[cmake] Add minor version to library SONAME (#79376)
[llvm-project.git] / clang / lib / CodeGen / CGCall.cpp
blob28c211aa631e4d8d4736cbcd24b2d7f93f869270
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
12 //===----------------------------------------------------------------------===//
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "ABIInfoImpl.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <optional>
45 using namespace clang;
46 using namespace CodeGen;
48 /***/
50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
51 switch (CC) {
52 default: return llvm::CallingConv::C;
53 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
54 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
55 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
56 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
57 case CC_Win64: return llvm::CallingConv::Win64;
58 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
59 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
60 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
61 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
62 // TODO: Add support for __pascal to LLVM.
63 case CC_X86Pascal: return llvm::CallingConv::C;
64 // TODO: Add support for __vectorcall to LLVM.
65 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
66 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
67 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
68 case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
69 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
70 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71 case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
72 case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
73 case CC_Swift: return llvm::CallingConv::Swift;
74 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
75 case CC_M68kRTD: return llvm::CallingConv::M68k_RTD;
79 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
80 /// qualification. Either or both of RD and MD may be null. A null RD indicates
81 /// that there is no meaningful 'this' type, and a null MD can occur when
82 /// calling a method pointer.
83 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
84 const CXXMethodDecl *MD) {
85 QualType RecTy;
86 if (RD)
87 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
88 else
89 RecTy = Context.VoidTy;
91 if (MD)
92 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
93 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
96 /// Returns the canonical formal type of the given C++ method.
97 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
98 return MD->getType()->getCanonicalTypeUnqualified()
99 .getAs<FunctionProtoType>();
102 /// Returns the "extra-canonicalized" return type, which discards
103 /// qualifiers on the return type. Codegen doesn't care about them,
104 /// and it makes ABI code a little easier to be able to assume that
105 /// all parameter and return types are top-level unqualified.
106 static CanQualType GetReturnType(QualType RetTy) {
107 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
110 /// Arrange the argument and result information for a value of the given
111 /// unprototyped freestanding function type.
112 const CGFunctionInfo &
113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
114 // When translating an unprototyped function type, always use a
115 // variadic type.
116 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
117 FnInfoOpts::None, std::nullopt,
118 FTNP->getExtInfo(), {}, RequiredArgs(0));
121 static void addExtParameterInfosForCall(
122 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
123 const FunctionProtoType *proto,
124 unsigned prefixArgs,
125 unsigned totalArgs) {
126 assert(proto->hasExtParameterInfos());
127 assert(paramInfos.size() <= prefixArgs);
128 assert(proto->getNumParams() + prefixArgs <= totalArgs);
130 paramInfos.reserve(totalArgs);
132 // Add default infos for any prefix args that don't already have infos.
133 paramInfos.resize(prefixArgs);
135 // Add infos for the prototype.
136 for (const auto &ParamInfo : proto->getExtParameterInfos()) {
137 paramInfos.push_back(ParamInfo);
138 // pass_object_size params have no parameter info.
139 if (ParamInfo.hasPassObjectSize())
140 paramInfos.emplace_back();
143 assert(paramInfos.size() <= totalArgs &&
144 "Did we forget to insert pass_object_size args?");
145 // Add default infos for the variadic and/or suffix arguments.
146 paramInfos.resize(totalArgs);
149 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
150 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
151 static void appendParameterTypes(const CodeGenTypes &CGT,
152 SmallVectorImpl<CanQualType> &prefix,
153 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
154 CanQual<FunctionProtoType> FPT) {
155 // Fast path: don't touch param info if we don't need to.
156 if (!FPT->hasExtParameterInfos()) {
157 assert(paramInfos.empty() &&
158 "We have paramInfos, but the prototype doesn't?");
159 prefix.append(FPT->param_type_begin(), FPT->param_type_end());
160 return;
163 unsigned PrefixSize = prefix.size();
164 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
165 // parameters; the only thing that can change this is the presence of
166 // pass_object_size. So, we preallocate for the common case.
167 prefix.reserve(prefix.size() + FPT->getNumParams());
169 auto ExtInfos = FPT->getExtParameterInfos();
170 assert(ExtInfos.size() == FPT->getNumParams());
171 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
172 prefix.push_back(FPT->getParamType(I));
173 if (ExtInfos[I].hasPassObjectSize())
174 prefix.push_back(CGT.getContext().getSizeType());
177 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
178 prefix.size());
181 /// Arrange the LLVM function layout for a value of the given function
182 /// type, on top of any implicit parameters already stored.
