1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
12 //===----------------------------------------------------------------------===//
14 #include "CGCUDARuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/Basic/Cuda.h"
20 #include "clang/CodeGen/CodeGenABITypes.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/Frontend/Offloading/Utility.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/ReplaceConstant.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/VirtualFileSystem.h"
30 using namespace clang
;
31 using namespace CodeGen
;
34 constexpr unsigned CudaFatMagic
= 0x466243b1;
35 constexpr unsigned HIPFatMagic
= 0x48495046; // "HIPF"
37 class CGNVCUDARuntime
: public CGCUDARuntime
{
40 llvm::IntegerType
*IntTy
, *SizeTy
;
42 llvm::PointerType
*PtrTy
;
44 /// Convenience reference to LLVM Context
45 llvm::LLVMContext
&Context
;
46 /// Convenience reference to the current module
47 llvm::Module
&TheModule
;
48 /// Keeps track of kernel launch stubs and handles emitted in this module
50 llvm::Function
*Kernel
; // stub function to help launch kernel
53 llvm::SmallVector
<KernelInfo
, 16> EmittedKernels
;
54 // Map a kernel mangled name to a symbol for identifying kernel in host code
55 // For CUDA, the symbol for identifying the kernel is the same as the device
56 // stub function. For HIP, they are different.
57 llvm::DenseMap
<StringRef
, llvm::GlobalValue
*> KernelHandles
;
58 // Map a kernel handle to the kernel stub.
59 llvm::DenseMap
<llvm::GlobalValue
*, llvm::Function
*> KernelStubs
;
61 llvm::GlobalVariable
*Var
;
65 llvm::SmallVector
<VarInfo
, 16> DeviceVars
;
66 /// Keeps track of variable containing handle of GPU binary. Populated by
67 /// ModuleCtorFunction() and used to create corresponding cleanup calls in
68 /// ModuleDtorFunction()
69 llvm::GlobalVariable
*GpuBinaryHandle
= nullptr;
70 /// Whether we generate relocatable device code.
71 bool RelocatableDeviceCode
;
72 /// Mangle context for device.
73 std::unique_ptr
<MangleContext
> DeviceMC
;
74 /// Some zeros used for GEPs.
75 llvm::Constant
*Zeros
[2];
77 llvm::FunctionCallee
getSetupArgumentFn() const;
78 llvm::FunctionCallee
getLaunchFn() const;
80 llvm::FunctionType
*getRegisterGlobalsFnTy() const;
81 llvm::FunctionType
*getCallbackFnTy() const;
82 llvm::FunctionType
*getRegisterLinkedBinaryFnTy() const;
83 std::string
addPrefixToName(StringRef FuncName
) const;
84 std::string
addUnderscoredPrefixToName(StringRef FuncName
) const;
86 /// Creates a function to register all kernel stubs generated in this module.
87 llvm::Function
*makeRegisterGlobalsFn();
89 /// Helper function that generates a constant string and returns a pointer to
90 /// the start of the string. The result of this function can be used anywhere
91 /// where the C code specifies const char*.
92 llvm::Constant
*makeConstantString(const std::string
&Str
,
93 const std::string
&Name
= "") {
94 auto ConstStr
= CGM
.GetAddrOfConstantCString(Str
, Name
.c_str());
95 return llvm::ConstantExpr::getGetElementPtr(ConstStr
.getElementType(),
96 ConstStr
.getPointer(), Zeros
);
99 /// Helper function which generates an initialized constant array from Str,
100 /// and optionally sets section name and alignment. AddNull specifies whether
101 /// the array should nave NUL termination.
102 llvm::Constant
*makeConstantArray(StringRef Str
,
104 StringRef SectionName
= "",
105 unsigned Alignment
= 0,
106 bool AddNull
= false) {
107 llvm::Constant
*Value
=
108 llvm::ConstantDataArray::getString(Context
, Str
, AddNull
);
109 auto *GV
= new llvm::GlobalVariable(
110 TheModule
, Value
->getType(), /*isConstant=*/true,
111 llvm::GlobalValue::PrivateLinkage
, Value
, Name
);
112 if (!SectionName
.empty()) {
113 GV
->setSection(SectionName
);
114 // Mark the address as used which make sure that this section isn't
115 // merged and we will really have it in the object file.
116 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None
);
119 GV
->setAlignment(llvm::Align(Alignment
));
120 return llvm::ConstantExpr::getGetElementPtr(GV
->getValueType(), GV
, Zeros
);
123 /// Helper function that generates an empty dummy function returning void.
124 llvm::Function
*makeDummyFunction(llvm::FunctionType
*FnTy
) {
125 assert(FnTy
->getReturnType()->isVoidTy() &&
126 "Can only generate dummy functions returning void!");
127 llvm::Function
*DummyFunc
= llvm::Function::Create(
128 FnTy
, llvm::GlobalValue::InternalLinkage
, "dummy", &TheModule
);
130 llvm::BasicBlock
*DummyBlock
=
131 llvm::BasicBlock::Create(Context
, "", DummyFunc
);
132 CGBuilderTy
FuncBuilder(CGM
, Context
);
133 FuncBuilder
.SetInsertPoint(DummyBlock
);
134 FuncBuilder
.CreateRetVoid();
139 void emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
140 void emitDeviceStubBodyNew(CodeGenFunction
&CGF
, FunctionArgList
&Args
);
141 std::string
getDeviceSideName(const NamedDecl
*ND
) override
;
143 void registerDeviceVar(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
144 bool Extern
, bool Constant
) {
145 DeviceVars
.push_back({&Var
,
147 {DeviceVarFlags::Variable
, Extern
, Constant
,
148 VD
->hasAttr
<HIPManagedAttr
>(),
149 /*Normalized*/ false, 0}});
151 void registerDeviceSurf(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
152 bool Extern
, int Type
) {
153 DeviceVars
.push_back({&Var
,
155 {DeviceVarFlags::Surface
, Extern
, /*Constant*/ false,
157 /*Normalized*/ false, Type
}});
159 void registerDeviceTex(const VarDecl
*VD
, llvm::GlobalVariable
&Var
,
160 bool Extern
, int Type
, bool Normalized
) {
161 DeviceVars
.push_back({&Var
,
163 {DeviceVarFlags::Texture
, Extern
, /*Constant*/ false,
164 /*Managed*/ false, Normalized
, Type
}});
167 /// Creates module constructor function
168 llvm::Function
*makeModuleCtorFunction();
169 /// Creates module destructor function
170 llvm::Function
*makeModuleDtorFunction();
171 /// Transform managed variables for device compilation.
172 void transformManagedVars();
173 /// Create offloading entries to register globals in RDC mode.
