2 * kmp_wait_release.h -- Wait/Release implementation
5 //===----------------------------------------------------------------------===//
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #ifndef KMP_WAIT_RELEASE_H
14 #define KMP_WAIT_RELEASE_H
18 #include "kmp_stats.h"
20 #include "ompt-specific.h"
24 @defgroup WAIT_RELEASE Wait/Release operations
26 The definitions and functions here implement the lowest level thread
27 synchronizations of suspending a thread and awaking it. They are used to build
28 higher level operations such as barriers and fork/join.
36 struct flag_properties
{
37 unsigned int type
: 16;
38 unsigned int reserved
: 16;
41 template <enum flag_type FlagType
> struct flag_traits
{};
43 template <> struct flag_traits
<flag32
> {
44 typedef kmp_uint32 flag_t
;
45 static const flag_type t
= flag32
;
46 static inline flag_t
tcr(flag_t f
) { return TCR_4(f
); }
47 static inline flag_t
test_then_add4(volatile flag_t
*f
) {
48 return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32
*, f
));
50 static inline flag_t
test_then_or(volatile flag_t
*f
, flag_t v
) {
51 return KMP_TEST_THEN_OR32(f
, v
);
53 static inline flag_t
test_then_and(volatile flag_t
*f
, flag_t v
) {
54 return KMP_TEST_THEN_AND32(f
, v
);
58 template <> struct flag_traits
<atomic_flag64
> {
59 typedef kmp_uint64 flag_t
;
60 static const flag_type t
= atomic_flag64
;
61 static inline flag_t
tcr(flag_t f
) { return TCR_8(f
); }
62 static inline flag_t
test_then_add4(volatile flag_t
*f
) {
63 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64
*, f
));
65 static inline flag_t
test_then_or(volatile flag_t
*f
, flag_t v
) {
66 return KMP_TEST_THEN_OR64(f
, v
);
68 static inline flag_t
test_then_and(volatile flag_t
*f
, flag_t v
) {
69 return KMP_TEST_THEN_AND64(f
, v
);
73 template <> struct flag_traits
<flag64
> {
74 typedef kmp_uint64 flag_t
;
75 static const flag_type t
= flag64
;
76 static inline flag_t
tcr(flag_t f
) { return TCR_8(f
); }
77 static inline flag_t
test_then_add4(volatile flag_t
*f
) {
78 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64
*, f
));
80 static inline flag_t
test_then_or(volatile flag_t
*f
, flag_t v
) {
81 return KMP_TEST_THEN_OR64(f
, v
);
83 static inline flag_t
test_then_and(volatile flag_t
*f
, flag_t v
) {
84 return KMP_TEST_THEN_AND64(f
, v
);
88 template <> struct flag_traits
<flag_oncore
> {
89 typedef kmp_uint64 flag_t
;
90 static const flag_type t
= flag_oncore
;
91 static inline flag_t
tcr(flag_t f
) { return TCR_8(f
); }
92 static inline flag_t
test_then_add4(volatile flag_t
*f
) {
93 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64
*, f
));
95 static inline flag_t
test_then_or(volatile flag_t
*f
, flag_t v
) {
96 return KMP_TEST_THEN_OR64(f
, v
);
98 static inline flag_t
test_then_and(volatile flag_t
*f
, flag_t v
) {
99 return KMP_TEST_THEN_AND64(f
, v
);
103 /*! Base class for all flags */
104 template <flag_type FlagType
> class kmp_flag
{
106 flag_properties t
; /**< "Type" of the flag in loc */
107 kmp_info_t
*waiting_threads
[1]; /**< Threads sleeping on this thread. */
108 kmp_uint32 num_waiting_threads
; /**< #threads sleeping on this thread. */
109 std::atomic
<bool> *sleepLoc
;
112 typedef flag_traits
<FlagType
> traits_type
;
113 kmp_flag() : t({FlagType
, 0U}), num_waiting_threads(0), sleepLoc(nullptr) {}
114 kmp_flag(int nwaiters
)
115 : t({FlagType
, 0U}), num_waiting_threads(nwaiters
), sleepLoc(nullptr) {}
116 kmp_flag(std::atomic
<bool> *sloc
)
117 : t({FlagType
, 0U}), num_waiting_threads(0), sleepLoc(sloc
) {}
118 /*! @result the flag_type */
119 flag_type
get_type() { return (flag_type
)(t
.type
); }
121 /*! param i in index into waiting_threads
122 * @result the thread that is waiting at index i */
123 kmp_info_t
*get_waiter(kmp_uint32 i
) {
124 KMP_DEBUG_ASSERT(i
< num_waiting_threads
);
125 return waiting_threads
[i
];
127 /*! @result num_waiting_threads */
128 kmp_uint32
get_num_waiters() { return num_waiting_threads
; }
129 /*! @param thr in the thread which is now waiting
130 * Insert a waiting thread at index 0. */
131 void set_waiter(kmp_info_t
*thr
) {
132 waiting_threads
[0] = thr
;
133 num_waiting_threads
= 1;
135 enum barrier_type
get_bt() { return bs_last_barrier
; }
138 /*! Base class for wait/release volatile flag */
139 template <typename PtrType
, flag_type FlagType
, bool Sleepable
>
140 class kmp_flag_native
: public kmp_flag
<FlagType
> {
142 volatile PtrType
*loc
;
143 PtrType checker
; /**< When flag==checker, it has been released. */
144 typedef flag_traits
<FlagType
> traits_type
;
147 typedef PtrType flag_t
;
148 kmp_flag_native(volatile PtrType
*p
) : kmp_flag
<FlagType
>(), loc(p
) {}
149 kmp_flag_native(volatile PtrType
*p
, kmp_info_t
*thr
)
150 : kmp_flag
<FlagType
>(1), loc(p
) {
151 this->waiting_threads
