[cmake] Add minor version to library SONAME (#79376)
[llvm-project.git] / clang / lib / CodeGen / CGCUDANV.cpp
blob5b43272bfa62f405e98edb83e55bcdcf0bb2e507
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/Frontend/Offloading/Utility.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/ReplaceConstant.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/VirtualFileSystem.h"
30 using namespace clang;
31 using namespace CodeGen;
33 namespace {
34 constexpr unsigned CudaFatMagic = 0x466243b1;
35 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
37 class CGNVCUDARuntime : public CGCUDARuntime {
39 private:
40 llvm::IntegerType *IntTy, *SizeTy;
41 llvm::Type *VoidTy;
42 llvm::PointerType *PtrTy;
44 /// Convenience reference to LLVM Context
45 llvm::LLVMContext &Context;
46 /// Convenience reference to the current module
47 llvm::Module &TheModule;
48 /// Keeps track of kernel launch stubs and handles emitted in this module
49 struct KernelInfo {
50 llvm::Function *Kernel; // stub function to help launch kernel
51 const Decl *D;
53 llvm::SmallVector<KernelInfo, 16> EmittedKernels;
54 // Map a kernel mangled name to a symbol for identifying kernel in host code
55 // For CUDA, the symbol for identifying the kernel is the same as the device
56 // stub function. For HIP, they are different.
57 llvm::DenseMap<StringRef, llvm::GlobalValue *> KernelHandles;
58 // Map a kernel handle to the kernel stub.
59 llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
60 struct VarInfo {
61 llvm::GlobalVariable *Var;
62 const VarDecl *D;
63 DeviceVarFlags Flags;
65 llvm::SmallVector<VarInfo, 16> DeviceVars;
66 /// Keeps track of variable containing handle of GPU binary. Populated by
67 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
68 /// ModuleDtorFunction()
69 llvm::GlobalVariable *GpuBinaryHandle = nullptr;
70 /// Whether we generate relocatable device code.
71 bool RelocatableDeviceCode;
72 /// Mangle context for device.
73 std::unique_ptr<MangleContext> DeviceMC;
74 /// Some zeros used for GEPs.
75 llvm::Constant *Zeros[2];
77 llvm::FunctionCallee getSetupArgumentFn() const;
78 llvm::FunctionCallee getLaunchFn() const;
80 llvm::FunctionType *getRegisterGlobalsFnTy() const;
81 llvm::FunctionType *getCallbackFnTy() const;
82 llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
83 std::string addPrefixToName(StringRef FuncName) const;
84 std::string addUnderscoredPrefixToName(StringRef FuncName) const;
86 /// Creates a function to register all kernel stubs generated in this module.
87 llvm::Function *makeRegisterGlobalsFn();
89 /// Helper function that generates a constant string and returns a pointer to
90 /// the start of the string. The result of this function can be used anywhere
91 /// where the C code specifies const char*.
92 llvm::Constant *makeConstantString(const std::string &Str,
93 const std::string &Name = "") {
94 auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
95 return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
96 ConstStr.getPointer(), Zeros);
99 /// Helper function which generates an initialized constant array from Str,
100 /// and optionally sets section name and alignment. AddNull specifies whether
101 /// the array should nave NUL termination.
102 llvm::Constant *makeConstantArray(StringRef Str,
103 StringRef Name = "",
104 StringRef SectionName = "",
105 unsigned Alignment = 0,
106 bool AddNull = false) {
107 llvm::Constant *Value =
108 llvm::ConstantDataArray::getString(Context, Str, AddNull);
109 auto *GV = new llvm::GlobalVariable(
110 TheModule, Value->getType(), /*isConstant=*/true,
111 llvm::GlobalValue::PrivateLinkage, Value, Name);
112 if (!SectionName.empty()) {
113 GV->setSection(SectionName);
114 // Mark the address as used which make sure that this section isn't
115 // merged and we will really have it in the object file.
116 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
118 if (Alignment)
119 GV->setAlignment(llvm::Align(Alignment));
120 return llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
123 /// Helper function that generates an empty dummy function returning void.
124 llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
125 assert(FnTy->getReturnType()->isVoidTy() &&
126 "Can only generate dummy functions returning void!");
127 llvm::Function *DummyFunc = llvm::Function::Create(
128 FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
130 llvm::BasicBlock *DummyBlock =
131 llvm::BasicBlock::Create(Context, "", DummyFunc);
132 CGBuilderTy FuncBuilder(CGM, Context);
133 FuncBuilder.SetInsertPoint(DummyBlock);
134 FuncBuilder.CreateRetVoid();
136 return DummyFunc;
139 void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
140 void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
141 std::string getDeviceSideName(const NamedDecl *ND) override;
143 void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
144 bool Extern, bool Constant) {
145 DeviceVars.push_back({&Var,
147 {DeviceVarFlags::Variable, Extern, Constant,
148 VD->hasAttr<HIPManagedAttr>(),
149 /*Normalized*/ false, 0}});
151 void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
152 bool Extern, int Type) {
153 DeviceVars.push_back({&Var,
155 {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
156 /*Managed*/ false,
157 /*Normalized*/ false, Type}});
159 void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
160 bool Extern, int Type, bool Normalized) {
161 DeviceVars.push_back({&Var,
163 {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
164 /*Managed*/ false, Normalized, Type}});
167 /// Creates module constructor function
168 llvm::Function *makeModuleCtorFunction();
169 /// Creates module destructor function
170 llvm::Function *makeModuleDtorFunction();
171 /// Transform managed variables for device compilation.
172 void transformManagedVars();
173 /// Create offloading entries to register globals in RDC mode.
