1 // Copyright 2007, Google Inc.
2 // All rights reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 // Google Mock - a framework for writing C++ mock classes.
33 // This file implements some commonly used actions.
35 // GOOGLETEST_CM0002 DO NOT DELETE
37 // IWYU pragma: private, include "gmock/gmock.h"
39 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
40 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
50 #include <type_traits>
53 #include "gmock/internal/gmock-internal-utils.h"
54 #include "gmock/internal/gmock-port.h"
57 # pragma warning(push)
58 # pragma warning(disable:4100)
62 #if __has_warning("-Wdeprecated-copy")
63 #pragma clang diagnostic push
64 #pragma clang diagnostic ignored "-Wdeprecated-copy"
70 // To implement an action Foo, define:
71 // 1. a class FooAction that implements the ActionInterface interface, and
72 // 2. a factory function that creates an Action object from a
75 // The two-level delegation design follows that of Matcher, providing
76 // consistency for extension developers. It also eases ownership
77 // management as Action objects can now be copied like plain values.
81 // BuiltInDefaultValueGetter<T, true>::Get() returns a
82 // default-constructed T value. BuiltInDefaultValueGetter<T,
83 // false>::Get() crashes with an error.
85 // This primary template is used when kDefaultConstructible is true.
86 template <typename T
, bool kDefaultConstructible
>
87 struct BuiltInDefaultValueGetter
{
88 static T
Get() { return T(); }
91 struct BuiltInDefaultValueGetter
<T
, false> {
93 Assert(false, __FILE__
, __LINE__
,
94 "Default action undefined for the function return type.");
95 return internal::Invalid
<T
>();
96 // The above statement will never be reached, but is required in
97 // order for this function to compile.
101 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
102 // for type T, which is NULL when T is a raw pointer type, 0 when T is
103 // a numeric type, false when T is bool, or "" when T is string or
104 // std::string. In addition, in C++11 and above, it turns a
105 // default-constructed T value if T is default constructible. For any
106 // other type T, the built-in default T value is undefined, and the
107 // function will abort the process.
108 template <typename T
>
109 class BuiltInDefaultValue
{
111 // This function returns true if and only if type T has a built-in default
113 static bool Exists() {
114 return ::std::is_default_constructible
<T
>::value
;
118 return BuiltInDefaultValueGetter
<
119 T
, ::std::is_default_constructible
<T
>::value
>::Get();
123 // This partial specialization says that we use the same built-in
124 // default value for T and const T.
125 template <typename T
>
126 class BuiltInDefaultValue
<const T
> {
128 static bool Exists() { return BuiltInDefaultValue
<T
>::Exists(); }
129 static T
Get() { return BuiltInDefaultValue
<T
>::Get(); }
132 // This partial specialization defines the default values for pointer
134 template <typename T
>
135 class BuiltInDefaultValue
<T
*> {
137 static bool Exists() { return true; }
138 static T
* Get() { return nullptr; }
141 // The following specializations define the default values for
142 // specific types we care about.
143 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
145 class BuiltInDefaultValue<type> { \
147 static bool Exists() { return true; } \
148 static type Get() { return value; } \
151 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
152 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string
, "");
153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
154 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
158 // There's no need for a default action for signed wchar_t, as that
159 // type is the same as wchar_t for gcc, and invalid for MSVC.
161 // There's also no need for a default action for unsigned wchar_t, as
162 // that type is the same as unsigned int for gcc, and invalid for
164 #if GMOCK_WCHAR_T_IS_NATIVE_
165 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
168 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
169 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
171 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64
, 0);
175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64
, 0);
176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
179 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
181 } // namespace internal
183 // When an unexpected function call is encountered, Google Mock will
184 // let it return a default value if the user has specified one for its
185 // return type, or if the return type has a built-in default value;
186 // otherwise Google Mock won't know what value to return and will have
187 // to abort the process.
189 // The DefaultValue<T> class allows a user to specify the
190 // default value for a type T that is both copyable and publicly
191 // destructible (i.e. anything that can be used as a function return
192 // type). The usage is:
194 // // Sets the default value for type T to be foo.
195 // DefaultValue<T>::Set(foo);
196 template <typename T
>
199 // Sets the default value for type T; requires T to be
200 // copy-constructable and have a public destructor.
201 static void Set(T x
) {
203 producer_
= new FixedValueProducer(x
);
206 // Provides a factory function to be called to generate the default value.
207 // This method can be used even if T is only move-constructible, but it is not
208 // limited to that case.
