandMatcher : public OperandPredicateMatcher {
1521 protected:
1522 std::string PredName;
1524 public:
1525 CmpPredicateOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1526 std::string P)
1527 : OperandPredicateMatcher(OPM_CmpPredicate, InsnVarID, OpIdx), PredName(P) {}
1529 bool isIdentical(const PredicateMatcher &B) const override {
1530 return OperandPredicateMatcher::isIdentical(B) &&
1531 PredName == cast<CmpPredicateOperandMatcher>(&B)->PredName;
1534 static bool classof(const PredicateMatcher *P) {
1535 return P->getKind() == OPM_CmpPredicate;
1538 void emitPredicateOpcodes(MatchTable &Table,
1539 RuleMatcher &Rule) const override {
1540 Table << MatchTable::Opcode("GIM_CheckCmpPredicate")
1541 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1542 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1543 << MatchTable::Comment("Predicate")
1544 << MatchTable::NamedValue("CmpInst", PredName)
1545 << MatchTable::LineBreak;
1549 /// Generates code to check that an operand is an intrinsic ID.
1550 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1551 protected:
1552 const CodeGenIntrinsic *II;
1554 public:
1555 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1556 const CodeGenIntrinsic *II)
1557 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1559 bool isIdentical(const PredicateMatcher &B) const override {
1560 return OperandPredicateMatcher::isIdentical(B) &&
1561 II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1564 static bool classof(const PredicateMatcher *P) {
1565 return P->getKind() == OPM_IntrinsicID;
1568 void emitPredicateOpcodes(MatchTable &Table,
1569 RuleMatcher &Rule) const override {
1570 Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1571 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1572 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1573 << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1574 << MatchTable::LineBreak;
1578 /// Generates code to check that this operand is an immediate whose value meets
1579 /// an immediate predicate.
1580 class OperandImmPredicateMatcher : public OperandPredicateMatcher {
1581 protected:
1582 TreePredicateFn Predicate;
1584 public:
1585 OperandImmPredicateMatcher(unsigned InsnVarID, unsigned OpIdx,
1586 const TreePredicateFn &Predicate)
1587 : OperandPredicateMatcher(IPM_ImmPredicate, InsnVarID, OpIdx),
1588 Predicate(Predicate) {}
1590 bool isIdentical(const PredicateMatcher &B) const override {
1591 return OperandPredicateMatcher::isIdentical(B) &&
1592 Predicate.getOrigPatFragRecord() ==
1593 cast<OperandImmPredicateMatcher>(&B)
1594 ->Predicate.getOrigPatFragRecord();
1597 static bool classof(const PredicateMatcher *P) {
1598 return P->getKind() == IPM_ImmPredicate;
1601 void emitPredicateOpcodes(MatchTable &Table,
1602 RuleMatcher &Rule) const override {
1603 Table << MatchTable::Opcode("GIM_CheckImmOperandPredicate")
1604 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1605 << MatchTable::Comment("MO") << MatchTable::IntValue(OpIdx)
1606 << MatchTable::Comment("Predicate")
1607 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1608 << MatchTable::LineBreak;
1612 /// Generates code to check that a set of predicates match for a particular
1613 /// operand.
1614 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1615 protected:
1616 InstructionMatcher &Insn;
1617 unsigned OpIdx;
1618 std::string SymbolicName;
1620 /// The index of the first temporary variable allocated to this operand. The
1621 /// number of allocated temporaries can be found with
1622 /// countRendererFns().
1623 unsigned AllocatedTemporariesBaseID;
1625 public:
1626 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1627 const std::string &SymbolicName,
1628 unsigned AllocatedTemporariesBaseID)
1629 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1630 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1632 bool hasSymbolicName() const { return !SymbolicName.empty(); }
1633 StringRef getSymbolicName() const { return SymbolicName; }
1634 void setSymbolicName(StringRef Name) {
1635 assert(SymbolicName.empty() && "Operand already has a symbolic name");
1636 SymbolicName = std::string(Name);
1639 /// Construct a new operand predicate and add it to the matcher.
1640 template <class Kind, class... Args>
1641 Optional<Kind *> addPredicate(Args &&... args) {
1642 if (isSameAsAnotherOperand())
1643 return None;
1644 Predicates.emplace_back(std::make_unique<Kind>(
1645 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1646 return static_cast<Kind *>(Predicates.back().get());
1649 unsigned getOpIdx() const { return OpIdx; }
1650 unsigned getInsnVarID() const;
1652 std::string getOperandExpr(unsigned InsnVarID) const {
1653 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1654 llvm::to_string(OpIdx) + ")";
1657 InstructionMatcher &getInstructionMatcher() const { return Insn; }
1659 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1660 bool OperandIsAPointer);
1662 /// Emit MatchTable opcodes that test whether the instruction named in
1663 /// InsnVarID matches all the predicates and all the operands.
1664 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1665 if (!Optimized) {
1666 std::string Comment;
1667 raw_string_ostream CommentOS(Comment);
1668 CommentOS << "MIs[" << getInsnVarID() << "] ";
1669 if (SymbolicName.empty())
1670 CommentOS << "Operand " << OpIdx;
1671 else
1672 CommentOS << SymbolicName;
1673 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1676 emitPredicateListOpcodes(Table, Rule);
1679 /// Compare the priority of this object and B.
1681 /// Returns true if this object is more important than B.
1682 bool isHigherPriorityThan(OperandMatcher &B) {
1683 // Operand matchers involving more predicates have higher priority.
1684 if (predicates_size() > B.predicates_size())
1685 return true;
1686 if (predicates_size() < B.predicates_size())
1687 return false;
1689 // This assumes that predicates are added in a consistent order.
1690 for (auto &&Predicate : zip(predicates(), B.predicates())) {
1691 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1692 return true;
1693 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1694 return false;
1697 return false;
1700 /// Report the maximum number of temporary operands needed by the operand
1701 /// matcher.
1702 unsigned countRendererFns() {
1703 return std::accumulate(
1704 predicates().begin(), predicates().end(), 0,
1705 [](unsigned A,
1706 const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1707 return A + Predicate->countRendererFns();
1711 unsigned getAllocatedTemporariesBaseID() const {
1712 return AllocatedTemporariesBaseID;
1715 bool isSameAsAnotherOperand() {
1716 for (const auto &Predicate : predicates())
1717 if (isa<SameOperandMatcher>(Predicate))
1718 return true;
1719 return false;
1723 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1724 bool OperandIsAPointer) {
1725 if (!VTy.isMachineValueType())
1726 return failedImport("unsupported typeset");
1728 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1729 addPredicate<PointerToAnyOperandMatcher>(0);
1730 return Error::success();
1733 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1734 if (!OpTyOrNone)
1735 return failedImport("unsupported type");
1737 if (OperandIsAPointer)
1738 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1739 else if (VTy.isPointer())
1740 addPredicate<LLTOperandMatcher>(LLT::pointer(VTy.getPtrAddrSpace(),
1741 OpTyOrNone->get().getSizeInBits()));
1742 else
1743 addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1744 return Error::success();
1747 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1748 return Operand.getAllocatedTemporariesBaseID();
1751 /// Generates code to check a predicate on an instruction.
1753 /// Typical predicates include:
1754 /// * The opcode of the instruction is a particular value.
1755 /// * The nsw/nuw flag is/isn't set.
1756 class InstructionPredicateMatcher : public PredicateMatcher {
1757 public:
1758 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1759 : PredicateMatcher(Kind, InsnVarID) {}
1760 virtual ~InstructionPredicateMatcher() {}
1762 /// Compare the priority of this object and B.
1764 /// Returns true if this object is more important than B.
1765 virtual bool
1766 isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1767 return Kind < B.Kind;
1771 template <>
1772 std::string
1773 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1774 return "No instruction predicates";
1777 /// Generates code to check the opcode of an instruction.
1778 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1779 protected:
1780 // Allow matching one to several, similar opcodes that share properties. This
1781 // is to handle patterns where one SelectionDAG operation maps to multiple
1782 // GlobalISel ones (e.g. G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC). The first
1783 // is treated as the canonical opcode.
1784 SmallVector<const CodeGenInstruction *, 2> Insts;
1786 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1789 MatchTableRecord getInstValue(const CodeGenInstruction *I) const {
1790 const auto VI = OpcodeValues.find(I);
1791 if (VI != OpcodeValues.end())
1792 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1793 VI->second);
1794 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1797 public:
1798 static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1799 OpcodeValues.clear();
1801 unsigned OpcodeValue = 0;
1802 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1803 OpcodeValues[I] = OpcodeValue++;
1806 InstructionOpcodeMatcher(unsigned InsnVarID,
1807 ArrayRef<const CodeGenInstruction *> I)
1808 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID),
1809 Insts(I.begin(), I.end()) {
1810 assert((Insts.size() == 1 || Insts.size() == 2) &&
1811 "unexpected number of opcode alternatives");
1814 static bool classof(const PredicateMatcher *P) {
1815 return P->getKind() == IPM_Opcode;
1818 bool isIdentical(const PredicateMatcher &B) const override {
1819 return InstructionPredicateMatcher::isIdentical(B) &&
1820 Insts == cast<InstructionOpcodeMatcher>(&B)->Insts;
1823 bool hasValue() const override {
1824 return Insts.size() == 1 && OpcodeValues.count(Insts[0]);
1827 // TODO: This is used for the SwitchMatcher optimization. We should be able to
1828 // return a list of the opcodes to match.
1829 MatchTableRecord getValue() const override {
1830 assert(Insts.size() == 1);
1832 const CodeGenInstruction *I = Insts[0];
1833 const auto VI = OpcodeValues.find(I);
1834 if (VI != OpcodeValues.end())
1835 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1836 VI->second);
1837 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1840 void emitPredicateOpcodes(MatchTable &Table,
1841 RuleMatcher &Rule) const override {
1842 StringRef CheckType = Insts.size() == 1 ?
1843 "GIM_CheckOpcode" : "GIM_CheckOpcodeIsEither";
1844 Table << MatchTable::Opcode(CheckType) << MatchTable::Comment("MI")
1845 << MatchTable::IntValue(InsnVarID);
1847 for (const CodeGenInstruction *I : Insts)
1848 Table << getInstValue(I);
1849 Table << MatchTable::LineBreak;
1852 /// Compare the priority of this object and B.
1854 /// Returns true if this object is more important than B.
1855 bool
1856 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1857 if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1858 return true;
1859 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1860 return false;
1862 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1863 // this is cosmetic at the moment, we may want to drive a similar ordering
1864 // using instruction frequency information to improve compile time.
1865 if (const InstructionOpcodeMatcher *BO =
1866 dyn_cast<InstructionOpcodeMatcher>(&B))
1867 return Insts[0]->TheDef->getName() < BO->Insts[0]->TheDef->getName();
1869 return false;
1872 bool isConstantInstruction() const {
1873 return Insts.size() == 1 && Insts[0]->TheDef->getName() == "G_CONSTANT";
1876 // The first opcode is the canonical opcode, and later are alternatives.
1877 StringRef getOpcode() const {
1878 return Insts[0]->TheDef->getName();
1881 ArrayRef<const CodeGenInstruction *> getAlternativeOpcodes() {
1882 return Insts;
1885 bool isVariadicNumOperands() const {
1886 // If one is variadic, they all should be.
1887 return Insts[0]->Operands.isVariadic;
1890 StringRef getOperandType(unsigned OpIdx) const {
1891 // Types expected to be uniform for all alternatives.
1892 return Insts[0]->Operands[OpIdx].OperandType;
1896 DenseMap<const CodeGenInstruction *, unsigned>
1897 InstructionOpcodeMatcher::OpcodeValues;
1899 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1900 unsigned NumOperands = 0;
1902 public:
1903 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1904 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1905 NumOperands(NumOperands) {}
1907 static bool classof(const PredicateMatcher *P) {
1908 return P->getKind() == IPM_NumOperands;
1911 bool isIdentical(const PredicateMatcher &B) const override {
1912 return InstructionPredicateMatcher::isIdentical(B) &&
1913 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1916 void emitPredicateOpcodes(MatchTable &Table,
1917 RuleMatcher &Rule) const override {
1918 Table << MatchTable::Opcode("GIM_CheckNumOperands")
1919 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1920 << MatchTable::Comment("Expected")
1921 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1925 /// Generates code to check that this instruction is a constant whose value
1926 /// meets an immediate predicate.
1928 /// Immediates are slightly odd since they are typically used like an operand
1929 /// but are represented as an operator internally. We typically write simm8:$src
1930 /// in a tablegen pattern, but this is just syntactic sugar for
1931 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1932 /// that will be matched and the predicate (which is attached to the imm
1933 /// operator) that will be tested. In SelectionDAG this describes a
1934 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1936 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1937 /// this representation, the immediate could be tested with an
1938 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1939 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1940 /// there are two implementation issues with producing that matcher
1941 /// configuration from the SelectionDAG pattern:
1942 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1943 /// were we to sink the immediate predicate to the operand we would have to
1944 /// have two partial implementations of PatFrag support, one for immediates
1945 /// and one for non-immediates.
1946 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1947 /// created yet. If we were to sink the predicate to the OperandMatcher we
1948 /// would also have to complicate (or duplicate) the code that descends and
1949 /// creates matchers for the subtree.
1950 /// Overall, it's simpler to handle it in the place it was found.
1951 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1952 protected:
1953 TreePredicateFn Predicate;
1955 public:
1956 InstructionImmPredicateMatcher(unsigned InsnVarID,
1957 const TreePredicateFn &Predicate)
1958 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1959 Predicate(Predicate) {}
1961 bool isIdentical(const PredicateMatcher &B) const override {
1962 return InstructionPredicateMatcher::isIdentical(B) &&
1963 Predicate.getOrigPatFragRecord() ==
1964 cast<InstructionImmPredicateMatcher>(&B)
1965 ->Predicate.getOrigPatFragRecord();
1968 static bool classof(const PredicateMatcher *P) {
1969 return P->getKind() == IPM_ImmPredicate;
1972 void emitPredicateOpcodes(MatchTable &Table,
1973 RuleMatcher &Rule) const override {
1974 Table << MatchTable::Opcode(getMatchOpcodeForImmPredicate(Predicate))
1975 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1976 << MatchTable::Comment("Predicate")
1977 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1978 << MatchTable::LineBreak;
1982 /// Generates code to check that a memory instruction has a atomic ordering
1983 /// MachineMemoryOperand.
1984 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1985 public:
1986 enum AOComparator {
1987 AO_Exactly,
1988 AO_OrStronger,
1989 AO_WeakerThan,
1992 protected:
1993 StringRef Order;
1994 AOComparator Comparator;
1996 public:
1997 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1998 AOComparator Comparator = AO_Exactly)
1999 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
2000 Order(Order), Comparator(Comparator) {}
2002 static bool classof(const PredicateMatcher *P) {
2003 return P->getKind() == IPM_AtomicOrderingMMO;
2006 bool isIdentical(const PredicateMatcher &B) const override {
2007 if (!InstructionPredicateMatcher::isIdentical(B))
2008 return false;
2009 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
2010 return Order == R.Order && Comparator == R.Comparator;
2013 void emitPredicateOpcodes(MatchTable &Table,
2014 RuleMatcher &Rule) const override {
2015 StringRef Opcode = "GIM_CheckAtomicOrdering";
2017 if (Comparator == AO_OrStronger)
2018 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
2019 if (Comparator == AO_WeakerThan)
2020 Opcode = "GIM_CheckAtomicOrderingWeakerThan";
2022 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
2023 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
2024 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
2025 << MatchTable::LineBreak;
2029 /// Generates code to check that the size of an MMO is exactly N bytes.
2030 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
2031 protected:
2032 unsigned MMOIdx;
2033 uint64_t Size;
2035 public:
2036 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
2037 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
2038 MMOIdx(MMOIdx), Size(Size) {}
2040 static bool classof(const PredicateMatcher *P) {
2041 return P->getKind() == IPM_MemoryLLTSize;
2043 bool isIdentical(const PredicateMatcher &B) const override {
2044 return InstructionPredicateMatcher::isIdentical(B) &&
2045 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
2046 Size == cast<MemorySizePredicateMatcher>(&B)->Size;
2049 void emitPredicateOpcodes(MatchTable &Table,
2050 RuleMatcher &Rule) const override {
2051 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
2052 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2053 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2054 << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
2055 << MatchTable::LineBreak;
2059 class MemoryAddressSpacePredicateMatcher : public InstructionPredicateMatcher {
2060 protected:
2061 unsigned MMOIdx;
2062 SmallVector<unsigned, 4> AddrSpaces;
2064 public:
2065 MemoryAddressSpacePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2066 ArrayRef<unsigned> AddrSpaces)
2067 : InstructionPredicateMatcher(IPM_MemoryAddressSpace, InsnVarID),
2068 MMOIdx(MMOIdx), AddrSpaces(AddrSpaces.begin(), AddrSpaces.end()) {}
2070 static bool classof(const PredicateMatcher *P) {
2071 return P->getKind() == IPM_MemoryAddressSpace;
2073 bool isIdentical(const PredicateMatcher &B) const override {
2074 if (!InstructionPredicateMatcher::isIdentical(B))
2075 return false;
2076 auto *Other = cast<MemoryAddressSpacePredicateMatcher>(&B);
2077 return MMOIdx == Other->MMOIdx && AddrSpaces == Other->AddrSpaces;
2080 void emitPredicateOpcodes(MatchTable &Table,
2081 RuleMatcher &Rule) const override {
2082 Table << MatchTable::Opcode("GIM_CheckMemoryAddressSpace")
2083 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2084 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2085 // Encode number of address spaces to expect.
2086 << MatchTable::Comment("NumAddrSpace")
2087 << MatchTable::IntValue(AddrSpaces.size());
2088 for (unsigned AS : AddrSpaces)
2089 Table << MatchTable::Comment("AddrSpace") << MatchTable::IntValue(AS);
2091 Table << MatchTable::LineBreak;
2095 class MemoryAlignmentPredicateMatcher : public InstructionPredicateMatcher {
2096 protected:
2097 unsigned MMOIdx;
2098 int MinAlign;
2100 public:
2101 MemoryAlignmentPredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2102 int MinAlign)
2103 : InstructionPredicateMatcher(IPM_MemoryAlignment, InsnVarID),
2104 MMOIdx(MMOIdx), MinAlign(MinAlign) {
2105 assert(MinAlign > 0);
2108 static bool classof(const PredicateMatcher *P) {
2109 return P->getKind() == IPM_MemoryAlignment;
2112 bool isIdentical(const PredicateMatcher &B) const override {
2113 if (!InstructionPredicateMatcher::isIdentical(B))
2114 return false;
2115 auto *Other = cast<MemoryAlignmentPredicateMatcher>(&B);
2116 return MMOIdx == Other->MMOIdx && MinAlign == Other->MinAlign;
2119 void emitPredicateOpcodes(MatchTable &Table,
2120 RuleMatcher &Rule) const override {
2121 Table << MatchTable::Opcode("GIM_CheckMemoryAlignment")
2122 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2123 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2124 << MatchTable::Comment("MinAlign") << MatchTable::IntValue(MinAlign)
2125 << MatchTable::LineBreak;
2129 /// Generates code to check that the size of an MMO is less-than, equal-to, or
2130 /// greater than a given LLT.
