[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / utils / TableGen / X86RecognizableInstr.cpp
blob02d7fd8e6e8eab62e1ab8a40882368be8c4db1ee
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler Emitter.
10 // It contains the implementation of a single recognizable instruction.
11 // Documentation for the disassembler emitter in general can be found in
12 // X86DisassemblerEmitter.h.
14 //===----------------------------------------------------------------------===//
16 #include "X86RecognizableInstr.h"
17 #include "X86DisassemblerShared.h"
18 #include "X86ModRMFilters.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include <string>
22 using namespace llvm;
23 using namespace X86Disassembler;
25 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
26 /// Useful for switch statements and the like.
27 ///
28 /// @param init - A reference to the BitsInit to be decoded.
29 /// @return - The field, with the first bit in the BitsInit as the lowest
30 /// order bit.
31 static uint8_t byteFromBitsInit(BitsInit &init) {
32 int width = init.getNumBits();
34 assert(width <= 8 && "Field is too large for uint8_t!");
36 int index;
37 uint8_t mask = 0x01;
39 uint8_t ret = 0;
41 for (index = 0; index < width; index++) {
42 if (cast<BitInit>(init.getBit(index))->getValue())
43 ret |= mask;
45 mask <<= 1;
48 return ret;
51 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
52 /// name of the field.
53 ///
54 /// @param rec - The record from which to extract the value.
55 /// @param name - The name of the field in the record.
56 /// @return - The field, as translated by byteFromBitsInit().
57 static uint8_t byteFromRec(const Record* rec, StringRef name) {
58 BitsInit* bits = rec->getValueAsBitsInit(name);
59 return byteFromBitsInit(*bits);
62 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
63 const CodeGenInstruction &insn,
64 InstrUID uid) {
65 UID = uid;
67 Rec = insn.TheDef;
68 Name = std::string(Rec->getName());
69 Spec = &tables.specForUID(UID);
71 if (!Rec->isSubClassOf("X86Inst")) {
72 ShouldBeEmitted = false;
73 return;
76 OpPrefix = byteFromRec(Rec, "OpPrefixBits");
77 OpMap = byteFromRec(Rec, "OpMapBits");
78 Opcode = byteFromRec(Rec, "Opcode");
79 Form = byteFromRec(Rec, "FormBits");
80 Encoding = byteFromRec(Rec, "OpEncBits");
82 OpSize = byteFromRec(Rec, "OpSizeBits");
83 AdSize = byteFromRec(Rec, "AdSizeBits");
84 HasREX_WPrefix = Rec->getValueAsBit("hasREX_WPrefix");
85 HasVEX_4V = Rec->getValueAsBit("hasVEX_4V");
86 HasVEX_W = Rec->getValueAsBit("HasVEX_W");
87 IgnoresVEX_W = Rec->getValueAsBit("IgnoresVEX_W");
88 IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L");
89 HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
90 HasEVEX_K = Rec->getValueAsBit("hasEVEX_K");
91 HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z");
92 HasEVEX_B = Rec->getValueAsBit("hasEVEX_B");
93 IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly");
94 ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
95 CD8_Scale = byteFromRec(Rec, "CD8_Scale");
97 Name = std::string(Rec->getName());
99 Operands = &insn.Operands.OperandList;
101 HasVEX_LPrefix = Rec->getValueAsBit("hasVEX_L");
103 EncodeRC = HasEVEX_B &&
104 (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg);
106 // Check for 64-bit inst which does not require REX
107 Is32Bit = false;
108 Is64Bit = false;
109 // FIXME: Is there some better way to check for In64BitMode?
110 std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
111 for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
112 if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
113 Predicates[i]->getName().find("In32Bit") != Name.npos) {
114 Is32Bit = true;
115 break;
117 if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
118 Is64Bit = true;
119 break;
123 if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
124 ShouldBeEmitted = false;
125 return;
128 ShouldBeEmitted = true;
131 void RecognizableInstr::processInstr(DisassemblerTables &tables,
132 const CodeGenInstruction &insn,
133 InstrUID uid)
135 // Ignore "asm parser only" instructions.
136 if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
137 return;
139 RecognizableInstr recogInstr(tables, insn, uid);
141 if (recogInstr.shouldBeEmitted()) {
142 recogInstr.emitInstructionSpecifier();
143 recogInstr.emitDecodePath(tables);
147 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
148 (HasEVEX_K && HasEVEX_B ? n##_K_B : \
149 (HasEVEX_KZ ? n##_KZ : \
150 (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
152 InstructionContext RecognizableInstr::insnContext() const {
153 InstructionContext insnContext;
155 if (Encoding == X86Local::EVEX) {
156 if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
157 errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
158 llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
160 // VEX_L & VEX_W
161 if (!EncodeRC && HasVEX_LPrefix && HasVEX_W) {
162 if (OpPrefix == X86Local::PD)
163 insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
164 else if (OpPrefix == X86Local::XS)
165 insnContext = EVEX_KB(IC_EVEX_L_W_XS);
166 else if (OpPrefix == X86Local::XD)
167 insnContext = EVEX_KB(IC_EVEX_L_W_XD);
168 else if (OpPrefix == X86Local::PS)
169 insnContext = EVEX_KB(IC_EVEX_L_W);
170 else {
171 errs() << "Instruction does not use a prefix: " << Name << "\n";
172 llvm_unreachable("Invalid prefix");
174 } else if (!EncodeRC && HasVEX_LPrefix) {
175 // VEX_L
176 if (OpPrefix == X86Local::PD)
177 insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
178 else if (OpPrefix == X86Local::XS)
179 insnContext = EVEX_KB(IC_EVEX_L_XS);
180 else if (OpPrefix == X86Local::XD)
181 insnContext = EVEX_KB(IC_EVEX_L_XD);
182 else if (OpPrefix == X86Local::PS)
183 insnContext = EVEX_KB(IC_EVEX_L);
184 else {
185 errs() << "Instruction does not use a prefix: " << Name << "\n";
186 llvm_unreachable("Invalid prefix");
188 } else if (!EncodeRC && HasEVEX_L2Prefix && HasVEX_W) {
189 // EVEX_L2 & VEX_W
190 if (OpPrefix == X86Local::PD)
191 insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
192 else if (OpPrefix == X86Local::XS)
193 insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
194 else if (OpPrefix == X86Local::XD)
195 insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
196 else if (OpPrefix == X86Local::PS)
197 insnContext = EVEX_KB(IC_EVEX_L2_W);
198 else {
199 errs() << "Instruction does not use a prefix: " << Name << "\n";
200 llvm_unreachable("Invalid prefix");
202 } else if (!EncodeRC && HasEVEX_L2Prefix) {
203 // EVEX_L2
204 if (OpPrefix == X86Local::PD)
205 insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
206 else if (OpPrefix == X86Local::XD)
207 insnContext = EVEX_KB(IC_EVEX_L2_XD);
208 else if (OpPrefix == X86Local::XS)