209 typedef T (*FactoryFunction
)();
210 static void SetFactory(FactoryFunction factory
) {
212 producer_
= new FactoryValueProducer(factory
);
215 // Unsets the default value for type T.
216 static void Clear() {
221 // Returns true if and only if the user has set the default value for type T.
222 static bool IsSet() { return producer_
!= nullptr; }
224 // Returns true if T has a default return value set by the user or there
225 // exists a built-in default value.
226 static bool Exists() {
227 return IsSet() || internal::BuiltInDefaultValue
<T
>::Exists();
230 // Returns the default value for type T if the user has set one;
231 // otherwise returns the built-in default value. Requires that Exists()
232 // is true, which ensures that the return value is well-defined.
234 return producer_
== nullptr ? internal::BuiltInDefaultValue
<T
>::Get()
235 : producer_
->Produce();
239 class ValueProducer
{
241 virtual ~ValueProducer() {}
242 virtual T
Produce() = 0;
245 class FixedValueProducer
: public ValueProducer
{
247 explicit FixedValueProducer(T value
) : value_(value
) {}
248 T
Produce() override
{ return value_
; }
252 GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer
);
255 class FactoryValueProducer
: public ValueProducer
{
257 explicit FactoryValueProducer(FactoryFunction factory
)
258 : factory_(factory
) {}
259 T
Produce() override
{ return factory_(); }
262 const FactoryFunction factory_
;
263 GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer
);
266 static ValueProducer
* producer_
;
269 // This partial specialization allows a user to set default values for
271 template <typename T
>
272 class DefaultValue
<T
&> {
274 // Sets the default value for type T&.
275 static void Set(T
& x
) { // NOLINT
279 // Unsets the default value for type T&.
280 static void Clear() { address_
= nullptr; }
282 // Returns true if and only if the user has set the default value for type T&.
283 static bool IsSet() { return address_
!= nullptr; }
285 // Returns true if T has a default return value set by the user or there
286 // exists a built-in default value.
287 static bool Exists() {
288 return IsSet() || internal::BuiltInDefaultValue
<T
&>::Exists();
291 // Returns the default value for type T& if the user has set one;
292 // otherwise returns the built-in default value if there is one;
293 // otherwise aborts the process.
295 return address_
== nullptr ? internal::BuiltInDefaultValue
<T
&>::Get()
303 // This specialization allows DefaultValue<void>::Get() to
306 class DefaultValue
<void> {
308 static bool Exists() { return true; }
312 // Points to the user-set default value for type T.
313 template <typename T
>
314 typename DefaultValue
<T
>::ValueProducer
* DefaultValue
<T
>::producer_
= nullptr;
316 // Points to the user-set default value for type T&.
317 template <typename T
>
318 T
* DefaultValue
<T
&>::address_
= nullptr;
320 // Implement this interface to define an action for function type F.
321 template <typename F
>
322 class ActionInterface
{
324 typedef typename
internal::Function
<F
>::Result Result
;
325 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
328 virtual ~ActionInterface() {}
330 // Performs the action. This method is not const, as in general an
331 // action can have side effects and be stateful. For example, a
332 // get-the-next-element-from-the-collection action will need to
333 // remember the current element.
334 virtual Result
Perform(const ArgumentTuple
& args
) = 0;
337 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface
);
340 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
341 // object that represents an action to be taken when a mock function
342 // of type F is called. The implementation of Action<T> is just a
343 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
344 // You can view an object implementing ActionInterface<F> as a
345 // concrete action (including its current state), and an Action<F>
346 // object as a handle to it.
347 template <typename F
>
349 // Adapter class to allow constructing Action from a legacy ActionInterface.
350 // New code should create Actions from functors instead.
351 struct ActionAdapter
{
352 // Adapter must be copyable to satisfy std::function requirements.
353 ::std::shared_ptr
<ActionInterface
<F
>> impl_
;
355 template <typename
... Args
>
356 typename
internal::Function
<F
>::Result
operator()(Args
&&... args
) {
357 return impl_
->Perform(
358 ::std::forward_as_tuple(::std::forward
<Args
>(args
)...));
363 typedef typename
internal::Function
<F
>::Result Result
;
364 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
366 // Constructs a null Action. Needed for storing Action objects in
370 // Construct an Action from a specified callable.
371 // This cannot take std::function directly, because then Action would not be
372 // directly constructible from lambda (it would require two conversions).
373 template <typename G
,
374 typename
= typename ::std::enable_if
<
375 ::std::is_constructible
<::std::function
<F
>, G
>::value
>::type
>
376 Action(G
&& fun
) : fun_(::std::forward
<G
>(fun
)) {} // NOLINT
378 // Constructs an Action from its implementation.