[0] = thr
;
153 kmp_flag_native(volatile PtrType
*p
, PtrType c
)
154 : kmp_flag
<FlagType
>(), loc(p
), checker(c
) {}
155 kmp_flag_native(volatile PtrType
*p
, PtrType c
, std::atomic
<bool> *sloc
)
156 : kmp_flag
<FlagType
>(sloc
), loc(p
), checker(c
) {}
157 virtual ~kmp_flag_native() {}
158 void *operator new(size_t size
) { return __kmp_allocate(size
); }
159 void operator delete(void *p
) { __kmp_free(p
); }
160 volatile PtrType
*get() { return loc
; }
161 void *get_void_p() { return RCAST(void *, CCAST(PtrType
*, loc
)); }
162 void set(volatile PtrType
*new_loc
) { loc
= new_loc
; }
163 PtrType
load() { return *loc
; }
164 void store(PtrType val
) { *loc
= val
; }
165 /*! @result true if the flag object has been released. */
166 virtual bool done_check() {
167 if (Sleepable
&& !(this->sleepLoc
))
168 return (traits_type::tcr(*(this->get())) & ~KMP_BARRIER_SLEEP_STATE
) ==
171 return traits_type::tcr(*(this->get())) == checker
;
173 /*! @param old_loc in old value of flag
174 * @result true if the flag's old value indicates it was released. */
175 virtual bool done_check_val(PtrType old_loc
) { return old_loc
== checker
; }
176 /*! @result true if the flag object is not yet released.
177 * Used in __kmp_wait_template like:
179 * while (flag.notdone_check()) { pause(); }
181 virtual bool notdone_check() {
182 return traits_type::tcr(*(this->get())) != checker
;
184 /*! @result Actual flag value before release was applied.
185 * Trigger all waiting threads to run by modifying flag to release state. */
186 void internal_release() {
187 (void)traits_type::test_then_add4((volatile PtrType
*)this->get());
189 /*! @result Actual flag value before sleep bit(s) set.
190 * Notes that there is at least one thread sleeping on the flag by setting
192 PtrType
set_sleeping() {
193 if (this->sleepLoc
) {
194 this->sleepLoc
->store(true);
195 return *(this->get());
197 return traits_type::test_then_or((volatile PtrType
*)this->get(),
198 KMP_BARRIER_SLEEP_STATE
);
200 /*! @result Actual flag value before sleep bit(s) cleared.
201 * Notes that there are no longer threads sleeping on the flag by clearing
203 void unset_sleeping() {
204 if (this->sleepLoc
) {
205 this->sleepLoc
->store(false);
208 traits_type::test_then_and((volatile PtrType
*)this->get(),
209 ~KMP_BARRIER_SLEEP_STATE
);
211 /*! @param old_loc in old value of flag
212 * Test if there are threads sleeping on the flag's old value in old_loc. */
213 bool is_sleeping_val(PtrType old_loc
) {
215 return this->sleepLoc
->load();
216 return old_loc
& KMP_BARRIER_SLEEP_STATE
;
218 /*! Test whether there are threads sleeping on the flag. */
221 return this->sleepLoc
->load();
222 return is_sleeping_val(*(this->get()));
224 bool is_any_sleeping() {
226 return this->sleepLoc
->load();
227 return is_sleeping_val(*(this->get()));
229 kmp_uint8
*get_stolen() { return NULL
; }
232 /*! Base class for wait/release atomic flag */
233 template <typename PtrType
, flag_type FlagType
, bool Sleepable
>
234 class kmp_flag_atomic
: public kmp_flag
<FlagType
> {
236 std::atomic
<PtrType
> *loc
; /**< Pointer to flag location to wait on */
237 PtrType checker
; /**< Flag == checker means it has been released. */
239 typedef flag_traits
<FlagType
> traits_type
;
240 typedef PtrType flag_t
;
241 kmp_flag_atomic(std::atomic
<PtrType
> *p
) : kmp_flag
<FlagType
>(), loc(p
) {}
242 kmp_flag_atomic(std::atomic
<PtrType
> *p
, kmp_info_t
*thr
)
243 : kmp_flag
<FlagType
>(1), loc(p
) {
244 this->waiting_threads
[0] = thr
;
246 kmp_flag_atomic(std::atomic
<PtrType
> *p
, PtrType c
)
247 : kmp_flag
<FlagType
>(), loc(p
), checker(c
) {}
248 kmp_flag_atomic(std::atomic
<PtrType
> *p
, PtrType c
, std::atomic
<bool> *sloc
)
249 : kmp_flag
<FlagType
>(sloc
), loc(p
), checker(c
) {}
250 /*! @result the pointer to the actual flag */
251 std::atomic
<PtrType
> *get() { return loc
; }
252 /*! @result void* pointer to the actual flag */
253 void *get_void_p() { return RCAST(void *, loc
); }
254 /*! @param new_loc in set loc to point at new_loc */
255 void set(std::atomic
<PtrType
> *new_loc
) { loc
= new_loc
; }
256 /*! @result flag value */
257 PtrType
load() { return loc
->load(std::memory_order_acquire
); }
258 /*! @param val the new flag value to be stored */
259 void store(PtrType val
) { loc
->store(val
, std::memory_order_release
); }
260 /*! @result true if the flag object has been released. */
262 if (Sleepable
&& !(this->sleepLoc
))
263 return (this->load() & ~KMP_BARRIER_SLEEP_STATE
) == checker
;
265 return this->load() == checker
;
267 /*! @param old_loc in old value of flag
268 * @result true if the flag's old value indicates it was released. */
269 bool done_check_val(PtrType old_loc
) { return old_loc
== checker
; }
270 /*! @result true if the flag object is not yet released.