209 insnContext = EVEX_KB(IC_EVEX_L2_XS);
210 else if (OpPrefix == X86Local::PS)
211 insnContext = EVEX_KB(IC_EVEX_L2);
212 else {
213 errs() << "Instruction does not use a prefix: " << Name << "\n";
214 llvm_unreachable("Invalid prefix");
217 else if (HasVEX_W) {
218 // VEX_W
219 if (OpPrefix == X86Local::PD)
220 insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
221 else if (OpPrefix == X86Local::XS)
222 insnContext = EVEX_KB(IC_EVEX_W_XS);
223 else if (OpPrefix == X86Local::XD)
224 insnContext = EVEX_KB(IC_EVEX_W_XD);
225 else if (OpPrefix == X86Local::PS)
226 insnContext = EVEX_KB(IC_EVEX_W);
227 else {
228 errs() << "Instruction does not use a prefix: " << Name << "\n";
229 llvm_unreachable("Invalid prefix");
232 // No L, no W
233 else if (OpPrefix == X86Local::PD)
234 insnContext = EVEX_KB(IC_EVEX_OPSIZE);
235 else if (OpPrefix == X86Local::XD)
236 insnContext = EVEX_KB(IC_EVEX_XD);
237 else if (OpPrefix == X86Local::XS)
238 insnContext = EVEX_KB(IC_EVEX_XS);
239 else if (OpPrefix == X86Local::PS)
240 insnContext = EVEX_KB(IC_EVEX);
241 else {
242 errs() << "Instruction does not use a prefix: " << Name << "\n";
243 llvm_unreachable("Invalid prefix");
245 /// eof EVEX
246 } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
247 if (HasVEX_LPrefix && HasVEX_W) {
248 if (OpPrefix == X86Local::PD)
249 insnContext = IC_VEX_L_W_OPSIZE;
250 else if (OpPrefix == X86Local::XS)
251 insnContext = IC_VEX_L_W_XS;
252 else if (OpPrefix == X86Local::XD)
253 insnContext = IC_VEX_L_W_XD;
254 else if (OpPrefix == X86Local::PS)
255 insnContext = IC_VEX_L_W;
256 else {
257 errs() << "Instruction does not use a prefix: " << Name << "\n";
258 llvm_unreachable("Invalid prefix");
260 } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
261 insnContext = IC_VEX_L_OPSIZE;
262 else if (OpPrefix == X86Local::PD && HasVEX_W)
263 insnContext = IC_VEX_W_OPSIZE;
264 else if (OpPrefix == X86Local::PD && Is64Bit &&
265 AdSize == X86Local::AdSize32)
266 insnContext = IC_64BIT_VEX_OPSIZE_ADSIZE;
267 else if (OpPrefix == X86Local::PD && Is64Bit)
268 insnContext = IC_64BIT_VEX_OPSIZE;
269 else if (OpPrefix == X86Local::PD)
270 insnContext = IC_VEX_OPSIZE;
271 else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
272 insnContext = IC_VEX_L_XS;
273 else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
274 insnContext = IC_VEX_L_XD;
275 else if (HasVEX_W && OpPrefix == X86Local::XS)
276 insnContext = IC_VEX_W_XS;
277 else if (HasVEX_W && OpPrefix == X86Local::XD)
278 insnContext = IC_VEX_W_XD;
279 else if (HasVEX_W && OpPrefix == X86Local::PS)
280 insnContext = IC_VEX_W;
281 else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
282 insnContext = IC_VEX_L;
283 else if (OpPrefix == X86Local::XD)
284 insnContext = IC_VEX_XD;
285 else if (OpPrefix == X86Local::XS)
286 insnContext = IC_VEX_XS;
287 else if (OpPrefix == X86Local::PS)
288 insnContext = IC_VEX;
289 else {
290 errs() << "Instruction does not use a prefix: " << Name << "\n";
291 llvm_unreachable("Invalid prefix");
293 } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
294 if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
295 insnContext = IC_64BIT_REXW_OPSIZE;
296 else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
297 insnContext = IC_64BIT_REXW_ADSIZE;
298 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
299 insnContext = IC_64BIT_XD_OPSIZE;
300 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
301 insnContext = IC_64BIT_XS_OPSIZE;
302 else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD)
303 insnContext = IC_64BIT_OPSIZE_ADSIZE;
304 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
305 insnContext = IC_64BIT_OPSIZE_ADSIZE;
306 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
307 insnContext = IC_64BIT_OPSIZE;
308 else if (AdSize == X86Local::AdSize32)
309 insnContext = IC_64BIT_ADSIZE;
310 else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
311 insnContext = IC_64BIT_REXW_XS;
312 else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
313 insnContext = IC_64BIT_REXW_XD;
314 else if (OpPrefix == X86Local::XD)
315 insnContext = IC_64BIT_XD;
316 else if (OpPrefix == X86Local::XS)
317 insnContext = IC_64BIT_XS;
318 else if (HasREX_WPrefix)
319 insnContext = IC_64BIT_REXW;
320 else
321 insnContext = IC_64BIT;
322 } else {
323 if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
324 insnContext = IC_XD_OPSIZE;
325 else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
326 insnContext = IC_XS_OPSIZE;
327 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD)
328 insnContext = IC_XD_ADSIZE;
329 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS)
330 insnContext = IC_XS_ADSIZE;
331 else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD)
332 insnContext = IC_OPSIZE_ADSIZE;
333 else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
334 insnContext = IC_OPSIZE_ADSIZE;
335 else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
336 insnContext = IC_OPSIZE;
337 else if (AdSize == X86Local::AdSize16)
338 insnContext = IC_ADSIZE;
339 else if (OpPrefix == X86Local::XD)
340 insnContext = IC_XD;
341 else if (OpPrefix == X86Local::XS)
342 insnContext = IC_XS;
343 else
344 insnContext = IC;
347 return insnContext;
350 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
351 // The scaling factor for AVX512 compressed displacement encoding is an
352 // instruction attribute. Adjust the ModRM encoding type to include the
353 // scale for compressed displacement.
354 if ((encoding != ENCODING_RM &&
355 encoding != ENCODING_VSIB &&
356 encoding != ENCODING_SIB) ||CD8_Scale == 0)
357 return;
358 encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
359 assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) ||
360 (encoding == ENCODING_SIB) ||
361 (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) &&
362 "Invalid CDisp scaling");
365 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
366 unsigned &physicalOperandIndex,
367 unsigned numPhysicalOperands,
368 const unsigned *operandMapping,
369 OperandEncoding (*encodingFromString)
370 (const std::string&,
371 uint8_t OpSize)) {
372 if (optional) {
373 if (physicalOperandIndex >= numPhysicalOperands)
374 return;
375 } else {
376 assert(physicalOperandIndex < numPhysicalOperands);
379 while (operandMapping[operandIndex] != operandIndex) {
380 Spec->operands[operandIndex].encoding = ENCODING_DUP;
381 Spec->operands[operandIndex].type =
382 (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
383 ++operandIndex;
386 StringRef typeName = (*Operands)[operandIndex].Rec->getName();
388 OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize);
389 // Adjust the encoding type for an operand based on the instruction.