379 explicit Action(ActionInterface
<F
>* impl
)
380 : fun_(ActionAdapter
{::std::shared_ptr
<ActionInterface
<F
>>(impl
)}) {}
382 // This constructor allows us to turn an Action<Func> object into an
383 // Action<F>, as long as F's arguments can be implicitly converted
384 // to Func's and Func's return type can be implicitly converted to F's.
385 template <typename Func
>
386 explicit Action(const Action
<Func
>& action
) : fun_(action
.fun_
) {}
388 // Returns true if and only if this is the DoDefault() action.
389 bool IsDoDefault() const { return fun_
== nullptr; }
391 // Performs the action. Note that this method is const even though
392 // the corresponding method in ActionInterface is not. The reason
393 // is that a const Action<F> means that it cannot be re-bound to
394 // another concrete action, not that the concrete action it binds to
395 // cannot change state. (Think of the difference between a const
396 // pointer and a pointer to const.)
397 Result
Perform(ArgumentTuple args
) const {
399 internal::IllegalDoDefault(__FILE__
, __LINE__
);
401 return internal::Apply(fun_
, ::std::move(args
));
405 template <typename G
>
408 // fun_ is an empty function if and only if this is the DoDefault() action.
409 ::std::function
<F
> fun_
;
412 // The PolymorphicAction class template makes it easy to implement a
413 // polymorphic action (i.e. an action that can be used in mock
414 // functions of than one type, e.g. Return()).
416 // To define a polymorphic action, a user first provides a COPYABLE
417 // implementation class that has a Perform() method template:
421 // template <typename Result, typename ArgumentTuple>
422 // Result Perform(const ArgumentTuple& args) const {
423 // // Processes the arguments and returns a result, using
424 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
429 // Then the user creates the polymorphic action using
430 // MakePolymorphicAction(object) where object has type FooAction. See
431 // the definition of Return(void) and SetArgumentPointee<N>(value) for
432 // complete examples.
433 template <typename Impl
>
434 class PolymorphicAction
{
436 explicit PolymorphicAction(const Impl
& impl
) : impl_(impl
) {}
438 template <typename F
>
439 operator Action
<F
>() const {
440 return Action
<F
>(new MonomorphicImpl
<F
>(impl_
));
444 template <typename F
>
445 class MonomorphicImpl
: public ActionInterface
<F
> {
447 typedef typename
internal::Function
<F
>::Result Result
;
448 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
450 explicit MonomorphicImpl(const Impl
& impl
) : impl_(impl
) {}
452 Result
Perform(const ArgumentTuple
& args
) override
{
453 return impl_
.template Perform
<Result
>(args
);
459 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl
);
464 GTEST_DISALLOW_ASSIGN_(PolymorphicAction
);
467 // Creates an Action from its implementation and returns it. The
468 // created Action object owns the implementation.
469 template <typename F
>
470 Action
<F
> MakeAction(ActionInterface
<F
>* impl
) {
471 return Action
<F
>(impl
);
474 // Creates a polymorphic action from its implementation. This is
475 // easier to use than the PolymorphicAction<Impl> constructor as it
476 // doesn't require you to explicitly write the template argument, e.g.
478 // MakePolymorphicAction(foo);
480 // PolymorphicAction<TypeOfFoo>(foo);
481 template <typename Impl
>
482 inline PolymorphicAction
<Impl
> MakePolymorphicAction(const Impl
& impl
) {
483 return PolymorphicAction
<Impl
>(impl
);
488 // Helper struct to specialize ReturnAction to execute a move instead of a copy
489 // on return. Useful for move-only types, but could be used on any type.
490 template <typename T
>
491 struct ByMoveWrapper
{
492 explicit ByMoveWrapper(T value
) : payload(std::move(value
)) {}
496 // Implements the polymorphic Return(x) action, which can be used in
497 // any function that returns the type of x, regardless of the argument
500 // Note: The value passed into Return must be converted into
501 // Function<F>::Result when this action is cast to Action<F> rather than
502 // when that action is performed. This is important in scenarios like
504 // MOCK_METHOD1(Method, T(U));
509 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
512 // In the example above the variable x holds reference to foo which leaves
513 // scope and gets destroyed. If copying X just copies a reference to foo,
514 // that copy will be left with a hanging reference. If conversion to T
515 // makes a copy of foo, the above code is safe. To support that scenario, we
516 // need to make sure that the type conversion happens inside the EXPECT_CALL
517 // statement, and conversion of the result of Return to Action<T(U)> is a
518 // good place for that.