2131 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
2132 public:
2133 enum RelationKind {
2134 GreaterThan,
2135 EqualTo,
2136 LessThan,
2139 protected:
2140 unsigned MMOIdx;
2141 RelationKind Relation;
2142 unsigned OpIdx;
2144 public:
2145 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
2146 enum RelationKind Relation,
2147 unsigned OpIdx)
2148 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
2149 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
2151 static bool classof(const PredicateMatcher *P) {
2152 return P->getKind() == IPM_MemoryVsLLTSize;
2154 bool isIdentical(const PredicateMatcher &B) const override {
2155 return InstructionPredicateMatcher::isIdentical(B) &&
2156 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
2157 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
2158 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
2161 void emitPredicateOpcodes(MatchTable &Table,
2162 RuleMatcher &Rule) const override {
2163 Table << MatchTable::Opcode(Relation == EqualTo
2164 ? "GIM_CheckMemorySizeEqualToLLT"
2165 : Relation == GreaterThan
2166 ? "GIM_CheckMemorySizeGreaterThanLLT"
2167 : "GIM_CheckMemorySizeLessThanLLT")
2168 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2169 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
2170 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
2171 << MatchTable::LineBreak;
2175 // Matcher for immAllOnesV/immAllZerosV
2176 class VectorSplatImmPredicateMatcher : public InstructionPredicateMatcher {
2177 public:
2178 enum SplatKind {
2179 AllZeros,
2180 AllOnes
2183 private:
2184 SplatKind Kind;
2186 public:
2187 VectorSplatImmPredicateMatcher(unsigned InsnVarID, SplatKind K)
2188 : InstructionPredicateMatcher(IPM_VectorSplatImm, InsnVarID), Kind(K) {}
2190 static bool classof(const PredicateMatcher *P) {
2191 return P->getKind() == IPM_VectorSplatImm;
2194 bool isIdentical(const PredicateMatcher &B) const override {
2195 return InstructionPredicateMatcher::isIdentical(B) &&
2196 Kind == static_cast<const VectorSplatImmPredicateMatcher &>(B).Kind;
2199 void emitPredicateOpcodes(MatchTable &Table,
2200 RuleMatcher &Rule) const override {
2201 if (Kind == AllOnes)
2202 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllOnes");
2203 else
2204 Table << MatchTable::Opcode("GIM_CheckIsBuildVectorAllZeros");
2206 Table << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID);
2207 Table << MatchTable::LineBreak;
2211 /// Generates code to check an arbitrary C++ instruction predicate.
2212 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
2213 protected:
2214 TreePredicateFn Predicate;
2216 public:
2217 GenericInstructionPredicateMatcher(unsigned InsnVarID,
2218 TreePredicateFn Predicate)
2219 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
2220 Predicate(Predicate) {}
2222 static bool classof(const InstructionPredicateMatcher *P) {
2223 return P->getKind() == IPM_GenericPredicate;
2225 bool isIdentical(const PredicateMatcher &B) const override {
2226 return InstructionPredicateMatcher::isIdentical(B) &&
2227 Predicate ==
2228 static_cast<const GenericInstructionPredicateMatcher &>(B)
2229 .Predicate;
2231 void emitPredicateOpcodes(MatchTable &Table,
2232 RuleMatcher &Rule) const override {
2233 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
2234 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2235 << MatchTable::Comment("FnId")
2236 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
2237 << MatchTable::LineBreak;
2241 /// Generates code to check that a set of predicates and operands match for a
2242 /// particular instruction.
2244 /// Typical predicates include:
2245 /// * Has a specific opcode.
2246 /// * Has an nsw/nuw flag or doesn't.
2247 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
2248 protected:
2249 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
2251 RuleMatcher &Rule;
2253 /// The operands to match. All rendered operands must be present even if the
2254 /// condition is always true.
2255 OperandVec Operands;
2256 bool NumOperandsCheck = true;
2258 std::string SymbolicName;
2259 unsigned InsnVarID;
2261 /// PhysRegInputs - List list has an entry for each explicitly specified
2262 /// physreg input to the pattern. The first elt is the Register node, the
2263 /// second is the recorded slot number the input pattern match saved it in.
2264 SmallVector<std::pair<Record *, unsigned>, 2> PhysRegInputs;
2266 public:
2267 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName,
2268 bool NumOpsCheck = true)
2269 : Rule(Rule), NumOperandsCheck(NumOpsCheck), SymbolicName(SymbolicName) {
2270 // We create a new instruction matcher.
2271 // Get a new ID for that instruction.
2272 InsnVarID = Rule.implicitlyDefineInsnVar(*this);
2275 /// Construct a new instruction predicate and add it to the matcher.
2276 template <class Kind, class... Args>
2277 Optional<Kind *> addPredicate(Args &&... args) {
2278 Predicates.emplace_back(
2279 std::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
2280 return static_cast<Kind *>(Predicates.back().get());
2283 RuleMatcher &getRuleMatcher() const { return Rule; }
2285 unsigned getInsnVarID() const { return InsnVarID; }
2287 /// Add an operand to the matcher.
2288 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
2289 unsigned AllocatedTemporariesBaseID) {
2290 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
2291 AllocatedTemporariesBaseID));
2292 if (!SymbolicName.empty())
2293 Rule.defineOperand(SymbolicName, *Operands.back());
2295 return *Operands.back();
2298 OperandMatcher &getOperand(unsigned OpIdx) {
2299 auto I = llvm::find_if(Operands,
2300 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
2301 return X->getOpIdx() == OpIdx;
2303 if (I != Operands.end())
2304 return **I;
2305 llvm_unreachable("Failed to lookup operand");
2308 OperandMatcher &addPhysRegInput(Record *Reg, unsigned OpIdx,
2309 unsigned TempOpIdx) {
2310 assert(SymbolicName.empty());
2311 OperandMatcher *OM = new OperandMatcher(*this, OpIdx, "", TempOpIdx);
2312 Operands.emplace_back(OM);
2313 Rule.definePhysRegOperand(Reg, *OM);
2314 PhysRegInputs.emplace_back(Reg, OpIdx);
2315 return *OM;
2318 ArrayRef<std::pair<Record *, unsigned>> getPhysRegInputs() const {
2319 return PhysRegInputs;
2322 StringRef getSymbolicName() const { return SymbolicName; }
2323 unsigned getNumOperands() const { return Operands.size(); }
2324 OperandVec::iterator operands_begin() { return Operands.begin(); }
2325 OperandVec::iterator operands_end() { return Operands.end(); }
2326 iterator_range<OperandVec::iterator> operands() {
2327 return make_range(operands_begin(), operands_end());
2329 OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
2330 OperandVec::const_iterator operands_end() const { return Operands.end(); }
2331 iterator_range<OperandVec::const_iterator> operands() const {
2332 return make_range(operands_begin(), operands_end());
2334 bool operands_empty() const { return Operands.empty(); }
2336 void pop_front() { Operands.erase(Operands.begin()); }
2338 void optimize();
2340 /// Emit MatchTable opcodes that test whether the instruction named in
2341 /// InsnVarName matches all the predicates and all the operands.
2342 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
2343 if (NumOperandsCheck)
2344 InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
2345 .emitPredicateOpcodes(Table, Rule);
2347 // First emit all instruction level predicates need to be verified before we
2348 // can verify operands.
2349 emitFilteredPredicateListOpcodes(
2350 [](const PredicateMatcher &P) {
2351 return !P.dependsOnOperands();
2352 }, Table, Rule);
2354 // Emit all operand constraints.
2355 for (const auto &Operand : Operands)
2356 Operand->emitPredicateOpcodes(Table, Rule);
2358 // All of the tablegen defined predicates should now be matched. Now emit
2359 // any custom predicates that rely on all generated checks.
2360 emitFilteredPredicateListOpcodes(
2361 [](const PredicateMatcher &P) {
2362 return P.dependsOnOperands();
2363 }, Table, Rule);
2366 /// Compare the priority of this object and B.
2368 /// Returns true if this object is more important than B.
2369 bool isHigherPriorityThan(InstructionMatcher &B) {
2370 // Instruction matchers involving more operands have higher priority.
2371 if (Operands.size() > B.Operands.size())
2372 return true;
2373 if (Operands.size() < B.Operands.size())
2374 return false;
2376 for (auto &&P : zip(predicates(), B.predicates())) {
2377 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
2378 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
2379 if (L->isHigherPriorityThan(*R))
2380 return true;
2381 if (R->isHigherPriorityThan(*L))
2382 return false;
2385 for (auto Operand : zip(Operands, B.Operands)) {
2386 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
2387 return true;
2388 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
2389 return false;
2392 return false;
2395 /// Report the maximum number of temporary operands needed by the instruction
2396 /// matcher.
2397 unsigned countRendererFns() {
2398 return std::accumulate(
2399 predicates().begin(), predicates().end(), 0,
2400 [](unsigned A,
2401 const std::unique_ptr<PredicateMatcher> &Predicate) {
2402 return A + Predicate->countRendererFns();
2403 }) +
2404 std::accumulate(
2405 Operands.begin(), Operands.end(), 0,
2406 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
2407 return A + Operand->countRendererFns();
2411 InstructionOpcodeMatcher &getOpcodeMatcher() {
2412 for (auto &P : predicates())
2413 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
2414 return *OpMatcher;
2415 llvm_unreachable("Didn't find an opcode matcher");
2418 bool isConstantInstruction() {
2419 return getOpcodeMatcher().isConstantInstruction();
2422 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
2425 StringRef RuleMatcher::getOpcode() const {
2426 return Matchers.front()->getOpcode();
2429 unsigned RuleMatcher::getNumOperands() const {
2430 return Matchers.front()->getNumOperands();
2433 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2434 InstructionMatcher &InsnMatcher = *Matchers.front();
2435 if (!InsnMatcher.predicates_empty())
2436 if (const auto *TM =
2437 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2438 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2439 return TM->getTy();
2440 return {};
2443 /// Generates code to check that the operand is a register defined by an
2444 /// instruction that matches the given instruction matcher.
2446 /// For example, the pattern:
2447 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2448 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2449 /// the:
2450 /// (G_ADD $src1, $src2)
2451 /// subpattern.
2452 class InstructionOperandMatcher : public OperandPredicateMatcher {
2453 protected:
2454 std::unique_ptr<InstructionMatcher> InsnMatcher;
2456 public:
2457 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2458 RuleMatcher &Rule, StringRef SymbolicName,
2459 bool NumOpsCheck = true)
2460 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2461 InsnMatcher(new InstructionMatcher(Rule, SymbolicName, NumOpsCheck)) {}
2463 static bool classof(const PredicateMatcher *P) {
2464 return P->getKind() == OPM_Instruction;
2467 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2469 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2470 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2471 Table << MatchTable::Opcode("GIM_RecordInsn")
2472 << MatchTable::Comment("DefineMI")
2473 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2474 << MatchTable::IntValue(getInsnVarID())
2475 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2476 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2477 << MatchTable::LineBreak;
2480 void emitPredicateOpcodes(MatchTable &Table,
2481 RuleMatcher &Rule) const override {
2482 emitCaptureOpcodes(Table, Rule);
2483 InsnMatcher->emitPredicateOpcodes(Table, Rule);
2486 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2487 if (OperandPredicateMatcher::isHigherPriorityThan(B))
2488 return true;
2489 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2490 return false;
2492 if (const InstructionOperandMatcher *BP =
2493 dyn_cast<InstructionOperandMatcher>(&B))
2494 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2495 return true;
2496 return false;
2500 void InstructionMatcher::optimize() {
2501 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2502 const auto &OpcMatcher = getOpcodeMatcher();
2504 Stash.push_back(predicates_pop_front());
2505 if (Stash.back().get() == &OpcMatcher) {
2506 if (NumOperandsCheck && OpcMatcher.isVariadicNumOperands())
2507 Stash.emplace_back(
2508 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2509 NumOperandsCheck = false;
2511 for (auto &OM : Operands)
2512 for (auto &OP : OM->predicates())
2513 if (isa<IntrinsicIDOperandMatcher>(OP)) {
2514 Stash.push_back(std::move(OP));
2515 OM->eraseNullPredicates();
2516 break;
2520 if (InsnVarID > 0) {
2521 assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
2522 for (auto &OP : Operands[0]->predicates())
2523 OP.reset();
2524 Operands[0]->eraseNullPredicates();
2526 for (auto &OM : Operands) {
2527 for (auto &OP : OM->predicates())
2528 if (isa<LLTOperandMatcher>(OP))
2529 Stash.push_back(std::move(OP));
2530 OM->eraseNullPredicates();
2532 while (!Stash.empty())
2533 prependPredicate(Stash.pop_back_val());
2536 //===- Actions ------------------------------------------------------------===//
2537 class OperandRenderer {
2538 public:
2539 enum RendererKind {
2540 OR_Copy,
2541 OR_CopyOrAddZeroReg,
2542 OR_CopySubReg,
2543 OR_CopyPhysReg,
2544 OR_CopyConstantAsImm,
2545 OR_CopyFConstantAsFPImm,
2546 OR_Imm,
2547 OR_SubRegIndex,
2548 OR_Register,
2549 OR_TempRegister,
2550 OR_ComplexPattern,
2551 OR_Custom,
2552 OR_CustomOperand
2555 protected:
2556 RendererKind Kind;
2558 public:
2559 OperandRenderer(RendererKind Kind) : Kind(Kind) {}
2560 virtual ~OperandRenderer() {}
2562 RendererKind getKind() const { return Kind; }
2564 virtual void emitRenderOpcodes(MatchTable &Table,
2565 RuleMatcher &Rule) const = 0;
2568 /// A CopyRenderer emits code to copy a single operand from an existing
2569 /// instruction to the one being built.
2570 class CopyRenderer : public OperandRenderer {
2571 protected:
2572 unsigned NewInsnID;
2573 /// The name of the operand.
2574 const StringRef SymbolicName;
2576 public:
2577 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2578 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2579 SymbolicName(SymbolicName) {
2580 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2583 static bool classof(const OperandRenderer *R) {
2584 return R->getKind() == OR_Copy;
2587 StringRef getSymbolicName() const { return SymbolicName; }
2589 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2590 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2591 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2592 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2593 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2594 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2595 << MatchTable::IntValue(Operand.getOpIdx())
2596 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2600 /// A CopyRenderer emits code to copy a virtual register to a specific physical
2601 /// register.
2602 class CopyPhysRegRenderer : public OperandRenderer {
2603 protected:
2604 unsigned NewInsnID;
2605 Record *PhysReg;
2607 public:
2608 CopyPhysRegRenderer(unsigned NewInsnID, Record *Reg)
2609 : OperandRenderer(OR_CopyPhysReg), NewInsnID(NewInsnID),
2610 PhysReg(Reg) {
2611 assert(PhysReg);
2614 static bool classof(const OperandRenderer *R) {
2615 return R->getKind() == OR_CopyPhysReg;
2618 Record *getPhysReg() const { return PhysReg; }
2620 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2621 const OperandMatcher &Operand = Rule.getPhysRegOperandMatcher(PhysReg);
2622 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2623 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2624 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2625 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2626 << MatchTable::IntValue(Operand.getOpIdx())
2627 << MatchTable::Comment(PhysReg->getName())
2628 << MatchTable::LineBreak;
2632 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2633 /// existing instruction to the one being built. If the operand turns out to be
2634 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2635 class CopyOrAddZeroRegRenderer : public OperandRenderer {
2636 protected:
2637 unsigned NewInsnID;
2638 /// The name of the operand.
2639 const StringRef SymbolicName;
2640 const Record *ZeroRegisterDef;
2642 public:
2643 CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2644 StringRef SymbolicName, Record *ZeroRegisterDef)
2645 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2646 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2647 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2650 static bool classof(const OperandRenderer *R) {
2651 return R->getKind() == OR_CopyOrAddZeroReg;
2654 StringRef getSymbolicName() const { return SymbolicName; }
2656 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2657 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2658 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2659 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2660 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2661 << MatchTable::Comment("OldInsnID")
2662 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2663 << MatchTable::IntValue(Operand.getOpIdx())
2664 << MatchTable::NamedValue(
2665 (ZeroRegisterDef->getValue("Namespace")
2666 ? ZeroRegisterDef->getValueAsString("Namespace")
2667 : ""),
2668 ZeroRegisterDef->getName())
2669 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2673 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2674 /// an extended immediate operand.
2675 class CopyConstantAsImmRenderer : public OperandRenderer {
2676 protected:
2677 unsigned NewInsnID;
2678 /// The name of the operand.
2679 const std::string SymbolicName;
2680 bool Signed;
2682 public:
2683 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2684 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2685 SymbolicName(SymbolicName), Signed(true) {}
2687 static bool classof(const OperandRenderer *R) {
2688 return R->getKind() == OR_CopyConstantAsImm;
2691 StringRef getSymbolicName() const { return SymbolicName; }
2693 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2694 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2695 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2696 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2697 : "GIR_CopyConstantAsUImm")
2698 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2699 << MatchTable::Comment("OldInsnID")
2700 << MatchTable::IntValue(OldInsnVarID)
2701 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2705 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2706 /// instruction to an extended immediate operand.
2707 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2708 protected:
2709 unsigned NewInsnID;
2710 /// The name of the operand.
2711 const std::string SymbolicName;
2713 public:
2714 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2715 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2716 SymbolicName(SymbolicName) {}
2718 static bool classof(const OperandRenderer *R) {
2719 return R->getKind() == OR_CopyFConstantAsFPImm;
2722 StringRef getSymbolicName() const { return SymbolicName; }
2724 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2725 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2726 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2727 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2728 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2729 << MatchTable::Comment("OldInsnID")
2730 << MatchTable::IntValue(OldInsnVarID)
2731 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2735 /// A CopySubRegRenderer emits code to copy a single register operand from an
2736 /// existing instruction to the one being built and indicate that only a
2737 /// subregister should be copied.
2738 class CopySubRegRenderer : public OperandRenderer {
2739 protected:
2740 unsigned NewInsnID;
2741 /// The name of the operand.
2742 const StringRef SymbolicName;
2743 /// The subregister to extract.
2744 const CodeGenSubRegIndex *SubReg;
2746 public:
2747 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2748 const CodeGenSubRegIndex *SubReg)
2749 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2750 SymbolicName(SymbolicName), SubReg(SubReg) {}
2752 static bool classof(const OperandRenderer *R) {
2753 return R->getKind() == OR_CopySubReg;
2756 StringRef getSymbolicName() const { return SymbolicName; }
2758 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2759 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2760 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2761 Table << MatchTable::Opcode("GIR_CopySubReg")
2762 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2763 << MatchTable::Comment("OldInsnID")
2764 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2765 << MatchTable::IntValue(Operand.getOpIdx())
2766 << MatchTable::Comment("SubRegIdx")
2767 << MatchTable::IntValue(SubReg->EnumValue)
2768 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2772 /// Adds a specific physical register to the instruction being built.
2773 /// This is typically useful for WZR/XZR on AArch64.
2774 class AddRegisterRenderer : public OperandRenderer {
2775 protected:
2776 unsigned InsnID;
2777 const Record *RegisterDef;
2778 bool IsDef;
2779 const CodeGenTarget &Target;
2781 public:
2782 AddRegisterRenderer(unsigned InsnID, const CodeGenTarget &Target,
2783 const Record *RegisterDef, bool IsDef = false)
2784 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef),
2785 IsDef(IsDef), Target(Target) {}
2787 static bool classof(const OperandRenderer *R) {
2788 return R->getKind() == OR_Register;
2791 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2792 Table << MatchTable::Opcode("GIR_AddRegister")
2793 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID);
2794 if (RegisterDef->getName() != "zero_reg") {
2795 Table << MatchTable::NamedValue(
2796 (RegisterDef->getValue("Namespace")
2797 ? RegisterDef->getValueAsString("Namespace")
2798 : ""),
2799 RegisterDef->getName());
2800 } else {
2801 Table << MatchTable::NamedValue(Target.getRegNamespace(), "NoRegister");
2803 Table << MatchTable::Comment("AddRegisterRegFlags");
2805 // TODO: This is encoded as a 64-bit element, but only 16 or 32-bits are
2806 // really needed for a physical register reference. We can pack the
2807 // register and flags in a single field.