390 adjustOperandEncoding(encoding);
391 Spec->operands[operandIndex].encoding = encoding;
392 Spec->operands[operandIndex].type =
393 typeFromString(std::string(typeName), HasREX_WPrefix, OpSize);
395 ++operandIndex;
396 ++physicalOperandIndex;
399 void RecognizableInstr::emitInstructionSpecifier() {
400 Spec->name = Name;
402 Spec->insnContext = insnContext();
404 const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
406 unsigned numOperands = OperandList.size();
407 unsigned numPhysicalOperands = 0;
409 // operandMapping maps from operands in OperandList to their originals.
410 // If operandMapping[i] != i, then the entry is a duplicate.
411 unsigned operandMapping[X86_MAX_OPERANDS];
412 assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
414 for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
415 if (!OperandList[operandIndex].Constraints.empty()) {
416 const CGIOperandList::ConstraintInfo &Constraint =
417 OperandList[operandIndex].Constraints[0];
418 if (Constraint.isTied()) {
419 operandMapping[operandIndex] = operandIndex;
420 operandMapping[Constraint.getTiedOperand()] = operandIndex;
421 } else {
422 ++numPhysicalOperands;
423 operandMapping[operandIndex] = operandIndex;
425 } else {
426 ++numPhysicalOperands;
427 operandMapping[operandIndex] = operandIndex;
431 #define HANDLE_OPERAND(class) \
432 handleOperand(false, \
433 operandIndex, \
434 physicalOperandIndex, \
435 numPhysicalOperands, \
436 operandMapping, \
437 class##EncodingFromString);
439 #define HANDLE_OPTIONAL(class) \
440 handleOperand(true, \
441 operandIndex, \
442 physicalOperandIndex, \
443 numPhysicalOperands, \
444 operandMapping, \
445 class##EncodingFromString);
447 // operandIndex should always be < numOperands
448 unsigned operandIndex = 0;
449 // physicalOperandIndex should always be < numPhysicalOperands
450 unsigned physicalOperandIndex = 0;
452 #ifndef NDEBUG
453 // Given the set of prefix bits, how many additional operands does the
454 // instruction have?
455 unsigned additionalOperands = 0;
456 if (HasVEX_4V)
457 ++additionalOperands;
458 if (HasEVEX_K)
459 ++additionalOperands;
460 #endif
462 switch (Form) {
463 default: llvm_unreachable("Unhandled form");
464 case X86Local::PrefixByte:
465 return;
466 case X86Local::RawFrmSrc:
467 HANDLE_OPERAND(relocation);
468 return;
469 case X86Local::RawFrmDst:
470 HANDLE_OPERAND(relocation);
471 return;
472 case X86Local::RawFrmDstSrc:
473 HANDLE_OPERAND(relocation);
474 HANDLE_OPERAND(relocation);
475 return;
476 case X86Local::RawFrm:
477 // Operand 1 (optional) is an address or immediate.
478 assert(numPhysicalOperands <= 1 &&
479 "Unexpected number of operands for RawFrm");
480 HANDLE_OPTIONAL(relocation)
481 break;
482 case X86Local::RawFrmMemOffs:
483 // Operand 1 is an address.
484 HANDLE_OPERAND(relocation);
485 break;
486 case X86Local::AddRegFrm:
487 // Operand 1 is added to the opcode.
488 // Operand 2 (optional) is an address.
489 assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
490 "Unexpected number of operands for AddRegFrm");
491 HANDLE_OPERAND(opcodeModifier)
492 HANDLE_OPTIONAL(relocation)
493 break;
494 case X86Local::AddCCFrm:
495 // Operand 1 (optional) is an address or immediate.
496 assert(numPhysicalOperands == 2 &&
497 "Unexpected number of operands for AddCCFrm");
498 HANDLE_OPERAND(relocation)
499 HANDLE_OPERAND(opcodeModifier)
500 break;
501 case X86Local::MRMDestReg:
502 // Operand 1 is a register operand in the R/M field.
503 // - In AVX512 there may be a mask operand here -
504 // Operand 2 is a register operand in the Reg/Opcode field.
505 // - In AVX, there is a register operand in the VEX.vvvv field here -
506 // Operand 3 (optional) is an immediate.
507 assert(numPhysicalOperands >= 2 + additionalOperands &&
508 numPhysicalOperands <= 3 + additionalOperands &&
509 "Unexpected number of operands for MRMDestRegFrm");
511 HANDLE_OPERAND(rmRegister)
512 if (HasEVEX_K)
513 HANDLE_OPERAND(writemaskRegister)
515 if (HasVEX_4V)
516 // FIXME: In AVX, the register below becomes the one encoded
517 // in ModRMVEX and the one above the one in the VEX.VVVV field
518 HANDLE_OPERAND(vvvvRegister)
520 HANDLE_OPERAND(roRegister)
521 HANDLE_OPTIONAL(immediate)
522 break;
523 case X86Local::MRMDestMem:
524 case X86Local::MRMDestMemFSIB:
525 // Operand 1 is a memory operand (possibly SIB-extended)
526 // Operand 2 is a register operand in the Reg/Opcode field.
527 // - In AVX, there is a register operand in the VEX.vvvv field here -
528 // Operand 3 (optional) is an immediate.
529 assert(numPhysicalOperands >= 2 + additionalOperands &&
530 numPhysicalOperands <= 3 + additionalOperands &&
531 "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
533 HANDLE_OPERAND(memory)
535 if (HasEVEX_K)
536 HANDLE_OPERAND(writemaskRegister)
538 if (HasVEX_4V)
539 // FIXME: In AVX, the register below becomes the one encoded
540 // in ModRMVEX and the one above the one in the VEX.VVVV field
541 HANDLE_OPERAND(vvvvRegister)
543 HANDLE_OPERAND(roRegister)
544 HANDLE_OPTIONAL(immediate)
545 break;
546 case X86Local::MRMSrcReg:
547 // Operand 1 is a register operand in the Reg/Opcode field.
548 // Operand 2 is a register operand in the R/M field.
549 // - In AVX, there is a register operand in the VEX.vvvv field here -
550 // Operand 3 (optional) is an immediate.
551 // Operand 4 (optional) is an immediate.