520 // The real life example of the above scenario happens when an invocation
521 // of gtl::Container() is passed into Return.
523 template <typename R
>
526 // Constructs a ReturnAction object from the value to be returned.
527 // 'value' is passed by value instead of by const reference in order
528 // to allow Return("string literal") to compile.
529 explicit ReturnAction(R value
) : value_(new R(std::move(value
))) {}
531 // This template type conversion operator allows Return(x) to be
532 // used in ANY function that returns x's type.
533 template <typename F
>
534 operator Action
<F
>() const { // NOLINT
535 // Assert statement belongs here because this is the best place to verify
536 // conditions on F. It produces the clearest error messages
537 // in most compilers.
538 // Impl really belongs in this scope as a local class but can't
539 // because MSVC produces duplicate symbols in different translation units
540 // in this case. Until MS fixes that bug we put Impl into the class scope
541 // and put the typedef both here (for use in assert statement) and
542 // in the Impl class. But both definitions must be the same.
543 typedef typename Function
<F
>::Result Result
;
544 GTEST_COMPILE_ASSERT_(
545 !std::is_reference
<Result
>::value
,
546 use_ReturnRef_instead_of_Return_to_return_a_reference
);
547 static_assert(!std::is_void
<Result
>::value
,
548 "Can't use Return() on an action expected to return `void`.");
549 return Action
<F
>(new Impl
<R
, F
>(value_
));
553 // Implements the Return(x) action for a particular function type F.
554 template <typename R_
, typename F
>
555 class Impl
: public ActionInterface
<F
> {
557 typedef typename Function
<F
>::Result Result
;
558 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
560 // The implicit cast is necessary when Result has more than one
561 // single-argument constructor (e.g. Result is std::vector<int>) and R
562 // has a type conversion operator template. In that case, value_(value)
563 // won't compile as the compiler doesn't known which constructor of
564 // Result to call. ImplicitCast_ forces the compiler to convert R to
565 // Result without considering explicit constructors, thus resolving the
566 // ambiguity. value_ is then initialized using its copy constructor.
567 explicit Impl(const std::shared_ptr
<R
>& value
)
568 : value_before_cast_(*value
),
569 value_(ImplicitCast_
<Result
>(value_before_cast_
)) {}
571 Result
Perform(const ArgumentTuple
&) override
{ return value_
; }
574 GTEST_COMPILE_ASSERT_(!std::is_reference
<Result
>::value
,
575 Result_cannot_be_a_reference_type
);
576 // We save the value before casting just in case it is being cast to a
578 R value_before_cast_
;
581 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl
);
584 // Partially specialize for ByMoveWrapper. This version of ReturnAction will
585 // move its contents instead.
586 template <typename R_
, typename F
>
587 class Impl
<ByMoveWrapper
<R_
>, F
> : public ActionInterface
<F
> {
589 typedef typename Function
<F
>::Result Result
;
590 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
592 explicit Impl(const std::shared_ptr
<R
>& wrapper
)
593 : performed_(false), wrapper_(wrapper
) {}
595 Result
Perform(const ArgumentTuple
&) override
{
596 GTEST_CHECK_(!performed_
)
597 << "A ByMove() action should only be performed once.";
599 return std::move(wrapper_
->payload
);
604 const std::shared_ptr
<R
> wrapper_
;
606 GTEST_DISALLOW_ASSIGN_(Impl
);
609 const std::shared_ptr
<R
> value_
;
611 GTEST_DISALLOW_ASSIGN_(ReturnAction
);
614 // Implements the ReturnNull() action.
615 class ReturnNullAction
{
617 // Allows ReturnNull() to be used in any pointer-returning function. In C++11
618 // this is enforced by returning nullptr, and in non-C++11 by asserting a
619 // pointer type on compile time.
620 template <typename Result
, typename ArgumentTuple
>
621 static Result
Perform(const ArgumentTuple
&) {
626 // Implements the Return() action.
627 class ReturnVoidAction
{
629 // Allows Return() to be used in any void-returning function.
630 template <typename Result
, typename ArgumentTuple
>
631 static void Perform(const ArgumentTuple
&) {
632 static_assert(std::is_void
<Result
>::value
, "Result should be void.");
636 // Implements the polymorphic ReturnRef(x) action, which can be used
637 // in any function that returns a reference to the type of x,
638 // regardless of the argument types.
639 template <typename T
>
640 class ReturnRefAction
{
642 // Constructs a ReturnRefAction object from the reference to be returned.