174 void createOffloadingEntries();
176 public:
177 CGNVCUDARuntime(CodeGenModule &CGM);
179 llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
180 llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
181 auto Loc = KernelStubs.find(Handle);
182 assert(Loc != KernelStubs.end());
183 return Loc->second;
185 void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
186 void handleVarRegistration(const VarDecl *VD,
187 llvm::GlobalVariable &Var) override;
188 void
189 internalizeDeviceSideVar(const VarDecl *D,
190 llvm::GlobalValue::LinkageTypes &Linkage) override;
192 llvm::Function *finalizeModule() override;
195 } // end anonymous namespace
197 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
198 if (CGM.getLangOpts().HIP)
199 return ((Twine("hip") + Twine(FuncName)).str());
200 return ((Twine("cuda") + Twine(FuncName)).str());
202 std::string
203 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
204 if (CGM.getLangOpts().HIP)
205 return ((Twine("__hip") + Twine(FuncName)).str());
206 return ((Twine("__cuda") + Twine(FuncName)).str());
209 static std::unique_ptr<MangleContext> InitDeviceMC(CodeGenModule &CGM) {
210 // If the host and device have different C++ ABIs, mark it as the device
211 // mangle context so that the mangling needs to retrieve the additional
212 // device lambda mangling number instead of the regular host one.
213 if (CGM.getContext().getAuxTargetInfo() &&
214 CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
215 CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
216 return std::unique_ptr<MangleContext>(
217 CGM.getContext().createDeviceMangleContext(
218 *CGM.getContext().getAuxTargetInfo()));
221 return std::unique_ptr<MangleContext>(CGM.getContext().createMangleContext(
222 CGM.getContext().getAuxTargetInfo()));
225 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
226 : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
227 TheModule(CGM.getModule()),
228 RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
229 DeviceMC(InitDeviceMC(CGM)) {
230 IntTy = CGM.IntTy;
231 SizeTy = CGM.SizeTy;
232 VoidTy = CGM.VoidTy;
233 Zeros[0] = llvm::ConstantInt::get(SizeTy, 0);
234 Zeros[1] = Zeros[0];
235 PtrTy = CGM.UnqualPtrTy;
238 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
239 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
240 llvm::Type *Params[] = {PtrTy, SizeTy, SizeTy};
241 return CGM.CreateRuntimeFunction(
242 llvm::FunctionType::get(IntTy, Params, false),
243 addPrefixToName("SetupArgument"));
246 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
247 if (CGM.getLangOpts().HIP) {
248 // hipError_t hipLaunchByPtr(char *);
249 return CGM.CreateRuntimeFunction(
250 llvm::FunctionType::get(IntTy, PtrTy, false), "hipLaunchByPtr");
252 // cudaError_t cudaLaunch(char *);
253 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(IntTy, PtrTy, false),
254 "cudaLaunch");
257 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
258 return llvm::FunctionType::get(VoidTy, PtrTy, false);
261 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
262 return llvm::FunctionType::get(VoidTy, PtrTy, false);
265 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
266 llvm::Type *Params[] = {llvm::PointerType::getUnqual(Context), PtrTy, PtrTy,
267 llvm::PointerType::getUnqual(Context)};
268 return llvm::FunctionType::get(VoidTy, Params, false);
271 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
272 GlobalDecl GD;
273 // D could be either a kernel or a variable.
274 if (auto *FD = dyn_cast<FunctionDecl>(ND))
275 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
276 else
277 GD = GlobalDecl(ND);
278 std::string DeviceSideName;
279 MangleContext *MC;
280 if (CGM.getLangOpts().CUDAIsDevice)
281 MC = &CGM.getCXXABI().getMangleContext();
282 else
283 MC = DeviceMC.get();
284 if (MC->shouldMangleDeclName(ND)) {
285 SmallString<256> Buffer;
286 llvm::raw_svector_ostream Out(Buffer);
287 MC->mangleName(GD, Out);
288 DeviceSideName = std::string(Out.str());
289 } else
290 DeviceSideName = std::string(ND->getIdentifier()->getName());
292 // Make unique name for device side static file-scope variable for HIP.
293 if (CGM.getContext().shouldExternalize(ND) &&
294 CGM.getLangOpts().GPURelocatableDeviceCode) {
295 SmallString<256> Buffer;
296 llvm::raw_svector_ostream Out(Buffer);
297 Out << DeviceSideName;
298 CGM.printPostfixForExternalizedDecl(Out, ND);
299 DeviceSideName = std::string(Out.str());
301 return DeviceSideName;
304 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
305 FunctionArgList &Args) {
306 EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
307 if (auto *GV =
308 dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn->getName()])) {
309 GV->setLinkage(CGF.CurFn->getLinkage());
310 GV->setInitializer(CGF.CurFn);
312 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
313 CudaFeature::CUDA_USES_NEW_LAUNCH) ||
314 (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
315 emitDeviceStubBodyNew(CGF, Args);
316 else
317 emitDeviceStubBodyLegacy(CGF, Args);
320 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
321 // array and kernels are launched using cudaLaunchKernel().
322 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
323 FunctionArgList &Args) {
324 // Build the shadow stack entry at the very start of the function.
326 // Calculate amount of space we will need for all arguments. If we have no
327 // args, allocate a single pointer so we still have a valid pointer to the
328 // argument array that we can pass to runtime, even if it will be unused.
329 Address KernelArgs = CGF.CreateTempAlloca(
330 PtrTy, CharUnits::fromQuantity(16), "kernel_args",
331 llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
332 // Store pointers to the arguments in a locally allocated launch_args.
