[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / IntrinsicEmitter.cpp
blob3d1d258e342e98b2c37016979d8e497fd34d1ee4
1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits information about intrinsic functions.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenIntrinsics.h"
14 #include "CodeGenTarget.h"
15 #include "SequenceToOffsetTable.h"
16 #include "TableGenBackends.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/TableGen/Error.h"
20 #include "llvm/TableGen/Record.h"
21 #include "llvm/TableGen/StringMatcher.h"
22 #include "llvm/TableGen/StringToOffsetTable.h"
23 #include "llvm/TableGen/TableGenBackend.h"
24 #include <algorithm>
25 using namespace llvm;
27 cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
28 cl::opt<std::string>
29 IntrinsicPrefix("intrinsic-prefix",
30 cl::desc("Generate intrinsics with this target prefix"),
31 cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
33 namespace {
34 class IntrinsicEmitter {
35 RecordKeeper &Records;
37 public:
38 IntrinsicEmitter(RecordKeeper &R) : Records(R) {}
40 void run(raw_ostream &OS, bool Enums);
42 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
43 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
44 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
45 raw_ostream &OS);
46 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
47 raw_ostream &OS);
48 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
49 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
50 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
51 raw_ostream &OS);
53 } // End anonymous namespace
55 //===----------------------------------------------------------------------===//
56 // IntrinsicEmitter Implementation
57 //===----------------------------------------------------------------------===//
59 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
60 emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
62 CodeGenIntrinsicTable Ints(Records);
64 if (Enums) {
65 // Emit the enum information.
66 EmitEnumInfo(Ints, OS);
67 } else {
68 // Emit the target metadata.
69 EmitTargetInfo(Ints, OS);
71 // Emit the intrinsic ID -> name table.
72 EmitIntrinsicToNameTable(Ints, OS);
74 // Emit the intrinsic ID -> overload table.
75 EmitIntrinsicToOverloadTable(Ints, OS);
77 // Emit the intrinsic declaration generator.
78 EmitGenerator(Ints, OS);
80 // Emit the intrinsic parameter attributes.
81 EmitAttributes(Ints, OS);
83 // Emit code to translate GCC builtins into LLVM intrinsics.
84 EmitIntrinsicToBuiltinMap(Ints, true, OS);
86 // Emit code to translate MS builtins into LLVM intrinsics.
87 EmitIntrinsicToBuiltinMap(Ints, false, OS);
91 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
92 raw_ostream &OS) {
93 // Find the TargetSet for which to generate enums. There will be an initial
94 // set with an empty target prefix which will include target independent
95 // intrinsics like dbg.value.
96 const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
97 for (const auto &Target : Ints.Targets) {
98 if (Target.Name == IntrinsicPrefix) {
99 Set = &Target;
100 break;
103 if (!Set) {
104 std::vector<std::string> KnownTargets;
105 for (const auto &Target : Ints.Targets)
106 if (!Target.Name.empty())
107 KnownTargets.push_back(Target.Name);
108 PrintFatalError("tried to generate intrinsics for unknown target " +
109 IntrinsicPrefix +
110 "\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
113 // Generate a complete header for target specific intrinsics.
114 if (!IntrinsicPrefix.empty()) {
115 std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
116 OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
117 OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
118 OS << "namespace llvm {\n";
119 OS << "namespace Intrinsic {\n";
120 OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
123 OS << "// Enum values for intrinsics\n";
124 for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
125 OS << " " << Ints[i].EnumName;
127 // Assign a value to the first intrinsic in this target set so that all
128 // intrinsic ids are distinct.
129 if (i == Set->Offset)
130 OS << " = " << (Set->Offset + 1);
132 OS << ", ";
133 if (Ints[i].EnumName.size() < 40)
134 OS.indent(40 - Ints[i].EnumName.size());
135 OS << " // " << Ints[i].Name << "\n";
138 // Emit num_intrinsics into the target neutral enum.