174 void createOffloadingEntries();
177 CGNVCUDARuntime(CodeGenModule
&CGM
);
179 llvm::GlobalValue
*getKernelHandle(llvm::Function
*F
, GlobalDecl GD
) override
;
180 llvm::Function
*getKernelStub(llvm::GlobalValue
*Handle
) override
{
181 auto Loc
= KernelStubs
.find(Handle
);
182 assert(Loc
!= KernelStubs
.end());
185 void emitDeviceStub(CodeGenFunction
&CGF
, FunctionArgList
&Args
) override
;
186 void handleVarRegistration(const VarDecl
*VD
,
187 llvm::GlobalVariable
&Var
) override
;
189 internalizeDeviceSideVar(const VarDecl
*D
,
190 llvm::GlobalValue::LinkageTypes
&Linkage
) override
;
192 llvm::Function
*finalizeModule() override
;
195 } // end anonymous namespace
197 std::string
CGNVCUDARuntime::addPrefixToName(StringRef FuncName
) const {
198 if (CGM
.getLangOpts().HIP
)
199 return ((Twine("hip") + Twine(FuncName
)).str());
200 return ((Twine("cuda") + Twine(FuncName
)).str());
203 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName
) const {
204 if (CGM
.getLangOpts().HIP
)
205 return ((Twine("__hip") + Twine(FuncName
)).str());
206 return ((Twine("__cuda") + Twine(FuncName
)).str());
209 static std::unique_ptr
<MangleContext
> InitDeviceMC(CodeGenModule
&CGM
) {
210 // If the host and device have different C++ ABIs, mark it as the device
211 // mangle context so that the mangling needs to retrieve the additional
212 // device lambda mangling number instead of the regular host one.
213 if (CGM
.getContext().getAuxTargetInfo() &&
214 CGM
.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
215 CGM
.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily()) {
216 return std::unique_ptr
<MangleContext
>(
217 CGM
.getContext().createDeviceMangleContext(
218 *CGM
.getContext().getAuxTargetInfo()));
221 return std::unique_ptr
<MangleContext
>(CGM
.getContext().createMangleContext(
222 CGM
.getContext().getAuxTargetInfo()));
225 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule
&CGM
)
226 : CGCUDARuntime(CGM
), Context(CGM
.getLLVMContext()),
227 TheModule(CGM
.getModule()),
228 RelocatableDeviceCode(CGM
.getLangOpts().GPURelocatableDeviceCode
),
229 DeviceMC(InitDeviceMC(CGM
)) {
233 Zeros
[0] = llvm::ConstantInt::get(SizeTy
, 0);
235 PtrTy
= CGM
.UnqualPtrTy
;
238 llvm::FunctionCallee
CGNVCUDARuntime::getSetupArgumentFn() const {
239 // cudaError_t cudaSetupArgument(void *, size_t, size_t)
240 llvm::Type
*Params
[] = {PtrTy
, SizeTy
, SizeTy
};
241 return CGM
.CreateRuntimeFunction(
242 llvm::FunctionType::get(IntTy
, Params
, false),
243 addPrefixToName("SetupArgument"));
246 llvm::FunctionCallee
CGNVCUDARuntime::getLaunchFn() const {
247 if (CGM
.getLangOpts().HIP
) {
248 // hipError_t hipLaunchByPtr(char *);
249 return CGM
.CreateRuntimeFunction(
250 llvm::FunctionType::get(IntTy
, PtrTy
, false), "hipLaunchByPtr");
252 // cudaError_t cudaLaunch(char *);
253 return CGM
.CreateRuntimeFunction(llvm::FunctionType::get(IntTy
, PtrTy
, false),
257 llvm::FunctionType
*CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
258 return llvm::FunctionType::get(VoidTy
, PtrTy
, false);
261 llvm::FunctionType
*CGNVCUDARuntime::getCallbackFnTy() const {
262 return llvm::FunctionType::get(VoidTy
, PtrTy
, false);
265 llvm::FunctionType
*CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
266 llvm::Type
*Params
[] = {llvm::PointerType::getUnqual(Context
), PtrTy
, PtrTy
,
267 llvm::PointerType::getUnqual(Context
)};
268 return llvm::FunctionType::get(VoidTy
, Params
, false);
271 std::string
CGNVCUDARuntime::getDeviceSideName(const NamedDecl
*ND
) {
273 // D could be either a kernel or a variable.
274 if (auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
275 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
278 std::string DeviceSideName
;
280 if (CGM
.getLangOpts().CUDAIsDevice
)
281 MC
= &CGM
.getCXXABI().getMangleContext();
284 if (MC
->shouldMangleDeclName(ND
)) {
285 SmallString
<256> Buffer
;
286 llvm::raw_svector_ostream
Out(Buffer
);
287 MC
->mangleName(GD
, Out
);
288 DeviceSideName
= std::string(Out
.str());
290 DeviceSideName
= std::string(ND
->getIdentifier()->getName());
292 // Make unique name for device side static file-scope variable for HIP.
293 if (CGM
.getContext().shouldExternalize(ND
) &&
294 CGM
.getLangOpts().GPURelocatableDeviceCode
) {
295 SmallString
<256> Buffer
;
296 llvm::raw_svector_ostream
Out(Buffer
);
297 Out
<< DeviceSideName
;
298 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
299 DeviceSideName
= std::string(Out
.str());
301 return DeviceSideName
;
304 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction
&CGF
,
305 FunctionArgList
&Args
) {
306 EmittedKernels
.push_back({CGF
.CurFn
, CGF
.CurFuncDecl
});
308 dyn_cast
<llvm::GlobalVariable
>(KernelHandles
[CGF
.CurFn
->getName()])) {
309 GV
->setLinkage(CGF
.CurFn
->getLinkage());
310 GV
->setInitializer(CGF
.CurFn
);
312 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
313 CudaFeature::CUDA_USES_NEW_LAUNCH
) ||
314 (CGF
.getLangOpts().HIP
&& CGF
.getLangOpts().HIPUseNewLaunchAPI
))
315 emitDeviceStubBodyNew(CGF
, Args
);
317 emitDeviceStubBodyLegacy(CGF
, Args
);
320 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
321 // array and kernels are launched using cudaLaunchKernel().
322 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction
&CGF
,
323 FunctionArgList
&Args
) {
324 // Build the shadow stack entry at the very start of the function.
326 // Calculate amount of space we will need for all arguments. If we have no
327 // args, allocate a single pointer so we still have a valid pointer to the
328 // argument array that we can pass to runtime, even if it will be unused.
329 Address KernelArgs
= CGF
.CreateTempAlloca(
330 PtrTy
, CharUnits::fromQuantity(16), "kernel_args",
331 llvm::ConstantInt::get(SizeTy
, std::max
<size_t>(1, Args
.size())));
332 // Store pointers to the arguments in a locally allocated launch_args.
333 for (unsigned i
= 0; i
< Args
.size(); ++i
) {
334 llvm::Value
* VarPtr
= CGF
.GetAddrOfLocalVar(Args
[i
]).getPointer();
335 llvm::Value
*VoidVarPtr
= CGF
.Builder
.CreatePointerCast(VarPtr
, PtrTy
);
336 CGF
.Builder
.CreateDefaultAlignedStore(
338 CGF
.Builder
.CreateConstGEP1_32(PtrTy
, KernelArgs
.getPointer(), i
));
341 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
343 // Lookup cudaLaunchKernel/hipLaunchKernel function.
344 // HIP kernel launching API name depends on -fgpu-default-stream option. For
345 // the default value 'legacy', it is hipLaunchKernel. For 'per-thread',
346 // it is hipLaunchKernel_spt.