553 assert(numPhysicalOperands >= 2 + additionalOperands &&
554 numPhysicalOperands <= 4 + additionalOperands &&
555 "Unexpected number of operands for MRMSrcRegFrm");
557 HANDLE_OPERAND(roRegister)
559 if (HasEVEX_K)
560 HANDLE_OPERAND(writemaskRegister)
562 if (HasVEX_4V)
563 // FIXME: In AVX, the register below becomes the one encoded
564 // in ModRMVEX and the one above the one in the VEX.VVVV field
565 HANDLE_OPERAND(vvvvRegister)
567 HANDLE_OPERAND(rmRegister)
568 HANDLE_OPTIONAL(immediate)
569 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
570 break;
571 case X86Local::MRMSrcReg4VOp3:
572 assert(numPhysicalOperands == 3 &&
573 "Unexpected number of operands for MRMSrcReg4VOp3Frm");
574 HANDLE_OPERAND(roRegister)
575 HANDLE_OPERAND(rmRegister)
576 HANDLE_OPERAND(vvvvRegister)
577 break;
578 case X86Local::MRMSrcRegOp4:
579 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
580 "Unexpected number of operands for MRMSrcRegOp4Frm");
581 HANDLE_OPERAND(roRegister)
582 HANDLE_OPERAND(vvvvRegister)
583 HANDLE_OPERAND(immediate) // Register in imm[7:4]
584 HANDLE_OPERAND(rmRegister)
585 HANDLE_OPTIONAL(immediate)
586 break;
587 case X86Local::MRMSrcRegCC:
588 assert(numPhysicalOperands == 3 &&
589 "Unexpected number of operands for MRMSrcRegCC");
590 HANDLE_OPERAND(roRegister)
591 HANDLE_OPERAND(rmRegister)
592 HANDLE_OPERAND(opcodeModifier)
593 break;
594 case X86Local::MRMSrcMem:
595 case X86Local::MRMSrcMemFSIB:
596 // Operand 1 is a register operand in the Reg/Opcode field.
597 // Operand 2 is a memory operand (possibly SIB-extended)
598 // - In AVX, there is a register operand in the VEX.vvvv field here -
599 // Operand 3 (optional) is an immediate.
601 assert(numPhysicalOperands >= 2 + additionalOperands &&
602 numPhysicalOperands <= 4 + additionalOperands &&
603 "Unexpected number of operands for MRMSrcMemFrm");
605 HANDLE_OPERAND(roRegister)
607 if (HasEVEX_K)
608 HANDLE_OPERAND(writemaskRegister)
610 if (HasVEX_4V)
611 // FIXME: In AVX, the register below becomes the one encoded
612 // in ModRMVEX and the one above the one in the VEX.VVVV field
613 HANDLE_OPERAND(vvvvRegister)
615 HANDLE_OPERAND(memory)
616 HANDLE_OPTIONAL(immediate)
617 HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
618 break;
619 case X86Local::MRMSrcMem4VOp3:
620 assert(numPhysicalOperands == 3 &&
621 "Unexpected number of operands for MRMSrcMem4VOp3Frm");
622 HANDLE_OPERAND(roRegister)
623 HANDLE_OPERAND(memory)
624 HANDLE_OPERAND(vvvvRegister)
625 break;
626 case X86Local::MRMSrcMemOp4:
627 assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 &&
628 "Unexpected number of operands for MRMSrcMemOp4Frm");
629 HANDLE_OPERAND(roRegister)
630 HANDLE_OPERAND(vvvvRegister)
631 HANDLE_OPERAND(immediate) // Register in imm[7:4]
632 HANDLE_OPERAND(memory)
633 HANDLE_OPTIONAL(immediate)
634 break;
635 case X86Local::MRMSrcMemCC:
636 assert(numPhysicalOperands == 3 &&
637 "Unexpected number of operands for MRMSrcMemCC");
638 HANDLE_OPERAND(roRegister)
639 HANDLE_OPERAND(memory)
640 HANDLE_OPERAND(opcodeModifier)
641 break;
642 case X86Local::MRMXrCC:
643 assert(numPhysicalOperands == 2 &&
644 "Unexpected number of operands for MRMXrCC");
645 HANDLE_OPERAND(rmRegister)
646 HANDLE_OPERAND(opcodeModifier)
647 break;
648 case X86Local::MRMr0:
649 // Operand 1 is a register operand in the R/M field.
650 HANDLE_OPERAND(roRegister)
651 break;
652 case X86Local::MRMXr:
653 case X86Local::MRM0r:
654 case X86Local::MRM1r:
655 case X86Local::MRM2r:
656 case X86Local::MRM3r:
657 case X86Local::MRM4r:
658 case X86Local::MRM5r:
659 case X86Local::MRM6r:
660 case X86Local::MRM7r:
661 // Operand 1 is a register operand in the R/M field.
662 // Operand 2 (optional) is an immediate or relocation.
663 // Operand 3 (optional) is an immediate.
664 assert(numPhysicalOperands >= 0 + additionalOperands &&
665 numPhysicalOperands <= 3 + additionalOperands &&
666 "Unexpected number of operands for MRMnr");
668 if (HasVEX_4V)
669 HANDLE_OPERAND(vvvvRegister)
671 if (HasEVEX_K)
672 HANDLE_OPERAND(writemaskRegister)
673 HANDLE_OPTIONAL(rmRegister)
674 HANDLE_OPTIONAL(relocation)
675 HANDLE_OPTIONAL(immediate)
676 break;
677 case X86Local::MRMXmCC:
678 assert(numPhysicalOperands == 2 &&
679 "Unexpected number of operands for MRMXm");
680 HANDLE_OPERAND(memory)
681 HANDLE_OPERAND(opcodeModifier)
682 break;
683 case X86Local::MRMXm:
684 case X86Local::MRM0m:
685 case X86Local::MRM1m:
686 case X86Local::MRM2m:
687 case X86Local::MRM3m:
688 case X86Local::MRM4m:
689 case X86Local::MRM5m:
690 case X86Local::MRM6m:
691 case X86Local::MRM7m:
692 // Operand 1 is a memory operand (possibly SIB-extended)
693 // Operand 2 (optional) is an immediate or relocation.