643 explicit ReturnRefAction(T
& ref
) : ref_(ref
) {} // NOLINT
645 // This template type conversion operator allows ReturnRef(x) to be
646 // used in ANY function that returns a reference to x's type.
647 template <typename F
>
648 operator Action
<F
>() const {
649 typedef typename Function
<F
>::Result Result
;
650 // Asserts that the function return type is a reference. This
651 // catches the user error of using ReturnRef(x) when Return(x)
652 // should be used, and generates some helpful error message.
653 GTEST_COMPILE_ASSERT_(std::is_reference
<Result
>::value
,
654 use_Return_instead_of_ReturnRef_to_return_a_value
);
655 return Action
<F
>(new Impl
<F
>(ref_
));
659 // Implements the ReturnRef(x) action for a particular function type F.
660 template <typename F
>
661 class Impl
: public ActionInterface
<F
> {
663 typedef typename Function
<F
>::Result Result
;
664 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
666 explicit Impl(T
& ref
) : ref_(ref
) {} // NOLINT
668 Result
Perform(const ArgumentTuple
&) override
{ return ref_
; }
673 GTEST_DISALLOW_ASSIGN_(Impl
);
678 GTEST_DISALLOW_ASSIGN_(ReturnRefAction
);
681 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
682 // used in any function that returns a reference to the type of x,
683 // regardless of the argument types.
684 template <typename T
>
685 class ReturnRefOfCopyAction
{
687 // Constructs a ReturnRefOfCopyAction object from the reference to
689 explicit ReturnRefOfCopyAction(const T
& value
) : value_(value
) {} // NOLINT
691 // This template type conversion operator allows ReturnRefOfCopy(x) to be
692 // used in ANY function that returns a reference to x's type.
693 template <typename F
>
694 operator Action
<F
>() const {
695 typedef typename Function
<F
>::Result Result
;
696 // Asserts that the function return type is a reference. This
697 // catches the user error of using ReturnRefOfCopy(x) when Return(x)
698 // should be used, and generates some helpful error message.
699 GTEST_COMPILE_ASSERT_(
700 std::is_reference
<Result
>::value
,
701 use_Return_instead_of_ReturnRefOfCopy_to_return_a_value
);
702 return Action
<F
>(new Impl
<F
>(value_
));
706 // Implements the ReturnRefOfCopy(x) action for a particular function type F.
707 template <typename F
>
708 class Impl
: public ActionInterface
<F
> {
710 typedef typename Function
<F
>::Result Result
;
711 typedef typename Function
<F
>::ArgumentTuple ArgumentTuple
;
713 explicit Impl(const T
& value
) : value_(value
) {} // NOLINT
715 Result
Perform(const ArgumentTuple
&) override
{ return value_
; }
720 GTEST_DISALLOW_ASSIGN_(Impl
);
725 GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction
);
728 // Implements the polymorphic DoDefault() action.
729 class DoDefaultAction
{
731 // This template type conversion operator allows DoDefault() to be
732 // used in any function.
733 template <typename F
>
734 operator Action
<F
>() const { return Action
<F
>(); } // NOLINT
737 // Implements the Assign action to set a given pointer referent to a
739 template <typename T1
, typename T2
>
742 AssignAction(T1
* ptr
, T2 value
) : ptr_(ptr
), value_(value
) {}
744 template <typename Result
, typename ArgumentTuple
>
745 void Perform(const ArgumentTuple
& /* args */) const {
753 GTEST_DISALLOW_ASSIGN_(AssignAction
);
756 #if !GTEST_OS_WINDOWS_MOBILE
758 // Implements the SetErrnoAndReturn action to simulate return from
759 // various system calls and libc functions.
760 template <typename T
>
761 class SetErrnoAndReturnAction
{
763 SetErrnoAndReturnAction(int errno_value
, T result
)
764 : errno_(errno_value
),
766 template <typename Result
, typename ArgumentTuple
>
767 Result
Perform(const ArgumentTuple
& /* args */) const {
776 GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction
);
779 #endif // !GTEST_OS_WINDOWS_MOBILE
781 // Implements the SetArgumentPointee<N>(x) action for any function
782 // whose N-th argument (0-based) is a pointer to x's type.
783 template <size_t N
, typename A
, typename
= void>
784 struct SetArgumentPointeeAction
{
787 template <typename
... Args
>
788 void operator()(const Args
&... args
) const {
789 *::std::get
<N
>(std::tie(args
...)) = value
;
793 // Implements the Invoke(object_ptr, &Class::Method) action.