347 // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
348 // void **args, size_t sharedMem,
349 // cudaStream_t stream);
350 // hipError_t hipLaunchKernel[_spt](const void *func, dim3 gridDim,
351 // dim3 blockDim, void **args,
352 // size_t sharedMem, hipStream_t stream);
353 TranslationUnitDecl
*TUDecl
= CGM
.getContext().getTranslationUnitDecl();
354 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
355 std::string KernelLaunchAPI
= "LaunchKernel";
356 if (CGF
.getLangOpts().GPUDefaultStream
==
357 LangOptions::GPUDefaultStreamKind::PerThread
) {
358 if (CGF
.getLangOpts().HIP
)
359 KernelLaunchAPI
= KernelLaunchAPI
+ "_spt";
360 else if (CGF
.getLangOpts().CUDA
)
361 KernelLaunchAPI
= KernelLaunchAPI
+ "_ptsz";
363 auto LaunchKernelName
= addPrefixToName(KernelLaunchAPI
);
364 IdentifierInfo
&cudaLaunchKernelII
=
365 CGM
.getContext().Idents
.get(LaunchKernelName
);
366 FunctionDecl
*cudaLaunchKernelFD
= nullptr;
367 for (auto *Result
: DC
->lookup(&cudaLaunchKernelII
)) {
368 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Result
))
369 cudaLaunchKernelFD
= FD
;
372 if (cudaLaunchKernelFD
== nullptr) {
373 CGM
.Error(CGF
.CurFuncDecl
->getLocation(),
374 "Can't find declaration for " + LaunchKernelName
);
377 // Create temporary dim3 grid_dim, block_dim.
378 ParmVarDecl
*GridDimParam
= cudaLaunchKernelFD
->getParamDecl(1);
379 QualType Dim3Ty
= GridDimParam
->getType();
381 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "grid_dim");
383 CGF
.CreateMemTemp(Dim3Ty
, CharUnits::fromQuantity(8), "block_dim");
385 CGF
.CreateTempAlloca(SizeTy
, CGM
.getSizeAlign(), "shmem_size");
386 Address Stream
= CGF
.CreateTempAlloca(PtrTy
, CGM
.getPointerAlign(), "stream");
387 llvm::FunctionCallee cudaPopConfigFn
= CGM
.CreateRuntimeFunction(
388 llvm::FunctionType::get(IntTy
,
389 {/*gridDim=*/GridDim
.getType(),
390 /*blockDim=*/BlockDim
.getType(),
391 /*ShmemSize=*/ShmemSize
.getType(),
392 /*Stream=*/Stream
.getType()},
394 addUnderscoredPrefixToName("PopCallConfiguration"));
396 CGF
.EmitRuntimeCallOrInvoke(cudaPopConfigFn
,
397 {GridDim
.getPointer(), BlockDim
.getPointer(),
398 ShmemSize
.getPointer(), Stream
.getPointer()});
400 // Emit the call to cudaLaunch
401 llvm::Value
*Kernel
=
402 CGF
.Builder
.CreatePointerCast(KernelHandles
[CGF
.CurFn
->getName()], PtrTy
);
403 CallArgList LaunchKernelArgs
;
404 LaunchKernelArgs
.add(RValue::get(Kernel
),
405 cudaLaunchKernelFD
->getParamDecl(0)->getType());
406 LaunchKernelArgs
.add(RValue::getAggregate(GridDim
), Dim3Ty
);
407 LaunchKernelArgs
.add(RValue::getAggregate(BlockDim
), Dim3Ty
);
408 LaunchKernelArgs
.add(RValue::get(KernelArgs
.getPointer()),
409 cudaLaunchKernelFD
->getParamDecl(3)->getType());
410 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(ShmemSize
)),
411 cudaLaunchKernelFD
->getParamDecl(4)->getType());
412 LaunchKernelArgs
.add(RValue::get(CGF
.Builder
.CreateLoad(Stream
)),
413 cudaLaunchKernelFD
->getParamDecl(5)->getType());
415 QualType QT
= cudaLaunchKernelFD
->getType();
416 QualType CQT
= QT
.getCanonicalType();
417 llvm::Type
*Ty
= CGM
.getTypes().ConvertType(CQT
);
418 llvm::FunctionType
*FTy
= cast
<llvm::FunctionType
>(Ty
);
420 const CGFunctionInfo
&FI
=
421 CGM
.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD
);
422 llvm::FunctionCallee cudaLaunchKernelFn
=
423 CGM
.CreateRuntimeFunction(FTy
, LaunchKernelName
);
424 CGF
.EmitCall(FI
, CGCallee::forDirect(cudaLaunchKernelFn
), ReturnValueSlot(),
426 CGF
.EmitBranch(EndBlock
);
428 CGF
.EmitBlock(EndBlock
);
431 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction
&CGF
,
432 FunctionArgList
&Args
) {
433 // Emit a call to cudaSetupArgument for each arg in Args.
434 llvm::FunctionCallee cudaSetupArgFn
= getSetupArgumentFn();
435 llvm::BasicBlock
*EndBlock
= CGF
.createBasicBlock("setup.end");
436 CharUnits Offset
= CharUnits::Zero();
437 for (const VarDecl
*A
: Args
) {
438 auto TInfo
= CGM
.getContext().getTypeInfoInChars(A
->getType());
439 Offset
= Offset
.alignTo(TInfo
.Align
);
440 llvm::Value
*Args
[] = {
441 CGF
.Builder
.CreatePointerCast(CGF
.GetAddrOfLocalVar(A
).getPointer(),
443 llvm::ConstantInt::get(SizeTy
, TInfo
.Width
.getQuantity()),
444 llvm::ConstantInt::get(SizeTy
, Offset
.getQuantity()),
446 llvm::CallBase
*CB
= CGF
.EmitRuntimeCallOrInvoke(cudaSetupArgFn
, Args
);
447 llvm::Constant
*Zero
= llvm::ConstantInt::get(IntTy
, 0);
448 llvm::Value
*CBZero
= CGF
.Builder
.CreateICmpEQ(CB
, Zero
);
449 llvm::BasicBlock
*NextBlock
= CGF
.createBasicBlock("setup.next");
450 CGF
.Builder
.CreateCondBr(CBZero
, NextBlock
, EndBlock
);
451 CGF
.EmitBlock(NextBlock
);
452 Offset
+= TInfo
.Width
;
455 // Emit the call to cudaLaunch
456 llvm::FunctionCallee cudaLaunchFn
= getLaunchFn();
458 CGF
.Builder
.CreatePointerCast(KernelHandles
[CGF
.CurFn
->getName()], PtrTy
);
459 CGF
.EmitRuntimeCallOrInvoke(cudaLaunchFn
, Arg
);
460 CGF
.EmitBranch(EndBlock
);
462 CGF
.EmitBlock(EndBlock
);
465 // Replace the original variable Var with the address loaded from variable
466 // ManagedVar populated by HIP runtime.