271 * Used in __kmp_wait_template like:
273 * while (flag.notdone_check()) { pause(); }
275 bool notdone_check() { return this->load() != checker
; }
276 /*! @result Actual flag value before release was applied.
277 * Trigger all waiting threads to run by modifying flag to release state. */
278 void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); }
279 /*! @result Actual flag value before sleep bit(s) set.
280 * Notes that there is at least one thread sleeping on the flag by setting
282 PtrType
set_sleeping() {
283 if (this->sleepLoc
) {
284 this->sleepLoc
->store(true);
285 return *(this->get());
287 return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE
);
289 /*! @result Actual flag value before sleep bit(s) cleared.
290 * Notes that there are no longer threads sleeping on the flag by clearing
292 void unset_sleeping() {
293 if (this->sleepLoc
) {
294 this->sleepLoc
->store(false);
297 KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE
);
299 /*! @param old_loc in old value of flag
300 * Test whether there are threads sleeping on flag's old value in old_loc. */
301 bool is_sleeping_val(PtrType old_loc
) {
303 return this->sleepLoc
->load();
304 return old_loc
& KMP_BARRIER_SLEEP_STATE
;
306 /*! Test whether there are threads sleeping on the flag. */
309 return this->sleepLoc
->load();
310 return is_sleeping_val(this->load());
312 bool is_any_sleeping() {
314 return this->sleepLoc
->load();
315 return is_sleeping_val(this->load());
317 kmp_uint8
*get_stolen() { return NULL
; }
322 static void __ompt_implicit_task_end(kmp_info_t
*this_thr
,
323 ompt_state_t ompt_state
,
325 int ds_tid
= this_thr
->th
.th_info
.ds
.ds_tid
;
326 if (ompt_state
== ompt_state_wait_barrier_implicit
) {
327 this_thr
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
329 void *codeptr
= NULL
;
330 if (ompt_enabled
.ompt_callback_sync_region_wait
) {
331 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
332 ompt_sync_region_barrier_implicit
, ompt_scope_end
, NULL
, tId
,
335 if (ompt_enabled
.ompt_callback_sync_region
) {
336 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
337 ompt_sync_region_barrier_implicit
, ompt_scope_end
, NULL
, tId
,
341 if (!KMP_MASTER_TID(ds_tid
)) {
342 if (ompt_enabled
.ompt_callback_implicit_task
) {
343 int flags
= this_thr
->th
.ompt_thread_info
.parallel_flags
;
344 flags
= (flags
& ompt_parallel_league
) ? ompt_task_initial
345 : ompt_task_implicit
;
346 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
347 ompt_scope_end
, NULL
, tId
, 0, ds_tid
, flags
);
349 // return to idle state
350 this_thr
->th
.ompt_thread_info
.state
= ompt_state_idle
;
352 this_thr
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
358 /* Spin wait loop that first does pause/yield, then sleep. A thread that calls
359 __kmp_wait_* must make certain that another thread calls __kmp_release
360 to wake it back up to prevent deadlocks!
362 NOTE: We may not belong to a team at this point. */
363 template <class C
, bool final_spin
, bool Cancellable
= false,
364 bool Sleepable
= true>
366 __kmp_wait_template(kmp_info_t
*this_thr
,
367 C
*flag
USE_ITT_BUILD_ARG(void *itt_sync_obj
)) {
368 #if USE_ITT_BUILD && USE_ITT_NOTIFY
369 volatile void *spin
= flag
->get();
373 int tasks_completed
= FALSE
;
375 kmp_uint64 poll_count
;
376 kmp_uint64 hibernate_goal
;
378 kmp_uint32 hibernate
;
381 KMP_FSYNC_SPIN_INIT(spin
, NULL
);
382 if (flag
->done_check()) {
383 KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin
));
386 th_gtid
= this_thr
->th
.th_info
.ds
.ds_gtid
;
388 kmp_team_t
*team
= this_thr
->th
.th_team
;
389 if (team
&& team
->t
.t_cancel_request
== cancel_parallel
)
394 KMP_ATOMIC_ST_REL(&this_thr
->th
.th_blocking
, true);
397 ("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid
, flag
));
398 #if KMP_STATS_ENABLED
399 stats_state_e thread_state
= KMP_GET_THREAD_STATE();
403 THIS function is called from
404 __kmp_barrier (2 times) (implicit or explicit barrier in parallel regions)
405 these have join / fork behavior
407 In these cases, we don't change the state or trigger events in THIS
409 Events are triggered in the calling code (__kmp_barrier):
411 state := ompt_state_overhead
414 state := ompt_state_wait_barrier
415 call join-barrier-implementation (finally arrive here)
417 call fork-barrier-implementation (finally arrive here)
419 state := ompt_state_overhead
422 state := ompt_state_work_parallel
425 __kmp_fork_barrier (after thread creation, before executing implicit task)
426 call fork-barrier-implementation (finally arrive here)
427 {} // worker arrive here with state = ompt_state_idle
430 __kmp_join_barrier (implicit barrier at end of parallel region)
431 state := ompt_state_barrier_implicit
434 call join-barrier-implementation (finally arrive here
438 __kmp_fork_barrier (implicit barrier at end of parallel region)
439 call fork-barrier-implementation (finally arrive here final_spin=TRUE)
441 Worker after task-team is finished:
446 state := ompt_state_idle
448 Before leaving, if state = ompt_state_idle
450 state := ompt_state_overhead
453 ompt_state_t ompt_entry_state
;
455 if (ompt_enabled
.enabled
) {
456 ompt_entry_state
= this_thr
->th