794 template <class Class
, typename MethodPtr
>
795 struct InvokeMethodAction
{
796 Class
* const obj_ptr
;
797 const MethodPtr method_ptr
;
799 template <typename
... Args
>
800 auto operator()(Args
&&... args
) const
801 -> decltype((obj_ptr
->*method_ptr
)(std::forward
<Args
>(args
)...)) {
802 return (obj_ptr
->*method_ptr
)(std::forward
<Args
>(args
)...);
806 // Implements the InvokeWithoutArgs(f) action. The template argument
807 // FunctionImpl is the implementation type of f, which can be either a
808 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
809 // Action<F> as long as f's type is compatible with F.
810 template <typename FunctionImpl
>
811 struct InvokeWithoutArgsAction
{
812 FunctionImpl function_impl
;
814 // Allows InvokeWithoutArgs(f) to be used as any action whose type is
815 // compatible with f.
816 template <typename
... Args
>
817 auto operator()(const Args
&...) -> decltype(function_impl()) {
818 return function_impl();
822 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
823 template <class Class
, typename MethodPtr
>
824 struct InvokeMethodWithoutArgsAction
{
825 Class
* const obj_ptr
;
826 const MethodPtr method_ptr
;
828 using ReturnType
= typename
std::result_of
<MethodPtr(Class
*)>::type
;
830 template <typename
... Args
>
831 ReturnType
operator()(const Args
&...) const {
832 return (obj_ptr
->*method_ptr
)();
836 // Implements the IgnoreResult(action) action.
837 template <typename A
>
838 class IgnoreResultAction
{
840 explicit IgnoreResultAction(const A
& action
) : action_(action
) {}
842 template <typename F
>
843 operator Action
<F
>() const {
844 // Assert statement belongs here because this is the best place to verify
845 // conditions on F. It produces the clearest error messages
846 // in most compilers.
847 // Impl really belongs in this scope as a local class but can't
848 // because MSVC produces duplicate symbols in different translation units
849 // in this case. Until MS fixes that bug we put Impl into the class scope
850 // and put the typedef both here (for use in assert statement) and
851 // in the Impl class. But both definitions must be the same.
852 typedef typename
internal::Function
<F
>::Result Result
;
854 // Asserts at compile time that F returns void.
855 static_assert(std::is_void
<Result
>::value
, "Result type should be void.");
857 return Action
<F
>(new Impl
<F
>(action_
));
861 template <typename F
>
862 class Impl
: public ActionInterface
<F
> {
864 typedef typename
internal::Function
<F
>::Result Result
;
865 typedef typename
internal::Function
<F
>::ArgumentTuple ArgumentTuple
;
867 explicit Impl(const A
& action
) : action_(action
) {}
869 void Perform(const ArgumentTuple
& args
) override
{
870 // Performs the action and ignores its result.
871 action_
.Perform(args
);
875 // Type OriginalFunction is the same as F except that its return
876 // type is IgnoredValue.
877 typedef typename
internal::Function
<F
>::MakeResultIgnoredValue
880 const Action
<OriginalFunction
> action_
;
882 GTEST_DISALLOW_ASSIGN_(Impl
);
887 GTEST_DISALLOW_ASSIGN_(IgnoreResultAction
);
890 template <typename InnerAction
, size_t... I
>
891 struct WithArgsAction
{
894 // The inner action could be anything convertible to Action<X>.
895 // We use the conversion operator to detect the signature of the inner Action.
896 template <typename R
, typename
... Args
>
897 operator Action
<R(Args
...)>() const { // NOLINT
898 Action
<R(typename
std::tuple_element
<I
, std::tuple
<Args
...>>::type
...)>
901 return [converted
](Args
... args
) -> R
{
902 return converted
.Perform(std::forward_as_tuple(
903 std::get
<I
>(std::forward_as_tuple(std::forward
<Args
>(args
)...))...));
908 template <typename
... Actions
>
911 template <typename
... Args
, size_t... I
>
912 std::vector
<Action
<void(Args
...)>> Convert(IndexSequence
<I
...>) const {
913 return {std::get
<I
>(actions
)...};
917 std::tuple
<Actions
...> actions
;
919 template <typename R
, typename
... Args
>
920 operator Action
<R(Args
...)>() const { // NOLINT
922 std::vector
<Action
<void(Args
...)>> converted
;
923 Action
<R(Args
...)> last
;
924 R
operator()(Args
... args
) const {
925 auto tuple_args
= std::forward_as_tuple(std::forward
<Args
>(args
)...);
926 for (auto& a
: converted
) {
927 a
.Perform(tuple_args
);
929 return last
.Perform(tuple_args
);
932 return Op
{Convert
<Args
...>(MakeIndexSequence
<sizeof...(Actions
) - 1>()),
933 std::get
<sizeof...(Actions
) - 1>(actions
)};
937 } // namespace internal
939 // An Unused object can be implicitly constructed from ANY value.