467 static void replaceManagedVar(llvm::GlobalVariable
*Var
,
468 llvm::GlobalVariable
*ManagedVar
) {
469 SmallVector
<SmallVector
<llvm::User
*, 8>, 8> WorkList
;
470 for (auto &&VarUse
: Var
->uses()) {
471 WorkList
.push_back({VarUse
.getUser()});
473 while (!WorkList
.empty()) {
474 auto &&WorkItem
= WorkList
.pop_back_val();
475 auto *U
= WorkItem
.back();
476 if (isa
<llvm::ConstantExpr
>(U
)) {
477 for (auto &&UU
: U
->uses()) {
478 WorkItem
.push_back(UU
.getUser());
479 WorkList
.push_back(WorkItem
);
484 if (auto *I
= dyn_cast
<llvm::Instruction
>(U
)) {
485 llvm::Value
*OldV
= Var
;
486 llvm::Instruction
*NewV
=
487 new llvm::LoadInst(Var
->getType(), ManagedVar
, "ld.managed", false,
488 llvm::Align(Var
->getAlignment()), I
);
490 // Replace constant expressions directly or indirectly using the managed
491 // variable with instructions.
492 for (auto &&Op
: WorkItem
) {
493 auto *CE
= cast
<llvm::ConstantExpr
>(Op
);
494 auto *NewInst
= CE
->getAsInstruction(I
);
495 NewInst
->replaceUsesOfWith(OldV
, NewV
);
499 I
->replaceUsesOfWith(OldV
, NewV
);
501 llvm_unreachable("Invalid use of managed variable");
506 /// Creates a function that sets up state on the host side for CUDA objects that
507 /// have a presence on both the host and device sides. Specifically, registers
508 /// the host side of kernel functions and device global variables with the CUDA
511 /// void __cuda_register_globals(void** GpuBinaryHandle) {
512 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
514 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
515 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
517 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
520 llvm::Function
*CGNVCUDARuntime::makeRegisterGlobalsFn() {
521 // No need to register anything
522 if (EmittedKernels
.empty() && DeviceVars
.empty())
525 llvm::Function
*RegisterKernelsFunc
= llvm::Function::Create(
526 getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage
,
527 addUnderscoredPrefixToName("_register_globals"), &TheModule
);
528 llvm::BasicBlock
*EntryBB
=
529 llvm::BasicBlock::Create(Context
, "entry", RegisterKernelsFunc
);
530 CGBuilderTy
Builder(CGM
, Context
);
531 Builder
.SetInsertPoint(EntryBB
);
533 // void __cudaRegisterFunction(void **, const char *, char *, const char *,
534 // int, uint3*, uint3*, dim3*, dim3*, int*)
535 llvm::Type
*RegisterFuncParams
[] = {
536 PtrTy
, PtrTy
, PtrTy
, PtrTy
, IntTy
,
537 PtrTy
, PtrTy
, PtrTy
, PtrTy
, llvm::PointerType::getUnqual(Context
)};
538 llvm::FunctionCallee RegisterFunc
= CGM
.CreateRuntimeFunction(
539 llvm::FunctionType::get(IntTy
, RegisterFuncParams
, false),
540 addUnderscoredPrefixToName("RegisterFunction"));
542 // Extract GpuBinaryHandle passed as the first argument passed to
543 // __cuda_register_globals() and generate __cudaRegisterFunction() call for
544 // each emitted kernel.
545 llvm::Argument
&GpuBinaryHandlePtr
= *RegisterKernelsFunc
->arg_begin();
546 for (auto &&I
: EmittedKernels
) {
547 llvm::Constant
*KernelName
=
548 makeConstantString(getDeviceSideName(cast
<NamedDecl
>(I
.D
)));
549 llvm::Constant
*NullPtr
= llvm::ConstantPointerNull::get(PtrTy
);
550 llvm::Value
*Args
[] = {
552 KernelHandles
[I
.Kernel
->getName()],
555 llvm::ConstantInt::get(IntTy
, -1),
560 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Context
))};
561 Builder
.CreateCall(RegisterFunc
, Args
);
564 llvm::Type
*VarSizeTy
= IntTy
;
565 // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
566 if (CGM
.getLangOpts().HIP
||
567 ToCudaVersion(CGM
.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90
)
570 // void __cudaRegisterVar(void **, char *, char *, const char *,
571 // int, int, int, int)
572 llvm::Type
*RegisterVarParams
[] = {PtrTy
, PtrTy
, PtrTy
, PtrTy
,
573 IntTy
, VarSizeTy
, IntTy
, IntTy
};
574 llvm::FunctionCallee RegisterVar
= CGM
.CreateRuntimeFunction(
575 llvm::FunctionType::get(VoidTy
, RegisterVarParams
, false),
576 addUnderscoredPrefixToName("RegisterVar"));
577 // void __hipRegisterManagedVar(void **, char *, char *, const char *,
579 llvm::Type
*RegisterManagedVarParams
[] = {PtrTy
, PtrTy
, PtrTy
,
580 PtrTy
, VarSizeTy
, IntTy
};
581 llvm::FunctionCallee RegisterManagedVar
= CGM
.CreateRuntimeFunction(
582 llvm::FunctionType::get(VoidTy
, RegisterManagedVarParams
, false),
583 addUnderscoredPrefixToName("RegisterManagedVar"));
584 // void __cudaRegisterSurface(void **, const struct surfaceReference *,
585 // const void **, const char *, int, int);
586 llvm::FunctionCallee RegisterSurf
= CGM
.CreateRuntimeFunction(
587 llvm::FunctionType::get(
588 VoidTy
, {PtrTy
, PtrTy
, PtrTy
, PtrTy
, IntTy
, IntTy
}, false),
589 addUnderscoredPrefixToName("RegisterSurface"));
590 // void __cudaRegisterTexture(void **, const struct textureReference *,
591 // const void **, const char *, int, int, int)
592 llvm::FunctionCallee RegisterTex
= CGM
.CreateRuntimeFunction(
593 llvm::FunctionType::get(
594 VoidTy
, {PtrTy
, PtrTy
, PtrTy
, PtrTy
, IntTy
, IntTy
, IntTy
}, false),
595 addUnderscoredPrefixToName("RegisterTexture"));
596 for (auto &&Info
: DeviceVars
) {
597 llvm::GlobalVariable
*Var
= Info
.Var
;
598 assert((!Var
->isDeclaration() || Info
.Flags
.isManaged()) &&
599 "External variables should not show up here, except HIP managed "
601 llvm::Constant
*VarName
= makeConstantString(getDeviceSideName(Info
.D
));
602 switch (Info
.Flags
.getKind()) {
603 case DeviceVarFlags::Variable
: {
605 CGM
.getDataLayout().getTypeAllocSize(Var
->getValueType());
606 if (Info
.Flags
.isManaged()) {
607 auto *ManagedVar
= new llvm::GlobalVariable(
608 CGM
.getModule(), Var
->getType(),
609 /*isConstant=*/false, Var
->getLinkage(),
610 /*Init=*/Var
->isDeclaration()
612 : llvm::ConstantPointerNull::get(Var
->getType()),
613 /*Name=*/"", /*InsertBefore=*/nullptr,
614 llvm::GlobalVariable::NotThreadLocal
);
615 ManagedVar
->setDSOLocal(Var
->isDSOLocal());
616 ManagedVar
->setVisibility(Var
->getVisibility());
617 ManagedVar
->setExternallyInitialized(true);
618 ManagedVar
->takeName(Var