139 if (IntrinsicPrefix.empty()) {
140 OS << " num_intrinsics = " << (Ints.size() + 1) << "\n";
141 } else {
142 OS << "}; // enum\n";
143 OS << "} // namespace Intrinsic\n";
144 OS << "} // namespace llvm\n\n";
145 OS << "#endif\n";
149 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
150 raw_ostream &OS) {
151 OS << "// Target mapping\n";
152 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
153 OS << "struct IntrinsicTargetInfo {\n"
154 << " llvm::StringLiteral Name;\n"
155 << " size_t Offset;\n"
156 << " size_t Count;\n"
157 << "};\n";
158 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
159 for (auto Target : Ints.Targets)
160 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
161 << ", " << Target.Count << "},\n";
162 OS << "};\n";
163 OS << "#endif\n\n";
166 void IntrinsicEmitter::EmitIntrinsicToNameTable(
167 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
168 OS << "// Intrinsic ID to name table\n";
169 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
170 OS << " // Note that entry #0 is the invalid intrinsic!\n";
171 for (unsigned i = 0, e = Ints.size(); i != e; ++i)
172 OS << " \"" << Ints[i].Name << "\",\n";
173 OS << "#endif\n\n";
176 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
177 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
178 OS << "// Intrinsic ID to overload bitset\n";
179 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
180 OS << "static const uint8_t OTable[] = {\n";
181 OS << " 0";
182 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
183 // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
184 if ((i+1)%8 == 0)
185 OS << ",\n 0";
186 if (Ints[i].isOverloaded)
187 OS << " | (1<<" << (i+1)%8 << ')';
189 OS << "\n};\n\n";
190 // OTable contains a true bit at the position if the intrinsic is overloaded.
191 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
192 OS << "#endif\n\n";
196 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
197 enum IIT_Info {
198 // Common values should be encoded with 0-15.
199 IIT_Done = 0,
200 IIT_I1 = 1,
201 IIT_I8 = 2,
202 IIT_I16 = 3,
203 IIT_I32 = 4,
204 IIT_I64 = 5,
205 IIT_F16 = 6,
206 IIT_F32 = 7,
207 IIT_F64 = 8,
208 IIT_V2 = 9,
209 IIT_V4 = 10,
210 IIT_V8 = 11,
211 IIT_V16 = 12,
212 IIT_V32 = 13,
213 IIT_PTR = 14,
214 IIT_ARG = 15,
216 // Values from 16+ are only encodable with the inefficient encoding.
217 IIT_V64 = 16,
218 IIT_MMX = 17,
219 IIT_TOKEN = 18,
220 IIT_METADATA = 19,
221 IIT_EMPTYSTRUCT = 20,
222 IIT_STRUCT2 = 21,
223 IIT_STRUCT3 = 22,
224 IIT_STRUCT4 = 23,
225 IIT_STRUCT5 = 24,
226 IIT_EXTEND_ARG = 25,
227 IIT_TRUNC_ARG = 26,
228 IIT_ANYPTR = 27,
229 IIT_V1 = 28,
230 IIT_VARARG = 29,
231 IIT_HALF_VEC_ARG = 30,
232 IIT_SAME_VEC_WIDTH_ARG = 31,
233 IIT_PTR_TO_ARG = 32,
234 IIT_PTR_TO_ELT = 33,
235 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
236 IIT_I128 = 35,
237 IIT_V512 = 36,
238 IIT_V1024 = 37,
239 IIT_STRUCT6 = 38,
240 IIT_STRUCT7 = 39,
241 IIT_STRUCT8 = 40,
242 IIT_F128 = 41,
243 IIT_VEC_ELEMENT = 42,
244 IIT_SCALABLE_VEC = 43,
245 IIT_SUBDIVIDE2_ARG = 44,
246 IIT_SUBDIVIDE4_ARG = 45,
247 IIT_VEC_OF_BITCASTS_TO_INT = 46,
248 IIT_V128 = 47,
249 IIT_BF16 = 48,
250 IIT_STRUCT9 = 49,
251 IIT_V256 = 50,
252 IIT_AMX = 51
255 static void EncodeFixedValueType(MVT::SimpleValueType VT,
256 std::vector<unsigned char> &Sig) {
257 if (MVT(VT).isInteger()) {
258 unsigned BitWidth = MVT(VT).getFixedSizeInBits();
259 switch (BitWidth) {
260 default: PrintFatalError("unhandled integer type width in intrinsic!");
261 case 1: return Sig.push_back(IIT_I1);