2808 if (IsDef)
2809 Table << MatchTable::NamedValue("RegState::Define");
2810 else
2811 Table << MatchTable::IntValue(0);
2812 Table << MatchTable::LineBreak;
2816 /// Adds a specific temporary virtual register to the instruction being built.
2817 /// This is used to chain instructions together when emitting multiple
2818 /// instructions.
2819 class TempRegRenderer : public OperandRenderer {
2820 protected:
2821 unsigned InsnID;
2822 unsigned TempRegID;
2823 const CodeGenSubRegIndex *SubRegIdx;
2824 bool IsDef;
2825 bool IsDead;
2827 public:
2828 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false,
2829 const CodeGenSubRegIndex *SubReg = nullptr,
2830 bool IsDead = false)
2831 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2832 SubRegIdx(SubReg), IsDef(IsDef), IsDead(IsDead) {}
2834 static bool classof(const OperandRenderer *R) {
2835 return R->getKind() == OR_TempRegister;
2838 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2839 if (SubRegIdx) {
2840 assert(!IsDef);
2841 Table << MatchTable::Opcode("GIR_AddTempSubRegister");
2842 } else
2843 Table << MatchTable::Opcode("GIR_AddTempRegister");
2845 Table << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2846 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2847 << MatchTable::Comment("TempRegFlags");
2849 if (IsDef) {
2850 SmallString<32> RegFlags;
2851 RegFlags += "RegState::Define";
2852 if (IsDead)
2853 RegFlags += "|RegState::Dead";
2854 Table << MatchTable::NamedValue(RegFlags);
2855 } else
2856 Table << MatchTable::IntValue(0);
2858 if (SubRegIdx)
2859 Table << MatchTable::NamedValue(SubRegIdx->getQualifiedName());
2860 Table << MatchTable::LineBreak;
2864 /// Adds a specific immediate to the instruction being built.
2865 class ImmRenderer : public OperandRenderer {
2866 protected:
2867 unsigned InsnID;
2868 int64_t Imm;
2870 public:
2871 ImmRenderer(unsigned InsnID, int64_t Imm)
2872 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2874 static bool classof(const OperandRenderer *R) {
2875 return R->getKind() == OR_Imm;
2878 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2879 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2880 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2881 << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2885 /// Adds an enum value for a subreg index to the instruction being built.
2886 class SubRegIndexRenderer : public OperandRenderer {
2887 protected:
2888 unsigned InsnID;
2889 const CodeGenSubRegIndex *SubRegIdx;
2891 public:
2892 SubRegIndexRenderer(unsigned InsnID, const CodeGenSubRegIndex *SRI)
2893 : OperandRenderer(OR_SubRegIndex), InsnID(InsnID), SubRegIdx(SRI) {}
2895 static bool classof(const OperandRenderer *R) {
2896 return R->getKind() == OR_SubRegIndex;
2899 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2900 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2901 << MatchTable::IntValue(InsnID) << MatchTable::Comment("SubRegIndex")
2902 << MatchTable::IntValue(SubRegIdx->EnumValue)
2903 << MatchTable::LineBreak;
2907 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2908 /// matcher function.
2909 class RenderComplexPatternOperand : public OperandRenderer {
2910 private:
2911 unsigned InsnID;
2912 const Record &TheDef;
2913 /// The name of the operand.
2914 const StringRef SymbolicName;
2915 /// The renderer number. This must be unique within a rule since it's used to
2916 /// identify a temporary variable to hold the renderer function.
2917 unsigned RendererID;
2918 /// When provided, this is the suboperand of the ComplexPattern operand to
2919 /// render. Otherwise all the suboperands will be rendered.
2920 Optional<unsigned> SubOperand;
2922 unsigned getNumOperands() const {
2923 return TheDef.getValueAsDag("Operands")->getNumArgs();
2926 public:
2927 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2928 StringRef SymbolicName, unsigned RendererID,
2929 Optional<unsigned> SubOperand = None)
2930 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2931 SymbolicName(SymbolicName), RendererID(RendererID),
2932 SubOperand(SubOperand) {}
2934 static bool classof(const OperandRenderer *R) {
2935 return R->getKind() == OR_ComplexPattern;
2938 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2939 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2940 : "GIR_ComplexRenderer")
2941 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2942 << MatchTable::Comment("RendererID")
2943 << MatchTable::IntValue(RendererID);
2944 if (SubOperand.hasValue())
2945 Table << MatchTable::Comment("SubOperand")
2946 << MatchTable::IntValue(SubOperand.getValue());
2947 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2951 class CustomRenderer : public OperandRenderer {
2952 protected:
2953 unsigned InsnID;
2954 const Record &Renderer;
2955 /// The name of the operand.
2956 const std::string SymbolicName;
2958 public:
2959 CustomRenderer(unsigned InsnID, const Record &Renderer,
2960 StringRef SymbolicName)
2961 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2962 SymbolicName(SymbolicName) {}
2964 static bool classof(const OperandRenderer *R) {
2965 return R->getKind() == OR_Custom;
2968 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2969 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2970 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2971 Table << MatchTable::Opcode("GIR_CustomRenderer")
2972 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2973 << MatchTable::Comment("OldInsnID")
2974 << MatchTable::IntValue(OldInsnVarID)
2975 << MatchTable::Comment("Renderer")
2976 << MatchTable::NamedValue(
2977 "GICR_" + Renderer.getValueAsString("RendererFn").str())
2978 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2982 class CustomOperandRenderer : public OperandRenderer {
2983 protected:
2984 unsigned InsnID;
2985 const Record &Renderer;
2986 /// The name of the operand.
2987 const std::string SymbolicName;
2989 public:
2990 CustomOperandRenderer(unsigned InsnID, const Record &Renderer,
2991 StringRef SymbolicName)
2992 : OperandRenderer(OR_CustomOperand), InsnID(InsnID), Renderer(Renderer),
2993 SymbolicName(SymbolicName) {}
2995 static bool classof(const OperandRenderer *R) {
2996 return R->getKind() == OR_CustomOperand;
2999 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3000 const OperandMatcher &OpdMatcher = Rule.getOperandMatcher(SymbolicName);
3001 Table << MatchTable::Opcode("GIR_CustomOperandRenderer")
3002 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3003 << MatchTable::Comment("OldInsnID")
3004 << MatchTable::IntValue(OpdMatcher.getInsnVarID())
3005 << MatchTable::Comment("OpIdx")
3006 << MatchTable::IntValue(OpdMatcher.getOpIdx())
3007 << MatchTable::Comment("OperandRenderer")
3008 << MatchTable::NamedValue(
3009 "GICR_" + Renderer.getValueAsString("RendererFn").str())
3010 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
3014 /// An action taken when all Matcher predicates succeeded for a parent rule.
3016 /// Typical actions include:
3017 /// * Changing the opcode of an instruction.
3018 /// * Adding an operand to an instruction.
3019 class MatchAction {
3020 public:
3021 virtual ~MatchAction() {}
3023 /// Emit the MatchTable opcodes to implement the action.
3024 virtual void emitActionOpcodes(MatchTable &Table,
3025 RuleMatcher &Rule) const = 0;
3028 /// Generates a comment describing the matched rule being acted upon.
3029 class DebugCommentAction : public MatchAction {
3030 private:
3031 std::string S;
3033 public:
3034 DebugCommentAction(StringRef S) : S(std::string(S)) {}
3036 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3037 Table << MatchTable::Comment(S) << MatchTable::LineBreak;
3041 /// Generates code to build an instruction or mutate an existing instruction
3042 /// into the desired instruction when this is possible.
3043 class BuildMIAction : public MatchAction {
3044 private:
3045 unsigned InsnID;
3046 const CodeGenInstruction *I;
3047 InstructionMatcher *Matched;
3048 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
3050 /// True if the instruction can be built solely by mutating the opcode.
3051 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
3052 if (!Insn)
3053 return false;
3055 if (OperandRenderers.size() != Insn->getNumOperands())
3056 return false;
3058 for (const auto &Renderer : enumerate(OperandRenderers)) {
3059 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
3060 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
3061 if (Insn != &OM.getInstructionMatcher() ||
3062 OM.getOpIdx() != Renderer.index())
3063 return false;
3064 } else
3065 return false;
3068 return true;
3071 public:
3072 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
3073 : InsnID(InsnID), I(I), Matched(nullptr) {}
3075 unsigned getInsnID() const { return InsnID; }
3076 const CodeGenInstruction *getCGI() const { return I; }
3078 void chooseInsnToMutate(RuleMatcher &Rule) {
3079 for (auto *MutateCandidate : Rule.mutatable_insns()) {
3080 if (canMutate(Rule, MutateCandidate)) {
3081 // Take the first one we're offered that we're able to mutate.
3082 Rule.reserveInsnMatcherForMutation(MutateCandidate);
3083 Matched = MutateCandidate;
3084 return;
3089 template <class Kind, class... Args>
3090 Kind &addRenderer(Args&&... args) {
3091 OperandRenderers.emplace_back(
3092 std::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
3093 return *static_cast<Kind *>(OperandRenderers.back().get());
3096 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3097 if (Matched) {
3098 assert(canMutate(Rule, Matched) &&
3099 "Arranged to mutate an insn that isn't mutatable");
3101 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
3102 Table << MatchTable::Opcode("GIR_MutateOpcode")
3103 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3104 << MatchTable::Comment("RecycleInsnID")
3105 << MatchTable::IntValue(RecycleInsnID)
3106 << MatchTable::Comment("Opcode")
3107 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
3108 << MatchTable::LineBreak;
3110 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
3111 for (auto Def : I->ImplicitDefs) {
3112 auto Namespace = Def->getValue("Namespace")
3113 ? Def->getValueAsString("Namespace")
3114 : "";
3115 Table << MatchTable::Opcode("GIR_AddImplicitDef")
3116 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3117 << MatchTable::NamedValue(Namespace, Def->getName())
3118 << MatchTable::LineBreak;
3120 for (auto Use : I->ImplicitUses) {
3121 auto Namespace = Use->getValue("Namespace")
3122 ? Use->getValueAsString("Namespace")
3123 : "";
3124 Table << MatchTable::Opcode("GIR_AddImplicitUse")
3125 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3126 << MatchTable::NamedValue(Namespace, Use->getName())
3127 << MatchTable::LineBreak;
3130 return;
3133 // TODO: Simple permutation looks like it could be almost as common as
3134 // mutation due to commutative operations.
3136 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
3137 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
3138 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
3139 << MatchTable::LineBreak;
3140 for (const auto &Renderer : OperandRenderers)
3141 Renderer->emitRenderOpcodes(Table, Rule);
3143 if (I->mayLoad || I->mayStore) {
3144 Table << MatchTable::Opcode("GIR_MergeMemOperands")
3145 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3146 << MatchTable::Comment("MergeInsnID's");
3147 // Emit the ID's for all the instructions that are matched by this rule.
3148 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
3149 // some other means of having a memoperand. Also limit this to
3150 // emitted instructions that expect to have a memoperand too. For
3151 // example, (G_SEXT (G_LOAD x)) that results in separate load and
3152 // sign-extend instructions shouldn't put the memoperand on the
3153 // sign-extend since it has no effect there.
3154 std::vector<unsigned> MergeInsnIDs;
3155 for (const auto &IDMatcherPair : Rule.defined_insn_vars())
3156 MergeInsnIDs.push_back(IDMatcherPair.second);
3157 llvm::sort(MergeInsnIDs);
3158 for (const auto &MergeInsnID : MergeInsnIDs)
3159 Table << MatchTable::IntValue(MergeInsnID);
3160 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
3161 << MatchTable::LineBreak;
3164 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
3165 // better for combines. Particularly when there are multiple match
3166 // roots.
3167 if (InsnID == 0)
3168 Table << MatchTable::Opcode("GIR_EraseFromParent")
3169 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3170 << MatchTable::LineBreak;
3174 /// Generates code to constrain the operands of an output instruction to the
3175 /// register classes specified by the definition of that instruction.
3176 class ConstrainOperandsToDefinitionAction : public MatchAction {
3177 unsigned InsnID;
3179 public:
3180 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
3182 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3183 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
3184 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3185 << MatchTable::LineBreak;
3189 /// Generates code to constrain the specified operand of an output instruction
3190 /// to the specified register class.
3191 class ConstrainOperandToRegClassAction : public MatchAction {
3192 unsigned InsnID;
3193 unsigned OpIdx;
3194 const CodeGenRegisterClass &RC;
3196 public:
3197 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
3198 const CodeGenRegisterClass &RC)
3199 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
3201 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3202 Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
3203 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3204 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
3205 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
3206 << MatchTable::LineBreak;
3210 /// Generates code to create a temporary register which can be used to chain
3211 /// instructions together.
3212 class MakeTempRegisterAction : public MatchAction {
3213 private:
3214 LLTCodeGen Ty;
3215 unsigned TempRegID;
3217 public:
3218 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
3219 : Ty(Ty), TempRegID(TempRegID) {
3220 KnownTypes.insert(Ty);
3223 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
3224 Table << MatchTable::Opcode("GIR_MakeTempReg")
3225 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
3226 << MatchTable::Comment("TypeID")
3227 << MatchTable::NamedValue(Ty.getCxxEnumValue())
3228 << MatchTable::LineBreak;
3232 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
3233 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
3234 MutatableInsns.insert(Matchers.back().get());
3235 return *Matchers.back();
3238 void RuleMatcher::addRequiredFeature(Record *Feature) {
3239 RequiredFeatures.push_back(Feature);
3242 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
3243 return RequiredFeatures;
3246 // Emplaces an action of the specified Kind at the end of the action list.
3248 // Returns a reference to the newly created action.
3250 // Like std::vector::emplace_back(), may invalidate all iterators if the new
3251 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
3252 // iterator.
3253 template <class Kind, class... Args>
3254 Kind &RuleMatcher::addAction(Args &&... args) {
3255 Actions.emplace_back(std::make_unique<Kind>(std::forward<Args>(args)...));
3256 return *static_cast<Kind *>(Actions.back().get());
3259 // Emplaces an action of the specified Kind before the given insertion point.
3261 // Returns an iterator pointing at the newly created instruction.
3263 // Like std::vector::insert(), may invalidate all iterators if the new size
3264 // exceeds the capacity. Otherwise, only invalidates the iterators from the
3265 // insertion point onwards.
3266 template <class Kind, class... Args>
3267 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
3268 Args &&... args) {
3269 return Actions.emplace(InsertPt,
3270 std::make_unique<Kind>(std::forward<Args>(args)...));
3273 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
3274 unsigned NewInsnVarID = NextInsnVarID++;
3275 InsnVariableIDs[&Matcher] = NewInsnVarID;
3276 return NewInsnVarID;
3279 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
3280 const auto &I = InsnVariableIDs.find(&InsnMatcher);
3281 if (I != InsnVariableIDs.end())
3282 return I->second;
3283 llvm_unreachable("Matched Insn was not captured in a local variable");
3286 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
3287 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
3288 DefinedOperands[SymbolicName] = &OM;
3289 return;
3292 // If the operand is already defined, then we must ensure both references in
3293 // the matcher have the exact same node.
3294 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
3297 void RuleMatcher::definePhysRegOperand(Record *Reg, OperandMatcher &OM) {
3298 if (PhysRegOperands.find(Reg) == PhysRegOperands.end()) {
3299 PhysRegOperands[Reg] = &OM;
3300 return;
3304 InstructionMatcher &
3305 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
3306 for (const auto &I : InsnVariableIDs)
3307 if (I.first->getSymbolicName() == SymbolicName)
3308 return *I.first;
3309 llvm_unreachable(
3310 ("Failed to lookup instruction " + SymbolicName).str().c_str());
3313 const OperandMatcher &
3314 RuleMatcher::getPhysRegOperandMatcher(Record *Reg) const {
3315 const auto &I = PhysRegOperands.find(Reg);
3317 if (I == PhysRegOperands.end()) {
3318 PrintFatalError(SrcLoc, "Register " + Reg->getName() +
3319 " was not declared in matcher");
3322 return *I->second;
3325 const OperandMatcher &
3326 RuleMatcher::getOperandMatcher(StringRef Name) const {
3327 const auto &I = DefinedOperands.find(Name);
3329 if (I == DefinedOperands.end())
3330 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
3332 return *I->second;
3335 void RuleMatcher::emit(MatchTable &Table) {
3336 if (Matchers.empty())
3337 llvm_unreachable("Unexpected empty matcher!");
3339 // The representation supports rules that require multiple roots such as:
3340 // %ptr(p0) = ...
3341 // %elt0(s32) = G_LOAD %ptr
3342 // %1(p0) = G_ADD %ptr, 4
3343 // %elt1(s32) = G_LOAD p0 %1
3344 // which could be usefully folded into:
3345 // %ptr(p0) = ...
3346 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
3347 // on some targets but we don't need to make use of that yet.
3348 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
3350 unsigned LabelID = Table.allocateLabelID();
3351 Table << MatchTable::Opcode("GIM_Try", +1)
3352 << MatchTable::Comment("On fail goto")
3353 << MatchTable::JumpTarget(LabelID)
3354 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
3355 << MatchTable::LineBreak;
3357 if (!RequiredFeatures.empty()) {
3358 Table << MatchTable::Opcode("GIM_CheckFeatures")
3359 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
3360 << MatchTable::LineBreak;
3363 Matchers.front()->emitPredicateOpcodes(Table, *this);
3365 // We must also check if it's safe to fold the matched instructions.
3366 if (InsnVariableIDs.size() >= 2) {
3367 // Invert the map to create stable ordering (by var names)
3368 SmallVector<unsigned, 2> InsnIDs;
3369 for (const auto &Pair : InsnVariableIDs) {
3370 // Skip the root node since it isn't moving anywhere. Everything else is
3371 // sinking to meet it.
3372 if (Pair.first == Matchers.front().get())
3373 continue;
3375 InsnIDs.push_back(Pair.second);
3377 llvm::sort(InsnIDs);
3379 for (const auto &InsnID : InsnIDs) {
3380 // Reject the difficult cases until we have a more accurate check.
3381 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
3382 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
3383 << MatchTable::LineBreak;
3385 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
3386 // account for unsafe cases.
3388 // Example:
3389 // MI1--> %0 = ...
3390 // %1 = ... %0
3391 // MI0--> %2 = ... %0
3392 // It's not safe to erase MI1. We currently handle this by not
3393 // erasing %0 (even when it's dead).
3395 // Example:
3396 // MI1--> %0 = load volatile @a
3397 // %1 = load volatile @a
3398 // MI0--> %2 = ... %0
3399 // It's not safe to sink %0's def past %1. We currently handle
3400 // this by rejecting all loads.
3402 // Example:
3403 // MI1--> %0 = load @a
3404 // %1 = store @a
3405 // MI0--> %2 = ... %0
3406 // It's not safe to sink %0's def past %1. We currently handle
3407 // this by rejecting all loads.
3409 // Example:
3410 // G_CONDBR %cond, @BB1
3411 // BB0:
3412 // MI1--> %0 = load @a
3413 // G_BR @BB1
3414 // BB1:
3415 // MI0--> %2 = ... %0
3416 // It's not always safe to sink %0 across control flow. In this
3417 // case it may introduce a memory fault. We currentl handle this
3418 // by rejecting all loads.