);
619 Var
->setName(Twine(ManagedVar
->getName() + ".managed"));
620 replaceManagedVar(Var
, ManagedVar
);
621 llvm::Value
*Args
[] = {
626 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
627 llvm::ConstantInt::get(IntTy
, Var
->getAlignment())};
628 if (!Var
->isDeclaration())
629 Builder
.CreateCall(RegisterManagedVar
, Args
);
631 llvm::Value
*Args
[] = {
636 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern()),
637 llvm::ConstantInt::get(VarSizeTy
, VarSize
),
638 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isConstant()),
639 llvm::ConstantInt::get(IntTy
, 0)};
640 Builder
.CreateCall(RegisterVar
, Args
);
644 case DeviceVarFlags::Surface
:
647 {&GpuBinaryHandlePtr
, Var
, VarName
, VarName
,
648 llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
649 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
651 case DeviceVarFlags::Texture
:
654 {&GpuBinaryHandlePtr
, Var
, VarName
, VarName
,
655 llvm::ConstantInt::get(IntTy
, Info
.Flags
.getSurfTexType()),
656 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isNormalized()),
657 llvm::ConstantInt::get(IntTy
, Info
.Flags
.isExtern())});
662 Builder
.CreateRetVoid();
663 return RegisterKernelsFunc
;
666 /// Creates a global constructor function for the module:
670 /// void __cuda_module_ctor() {
671 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
672 /// __cuda_register_globals(Handle);
678 /// void __hip_module_ctor() {
679 /// if (__hip_gpubin_handle == 0) {
680 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
681 /// __hip_register_globals(__hip_gpubin_handle);
685 llvm::Function
*CGNVCUDARuntime::makeModuleCtorFunction() {
686 bool IsHIP
= CGM
.getLangOpts().HIP
;
687 bool IsCUDA
= CGM
.getLangOpts().CUDA
;
688 // No need to generate ctors/dtors if there is no GPU binary.
689 StringRef CudaGpuBinaryFileName
= CGM
.getCodeGenOpts().CudaGpuBinaryFileName
;
690 if (CudaGpuBinaryFileName
.empty() && !IsHIP
)
692 if ((IsHIP
|| (IsCUDA
&& !RelocatableDeviceCode
)) && EmittedKernels
.empty() &&
696 // void __{cuda|hip}_register_globals(void* handle);
697 llvm::Function
*RegisterGlobalsFunc
= makeRegisterGlobalsFn();
698 // We always need a function to pass in as callback. Create a dummy
699 // implementation if we don't need to register anything.
700 if (RelocatableDeviceCode
&& !RegisterGlobalsFunc
)
701 RegisterGlobalsFunc
= makeDummyFunction(getRegisterGlobalsFnTy());
703 // void ** __{cuda|hip}RegisterFatBinary(void *);
704 llvm::FunctionCallee RegisterFatbinFunc
= CGM
.CreateRuntimeFunction(
705 llvm::FunctionType::get(PtrTy
, PtrTy
, false),
706 addUnderscoredPrefixToName("RegisterFatBinary"));
707 // struct { int magic, int version, void * gpu_binary, void * dont_care };
708 llvm::StructType
*FatbinWrapperTy
=
709 llvm::StructType::get(IntTy
, IntTy
, PtrTy
, PtrTy
);
711 // Register GPU binary with the CUDA runtime, store returned handle in a
712 // global variable and save a reference in GpuBinaryHandle to be cleaned up
713 // in destructor on exit. Then associate all known kernels with the GPU binary
714 // handle so CUDA runtime can figure out what to call on the GPU side.
715 std::unique_ptr
<llvm::MemoryBuffer
> CudaGpuBinary
= nullptr;
716 if (!CudaGpuBinaryFileName
.empty()) {
717 auto VFS
= CGM
.getFileSystem();
718 auto CudaGpuBinaryOrErr
=
719 VFS
->getBufferForFile(CudaGpuBinaryFileName
, -1, false);
720 if (std::error_code EC
= CudaGpuBinaryOrErr
.getError()) {
721 CGM
.getDiags().Report(diag::err_cannot_open_file
)
722 << CudaGpuBinaryFileName
<< EC
.message();
725 CudaGpuBinary
= std::move(CudaGpuBinaryOrErr
.get());
728 llvm::Function
*ModuleCtorFunc
= llvm::Function::Create(
729 llvm::FunctionType::get(VoidTy
, false),
730 llvm::GlobalValue::InternalLinkage
,
731 addUnderscoredPrefixToName("_module_ctor"), &TheModule
);
732 llvm::BasicBlock
*CtorEntryBB
=
733 llvm::BasicBlock::Create(Context
, "entry", ModuleCtorFunc
);
734 CGBuilderTy
CtorBuilder(CGM
, Context
);
736 CtorBuilder
.SetInsertPoint(CtorEntryBB
);
738 const char *FatbinConstantName
;
739 const char *FatbinSectionName
;
740 const char *ModuleIDSectionName
;
741 StringRef ModuleIDPrefix
;
742 llvm::Constant
*FatBinStr
;
745 FatbinConstantName
= ".hip_fatbin";
746 FatbinSectionName
= ".hipFatBinSegment";
748 ModuleIDSectionName
= "__hip_module_id";
749 ModuleIDPrefix
= "__hip_";
752 // If fatbin is available from early finalization, create a string
753 // literal containing the fat binary loaded from the given file.
754 const unsigned HIPCodeObjectAlign
= 4096;
755 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
756 FatbinConstantName
, HIPCodeObjectAlign
);
758 // If fatbin is not available, create an external symbol
759 // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
760 // to contain the fat binary but will be populated somewhere else,
761 // e.g. by lld through link script.
762 FatBinStr
= new llvm::GlobalVariable(
763 CGM
.getModule(), CGM
.Int8Ty
,
764 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage
, nullptr,
765 "__hip_fatbin", nullptr,
766 llvm::GlobalVariable::NotThreadLocal
);
767 cast
<llvm::GlobalVariable
>(FatBinStr
)->setSection(FatbinConstantName
);
770 FatMagic
= HIPFatMagic
;
772 if (RelocatableDeviceCode
)
773 FatbinConstantName
= CGM
.getTriple().isMacOSX()
774 ? "__NV_CUDA,__nv_relfatbin"
778 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
779 // NVIDIA's cuobjdump looks for fatbins in this section.
781 CGM
.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
783 ModuleIDSectionName
= CGM
.getTriple().isMacOSX()
784 ? "__NV_CUDA,__nv_module_id"
786 ModuleIDPrefix
= "__nv_";
788 // For CUDA, create a string literal containing the fat binary loaded from
790 FatBinStr
= makeConstantArray(std::string(CudaGpuBinary
->getBuffer()), "",
791 FatbinConstantName
, 8);
792 FatMagic
= CudaFatMagic
;
795 // Create initialized wrapper structure that points to the loaded GPU binary
796 ConstantInitBuilder
Builder(CGM
);
797 auto Values
= Builder
.beginStruct(FatbinWrapperTy
);
798 // Fatbin wrapper magic.