183 static const CGFunctionInfo &
184 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
185 SmallVectorImpl<CanQualType> &prefix,
186 CanQual<FunctionProtoType> FTP) {
187 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
188 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
189 // FIXME: Kill copy.
190 appendParameterTypes(CGT, prefix, paramInfos, FTP);
191 CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
193 FnInfoOpts opts =
194 instanceMethod ? FnInfoOpts::IsInstanceMethod : FnInfoOpts::None;
195 return CGT.arrangeLLVMFunctionInfo(resultType, opts, prefix,
196 FTP->getExtInfo(), paramInfos, Required);
199 /// Arrange the argument and result information for a value of the
200 /// given freestanding function type.
201 const CGFunctionInfo &
202 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
203 SmallVector<CanQualType, 16> argTypes;
204 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
205 FTP);
208 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
209 bool IsWindows) {
210 // Set the appropriate calling convention for the Function.
211 if (D->hasAttr<StdCallAttr>())
212 return CC_X86StdCall;
214 if (D->hasAttr<FastCallAttr>())
215 return CC_X86FastCall;
217 if (D->hasAttr<RegCallAttr>())
218 return CC_X86RegCall;
220 if (D->hasAttr<ThisCallAttr>())
221 return CC_X86ThisCall;
223 if (D->hasAttr<VectorCallAttr>())
224 return CC_X86VectorCall;
226 if (D->hasAttr<PascalAttr>())
227 return CC_X86Pascal;
229 if (PcsAttr *PCS = D->getAttr<PcsAttr>())
230 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
232 if (D->hasAttr<AArch64VectorPcsAttr>())
233 return CC_AArch64VectorCall;
235 if (D->hasAttr<AArch64SVEPcsAttr>())
236 return CC_AArch64SVEPCS;
238 if (D->hasAttr<AMDGPUKernelCallAttr>())
239 return CC_AMDGPUKernelCall;
241 if (D->hasAttr<IntelOclBiccAttr>())
242 return CC_IntelOclBicc;
244 if (D->hasAttr<MSABIAttr>())
245 return IsWindows ? CC_C : CC_Win64;
247 if (D->hasAttr<SysVABIAttr>())
248 return IsWindows ? CC_X86_64SysV : CC_C;
250 if (D->hasAttr<PreserveMostAttr>())
251 return CC_PreserveMost;
253 if (D->hasAttr<PreserveAllAttr>())
254 return CC_PreserveAll;
256 if (D->hasAttr<M68kRTDAttr>())
257 return CC_M68kRTD;
259 return CC_C;
262 /// Arrange the argument and result information for a call to an
263 /// unknown C++ non-static member function of the given abstract type.
264 /// (A null RD means we don't have any meaningful "this" argument type,
265 /// so fall back to a generic pointer type).
266 /// The member function must be an ordinary function, i.e. not a
267 /// constructor or destructor.
268 const CGFunctionInfo &
269 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
270 const FunctionProtoType *FTP,
271 const CXXMethodDecl *MD) {
272 SmallVector<CanQualType, 16> argTypes;
274 // Add the 'this' pointer.
275 argTypes.push_back(DeriveThisType(RD, MD));
277 return ::arrangeLLVMFunctionInfo(
278 *this, /*instanceMethod=*/true, argTypes,
279 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
282 /// Set calling convention for CUDA/HIP kernel.
283 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
284 const FunctionDecl *FD) {
285 if (FD->hasAttr<CUDAGlobalAttr>()) {
286 const FunctionType *FT = FTy->getAs<FunctionType>();
287 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
288 FTy = FT->getCanonicalTypeUnqualified();
292 /// Arrange the argument and result information for a declaration or
293 /// definition of the given C++ non-static member function. The
294 /// member function must be an ordinary function, i.e. not a
295 /// constructor or destructor.
296 const CGFunctionInfo &
297 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
298 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
299 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
301 CanQualType FT = GetFormalType(MD).getAs<Type>();
302 setCUDAKernelCallingConvention(FT, CGM, MD);
303 auto prototype = FT.getAs<FunctionProtoType>();
305 if (MD->isImplicitObjectMemberFunction()) {
306 // The abstract case is perfectly fine.
307 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
308 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
311 return arrangeFreeFunctionType(prototype);
314 bool CodeGenTypes::inheritingCtorHasParams(
315 const InheritedConstructor &Inherited, CXXCtorType Type) {
316 // Parameters are unnecessary if we're constructing a base class subobject
317 // and the inherited constructor lives in a virtual base.