694 assert(numPhysicalOperands >= 1 + additionalOperands &&
695 numPhysicalOperands <= 2 + additionalOperands &&
696 "Unexpected number of operands for MRMnm");
698 if (HasVEX_4V)
699 HANDLE_OPERAND(vvvvRegister)
700 if (HasEVEX_K)
701 HANDLE_OPERAND(writemaskRegister)
702 HANDLE_OPERAND(memory)
703 HANDLE_OPTIONAL(relocation)
704 break;
705 case X86Local::RawFrmImm8:
706 // operand 1 is a 16-bit immediate
707 // operand 2 is an 8-bit immediate
708 assert(numPhysicalOperands == 2 &&
709 "Unexpected number of operands for X86Local::RawFrmImm8");
710 HANDLE_OPERAND(immediate)
711 HANDLE_OPERAND(immediate)
712 break;
713 case X86Local::RawFrmImm16:
714 // operand 1 is a 16-bit immediate
715 // operand 2 is a 16-bit immediate
716 HANDLE_OPERAND(immediate)
717 HANDLE_OPERAND(immediate)
718 break;
719 case X86Local::MRM0X:
720 case X86Local::MRM1X:
721 case X86Local::MRM2X:
722 case X86Local::MRM3X:
723 case X86Local::MRM4X:
724 case X86Local::MRM5X:
725 case X86Local::MRM6X:
726 case X86Local::MRM7X:
727 #define MAP(from, to) case X86Local::MRM_##from:
728 X86_INSTR_MRM_MAPPING
729 #undef MAP
730 HANDLE_OPTIONAL(relocation)
731 break;
734 #undef HANDLE_OPERAND
735 #undef HANDLE_OPTIONAL
738 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
739 // Special cases where the LLVM tables are not complete
741 #define MAP(from, to) \
742 case X86Local::MRM_##from:
744 llvm::Optional<OpcodeType> opcodeType;
745 switch (OpMap) {
746 default: llvm_unreachable("Invalid map!");
747 case X86Local::OB: opcodeType = ONEBYTE; break;
748 case X86Local::TB: opcodeType = TWOBYTE; break;
749 case X86Local::T8: opcodeType = THREEBYTE_38; break;
750 case X86Local::TA: opcodeType = THREEBYTE_3A; break;
751 case X86Local::XOP8: opcodeType = XOP8_MAP; break;
752 case X86Local::XOP9: opcodeType = XOP9_MAP; break;
753 case X86Local::XOPA: opcodeType = XOPA_MAP; break;
754 case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break;
755 case X86Local::T_MAP5: opcodeType = MAP5; break;
756 case X86Local::T_MAP6: opcodeType = MAP6; break;
759 std::unique_ptr<ModRMFilter> filter;
760 switch (Form) {
761 default: llvm_unreachable("Invalid form!");
762 case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!");
763 case X86Local::RawFrm:
764 case X86Local::AddRegFrm:
765 case X86Local::RawFrmMemOffs:
766 case X86Local::RawFrmSrc:
767 case X86Local::RawFrmDst:
768 case X86Local::RawFrmDstSrc:
769 case X86Local::RawFrmImm8:
770 case X86Local::RawFrmImm16:
771 case X86Local::AddCCFrm:
772 case X86Local::PrefixByte:
773 filter = std::make_unique<DumbFilter>();
774 break;
775 case X86Local::MRMDestReg:
776 case X86Local::MRMSrcReg:
777 case X86Local::MRMSrcReg4VOp3:
778 case X86Local::MRMSrcRegOp4:
779 case X86Local::MRMSrcRegCC:
780 case X86Local::MRMXrCC:
781 case X86Local::MRMXr:
782 filter = std::make_unique<ModFilter>(true);
783 break;
784 case X86Local::MRMDestMem:
785 case X86Local::MRMDestMemFSIB:
786 case X86Local::MRMSrcMem:
787 case X86Local::MRMSrcMemFSIB:
788 case X86Local::MRMSrcMem4VOp3:
789 case X86Local::MRMSrcMemOp4:
790 case X86Local::MRMSrcMemCC:
791 case X86Local::MRMXmCC:
792 case X86Local::MRMXm:
793 filter = std::make_unique<ModFilter>(false);
794 break;
795 case X86Local::MRM0r: case X86Local::MRM1r:
796 case X86Local::MRM2r: case X86Local::MRM3r:
797 case X86Local::MRM4r: case X86Local::MRM5r:
798 case X86Local::MRM6r: case X86Local::MRM7r:
799 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0r);
800 break;
801 case X86Local::MRM0X: case X86Local::MRM1X:
802 case X86Local::MRM2X: case X86Local::MRM3X:
803 case X86Local::MRM4X: case X86Local::MRM5X:
804 case X86Local::MRM6X: case X86Local::MRM7X:
805 filter = std::make_unique<ExtendedFilter>(true, Form - X86Local::MRM0X);
806 break;
807 case X86Local::MRMr0:
808 filter = std::make_unique<ExtendedRMFilter>(true, Form - X86Local::MRMr0);
809 break;
810 case X86Local::MRM0m: case X86Local::MRM1m:
811 case X86Local::MRM2m: case X86Local::MRM3m:
812 case X86Local::MRM4m: case X86Local::MRM5m:
813 case X86Local::MRM6m: case X86Local::MRM7m:
814 filter = std::make_unique<ExtendedFilter>(false, Form - X86Local::MRM0m);
815 break;
816 X86_INSTR_MRM_MAPPING
817 filter = std::make_unique<ExactFilter>(0xC0 + Form - X86Local::MRM_C0);
818 break;
819 } // switch (Form)
821 uint8_t opcodeToSet = Opcode;
823 unsigned AddressSize = 0;
824 switch (AdSize) {
825 case X86Local::AdSize16: AddressSize = 16; break;
826 case X86Local::AdSize32: AddressSize = 32; break;
827 case X86Local::AdSize64: AddressSize = 64; break;
830 assert(opcodeType && "Opcode type not set");
831 assert(filter && "Filter not set");
833 if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC ||
834 Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC ||
835 Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm) {
836 unsigned Count = Form == X86Local::AddRegFrm ? 8 : 16;
837 assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned");
839 uint8_t currentOpcode;
841 for (currentOpcode = opcodeToSet; currentOpcode < opcodeToSet + Count;
842 ++currentOpcode)
843 tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter,
844 UID, Is32Bit, OpPrefix == 0,
845 IgnoresVEX_L || EncodeRC,
846 IgnoresVEX_W, AddressSize);
847 } else {
848 tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID,
849 Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC,
850 IgnoresVEX_W, AddressSize);
853 #undef MAP
856 #define TYPE(str, type) if (s == str) return type;
857 OperandType RecognizableInstr::typeFromString(const std::string &s,
858 bool hasREX_WPrefix,
859 uint8_t OpSize) {
860 if(hasREX_WPrefix) {
861 // For instructions with a REX_W prefix, a declared 32-bit register encoding
862 // is special.
863 TYPE("GR32", TYPE_R32)
865 if(OpSize == X86Local::OpSize16) {
866 // For OpSize16 instructions, a declared 16-bit register or
867 // immediate encoding is special.
868 TYPE("GR16", TYPE_Rv)
869 } else if(OpSize == X86Local::OpSize32) {
870 // For OpSize32 instructions, a declared 32-bit register or
871 // immediate encoding is special.