799 Values
.addInt(IntTy
, FatMagic
);
801 Values
.addInt(IntTy
, 1);
803 Values
.add(FatBinStr
);
804 // Unused in fatbin v1.
805 Values
.add(llvm::ConstantPointerNull::get(PtrTy
));
806 llvm::GlobalVariable
*FatbinWrapper
= Values
.finishAndCreateGlobal(
807 addUnderscoredPrefixToName("_fatbin_wrapper"), CGM
.getPointerAlign(),
809 FatbinWrapper
->setSection(FatbinSectionName
);
811 // There is only one HIP fat binary per linked module, however there are
812 // multiple constructor functions. Make sure the fat binary is registered
813 // only once. The constructor functions are executed by the dynamic loader
814 // before the program gains control. The dynamic loader cannot execute the
815 // constructor functions concurrently since doing that would not guarantee
816 // thread safety of the loaded program. Therefore we can assume sequential
817 // execution of constructor functions here.
819 auto Linkage
= CudaGpuBinary
? llvm::GlobalValue::InternalLinkage
:
820 llvm::GlobalValue::LinkOnceAnyLinkage
;
821 llvm::BasicBlock
*IfBlock
=
822 llvm::BasicBlock::Create(Context
, "if", ModuleCtorFunc
);
823 llvm::BasicBlock
*ExitBlock
=
824 llvm::BasicBlock::Create(Context
, "exit", ModuleCtorFunc
);
825 // The name, size, and initialization pattern of this variable is part
827 GpuBinaryHandle
= new llvm::GlobalVariable(
828 TheModule
, PtrTy
, /*isConstant=*/false, Linkage
,
829 /*Initializer=*/llvm::ConstantPointerNull::get(PtrTy
),
830 "__hip_gpubin_handle");
831 if (Linkage
== llvm::GlobalValue::LinkOnceAnyLinkage
)
832 GpuBinaryHandle
->setComdat(
833 CGM
.getModule().getOrInsertComdat(GpuBinaryHandle
->getName()));
834 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
835 // Prevent the weak symbol in different shared libraries being merged.
836 if (Linkage
!= llvm::GlobalValue::InternalLinkage
)
837 GpuBinaryHandle
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
838 Address
GpuBinaryAddr(
839 GpuBinaryHandle
, PtrTy
,
840 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
842 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
843 llvm::Constant
*Zero
=
844 llvm::Constant::getNullValue(HandleValue
->getType());
845 llvm::Value
*EQZero
= CtorBuilder
.CreateICmpEQ(HandleValue
, Zero
);
846 CtorBuilder
.CreateCondBr(EQZero
, IfBlock
, ExitBlock
);
849 CtorBuilder
.SetInsertPoint(IfBlock
);
850 // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
851 llvm::CallInst
*RegisterFatbinCall
=
852 CtorBuilder
.CreateCall(RegisterFatbinFunc
, FatbinWrapper
);
853 CtorBuilder
.CreateStore(RegisterFatbinCall
, GpuBinaryAddr
);
854 CtorBuilder
.CreateBr(ExitBlock
);
857 CtorBuilder
.SetInsertPoint(ExitBlock
);
858 // Call __hip_register_globals(GpuBinaryHandle);
859 if (RegisterGlobalsFunc
) {
860 auto *HandleValue
= CtorBuilder
.CreateLoad(GpuBinaryAddr
);
861 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, HandleValue
);
864 } else if (!RelocatableDeviceCode
) {
865 // Register binary with CUDA runtime. This is substantially different in
866 // default mode vs. separate compilation!
867 // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
868 llvm::CallInst
*RegisterFatbinCall
=
869 CtorBuilder
.CreateCall(RegisterFatbinFunc
, FatbinWrapper
);
870 GpuBinaryHandle
= new llvm::GlobalVariable(
871 TheModule
, PtrTy
, false, llvm::GlobalValue::InternalLinkage
,
872 llvm::ConstantPointerNull::get(PtrTy
), "__cuda_gpubin_handle");
873 GpuBinaryHandle
->setAlignment(CGM
.getPointerAlign().getAsAlign());
874 CtorBuilder
.CreateAlignedStore(RegisterFatbinCall
, GpuBinaryHandle
,
875 CGM
.getPointerAlign());
877 // Call __cuda_register_globals(GpuBinaryHandle);
878 if (RegisterGlobalsFunc
)
879 CtorBuilder
.CreateCall(RegisterGlobalsFunc
, RegisterFatbinCall
);
881 // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
882 if (CudaFeatureEnabled(CGM
.getTarget().getSDKVersion(),
883 CudaFeature::CUDA_USES_FATBIN_REGISTER_END
)) {
884 // void __cudaRegisterFatBinaryEnd(void **);
885 llvm::FunctionCallee RegisterFatbinEndFunc
= CGM
.CreateRuntimeFunction(
886 llvm::FunctionType::get(VoidTy
, PtrTy
, false),
887 "__cudaRegisterFatBinaryEnd");
888 CtorBuilder
.CreateCall(RegisterFatbinEndFunc
, RegisterFatbinCall
);
891 // Generate a unique module ID.
892 SmallString
<64> ModuleID
;
893 llvm::raw_svector_ostream
OS(ModuleID
);
894 OS
<< ModuleIDPrefix
<< llvm::format("%" PRIx64
, FatbinWrapper
->getGUID());
895 llvm::Constant
*ModuleIDConstant
= makeConstantArray(
896 std::string(ModuleID
), "", ModuleIDSectionName
, 32, /*AddNull=*/true);
898 // Create an alias for the FatbinWrapper that nvcc will look for.
899 llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage
,
900 Twine("__fatbinwrap") + ModuleID
, FatbinWrapper
);
902 // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
903 // void *, void (*)(void **))
904 SmallString
<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
905 RegisterLinkedBinaryName
+= ModuleID
;
906 llvm::FunctionCallee RegisterLinkedBinaryFunc
= CGM
.CreateRuntimeFunction(
907 getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName
);
909 assert(RegisterGlobalsFunc
&& "Expecting at least dummy function!");
910 llvm::Value
*Args
[] = {RegisterGlobalsFunc
, FatbinWrapper
, ModuleIDConstant
,
911 makeDummyFunction(getCallbackFnTy())};
912 CtorBuilder
.CreateCall(RegisterLinkedBinaryFunc
, Args
);
915 // Create destructor and register it with atexit() the way NVCC does it. Doing
916 // it during regular destructor phase worked in CUDA before 9.2 but results in
917 // double-free in 9.2.
918 if (llvm::Function
*CleanupFn
= makeModuleDtorFunction()) {
919 // extern "C" int atexit(void (*f)(void));
920 llvm::FunctionType
*AtExitTy
=
921 llvm::FunctionType::get(IntTy
, CleanupFn
->getType(), false);
922 llvm::FunctionCallee AtExitFunc
=
923 CGM
.CreateRuntimeFunction(AtExitTy
, "atexit", llvm::AttributeList(),
925 CtorBuilder
.CreateCall(AtExitFunc
, CleanupFn
);
928 CtorBuilder
.CreateRetVoid();
929 return ModuleCtorFunc
;
932 /// Creates a global destructor function that unregisters the GPU code blob
933 /// registered by constructor.