318 return Type == Ctor_Complete ||
319 !Inherited.getShadowDecl()->constructsVirtualBase() ||
320 !Target.getCXXABI().hasConstructorVariants();
323 const CGFunctionInfo &
324 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
325 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
327 SmallVector<CanQualType, 16> argTypes;
328 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
330 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
331 argTypes.push_back(DeriveThisType(ThisType, MD));
333 bool PassParams = true;
335 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
336 // A base class inheriting constructor doesn't get forwarded arguments
337 // needed to construct a virtual base (or base class thereof).
338 if (auto Inherited = CD->getInheritedConstructor())
339 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
342 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
344 // Add the formal parameters.
345 if (PassParams)
346 appendParameterTypes(*this, argTypes, paramInfos, FTP);
348 CGCXXABI::AddedStructorArgCounts AddedArgs =
349 TheCXXABI.buildStructorSignature(GD, argTypes);
350 if (!paramInfos.empty()) {
351 // Note: prefix implies after the first param.
352 if (AddedArgs.Prefix)
353 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
354 FunctionProtoType::ExtParameterInfo{});
355 if (AddedArgs.Suffix)
356 paramInfos.append(AddedArgs.Suffix,
357 FunctionProtoType::ExtParameterInfo{});
360 RequiredArgs required =
361 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
362 : RequiredArgs::All);
364 FunctionType::ExtInfo extInfo = FTP->getExtInfo();
365 CanQualType resultType = TheCXXABI.HasThisReturn(GD)
366 ? argTypes.front()
367 : TheCXXABI.hasMostDerivedReturn(GD)
368 ? CGM.getContext().VoidPtrTy
369 : Context.VoidTy;
370 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::IsInstanceMethod,
371 argTypes, extInfo, paramInfos, required);
374 static SmallVector<CanQualType, 16>
375 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
376 SmallVector<CanQualType, 16> argTypes;
377 for (auto &arg : args)
378 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
379 return argTypes;
382 static SmallVector<CanQualType, 16>
383 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
384 SmallVector<CanQualType, 16> argTypes;
385 for (auto &arg : args)
386 argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
387 return argTypes;
390 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
391 getExtParameterInfosForCall(const FunctionProtoType *proto,
392 unsigned prefixArgs, unsigned totalArgs) {
393 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
394 if (proto->hasExtParameterInfos()) {
395 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
397 return result;
400 /// Arrange a call to a C++ method, passing the given arguments.
402 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
403 /// parameter.
404 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
405 /// args.
406 /// PassProtoArgs indicates whether `args` has args for the parameters in the
407 /// given CXXConstructorDecl.
408 const CGFunctionInfo &
409 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
410 const CXXConstructorDecl *D,
411 CXXCtorType CtorKind,
412 unsigned ExtraPrefixArgs,
413 unsigned ExtraSuffixArgs,
414 bool PassProtoArgs) {
415 // FIXME: Kill copy.
416 SmallVector<CanQualType, 16> ArgTypes;
417 for (const auto &Arg : args)
418 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
420 // +1 for implicit this, which should always be args[0].
421 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
423 CanQual<FunctionProtoType> FPT = GetFormalType(D);
424 RequiredArgs Required = PassProtoArgs
425 ? RequiredArgs::forPrototypePlus(
426 FPT, TotalPrefixArgs + ExtraSuffixArgs)
427 : RequiredArgs::All;
429 GlobalDecl GD(D, CtorKind);
430 CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
431 ? ArgTypes.front()
432 : TheCXXABI.hasMostDerivedReturn(GD)
433 ? CGM.getContext().VoidPtrTy
434 : Context.VoidTy;
436 FunctionType::ExtInfo Info = FPT->getExtInfo();
437 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
438 // If the prototype args are elided, we should only have ABI-specific args,
439 // which never have param info.
440 if (PassProtoArgs && FPT->hasExtParameterInfos()) {
441 // ABI-specific suffix arguments are treated the same as variadic arguments.
442 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
443 ArgTypes.size());
446 return arrangeLLVMFunctionInfo(ResultType, FnInfoOpts::IsInstanceMethod,
447 ArgTypes, Info, ParamInfos, Required);
450 /// Arrange the argument and result information for the declaration or
451 /// definition of the given function.
452 const CGFunctionInfo &
453 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
454 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
455 if (MD->isImplicitObjectMemberFunction())
456 return arrangeCXXMethodDeclaration(MD);
458 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
460 assert(isa<FunctionType>(FTy));
461 setCUDAKernelCallingConvention(FTy, CGM, FD);
463 // When declaring a function without a prototype, always use a
464 // non-variadic type.
465 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
466 return arrangeLLVMFunctionInfo(noProto->getReturnType(), FnInfoOpts::None,
467 std::nullopt, noProto->getExtInfo(), {},
468 RequiredArgs::All);
471 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
474 /// Arrange the argument and result information for the declaration or
475 /// definition of an Objective-C method.