333 for (unsigned i = 0; i < Args.size(); ++i) {
334 llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
335 llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, PtrTy);
336 CGF.Builder.CreateDefaultAlignedStore(
337 VoidVarPtr,
338 CGF.Builder.CreateConstGEP1_32(PtrTy, KernelArgs.getPointer(), i));
341 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
343 // Lookup cudaLaunchKernel/hipLaunchKernel function.
344 // HIP kernel launching API name depends on -fgpu-default-stream option. For
345 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
346 // it is hipLaunchKernel_spt.
347 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
348 // void **args, size_t sharedMem,
349 // cudaStream_t stream);
350 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
351 // dim3 blockDim, void **args,
352 // size_t sharedMem, hipStream_t stream);
353 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
354 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
355 std::string KernelLaunchAPI = "LaunchKernel";
356 if (CGF.getLangOpts().GPUDefaultStream ==
357 LangOptions::GPUDefaultStreamKind::PerThread) {
358 if (CGF.getLangOpts().HIP)
359 KernelLaunchAPI = KernelLaunchAPI + "_spt";
360 else if (CGF.getLangOpts().CUDA)
361 KernelLaunchAPI = KernelLaunchAPI + "_ptsz";
363 auto LaunchKernelName = addPrefixToName(KernelLaunchAPI);
364 IdentifierInfo &cudaLaunchKernelII =
365 CGM.getContext().Idents.get(LaunchKernelName);
366 FunctionDecl *cudaLaunchKernelFD = nullptr;
367 for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
368 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
369 cudaLaunchKernelFD = FD;
372 if (cudaLaunchKernelFD == nullptr) {
373 CGM.Error(CGF.CurFuncDecl->getLocation(),
374 "Can't find declaration for " + LaunchKernelName);
375 return;
377 // Create temporary dim3 grid_dim, block_dim.
378 ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
379 QualType Dim3Ty = GridDimParam->getType();
380 Address GridDim =
381 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
382 Address BlockDim =
383 CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
384 Address ShmemSize =
385 CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
386 Address Stream = CGF.CreateTempAlloca(PtrTy, CGM.getPointerAlign(), "stream");
387 llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
388 llvm::FunctionType::get(IntTy,
389 {/*gridDim=*/GridDim.getType(),
390 /*blockDim=*/BlockDim.getType(),
391 /*ShmemSize=*/ShmemSize.getType(),
392 /*Stream=*/Stream.getType()},
393 /*isVarArg=*/false),
394 addUnderscoredPrefixToName("PopCallConfiguration"));
396 CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
397 {GridDim.getPointer(), BlockDim.getPointer(),
398 ShmemSize.getPointer(), Stream.getPointer()});
400 // Emit the call to cudaLaunch
401 llvm::Value *Kernel =
402 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn->getName()], PtrTy);
403 CallArgList LaunchKernelArgs;
404 LaunchKernelArgs.add(RValue::get(Kernel),
405 cudaLaunchKernelFD->getParamDecl(0)->getType());
406 LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
407 LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
408 LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
409 cudaLaunchKernelFD->getParamDecl(3)->getType());
410 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
411 cudaLaunchKernelFD->getParamDecl(4)->getType());
412 LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
413 cudaLaunchKernelFD->getParamDecl(5)->getType());
415 QualType QT = cudaLaunchKernelFD->getType();
416 QualType CQT = QT.getCanonicalType();
417 llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
418 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
420 const CGFunctionInfo &FI =
421 CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
422 llvm::FunctionCallee cudaLaunchKernelFn =
423 CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
424 CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
425 LaunchKernelArgs);
426 CGF.EmitBranch(EndBlock);
428 CGF.EmitBlock(EndBlock);
431 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
432 FunctionArgList &Args) {
433 // Emit a call to cudaSetupArgument for each arg in Args.
434 llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
435 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
436 CharUnits Offset = CharUnits::Zero();
437 for (const VarDecl *A : Args) {
438 auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
439 Offset = Offset.alignTo(TInfo.Align);
440 llvm::Value *Args[] = {
441 CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
442 PtrTy),
443 llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
444 llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
446 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
447 llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
448 llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
449 llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
450 CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
451 CGF.EmitBlock(NextBlock);
452 Offset += TInfo.Width;
455 // Emit the call to cudaLaunch
456 llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
457 llvm::Value *Arg =
458 CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn->getName()], PtrTy);
459 CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
460 CGF.EmitBranch(EndBlock);
462 CGF.EmitBlock(EndBlock);
465 // Replace the original variable Var with the address loaded from variable
466 // ManagedVar populated by HIP runtime.
467 static void replaceManagedVar(llvm::GlobalVariable *Var,
468 llvm::GlobalVariable *ManagedVar) {
469 SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
470 for (auto &&VarUse : Var->uses()) {
471 WorkList.push_back({VarUse.getUser()});
473 while (!WorkList.empty()) {
474 auto &&WorkItem = WorkList.pop_back_val();
475 auto *U = WorkItem.back();
476 if (isa<llvm::ConstantExpr>(U)) {
477 for (auto &&UU : U->uses()) {
478 WorkItem.push_back(UU.getUser());
479 WorkList.push_back(WorkItem);
480 WorkItem.pop_back();
482 continue;
484 if (auto *I = dyn_cast<llvm::Instruction>(U)) {
485 llvm::Value *OldV = Var;
486 llvm::Instruction *NewV =
487 new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
488 llvm::Align(Var->getAlignment()), I);
489 WorkItem.pop_back();
490 // Replace constant expressions directly or indirectly using the managed
491 // variable with instructions.