940 // This is handy when defining actions that ignore some or all of the
941 // mock function arguments. For example, given
943 // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
944 // MOCK_METHOD3(Bar, double(int index, double x, double y));
948 // double DistanceToOriginWithLabel(const string& label, double x, double y) {
949 // return sqrt(x*x + y*y);
951 // double DistanceToOriginWithIndex(int index, double x, double y) {
952 // return sqrt(x*x + y*y);
955 // EXPECT_CALL(mock, Foo("abc", _, _))
956 // .WillOnce(Invoke(DistanceToOriginWithLabel));
957 // EXPECT_CALL(mock, Bar(5, _, _))
958 // .WillOnce(Invoke(DistanceToOriginWithIndex));
962 // // We can declare any uninteresting argument as Unused.
963 // double DistanceToOrigin(Unused, double x, double y) {
964 // return sqrt(x*x + y*y);
967 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
968 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
969 typedef internal::IgnoredValue Unused
;
971 // Creates an action that does actions a1, a2, ..., sequentially in
973 template <typename
... Action
>
974 internal::DoAllAction
<typename
std::decay
<Action
>::type
...> DoAll(
975 Action
&&... action
) {
976 return {std::forward_as_tuple(std::forward
<Action
>(action
)...)};
979 // WithArg<k>(an_action) creates an action that passes the k-th
980 // (0-based) argument of the mock function to an_action and performs
981 // it. It adapts an action accepting one argument to one that accepts
982 // multiple arguments. For convenience, we also provide
983 // WithArgs<k>(an_action) (defined below) as a synonym.
984 template <size_t k
, typename InnerAction
>
985 internal::WithArgsAction
<typename
std::decay
<InnerAction
>::type
, k
>
986 WithArg(InnerAction
&& action
) {
987 return {std::forward
<InnerAction
>(action
)};
990 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
991 // the selected arguments of the mock function to an_action and
992 // performs it. It serves as an adaptor between actions with
993 // different argument lists.
994 template <size_t k
, size_t... ks
, typename InnerAction
>
995 internal::WithArgsAction
<typename
std::decay
<InnerAction
>::type
, k
, ks
...>
996 WithArgs(InnerAction
&& action
) {
997 return {std::forward
<InnerAction
>(action
)};
1000 // WithoutArgs(inner_action) can be used in a mock function with a
1001 // non-empty argument list to perform inner_action, which takes no
1002 // argument. In other words, it adapts an action accepting no
1003 // argument to one that accepts (and ignores) arguments.
1004 template <typename InnerAction
>
1005 internal::WithArgsAction
<typename
std::decay
<InnerAction
>::type
>
1006 WithoutArgs(InnerAction
&& action
) {
1007 return {std::forward
<InnerAction
>(action
)};
1010 // Creates an action that returns 'value'. 'value' is passed by value
1011 // instead of const reference - otherwise Return("string literal")
1012 // will trigger a compiler error about using array as initializer.
1013 template <typename R
>
1014 internal::ReturnAction
<R
> Return(R value
) {
1015 return internal::ReturnAction
<R
>(std::move(value
));
1018 // Creates an action that returns NULL.
1019 inline PolymorphicAction
<internal::ReturnNullAction
> ReturnNull() {
1020 return MakePolymorphicAction(internal::ReturnNullAction());
1023 // Creates an action that returns from a void function.
1024 inline PolymorphicAction
<internal::ReturnVoidAction
> Return() {
1025 return MakePolymorphicAction(internal::ReturnVoidAction());
1028 // Creates an action that returns the reference to a variable.
1029 template <typename R
>
1030 inline internal::ReturnRefAction
<R
> ReturnRef(R
& x
) { // NOLINT
1031 return internal::ReturnRefAction
<R
>(x
);
1034 // Creates an action that returns the reference to a copy of the
1035 // argument. The copy is created when the action is constructed and
1036 // lives as long as the action.
1037 template <typename R
>
1038 inline internal::ReturnRefOfCopyAction
<R
> ReturnRefOfCopy(const R
& x
) {
1039 return internal::ReturnRefOfCopyAction
<R
>(x
);
1042 // Modifies the parent action (a Return() action) to perform a move of the
1043 // argument instead of a copy.