476 const CGFunctionInfo &
477 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
478 // It happens that this is the same as a call with no optional
479 // arguments, except also using the formal 'self' type.
480 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
483 /// Arrange the argument and result information for the function type
484 /// through which to perform a send to the given Objective-C method,
485 /// using the given receiver type. The receiver type is not always
486 /// the 'self' type of the method or even an Objective-C pointer type.
487 /// This is *not* the right method for actually performing such a
488 /// message send, due to the possibility of optional arguments.
489 const CGFunctionInfo &
490 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
491 QualType receiverType) {
492 SmallVector<CanQualType, 16> argTys;
493 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
494 MD->isDirectMethod() ? 1 : 2);
495 argTys.push_back(Context.getCanonicalParamType(receiverType));
496 if (!MD->isDirectMethod())
497 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
498 // FIXME: Kill copy?
499 for (const auto *I : MD->parameters()) {
500 argTys.push_back(Context.getCanonicalParamType(I->getType()));
501 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
502 I->hasAttr<NoEscapeAttr>());
503 extParamInfos.push_back(extParamInfo);
506 FunctionType::ExtInfo einfo;
507 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
508 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
510 if (getContext().getLangOpts().ObjCAutoRefCount &&
511 MD->hasAttr<NSReturnsRetainedAttr>())
512 einfo = einfo.withProducesResult(true);
514 RequiredArgs required =
515 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
517 return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()),
518 FnInfoOpts::None, argTys, einfo, extParamInfos,
519 required);
522 const CGFunctionInfo &
523 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
524 const CallArgList &args) {
525 auto argTypes = getArgTypesForCall(Context, args);
526 FunctionType::ExtInfo einfo;
528 return arrangeLLVMFunctionInfo(GetReturnType(returnType), FnInfoOpts::None,
529 argTypes, einfo, {}, RequiredArgs::All);
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
534 // FIXME: Do we need to handle ObjCMethodDecl?
535 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
537 if (isa<CXXConstructorDecl>(GD.getDecl()) ||
538 isa<CXXDestructorDecl>(GD.getDecl()))
539 return arrangeCXXStructorDeclaration(GD);
541 return arrangeFunctionDeclaration(FD);
544 /// Arrange a thunk that takes 'this' as the first parameter followed by
545 /// varargs. Return a void pointer, regardless of the actual return type.
546 /// The body of the thunk will end in a musttail call to a function of the
547 /// correct type, and the caller will bitcast the function to the correct
548 /// prototype.
549 const CGFunctionInfo &
550 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
551 assert(MD->isVirtual() && "only methods have thunks");
552 CanQual<FunctionProtoType> FTP = GetFormalType(MD);
553 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
554 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::None, ArgTys,
555 FTP->getExtInfo(), {}, RequiredArgs(1));
558 const CGFunctionInfo &
559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
560 CXXCtorType CT) {
561 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
563 CanQual<FunctionProtoType> FTP = GetFormalType(CD);
564 SmallVector<CanQualType, 2> ArgTys;
565 const CXXRecordDecl *RD = CD->getParent();
566 ArgTys.push_back(DeriveThisType(RD, CD));
567 if (CT == Ctor_CopyingClosure)
568 ArgTys.push_back(*FTP->param_type_begin());
569 if (RD->getNumVBases() > 0)
570 ArgTys.push_back(Context.IntTy);
571 CallingConv CC = Context.getDefaultCallingConvention(
572 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
573 return arrangeLLVMFunctionInfo(Context.VoidTy, FnInfoOpts::IsInstanceMethod,
574 ArgTys, FunctionType::ExtInfo(CC), {},
575 RequiredArgs::All);
578 /// Arrange a call as unto a free function, except possibly with an
579 /// additional number of formal parameters considered required.
580 static const CGFunctionInfo &
581 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
582 CodeGenModule &CGM,
583 const CallArgList &args,
584 const FunctionType *fnType,
585 unsigned numExtraRequiredArgs,
586 bool chainCall) {
587 assert(args.size() >= numExtraRequiredArgs);
589 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
591 // In most cases, there are no optional arguments.
592 RequiredArgs required = RequiredArgs::All;
594 // If we have a variadic prototype, the required arguments are the
595 // extra prefix plus the arguments in the prototype.
596 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
597 if (proto->isVariadic())
598 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
600 if (proto->hasExtParameterInfos())
601 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
602 args.size());
604 // If we don't have a prototype at all, but we're supposed to
605 // explicitly use the variadic convention for unprototyped calls,
606 // treat all of the arguments as required but preserve the nominal
607 // possibility of variadics.