492 for (auto &&Op : WorkItem) {
493 auto *CE = cast<llvm::ConstantExpr>(Op);
494 auto *NewInst = CE->getAsInstruction(I);
495 NewInst->replaceUsesOfWith(OldV, NewV);
496 OldV = CE;
497 NewV = NewInst;
499 I->replaceUsesOfWith(OldV, NewV);
500 } else {
501 llvm_unreachable("Invalid use of managed variable");
506 /// Creates a function that sets up state on the host side for CUDA objects that
507 /// have a presence on both the host and device sides. Specifically, registers
508 /// the host side of kernel functions and device global variables with the CUDA
509 /// runtime.
510 /// \code
511 /// void __cuda_register_globals(void** GpuBinaryHandle) {
512 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
513 /// ...
514 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
515 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
516 /// ...
517 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
518 /// }
519 /// \endcode
520 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
521 // No need to register anything
522 if (EmittedKernels.empty() && DeviceVars.empty())
523 return nullptr;
525 llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
526 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
527 addUnderscoredPrefixToName("_register_globals"), &TheModule);
528 llvm::BasicBlock *EntryBB =
529 llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
530 CGBuilderTy Builder(CGM, Context);
531 Builder.SetInsertPoint(EntryBB);
533 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
534 // int, uint3*, uint3*, dim3*, dim3*, int*)
535 llvm::Type *RegisterFuncParams[] = {
536 PtrTy, PtrTy, PtrTy, PtrTy, IntTy,
537 PtrTy, PtrTy, PtrTy, PtrTy, llvm::PointerType::getUnqual(Context)};
538 llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
539 llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
540 addUnderscoredPrefixToName("RegisterFunction"));
542 // Extract GpuBinaryHandle passed as the first argument passed to
543 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
544 // each emitted kernel.
545 llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
546 for (auto &&I : EmittedKernels) {
547 llvm::Constant *KernelName =
548 makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
549 llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(PtrTy);
550 llvm::Value *Args[] = {
551 &GpuBinaryHandlePtr,
552 KernelHandles[I.Kernel->getName()],
553 KernelName,
554 KernelName,
555 llvm::ConstantInt::get(IntTy, -1),
556 NullPtr,
557 NullPtr,
558 NullPtr,
559 NullPtr,
560 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context))};
561 Builder.CreateCall(RegisterFunc, Args);
564 llvm::Type *VarSizeTy = IntTy;
565 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
566 if (CGM.getLangOpts().HIP ||
567 ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
568 VarSizeTy = SizeTy;
570 // void __cudaRegisterVar(void **, char *, char *, const char *,
571 // int, int, int, int)
572 llvm::Type *RegisterVarParams[] = {PtrTy, PtrTy, PtrTy, PtrTy,
573 IntTy, VarSizeTy, IntTy, IntTy};
574 llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
575 llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
576 addUnderscoredPrefixToName("RegisterVar"));
577 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
578 // size_t, unsigned)
579 llvm::Type *RegisterManagedVarParams[] = {PtrTy, PtrTy, PtrTy,
580 PtrTy, VarSizeTy, IntTy};
581 llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
582 llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
583 addUnderscoredPrefixToName("RegisterManagedVar"));
584 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
585 // const void **, const char *, int, int);
586 llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
587 llvm::FunctionType::get(
588 VoidTy, {PtrTy, PtrTy, PtrTy, PtrTy, IntTy, IntTy}, false),
589 addUnderscoredPrefixToName("RegisterSurface"));
590 // void __cudaRegisterTexture(void **, const struct textureReference *,
591 // const void **, const char *, int, int, int)
592 llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
593 llvm::FunctionType::get(
594 VoidTy, {PtrTy, PtrTy, PtrTy, PtrTy, IntTy, IntTy, IntTy}, false),
595 addUnderscoredPrefixToName("RegisterTexture"));
596 for (auto &&Info : DeviceVars) {
597 llvm::GlobalVariable *Var = Info.Var;
598 assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
599 "External variables should not show up here, except HIP managed "
600 "variables");
601 llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
602 switch (Info.Flags.getKind()) {
603 case DeviceVarFlags::Variable: {
604 uint64_t VarSize =
605 CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
606 if (Info.Flags.isManaged()) {
607 auto *ManagedVar = new llvm::GlobalVariable(
608 CGM.getModule(), Var->getType(),
609 /*isConstant=*/false, Var->getLinkage(),
610 /*Init=*/Var->isDeclaration()
611 ? nullptr
612 : llvm::ConstantPointerNull::get(Var->getType()),
613 /*Name=*/"", /*InsertBefore=*/nullptr,
614 llvm::GlobalVariable::NotThreadLocal);
615 ManagedVar->setDSOLocal(Var->isDSOLocal());
616 ManagedVar->setVisibility(Var->getVisibility());
617 ManagedVar->setExternallyInitialized(true);
618 ManagedVar->takeName(Var);
619 Var->setName(Twine(ManagedVar->getName() + ".managed"));
620 replaceManagedVar(Var, ManagedVar);
621 llvm::Value *Args[] = {
622 &GpuBinaryHandlePtr,
623 ManagedVar,
624 Var,
625 VarName,
626 llvm::ConstantInt::get(VarSizeTy, VarSize),
627 llvm::ConstantInt::get(IntTy, Var->getAlignment())};
628 if (!Var->isDeclaration())
629 Builder.CreateCall(RegisterManagedVar, Args);
630 } else {
631 llvm::Value *Args[] = {
632 &GpuBinaryHandlePtr,
633 Var,
634 VarName,
635 VarName,
636 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
637 llvm::ConstantInt::get(VarSizeTy, VarSize),
638 llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
639 llvm::ConstantInt::get(IntTy, 0)};
640 Builder.CreateCall(RegisterVar, Args);
642 break;
644 case DeviceVarFlags::Surface:
645 Builder.CreateCall(
646 RegisterSurf,
647 {&GpuBinaryHandlePtr, Var, VarName, VarName,
648 llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
649 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
650 break;
651 case DeviceVarFlags::Texture:
652 Builder.CreateCall(
653 RegisterTex,
654 {&GpuBinaryHandlePtr, Var, VarName, VarName,
655 llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
656 llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
657 llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
658 break;
662 Builder.CreateRetVoid();
663 return RegisterKernelsFunc;
666 /// Creates a global constructor function for the module:
668 /// For CUDA:
669 /// \code
670 /// void __cuda_module_ctor() {
671 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
672 /// __cuda_register_globals(Handle);
673 /// }
674 /// \endcode
676 /// For HIP:
677 /// \code
678 /// void __hip_module_ctor() {
679 /// if (__hip_gpubin_handle == 0) {
680 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
681 /// __hip_register_globals(__hip_gpubin_handle);
682 /// }
683 /// }
684 /// \endcode
685 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
686 bool IsHIP = CGM.getLangOpts().HIP;
687 bool IsCUDA = CGM.getLangOpts().CUDA;
688 // No need to generate ctors/dtors if there is no GPU binary.