872 TYPE("GR32", TYPE_Rv)
874 TYPE("i16mem", TYPE_M)
875 TYPE("i16imm", TYPE_IMM)
876 TYPE("i16i8imm", TYPE_IMM)
877 TYPE("GR16", TYPE_R16)
878 TYPE("GR16orGR32orGR64", TYPE_R16)
879 TYPE("i32mem", TYPE_M)
880 TYPE("i32imm", TYPE_IMM)
881 TYPE("i32i8imm", TYPE_IMM)
882 TYPE("GR32", TYPE_R32)
883 TYPE("GR32orGR64", TYPE_R32)
884 TYPE("i64mem", TYPE_M)
885 TYPE("i64i32imm", TYPE_IMM)
886 TYPE("i64i8imm", TYPE_IMM)
887 TYPE("GR64", TYPE_R64)
888 TYPE("i8mem", TYPE_M)
889 TYPE("i8imm", TYPE_IMM)
890 TYPE("u4imm", TYPE_UIMM8)
891 TYPE("u8imm", TYPE_UIMM8)
892 TYPE("i16u8imm", TYPE_UIMM8)
893 TYPE("i32u8imm", TYPE_UIMM8)
894 TYPE("i64u8imm", TYPE_UIMM8)
895 TYPE("GR8", TYPE_R8)
896 TYPE("VR128", TYPE_XMM)
897 TYPE("VR128X", TYPE_XMM)
898 TYPE("f128mem", TYPE_M)
899 TYPE("f256mem", TYPE_M)
900 TYPE("f512mem", TYPE_M)
901 TYPE("FR128", TYPE_XMM)
902 TYPE("FR64", TYPE_XMM)
903 TYPE("FR64X", TYPE_XMM)
904 TYPE("f64mem", TYPE_M)
905 TYPE("sdmem", TYPE_M)
906 TYPE("FR16X", TYPE_XMM)
907 TYPE("FR32", TYPE_XMM)
908 TYPE("FR32X", TYPE_XMM)
909 TYPE("f32mem", TYPE_M)
910 TYPE("f16mem", TYPE_M)
911 TYPE("ssmem", TYPE_M)
912 TYPE("shmem", TYPE_M)
913 TYPE("RST", TYPE_ST)
914 TYPE("RSTi", TYPE_ST)
915 TYPE("i128mem", TYPE_M)
916 TYPE("i256mem", TYPE_M)
917 TYPE("i512mem", TYPE_M)
918 TYPE("i64i32imm_brtarget", TYPE_REL)
919 TYPE("i16imm_brtarget", TYPE_REL)
920 TYPE("i32imm_brtarget", TYPE_REL)
921 TYPE("ccode", TYPE_IMM)
922 TYPE("AVX512RC", TYPE_IMM)
923 TYPE("brtarget32", TYPE_REL)
924 TYPE("brtarget16", TYPE_REL)
925 TYPE("brtarget8", TYPE_REL)
926 TYPE("f80mem", TYPE_M)
927 TYPE("lea64_32mem", TYPE_M)
928 TYPE("lea64mem", TYPE_M)
929 TYPE("VR64", TYPE_MM64)
930 TYPE("i64imm", TYPE_IMM)
931 TYPE("anymem", TYPE_M)
932 TYPE("opaquemem", TYPE_M)
933 TYPE("sibmem", TYPE_MSIB)
934 TYPE("SEGMENT_REG", TYPE_SEGMENTREG)
935 TYPE("DEBUG_REG", TYPE_DEBUGREG)
936 TYPE("CONTROL_REG", TYPE_CONTROLREG)
937 TYPE("srcidx8", TYPE_SRCIDX)
938 TYPE("srcidx16", TYPE_SRCIDX)
939 TYPE("srcidx32", TYPE_SRCIDX)
940 TYPE("srcidx64", TYPE_SRCIDX)
941 TYPE("dstidx8", TYPE_DSTIDX)
942 TYPE("dstidx16", TYPE_DSTIDX)
943 TYPE("dstidx32", TYPE_DSTIDX)
944 TYPE("dstidx64", TYPE_DSTIDX)
945 TYPE("offset16_8", TYPE_MOFFS)
946 TYPE("offset16_16", TYPE_MOFFS)
947 TYPE("offset16_32", TYPE_MOFFS)
948 TYPE("offset32_8", TYPE_MOFFS)
949 TYPE("offset32_16", TYPE_MOFFS)
950 TYPE("offset32_32", TYPE_MOFFS)
951 TYPE("offset32_64", TYPE_MOFFS)
952 TYPE("offset64_8", TYPE_MOFFS)
953 TYPE("offset64_16", TYPE_MOFFS)
954 TYPE("offset64_32", TYPE_MOFFS)
955 TYPE("offset64_64", TYPE_MOFFS)
956 TYPE("VR256", TYPE_YMM)
957 TYPE("VR256X", TYPE_YMM)
958 TYPE("VR512", TYPE_ZMM)
959 TYPE("VK1", TYPE_VK)
960 TYPE("VK1WM", TYPE_VK)
961 TYPE("VK2", TYPE_VK)
962 TYPE("VK2WM", TYPE_VK)
963 TYPE("VK4", TYPE_VK)
964 TYPE("VK4WM", TYPE_VK)
965 TYPE("VK8", TYPE_VK)
966 TYPE("VK8WM", TYPE_VK)
967 TYPE("VK16", TYPE_VK)
968 TYPE("VK16WM", TYPE_VK)
969 TYPE("VK32", TYPE_VK)
970 TYPE("VK32WM", TYPE_VK)
971 TYPE("VK64", TYPE_VK)
972 TYPE("VK64WM", TYPE_VK)
973 TYPE("VK1Pair", TYPE_VK_PAIR)
974 TYPE("VK2Pair", TYPE_VK_PAIR)
975 TYPE("VK4Pair", TYPE_VK_PAIR)
976 TYPE("VK8Pair", TYPE_VK_PAIR)
977 TYPE("VK16Pair", TYPE_VK_PAIR)
978 TYPE("vx64mem", TYPE_MVSIBX)
979 TYPE("vx128mem", TYPE_MVSIBX)
980 TYPE("vx256mem", TYPE_MVSIBX)
981 TYPE("vy128mem", TYPE_MVSIBY)
982 TYPE("vy256mem", TYPE_MVSIBY)
983 TYPE("vx64xmem", TYPE_MVSIBX)
984 TYPE("vx128xmem", TYPE_MVSIBX)
985 TYPE("vx256xmem", TYPE_MVSIBX)
986 TYPE("vy128xmem", TYPE_MVSIBY)
987 TYPE("vy256xmem", TYPE_MVSIBY)
988 TYPE("vy512xmem", TYPE_MVSIBY)
989 TYPE("vz256mem", TYPE_MVSIBZ)
990 TYPE("vz512mem", TYPE_MVSIBZ)
991 TYPE("BNDR", TYPE_BNDR)
992 TYPE("TILE", TYPE_TMM)
993 errs() << "Unhandled type string " << s << "\n";
994 llvm_unreachable("Unhandled type string");
996 #undef TYPE
998 #define ENCODING(str, encoding) if (s == str) return encoding;
999 OperandEncoding
1000 RecognizableInstr::immediateEncodingFromString(const std::string &s,
1001 uint8_t OpSize) {
1002 if(OpSize != X86Local::OpSize16) {
1003 // For instructions without an OpSize prefix, a declared 16-bit register or
1004 // immediate encoding is special.
1005 ENCODING("i16imm", ENCODING_IW)
1007 ENCODING("i32i8imm", ENCODING_IB)
1008 ENCODING("AVX512RC", ENCODING_IRC)
1009 ENCODING("i16imm", ENCODING_Iv)
1010 ENCODING("i16i8imm", ENCODING_IB)
1011 ENCODING("i32imm", ENCODING_Iv)
1012 ENCODING("i64i32imm", ENCODING_ID)
1013 ENCODING("i64i8imm", ENCODING_IB)
1014 ENCODING("i8imm", ENCODING_IB)
1015 ENCODING("u4imm", ENCODING_IB)
1016 ENCODING("u8imm", ENCODING_IB)
1017 ENCODING("i16u8imm", ENCODING_IB)
1018 ENCODING("i32u8imm", ENCODING_IB)
1019 ENCODING("i64u8imm", ENCODING_IB)
1020 // This is not a typo. Instructions like BLENDVPD put
1021 // register IDs in 8-bit immediates nowadays.