608 } else if (CGM.getTargetCodeGenInfo()
609 .isNoProtoCallVariadic(args,
610 cast<FunctionNoProtoType>(fnType))) {
611 required = RequiredArgs(args.size());
614 // FIXME: Kill copy.
615 SmallVector<CanQualType, 16> argTypes;
616 for (const auto &arg : args)
617 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
618 FnInfoOpts opts = chainCall ? FnInfoOpts::IsChainCall : FnInfoOpts::None;
619 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
620 opts, argTypes, fnType->getExtInfo(),
621 paramInfos, required);
624 /// Figure out the rules for calling a function with the given formal
625 /// type using the given arguments. The arguments are necessary
626 /// because the function might be unprototyped, in which case it's
627 /// target-dependent in crazy ways.
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
630 const FunctionType *fnType,
631 bool chainCall) {
632 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
633 chainCall ? 1 : 0, chainCall);
636 /// A block function is essentially a free function with an
637 /// extra implicit argument.
638 const CGFunctionInfo &
639 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
640 const FunctionType *fnType) {
641 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
642 /*chainCall=*/false);
645 const CGFunctionInfo &
646 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
647 const FunctionArgList &params) {
648 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
649 auto argTypes = getArgTypesForDeclaration(Context, params);
651 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
652 FnInfoOpts::None, argTypes,
653 proto->getExtInfo(), paramInfos,
654 RequiredArgs::forPrototypePlus(proto, 1));
657 const CGFunctionInfo &
658 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
659 const CallArgList &args) {
660 // FIXME: Kill copy.
661 SmallVector<CanQualType, 16> argTypes;
662 for (const auto &Arg : args)
663 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
664 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
665 argTypes, FunctionType::ExtInfo(),
666 /*paramInfos=*/{}, RequiredArgs::All);
669 const CGFunctionInfo &
670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
671 const FunctionArgList &args) {
672 auto argTypes = getArgTypesForDeclaration(Context, args);
674 return arrangeLLVMFunctionInfo(GetReturnType(resultType), FnInfoOpts::None,
675 argTypes, FunctionType::ExtInfo(), {},
676 RequiredArgs::All);
679 const CGFunctionInfo &
680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
681 ArrayRef<CanQualType> argTypes) {
682 return arrangeLLVMFunctionInfo(resultType, FnInfoOpts::None, argTypes,
683 FunctionType::ExtInfo(), {},
684 RequiredArgs::All);
687 /// Arrange a call to a C++ method, passing the given arguments.
689 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
690 /// does not count `this`.
691 const CGFunctionInfo &
692 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
693 const FunctionProtoType *proto,
694 RequiredArgs required,
695 unsigned numPrefixArgs) {
696 assert(numPrefixArgs + 1 <= args.size() &&
697 "Emitting a call with less args than the required prefix?");
698 // Add one to account for `this`. It's a bit awkward here, but we don't count
699 // `this` in similar places elsewhere.
700 auto paramInfos =
701 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
703 // FIXME: Kill copy.
704 auto argTypes = getArgTypesForCall(Context, args);
706 FunctionType::ExtInfo info = proto->getExtInfo();
707 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
708 FnInfoOpts::IsInstanceMethod, argTypes, info,
709 paramInfos, required);
712 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
713 return arrangeLLVMFunctionInfo(getContext().VoidTy, FnInfoOpts::None,
714 std::nullopt, FunctionType::ExtInfo(), {},
715 RequiredArgs::All);
718 const CGFunctionInfo &
719 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
720 const CallArgList &args) {
721 assert(signature.arg_size() <= args.size());
722 if (signature.arg_size() == args.size())
723 return signature;
725 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
726 auto sigParamInfos = signature.getExtParameterInfos();
727 if (!sigParamInfos.empty()) {
728 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
729 paramInfos.resize(args.size());
732 auto argTypes = getArgTypesForCall(Context, args);
734 assert(signature.getRequiredArgs().allowsOptionalArgs());
735 FnInfoOpts opts = FnInfoOpts::None;
736 if (signature.isInstanceMethod())
737 opts |= FnInfoOpts::IsInstanceMethod;
738 if (signature.isChainCall())
739 opts |= FnInfoOpts::IsChainCall;
740 if (signature.isDelegateCall())
741 opts |= FnInfoOpts::IsDelegateCall;
742 return arrangeLLVMFunctionInfo(signature.getReturnType(), opts, argTypes,
743 signature.getExtInfo(), paramInfos,
744 signature.getRequiredArgs());
747 namespace clang {
748 namespace CodeGen {
749 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
753 /// Arrange the argument and result information for an abstract value
754 /// of a given function type. This is the method which all of the
755 /// above functions ultimately defer to.