689 StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
690 if (CudaGpuBinaryFileName.empty() && !IsHIP)
691 return nullptr;
692 if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
693 DeviceVars.empty())
694 return nullptr;
696 // void __{cuda|hip}_register_globals(void* handle);
697 llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
698 // We always need a function to pass in as callback. Create a dummy
699 // implementation if we don't need to register anything.
700 if (RelocatableDeviceCode && !RegisterGlobalsFunc)
701 RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
703 // void ** __{cuda|hip}RegisterFatBinary(void *);
704 llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
705 llvm::FunctionType::get(PtrTy, PtrTy, false),
706 addUnderscoredPrefixToName("RegisterFatBinary"));
707 // struct { int magic, int version, void * gpu_binary, void * dont_care };
708 llvm::StructType *FatbinWrapperTy =
709 llvm::StructType::get(IntTy, IntTy, PtrTy, PtrTy);
711 // Register GPU binary with the CUDA runtime, store returned handle in a
712 // global variable and save a reference in GpuBinaryHandle to be cleaned up
713 // in destructor on exit. Then associate all known kernels with the GPU binary
714 // handle so CUDA runtime can figure out what to call on the GPU side.
715 std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
716 if (!CudaGpuBinaryFileName.empty()) {
717 auto VFS = CGM.getFileSystem();
718 auto CudaGpuBinaryOrErr =
719 VFS->getBufferForFile(CudaGpuBinaryFileName, -1, false);
720 if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
721 CGM.getDiags().Report(diag::err_cannot_open_file)
722 << CudaGpuBinaryFileName << EC.message();
723 return nullptr;
725 CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
728 llvm::Function *ModuleCtorFunc = llvm::Function::Create(
729 llvm::FunctionType::get(VoidTy, false),
730 llvm::GlobalValue::InternalLinkage,
731 addUnderscoredPrefixToName("_module_ctor"), &TheModule);
732 llvm::BasicBlock *CtorEntryBB =
733 llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
734 CGBuilderTy CtorBuilder(CGM, Context);
736 CtorBuilder.SetInsertPoint(CtorEntryBB);
738 const char *FatbinConstantName;
739 const char *FatbinSectionName;
740 const char *ModuleIDSectionName;
741 StringRef ModuleIDPrefix;
742 llvm::Constant *FatBinStr;
743 unsigned FatMagic;
744 if (IsHIP) {
745 FatbinConstantName = ".hip_fatbin";
746 FatbinSectionName = ".hipFatBinSegment";
748 ModuleIDSectionName = "__hip_module_id";
749 ModuleIDPrefix = "__hip_";
751 if (CudaGpuBinary) {
752 // If fatbin is available from early finalization, create a string
753 // literal containing the fat binary loaded from the given file.
754 const unsigned HIPCodeObjectAlign = 4096;
755 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
756 FatbinConstantName, HIPCodeObjectAlign);
757 } else {
758 // If fatbin is not available, create an external symbol
759 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
760 // to contain the fat binary but will be populated somewhere else,
761 // e.g. by lld through link script.
762 FatBinStr = new llvm::GlobalVariable(
763 CGM.getModule(), CGM.Int8Ty,
764 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
765 "__hip_fatbin", nullptr,
766 llvm::GlobalVariable::NotThreadLocal);
767 cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
770 FatMagic = HIPFatMagic;
771 } else {
772 if (RelocatableDeviceCode)
773 FatbinConstantName = CGM.getTriple().isMacOSX()
774 ? "__NV_CUDA,__nv_relfatbin"
775 : "__nv_relfatbin";
776 else
777 FatbinConstantName =
778 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
779 // NVIDIA's cuobjdump looks for fatbins in this section.
780 FatbinSectionName =
781 CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
783 ModuleIDSectionName = CGM.getTriple().isMacOSX()
784 ? "__NV_CUDA,__nv_module_id"
785 : "__nv_module_id";
786 ModuleIDPrefix = "__nv_";
788 // For CUDA, create a string literal containing the fat binary loaded from
789 // the given file.
790 FatBinStr = makeConstantArray(std::string(CudaGpuBinary->getBuffer()), "",
791 FatbinConstantName, 8);
792 FatMagic = CudaFatMagic;
795 // Create initialized wrapper structure that points to the loaded GPU binary
796 ConstantInitBuilder Builder(CGM);
797 auto Values = Builder.beginStruct(FatbinWrapperTy);
798 // Fatbin wrapper magic.