.ompt_thread_info
.state
;
457 if (!final_spin
|| ompt_entry_state
!= ompt_state_wait_barrier_implicit
||
458 KMP_MASTER_TID(this_thr
->th
.th_info
.ds
.ds_tid
)) {
459 ompt_lw_taskteam_t
*team
= NULL
;
460 if (this_thr
->th
.th_team
)
461 team
= this_thr
->th
.th_team
->t
.ompt_serialized_team_info
;
463 tId
= &(team
->ompt_task_info
.task_data
);
465 tId
= OMPT_CUR_TASK_DATA(this_thr
);
468 tId
= &(this_thr
->th
.ompt_thread_info
.task_data
);
470 if (final_spin
&& (__kmp_tasking_mode
== tskm_immediate_exec
||
471 this_thr
->th
.th_task_team
== NULL
)) {
472 // implicit task is done. Either no taskqueue, or task-team finished
473 __ompt_implicit_task_end(this_thr
, ompt_entry_state
, tId
);
478 KMP_INIT_YIELD(spins
); // Setup for waiting
480 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
||
481 __kmp_pause_status
== kmp_soft_paused
) {
483 // The worker threads cannot rely on the team struct existing at this point.
484 // Use the bt values cached in the thread struct instead.
485 #ifdef KMP_ADJUST_BLOCKTIME
486 if (__kmp_pause_status
== kmp_soft_paused
||
487 (__kmp_zero_bt
&& !this_thr
->th
.th_team_bt_set
))
488 // Force immediate suspend if not set by user and more threads than
492 hibernate
= this_thr
->th
.th_team_bt_intervals
;
494 hibernate
= this_thr
->th
.th_team_bt_intervals
;
495 #endif /* KMP_ADJUST_BLOCKTIME */
497 /* If the blocktime is nonzero, we want to make sure that we spin wait for
498 the entirety of the specified #intervals, plus up to one interval more.
499 This increment make certain that this thread doesn't go to sleep too
504 // Add in the current time value.
505 hibernate
+= TCR_4(__kmp_global
.g
.g_time
.dt
.t_value
);
506 KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
507 th_gtid
, __kmp_global
.g
.g_time
.dt
.t_value
, hibernate
,
508 hibernate
- __kmp_global
.g
.g_time
.dt
.t_value
));
510 if (__kmp_pause_status
== kmp_soft_paused
) {
511 // Force immediate suspend
512 hibernate_goal
= KMP_NOW();
514 hibernate_goal
= KMP_NOW() + this_thr
->th
.th_team_bt_intervals
;
517 #endif // KMP_USE_MONITOR
522 // Main wait spin loop
523 while (flag
->notdone_check()) {
524 kmp_task_team_t
*task_team
= NULL
;
525 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
526 task_team
= this_thr
->th
.th_task_team
;
527 /* If the thread's task team pointer is NULL, it means one of 3 things:
528 1) A newly-created thread is first being released by
529 __kmp_fork_barrier(), and its task team has not been set up yet.
530 2) All tasks have been executed to completion.
531 3) Tasking is off for this region. This could be because we are in a
532 serialized region (perhaps the outer one), or else tasking was manually
533 disabled (KMP_TASKING=0). */
534 if (task_team
!= NULL
) {
535 if (TCR_SYNC_4(task_team
->tt
.tt_active
)) {
536 if (KMP_TASKING_ENABLED(task_team
)) {
538 this_thr
, th_gtid
, final_spin
,
539 &tasks_completed
USE_ITT_BUILD_ARG(itt_sync_obj
), 0);
541 this_thr
->th
.th_reap_state
= KMP_SAFE_TO_REAP
;
543 KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr
->th
.th_info
.ds
.ds_tid
));
545 // task-team is done now, other cases should be catched above
546 if (final_spin
&& ompt_enabled
.enabled
)
547 __ompt_implicit_task_end(this_thr
, ompt_entry_state
, tId
);
549 this_thr
->th
.th_task_team
= NULL
;
550 this_thr
->th
.th_reap_state
= KMP_SAFE_TO_REAP
;
553 this_thr
->th
.th_reap_state
= KMP_SAFE_TO_REAP
;
557 KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin
));
558 if (TCR_4(__kmp_global
.g
.g_done
)) {
559 if (__kmp_global
.g
.g_abort
)
560 __kmp_abort_thread();
564 // If we are oversubscribed, or have waited a bit (and
565 // KMP_LIBRARY=throughput), then yield
566 KMP_YIELD_OVERSUB_ELSE_SPIN(spins
);
568 #if KMP_STATS_ENABLED
569 // Check if thread has been signalled to idle state
570 // This indicates that the logical "join-barrier" has finished
571 if (this_thr
->th
.th_stats
->isIdle() &&
572 KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER
) {
573 KMP_SET_THREAD_STATE(IDLE
);
574 KMP_PUSH_PARTITIONED_TIMER(OMP_idle
);
577 // Check if the barrier surrounding this wait loop has been cancelled
579 kmp_team_t
*team
= this_thr
->th
.th_team
;
580 if (team
&& team
->t
.t_cancel_request
== cancel_parallel
)
584 // For hidden helper thread, if task_team is nullptr, it means the main
585 // thread has not released the barrier. We cannot wait here because once the
586 // main thread releases all children barriers, all hidden helper threads are
587 // still sleeping. This leads to a problem that following configuration,
588 // such as task team sync, will not be performed such that this thread does
589 // not have task team. Usually it is not bad. However, a corner case is,
590 // when the first task encountered is an untied task, the check in
591 // __kmp_task_alloc will crash because it uses the task team pointer without
592 // checking whether it is nullptr. It is probably under some kind of
594 if (task_team
&& KMP_HIDDEN_HELPER_WORKER_THREAD(th_gtid
) &&
595 !TCR_4(__kmp_hidden_helper_team_done
)) {
596 // If there is still hidden helper tasks to be executed, the hidden helper
597 // thread will not enter a waiting status.