3422 for (const auto &PM : EpilogueMatchers)
3423 PM->emitPredicateOpcodes(Table, *this);
3425 for (const auto &MA : Actions)
3426 MA->emitActionOpcodes(Table, *this);
3428 if (Table.isWithCoverage())
3429 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
3430 << MatchTable::LineBreak;
3431 else
3432 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
3433 << MatchTable::LineBreak;
3435 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
3436 << MatchTable::Label(LabelID);
3437 ++NumPatternEmitted;
3440 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
3441 // Rules involving more match roots have higher priority.
3442 if (Matchers.size() > B.Matchers.size())
3443 return true;
3444 if (Matchers.size() < B.Matchers.size())
3445 return false;
3447 for (auto Matcher : zip(Matchers, B.Matchers)) {
3448 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
3449 return true;
3450 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
3451 return false;
3454 return false;
3457 unsigned RuleMatcher::countRendererFns() const {
3458 return std::accumulate(
3459 Matchers.begin(), Matchers.end(), 0,
3460 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
3461 return A + Matcher->countRendererFns();
3465 bool OperandPredicateMatcher::isHigherPriorityThan(
3466 const OperandPredicateMatcher &B) const {
3467 // Generally speaking, an instruction is more important than an Int or a
3468 // LiteralInt because it can cover more nodes but theres an exception to
3469 // this. G_CONSTANT's are less important than either of those two because they
3470 // are more permissive.
3472 const InstructionOperandMatcher *AOM =
3473 dyn_cast<InstructionOperandMatcher>(this);
3474 const InstructionOperandMatcher *BOM =
3475 dyn_cast<InstructionOperandMatcher>(&B);
3476 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
3477 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
3479 if (AOM && BOM) {
3480 // The relative priorities between a G_CONSTANT and any other instruction
3481 // don't actually matter but this code is needed to ensure a strict weak
3482 // ordering. This is particularly important on Windows where the rules will
3483 // be incorrectly sorted without it.
3484 if (AIsConstantInsn != BIsConstantInsn)
3485 return AIsConstantInsn < BIsConstantInsn;
3486 return false;
3489 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
3490 return false;
3491 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
3492 return true;
3494 return Kind < B.Kind;
3497 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
3498 RuleMatcher &Rule) const {
3499 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
3500 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
3501 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
3503 Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
3504 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
3505 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
3506 << MatchTable::Comment("OtherMI")
3507 << MatchTable::IntValue(OtherInsnVarID)
3508 << MatchTable::Comment("OtherOpIdx")
3509 << MatchTable::IntValue(OtherOM.getOpIdx())
3510 << MatchTable::LineBreak;
3513 //===- GlobalISelEmitter class --------------------------------------------===//
3515 static Expected<LLTCodeGen> getInstResultType(const TreePatternNode *Dst) {
3516 ArrayRef<TypeSetByHwMode> ChildTypes = Dst->getExtTypes();
3517 if (ChildTypes.size() != 1)
3518 return failedImport("Dst pattern child has multiple results");
3520 Optional<LLTCodeGen> MaybeOpTy;
3521 if (ChildTypes.front().isMachineValueType()) {
3522 MaybeOpTy =
3523 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3526 if (!MaybeOpTy)
3527 return failedImport("Dst operand has an unsupported type");
3528 return *MaybeOpTy;
3531 class GlobalISelEmitter {
3532 public:
3533 explicit GlobalISelEmitter(RecordKeeper &RK);
3534 void run(raw_ostream &OS);
3536 private:
3537 const RecordKeeper &RK;
3538 const CodeGenDAGPatterns CGP;
3539 const CodeGenTarget &Target;
3540 CodeGenRegBank &CGRegs;
3542 /// Keep track of the equivalence between SDNodes and Instruction by mapping
3543 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
3544 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
3545 /// This is defined using 'GINodeEquiv' in the target description.
3546 DenseMap<Record *, Record *> NodeEquivs;
3548 /// Keep track of the equivalence between ComplexPattern's and
3549 /// GIComplexOperandMatcher. Map entries are specified by subclassing
3550 /// GIComplexPatternEquiv.
3551 DenseMap<const Record *, const Record *> ComplexPatternEquivs;
3553 /// Keep track of the equivalence between SDNodeXForm's and
3554 /// GICustomOperandRenderer. Map entries are specified by subclassing
3555 /// GISDNodeXFormEquiv.
3556 DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
3558 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
3559 /// This adds compatibility for RuleMatchers to use this for ordering rules.
3560 DenseMap<uint64_t, int> RuleMatcherScores;
3562 // Map of predicates to their subtarget features.
3563 SubtargetFeatureInfoMap SubtargetFeatures;
3565 // Rule coverage information.
3566 Optional<CodeGenCoverage> RuleCoverage;
3568 /// Variables used to help with collecting of named operands for predicates
3569 /// with 'let PredicateCodeUsesOperands = 1'. WaitingForNamedOperands is set
3570 /// to the number of named operands that predicate expects. Store locations in
3571 /// StoreIdxForName correspond to the order in which operand names appear in
3572 /// predicate's argument list.
3573 /// When we visit named leaf operand and WaitingForNamedOperands is not zero,
3574 /// add matcher that will record operand and decrease counter.
3575 unsigned WaitingForNamedOperands = 0;
3576 StringMap<unsigned> StoreIdxForName;
3578 void gatherOpcodeValues();
3579 void gatherTypeIDValues();
3580 void gatherNodeEquivs();
3582 Record *findNodeEquiv(Record *N) const;
3583 const CodeGenInstruction *getEquivNode(Record &Equiv,
3584 const TreePatternNode *N) const;
3586 Error importRulePredicates(RuleMatcher &M, ArrayRef<Record *> Predicates);
3587 Expected<InstructionMatcher &>
3588 createAndImportSelDAGMatcher(RuleMatcher &Rule,
3589 InstructionMatcher &InsnMatcher,
3590 const TreePatternNode *Src, unsigned &TempOpIdx);
3591 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3592 unsigned &TempOpIdx) const;
3593 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3594 const TreePatternNode *SrcChild,
3595 bool OperandIsAPointer, bool OperandIsImmArg,
3596 unsigned OpIdx, unsigned &TempOpIdx);
3598 Expected<BuildMIAction &> createAndImportInstructionRenderer(
3599 RuleMatcher &M, InstructionMatcher &InsnMatcher,
3600 const TreePatternNode *Src, const TreePatternNode *Dst);
3601 Expected<action_iterator> createAndImportSubInstructionRenderer(
3602 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3603 unsigned TempReg);
3604 Expected<action_iterator>
3605 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3606 const TreePatternNode *Dst);
3608 Expected<action_iterator>
3609 importExplicitDefRenderers(action_iterator InsertPt, RuleMatcher &M,
3610 BuildMIAction &DstMIBuilder,
3611 const TreePatternNode *Dst);
3613 Expected<action_iterator>
3614 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3615 BuildMIAction &DstMIBuilder,
3616 const llvm::TreePatternNode *Dst);
3617 Expected<action_iterator>
3618 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3619 BuildMIAction &DstMIBuilder,
3620 TreePatternNode *DstChild);
3621 Error importDefaultOperandRenderers(action_iterator InsertPt, RuleMatcher &M,
3622 BuildMIAction &DstMIBuilder,
3623 DagInit *DefaultOps) const;
3624 Error
3625 importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3626 const std::vector<Record *> &ImplicitDefs) const;
3628 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3629 StringRef TypeIdentifier, StringRef ArgType,
3630 StringRef ArgName, StringRef AdditionalArgs,
3631 StringRef AdditionalDeclarations,
3632 std::function<bool(const Record *R)> Filter);
3633 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3634 StringRef ArgType,
3635 std::function<bool(const Record *R)> Filter);
3636 void emitMIPredicateFns(raw_ostream &OS);
3638 /// Analyze pattern \p P, returning a matcher for it if possible.
3639 /// Otherwise, return an Error explaining why we don't support it.
3640 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3642 void declareSubtargetFeature(Record *Predicate);
3644 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3645 bool WithCoverage);
3647 /// Infer a CodeGenRegisterClass for the type of \p SuperRegNode. The returned
3648 /// CodeGenRegisterClass will support the CodeGenRegisterClass of
3649 /// \p SubRegNode, and the subregister index defined by \p SubRegIdxNode.
3650 /// If no register class is found, return None.
3651 Optional<const CodeGenRegisterClass *>
3652 inferSuperRegisterClassForNode(const TypeSetByHwMode &Ty,
3653 TreePatternNode *SuperRegNode,
3654 TreePatternNode *SubRegIdxNode);
3655 Optional<CodeGenSubRegIndex *>
3656 inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode);
3658 /// Infer a CodeGenRegisterClass which suppoorts \p Ty and \p SubRegIdxNode.
3659 /// Return None if no such class exists.
3660 Optional<const CodeGenRegisterClass *>
3661 inferSuperRegisterClass(const TypeSetByHwMode &Ty,
3662 TreePatternNode *SubRegIdxNode);
3664 /// Return the CodeGenRegisterClass associated with \p Leaf if it has one.
3665 Optional<const CodeGenRegisterClass *>
3666 getRegClassFromLeaf(TreePatternNode *Leaf);
3668 /// Return a CodeGenRegisterClass for \p N if one can be found. Return None
3669 /// otherwise.
3670 Optional<const CodeGenRegisterClass *>
3671 inferRegClassFromPattern(TreePatternNode *N);
3673 /// Return the size of the MemoryVT in this predicate, if possible.
3674 Optional<unsigned>
3675 getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate);
3677 // Add builtin predicates.
3678 Expected<InstructionMatcher &>
3679 addBuiltinPredicates(const Record *SrcGIEquivOrNull,
3680 const TreePredicateFn &Predicate,
3681 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher);
3683 public:
3684 /// Takes a sequence of \p Rules and group them based on the predicates
3685 /// they share. \p MatcherStorage is used as a memory container
3686 /// for the group that are created as part of this process.
3688 /// What this optimization does looks like if GroupT = GroupMatcher:
3689 /// Output without optimization:
3690 /// \verbatim
3691 /// # R1
3692 /// # predicate A
3693 /// # predicate B
3694 /// ...
3695 /// # R2
3696 /// # predicate A // <-- effectively this is going to be checked twice.
3697 /// // Once in R1 and once in R2.
3698 /// # predicate C
3699 /// \endverbatim
3700 /// Output with optimization:
3701 /// \verbatim
3702 /// # Group1_2
3703 /// # predicate A // <-- Check is now shared.
3704 /// # R1
3705 /// # predicate B
3706 /// # R2
3707 /// # predicate C
3708 /// \endverbatim
3709 template <class GroupT>
3710 static std::vector<Matcher *> optimizeRules(
3711 ArrayRef<Matcher *> Rules,
3712 std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3715 void GlobalISelEmitter::gatherOpcodeValues() {
3716 InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3719 void GlobalISelEmitter::gatherTypeIDValues() {
3720 LLTOperandMatcher::initTypeIDValuesMap();
3723 void GlobalISelEmitter::gatherNodeEquivs() {
3724 assert(NodeEquivs.empty());
3725 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3726 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3728 assert(ComplexPatternEquivs.empty());
3729 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3730 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3731 if (!SelDAGEquiv)
3732 continue;
3733 ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3736 assert(SDNodeXFormEquivs.empty());
3737 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3738 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3739 if (!SelDAGEquiv)
3740 continue;
3741 SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3745 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3746 return NodeEquivs.lookup(N);
3749 const CodeGenInstruction *
3750 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3751 if (N->getNumChildren() >= 1) {
3752 // setcc operation maps to two different G_* instructions based on the type.
3753 if (!Equiv.isValueUnset("IfFloatingPoint") &&
3754 MVT(N->getChild(0)->getSimpleType(0)).isFloatingPoint())
3755 return &Target.getInstruction(Equiv.getValueAsDef("IfFloatingPoint"));
3758 for (const TreePredicateCall &Call : N->getPredicateCalls()) {
3759 const TreePredicateFn &Predicate = Call.Fn;
3760 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
3761 Predicate.isSignExtLoad())
3762 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3763 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
3764 Predicate.isZeroExtLoad())
3765 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3768 return &Target.getInstruction(Equiv.getValueAsDef("I"));
3771 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3772 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3773 CGRegs(Target.getRegBank()) {}
3775 //===- Emitter ------------------------------------------------------------===//
3777 Error GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3778 ArrayRef<Record *> Predicates) {
3779 for (Record *Pred : Predicates) {
3780 if (Pred->getValueAsString("CondString").empty())
3781 continue;
3782 declareSubtargetFeature(Pred);
3783 M.addRequiredFeature(Pred);
3786 return Error::success();
3789 Optional<unsigned> GlobalISelEmitter::getMemSizeBitsFromPredicate(const TreePredicateFn &Predicate) {
3790 Optional<LLTCodeGen> MemTyOrNone =
3791 MVTToLLT(getValueType(Predicate.getMemoryVT()));
3793 if (!MemTyOrNone)
3794 return None;
3796 // Align so unusual types like i1 don't get rounded down.
3797 return llvm::alignTo(
3798 static_cast<unsigned>(MemTyOrNone->get().getSizeInBits()), 8);
3801 Expected<InstructionMatcher &> GlobalISelEmitter::addBuiltinPredicates(
3802 const Record *SrcGIEquivOrNull, const TreePredicateFn &Predicate,
3803 InstructionMatcher &InsnMatcher, bool &HasAddedMatcher) {
3804 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3805 if (const ListInit *AddrSpaces = Predicate.getAddressSpaces()) {
3806 SmallVector<unsigned, 4> ParsedAddrSpaces;
3808 for (Init *Val : AddrSpaces->getValues()) {
3809 IntInit *IntVal = dyn_cast<IntInit>(Val);
3810 if (!IntVal)
3811 return failedImport("Address space is not an integer");
3812 ParsedAddrSpaces.push_back(IntVal->getValue());
3815 if (!ParsedAddrSpaces.empty()) {
3816 InsnMatcher.addPredicate<MemoryAddressSpacePredicateMatcher>(
3817 0, ParsedAddrSpaces);
3821 int64_t MinAlign = Predicate.getMinAlignment();
3822 if (MinAlign > 0)
3823 InsnMatcher.addPredicate<MemoryAlignmentPredicateMatcher>(0, MinAlign);
3826 // G_LOAD is used for both non-extending and any-extending loads.
3827 if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
3828 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3829 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3830 return InsnMatcher;
3832 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
3833 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3834 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3835 return InsnMatcher;
3838 if (Predicate.isStore()) {
3839 if (Predicate.isTruncStore()) {
3840 if (Predicate.getMemoryVT() != nullptr) {
3841 // FIXME: If MemoryVT is set, we end up with 2 checks for the MMO size.
3842 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
3843 if (!MemSizeInBits)
3844 return failedImport("MemVT could not be converted to LLT");
3846 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0, *MemSizeInBits /
3848 } else {
3849 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3850 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3852 return InsnMatcher;
3854 if (Predicate.isNonTruncStore()) {
3855 // We need to check the sizes match here otherwise we could incorrectly
3856 // match truncating stores with non-truncating ones.
3857 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3858 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3862 // No check required. We already did it by swapping the opcode.
3863 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
3864 Predicate.isSignExtLoad())
3865 return InsnMatcher;
3867 // No check required. We already did it by swapping the opcode.
3868 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3869 Predicate.isZeroExtLoad())
3870 return InsnMatcher;
3872 // No check required. G_STORE by itself is a non-extending store.
3873 if (Predicate.isNonTruncStore())
3874 return InsnMatcher;
3876 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3877 if (Predicate.getMemoryVT() != nullptr) {
3878 auto MemSizeInBits = getMemSizeBitsFromPredicate(Predicate);
3879 if (!MemSizeInBits)
3880 return failedImport("MemVT could not be converted to LLT");
3882 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(0,
3883 *MemSizeInBits / 8);
3884 return InsnMatcher;
3888 if (Predicate.isLoad() || Predicate.isStore()) {
3889 // No check required. A G_LOAD/G_STORE is an unindexed load.
3890 if (Predicate.isUnindexed())
3891 return InsnMatcher;
3894 if (Predicate.isAtomic()) {
3895 if (Predicate.isAtomicOrderingMonotonic()) {
3896 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Monotonic");
3897 return InsnMatcher;
3899 if (Predicate.isAtomicOrderingAcquire()) {
3900 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3901 return InsnMatcher;
3903 if (Predicate.isAtomicOrderingRelease()) {
3904 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3905 return InsnMatcher;
3907 if (Predicate.isAtomicOrderingAcquireRelease()) {
3908 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3909 "AcquireRelease");
3910 return InsnMatcher;
3912 if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3913 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3914 "SequentiallyConsistent");
3915 return InsnMatcher;
3919 if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3920 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3921 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3922 return InsnMatcher;
3924 if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3925 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3926 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3927 return InsnMatcher;
3930 if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3931 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3932 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3933 return InsnMatcher;
3935 if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3936 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3937 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3938 return InsnMatcher;
3940 HasAddedMatcher = false;
3941 return InsnMatcher;
3944 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3945 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3946 const TreePatternNode *Src, unsigned &TempOpIdx) {
3947 Record *SrcGIEquivOrNull = nullptr;
3948 const CodeGenInstruction *SrcGIOrNull = nullptr;
3950 // Start with the defined operands (i.e., the results of the root operator).
3951 if (Src->getExtTypes().size() > 1)
3952 return failedImport("Src pattern has multiple results");
3954 if (Src->isLeaf()) {
3955 Init *SrcInit = Src->getLeafValue();
3956 if (isa<IntInit>(SrcInit)) {
3957 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3958 &Target.getInstruction(RK.getDef("G_CONSTANT")));
3959 } else
3960 return failedImport(
3961 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3962 } else {
3963 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3964 if (!SrcGIEquivOrNull)
3965 return failedImport("Pattern operator lacks an equivalent Instruction" +
3966 explainOperator(Src->getOperator()));
3967 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
3969 // The operators look good: match the opcode
3970 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
3973 unsigned OpIdx = 0;
3974 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3975 // Results don't have a name unless they are the root node. The caller will
3976 // set the name if appropriate.
3977 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3978 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
3979 return failedImport(toString(std::move(Error)) +
3980 " for result of Src pattern operator");
3983 for (const TreePredicateCall &Call : Src->getPredicateCalls()) {
3984 const TreePredicateFn &Predicate = Call.Fn;
3985 bool HasAddedBuiltinMatcher = true;
3986 if (Predicate.isAlwaysTrue())
3987 continue;
3989 if (Predicate.isImmediatePattern()) {
3990 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
3991 continue;
3994 auto InsnMatcherOrError = addBuiltinPredicates(
3995 SrcGIEquivOrNull, Predicate, InsnMatcher, HasAddedBuiltinMatcher);
3996 if (auto Error = InsnMatcherOrError.takeError())
3997 return std::move(Error);
3999 if (Predicate.hasGISelPredicateCode()) {
4000 if (Predicate.usesOperands()) {
4001 assert(WaitingForNamedOperands == 0 &&
4002 "previous predicate didn't find all operands or "
4003 "nested predicate that uses operands");
4004 TreePattern *TP = Predicate.getOrigPatFragRecord();
4005 WaitingForNamedOperands = TP->getNumArgs();
4006 for (unsigned i = 0; i < WaitingForNamedOperands; ++i)
4007 StoreIdxForName[getScopedName(Call.Scope, TP->getArgName(i))] = i;
4009 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
4010 continue;
4012 if (!HasAddedBuiltinMatcher) {
4013 return failedImport("Src pattern child has predicate (" +
4014 explainPredicates(Src) + ")");
4018 bool IsAtomic = false;
4019 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
4020 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
4021 else if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsAtomic")) {
4022 IsAtomic = true;
4023 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
4024 "Unordered", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
4027 if (Src->isLeaf()) {
4028 Init *SrcInit = Src->getLeafValue();
4029 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
4030 OperandMatcher &OM =
4031 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
4032 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
4033 } else
4034 return failedImport(
4035 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
4036 } else {
4037 assert(SrcGIOrNull &&
4038 "Expected to have already found an equivalent Instruction");
4039 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
4040 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
4041 // imm/fpimm still have operands but we don't need to do anything with it
4042 // here since we don't support ImmLeaf predicates yet. However, we still
4043 // need to note the hidden operand to get GIM_CheckNumOperands correct.