799 Values.addInt(IntTy, FatMagic);
800 // Fatbin version.
801 Values.addInt(IntTy, 1);
802 // Data.
803 Values.add(FatBinStr);
804 // Unused in fatbin v1.
805 Values.add(llvm::ConstantPointerNull::get(PtrTy));
806 llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
807 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
808 /*constant*/ true);
809 FatbinWrapper->setSection(FatbinSectionName);
811 // There is only one HIP fat binary per linked module, however there are
812 // multiple constructor functions. Make sure the fat binary is registered
813 // only once. The constructor functions are executed by the dynamic loader
814 // before the program gains control. The dynamic loader cannot execute the
815 // constructor functions concurrently since doing that would not guarantee
816 // thread safety of the loaded program. Therefore we can assume sequential
817 // execution of constructor functions here.
818 if (IsHIP) {
819 auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
820 llvm::GlobalValue::LinkOnceAnyLinkage;
821 llvm::BasicBlock *IfBlock =
822 llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
823 llvm::BasicBlock *ExitBlock =
824 llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
825 // The name, size, and initialization pattern of this variable is part
826 // of HIP ABI.
827 GpuBinaryHandle = new llvm::GlobalVariable(
828 TheModule, PtrTy, /*isConstant=*/false, Linkage,
829 /*Initializer=*/llvm::ConstantPointerNull::get(PtrTy),
830 "__hip_gpubin_handle");
831 if (Linkage == llvm::GlobalValue::LinkOnceAnyLinkage)
832 GpuBinaryHandle->setComdat(
833 CGM.getModule().getOrInsertComdat(GpuBinaryHandle->getName()));
834 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
835 // Prevent the weak symbol in different shared libraries being merged.
836 if (Linkage != llvm::GlobalValue::InternalLinkage)
837 GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
838 Address GpuBinaryAddr(
839 GpuBinaryHandle, PtrTy,
840 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
842 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
843 llvm::Constant *Zero =
844 llvm::Constant::getNullValue(HandleValue->getType());
845 llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
846 CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
849 CtorBuilder.SetInsertPoint(IfBlock);
850 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
851 llvm::CallInst *RegisterFatbinCall =
852 CtorBuilder.CreateCall(RegisterFatbinFunc, FatbinWrapper);
853 CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
854 CtorBuilder.CreateBr(ExitBlock);
857 CtorBuilder.SetInsertPoint(ExitBlock);
858 // Call __hip_register_globals(GpuBinaryHandle);
859 if (RegisterGlobalsFunc) {
860 auto *HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
861 CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
864 } else if (!RelocatableDeviceCode) {
865 // Register binary with CUDA runtime. This is substantially different in
866 // default mode vs. separate compilation!
867 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
868 llvm::CallInst *RegisterFatbinCall =
869 CtorBuilder.CreateCall(RegisterFatbinFunc, FatbinWrapper);
870 GpuBinaryHandle = new llvm::GlobalVariable(
871 TheModule, PtrTy, false, llvm::GlobalValue::InternalLinkage,
872 llvm::ConstantPointerNull::get(PtrTy), "__cuda_gpubin_handle");
873 GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
874 CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
875 CGM.getPointerAlign());
877 // Call __cuda_register_globals(GpuBinaryHandle);
878 if (RegisterGlobalsFunc)
879 CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
881 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
882 if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
883 CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
884 // void __cudaRegisterFatBinaryEnd(void **);
885 llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
886 llvm::FunctionType::get(VoidTy, PtrTy, false),
887 "__cudaRegisterFatBinaryEnd");
888 CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
890 } else {
891 // Generate a unique module ID.
892 SmallString<64> ModuleID;
893 llvm::raw_svector_ostream OS(ModuleID);
894 OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
895 llvm::Constant *ModuleIDConstant = makeConstantArray(
896 std::string(ModuleID), "", ModuleIDSectionName, 32, /*AddNull=*/true);
898 // Create an alias for the FatbinWrapper that nvcc will look for.
899 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
900 Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
902 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
903 // void *, void (*)(void **))
904 SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
905 RegisterLinkedBinaryName += ModuleID;
906 llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
907 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
909 assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
910 llvm::Value *Args[] = {RegisterGlobalsFunc, FatbinWrapper, ModuleIDConstant,
911 makeDummyFunction(getCallbackFnTy())};
912 CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
915 // Create destructor and register it with atexit() the way NVCC does it. Doing
916 // it during regular destructor phase worked in CUDA before 9.2 but results in
917 // double-free in 9.2.
918 if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
919 // extern "C" int atexit(void (*f)(void));
920 llvm::FunctionType *AtExitTy =
921 llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
922 llvm::FunctionCallee AtExitFunc =
923 CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
924 /*Local=*/true);
925 CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
928 CtorBuilder.CreateRetVoid();
929 return ModuleCtorFunc;
932 /// Creates a global destructor function that unregisters the GPU code blob
933 /// registered by constructor.
935 /// For CUDA:
936 /// \code
937 /// void __cuda_module_dtor() {
938 /// __cudaUnregisterFatBinary(Handle);
939 /// }
940 /// \endcode
942 /// For HIP:
943 /// \code
944 /// void __hip_module_dtor() {
945 /// if (__hip_gpubin_handle) {
946 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
947 /// __hip_gpubin_handle = 0;
948 /// }
949 /// }
950 /// \endcode
951 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
952 // No need for destructor if we don't have a handle to unregister.