598 if (KMP_ATOMIC_LD_ACQ(&__kmp_unexecuted_hidden_helper_tasks
) == 0) {
599 __kmp_hidden_helper_worker_thread_wait();
604 // Don't suspend if KMP_BLOCKTIME is set to "infinite"
605 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
&&
606 __kmp_pause_status
!= kmp_soft_paused
)
609 // Don't suspend if there is a likelihood of new tasks being spawned.
610 if ((task_team
!= NULL
) && TCR_4(task_team
->tt
.tt_found_tasks
))
614 // If we have waited a bit more, fall asleep
615 if (TCR_4(__kmp_global
.g
.g_time
.dt
.t_value
) < hibernate
)
618 if (KMP_BLOCKING(hibernate_goal
, poll_count
++))
621 // Don't suspend if wait loop designated non-sleepable
622 // in template parameters
626 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
&&
627 __kmp_pause_status
!= kmp_soft_paused
)
630 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
631 if (__kmp_mwait_enabled
|| __kmp_umwait_enabled
) {
632 KF_TRACE(50, ("__kmp_wait_sleep: T#%d using monitor/mwait\n", th_gtid
));
633 flag
->mwait(th_gtid
);
636 KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid
));
639 KMP_ATOMIC_ST_REL(&this_thr
->th
.th_blocking
, false);
641 flag
->suspend(th_gtid
);
644 KMP_ATOMIC_ST_REL(&this_thr
->th
.th_blocking
, true);
646 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
650 if (TCR_4(__kmp_global
.g
.g_done
)) {
651 if (__kmp_global
.g
.g_abort
)
652 __kmp_abort_thread();
654 } else if (__kmp_tasking_mode
!= tskm_immediate_exec
&&
655 this_thr
->th
.th_reap_state
== KMP_SAFE_TO_REAP
) {
656 this_thr
->th
.th_reap_state
= KMP_NOT_SAFE_TO_REAP
;
658 // TODO: If thread is done with work and times out, disband/free
662 ompt_state_t ompt_exit_state
= this_thr
->th
.ompt_thread_info
.state
;
663 if (ompt_enabled
.enabled
&& ompt_exit_state
!= ompt_state_undefined
) {
666 __ompt_implicit_task_end(this_thr
, ompt_exit_state
, tId
);
667 ompt_exit_state
= this_thr
->th
.ompt_thread_info
.state
;
670 if (ompt_exit_state
== ompt_state_idle
) {
671 this_thr
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
675 #if KMP_STATS_ENABLED
676 // If we were put into idle state, pop that off the state stack
677 if (KMP_GET_THREAD_STATE() == IDLE
) {
678 KMP_POP_PARTITIONED_TIMER();
679 KMP_SET_THREAD_STATE(thread_state
);
680 this_thr
->th
.th_stats
->resetIdleFlag();
686 KMP_ATOMIC_ST_REL(&this_thr
->th
.th_blocking
, false);
688 KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin
));
690 kmp_team_t
*team
= this_thr
->th
.th_team
;
691 if (team
&& team
->t
.t_cancel_request
== cancel_parallel
) {
692 if (tasks_completed
) {
693 // undo the previous decrement of unfinished_threads so that the
694 // thread can decrement at the join barrier with no problem
695 kmp_task_team_t
*task_team
= this_thr
->th
.th_task_team
;
696 std::atomic
<kmp_int32
> *unfinished_threads
=
697 &(task_team
->tt
.tt_unfinished_threads
);
698 KMP_ATOMIC_INC(unfinished_threads
);
706 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
707 // Set up a monitor on the flag variable causing the calling thread to wait in
708 // a less active state until the flag variable is modified.