262 case 8: return Sig.push_back(IIT_I8);
263 case 16: return Sig.push_back(IIT_I16);
264 case 32: return Sig.push_back(IIT_I32);
265 case 64: return Sig.push_back(IIT_I64);
266 case 128: return Sig.push_back(IIT_I128);
270 switch (VT) {
271 default: PrintFatalError("unhandled MVT in intrinsic!");
272 case MVT::f16: return Sig.push_back(IIT_F16);
273 case MVT::bf16: return Sig.push_back(IIT_BF16);
274 case MVT::f32: return Sig.push_back(IIT_F32);
275 case MVT::f64: return Sig.push_back(IIT_F64);
276 case MVT::f128: return Sig.push_back(IIT_F128);
277 case MVT::token: return Sig.push_back(IIT_TOKEN);
278 case MVT::Metadata: return Sig.push_back(IIT_METADATA);
279 case MVT::x86mmx: return Sig.push_back(IIT_MMX);
280 case MVT::x86amx: return Sig.push_back(IIT_AMX);
281 // MVT::OtherVT is used to mean the empty struct type here.
282 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
283 // MVT::isVoid is used to represent varargs here.
284 case MVT::isVoid: return Sig.push_back(IIT_VARARG);
288 #if defined(_MSC_VER) && !defined(__clang__)
289 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
290 #endif
292 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
293 unsigned &NextArgCode,
294 std::vector<unsigned char> &Sig,
295 ArrayRef<unsigned char> Mapping) {
297 if (R->isSubClassOf("LLVMMatchType")) {
298 unsigned Number = Mapping[R->getValueAsInt("Number")];
299 assert(Number < ArgCodes.size() && "Invalid matching number!");
300 if (R->isSubClassOf("LLVMExtendedType"))
301 Sig.push_back(IIT_EXTEND_ARG);
302 else if (R->isSubClassOf("LLVMTruncatedType"))
303 Sig.push_back(IIT_TRUNC_ARG);
304 else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
305 Sig.push_back(IIT_HALF_VEC_ARG);
306 else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
307 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
308 Sig.push_back((Number << 3) | ArgCodes[Number]);
309 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
310 EncodeFixedValueType(VT, Sig);
311 return;
313 else if (R->isSubClassOf("LLVMPointerTo"))
314 Sig.push_back(IIT_PTR_TO_ARG);
315 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
316 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
317 // Encode overloaded ArgNo
318 Sig.push_back(NextArgCode++);
319 // Encode LLVMMatchType<Number> ArgNo
320 Sig.push_back(Number);
321 return;
322 } else if (R->isSubClassOf("LLVMPointerToElt"))
323 Sig.push_back(IIT_PTR_TO_ELT);
324 else if (R->isSubClassOf("LLVMVectorElementType"))
325 Sig.push_back(IIT_VEC_ELEMENT);
326 else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
327 Sig.push_back(IIT_SUBDIVIDE2_ARG);
328 else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
329 Sig.push_back(IIT_SUBDIVIDE4_ARG);
330 else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
331 Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
332 else
333 Sig.push_back(IIT_ARG);
334 return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
337 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
339 unsigned Tmp = 0;
340 switch (VT) {
341 default: break;
342 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
343 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH;
344 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH;
345 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH;
346 case MVT::Any: {
347 // If this is an "any" valuetype, then the type is the type of the next
348 // type in the list specified to getIntrinsic().
349 Sig.push_back(IIT_ARG);
351 // Figure out what arg # this is consuming, and remember what kind it was.