756 const CGFunctionInfo &CodeGenTypes::arrangeLLVMFunctionInfo(
757 CanQualType resultType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes,
758 FunctionType::ExtInfo info,
759 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
760 RequiredArgs required) {
761 assert(llvm::all_of(argTypes,
762 [](CanQualType T) { return T.isCanonicalAsParam(); }));
764 // Lookup or create unique function info.
765 llvm::FoldingSetNodeID ID;
766 bool isInstanceMethod =
767 (opts & FnInfoOpts::IsInstanceMethod) == FnInfoOpts::IsInstanceMethod;
768 bool isChainCall =
769 (opts & FnInfoOpts::IsChainCall) == FnInfoOpts::IsChainCall;
770 bool isDelegateCall =
771 (opts & FnInfoOpts::IsDelegateCall) == FnInfoOpts::IsDelegateCall;
772 CGFunctionInfo::Profile(ID, isInstanceMethod, isChainCall, isDelegateCall,
773 info, paramInfos, required, resultType, argTypes);
775 void *insertPos = nullptr;
776 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
777 if (FI)
778 return *FI;
780 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
782 // Construct the function info. We co-allocate the ArgInfos.
783 FI = CGFunctionInfo::create(CC, isInstanceMethod, isChainCall, isDelegateCall,
784 info, paramInfos, resultType, argTypes, required);
785 FunctionInfos.InsertNode(FI, insertPos);
787 bool inserted = FunctionsBeingProcessed.insert(FI).second;
788 (void)inserted;
789 assert(inserted && "Recursively being processed?");
791 // Compute ABI information.
792 if (CC == llvm::CallingConv::SPIR_KERNEL) {
793 // Force target independent argument handling for the host visible
794 // kernel functions.
795 computeSPIRKernelABIInfo(CGM, *FI);
796 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
797 swiftcall::computeABIInfo(CGM, *FI);
798 } else {
799 getABIInfo().computeInfo(*FI);
802 // Loop over all of the computed argument and return value info. If any of
803 // them are direct or extend without a specified coerce type, specify the
804 // default now.
805 ABIArgInfo &retInfo = FI->getReturnInfo();
806 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
807 retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
809 for (auto &I : FI->arguments())
810 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
811 I.info.setCoerceToType(ConvertType(I.type));
813 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
814 assert(erased && "Not in set?");
816 return *FI;
819 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod,
820 bool chainCall, bool delegateCall,
821 const FunctionType::ExtInfo &info,
822 ArrayRef<ExtParameterInfo> paramInfos,
823 CanQualType resultType,
824 ArrayRef<CanQualType> argTypes,
825 RequiredArgs required) {
826 assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
827 assert(!required.allowsOptionalArgs() ||
828 required.getNumRequiredArgs() <= argTypes.size());
830 void *buffer =
831 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
832 argTypes.size() + 1, paramInfos.size()));
834 CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
835 FI->CallingConvention = llvmCC;
836 FI->EffectiveCallingConvention = llvmCC;
837 FI->ASTCallingConvention = info.getCC();
838 FI->InstanceMethod = instanceMethod;
839 FI->ChainCall = chainCall;
840 FI->DelegateCall = delegateCall;
841 FI->CmseNSCall = info.getCmseNSCall();
842 FI->NoReturn = info.getNoReturn();
843 FI->ReturnsRetained = info.getProducesResult();
844 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
845 FI->NoCfCheck = info.getNoCfCheck();
846 FI->Required = required;
847 FI->HasRegParm = info.getHasRegParm();
848 FI->RegParm = info.getRegParm();
849 FI->ArgStruct = nullptr;
850 FI->ArgStructAlign = 0;
851 FI->NumArgs = argTypes.size();
852 FI->HasExtParameterInfos = !paramInfos.empty();
853 FI->getArgsBuffer()[0].type = resultType;
854 FI->MaxVectorWidth = 0;
855 for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
856 FI->getArgsBuffer()[i + 1].type = argTypes[i];
857 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
858 FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
859 return FI;
862 /***/
864 namespace {
865 // ABIArgInfo::Expand implementation.
867 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
868 struct TypeExpansion {
869 enum TypeExpansionKind {
870 // Elements of constant arrays are expanded recursively.
871 TEK_ConstantArray,
872 // Record fields are expanded recursively (but if record is a union, only
873 // the field with the largest size is expanded).
874 TEK_Record,
875 // For complex types, real and imaginary parts are expanded recursively.