4044 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
4045 return InsnMatcher;
4048 // Special case because the operand order is changed from setcc. The
4049 // predicate operand needs to be swapped from the last operand to the first
4050 // source.
4052 unsigned NumChildren = Src->getNumChildren();
4053 bool IsFCmp = SrcGIOrNull->TheDef->getName() == "G_FCMP";
4055 if (IsFCmp || SrcGIOrNull->TheDef->getName() == "G_ICMP") {
4056 TreePatternNode *SrcChild = Src->getChild(NumChildren - 1);
4057 if (SrcChild->isLeaf()) {
4058 DefInit *DI = dyn_cast<DefInit>(SrcChild->getLeafValue());
4059 Record *CCDef = DI ? DI->getDef() : nullptr;
4060 if (!CCDef || !CCDef->isSubClassOf("CondCode"))
4061 return failedImport("Unable to handle CondCode");
4063 OperandMatcher &OM =
4064 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
4065 StringRef PredType = IsFCmp ? CCDef->getValueAsString("FCmpPredicate") :
4066 CCDef->getValueAsString("ICmpPredicate");
4068 if (!PredType.empty()) {
4069 OM.addPredicate<CmpPredicateOperandMatcher>(std::string(PredType));
4070 // Process the other 2 operands normally.
4071 --NumChildren;
4076 // Hack around an unfortunate mistake in how atomic store (and really
4077 // atomicrmw in general) operands were ordered. A ISD::STORE used the order
4078 // <stored value>, <pointer> order. ISD::ATOMIC_STORE used the opposite,
4079 // <pointer>, <stored value>. In GlobalISel there's just the one store
4080 // opcode, so we need to swap the operands here to get the right type check.
4081 if (IsAtomic && SrcGIOrNull->TheDef->getName() == "G_STORE") {
4082 assert(NumChildren == 2 && "wrong operands for atomic store");
4084 TreePatternNode *PtrChild = Src->getChild(0);
4085 TreePatternNode *ValueChild = Src->getChild(1);
4087 if (auto Error = importChildMatcher(Rule, InsnMatcher, PtrChild, true,
4088 false, 1, TempOpIdx))
4089 return std::move(Error);
4091 if (auto Error = importChildMatcher(Rule, InsnMatcher, ValueChild, false,
4092 false, 0, TempOpIdx))
4093 return std::move(Error);
4094 return InsnMatcher;
4097 // Match the used operands (i.e. the children of the operator).
4098 bool IsIntrinsic =
4099 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
4100 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS";
4101 const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP);
4102 if (IsIntrinsic && !II)
4103 return failedImport("Expected IntInit containing intrinsic ID)");
4105 for (unsigned i = 0; i != NumChildren; ++i) {
4106 TreePatternNode *SrcChild = Src->getChild(i);
4108 // We need to determine the meaning of a literal integer based on the
4109 // context. If this is a field required to be an immediate (such as an
4110 // immarg intrinsic argument), the required predicates are different than
4111 // a constant which may be materialized in a register. If we have an
4112 // argument that is required to be an immediate, we should not emit an LLT
4113 // type check, and should not be looking for a G_CONSTANT defined
4114 // register.
4115 bool OperandIsImmArg = SrcGIOrNull->isOperandImmArg(i);
4117 // SelectionDAG allows pointers to be represented with iN since it doesn't
4118 // distinguish between pointers and integers but they are different types in GlobalISel.
4119 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
4121 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
4123 if (IsIntrinsic) {
4124 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
4125 // following the defs is an intrinsic ID.
4126 if (i == 0) {
4127 OperandMatcher &OM =
4128 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
4129 OM.addPredicate<IntrinsicIDOperandMatcher>(II);
4130 continue;
4133 // We have to check intrinsics for llvm_anyptr_ty and immarg parameters.
4135 // Note that we have to look at the i-1th parameter, because we don't
4136 // have the intrinsic ID in the intrinsic's parameter list.
4137 OperandIsAPointer |= II->isParamAPointer(i - 1);
4138 OperandIsImmArg |= II->isParamImmArg(i - 1);
4141 if (auto Error =
4142 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
4143 OperandIsImmArg, OpIdx++, TempOpIdx))
4144 return std::move(Error);
4148 return InsnMatcher;
4151 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
4152 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
4153 const auto &ComplexPattern = ComplexPatternEquivs.find(R);
4154 if (ComplexPattern == ComplexPatternEquivs.end())
4155 return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
4156 ") not mapped to GlobalISel");
4158 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
4159 TempOpIdx++;
4160 return Error::success();
4163 // Get the name to use for a pattern operand. For an anonymous physical register
4164 // input, this should use the register name.
4165 static StringRef getSrcChildName(const TreePatternNode *SrcChild,
4166 Record *&PhysReg) {
4167 StringRef SrcChildName = SrcChild->getName();
4168 if (SrcChildName.empty() && SrcChild->isLeaf()) {
4169 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
4170 auto *ChildRec = ChildDefInit->getDef();
4171 if (ChildRec->isSubClassOf("Register")) {
4172 SrcChildName = ChildRec->getName();
4173 PhysReg = ChildRec;
4178 return SrcChildName;
4181 Error GlobalISelEmitter::importChildMatcher(
4182 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
4183 const TreePatternNode *SrcChild, bool OperandIsAPointer,
4184 bool OperandIsImmArg, unsigned OpIdx, unsigned &TempOpIdx) {
4186 Record *PhysReg = nullptr;
4187 std::string SrcChildName = std::string(getSrcChildName(SrcChild, PhysReg));
4188 if (!SrcChild->isLeaf() &&
4189 SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
4190 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
4191 // "MY_PAT:op1:op2" and the ones with same "name" represent same operand.
4192 std::string PatternName = std::string(SrcChild->getOperator()->getName());
4193 for (unsigned i = 0; i < SrcChild->getNumChildren(); ++i) {
4194 PatternName += ":";
4195 PatternName += SrcChild->getChild(i)->getName();
4197 SrcChildName = PatternName;
4200 OperandMatcher &OM =
4201 PhysReg ? InsnMatcher.addPhysRegInput(PhysReg, OpIdx, TempOpIdx)
4202 : InsnMatcher.addOperand(OpIdx, SrcChildName, TempOpIdx);
4203 if (OM.isSameAsAnotherOperand())
4204 return Error::success();
4206 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
4207 if (ChildTypes.size() != 1)
4208 return failedImport("Src pattern child has multiple results");
4210 // Check MBB's before the type check since they are not a known type.
4211 if (!SrcChild->isLeaf()) {
4212 if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
4213 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
4214 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
4215 OM.addPredicate<MBBOperandMatcher>();
4216 return Error::success();
4218 if (SrcChild->getOperator()->getName() == "timm") {
4219 OM.addPredicate<ImmOperandMatcher>();
4221 // Add predicates, if any
4222 for (const TreePredicateCall &Call : SrcChild->getPredicateCalls()) {
4223 const TreePredicateFn &Predicate = Call.Fn;
4225 // Only handle immediate patterns for now
4226 if (Predicate.isImmediatePattern()) {
4227 OM.addPredicate<OperandImmPredicateMatcher>(Predicate);
4231 return Error::success();
4236 // Immediate arguments have no meaningful type to check as they don't have
4237 // registers.
4238 if (!OperandIsImmArg) {
4239 if (auto Error =
4240 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
4241 return failedImport(toString(std::move(Error)) + " for Src operand (" +
4242 to_string(*SrcChild) + ")");
4245 // Check for nested instructions.
4246 if (!SrcChild->isLeaf()) {
4247 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
4248 // When a ComplexPattern is used as an operator, it should do the same
4249 // thing as when used as a leaf. However, the children of the operator
4250 // name the sub-operands that make up the complex operand and we must
4251 // prepare to reference them in the renderer too.
4252 unsigned RendererID = TempOpIdx;
4253 if (auto Error = importComplexPatternOperandMatcher(
4254 OM, SrcChild->getOperator(), TempOpIdx))
4255 return Error;
4257 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
4258 auto *SubOperand = SrcChild->getChild(i);
4259 if (!SubOperand->getName().empty()) {
4260 if (auto Error = Rule.defineComplexSubOperand(
4261 SubOperand->getName(), SrcChild->getOperator(), RendererID, i,
4262 SrcChildName))
4263 return Error;
4267 return Error::success();
4270 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
4271 InsnMatcher.getRuleMatcher(), SrcChild->getName());
4272 if (!MaybeInsnOperand.hasValue()) {
4273 // This isn't strictly true. If the user were to provide exactly the same
4274 // matchers as the original operand then we could allow it. However, it's
4275 // simpler to not permit the redundant specification.
4276 return failedImport("Nested instruction cannot be the same as another operand");
4279 // Map the node to a gMIR instruction.
4280 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
4281 auto InsnMatcherOrError = createAndImportSelDAGMatcher(
4282 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
4283 if (auto Error = InsnMatcherOrError.takeError())
4284 return Error;
4286 return Error::success();
4289 if (SrcChild->hasAnyPredicate())
4290 return failedImport("Src pattern child has unsupported predicate");
4292 // Check for constant immediates.
4293 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
4294 if (OperandIsImmArg) {
4295 // Checks for argument directly in operand list
4296 OM.addPredicate<LiteralIntOperandMatcher>(ChildInt->getValue());
4297 } else {
4298 // Checks for materialized constant
4299 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
4301 return Error::success();
4304 // Check for def's like register classes or ComplexPattern's.
4305 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
4306 auto *ChildRec = ChildDefInit->getDef();
4308 if (WaitingForNamedOperands) {
4309 auto PA = SrcChild->getNamesAsPredicateArg().begin();
4310 std::string Name = getScopedName(PA->getScope(), PA->getIdentifier());
4311 OM.addPredicate<RecordNamedOperandMatcher>(StoreIdxForName[Name], Name);
4312 --WaitingForNamedOperands;
4315 // Check for register classes.
4316 if (ChildRec->isSubClassOf("RegisterClass") ||
4317 ChildRec->isSubClassOf("RegisterOperand")) {
4318 OM.addPredicate<RegisterBankOperandMatcher>(
4319 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
4320 return Error::success();
4323 if (ChildRec->isSubClassOf("Register")) {
4324 // This just be emitted as a copy to the specific register.
4325 ValueTypeByHwMode VT = ChildTypes.front().getValueTypeByHwMode();
4326 const CodeGenRegisterClass *RC
4327 = CGRegs.getMinimalPhysRegClass(ChildRec, &VT);
4328 if (!RC) {
4329 return failedImport(
4330 "Could not determine physical register class of pattern source");
4333 OM.addPredicate<RegisterBankOperandMatcher>(*RC);
4334 return Error::success();
4337 // Check for ValueType.
4338 if (ChildRec->isSubClassOf("ValueType")) {
4339 // We already added a type check as standard practice so this doesn't need
4340 // to do anything.
4341 return Error::success();
4344 // Check for ComplexPattern's.
4345 if (ChildRec->isSubClassOf("ComplexPattern"))
4346 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
4348 if (ChildRec->isSubClassOf("ImmLeaf")) {
4349 return failedImport(
4350 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
4353 // Place holder for SRCVALUE nodes. Nothing to do here.
4354 if (ChildRec->getName() == "srcvalue")
4355 return Error::success();
4357 const bool ImmAllOnesV = ChildRec->getName() == "immAllOnesV";
4358 if (ImmAllOnesV || ChildRec->getName() == "immAllZerosV") {
4359 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
4360 InsnMatcher.getRuleMatcher(), SrcChild->getName(), false);
4361 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
4363 ValueTypeByHwMode VTy = ChildTypes.front().getValueTypeByHwMode();
4365 const CodeGenInstruction &BuildVector
4366 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR"));
4367 const CodeGenInstruction &BuildVectorTrunc
4368 = Target.getInstruction(RK.getDef("G_BUILD_VECTOR_TRUNC"));
4370 // Treat G_BUILD_VECTOR as the canonical opcode, and G_BUILD_VECTOR_TRUNC
4371 // as an alternative.
4372 InsnOperand.getInsnMatcher().addPredicate<InstructionOpcodeMatcher>(
4373 makeArrayRef({&BuildVector, &BuildVectorTrunc}));
4375 // TODO: Handle both G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC We could
4376 // theoretically not emit any opcode check, but getOpcodeMatcher currently
4377 // has to succeed.
4378 OperandMatcher &OM =
4379 InsnOperand.getInsnMatcher().addOperand(0, "", TempOpIdx);
4380 if (auto Error =
4381 OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
4382 return failedImport(toString(std::move(Error)) +
4383 " for result of Src pattern operator");
4385 InsnOperand.getInsnMatcher().addPredicate<VectorSplatImmPredicateMatcher>(
4386 ImmAllOnesV ? VectorSplatImmPredicateMatcher::AllOnes
4387 : VectorSplatImmPredicateMatcher::AllZeros);
4388 return Error::success();
4391 return failedImport(
4392 "Src pattern child def is an unsupported tablegen class");
4395 return failedImport("Src pattern child is an unsupported kind");
4398 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
4399 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
4400 TreePatternNode *DstChild) {
4402 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
4403 if (SubOperand.hasValue()) {
4404 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
4405 *std::get<0>(*SubOperand), DstChild->getName(),
4406 std::get<1>(*SubOperand), std::get<2>(*SubOperand));
4407 return InsertPt;
4410 if (!DstChild->isLeaf()) {
4411 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
4412 auto Child = DstChild->getChild(0);
4413 auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
4414 if (I != SDNodeXFormEquivs.end()) {
4415 Record *XFormOpc = DstChild->getOperator()->getValueAsDef("Opcode");
4416 if (XFormOpc->getName() == "timm") {
4417 // If this is a TargetConstant, there won't be a corresponding
4418 // instruction to transform. Instead, this will refer directly to an
4419 // operand in an instruction's operand list.
4420 DstMIBuilder.addRenderer<CustomOperandRenderer>(*I->second,
4421 Child->getName());
4422 } else {
4423 DstMIBuilder.addRenderer<CustomRenderer>(*I->second,
4424 Child->getName());
4427 return InsertPt;
4429 return failedImport("SDNodeXForm " + Child->getName() +
4430 " has no custom renderer");
4433 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
4434 // inline, but in MI it's just another operand.
4435 if (DstChild->getOperator()->isSubClassOf("SDNode")) {
4436 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
4437 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
4438 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4439 return InsertPt;
4443 // Similarly, imm is an operator in TreePatternNode's view but must be
4444 // rendered as operands.
4445 // FIXME: The target should be able to choose sign-extended when appropriate
4446 // (e.g. on Mips).
4447 if (DstChild->getOperator()->getName() == "timm") {
4448 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4449 return InsertPt;
4450 } else if (DstChild->getOperator()->getName() == "imm") {
4451 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
4452 return InsertPt;
4453 } else if (DstChild->getOperator()->getName() == "fpimm") {
4454 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
4455 DstChild->getName());
4456 return InsertPt;
4459 if (DstChild->getOperator()->isSubClassOf("Instruction")) {
4460 auto OpTy = getInstResultType(DstChild);
4461 if (!OpTy)
4462 return OpTy.takeError();
4464 unsigned TempRegID = Rule.allocateTempRegID();
4465 InsertPt = Rule.insertAction<MakeTempRegisterAction>(
4466 InsertPt, *OpTy, TempRegID);
4467 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4469 auto InsertPtOrError = createAndImportSubInstructionRenderer(
4470 ++InsertPt, Rule, DstChild, TempRegID);
4471 if (auto Error = InsertPtOrError.takeError())
4472 return std::move(Error);
4473 return InsertPtOrError.get();
4476 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
4479 // It could be a specific immediate in which case we should just check for
4480 // that immediate.
4481 if (const IntInit *ChildIntInit =
4482 dyn_cast<IntInit>(DstChild->getLeafValue())) {
4483 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
4484 return InsertPt;
4487 // Otherwise, we're looking for a bog-standard RegisterClass operand.
4488 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
4489 auto *ChildRec = ChildDefInit->getDef();
4491 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
4492 if (ChildTypes.size() != 1)
4493 return failedImport("Dst pattern child has multiple results");
4495 Optional<LLTCodeGen> OpTyOrNone = None;
4496 if (ChildTypes.front().isMachineValueType())
4497 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
4498 if (!OpTyOrNone)
4499 return failedImport("Dst operand has an unsupported type");
4501 if (ChildRec->isSubClassOf("Register")) {
4502 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, ChildRec);
4503 return InsertPt;
4506 if (ChildRec->isSubClassOf("RegisterClass") ||
4507 ChildRec->isSubClassOf("RegisterOperand") ||
4508 ChildRec->isSubClassOf("ValueType")) {
4509 if (ChildRec->isSubClassOf("RegisterOperand") &&
4510 !ChildRec->isValueUnset("GIZeroRegister")) {
4511 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
4512 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
4513 return InsertPt;
4516 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
4517 return InsertPt;
4520 if (ChildRec->isSubClassOf("SubRegIndex")) {
4521 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(ChildRec);
4522 DstMIBuilder.addRenderer<ImmRenderer>(SubIdx->EnumValue);
4523 return InsertPt;
4526 if (ChildRec->isSubClassOf("ComplexPattern")) {
4527 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
4528 if (ComplexPattern == ComplexPatternEquivs.end())
4529 return failedImport(
4530 "SelectionDAG ComplexPattern not mapped to GlobalISel");
4532 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
4533 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
4534 *ComplexPattern->second, DstChild->getName(),
4535 OM.getAllocatedTemporariesBaseID());
4536 return InsertPt;
4539 return failedImport(
4540 "Dst pattern child def is an unsupported tablegen class");
4542 return failedImport("Dst pattern child is an unsupported kind");
4545 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
4546 RuleMatcher &M, InstructionMatcher &InsnMatcher, const TreePatternNode *Src,
4547 const TreePatternNode *Dst) {
4548 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
4549 if (auto Error = InsertPtOrError.takeError())
4550 return std::move(Error);
4552 action_iterator InsertPt = InsertPtOrError.get();
4553 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
4555 for (auto PhysInput : InsnMatcher.getPhysRegInputs()) {
4556 InsertPt = M.insertAction<BuildMIAction>(
4557 InsertPt, M.allocateOutputInsnID(),
4558 &Target.getInstruction(RK.getDef("COPY")));
4559 BuildMIAction &CopyToPhysRegMIBuilder =
4560 *static_cast<BuildMIAction *>(InsertPt->get());
4561 CopyToPhysRegMIBuilder.addRenderer<AddRegisterRenderer>(Target,
4562 PhysInput.first,
4563 true);
4564 CopyToPhysRegMIBuilder.addRenderer<CopyPhysRegRenderer>(PhysInput.first);
4567 if (auto Error = importExplicitDefRenderers(InsertPt, M, DstMIBuilder, Dst)
4568 .takeError())
4569 return std::move(Error);
4571 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
4572 .takeError())
4573 return std::move(Error);
4575 return DstMIBuilder;
4578 Expected<action_iterator>
4579 GlobalISelEmitter::createAndImportSubInstructionRenderer(
4580 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
4581 unsigned TempRegID) {
4582 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
4584 // TODO: Assert there's exactly one result.