953 if (!GpuBinaryHandle)
954 return nullptr;
956 // void __cudaUnregisterFatBinary(void ** handle);
957 llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
958 llvm::FunctionType::get(VoidTy, PtrTy, false),
959 addUnderscoredPrefixToName("UnregisterFatBinary"));
961 llvm::Function *ModuleDtorFunc = llvm::Function::Create(
962 llvm::FunctionType::get(VoidTy, false),
963 llvm::GlobalValue::InternalLinkage,
964 addUnderscoredPrefixToName("_module_dtor"), &TheModule);
966 llvm::BasicBlock *DtorEntryBB =
967 llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
968 CGBuilderTy DtorBuilder(CGM, Context);
969 DtorBuilder.SetInsertPoint(DtorEntryBB);
971 Address GpuBinaryAddr(
972 GpuBinaryHandle, GpuBinaryHandle->getValueType(),
973 CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
974 auto *HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
975 // There is only one HIP fat binary per linked module, however there are
976 // multiple destructor functions. Make sure the fat binary is unregistered
977 // only once.
978 if (CGM.getLangOpts().HIP) {
979 llvm::BasicBlock *IfBlock =
980 llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
981 llvm::BasicBlock *ExitBlock =
982 llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
983 llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
984 llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
985 DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
987 DtorBuilder.SetInsertPoint(IfBlock);
988 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
989 DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
990 DtorBuilder.CreateBr(ExitBlock);
992 DtorBuilder.SetInsertPoint(ExitBlock);
993 } else {
994 DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
996 DtorBuilder.CreateRetVoid();
997 return ModuleDtorFunc;
1000 CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
1001 return new CGNVCUDARuntime(CGM);
1004 void CGNVCUDARuntime::internalizeDeviceSideVar(
1005 const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
1006 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1007 // global variables become internal definitions. These have to be internal in
1008 // order to prevent name conflicts with global host variables with the same
1009 // name in a different TUs.
1011 // For -fgpu-rdc, the shadow variables should not be internalized because
1012 // they may be accessed by different TU.
1013 if (CGM.getLangOpts().GPURelocatableDeviceCode)
1014 return;
1016 // __shared__ variables are odd. Shadows do get created, but
1017 // they are not registered with the CUDA runtime, so they
1018 // can't really be used to access their device-side
1019 // counterparts. It's not clear yet whether it's nvcc's bug or
1020 // a feature, but we've got to do the same for compatibility.
1021 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
1022 D->hasAttr<CUDASharedAttr>() ||
1023 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1024 D->getType()->isCUDADeviceBuiltinTextureType()) {
1025 Linkage = llvm::GlobalValue::InternalLinkage;
1029 void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
1030 llvm::GlobalVariable &GV) {
1031 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
1032 // Shadow variables and their properties must be registered with CUDA
1033 // runtime. Skip Extern global variables, which will be registered in
1034 // the TU where they are defined.
1036 // Don't register a C++17 inline variable. The local symbol can be
1037 // discarded and referencing a discarded local symbol from outside the
1038 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1040 // HIP managed variables need to be always recorded in device and host
1041 // compilations for transformation.
1043 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1044 // added to llvm.compiler-used, therefore they are safe to be registered.
1045 if ((!D->hasExternalStorage() && !D->isInline()) ||
1046 CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
1047 D->hasAttr<HIPManagedAttr>()) {
1048 registerDeviceVar(D, GV, !D->hasDefinition(),
1049 D->hasAttr<CUDAConstantAttr>());
1051 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
1052 D->getType()->isCUDADeviceBuiltinTextureType()) {
1053 // Builtin surfaces and textures and their template arguments are
1054 // also registered with CUDA runtime.
1055 const auto *TD = cast<ClassTemplateSpecializationDecl>(
1056 D->getType()->castAs<RecordType>()->getDecl());
1057 const TemplateArgumentList &Args = TD->getTemplateArgs();
1058 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
1059 assert(Args.size() == 2 &&
1060 "Unexpected number of template arguments of CUDA device "
1061 "builtin surface type.");
1062 auto SurfType = Args[1].getAsIntegral();
1063 if (!D->hasExternalStorage())
1064 registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
1065 } else {
1066 assert(Args.size() == 3 &&
1067 "Unexpected number of template arguments of CUDA device "
1068 "builtin texture type.");
1069 auto TexType = Args[1].getAsIntegral();
1070 auto Normalized = Args[2].getAsIntegral();
1071 if (!D->hasExternalStorage())
1072 registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
1073 Normalized.getZExtValue());
1078 // Transform managed variables to pointers to managed variables in device code.
1079 // Each use of the original managed variable is replaced by a load from the
1080 // transformed managed variable. The transformed managed variable contains
1081 // the address of managed memory which will be allocated by the runtime.
1082 void CGNVCUDARuntime::transformManagedVars() {
1083 for (auto &&Info : DeviceVars) {
1084 llvm::GlobalVariable *Var = Info.Var;
1085 if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
1086 Info.Flags.isManaged()) {
1087 auto *ManagedVar = new llvm::GlobalVariable(
1088 CGM.getModule(), Var->getType(),
1089 /*isConstant=*/false, Var->getLinkage(),
1090 /*Init=*/Var->isDeclaration()
1091 ? nullptr
1092 : llvm::ConstantPointerNull::get(Var->getType()),
1093 /*Name=*/"", /*InsertBefore=*/nullptr,
1094 llvm::GlobalVariable::NotThreadLocal,
1095 CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
1096 ManagedVar->setDSOLocal(Var->isDSOLocal());
1097 ManagedVar->setVisibility(Var->getVisibility());
1098 ManagedVar->setExternallyInitialized(true);
1099 replaceManagedVar(Var, ManagedVar);
1100 ManagedVar->takeName(Var);
1101 Var->setName(Twine(ManagedVar->getName()) + ".managed");
1102 // Keep managed variables even if they are not used in device code since
1103 // they need to be allocated by the runtime.