876 TEK_Complex,
877 // All other types are not expandable.
878 TEK_None
881 const TypeExpansionKind Kind;
883 TypeExpansion(TypeExpansionKind K) : Kind(K) {}
884 virtual ~TypeExpansion() {}
887 struct ConstantArrayExpansion : TypeExpansion {
888 QualType EltTy;
889 uint64_t NumElts;
891 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
892 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
893 static bool classof(const TypeExpansion *TE) {
894 return TE->Kind == TEK_ConstantArray;
898 struct RecordExpansion : TypeExpansion {
899 SmallVector<const CXXBaseSpecifier *, 1> Bases;
901 SmallVector<const FieldDecl *, 1> Fields;
903 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
904 SmallVector<const FieldDecl *, 1> &&Fields)
905 : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
906 Fields(std::move(Fields)) {}
907 static bool classof(const TypeExpansion *TE) {
908 return TE->Kind == TEK_Record;
912 struct ComplexExpansion : TypeExpansion {
913 QualType EltTy;
915 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
916 static bool classof(const TypeExpansion *TE) {
917 return TE->Kind == TEK_Complex;
921 struct NoExpansion : TypeExpansion {
922 NoExpansion() : TypeExpansion(TEK_None) {}
923 static bool classof(const TypeExpansion *TE) {
924 return TE->Kind == TEK_None;
927 } // namespace
929 static std::unique_ptr<TypeExpansion>
930 getTypeExpansion(QualType Ty, const ASTContext &Context) {
931 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
932 return std::make_unique<ConstantArrayExpansion>(
933 AT->getElementType(), AT->getSize().getZExtValue());
935 if (const RecordType *RT = Ty->getAs<RecordType>()) {
936 SmallVector<const CXXBaseSpecifier *, 1> Bases;
937 SmallVector<const FieldDecl *, 1> Fields;
938 const RecordDecl *RD = RT->getDecl();
939 assert(!RD->hasFlexibleArrayMember() &&
940 "Cannot expand structure with flexible array.");
941 if (RD->isUnion()) {
942 // Unions can be here only in degenerative cases - all the fields are same
943 // after flattening. Thus we have to use the "largest" field.
944 const FieldDecl *LargestFD = nullptr;
945 CharUnits UnionSize = CharUnits::Zero();
947 for (const auto *FD : RD->fields()) {
948 if (FD->isZeroLengthBitField(Context))
949 continue;
950 assert(!FD->isBitField() &&
951 "Cannot expand structure with bit-field members.");
952 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
953 if (UnionSize < FieldSize) {
954 UnionSize = FieldSize;
955 LargestFD = FD;
958 if (LargestFD)
959 Fields.push_back(LargestFD);
960 } else {
961 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
962 assert(!CXXRD->isDynamicClass() &&
963 "cannot expand vtable pointers in dynamic classes");
964 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
967 for (const auto *FD : RD->fields()) {
968 if (FD->isZeroLengthBitField(Context))
969 continue;
970 assert(!FD->isBitField() &&
971 "Cannot expand structure with bit-field members.");
972 Fields.push_back(FD);
975 return std::make_unique<RecordExpansion>(std::move(Bases),
976 std::move(Fields));
978 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
979 return std::make_unique<ComplexExpansion>(CT->getElementType());
981 return std::make_unique<NoExpansion>();
984 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
985 auto Exp = getTypeExpansion(Ty, Context);
986 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
987 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
989 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990 int Res = 0;
991 for (auto BS : RExp->Bases)
992 Res += getExpansionSize(BS->getType(), Context);
993 for (auto FD : RExp->Fields)
994 Res += getExpansionSize(FD->getType(), Context);
995 return Res;
997 if (isa<ComplexExpansion>(Exp.get()))
998 return 2;
999 assert(isa<NoExpansion>(Exp.get()));
1000 return 1;
1003 void
1004 CodeGenTypes::getExpandedTypes(QualType Ty,
1005 SmallVectorImpl<llvm::Type *>::iterator &TI) {
1006 auto Exp = getTypeExpansion(Ty, Context);
1007 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1008 for (int i = 0, n = CAExp->NumElts; i < n; i++) {
1009 getExpandedTypes(CAExp->EltTy, TI);
1011 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1012 for (auto BS : RExp->Bases)
1013 getExpandedTypes(BS->getType(), TI);
1014 for (auto FD : RExp->Fields)
1015 getExpandedTypes(FD->getType(), TI);
1016 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1017 llvm::Type *EltTy = ConvertType(CExp->EltTy);
1018 *TI++ = EltTy;
1019 *TI++ = EltTy;
1020 } else {
1021 assert(isa<NoExpansion>(Exp.get()));
1022 *TI++ = ConvertType(Ty);
1026 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1027 ConstantArrayExpansion *CAE,
1028 Address BaseAddr,
1029 llvm::function_ref<void(Address)> Fn) {
1030 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1031 CharUnits EltAlign =
1032 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1033 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
1035 for (int i = 0, n = CAE->NumElts; i < n; i++) {
1036 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
1037 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
1038 Fn(Address(EltAddr, EltTy, EltAlign));
1042 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1043 llvm::Function::arg_iterator &AI) {
1044 assert(LV.isSimple() &&
1045 "Unexpected non-simple lvalue during struct expansion.");
1047 auto Exp = getTypeExpansion(Ty, getContext());
1048 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1049 forConstantArrayExpansion(
1050 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1051 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1052 ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1054 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1055 Address This = LV.getAddress(*this);
1056 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1057 // Perform a single step derived-to-base conversion.