710 static inline void __kmp_mwait_template(int th_gtid
, C
*flag
) {
711 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_mwait
);
712 kmp_info_t
*th
= __kmp_threads
[th_gtid
];
714 KF_TRACE(30, ("__kmp_mwait_template: T#%d enter for flag = %p\n", th_gtid
,
717 // User-level mwait is available
718 KMP_DEBUG_ASSERT(__kmp_mwait_enabled
|| __kmp_umwait_enabled
);
720 __kmp_suspend_initialize_thread(th
);
721 __kmp_lock_suspend_mx(th
);
723 volatile void *spin
= flag
->get();
724 void *cacheline
= (void *)(kmp_uintptr_t(spin
) & ~(CACHE_LINE
- 1));
726 if (!flag
->done_check()) {
727 // Mark thread as no longer active
728 th
->th
.th_active
= FALSE
;
729 if (th
->th
.th_active_in_pool
) {
730 th
->th
.th_active_in_pool
= FALSE
;
731 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth
);
732 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth
) >= 0);
734 flag
->set_sleeping();
735 KF_TRACE(50, ("__kmp_mwait_template: T#%d calling monitor\n", th_gtid
));
737 if (__kmp_umwait_enabled
) {
738 __kmp_umonitor(cacheline
);
741 if (__kmp_mwait_enabled
) {
742 __kmp_mm_monitor(cacheline
, 0, 0);
745 // To avoid a race, check flag between 'monitor' and 'mwait'. A write to
746 // the address could happen after the last time we checked and before
747 // monitoring started, in which case monitor can't detect the change.
748 if (flag
->done_check())
749 flag
->unset_sleeping();
751 // if flag changes here, wake-up happens immediately
752 TCW_PTR(th
->th
.th_sleep_loc
, (void *)flag
);
753 th
->th
.th_sleep_loc_type
= flag
->get_type();
754 __kmp_unlock_suspend_mx(th
);
755 KF_TRACE(50, ("__kmp_mwait_template: T#%d calling mwait\n", th_gtid
));
757 if (__kmp_umwait_enabled
) {
758 __kmp_umwait(1, 100); // to do: enable ctrl via hints, backoff counter
761 if (__kmp_mwait_enabled
) {
762 __kmp_mm_mwait(0, __kmp_mwait_hints
);
765 KF_TRACE(50, ("__kmp_mwait_template: T#%d mwait done\n", th_gtid
));
766 __kmp_lock_suspend_mx(th
);
767 // Clean up sleep info; doesn't matter how/why this thread stopped waiting
768 if (flag
->is_sleeping())
769 flag
->unset_sleeping();
770 TCW_PTR(th
->th
.th_sleep_loc
, NULL
);
771 th
->th
.th_sleep_loc_type
= flag_unset
;
773 // Mark thread as active again
774 th
->th
.th_active
= TRUE
;
775 if (TCR_4(th
->th
.th_in_pool
)) {
776 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth
);
777 th
->th
.th_active_in_pool
= TRUE
;
779 } // Drop out to main wait loop to check flag, handle tasks, etc.
780 __kmp_unlock_suspend_mx(th
);
781 KF_TRACE(30, ("__kmp_mwait_template: T#%d exit\n", th_gtid
));
783 #endif // KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
785 /* Release any threads specified as waiting on the flag by releasing the flag
786 and resume the waiting thread if indicated by the sleep bit(s). A thread that
787 calls __kmp_wait_template must call this function to wake up the potentially
788 sleeping thread and prevent deadlocks! */
789 template <class C
> static inline void __kmp_release_template(C
*flag
) {
791 int gtid
= TCR_4(__kmp_init_gtid
) ? __kmp_get_gtid() : -1;
793 KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid
, flag
->get()));
794 KMP_DEBUG_ASSERT(flag
->get());
795 KMP_FSYNC_RELEASING(flag
->get_void_p());
797 flag
->internal_release();
799 KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid
, flag
->get(),
802 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) {
803 // Only need to check sleep stuff if infinite block time not set.
804 // Are *any* threads waiting on flag sleeping?
805 if (flag
->is_any_sleeping()) {
806 for (unsigned int i
= 0; i
< flag
->get_num_waiters(); ++i
) {
807 // if sleeping waiter exists at i, sets current_waiter to i inside flag
808 kmp_info_t
*waiter
= flag
->get_waiter(i
);
810 int wait_gtid
= waiter
->th
.th_info
.ds
.ds_gtid
;
811 // Wake up thread if needed
812 KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep "
814 gtid
, wait_gtid
, flag
->get()));
815 flag
->resume(wait_gtid
); // unsets flag's current_waiter when done
822 template <bool Cancellable
, bool Sleepable
>
823 class kmp_flag_32
: public kmp_flag_atomic
<kmp_uint32
, flag32
, Sleepable
> {
825 kmp_flag_32(std::atomic
<kmp_uint32
> *p
)
826 : kmp_flag_atomic
<kmp_uint32
, flag32
, Sleepable
>(p
) {}
827 kmp_flag_32(std::atomic
<kmp_uint32
> *p
, kmp_info_t
*thr
)
828 : kmp_flag_atomic
<kmp_uint32
, flag32
, Sleepable
>(p
, thr
) {}
829 kmp_flag_32(std::atomic
<kmp_uint32
> *p
, kmp_uint32 c
)
830 : kmp_flag_atomic