937 /// void __cuda_module_dtor() {
938 /// __cudaUnregisterFatBinary(Handle);
944 /// void __hip_module_dtor() {
945 /// if (__hip_gpubin_handle) {
946 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
947 /// __hip_gpubin_handle = 0;
951 llvm::Function
*CGNVCUDARuntime::makeModuleDtorFunction() {
952 // No need for destructor if we don't have a handle to unregister.
953 if (!GpuBinaryHandle
)
956 // void __cudaUnregisterFatBinary(void ** handle);
957 llvm::FunctionCallee UnregisterFatbinFunc
= CGM
.CreateRuntimeFunction(
958 llvm::FunctionType::get(VoidTy
, PtrTy
, false),
959 addUnderscoredPrefixToName("UnregisterFatBinary"));
961 llvm::Function
*ModuleDtorFunc
= llvm::Function::Create(
962 llvm::FunctionType::get(VoidTy
, false),
963 llvm::GlobalValue::InternalLinkage
,
964 addUnderscoredPrefixToName("_module_dtor"), &TheModule
);
966 llvm::BasicBlock
*DtorEntryBB
=
967 llvm::BasicBlock::Create(Context
, "entry", ModuleDtorFunc
);
968 CGBuilderTy
DtorBuilder(CGM
, Context
);
969 DtorBuilder
.SetInsertPoint(DtorEntryBB
);
971 Address
GpuBinaryAddr(
972 GpuBinaryHandle
, GpuBinaryHandle
->getValueType(),
973 CharUnits::fromQuantity(GpuBinaryHandle
->getAlignment()));
974 auto *HandleValue
= DtorBuilder
.CreateLoad(GpuBinaryAddr
);
975 // There is only one HIP fat binary per linked module, however there are
976 // multiple destructor functions. Make sure the fat binary is unregistered
978 if (CGM
.getLangOpts().HIP
) {
979 llvm::BasicBlock
*IfBlock
=
980 llvm::BasicBlock::Create(Context
, "if", ModuleDtorFunc
);
981 llvm::BasicBlock
*ExitBlock
=
982 llvm::BasicBlock::Create(Context
, "exit", ModuleDtorFunc
);
983 llvm::Constant
*Zero
= llvm::Constant::getNullValue(HandleValue
->getType());
984 llvm::Value
*NEZero
= DtorBuilder
.CreateICmpNE(HandleValue
, Zero
);
985 DtorBuilder
.CreateCondBr(NEZero
, IfBlock
, ExitBlock
);
987 DtorBuilder
.SetInsertPoint(IfBlock
);
988 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
989 DtorBuilder
.CreateStore(Zero
, GpuBinaryAddr
);
990 DtorBuilder
.CreateBr(ExitBlock
);
992 DtorBuilder
.SetInsertPoint(ExitBlock
);
994 DtorBuilder
.CreateCall(UnregisterFatbinFunc
, HandleValue
);
996 DtorBuilder
.CreateRetVoid();
997 return ModuleDtorFunc
;
1000 CGCUDARuntime
*CodeGen::CreateNVCUDARuntime(CodeGenModule
&CGM
) {
1001 return new CGNVCUDARuntime(CGM
);
1004 void CGNVCUDARuntime::internalizeDeviceSideVar(
1005 const VarDecl
*D
, llvm::GlobalValue::LinkageTypes
&Linkage
) {
1006 // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
1007 // global variables become internal definitions. These have to be internal in
1008 // order to prevent name conflicts with global host variables with the same
1009 // name in a different TUs.
1011 // For -fgpu-rdc, the shadow variables should not be internalized because
1012 // they may be accessed by different TU.
1013 if (CGM
.getLangOpts().GPURelocatableDeviceCode
)
1016 // __shared__ variables are odd. Shadows do get created, but
1017 // they are not registered with the CUDA runtime, so they
1018 // can't really be used to access their device-side
1019 // counterparts. It's not clear yet whether it's nvcc's bug or
1020 // a feature, but we've got to do the same for compatibility.
1021 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
1022 D
->hasAttr
<CUDASharedAttr
>() ||
1023 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1024 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1025 Linkage
= llvm::GlobalValue::InternalLinkage
;
1029 void CGNVCUDARuntime::handleVarRegistration(const VarDecl
*D
,
1030 llvm::GlobalVariable
&GV
) {
1031 if (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>()) {
1032 // Shadow variables and their properties must be registered with CUDA
1033 // runtime. Skip Extern global variables, which will be registered in
1034 // the TU where they are defined.
1036 // Don't register a C++17 inline variable. The local symbol can be
1037 // discarded and referencing a discarded local symbol from outside the
1038 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
1040 // HIP managed variables need to be always recorded in device and host
1041 // compilations for transformation.
1043 // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
1044 // added to llvm.compiler-used, therefore they are safe to be registered.
1045 if ((!D
->hasExternalStorage() && !D
->isInline()) ||
1046 CGM
.getContext().CUDADeviceVarODRUsedByHost
.contains(D
) ||
1047 D
->hasAttr
<HIPManagedAttr
>()) {
1048 registerDeviceVar(D
, GV
, !D
->hasDefinition(),
1049 D
->hasAttr
<CUDAConstantAttr
>());
1051 } else if (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
1052 D
->getType()->isCUDADeviceBuiltinTextureType()) {
1053 // Builtin surfaces and textures and their template arguments are
1054 // also registered with CUDA runtime.
1055 const auto *TD
= cast
<ClassTemplateSpecializationDecl
>(
1056 D
->getType()->castAs
<RecordType
>()->getDecl());
1057 const TemplateArgumentList
&Args
= TD
->getTemplateArgs();
1058 if (TD
->hasAttr
<CUDADeviceBuiltinSurfaceTypeAttr
>()) {
1059 assert(Args
.size() == 2 &&
1060 "Unexpected number of template arguments of CUDA device "
1061 "builtin surface type.");
1062 auto SurfType
= Args
[1].getAsIntegral();
1063 if (!D
->hasExternalStorage())
1064 registerDeviceSurf(D
, GV
, !D
->hasDefinition(), SurfType
.getSExtValue());
1066 assert(Args
.size() == 3 &&
1067 "Unexpected number of template arguments of CUDA device "
1068 "builtin texture type.");
1069 auto TexType
= Args
[1].getAsIntegral();
1070 auto Normalized
= Args
[2].getAsIntegral();
1071 if (!D
->hasExternalStorage())
1072 registerDeviceTex(D
, GV
, !D
->hasDefinition(), TexType
.getSExtValue(),
1073 Normalized
.getZExtValue());
1078 // Transform managed variables to pointers to managed variables in device code.
1079 // Each use of the original managed variable is replaced by a load from the
1080 // transformed managed variable. The transformed managed variable contains
1081 // the address of managed memory which will be allocated by the runtime.