1104 if (!Var->isDeclaration()) {
1105 assert(!ManagedVar->isDeclaration());
1106 CGM.addCompilerUsedGlobal(Var);
1107 CGM.addCompilerUsedGlobal(ManagedVar);
1113 // Creates offloading entries for all the kernels and globals that must be
1114 // registered. The linker will provide a pointer to this section so we can
1115 // register the symbols with the linked device image.
1116 void CGNVCUDARuntime::createOffloadingEntries() {
1117 StringRef Section = CGM.getLangOpts().HIP ? "hip_offloading_entries"
1118 : "cuda_offloading_entries";
1119 llvm::Module &M = CGM.getModule();
1120 for (KernelInfo &I : EmittedKernels)
1121 llvm::offloading::emitOffloadingEntry(
1122 M, KernelHandles[I.Kernel->getName()],
1123 getDeviceSideName(cast<NamedDecl>(I.D)), /*Flags=*/0, /*Data=*/0,
1124 llvm::offloading::OffloadGlobalEntry, Section);
1126 for (VarInfo &I : DeviceVars) {
1127 uint64_t VarSize =
1128 CGM.getDataLayout().getTypeAllocSize(I.Var->getValueType());
1129 int32_t Flags =
1130 (I.Flags.isExtern()
1131 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalExtern)
1132 : 0) |
1133 (I.Flags.isConstant()
1134 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalConstant)
1135 : 0) |
1136 (I.Flags.isNormalized()
1137 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalNormalized)
1138 : 0);
1139 if (I.Flags.getKind() == DeviceVarFlags::Variable) {
1140 llvm::offloading::emitOffloadingEntry(
1141 M, I.Var, getDeviceSideName(I.D), VarSize,
1142 (I.Flags.isManaged() ? llvm::offloading::OffloadGlobalManagedEntry
1143 : llvm::offloading::OffloadGlobalEntry) |
1144 Flags,
1145 /*Data=*/0, Section);
1146 } else if (I.Flags.getKind() == DeviceVarFlags::Surface) {
1147 llvm::offloading::emitOffloadingEntry(
1148 M, I.Var, getDeviceSideName(I.D), VarSize,
1149 llvm::offloading::OffloadGlobalSurfaceEntry | Flags,
1150 I.Flags.getSurfTexType(), Section);
1151 } else if (I.Flags.getKind() == DeviceVarFlags::Texture) {
1152 llvm::offloading::emitOffloadingEntry(
1153 M, I.Var, getDeviceSideName(I.D), VarSize,
1154 llvm::offloading::OffloadGlobalTextureEntry | Flags,
1155 I.Flags.getSurfTexType(), Section);
1160 // Returns module constructor to be added.
1161 llvm::Function *CGNVCUDARuntime::finalizeModule() {
1162 if (CGM.getLangOpts().CUDAIsDevice) {
1163 transformManagedVars();
1165 // Mark ODR-used device variables as compiler used to prevent it from being
1166 // eliminated by optimization. This is necessary for device variables
1167 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1168 // matter whether they are ODR-used by device or host functions.
1170 // We do not need to do this if the variable has used attribute since it
1171 // has already been added.
1173 // Static device variables have been externalized at this point, therefore
1174 // variables with LLVM private or internal linkage need not be added.
1175 for (auto &&Info : DeviceVars) {
1176 auto Kind = Info.Flags.getKind();
1177 if (!Info.Var->isDeclaration() &&
1178 !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
1179 (Kind == DeviceVarFlags::Variable ||
1180 Kind == DeviceVarFlags::Surface ||
1181 Kind == DeviceVarFlags::Texture) &&
1182 Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
1183 CGM.addCompilerUsedGlobal(Info.Var);
1186 return nullptr;
1188 if (CGM.getLangOpts().OffloadingNewDriver && RelocatableDeviceCode)
1189 createOffloadingEntries();
1190 else
1191 return makeModuleCtorFunction();
1193 return nullptr;
1196 llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
1197 GlobalDecl GD) {
1198 auto Loc = KernelHandles.find(F->getName());
1199 if (Loc != KernelHandles.end()) {
1200 auto OldHandle = Loc->second;
1201 if (KernelStubs[OldHandle] == F)
1202 return OldHandle;
1204 // We've found the function name, but F itself has changed, so we need to
1205 // update the references.
1206 if (CGM.getLangOpts().HIP) {
1207 // For HIP compilation the handle itself does not change, so we only need
1208 // to update the Stub value.
1209 KernelStubs[OldHandle] = F;
1210 return OldHandle;
1212 // For non-HIP compilation, erase the old Stub and fall-through to creating
1213 // new entries.
1214 KernelStubs.erase(OldHandle);
1217 if (!CGM.getLangOpts().HIP) {
1218 KernelHandles[F->getName()] = F;
1219 KernelStubs[F] = F;
1220 return F;
1223 auto *Var = new llvm::GlobalVariable(
1224 TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
1225 /*Initializer=*/nullptr,
1226 CGM.getMangledName(
1227 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
1228 Var->setAlignment(CGM.getPointerAlign().getAsAlign());
1229 Var->setDSOLocal(F->isDSOLocal());
1230 Var->setVisibility(F->getVisibility());
1231 auto *FD = cast<FunctionDecl>(GD.getDecl());
1232 auto *FT = FD->getPrimaryTemplate();
1233 if (!FT || FT->isThisDeclarationADefinition())
1234 CGM.maybeSetTrivialComdat(*FD, *Var);
1235 KernelHandles[F->getName()] = Var;
1236 KernelStubs[Var] = F;
1237 return Var;