352 assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
353 "Invalid or no ArgCode associated with overloaded VT!");
354 unsigned ArgNo = NextArgCode++;
356 // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
357 return Sig.push_back((ArgNo << 3) | Tmp);
360 case MVT::iPTR: {
361 unsigned AddrSpace = 0;
362 if (R->isSubClassOf("LLVMQualPointerType")) {
363 AddrSpace = R->getValueAsInt("AddrSpace");
364 assert(AddrSpace < 256 && "Address space exceeds 255");
366 if (AddrSpace) {
367 Sig.push_back(IIT_ANYPTR);
368 Sig.push_back(AddrSpace);
369 } else {
370 Sig.push_back(IIT_PTR);
372 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
373 Mapping);
377 if (MVT(VT).isVector()) {
378 MVT VVT = VT;
379 if (VVT.isScalableVector())
380 Sig.push_back(IIT_SCALABLE_VEC);
381 switch (VVT.getVectorMinNumElements()) {
382 default: PrintFatalError("unhandled vector type width in intrinsic!");
383 case 1: Sig.push_back(IIT_V1); break;
384 case 2: Sig.push_back(IIT_V2); break;
385 case 4: Sig.push_back(IIT_V4); break;
386 case 8: Sig.push_back(IIT_V8); break;
387 case 16: Sig.push_back(IIT_V16); break;
388 case 32: Sig.push_back(IIT_V32); break;
389 case 64: Sig.push_back(IIT_V64); break;
390 case 128: Sig.push_back(IIT_V128); break;
391 case 256: Sig.push_back(IIT_V256); break;
392 case 512: Sig.push_back(IIT_V512); break;
393 case 1024: Sig.push_back(IIT_V1024); break;
396 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
399 EncodeFixedValueType(VT, Sig);
402 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
403 unsigned int &NumInserted,
404 SmallVectorImpl<unsigned char> &Mapping) {
405 if (R->isSubClassOf("LLVMMatchType")) {
406 if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
407 ArgCodes.push_back(3 /*vAny*/);
408 ++NumInserted;
410 return;
413 unsigned Tmp = 0;
414 switch (getValueType(R->getValueAsDef("VT"))) {
415 default: break;
416 case MVT::iPTR:
417 UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
418 break;
419 case MVT::iPTRAny:
420 ++Tmp;
421 LLVM_FALLTHROUGH;
422 case MVT::vAny:
423 ++Tmp;
424 LLVM_FALLTHROUGH;
425 case MVT::fAny:
426 ++Tmp;
427 LLVM_FALLTHROUGH;
428 case MVT::iAny:
429 ++Tmp;
430 LLVM_FALLTHROUGH;
431 case MVT::Any:
432 unsigned OriginalIdx = ArgCodes.size() - NumInserted;
433 assert(OriginalIdx >= Mapping.size());
434 Mapping.resize(OriginalIdx+1);
435 Mapping[OriginalIdx] = ArgCodes.size();
436 ArgCodes.push_back(Tmp);
437 break;
441 #if defined(_MSC_VER) && !defined(__clang__)
442 #pragma optimize("",on)
443 #endif
445 /// ComputeFixedEncoding - If we can encode the type signature for this
446 /// intrinsic into 32 bits, return it. If not, return ~0U.
447 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
448 std::vector<unsigned char> &TypeSig) {
449 std::vector<unsigned char> ArgCodes;
451 // Add codes for any overloaded result VTs.
452 unsigned int NumInserted = 0;
453 SmallVector<unsigned char, 8> ArgMapping;
454 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
455 UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
457 // Add codes for any overloaded operand VTs.