1082 void CGNVCUDARuntime::transformManagedVars() {
1083 for (auto &&Info
: DeviceVars
) {
1084 llvm::GlobalVariable
*Var
= Info
.Var
;
1085 if (Info
.Flags
.getKind() == DeviceVarFlags::Variable
&&
1086 Info
.Flags
.isManaged()) {
1087 auto *ManagedVar
= new llvm::GlobalVariable(
1088 CGM
.getModule(), Var
->getType(),
1089 /*isConstant=*/false, Var
->getLinkage(),
1090 /*Init=*/Var
->isDeclaration()
1092 : llvm::ConstantPointerNull::get(Var
->getType()),
1093 /*Name=*/"", /*InsertBefore=*/nullptr,
1094 llvm::GlobalVariable::NotThreadLocal
,
1095 CGM
.getContext().getTargetAddressSpace(LangAS::cuda_device
));
1096 ManagedVar
->setDSOLocal(Var
->isDSOLocal());
1097 ManagedVar
->setVisibility(Var
->getVisibility());
1098 ManagedVar
->setExternallyInitialized(true);
1099 replaceManagedVar(Var
, ManagedVar
);
1100 ManagedVar
->takeName(Var
);
1101 Var
->setName(Twine(ManagedVar
->getName()) + ".managed");
1102 // Keep managed variables even if they are not used in device code since
1103 // they need to be allocated by the runtime.
1104 if (!Var
->isDeclaration()) {
1105 assert(!ManagedVar
->isDeclaration());
1106 CGM
.addCompilerUsedGlobal(Var
);
1107 CGM
.addCompilerUsedGlobal(ManagedVar
);
1113 // Creates offloading entries for all the kernels and globals that must be
1114 // registered. The linker will provide a pointer to this section so we can
1115 // register the symbols with the linked device image.
1116 void CGNVCUDARuntime::createOffloadingEntries() {
1117 StringRef Section
= CGM
.getLangOpts().HIP
? "hip_offloading_entries"
1118 : "cuda_offloading_entries";
1119 llvm::Module
&M
= CGM
.getModule();
1120 for (KernelInfo
&I
: EmittedKernels
)
1121 llvm::offloading::emitOffloadingEntry(
1122 M
, KernelHandles
[I
.Kernel
->getName()],
1123 getDeviceSideName(cast
<NamedDecl
>(I
.D
)), /*Flags=*/0, /*Data=*/0,
1124 llvm::offloading::OffloadGlobalEntry
, Section
);
1126 for (VarInfo
&I
: DeviceVars
) {
1128 CGM
.getDataLayout().getTypeAllocSize(I
.Var
->getValueType());
1131 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalExtern
)
1133 (I
.Flags
.isConstant()
1134 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalConstant
)
1136 (I
.Flags
.isNormalized()
1137 ? static_cast<int32_t>(llvm::offloading::OffloadGlobalNormalized
)
1139 if (I
.Flags
.getKind() == DeviceVarFlags::Variable
) {
1140 llvm::offloading::emitOffloadingEntry(
1141 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1142 (I
.Flags
.isManaged() ? llvm::offloading::OffloadGlobalManagedEntry
1143 : llvm::offloading::OffloadGlobalEntry
) |
1145 /*Data=*/0, Section
);
1146 } else if (I
.Flags
.getKind() == DeviceVarFlags::Surface
) {
1147 llvm::offloading::emitOffloadingEntry(
1148 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1149 llvm::offloading::OffloadGlobalSurfaceEntry
| Flags
,
1150 I
.Flags
.getSurfTexType(), Section
);
1151 } else if (I
.Flags
.getKind() == DeviceVarFlags::Texture
) {
1152 llvm::offloading::emitOffloadingEntry(
1153 M
, I
.Var
, getDeviceSideName(I
.D
), VarSize
,
1154 llvm::offloading::OffloadGlobalTextureEntry
| Flags
,
1155 I
.Flags
.getSurfTexType(), Section
);
1160 // Returns module constructor to be added.
1161 llvm::Function
*CGNVCUDARuntime::finalizeModule() {
1162 if (CGM
.getLangOpts().CUDAIsDevice
) {
1163 transformManagedVars();
1165 // Mark ODR-used device variables as compiler used to prevent it from being
1166 // eliminated by optimization. This is necessary for device variables
1167 // ODR-used by host functions. Sema correctly marks them as ODR-used no
1168 // matter whether they are ODR-used by device or host functions.
1170 // We do not need to do this if the variable has used attribute since it
1171 // has already been added.
1173 // Static device variables have been externalized at this point, therefore
1174 // variables with LLVM private or internal linkage need not be added.
1175 for (auto &&Info
: DeviceVars
) {
1176 auto Kind
= Info
.Flags
.getKind();
1177 if (!Info
.Var
->isDeclaration() &&
1178 !llvm::GlobalValue::isLocalLinkage(Info
.Var
->getLinkage()) &&
1179 (Kind
== DeviceVarFlags::Variable
||
1180 Kind
== DeviceVarFlags::Surface
||
1181 Kind
== DeviceVarFlags::Texture
) &&
1182 Info
.D
->isUsed() && !Info
.D
->hasAttr
<UsedAttr
>()) {
1183 CGM
.addCompilerUsedGlobal(Info
.Var
);
1188 if (CGM
.getLangOpts().OffloadingNewDriver
&& RelocatableDeviceCode
)
1189 createOffloadingEntries();
1191 return makeModuleCtorFunction();
1196 llvm::GlobalValue
*CGNVCUDARuntime::getKernelHandle(llvm::Function
*F
,
1198 auto Loc
= KernelHandles
.find(F
->getName());
1199 if (Loc
!= KernelHandles
.end()) {
1200 auto OldHandle
= Loc
->second
;
1201 if (KernelStubs
[OldHandle
] == F
)
1204 // We've found the function name, but F itself has changed, so we need to
1205 // update the references.
1206 if (CGM
.getLangOpts().HIP
) {
1207 // For HIP compilation the handle itself does not change, so we only need
1208 // to update the Stub value.
1209 KernelStubs
[OldHandle
] = F
;
1212 // For non-HIP compilation, erase the old Stub and fall-through to creating
1214 KernelStubs
.erase(OldHandle
);
1217 if (!CGM
.getLangOpts().HIP
) {
1218 KernelHandles
[F
->getName()] = F
;
1223 auto *Var
= new llvm::GlobalVariable(
1224 TheModule
, F
->getType(), /*isConstant=*/true, F
->getLinkage(),
1225 /*Initializer=*/nullptr,
1227 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
)));
1228 Var
->setAlignment(CGM
.getPointerAlign().getAsAlign());
1229 Var
->setDSOLocal(F
->isDSOLocal());
1230 Var
->setVisibility(F
->getVisibility());
1231 auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
1232 auto *FT
= FD
->getPrimaryTemplate();
1233 if (!FT
|| FT
->isThisDeclarationADefinition())
1234 CGM
.maybeSetTrivialComdat(*FD
, *Var
);
1235 KernelHandles
[F
->getName()] = Var
;
1236 KernelStubs
[Var
] = F
;