<kmp_uint32
, flag32
, Sleepable
>(p
, c
) {}
831 void suspend(int th_gtid
) { __kmp_suspend_32(th_gtid
, this); }
832 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
833 void mwait(int th_gtid
) { __kmp_mwait_32(th_gtid
, this); }
835 void resume(int th_gtid
) { __kmp_resume_32(th_gtid
, this); }
836 int execute_tasks(kmp_info_t
*this_thr
, kmp_int32 gtid
, int final_spin
,
837 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
838 kmp_int32 is_constrained
) {
839 return __kmp_execute_tasks_32(
840 this_thr
, gtid
, this, final_spin
,
841 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
843 bool wait(kmp_info_t
*this_thr
,
844 int final_spin
USE_ITT_BUILD_ARG(void *itt_sync_obj
)) {
846 return __kmp_wait_template
<kmp_flag_32
, TRUE
, Cancellable
, Sleepable
>(
847 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
849 return __kmp_wait_template
<kmp_flag_32
, FALSE
, Cancellable
, Sleepable
>(
850 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
852 void release() { __kmp_release_template(this); }
853 flag_type
get_ptr_type() { return flag32
; }
856 template <bool Cancellable
, bool Sleepable
>
857 class kmp_flag_64
: public kmp_flag_native
<kmp_uint64
, flag64
, Sleepable
> {
859 kmp_flag_64(volatile kmp_uint64
*p
)
860 : kmp_flag_native
<kmp_uint64
, flag64
, Sleepable
>(p
) {}
861 kmp_flag_64(volatile kmp_uint64
*p
, kmp_info_t
*thr
)
862 : kmp_flag_native
<kmp_uint64
, flag64
, Sleepable
>(p
, thr
) {}
863 kmp_flag_64(volatile kmp_uint64
*p
, kmp_uint64 c
)
864 : kmp_flag_native
<kmp_uint64
, flag64
, Sleepable
>(p
, c
) {}
865 kmp_flag_64(volatile kmp_uint64
*p
, kmp_uint64 c
, std::atomic
<bool> *loc
)
866 : kmp_flag_native
<kmp_uint64
, flag64
, Sleepable
>(p
, c
, loc
) {}
867 void suspend(int th_gtid
) { __kmp_suspend_64(th_gtid
, this); }
868 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
869 void mwait(int th_gtid
) { __kmp_mwait_64(th_gtid
, this); }
871 void resume(int th_gtid
) { __kmp_resume_64(th_gtid
, this); }
872 int execute_tasks(kmp_info_t
*this_thr
, kmp_int32 gtid
, int final_spin
,
873 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
874 kmp_int32 is_constrained
) {
875 return __kmp_execute_tasks_64(
876 this_thr
, gtid
, this, final_spin
,
877 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
879 bool wait(kmp_info_t
*this_thr
,
880 int final_spin
USE_ITT_BUILD_ARG(void *itt_sync_obj
)) {
882 return __kmp_wait_template
<kmp_flag_64
, TRUE
, Cancellable
, Sleepable
>(
883 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
885 return __kmp_wait_template
<kmp_flag_64
, FALSE
, Cancellable
, Sleepable
>(
886 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
888 void release() { __kmp_release_template(this); }
889 flag_type
get_ptr_type() { return flag64
; }
892 template <bool Cancellable
, bool Sleepable
>
893 class kmp_atomic_flag_64
894 : public kmp_flag_atomic
<kmp_uint64
, atomic_flag64
, Sleepable
> {
896 kmp_atomic_flag_64(std::atomic
<kmp_uint64
> *p
)
897 : kmp_flag_atomic
<kmp_uint64
, atomic_flag64
, Sleepable
>(p
) {}
898 kmp_atomic_flag_64(std::atomic
<kmp_uint64
> *p
, kmp_info_t
*thr
)
899 : kmp_flag_atomic
<kmp_uint64
, atomic_flag64
, Sleepable
>(p
, thr
) {}
900 kmp_atomic_flag_64(std::atomic
<kmp_uint64
> *p
, kmp_uint64 c
)
901 : kmp_flag_atomic
<kmp_uint64
, atomic_flag64
, Sleepable
>(p
, c
) {}
902 kmp_atomic_flag_64(std::atomic
<kmp_uint64
> *p
, kmp_uint64 c
,
903 std::atomic
<bool> *loc
)
904 : kmp_flag_atomic
<kmp_uint64
, atomic_flag64
, Sleepable
>(p
, c
, loc
) {}
905 void suspend(int th_gtid
) { __kmp_atomic_suspend_64(th_gtid
, this); }
906 void mwait(int th_gtid
) { __kmp_atomic_mwait_64(th_gtid
, this); }
907 void resume(int th_gtid
) { __kmp_atomic_resume_64(th_gtid
, this); }
908 int execute_tasks(kmp_info_t
*this_thr
, kmp_int32 gtid
, int final_spin
,
909 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
910 kmp_int32 is_constrained
) {
911 return __kmp_atomic_execute_tasks_64(
912 this_thr
, gtid
, this, final_spin
,
913 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
915 bool wait(kmp_info_t
*this_thr
,
916 int final_spin
USE_ITT_BUILD_ARG(void *itt_sync_obj
)) {
918 return __kmp_wait_template
<kmp_atomic_flag_64
, TRUE
, Cancellable
,
920 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
922 return __kmp_wait_template
<kmp_atomic_flag_64
, FALSE
, Cancellable
,
924 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
926 void release() { __kmp_release_template(this); }