458 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
459 UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
461 unsigned NextArgCode = 0;
462 if (Int.IS.RetVTs.empty())
463 TypeSig.push_back(IIT_Done);
464 else if (Int.IS.RetVTs.size() == 1 &&
465 Int.IS.RetVTs[0] == MVT::isVoid)
466 TypeSig.push_back(IIT_Done);
467 else {
468 switch (Int.IS.RetVTs.size()) {
469 case 1: break;
470 case 2: TypeSig.push_back(IIT_STRUCT2); break;
471 case 3: TypeSig.push_back(IIT_STRUCT3); break;
472 case 4: TypeSig.push_back(IIT_STRUCT4); break;
473 case 5: TypeSig.push_back(IIT_STRUCT5); break;
474 case 6: TypeSig.push_back(IIT_STRUCT6); break;
475 case 7: TypeSig.push_back(IIT_STRUCT7); break;
476 case 8: TypeSig.push_back(IIT_STRUCT8); break;
477 case 9: TypeSig.push_back(IIT_STRUCT9); break;
478 default: llvm_unreachable("Unhandled case in struct");
481 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
482 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
483 ArgMapping);
486 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
487 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
488 ArgMapping);
491 static void printIITEntry(raw_ostream &OS, unsigned char X) {
492 OS << (unsigned)X;
495 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
496 raw_ostream &OS) {
497 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
498 // capture it in this vector, otherwise store a ~0U.
499 std::vector<unsigned> FixedEncodings;
501 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
503 std::vector<unsigned char> TypeSig;
505 // Compute the unique argument type info.
506 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
507 // Get the signature for the intrinsic.
508 TypeSig.clear();
509 ComputeFixedEncoding(Ints[i], TypeSig);
511 // Check to see if we can encode it into a 32-bit word. We can only encode
512 // 8 nibbles into a 32-bit word.
513 if (TypeSig.size() <= 8) {
514 bool Failed = false;
515 unsigned Result = 0;
516 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
517 // If we had an unencodable argument, bail out.
518 if (TypeSig[i] > 15) {
519 Failed = true;
520 break;
522 Result = (Result << 4) | TypeSig[e-i-1];
525 // If this could be encoded into a 31-bit word, return it.
526 if (!Failed && (Result >> 31) == 0) {
527 FixedEncodings.push_back(Result);
528 continue;
532 // Otherwise, we're going to unique the sequence into the
533 // LongEncodingTable, and use its offset in the 32-bit table instead.
534 LongEncodingTable.add(TypeSig);
536 // This is a placehold that we'll replace after the table is laid out.
537 FixedEncodings.push_back(~0U);
540 LongEncodingTable.layout();
542 OS << "// Global intrinsic function declaration type table.\n";
543 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
545 OS << "static const unsigned IIT_Table[] = {\n ";
547 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
548 if ((i & 7) == 7)
549 OS << "\n ";
551 // If the entry fit in the table, just emit it.
552 if (FixedEncodings[i] != ~0U) {
553 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
554 continue;
557 TypeSig.clear();
558 ComputeFixedEncoding(Ints[i], TypeSig);
561 // Otherwise, emit the offset into the long encoding table. We emit it this
562 // way so that it is easier to read the offset in the .def file.
563 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
566 OS << "0\n};\n\n";
568 // Emit the shared table of register lists.
569 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
570 if (!LongEncodingTable.empty())
571 LongEncodingTable.emit(OS, printIITEntry);
572 OS << " 255\n};\n\n";
574 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
577 namespace {
578 struct AttributeComparator {
579 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
580 // Sort throwing intrinsics after non-throwing intrinsics.
581 if (L->canThrow != R->canThrow)
582 return R->canThrow;
584 if (L->isNoDuplicate != R->isNoDuplicate)
585 return R->isNoDuplicate;
587 if (L->isNoMerge != R->isNoMerge)
588 return R->isNoMerge;
590 if (L->isNoReturn != R->isNoReturn)
591 return R->isNoReturn;
593 if (L->isNoSync != R->isNoSync)
594 return R->isNoSync;
596 if (L->isNoFree != R->isNoFree)
597 return R->isNoFree;
599 if (L->isWillReturn != R->isWillReturn)
600 return R->isWillReturn;
602 if (L->isCold != R->isCold)
603 return R->isCold;
605 if (L->isConvergent != R->isConvergent)
606 return R->isConvergent;
608 if (L->isSpeculatable != R->isSpeculatable)
609 return R->isSpeculatable;
611 if (L->hasSideEffects != R->hasSideEffects)
612 return R->hasSideEffects;
614 // Try to order by readonly/readnone attribute.