4586 if (auto Error = InsertPtOrError.takeError())
4587 return std::move(Error);
4589 BuildMIAction &DstMIBuilder =
4590 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
4592 // Assign the result to TempReg.
4593 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
4595 InsertPtOrError =
4596 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
4597 if (auto Error = InsertPtOrError.takeError())
4598 return std::move(Error);
4600 // We need to make sure that when we import an INSERT_SUBREG as a
4601 // subinstruction that it ends up being constrained to the correct super
4602 // register and subregister classes.
4603 auto OpName = Target.getInstruction(Dst->getOperator()).TheDef->getName();
4604 if (OpName == "INSERT_SUBREG") {
4605 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4606 if (!SubClass)
4607 return failedImport(
4608 "Cannot infer register class from INSERT_SUBREG operand #1");
4609 Optional<const CodeGenRegisterClass *> SuperClass =
4610 inferSuperRegisterClassForNode(Dst->getExtType(0), Dst->getChild(0),
4611 Dst->getChild(2));
4612 if (!SuperClass)
4613 return failedImport(
4614 "Cannot infer register class for INSERT_SUBREG operand #0");
4615 // The destination and the super register source of an INSERT_SUBREG must
4616 // be the same register class.
4617 M.insertAction<ConstrainOperandToRegClassAction>(
4618 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4619 M.insertAction<ConstrainOperandToRegClassAction>(
4620 InsertPt, DstMIBuilder.getInsnID(), 1, **SuperClass);
4621 M.insertAction<ConstrainOperandToRegClassAction>(
4622 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4623 return InsertPtOrError.get();
4626 if (OpName == "EXTRACT_SUBREG") {
4627 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4628 // instructions, the result register class is controlled by the
4629 // subregisters of the operand. As a result, we must constrain the result
4630 // class rather than check that it's already the right one.
4631 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4632 if (!SuperClass)
4633 return failedImport(
4634 "Cannot infer register class from EXTRACT_SUBREG operand #0");
4636 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
4637 if (!SubIdx)
4638 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4640 const auto SrcRCDstRCPair =
4641 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4642 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4643 M.insertAction<ConstrainOperandToRegClassAction>(
4644 InsertPt, DstMIBuilder.getInsnID(), 0, *SrcRCDstRCPair->second);
4645 M.insertAction<ConstrainOperandToRegClassAction>(
4646 InsertPt, DstMIBuilder.getInsnID(), 1, *SrcRCDstRCPair->first);
4648 // We're done with this pattern! It's eligible for GISel emission; return
4649 // it.
4650 return InsertPtOrError.get();
4653 // Similar to INSERT_SUBREG, we also have to handle SUBREG_TO_REG as a
4654 // subinstruction.
4655 if (OpName == "SUBREG_TO_REG") {
4656 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
4657 if (!SubClass)
4658 return failedImport(
4659 "Cannot infer register class from SUBREG_TO_REG child #1");
4660 auto SuperClass = inferSuperRegisterClass(Dst->getExtType(0),
4661 Dst->getChild(2));
4662 if (!SuperClass)
4663 return failedImport(
4664 "Cannot infer register class for SUBREG_TO_REG operand #0");
4665 M.insertAction<ConstrainOperandToRegClassAction>(
4666 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4667 M.insertAction<ConstrainOperandToRegClassAction>(
4668 InsertPt, DstMIBuilder.getInsnID(), 2, **SubClass);
4669 return InsertPtOrError.get();
4672 if (OpName == "REG_SEQUENCE") {
4673 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
4674 M.insertAction<ConstrainOperandToRegClassAction>(
4675 InsertPt, DstMIBuilder.getInsnID(), 0, **SuperClass);
4677 unsigned Num = Dst->getNumChildren();
4678 for (unsigned I = 1; I != Num; I += 2) {
4679 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
4681 auto SubIdx = inferSubRegIndexForNode(SubRegChild);
4682 if (!SubIdx)
4683 return failedImport("REG_SEQUENCE child is not a subreg index");
4685 const auto SrcRCDstRCPair =
4686 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
4687 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4688 M.insertAction<ConstrainOperandToRegClassAction>(
4689 InsertPt, DstMIBuilder.getInsnID(), I, *SrcRCDstRCPair->second);
4692 return InsertPtOrError.get();
4695 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
4696 DstMIBuilder.getInsnID());
4697 return InsertPtOrError.get();
4700 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
4701 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
4702 Record *DstOp = Dst->getOperator();
4703 if (!DstOp->isSubClassOf("Instruction")) {
4704 if (DstOp->isSubClassOf("ValueType"))
4705 return failedImport(
4706 "Pattern operator isn't an instruction (it's a ValueType)");
4707 return failedImport("Pattern operator isn't an instruction");
4709 CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
4711 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
4712 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
4713 StringRef Name = DstI->TheDef->getName();
4714 if (Name == "COPY_TO_REGCLASS" || Name == "EXTRACT_SUBREG")
4715 DstI = &Target.getInstruction(RK.getDef("COPY"));
4717 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
4718 DstI);
4721 Expected<action_iterator> GlobalISelEmitter::importExplicitDefRenderers(
4722 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4723 const TreePatternNode *Dst) {
4724 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4725 const unsigned NumDefs = DstI->Operands.NumDefs;
4726 if (NumDefs == 0)
4727 return InsertPt;
4729 DstMIBuilder.addRenderer<CopyRenderer>(DstI->Operands[0].Name);
4731 // Some instructions have multiple defs, but are missing a type entry
4732 // (e.g. s_cc_out operands).
4733 if (Dst->getExtTypes().size() < NumDefs)
4734 return failedImport("unhandled discarded def");
4736 // Patterns only handle a single result, so any result after the first is an
4737 // implicitly dead def.
4738 for (unsigned I = 1; I < NumDefs; ++I) {
4739 const TypeSetByHwMode &ExtTy = Dst->getExtType(I);
4740 if (!ExtTy.isMachineValueType())
4741 return failedImport("unsupported typeset");
4743 auto OpTy = MVTToLLT(ExtTy.getMachineValueType().SimpleTy);
4744 if (!OpTy)
4745 return failedImport("unsupported type");
4747 unsigned TempRegID = M.allocateTempRegID();
4748 InsertPt =
4749 M.insertAction<MakeTempRegisterAction>(InsertPt, *OpTy, TempRegID);
4750 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true, nullptr, true);
4753 return InsertPt;
4756 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
4757 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4758 const llvm::TreePatternNode *Dst) {
4759 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
4760 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
4762 StringRef Name = OrigDstI->TheDef->getName();
4763 unsigned ExpectedDstINumUses = Dst->getNumChildren();
4765 // EXTRACT_SUBREG needs to use a subregister COPY.
4766 if (Name == "EXTRACT_SUBREG") {
4767 if (!Dst->getChild(1)->isLeaf())
4768 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4769 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
4770 if (!SubRegInit)
4771 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4773 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4774 TreePatternNode *ValChild = Dst->getChild(0);
4775 if (!ValChild->isLeaf()) {
4776 // We really have to handle the source instruction, and then insert a
4777 // copy from the subregister.
4778 auto ExtractSrcTy = getInstResultType(ValChild);
4779 if (!ExtractSrcTy)
4780 return ExtractSrcTy.takeError();
4782 unsigned TempRegID = M.allocateTempRegID();
4783 InsertPt = M.insertAction<MakeTempRegisterAction>(
4784 InsertPt, *ExtractSrcTy, TempRegID);
4786 auto InsertPtOrError = createAndImportSubInstructionRenderer(
4787 ++InsertPt, M, ValChild, TempRegID);
4788 if (auto Error = InsertPtOrError.takeError())
4789 return std::move(Error);
4791 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, false, SubIdx);
4792 return InsertPt;
4795 // If this is a source operand, this is just a subregister copy.
4796 Record *RCDef = getInitValueAsRegClass(ValChild->getLeafValue());
4797 if (!RCDef)
4798 return failedImport("EXTRACT_SUBREG child #0 could not "
4799 "be coerced to a register class");
4801 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
4803 const auto SrcRCDstRCPair =
4804 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4805 if (SrcRCDstRCPair.hasValue()) {
4806 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4807 if (SrcRCDstRCPair->first != RC)
4808 return failedImport("EXTRACT_SUBREG requires an additional COPY");
4811 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
4812 SubIdx);
4813 return InsertPt;
4816 if (Name == "REG_SEQUENCE") {
4817 if (!Dst->getChild(0)->isLeaf())
4818 return failedImport("REG_SEQUENCE child #0 is not a leaf");
4820 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4821 if (!RCDef)
4822 return failedImport("REG_SEQUENCE child #0 could not "
4823 "be coerced to a register class");
4825 if ((ExpectedDstINumUses - 1) % 2 != 0)
4826 return failedImport("Malformed REG_SEQUENCE");
4828 for (unsigned I = 1; I != ExpectedDstINumUses; I += 2) {
4829 TreePatternNode *ValChild = Dst->getChild(I);
4830 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
4832 if (DefInit *SubRegInit =
4833 dyn_cast<DefInit>(SubRegChild->getLeafValue())) {
4834 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4836 auto InsertPtOrError =
4837 importExplicitUseRenderer(InsertPt, M, DstMIBuilder, ValChild);
4838 if (auto Error = InsertPtOrError.takeError())
4839 return std::move(Error);
4840 InsertPt = InsertPtOrError.get();
4841 DstMIBuilder.addRenderer<SubRegIndexRenderer>(SubIdx);
4845 return InsertPt;
4848 // Render the explicit uses.
4849 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
4850 if (Name == "COPY_TO_REGCLASS") {
4851 DstINumUses--; // Ignore the class constraint.
4852 ExpectedDstINumUses--;
4855 // NumResults - This is the number of results produced by the instruction in
4856 // the "outs" list.
4857 unsigned NumResults = OrigDstI->Operands.NumDefs;
4859 // Number of operands we know the output instruction must have. If it is
4860 // variadic, we could have more operands.
4861 unsigned NumFixedOperands = DstI->Operands.size();
4863 // Loop over all of the fixed operands of the instruction pattern, emitting
4864 // code to fill them all in. The node 'N' usually has number children equal to
4865 // the number of input operands of the instruction. However, in cases where
4866 // there are predicate operands for an instruction, we need to fill in the
4867 // 'execute always' values. Match up the node operands to the instruction
4868 // operands to do this.
4869 unsigned Child = 0;
4871 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
4872 // number of operands at the end of the list which have default values.
4873 // Those can come from the pattern if it provides enough arguments, or be
4874 // filled in with the default if the pattern hasn't provided them. But any
4875 // operand with a default value _before_ the last mandatory one will be
4876 // filled in with their defaults unconditionally.
4877 unsigned NonOverridableOperands = NumFixedOperands;
4878 while (NonOverridableOperands > NumResults &&
4879 CGP.operandHasDefault(DstI->Operands[NonOverridableOperands - 1].Rec))
4880 --NonOverridableOperands;
4882 unsigned NumDefaultOps = 0;
4883 for (unsigned I = 0; I != DstINumUses; ++I) {
4884 unsigned InstOpNo = DstI->Operands.NumDefs + I;
4886 // Determine what to emit for this operand.
4887 Record *OperandNode = DstI->Operands[InstOpNo].Rec;
4889 // If the operand has default values, introduce them now.
4890 if (CGP.operandHasDefault(OperandNode) &&
4891 (InstOpNo < NonOverridableOperands || Child >= Dst->getNumChildren())) {
4892 // This is a predicate or optional def operand which the pattern has not
4893 // overridden, or which we aren't letting it override; emit the 'default
4894 // ops' operands.
4896 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[InstOpNo];
4897 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
4898 if (auto Error = importDefaultOperandRenderers(
4899 InsertPt, M, DstMIBuilder, DefaultOps))
4900 return std::move(Error);
4901 ++NumDefaultOps;
4902 continue;
4905 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
4906 Dst->getChild(Child));
4907 if (auto Error = InsertPtOrError.takeError())
4908 return std::move(Error);
4909 InsertPt = InsertPtOrError.get();
4910 ++Child;
4913 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
4914 return failedImport("Expected " + llvm::to_string(DstINumUses) +
4915 " used operands but found " +
4916 llvm::to_string(ExpectedDstINumUses) +
4917 " explicit ones and " + llvm::to_string(NumDefaultOps) +
4918 " default ones");
4920 return InsertPt;
4923 Error GlobalISelEmitter::importDefaultOperandRenderers(
4924 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
4925 DagInit *DefaultOps) const {
4926 for (const auto *DefaultOp : DefaultOps->getArgs()) {
4927 Optional<LLTCodeGen> OpTyOrNone = None;
4929 // Look through ValueType operators.
4930 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
4931 if (const DefInit *DefaultDagOperator =
4932 dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
4933 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType")) {
4934 OpTyOrNone = MVTToLLT(getValueType(
4935 DefaultDagOperator->getDef()));
4936 DefaultOp = DefaultDagOp->getArg(0);
4941 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
4942 auto Def = DefaultDefOp->getDef();
4943 if (Def->getName() == "undef_tied_input") {
4944 unsigned TempRegID = M.allocateTempRegID();
4945 M.insertAction<MakeTempRegisterAction>(
4946 InsertPt, OpTyOrNone.getValue(), TempRegID);
4947 InsertPt = M.insertAction<BuildMIAction>(
4948 InsertPt, M.allocateOutputInsnID(),
4949 &Target.getInstruction(RK.getDef("IMPLICIT_DEF")));
4950 BuildMIAction &IDMIBuilder = *static_cast<BuildMIAction *>(
4951 InsertPt->get());
4952 IDMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4953 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
4954 } else {
4955 DstMIBuilder.addRenderer<AddRegisterRenderer>(Target, Def);
4957 continue;
4960 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
4961 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
4962 continue;
4965 return failedImport("Could not add default op");
4968 return Error::success();
4971 Error GlobalISelEmitter::importImplicitDefRenderers(
4972 BuildMIAction &DstMIBuilder,
4973 const std::vector<Record *> &ImplicitDefs) const {
4974 if (!ImplicitDefs.empty())
4975 return failedImport("Pattern defines a physical register");
4976 return Error::success();
4979 Optional<const CodeGenRegisterClass *>
4980 GlobalISelEmitter::getRegClassFromLeaf(TreePatternNode *Leaf) {
4981 assert(Leaf && "Expected node?");
4982 assert(Leaf->isLeaf() && "Expected leaf?");
4983 Record *RCRec = getInitValueAsRegClass(Leaf->getLeafValue());
4984 if (!RCRec)
4985 return None;
4986 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCRec);
4987 if (!RC)
4988 return None;
4989 return RC;
4992 Optional<const CodeGenRegisterClass *>
4993 GlobalISelEmitter::inferRegClassFromPattern(TreePatternNode *N) {
4994 if (!N)
4995 return None;
4997 if (N->isLeaf())
4998 return getRegClassFromLeaf(N);
5000 // We don't have a leaf node, so we have to try and infer something. Check
5001 // that we have an instruction that we an infer something from.
5003 // Only handle things that produce a single type.
5004 if (N->getNumTypes() != 1)
5005 return None;
5006 Record *OpRec = N->getOperator();
5008 // We only want instructions.
5009 if (!OpRec->isSubClassOf("Instruction"))
5010 return None;
5012 // Don't want to try and infer things when there could potentially be more
5013 // than one candidate register class.
5014 auto &Inst = Target.getInstruction(OpRec);
5015 if (Inst.Operands.NumDefs > 1)
5016 return None;
5018 // Handle any special-case instructions which we can safely infer register
5019 // classes from.
5020 StringRef InstName = Inst.TheDef->getName();
5021 bool IsRegSequence = InstName == "REG_SEQUENCE";
5022 if (IsRegSequence || InstName == "COPY_TO_REGCLASS") {
5023 // If we have a COPY_TO_REGCLASS, then we need to handle it specially. It
5024 // has the desired register class as the first child.
5025 TreePatternNode *RCChild = N->getChild(IsRegSequence ? 0 : 1);
5026 if (!RCChild->isLeaf())
5027 return None;
5028 return getRegClassFromLeaf(RCChild);
5030 if (InstName == "INSERT_SUBREG") {
5031 TreePatternNode *Child0 = N->getChild(0);
5032 assert(Child0->getNumTypes() == 1 && "Unexpected number of types!");
5033 const TypeSetByHwMode &VTy = Child0->getExtType(0);
5034 return inferSuperRegisterClassForNode(VTy, Child0, N->getChild(2));
5036 if (InstName == "EXTRACT_SUBREG") {
5037 assert(N->getNumTypes() == 1 && "Unexpected number of types!");
5038 const TypeSetByHwMode &VTy = N->getExtType(0);
5039 return inferSuperRegisterClass(VTy, N->getChild(1));
5042 // Handle destination record types that we can safely infer a register class
5043 // from.
5044 const auto &DstIOperand = Inst.Operands[0];
5045 Record *DstIOpRec = DstIOperand.Rec;
5046 if (DstIOpRec->isSubClassOf("RegisterOperand")) {
5047 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
5048 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
5049 return &RC;
5052 if (DstIOpRec->isSubClassOf("RegisterClass")) {
5053 const CodeGenRegisterClass &RC = Target.getRegisterClass(DstIOpRec);
5054 return &RC;
5057 return None;
5060 Optional<const CodeGenRegisterClass *>
5061 GlobalISelEmitter::inferSuperRegisterClass(const TypeSetByHwMode &Ty,
5062 TreePatternNode *SubRegIdxNode) {
5063 assert(SubRegIdxNode && "Expected subregister index node!");
5064 // We need a ValueTypeByHwMode for getSuperRegForSubReg.
5065 if (!Ty.isValueTypeByHwMode(false))
5066 return None;
5067 if (!SubRegIdxNode->isLeaf())
5068 return None;
5069 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
5070 if (!SubRegInit)
5071 return None;
5072 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
5074 // Use the information we found above to find a minimal register class which
5075 // supports the subregister and type we want.
5076 auto RC =
5077 Target.getSuperRegForSubReg(Ty.getValueTypeByHwMode(), CGRegs, SubIdx,
5078 /* MustBeAllocatable */ true);
5079 if (!RC)
5080 return None;
5081 return *RC;
5084 Optional<const CodeGenRegisterClass *>
5085 GlobalISelEmitter::inferSuperRegisterClassForNode(
5086 const TypeSetByHwMode &Ty, TreePatternNode *SuperRegNode,
5087 TreePatternNode *SubRegIdxNode) {
5088 assert(SuperRegNode && "Expected super register node!");
5089 // Check if we already have a defined register class for the super register
5090 // node. If we do, then we should preserve that rather than inferring anything
5091 // from the subregister index node. We can assume that whoever wrote the
5092 // pattern in the first place made sure that the super register and
5093 // subregister are compatible.
5094 if (Optional<const CodeGenRegisterClass *> SuperRegisterClass =
5095 inferRegClassFromPattern(SuperRegNode))
5096 return *SuperRegisterClass;
5097 return inferSuperRegisterClass(Ty, SubRegIdxNode);
5100 Optional<CodeGenSubRegIndex *>
5101 GlobalISelEmitter::inferSubRegIndexForNode(TreePatternNode *SubRegIdxNode) {
5102 if (!SubRegIdxNode->isLeaf())
5103 return None;
5105 DefInit *SubRegInit = dyn_cast<DefInit>(SubRegIdxNode->getLeafValue());
5106 if (!SubRegInit)
5107 return None;
5108 return CGRegs.getSubRegIdx(SubRegInit->getDef());
5111 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
5112 // Keep track of the matchers and actions to emit.