1044 // Return(ByMove()) actions can only be executed once and will assert this
1046 template <typename R
>
1047 internal::ByMoveWrapper
<R
> ByMove(R x
) {
1048 return internal::ByMoveWrapper
<R
>(std::move(x
));
1051 // Creates an action that does the default action for the give mock function.
1052 inline internal::DoDefaultAction
DoDefault() {
1053 return internal::DoDefaultAction();
1056 // Creates an action that sets the variable pointed by the N-th
1057 // (0-based) function argument to 'value'.
1058 template <size_t N
, typename T
>
1059 internal::SetArgumentPointeeAction
<N
, T
> SetArgPointee(T x
) {
1060 return {std::move(x
)};
1063 // The following version is DEPRECATED.
1064 template <size_t N
, typename T
>
1065 internal::SetArgumentPointeeAction
<N
, T
> SetArgumentPointee(T x
) {
1066 return {std::move(x
)};
1069 // Creates an action that sets a pointer referent to a given value.
1070 template <typename T1
, typename T2
>
1071 PolymorphicAction
<internal::AssignAction
<T1
, T2
> > Assign(T1
* ptr
, T2 val
) {
1072 return MakePolymorphicAction(internal::AssignAction
<T1
, T2
>(ptr
, val
));
1075 #if !GTEST_OS_WINDOWS_MOBILE
1077 // Creates an action that sets errno and returns the appropriate error.
1078 template <typename T
>
1079 PolymorphicAction
<internal::SetErrnoAndReturnAction
<T
> >
1080 SetErrnoAndReturn(int errval
, T result
) {
1081 return MakePolymorphicAction(
1082 internal::SetErrnoAndReturnAction
<T
>(errval
, result
));
1085 #endif // !GTEST_OS_WINDOWS_MOBILE
1087 // Various overloads for Invoke().
1090 // Actions can now be implicitly constructed from callables. No need to create
1092 // This function exists for backwards compatibility.
1093 template <typename FunctionImpl
>
1094 typename
std::decay
<FunctionImpl
>::type
Invoke(FunctionImpl
&& function_impl
) {
1095 return std::forward
<FunctionImpl
>(function_impl
);
1098 // Creates an action that invokes the given method on the given object
1099 // with the mock function's arguments.
1100 template <class Class
, typename MethodPtr
>
1101 internal::InvokeMethodAction
<Class
, MethodPtr
> Invoke(Class
* obj_ptr
,
1102 MethodPtr method_ptr
) {
1103 return {obj_ptr
, method_ptr
};
1106 // Creates an action that invokes 'function_impl' with no argument.
1107 template <typename FunctionImpl
>
1108 internal::InvokeWithoutArgsAction
<typename
std::decay
<FunctionImpl
>::type
>
1109 InvokeWithoutArgs(FunctionImpl function_impl
) {
1110 return {std::move(function_impl
)};
1113 // Creates an action that invokes the given method on the given object
1114 // with no argument.
1115 template <class Class
, typename MethodPtr
>
1116 internal::InvokeMethodWithoutArgsAction
<Class
, MethodPtr
> InvokeWithoutArgs(
1117 Class
* obj_ptr
, MethodPtr method_ptr
) {
1118 return {obj_ptr
, method_ptr
};
1121 // Creates an action that performs an_action and throws away its
1122 // result. In other words, it changes the return type of an_action to
1123 // void. an_action MUST NOT return void, or the code won't compile.
1124 template <typename A
>
1125 inline internal::IgnoreResultAction
<A
> IgnoreResult(const A
& an_action
) {
1126 return internal::IgnoreResultAction
<A
>(an_action
);
1129 // Creates a reference wrapper for the given L-value. If necessary,
1130 // you can explicitly specify the type of the reference. For example,
1131 // suppose 'derived' is an object of type Derived, ByRef(derived)
1132 // would wrap a Derived&. If you want to wrap a const Base& instead,
1133 // where Base is a base class of Derived, just write:
1135 // ByRef<const Base>(derived)
1137 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1138 // However, it may still be used for consistency with ByMove().
1139 template <typename T
>
1140 inline ::std::reference_wrapper
<T
> ByRef(T
& l_value
) { // NOLINT
1141 return ::std::reference_wrapper
<T
>(l_value
);
1144 } // namespace testing
1147 #if __has_warning("-Wdeprecated-copy")
1148 #pragma clang diagnostic pop
1153 # pragma warning(pop)
1157 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_