615 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
616 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
617 if (LK != RK) return (LK > RK);
618 // Order by argument attributes.
619 // This is reliable because each side is already sorted internally.
620 return (L->ArgumentAttributes < R->ArgumentAttributes);
623 } // End anonymous namespace
625 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
626 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
627 raw_ostream &OS) {
628 OS << "// Add parameter attributes that are not common to all intrinsics.\n";
629 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
630 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
632 // Compute the maximum number of attribute arguments and the map
633 typedef std::map<const CodeGenIntrinsic*, unsigned,
634 AttributeComparator> UniqAttrMapTy;
635 UniqAttrMapTy UniqAttributes;
636 unsigned maxArgAttrs = 0;
637 unsigned AttrNum = 0;
638 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
639 const CodeGenIntrinsic &intrinsic = Ints[i];
640 maxArgAttrs =
641 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
642 unsigned &N = UniqAttributes[&intrinsic];
643 if (N) continue;
644 N = ++AttrNum;
645 assert(N < 65536 && "Too many unique attributes for table!");
648 // Emit an array of AttributeList. Most intrinsics will have at least one
649 // entry, for the function itself (index ~1), which is usually nounwind.
650 OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n";
652 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
653 const CodeGenIntrinsic &intrinsic = Ints[i];
655 OS << " " << UniqAttributes[&intrinsic] << ", // "
656 << intrinsic.Name << "\n";
658 OS << " };\n\n";
660 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n";
661 OS << " unsigned NumAttrs = 0;\n";
662 OS << " if (id != 0) {\n";
663 OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n";
664 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
665 for (auto UniqAttribute : UniqAttributes) {
666 OS << " case " << UniqAttribute.second << ": {\n";
668 const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first);
670 // Keep track of the number of attributes we're writing out.
671 unsigned numAttrs = 0;
673 // The argument attributes are alreadys sorted by argument index.
674 unsigned Ai = 0, Ae = Intrinsic.ArgumentAttributes.size();
675 if (Ae) {
676 while (Ai != Ae) {
677 unsigned AttrIdx = Intrinsic.ArgumentAttributes[Ai].Index;
679 OS << " const Attribute::AttrKind AttrParam" << AttrIdx << "[]= {";
680 ListSeparator LS(",");
682 bool AllValuesAreZero = true;
683 SmallVector<uint64_t, 8> Values;
684 do {
685 switch (Intrinsic.ArgumentAttributes[Ai].Kind) {
686 case CodeGenIntrinsic::NoCapture:
687 OS << LS << "Attribute::NoCapture";
688 break;
689 case CodeGenIntrinsic::NoAlias:
690 OS << LS << "Attribute::NoAlias";
691 break;
692 case CodeGenIntrinsic::NoUndef:
693 OS << LS << "Attribute::NoUndef";
694 break;
695 case CodeGenIntrinsic::Returned:
696 OS << LS << "Attribute::Returned";
697 break;
698 case CodeGenIntrinsic::ReadOnly:
699 OS << LS << "Attribute::ReadOnly";
700 break;
701 case CodeGenIntrinsic::WriteOnly:
702 OS << LS << "Attribute::WriteOnly";
703 break;
704 case CodeGenIntrinsic::ReadNone:
705 OS << LS << "Attribute::ReadNone";
706 break;
707 case CodeGenIntrinsic::ImmArg:
708 OS << LS << "Attribute::ImmArg";
709 break;
710 case CodeGenIntrinsic::Alignment:
711 OS << LS << "Attribute::Alignment";
712 break;
714 uint64_t V = Intrinsic.ArgumentAttributes[Ai].Value;
715 Values.push_back(V);
716 AllValuesAreZero &= (V == 0);
718 ++Ai;
719 } while (Ai != Ae && Intrinsic.ArgumentAttributes[Ai].Index == AttrIdx);
720 OS << "};\n";
722 // Generate attribute value array if not all attribute values are zero.