5113 int Score = P.getPatternComplexity(CGP);
5114 RuleMatcher M(P.getSrcRecord()->getLoc());
5115 RuleMatcherScores[M.getRuleID()] = Score;
5116 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
5117 " => " +
5118 llvm::to_string(*P.getDstPattern()));
5120 SmallVector<Record *, 4> Predicates;
5121 P.getPredicateRecords(Predicates);
5122 if (auto Error = importRulePredicates(M, Predicates))
5123 return std::move(Error);
5125 // Next, analyze the pattern operators.
5126 TreePatternNode *Src = P.getSrcPattern();
5127 TreePatternNode *Dst = P.getDstPattern();
5129 // If the root of either pattern isn't a simple operator, ignore it.
5130 if (auto Err = isTrivialOperatorNode(Dst))
5131 return failedImport("Dst pattern root isn't a trivial operator (" +
5132 toString(std::move(Err)) + ")");
5133 if (auto Err = isTrivialOperatorNode(Src))
5134 return failedImport("Src pattern root isn't a trivial operator (" +
5135 toString(std::move(Err)) + ")");
5137 // The different predicates and matchers created during
5138 // addInstructionMatcher use the RuleMatcher M to set up their
5139 // instruction ID (InsnVarID) that are going to be used when
5140 // M is going to be emitted.
5141 // However, the code doing the emission still relies on the IDs
5142 // returned during that process by the RuleMatcher when issuing
5143 // the recordInsn opcodes.
5144 // Because of that:
5145 // 1. The order in which we created the predicates
5146 // and such must be the same as the order in which we emit them,
5147 // and
5148 // 2. We need to reset the generation of the IDs in M somewhere between
5149 // addInstructionMatcher and emit
5151 // FIXME: Long term, we don't want to have to rely on this implicit
5152 // naming being the same. One possible solution would be to have
5153 // explicit operator for operation capture and reference those.
5154 // The plus side is that it would expose opportunities to share
5155 // the capture accross rules. The downside is that it would
5156 // introduce a dependency between predicates (captures must happen
5157 // before their first use.)
5158 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
5159 unsigned TempOpIdx = 0;
5160 auto InsnMatcherOrError =
5161 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
5162 if (auto Error = InsnMatcherOrError.takeError())
5163 return std::move(Error);
5164 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
5166 if (Dst->isLeaf()) {
5167 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
5168 if (RCDef) {
5169 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
5171 // We need to replace the def and all its uses with the specified
5172 // operand. However, we must also insert COPY's wherever needed.
5173 // For now, emit a copy and let the register allocator clean up.
5174 auto &DstI = Target.getInstruction(RK.getDef("COPY"));
5175 const auto &DstIOperand = DstI.Operands[0];
5177 OperandMatcher &OM0 = InsnMatcher.getOperand(0);
5178 OM0.setSymbolicName(DstIOperand.Name);
5179 M.defineOperand(OM0.getSymbolicName(), OM0);
5180 OM0.addPredicate<RegisterBankOperandMatcher>(RC);
5182 auto &DstMIBuilder =
5183 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
5184 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
5185 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
5186 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
5188 // We're done with this pattern! It's eligible for GISel emission; return
5189 // it.
5190 ++NumPatternImported;
5191 return std::move(M);
5194 return failedImport("Dst pattern root isn't a known leaf");
5197 // Start with the defined operands (i.e., the results of the root operator).
5198 Record *DstOp = Dst->getOperator();
5199 if (!DstOp->isSubClassOf("Instruction"))
5200 return failedImport("Pattern operator isn't an instruction");
5202 auto &DstI = Target.getInstruction(DstOp);
5203 StringRef DstIName = DstI.TheDef->getName();
5205 if (DstI.Operands.NumDefs < Src->getExtTypes().size())
5206 return failedImport("Src pattern result has more defs than dst MI (" +
5207 to_string(Src->getExtTypes().size()) + " def(s) vs " +
5208 to_string(DstI.Operands.NumDefs) + " def(s))");
5210 // The root of the match also has constraints on the register bank so that it
5211 // matches the result instruction.
5212 unsigned OpIdx = 0;
5213 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
5214 (void)VTy;
5216 const auto &DstIOperand = DstI.Operands[OpIdx];
5217 Record *DstIOpRec = DstIOperand.Rec;
5218 if (DstIName == "COPY_TO_REGCLASS") {
5219 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
5221 if (DstIOpRec == nullptr)
5222 return failedImport(
5223 "COPY_TO_REGCLASS operand #1 isn't a register class");
5224 } else if (DstIName == "REG_SEQUENCE") {
5225 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
5226 if (DstIOpRec == nullptr)
5227 return failedImport("REG_SEQUENCE operand #0 isn't a register class");
5228 } else if (DstIName == "EXTRACT_SUBREG") {
5229 auto InferredClass = inferRegClassFromPattern(Dst->getChild(0));
5230 if (!InferredClass)
5231 return failedImport("Could not infer class for EXTRACT_SUBREG operand #0");
5233 // We can assume that a subregister is in the same bank as it's super
5234 // register.
5235 DstIOpRec = (*InferredClass)->getDef();
5236 } else if (DstIName == "INSERT_SUBREG") {
5237 auto MaybeSuperClass = inferSuperRegisterClassForNode(
5238 VTy, Dst->getChild(0), Dst->getChild(2));
5239 if (!MaybeSuperClass)
5240 return failedImport(
5241 "Cannot infer register class for INSERT_SUBREG operand #0");
5242 // Move to the next pattern here, because the register class we found
5243 // doesn't necessarily have a record associated with it. So, we can't
5244 // set DstIOpRec using this.
5245 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5246 OM.setSymbolicName(DstIOperand.Name);
5247 M.defineOperand(OM.getSymbolicName(), OM);
5248 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeSuperClass);
5249 ++OpIdx;
5250 continue;
5251 } else if (DstIName == "SUBREG_TO_REG") {
5252 auto MaybeRegClass = inferSuperRegisterClass(VTy, Dst->getChild(2));
5253 if (!MaybeRegClass)
5254 return failedImport(
5255 "Cannot infer register class for SUBREG_TO_REG operand #0");
5256 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5257 OM.setSymbolicName(DstIOperand.Name);
5258 M.defineOperand(OM.getSymbolicName(), OM);
5259 OM.addPredicate<RegisterBankOperandMatcher>(**MaybeRegClass);
5260 ++OpIdx;
5261 continue;
5262 } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
5263 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
5264 else if (!DstIOpRec->isSubClassOf("RegisterClass"))
5265 return failedImport("Dst MI def isn't a register class" +
5266 to_string(*Dst));
5268 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
5269 OM.setSymbolicName(DstIOperand.Name);
5270 M.defineOperand(OM.getSymbolicName(), OM);
5271 OM.addPredicate<RegisterBankOperandMatcher>(
5272 Target.getRegisterClass(DstIOpRec));
5273 ++OpIdx;
5276 auto DstMIBuilderOrError =
5277 createAndImportInstructionRenderer(M, InsnMatcher, Src, Dst);
5278 if (auto Error = DstMIBuilderOrError.takeError())
5279 return std::move(Error);
5280 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
5282 // Render the implicit defs.
5283 // These are only added to the root of the result.
5284 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
5285 return std::move(Error);
5287 DstMIBuilder.chooseInsnToMutate(M);
5289 // Constrain the registers to classes. This is normally derived from the
5290 // emitted instruction but a few instructions require special handling.
5291 if (DstIName == "COPY_TO_REGCLASS") {
5292 // COPY_TO_REGCLASS does not provide operand constraints itself but the
5293 // result is constrained to the class given by the second child.
5294 Record *DstIOpRec =
5295 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
5297 if (DstIOpRec == nullptr)
5298 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
5300 M.addAction<ConstrainOperandToRegClassAction>(
5301 0, 0, Target.getRegisterClass(DstIOpRec));
5303 // We're done with this pattern! It's eligible for GISel emission; return
5304 // it.
5305 ++NumPatternImported;
5306 return std::move(M);
5309 if (DstIName == "EXTRACT_SUBREG") {
5310 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
5311 if (!SuperClass)
5312 return failedImport(
5313 "Cannot infer register class from EXTRACT_SUBREG operand #0");
5315 auto SubIdx = inferSubRegIndexForNode(Dst->getChild(1));
5316 if (!SubIdx)
5317 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
5319 // It would be nice to leave this constraint implicit but we're required
5320 // to pick a register class so constrain the result to a register class
5321 // that can hold the correct MVT.
5323 // FIXME: This may introduce an extra copy if the chosen class doesn't
5324 // actually contain the subregisters.
5325 assert(Src->getExtTypes().size() == 1 &&
5326 "Expected Src of EXTRACT_SUBREG to have one result type");
5328 const auto SrcRCDstRCPair =
5329 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
5330 if (!SrcRCDstRCPair) {
5331 return failedImport("subreg index is incompatible "
5332 "with inferred reg class");
5335 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
5336 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
5337 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
5339 // We're done with this pattern! It's eligible for GISel emission; return
5340 // it.
5341 ++NumPatternImported;
5342 return std::move(M);
5345 if (DstIName == "INSERT_SUBREG") {
5346 assert(Src->getExtTypes().size() == 1 &&
5347 "Expected Src of INSERT_SUBREG to have one result type");
5348 // We need to constrain the destination, a super regsister source, and a
5349 // subregister source.
5350 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
5351 if (!SubClass)
5352 return failedImport(
5353 "Cannot infer register class from INSERT_SUBREG operand #1");
5354 auto SuperClass = inferSuperRegisterClassForNode(
5355 Src->getExtType(0), Dst->getChild(0), Dst->getChild(2));
5356 if (!SuperClass)
5357 return failedImport(
5358 "Cannot infer register class for INSERT_SUBREG operand #0");
5359 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5360 M.addAction<ConstrainOperandToRegClassAction>(0, 1, **SuperClass);
5361 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
5362 ++NumPatternImported;
5363 return std::move(M);
5366 if (DstIName == "SUBREG_TO_REG") {
5367 // We need to constrain the destination and subregister source.
5368 assert(Src->getExtTypes().size() == 1 &&
5369 "Expected Src of SUBREG_TO_REG to have one result type");
5371 // Attempt to infer the subregister source from the first child. If it has
5372 // an explicitly given register class, we'll use that. Otherwise, we will
5373 // fail.
5374 auto SubClass = inferRegClassFromPattern(Dst->getChild(1));
5375 if (!SubClass)
5376 return failedImport(
5377 "Cannot infer register class from SUBREG_TO_REG child #1");
5378 // We don't have a child to look at that might have a super register node.
5379 auto SuperClass =
5380 inferSuperRegisterClass(Src->getExtType(0), Dst->getChild(2));
5381 if (!SuperClass)
5382 return failedImport(
5383 "Cannot infer register class for SUBREG_TO_REG operand #0");
5384 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5385 M.addAction<ConstrainOperandToRegClassAction>(0, 2, **SubClass);
5386 ++NumPatternImported;
5387 return std::move(M);
5390 if (DstIName == "REG_SEQUENCE") {
5391 auto SuperClass = inferRegClassFromPattern(Dst->getChild(0));
5393 M.addAction<ConstrainOperandToRegClassAction>(0, 0, **SuperClass);
5395 unsigned Num = Dst->getNumChildren();
5396 for (unsigned I = 1; I != Num; I += 2) {
5397 TreePatternNode *SubRegChild = Dst->getChild(I + 1);
5399 auto SubIdx = inferSubRegIndexForNode(SubRegChild);
5400 if (!SubIdx)
5401 return failedImport("REG_SEQUENCE child is not a subreg index");
5403 const auto SrcRCDstRCPair =
5404 (*SuperClass)->getMatchingSubClassWithSubRegs(CGRegs, *SubIdx);
5406 M.addAction<ConstrainOperandToRegClassAction>(0, I,
5407 *SrcRCDstRCPair->second);
5410 ++NumPatternImported;
5411 return std::move(M);
5414 M.addAction<ConstrainOperandsToDefinitionAction>(0);
5416 // We're done with this pattern! It's eligible for GISel emission; return it.
5417 ++NumPatternImported;
5418 return std::move(M);
5421 // Emit imm predicate table and an enum to reference them with.
5422 // The 'Predicate_' part of the name is redundant but eliminating it is more
5423 // trouble than it's worth.
5424 void GlobalISelEmitter::emitCxxPredicateFns(
5425 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
5426 StringRef ArgType, StringRef ArgName, StringRef AdditionalArgs,
5427 StringRef AdditionalDeclarations,
5428 std::function<bool(const Record *R)> Filter) {
5429 std::vector<const Record *> MatchedRecords;
5430 const auto &Defs = RK.getAllDerivedDefinitions("PatFrags");
5431 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
5432 [&](Record *Record) {
5433 return !Record->getValueAsString(CodeFieldName).empty() &&
5434 Filter(Record);
5437 if (!MatchedRecords.empty()) {
5438 OS << "// PatFrag predicates.\n"
5439 << "enum {\n";
5440 std::string EnumeratorSeparator =
5441 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
5442 for (const auto *Record : MatchedRecords) {
5443 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
5444 << EnumeratorSeparator;
5445 EnumeratorSeparator = ",\n";
5447 OS << "};\n";
5450 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
5451 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
5452 << ArgName << AdditionalArgs <<") const {\n"
5453 << AdditionalDeclarations;
5454 if (!AdditionalDeclarations.empty())
5455 OS << "\n";
5456 if (!MatchedRecords.empty())
5457 OS << " switch (PredicateID) {\n";
5458 for (const auto *Record : MatchedRecords) {
5459 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
5460 << Record->getName() << ": {\n"
5461 << " " << Record->getValueAsString(CodeFieldName) << "\n"
5462 << " llvm_unreachable(\"" << CodeFieldName
5463 << " should have returned\");\n"
5464 << " return false;\n"
5465 << " }\n";
5467 if (!MatchedRecords.empty())
5468 OS << " }\n";
5469 OS << " llvm_unreachable(\"Unknown predicate\");\n"
5470 << " return false;\n"
5471 << "}\n";
5474 void GlobalISelEmitter::emitImmPredicateFns(
5475 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
5476 std::function<bool(const Record *R)> Filter) {
5477 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
5478 "Imm", "", "", Filter);
5481 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
5482 return emitCxxPredicateFns(
5483 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
5484 ", const std::array<const MachineOperand *, 3> &Operands",
5485 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
5486 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5487 " (void)MRI;",
5488 [](const Record *R) { return true; });
5491 template <class GroupT>
5492 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
5493 ArrayRef<Matcher *> Rules,
5494 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
5496 std::vector<Matcher *> OptRules;
5497 std::unique_ptr<GroupT> CurrentGroup = std::make_unique<GroupT>();
5498 assert(CurrentGroup->empty() && "Newly created group isn't empty!");
5499 unsigned NumGroups = 0;
5501 auto ProcessCurrentGroup = [&]() {
5502 if (CurrentGroup->empty())
5503 // An empty group is good to be reused:
5504 return;
5506 // If the group isn't large enough to provide any benefit, move all the
5507 // added rules out of it and make sure to re-create the group to properly
5508 // re-initialize it:
5509 if (CurrentGroup->size() < 2)
5510 append_range(OptRules, CurrentGroup->matchers());
5511 else {
5512 CurrentGroup->finalize();
5513 OptRules.push_back(CurrentGroup.get());
5514 MatcherStorage.emplace_back(std::move(CurrentGroup));
5515 ++NumGroups;
5517 CurrentGroup = std::make_unique<GroupT>();
5519 for (Matcher *Rule : Rules) {
5520 // Greedily add as many matchers as possible to the current group:
5521 if (CurrentGroup->addMatcher(*Rule))
5522 continue;
5524 ProcessCurrentGroup();
5525 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
5527 // Try to add the pending matcher to a newly created empty group:
5528 if (!CurrentGroup->addMatcher(*Rule))
5529 // If we couldn't add the matcher to an empty group, that group type
5530 // doesn't support that kind of matchers at all, so just skip it:
5531 OptRules.push_back(Rule);
5533 ProcessCurrentGroup();
5535 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
5536 assert(CurrentGroup->empty() && "The last group wasn't properly processed");
5537 return OptRules;
5540 MatchTable
5541 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
5542 bool Optimize, bool WithCoverage) {
5543 std::vector<Matcher *> InputRules;
5544 for (Matcher &Rule : Rules)
5545 InputRules.push_back(&Rule);
5547 if (!Optimize)
5548 return MatchTable::buildTable(InputRules, WithCoverage);
5550 unsigned CurrentOrdering = 0;
5551 StringMap<unsigned> OpcodeOrder;
5552 for (RuleMatcher &Rule : Rules) {
5553 const StringRef Opcode = Rule.getOpcode();
5554 assert(!Opcode.empty() && "Didn't expect an undefined opcode");
5555 if (OpcodeOrder.count(Opcode) == 0)
5556 OpcodeOrder[Opcode] = CurrentOrdering++;
5559 llvm::stable_sort(InputRules, [&OpcodeOrder](const Matcher *A,
5560 const Matcher *B) {
5561 auto *L = static_cast<const RuleMatcher *>(A);
5562 auto *R = static_cast<const RuleMatcher *>(B);
5563 return std::make_tuple(OpcodeOrder[L->getOpcode()], L->getNumOperands()) <
5564 std::make_tuple(OpcodeOrder[R->getOpcode()], R->getNumOperands());
5567 for (Matcher *Rule : InputRules)
5568 Rule->optimize();
5570 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
5571 std::vector<Matcher *> OptRules =
5572 optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
5574 for (Matcher *Rule : OptRules)
5575 Rule->optimize();
5577 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
5579 return MatchTable::buildTable(OptRules, WithCoverage);
5582 void GroupMatcher::optimize() {
5583 // Make sure we only sort by a specific predicate within a range of rules that
5584 // all have that predicate checked against a specific value (not a wildcard):
5585 auto F = Matchers.begin();
5586 auto T = F;
5587 auto E = Matchers.end();
5588 while (T != E) {
5589 while (T != E) {
5590 auto *R = static_cast<RuleMatcher *>(*T);
5591 if (!R->getFirstConditionAsRootType().get().isValid())
5592 break;
5593 ++T;
5595 std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
5596 auto *L = static_cast<RuleMatcher *>(A);
5597 auto *R = static_cast<RuleMatcher *>(B);
5598 return L->getFirstConditionAsRootType() <
5599 R->getFirstConditionAsRootType();
5601 if (T != E)
5602 F = ++T;
5604 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
5605 .swap(Matchers);
5606 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
5607 .swap(Matchers);
5610 void GlobalISelEmitter::run(raw_ostream &OS) {
5611 if (!UseCoverageFile.empty()) {
5612 RuleCoverage = CodeGenCoverage();
5613 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
5614 if (!RuleCoverageBufOrErr) {
5615 PrintWarning(SMLoc(), "Missing rule coverage data");
5616 RuleCoverage = None;
5617 } else {
5618 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
5619 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
5620 RuleCoverage = None;
5625 // Track the run-time opcode values
5626 gatherOpcodeValues();
5627 // Track the run-time LLT ID values
5628 gatherTypeIDValues();
5630 // Track the GINodeEquiv definitions.
5631 gatherNodeEquivs();
5633 emitSourceFileHeader(("Global Instruction Selector for the " +
5634 Target.getName() + " target").str(), OS);
5635 std::vector<RuleMatcher> Rules;
5636 // Look through the SelectionDAG patterns we found, possibly emitting some.