1022 ENCODING("FR32", ENCODING_IB)
1023 ENCODING("FR64", ENCODING_IB)
1024 ENCODING("FR128", ENCODING_IB)
1025 ENCODING("VR128", ENCODING_IB)
1026 ENCODING("VR256", ENCODING_IB)
1027 ENCODING("FR16X", ENCODING_IB)
1028 ENCODING("FR32X", ENCODING_IB)
1029 ENCODING("FR64X", ENCODING_IB)
1030 ENCODING("VR128X", ENCODING_IB)
1031 ENCODING("VR256X", ENCODING_IB)
1032 ENCODING("VR512", ENCODING_IB)
1033 ENCODING("TILE", ENCODING_IB)
1034 errs() << "Unhandled immediate encoding " << s << "\n";
1035 llvm_unreachable("Unhandled immediate encoding");
1038 OperandEncoding
1039 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1040 uint8_t OpSize) {
1041 ENCODING("RST", ENCODING_FP)
1042 ENCODING("RSTi", ENCODING_FP)
1043 ENCODING("GR16", ENCODING_RM)
1044 ENCODING("GR16orGR32orGR64",ENCODING_RM)
1045 ENCODING("GR32", ENCODING_RM)
1046 ENCODING("GR32orGR64", ENCODING_RM)
1047 ENCODING("GR64", ENCODING_RM)
1048 ENCODING("GR8", ENCODING_RM)
1049 ENCODING("VR128", ENCODING_RM)
1050 ENCODING("VR128X", ENCODING_RM)
1051 ENCODING("FR128", ENCODING_RM)
1052 ENCODING("FR64", ENCODING_RM)
1053 ENCODING("FR32", ENCODING_RM)
1054 ENCODING("FR64X", ENCODING_RM)
1055 ENCODING("FR32X", ENCODING_RM)
1056 ENCODING("FR16X", ENCODING_RM)
1057 ENCODING("VR64", ENCODING_RM)
1058 ENCODING("VR256", ENCODING_RM)
1059 ENCODING("VR256X", ENCODING_RM)
1060 ENCODING("VR512", ENCODING_RM)
1061 ENCODING("VK1", ENCODING_RM)
1062 ENCODING("VK2", ENCODING_RM)
1063 ENCODING("VK4", ENCODING_RM)
1064 ENCODING("VK8", ENCODING_RM)
1065 ENCODING("VK16", ENCODING_RM)
1066 ENCODING("VK32", ENCODING_RM)
1067 ENCODING("VK64", ENCODING_RM)
1068 ENCODING("VK1PAIR", ENCODING_RM)
1069 ENCODING("VK2PAIR", ENCODING_RM)
1070 ENCODING("VK4PAIR", ENCODING_RM)
1071 ENCODING("VK8PAIR", ENCODING_RM)
1072 ENCODING("VK16PAIR", ENCODING_RM)
1073 ENCODING("BNDR", ENCODING_RM)
1074 ENCODING("TILE", ENCODING_RM)
1075 errs() << "Unhandled R/M register encoding " << s << "\n";
1076 llvm_unreachable("Unhandled R/M register encoding");
1079 OperandEncoding
1080 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1081 uint8_t OpSize) {
1082 ENCODING("GR16", ENCODING_REG)
1083 ENCODING("GR16orGR32orGR64",ENCODING_REG)
1084 ENCODING("GR32", ENCODING_REG)
1085 ENCODING("GR32orGR64", ENCODING_REG)
1086 ENCODING("GR64", ENCODING_REG)
1087 ENCODING("GR8", ENCODING_REG)
1088 ENCODING("VR128", ENCODING_REG)
1089 ENCODING("FR128", ENCODING_REG)
1090 ENCODING("FR64", ENCODING_REG)
1091 ENCODING("FR32", ENCODING_REG)
1092 ENCODING("VR64", ENCODING_REG)
1093 ENCODING("SEGMENT_REG", ENCODING_REG)
1094 ENCODING("DEBUG_REG", ENCODING_REG)
1095 ENCODING("CONTROL_REG", ENCODING_REG)
1096 ENCODING("VR256", ENCODING_REG)
1097 ENCODING("VR256X", ENCODING_REG)
1098 ENCODING("VR128X", ENCODING_REG)
1099 ENCODING("FR64X", ENCODING_REG)
1100 ENCODING("FR32X", ENCODING_REG)
1101 ENCODING("FR16X", ENCODING_REG)
1102 ENCODING("VR512", ENCODING_REG)
1103 ENCODING("VK1", ENCODING_REG)
1104 ENCODING("VK2", ENCODING_REG)
1105 ENCODING("VK4", ENCODING_REG)
1106 ENCODING("VK8", ENCODING_REG)
1107 ENCODING("VK16", ENCODING_REG)
1108 ENCODING("VK32", ENCODING_REG)
1109 ENCODING("VK64", ENCODING_REG)
1110 ENCODING("VK1Pair", ENCODING_REG)
1111 ENCODING("VK2Pair", ENCODING_REG)
1112 ENCODING("VK4Pair", ENCODING_REG)
1113 ENCODING("VK8Pair", ENCODING_REG)
1114 ENCODING("VK16Pair", ENCODING_REG)
1115 ENCODING("VK1WM", ENCODING_REG)
1116 ENCODING("VK2WM", ENCODING_REG)
1117 ENCODING("VK4WM", ENCODING_REG)
1118 ENCODING("VK8WM", ENCODING_REG)
1119 ENCODING("VK16WM", ENCODING_REG)
1120 ENCODING("VK32WM", ENCODING_REG)
1121 ENCODING("VK64WM", ENCODING_REG)
1122 ENCODING("BNDR", ENCODING_REG)
1123 ENCODING("TILE", ENCODING_REG)
1124 errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1125 llvm_unreachable("Unhandled reg/opcode register encoding");
1128 OperandEncoding
1129 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1130 uint8_t OpSize) {
1131 ENCODING("GR32", ENCODING_VVVV)
1132 ENCODING("GR64", ENCODING_VVVV)
1133 ENCODING("FR32", ENCODING_VVVV)
1134 ENCODING("FR128", ENCODING_VVVV)
1135 ENCODING("FR64", ENCODING_VVVV)
1136 ENCODING("VR128", ENCODING_VVVV)
1137 ENCODING("VR256", ENCODING_VVVV)
1138 ENCODING("FR16X", ENCODING_VVVV)
1139 ENCODING("FR32X", ENCODING_VVVV)
1140 ENCODING("FR64X", ENCODING_VVVV)
1141 ENCODING("VR128X", ENCODING_VVVV)
1142 ENCODING("VR256X", ENCODING_VVVV)
1143 ENCODING("VR512", ENCODING_VVVV)
1144 ENCODING("VK1", ENCODING_VVVV)
1145 ENCODING("VK2", ENCODING_VVVV)
1146 ENCODING("VK4", ENCODING_VVVV)
1147 ENCODING("VK8", ENCODING_VVVV)
1148 ENCODING("VK16", ENCODING_VVVV)
1149 ENCODING("VK32", ENCODING_VVVV)
1150 ENCODING("VK64", ENCODING_VVVV)
1151 ENCODING("VK1PAIR", ENCODING_VVVV)
1152 ENCODING("VK2PAIR", ENCODING_VVVV)