723 if (!AllValuesAreZero) {
724 OS << " const uint64_t AttrValParam" << AttrIdx << "[]= {";
725 ListSeparator LSV(",");
726 for (const auto V : Values)
727 OS << LSV << V;
728 OS << "};\n";
731 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
732 << AttrIdx << ", AttrParam" << AttrIdx;
733 if (!AllValuesAreZero)
734 OS << ", AttrValParam" << AttrIdx;
735 OS << ");\n";
739 if (!Intrinsic.canThrow ||
740 (Intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem &&
741 !Intrinsic.hasSideEffects) ||
742 Intrinsic.isNoReturn || Intrinsic.isNoSync || Intrinsic.isNoFree ||
743 Intrinsic.isWillReturn || Intrinsic.isCold || Intrinsic.isNoDuplicate ||
744 Intrinsic.isNoMerge || Intrinsic.isConvergent ||
745 Intrinsic.isSpeculatable) {
746 OS << " const Attribute::AttrKind Atts[] = {";
747 ListSeparator LS(",");
748 if (!Intrinsic.canThrow)
749 OS << LS << "Attribute::NoUnwind";
750 if (Intrinsic.isNoReturn)
751 OS << LS << "Attribute::NoReturn";
752 if (Intrinsic.isNoSync)
753 OS << LS << "Attribute::NoSync";
754 if (Intrinsic.isNoFree)
755 OS << LS << "Attribute::NoFree";
756 if (Intrinsic.isWillReturn)
757 OS << LS << "Attribute::WillReturn";
758 if (Intrinsic.isCold)
759 OS << LS << "Attribute::Cold";
760 if (Intrinsic.isNoDuplicate)
761 OS << LS << "Attribute::NoDuplicate";
762 if (Intrinsic.isNoMerge)
763 OS << LS << "Attribute::NoMerge";
764 if (Intrinsic.isConvergent)
765 OS << LS << "Attribute::Convergent";
766 if (Intrinsic.isSpeculatable)
767 OS << LS << "Attribute::Speculatable";
769 switch (Intrinsic.ModRef) {
770 case CodeGenIntrinsic::NoMem:
771 if (Intrinsic.hasSideEffects)
772 break;
773 OS << LS;
774 OS << "Attribute::ReadNone";
775 break;
776 case CodeGenIntrinsic::ReadArgMem:
777 OS << LS;
778 OS << "Attribute::ReadOnly,";
779 OS << "Attribute::ArgMemOnly";
780 break;
781 case CodeGenIntrinsic::ReadMem:
782 OS << LS;
783 OS << "Attribute::ReadOnly";
784 break;
785 case CodeGenIntrinsic::ReadInaccessibleMem:
786 OS << LS;
787 OS << "Attribute::ReadOnly,";
788 OS << "Attribute::InaccessibleMemOnly";
789 break;
790 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
791 OS << LS;
792 OS << "Attribute::ReadOnly,";
793 OS << "Attribute::InaccessibleMemOrArgMemOnly";
794 break;
795 case CodeGenIntrinsic::WriteArgMem:
796 OS << LS;
797 OS << "Attribute::WriteOnly,";
798 OS << "Attribute::ArgMemOnly";
799 break;
800 case CodeGenIntrinsic::WriteMem:
801 OS << LS;
802 OS << "Attribute::WriteOnly";
803 break;
804 case CodeGenIntrinsic::WriteInaccessibleMem:
805 OS << LS;
806 OS << "Attribute::WriteOnly,";
807 OS << "Attribute::InaccessibleMemOnly";
808 break;
809 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
810 OS << LS;
811 OS << "Attribute::WriteOnly,";
812 OS << "Attribute::InaccessibleMemOrArgMemOnly";
813 break;
814 case CodeGenIntrinsic::ReadWriteArgMem:
815 OS << LS;
816 OS << "Attribute::ArgMemOnly";
817 break;
818 case CodeGenIntrinsic::ReadWriteInaccessibleMem:
819 OS << LS;
820 OS << "Attribute::InaccessibleMemOnly";
821 break;
822 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
823 OS << LS;
824 OS << "Attribute::InaccessibleMemOrArgMemOnly";
825 break;
826 case CodeGenIntrinsic::ReadWriteMem:
827 break;
829 OS << "};\n";
830 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
831 << "AttributeList::FunctionIndex, Atts);\n";
834 if (numAttrs) {
835 OS << " NumAttrs = " << numAttrs << ";\n";
836 OS << " break;\n";
837 OS << " }\n";