5637 for (const PatternToMatch &Pat : CGP.ptms()) {
5638 ++NumPatternTotal;
5640 auto MatcherOrErr = runOnPattern(Pat);
5642 // The pattern analysis can fail, indicating an unsupported pattern.
5643 // Report that if we've been asked to do so.
5644 if (auto Err = MatcherOrErr.takeError()) {
5645 if (WarnOnSkippedPatterns) {
5646 PrintWarning(Pat.getSrcRecord()->getLoc(),
5647 "Skipped pattern: " + toString(std::move(Err)));
5648 } else {
5649 consumeError(std::move(Err));
5651 ++NumPatternImportsSkipped;
5652 continue;
5655 if (RuleCoverage) {
5656 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
5657 ++NumPatternsTested;
5658 else
5659 PrintWarning(Pat.getSrcRecord()->getLoc(),
5660 "Pattern is not covered by a test");
5662 Rules.push_back(std::move(MatcherOrErr.get()));
5665 // Comparison function to order records by name.
5666 auto orderByName = [](const Record *A, const Record *B) {
5667 return A->getName() < B->getName();
5670 std::vector<Record *> ComplexPredicates =
5671 RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
5672 llvm::sort(ComplexPredicates, orderByName);
5674 std::vector<StringRef> CustomRendererFns;
5675 transform(RK.getAllDerivedDefinitions("GICustomOperandRenderer"),
5676 std::back_inserter(CustomRendererFns), [](const auto &Record) {
5677 return Record->getValueAsString("RendererFn");
5679 // Sort and remove duplicates to get a list of unique renderer functions, in
5680 // case some were mentioned more than once.
5681 llvm::sort(CustomRendererFns);
5682 CustomRendererFns.erase(
5683 std::unique(CustomRendererFns.begin(), CustomRendererFns.end()),
5684 CustomRendererFns.end());
5686 unsigned MaxTemporaries = 0;
5687 for (const auto &Rule : Rules)
5688 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
5690 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
5691 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
5692 << ";\n"
5693 << "using PredicateBitset = "
5694 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
5695 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
5697 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
5698 << " mutable MatcherState State;\n"
5699 << " typedef "
5700 "ComplexRendererFns("
5701 << Target.getName()
5702 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
5704 << " typedef void(" << Target.getName()
5705 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
5706 "MachineInstr &, int) "
5707 "const;\n"
5708 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
5709 "CustomRendererFn> "
5710 "ISelInfo;\n";
5711 OS << " static " << Target.getName()
5712 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
5713 << " static " << Target.getName()
5714 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
5715 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
5716 "override;\n"
5717 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
5718 "const override;\n"
5719 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
5720 "&Imm) const override;\n"
5721 << " const int64_t *getMatchTable() const override;\n"
5722 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI"
5723 ", const std::array<const MachineOperand *, 3> &Operands) "
5724 "const override;\n"
5725 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
5727 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
5728 << ", State(" << MaxTemporaries << "),\n"
5729 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
5730 << ", ComplexPredicateFns, CustomRenderers)\n"
5731 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
5733 OS << "#ifdef GET_GLOBALISEL_IMPL\n";
5734 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
5735 OS);
5737 // Separate subtarget features by how often they must be recomputed.
5738 SubtargetFeatureInfoMap ModuleFeatures;
5739 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5740 std::inserter(ModuleFeatures, ModuleFeatures.end()),
5741 [](const SubtargetFeatureInfoMap::value_type &X) {
5742 return !X.second.mustRecomputePerFunction();
5744 SubtargetFeatureInfoMap FunctionFeatures;
5745 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
5746 std::inserter(FunctionFeatures, FunctionFeatures.end()),
5747 [](const SubtargetFeatureInfoMap::value_type &X) {
5748 return X.second.mustRecomputePerFunction();
5751 SubtargetFeatureInfo::emitComputeAvailableFeatures(
5752 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
5753 ModuleFeatures, OS);
5756 OS << "void " << Target.getName() << "InstructionSelector"
5757 "::setupGeneratedPerFunctionState(MachineFunction &MF) {\n"
5758 " AvailableFunctionFeatures = computeAvailableFunctionFeatures("
5759 "(const " << Target.getName() << "Subtarget *)&MF.getSubtarget(), &MF);\n"
5760 "}\n";
5762 SubtargetFeatureInfo::emitComputeAvailableFeatures(
5763 Target.getName(), "InstructionSelector",
5764 "computeAvailableFunctionFeatures", FunctionFeatures, OS,
5765 "const MachineFunction *MF");
5767 // Emit a table containing the LLT objects needed by the matcher and an enum
5768 // for the matcher to reference them with.
5769 std::vector<LLTCodeGen> TypeObjects;
5770 append_range(TypeObjects, KnownTypes);
5771 llvm::sort(TypeObjects);
5772 OS << "// LLT Objects.\n"
5773 << "enum {\n";
5774 for (const auto &TypeObject : TypeObjects) {
5775 OS << " ";
5776 TypeObject.emitCxxEnumValue(OS);
5777 OS << ",\n";
5779 OS << "};\n";
5780 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
5781 << "const static LLT TypeObjects[] = {\n";
5782 for (const auto &TypeObject : TypeObjects) {
5783 OS << " ";
5784 TypeObject.emitCxxConstructorCall(OS);
5785 OS << ",\n";
5787 OS << "};\n\n";
5789 // Emit a table containing the PredicateBitsets objects needed by the matcher
5790 // and an enum for the matcher to reference them with.
5791 std::vector<std::vector<Record *>> FeatureBitsets;
5792 for (auto &Rule : Rules)
5793 FeatureBitsets.push_back(Rule.getRequiredFeatures());
5794 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
5795 const std::vector<Record *> &B) {
5796 if (A.size() < B.size())
5797 return true;
5798 if (A.size() > B.size())
5799 return false;
5800 for (auto Pair : zip(A, B)) {
5801 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
5802 return true;
5803 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
5804 return false;
5806 return false;
5808 FeatureBitsets.erase(
5809 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
5810 FeatureBitsets.end());
5811 OS << "// Feature bitsets.\n"
5812 << "enum {\n"
5813 << " GIFBS_Invalid,\n";
5814 for (const auto &FeatureBitset : FeatureBitsets) {
5815 if (FeatureBitset.empty())
5816 continue;
5817 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
5819 OS << "};\n"
5820 << "const static PredicateBitset FeatureBitsets[] {\n"
5821 << " {}, // GIFBS_Invalid\n";
5822 for (const auto &FeatureBitset : FeatureBitsets) {
5823 if (FeatureBitset.empty())
5824 continue;
5825 OS << " {";
5826 for (const auto &Feature : FeatureBitset) {
5827 const auto &I = SubtargetFeatures.find(Feature);
5828 assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
5829 OS << I->second.getEnumBitName() << ", ";
5831 OS << "},\n";
5833 OS << "};\n\n";
5835 // Emit complex predicate table and an enum to reference them with.
5836 OS << "// ComplexPattern predicates.\n"
5837 << "enum {\n"
5838 << " GICP_Invalid,\n";
5839 for (const auto &Record : ComplexPredicates)
5840 OS << " GICP_" << Record->getName() << ",\n";
5841 OS << "};\n"
5842 << "// See constructor for table contents\n\n";
5844 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
5845 bool Unset;
5846 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
5847 !R->getValueAsBit("IsAPInt");
5849 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
5850 bool Unset;
5851 return R->getValueAsBitOrUnset("IsAPFloat", Unset);
5853 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
5854 return R->getValueAsBit("IsAPInt");
5856 emitMIPredicateFns(OS);
5857 OS << "\n";
5859 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
5860 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
5861 << " nullptr, // GICP_Invalid\n";
5862 for (const auto &Record : ComplexPredicates)
5863 OS << " &" << Target.getName()
5864 << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
5865 << ", // " << Record->getName() << "\n";
5866 OS << "};\n\n";
5868 OS << "// Custom renderers.\n"
5869 << "enum {\n"
5870 << " GICR_Invalid,\n";
5871 for (const auto &Fn : CustomRendererFns)
5872 OS << " GICR_" << Fn << ",\n";
5873 OS << "};\n";
5875 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
5876 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
5877 << " nullptr, // GICR_Invalid\n";
5878 for (const auto &Fn : CustomRendererFns)
5879 OS << " &" << Target.getName() << "InstructionSelector::" << Fn << ",\n";
5880 OS << "};\n\n";
5882 llvm::stable_sort(Rules, [&](const RuleMatcher &A, const RuleMatcher &B) {
5883 int ScoreA = RuleMatcherScores[A.getRuleID()];
5884 int ScoreB = RuleMatcherScores[B.getRuleID()];
5885 if (ScoreA > ScoreB)
5886 return true;
5887 if (ScoreB > ScoreA)
5888 return false;
5889 if (A.isHigherPriorityThan(B)) {
5890 assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
5891 "and less important at "
5892 "the same time");
5893 return true;
5895 return false;
5898 OS << "bool " << Target.getName()
5899 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
5900 "&CoverageInfo) const {\n"
5901 << " MachineFunction &MF = *I.getParent()->getParent();\n"
5902 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
5903 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
5904 << " NewMIVector OutMIs;\n"
5905 << " State.MIs.clear();\n"
5906 << " State.MIs.push_back(&I);\n\n"
5907 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
5908 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
5909 << ", CoverageInfo)) {\n"
5910 << " return true;\n"
5911 << " }\n\n"
5912 << " return false;\n"
5913 << "}\n\n";
5915 const MatchTable Table =
5916 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
5917 OS << "const int64_t *" << Target.getName()
5918 << "InstructionSelector::getMatchTable() const {\n";
5919 Table.emitDeclaration(OS);
5920 OS << " return ";
5921 Table.emitUse(OS);
5922 OS << ";\n}\n";
5923 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
5925 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
5926 << "PredicateBitset AvailableModuleFeatures;\n"
5927 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
5928 << "PredicateBitset getAvailableFeatures() const {\n"
5929 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
5930 << "}\n"
5931 << "PredicateBitset\n"
5932 << "computeAvailableModuleFeatures(const " << Target.getName()
5933 << "Subtarget *Subtarget) const;\n"
5934 << "PredicateBitset\n"
5935 << "computeAvailableFunctionFeatures(const " << Target.getName()
5936 << "Subtarget *Subtarget,\n"
5937 << " const MachineFunction *MF) const;\n"
5938 << "void setupGeneratedPerFunctionState(MachineFunction &MF) override;\n"
5939 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
5941 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
5942 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
5943 << "AvailableFunctionFeatures()\n"
5944 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
5947 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
5948 if (SubtargetFeatures.count(Predicate) == 0)
5949 SubtargetFeatures.emplace(
5950 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
5953 void RuleMatcher::optimize() {
5954 for (auto &Item : InsnVariableIDs) {
5955 InstructionMatcher &InsnMatcher = *Item.first;
5956 for (auto &OM : InsnMatcher.operands()) {
5957 // Complex Patterns are usually expensive and they relatively rarely fail
5958 // on their own: more often we end up throwing away all the work done by a
5959 // matching part of a complex pattern because some other part of the
5960 // enclosing pattern didn't match. All of this makes it beneficial to
5961 // delay complex patterns until the very end of the rule matching,
5962 // especially for targets having lots of complex patterns.
5963 for (auto &OP : OM->predicates())
5964 if (isa<ComplexPatternOperandMatcher>(OP))
5965 EpilogueMatchers.emplace_back(std::move(OP));
5966 OM->eraseNullPredicates();
5968 InsnMatcher.optimize();
5970 llvm::sort(EpilogueMatchers, [](const std::unique_ptr<PredicateMatcher> &L,
5971 const std::unique_ptr<PredicateMatcher> &R) {
5972 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
5973 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
5977 bool RuleMatcher::hasFirstCondition() const {
5978 if (insnmatchers_empty())
5979 return false;
5980 InstructionMatcher &Matcher = insnmatchers_front();
5981 if (!Matcher.predicates_empty())
5982 return true;
5983 for (auto &OM : Matcher.operands())
5984 for (auto &OP : OM->predicates())
5985 if (!isa<InstructionOperandMatcher>(OP))
5986 return true;
5987 return false;
5990 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
5991 assert(!insnmatchers_empty() &&
5992 "Trying to get a condition from an empty RuleMatcher");
5994 InstructionMatcher &Matcher = insnmatchers_front();
5995 if (!Matcher.predicates_empty())
5996 return **Matcher.predicates_begin();
5997 // If there is no more predicate on the instruction itself, look at its
5998 // operands.
5999 for (auto &OM : Matcher.operands())
6000 for (auto &OP : OM->predicates())
6001 if (!isa<InstructionOperandMatcher>(OP))
6002 return *OP;
6004 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
6005 "no conditions");
6008 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
6009 assert(!insnmatchers_empty() &&
6010 "Trying to pop a condition from an empty RuleMatcher");
6012 InstructionMatcher &Matcher = insnmatchers_front();
6013 if (!Matcher.predicates_empty())
6014 return Matcher.predicates_pop_front();
6015 // If there is no more predicate on the instruction itself, look at its
6016 // operands.
6017 for (auto &OM : Matcher.operands())
6018 for (auto &OP : OM->predicates())
6019 if (!isa<InstructionOperandMatcher>(OP)) {
6020 std::unique_ptr<PredicateMatcher> Result = std::move(OP);
6021 OM->eraseNullPredicates();
6022 return Result;
6025 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
6026 "no conditions");
6029 bool GroupMatcher::candidateConditionMatches(
6030 const PredicateMatcher &Predicate) const {
6032 if (empty()) {
6033 // Sharing predicates for nested instructions is not supported yet as we
6034 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
6035 // only work on the original root instruction (InsnVarID == 0):
6036 if (Predicate.getInsnVarID() != 0)
6037 return false;
6038 // ... otherwise an empty group can handle any predicate with no specific
6039 // requirements:
6040 return true;
6043 const Matcher &Representative = **Matchers.begin();
6044 const auto &RepresentativeCondition = Representative.getFirstCondition();
6045 // ... if not empty, the group can only accomodate matchers with the exact
6046 // same first condition:
6047 return Predicate.isIdentical(RepresentativeCondition);
6050 bool GroupMatcher::addMatcher(Matcher &Candidate) {
6051 if (!Candidate.hasFirstCondition())
6052 return false;
6054 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
6055 if (!candidateConditionMatches(Predicate))
6056 return false;
6058 Matchers.push_back(&Candidate);
6059 return true;
6062 void GroupMatcher::finalize() {
6063 assert(Conditions.empty() && "Already finalized?");
6064 if (empty())
6065 return;
6067 Matcher &FirstRule = **Matchers.begin();
6068 for (;;) {
6069 // All the checks are expected to succeed during the first iteration:
6070 for (const auto &Rule : Matchers)
6071 if (!Rule->hasFirstCondition())
6072 return;
6073 const auto &FirstCondition = FirstRule.getFirstCondition();
6074 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
6075 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
6076 return;
6078 Conditions.push_back(FirstRule.popFirstCondition());
6079 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
6080 Matchers[I]->popFirstCondition();
6084 void GroupMatcher::emit(MatchTable &Table) {
6085 unsigned LabelID = ~0U;
6086 if (!Conditions.empty()) {
6087 LabelID = Table.allocateLabelID();
6088 Table << MatchTable::Opcode("GIM_Try", +1)
6089 << MatchTable::Comment("On fail goto")
6090 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
6092 for (auto &Condition : Conditions)
6093 Condition->emitPredicateOpcodes(
6094 Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
6096 for (const auto &M : Matchers)
6097 M->emit(Table);
6099 // Exit the group
6100 if (!Conditions.empty())
6101 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
6102 << MatchTable::Label(LabelID);
6105 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
6106 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
6109 bool SwitchMatcher::candidateConditionMatches(
6110 const PredicateMatcher &Predicate) const {
6112 if (empty()) {
6113 // Sharing predicates for nested instructions is not supported yet as we
6114 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
6115 // only work on the original root instruction (InsnVarID == 0):
6116 if (Predicate.getInsnVarID() != 0)
6117 return false;
6118 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
6119 // could fail as not all the types of conditions are supported:
6120 if (!isSupportedPredicateType(Predicate))
6121 return false;
6122 // ... or the condition might not have a proper implementation of
6123 // getValue() / isIdenticalDownToValue() yet:
6124 if (!Predicate.hasValue())
6125 return false;
6126 // ... otherwise an empty Switch can accomodate the condition with no
6127 // further requirements:
6128 return true;
6131 const Matcher &CaseRepresentative = **Matchers.begin();
6132 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
6133 // Switch-cases must share the same kind of condition and path to the value it
6134 // checks:
6135 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
6136 return false;
6138 const auto Value = Predicate.getValue();
6139 // ... but be unique with respect to the actual value they check:
6140 return Values.count(Value) == 0;
6143 bool SwitchMatcher::addMatcher(Matcher &Candidate) {
6144 if (!Candidate.hasFirstCondition())
6145 return false;
6147 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
6148 if (!candidateConditionMatches(Predicate))
6149 return false;
6150 const auto Value = Predicate.getValue();
6151 Values.insert(Value);
6153 Matchers.push_back(&Candidate);
6154 return true;
6157 void SwitchMatcher::finalize() {
6158 assert(Condition == nullptr && "Already finalized");
6159 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
6160 if (empty())
6161 return;
6163 llvm::stable_sort(Matchers, [](const Matcher *L, const Matcher *R) {
6164 return L->getFirstCondition().getValue() <
6165 R->getFirstCondition().getValue();
6167 Condition = Matchers[0]->popFirstCondition();
6168 for (unsigned I = 1, E = Values.size(); I < E; ++I)
6169 Matchers[I]->popFirstCondition();
6172 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
6173 MatchTable &Table) {
6174 assert(isSupportedPredicateType(P) && "Predicate type is not supported");
6176 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
6177 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
6178 << MatchTable::IntValue(Condition->getInsnVarID());
6179 return;
6181 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
6182 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
6183 << MatchTable::IntValue(Condition->getInsnVarID())
6184 << MatchTable::Comment("Op")
6185 << MatchTable::IntValue(Condition->getOpIdx());
6186 return;
6189 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
6190 "predicate type that is claimed to be supported");
6193 void SwitchMatcher::emit(MatchTable &Table) {
6194 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
6195 if (empty())
6196 return;
6197 assert(Condition != nullptr &&
6198 "Broken SwitchMatcher, hasn't been finalized?");
6200 std::vector<unsigned> LabelIDs(Values.size());
6201 std::generate(LabelIDs.begin(), LabelIDs.end(),
6202 [&Table]() { return Table.allocateLabelID(); });
6203 const unsigned Default = Table.allocateLabelID();
6205 const int64_t LowerBound = Values.begin()->getRawValue();
6206 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
6208 emitPredicateSpecificOpcodes(*Condition, Table);
6210 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
6211 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
6212 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
6214 int64_t J = LowerBound;
6215 auto VI = Values.begin();
6216 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
6217 auto V = *VI++;
6218 while (J++ < V.getRawValue())
6219 Table << MatchTable::IntValue(0);
6220 V.turnIntoComment();
6221 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
6223 Table << MatchTable::LineBreak;
6225 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
6226 Table << MatchTable::Label(LabelIDs[I]);
6227 Matchers[I]->emit(Table);
6228 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
6230 Table << MatchTable::Label(Default);
6233 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
6235 } // end anonymous namespace
6237 //===----------------------------------------------------------------------===//
6239 namespace llvm {
6240 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
6241 GlobalISelEmitter(RK).run(OS);
6243 } // End llvm namespace