927 flag_type
get_ptr_type() { return atomic_flag64
; }
930 // Hierarchical 64-bit on-core barrier instantiation
931 class kmp_flag_oncore
: public kmp_flag_native
<kmp_uint64
, flag_oncore
, false> {
932 kmp_uint32 offset
; /**< Portion of flag of interest for an operation. */
933 bool flag_switch
; /**< Indicates a switch in flag location. */
934 enum barrier_type bt
; /**< Barrier type. */
935 kmp_info_t
*this_thr
; /**< Thread to redirect to different flag location. */
937 void *itt_sync_obj
; /**< ITT object to pass to new flag location. */
939 unsigned char &byteref(volatile kmp_uint64
*loc
, size_t offset
) {
940 return (RCAST(unsigned char *, CCAST(kmp_uint64
*, loc
)))[offset
];
944 kmp_flag_oncore(volatile kmp_uint64
*p
)
945 : kmp_flag_native
<kmp_uint64
, flag_oncore
, false>(p
), flag_switch(false) {
947 kmp_flag_oncore(volatile kmp_uint64
*p
, kmp_uint32 idx
)
948 : kmp_flag_native
<kmp_uint64
, flag_oncore
, false>(p
), offset(idx
),
950 bt(bs_last_barrier
) USE_ITT_BUILD_ARG(itt_sync_obj(nullptr)) {}
951 kmp_flag_oncore(volatile kmp_uint64
*p
, kmp_uint64 c
, kmp_uint32 idx
,
952 enum barrier_type bar_t
,
953 kmp_info_t
*thr
USE_ITT_BUILD_ARG(void *itt
))
954 : kmp_flag_native
<kmp_uint64
, flag_oncore
, false>(p
, c
), offset(idx
),
955 flag_switch(false), bt(bar_t
),
956 this_thr(thr
) USE_ITT_BUILD_ARG(itt_sync_obj(itt
)) {}
957 virtual ~kmp_flag_oncore() override
{}
958 void *operator new(size_t size
) { return __kmp_allocate(size
); }
959 void operator delete(void *p
) { __kmp_free(p
); }
960 bool done_check_val(kmp_uint64 old_loc
) override
{
961 return byteref(&old_loc
, offset
) == checker
;
963 bool done_check() override
{ return done_check_val(*get()); }
964 bool notdone_check() override
{
965 // Calculate flag_switch
966 if (this_thr
->th
.th_bar
[bt
].bb
.wait_flag
== KMP_BARRIER_SWITCH_TO_OWN_FLAG
)
968 if (byteref(get(), offset
) != 1 && !flag_switch
)
970 else if (flag_switch
) {
971 this_thr
->th
.th_bar
[bt
].bb
.wait_flag
= KMP_BARRIER_SWITCHING
;
972 kmp_flag_64
<> flag(&this_thr
->th
.th_bar
[bt
].bb
.b_go
,
973 (kmp_uint64
)KMP_BARRIER_STATE_BUMP
);
974 __kmp_wait_64(this_thr
, &flag
, TRUE
USE_ITT_BUILD_ARG(itt_sync_obj
));
978 void internal_release() {
979 // Other threads can write their own bytes simultaneously.
980 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
) {
981 byteref(get(), offset
) = 1;
984 byteref(&mask
, offset
) = 1;
985 KMP_TEST_THEN_OR64(get(), mask
);
988 void wait(kmp_info_t
*this_thr
, int final_spin
) {
990 __kmp_wait_template
<kmp_flag_oncore
, TRUE
>(
991 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
993 __kmp_wait_template
<kmp_flag_oncore
, FALSE
>(
994 this_thr
, this USE_ITT_BUILD_ARG(itt_sync_obj
));
996 void release() { __kmp_release_template(this); }
997 void suspend(int th_gtid
) { __kmp_suspend_oncore(th_gtid
, this); }
998 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
999 void mwait(int th_gtid
) { __kmp_mwait_oncore(th_gtid
, this); }
1001 void resume(int th_gtid
) { __kmp_resume_oncore(th_gtid
, this); }
1002 int execute_tasks(kmp_info_t
*this_thr
, kmp_int32 gtid
, int final_spin
,
1003 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
1004 kmp_int32 is_constrained
) {
1006 int ret
= __kmp_execute_tasks_oncore(
1007 this_thr
, gtid
, this, final_spin
,
1008 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
1009 if (ompd_state
& OMPD_ENABLE_BP
)
1013 return __kmp_execute_tasks_oncore(
1014 this_thr
, gtid
, this, final_spin
,
1015 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
1018 enum barrier_type
get_bt() { return bt
; }
1019 flag_type
get_ptr_type() { return flag_oncore
; }
1022 static inline void __kmp_null_resume_wrapper(kmp_info_t
*thr
) {
1023 int gtid
= __kmp_gtid_from_thread(thr
);
1024 void *flag
= CCAST(void *, thr
->th
.th_sleep_loc
);
1025 flag_type type
= thr
->th
.th_sleep_loc_type
;
1028 // Attempt to wake up a thread: examine its type and call appropriate template
1031 __kmp_resume_32(gtid
, RCAST(kmp_flag_32
<> *, flag
));
1034 __kmp_resume_64(gtid
, RCAST(kmp_flag_64
<> *, flag
));
1037 __kmp_atomic_resume_64(gtid
, RCAST(kmp_atomic_flag_64
<> *, flag
));
1040 __kmp_resume_oncore(gtid
, RCAST(kmp_flag_oncore
*, flag
));
1044 KF_TRACE(100, ("__kmp_null_resume_wrapper: flag type %d is unset\n", type
));
1047 KF_TRACE(100, ("__kmp_null_resume_wrapper: flag type %d does not match any "
1048 "known flag type\n",
1058 #endif // KMP_WAIT_RELEASE_H