838 } else {
839 OS << " return AttributeList();\n";
840 OS << " }\n";
844 OS << " }\n";
845 OS << " }\n";
846 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
847 OS << "}\n";
848 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
851 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
852 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
853 StringRef CompilerName = (IsGCC ? "GCC" : "MS");
854 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
855 BIMTy BuiltinMap;
856 StringToOffsetTable Table;
857 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
858 const std::string &BuiltinName =
859 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
860 if (!BuiltinName.empty()) {
861 // Get the map for this target prefix.
862 std::map<std::string, std::string> &BIM =
863 BuiltinMap[Ints[i].TargetPrefix];
865 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
866 PrintFatalError(Ints[i].TheDef->getLoc(),
867 "Intrinsic '" + Ints[i].TheDef->getName() +
868 "': duplicate " + CompilerName + " builtin name!");
869 Table.GetOrAddStringOffset(BuiltinName);
873 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
874 OS << "// This is used by the C front-end. The builtin name is passed\n";
875 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
876 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
877 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
879 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
880 << "Builtin(const char "
881 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
883 if (Table.Empty()) {
884 OS << " return Intrinsic::not_intrinsic;\n";
885 OS << "}\n";
886 OS << "#endif\n\n";
887 return;
890 OS << " static const char BuiltinNames[] = {\n";
891 Table.EmitCharArray(OS);
892 OS << " };\n\n";
894 OS << " struct BuiltinEntry {\n";
895 OS << " Intrinsic::ID IntrinID;\n";
896 OS << " unsigned StrTabOffset;\n";
897 OS << " const char *getName() const {\n";
898 OS << " return &BuiltinNames[StrTabOffset];\n";
899 OS << " }\n";
900 OS << " bool operator<(StringRef RHS) const {\n";
901 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
902 OS << " }\n";
903 OS << " };\n";
905 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
907 // Note: this could emit significantly better code if we cared.
908 for (auto &I : BuiltinMap) {
909 OS << " ";
910 if (!I.first.empty())
911 OS << "if (TargetPrefix == \"" << I.first << "\") ";
912 else
913 OS << "/* Target Independent Builtins */ ";
914 OS << "{\n";
916 // Emit the comparisons for this target prefix.
917 OS << " static const BuiltinEntry " << I.first << "Names[] = {\n";
918 for (const auto &P : I.second) {
919 OS << " {Intrinsic::" << P.second << ", "
920 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
922 OS << " };\n";
923 OS << " auto I = std::lower_bound(std::begin(" << I.first << "Names),\n";
924 OS << " std::end(" << I.first << "Names),\n";
925 OS << " BuiltinNameStr);\n";
926 OS << " if (I != std::end(" << I.first << "Names) &&\n";
927 OS << " I->getName() == BuiltinNameStr)\n";
928 OS << " return I->IntrinID;\n";
929 OS << " }\n";
931 OS << " return ";
932 OS << "Intrinsic::not_intrinsic;\n";
933 OS << "}\n";
934 OS << "#endif\n\n";
937 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
938 IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
941 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
942 IntrinsicEmitter(RK).run(OS, /*Enums=*/false);