1153 ENCODING("VK4PAIR", ENCODING_VVVV)
1154 ENCODING("VK8PAIR", ENCODING_VVVV)
1155 ENCODING("VK16PAIR", ENCODING_VVVV)
1156 ENCODING("TILE", ENCODING_VVVV)
1157 errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1158 llvm_unreachable("Unhandled VEX.vvvv register encoding");
1161 OperandEncoding
1162 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1163 uint8_t OpSize) {
1164 ENCODING("VK1WM", ENCODING_WRITEMASK)
1165 ENCODING("VK2WM", ENCODING_WRITEMASK)
1166 ENCODING("VK4WM", ENCODING_WRITEMASK)
1167 ENCODING("VK8WM", ENCODING_WRITEMASK)
1168 ENCODING("VK16WM", ENCODING_WRITEMASK)
1169 ENCODING("VK32WM", ENCODING_WRITEMASK)
1170 ENCODING("VK64WM", ENCODING_WRITEMASK)
1171 errs() << "Unhandled mask register encoding " << s << "\n";
1172 llvm_unreachable("Unhandled mask register encoding");
1175 OperandEncoding
1176 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1177 uint8_t OpSize) {
1178 ENCODING("i16mem", ENCODING_RM)
1179 ENCODING("i32mem", ENCODING_RM)
1180 ENCODING("i64mem", ENCODING_RM)
1181 ENCODING("i8mem", ENCODING_RM)
1182 ENCODING("shmem", ENCODING_RM)
1183 ENCODING("ssmem", ENCODING_RM)
1184 ENCODING("sdmem", ENCODING_RM)
1185 ENCODING("f128mem", ENCODING_RM)
1186 ENCODING("f256mem", ENCODING_RM)
1187 ENCODING("f512mem", ENCODING_RM)
1188 ENCODING("f64mem", ENCODING_RM)
1189 ENCODING("f32mem", ENCODING_RM)
1190 ENCODING("f16mem", ENCODING_RM)
1191 ENCODING("i128mem", ENCODING_RM)
1192 ENCODING("i256mem", ENCODING_RM)
1193 ENCODING("i512mem", ENCODING_RM)
1194 ENCODING("f80mem", ENCODING_RM)
1195 ENCODING("lea64_32mem", ENCODING_RM)
1196 ENCODING("lea64mem", ENCODING_RM)
1197 ENCODING("anymem", ENCODING_RM)
1198 ENCODING("opaquemem", ENCODING_RM)
1199 ENCODING("sibmem", ENCODING_SIB)
1200 ENCODING("vx64mem", ENCODING_VSIB)
1201 ENCODING("vx128mem", ENCODING_VSIB)
1202 ENCODING("vx256mem", ENCODING_VSIB)
1203 ENCODING("vy128mem", ENCODING_VSIB)
1204 ENCODING("vy256mem", ENCODING_VSIB)
1205 ENCODING("vx64xmem", ENCODING_VSIB)
1206 ENCODING("vx128xmem", ENCODING_VSIB)
1207 ENCODING("vx256xmem", ENCODING_VSIB)
1208 ENCODING("vy128xmem", ENCODING_VSIB)
1209 ENCODING("vy256xmem", ENCODING_VSIB)
1210 ENCODING("vy512xmem", ENCODING_VSIB)
1211 ENCODING("vz256mem", ENCODING_VSIB)
1212 ENCODING("vz512mem", ENCODING_VSIB)
1213 errs() << "Unhandled memory encoding " << s << "\n";
1214 llvm_unreachable("Unhandled memory encoding");
1217 OperandEncoding
1218 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1219 uint8_t OpSize) {
1220 if(OpSize != X86Local::OpSize16) {
1221 // For instructions without an OpSize prefix, a declared 16-bit register or
1222 // immediate encoding is special.
1223 ENCODING("i16imm", ENCODING_IW)
1225 ENCODING("i16imm", ENCODING_Iv)
1226 ENCODING("i16i8imm", ENCODING_IB)
1227 ENCODING("i32imm", ENCODING_Iv)
1228 ENCODING("i32i8imm", ENCODING_IB)
1229 ENCODING("i64i32imm", ENCODING_ID)
1230 ENCODING("i64i8imm", ENCODING_IB)
1231 ENCODING("i8imm", ENCODING_IB)
1232 ENCODING("u8imm", ENCODING_IB)
1233 ENCODING("i16u8imm", ENCODING_IB)
1234 ENCODING("i32u8imm", ENCODING_IB)
1235 ENCODING("i64u8imm", ENCODING_IB)
1236 ENCODING("i64i32imm_brtarget", ENCODING_ID)
1237 ENCODING("i16imm_brtarget", ENCODING_IW)
1238 ENCODING("i32imm_brtarget", ENCODING_ID)
1239 ENCODING("brtarget32", ENCODING_ID)
1240 ENCODING("brtarget16", ENCODING_IW)
1241 ENCODING("brtarget8", ENCODING_IB)
1242 ENCODING("i64imm", ENCODING_IO)
1243 ENCODING("offset16_8", ENCODING_Ia)
1244 ENCODING("offset16_16", ENCODING_Ia)
1245 ENCODING("offset16_32", ENCODING_Ia)
1246 ENCODING("offset32_8", ENCODING_Ia)
1247 ENCODING("offset32_16", ENCODING_Ia)
1248 ENCODING("offset32_32", ENCODING_Ia)
1249 ENCODING("offset32_64", ENCODING_Ia)
1250 ENCODING("offset64_8", ENCODING_Ia)
1251 ENCODING("offset64_16", ENCODING_Ia)
1252 ENCODING("offset64_32", ENCODING_Ia)
1253 ENCODING("offset64_64", ENCODING_Ia)
1254 ENCODING("srcidx8", ENCODING_SI)
1255 ENCODING("srcidx16", ENCODING_SI)
1256 ENCODING("srcidx32", ENCODING_SI)
1257 ENCODING("srcidx64", ENCODING_SI)
1258 ENCODING("dstidx8", ENCODING_DI)
1259 ENCODING("dstidx16", ENCODING_DI)
1260 ENCODING("dstidx32", ENCODING_DI)
1261 ENCODING("dstidx64", ENCODING_DI)
1262 errs() << "Unhandled relocation encoding " << s << "\n";
1263 llvm_unreachable("Unhandled relocation encoding");
1266 OperandEncoding
1267 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1268 uint8_t OpSize) {
1269 ENCODING("GR32", ENCODING_Rv)
1270 ENCODING("GR64", ENCODING_RO)
1271 ENCODING("GR16", ENCODING_Rv)
1272 ENCODING("GR8", ENCODING_RB)
1273 ENCODING("ccode", ENCODING_CC)
1274 errs() << "Unhandled opcode modifier encoding " << s << "\n";
1275 llvm_unreachable("Unhandled opcode modifier encoding");
1277 #undef ENCODING