1058 Address Base =
1059 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1060 /*NullCheckValue=*/false, SourceLocation());
1061 LValue SubLV = MakeAddrLValue(Base, BS->getType());
1063 // Recurse onto bases.
1064 ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1066 for (auto FD : RExp->Fields) {
1067 // FIXME: What are the right qualifiers here?
1068 LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1069 ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1071 } else if (isa<ComplexExpansion>(Exp.get())) {
1072 auto realValue = &*AI++;
1073 auto imagValue = &*AI++;
1074 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1075 } else {
1076 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1077 // primitive store.
1078 assert(isa<NoExpansion>(Exp.get()));
1079 llvm::Value *Arg = &*AI++;
1080 if (LV.isBitField()) {
1081 EmitStoreThroughLValue(RValue::get(Arg), LV);
1082 } else {
1083 // TODO: currently there are some places are inconsistent in what LLVM
1084 // pointer type they use (see D118744). Once clang uses opaque pointers
1085 // all LLVM pointer types will be the same and we can remove this check.
1086 if (Arg->getType()->isPointerTy()) {
1087 Address Addr = LV.getAddress(*this);
1088 Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
1090 EmitStoreOfScalar(Arg, LV);
1095 void CodeGenFunction::ExpandTypeToArgs(
1096 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1097 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1098 auto Exp = getTypeExpansion(Ty, getContext());
1099 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1100 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1101 : Arg.getKnownRValue().getAggregateAddress();
1102 forConstantArrayExpansion(
1103 *this, CAExp, Addr, [&](Address EltAddr) {
1104 CallArg EltArg = CallArg(
1105 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1106 CAExp->EltTy);
1107 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1108 IRCallArgPos);
1110 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1111 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1112 : Arg.getKnownRValue().getAggregateAddress();
1113 for (const CXXBaseSpecifier *BS : RExp->Bases) {
1114 // Perform a single step derived-to-base conversion.
1115 Address Base =
1116 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1117 /*NullCheckValue=*/false, SourceLocation());
1118 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1120 // Recurse onto bases.
1121 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1122 IRCallArgPos);
1125 LValue LV = MakeAddrLValue(This, Ty);
1126 for (auto FD : RExp->Fields) {
1127 CallArg FldArg =
1128 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1129 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1130 IRCallArgPos);
1132 } else if (isa<ComplexExpansion>(Exp.get())) {
1133 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1134 IRCallArgs[IRCallArgPos++] = CV.first;
1135 IRCallArgs[IRCallArgPos++] = CV.second;
1136 } else {
1137 assert(isa<NoExpansion>(Exp.get()));
1138 auto RV = Arg.getKnownRValue();
1139 assert(RV.isScalar() &&
1140 "Unexpected non-scalar rvalue during struct expansion.");
1142 // Insert a bitcast as needed.
1143 llvm::Value *V = RV.getScalarVal();
1144 if (IRCallArgPos < IRFuncTy->getNumParams() &&
1145 V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1146 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1148 IRCallArgs[IRCallArgPos++] = V;
1152 /// Create a temporary allocation for the purposes of coercion.
1153 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1154 CharUnits MinAlign,
1155 const Twine &Name = "tmp") {
1156 // Don't use an alignment that's worse than what LLVM would prefer.
1157 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
1158 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1160 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1163 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1164 /// accessing some number of bytes out of it, try to gep into the struct to get
1165 /// at its inner goodness. Dive as deep as possible without entering an element
1166 /// with an in-memory size smaller than DstSize.
1167 static Address
1168 EnterStructPointerForCoercedAccess(Address SrcPtr,
1169 llvm::StructType *SrcSTy,
1170 uint64_t DstSize, CodeGenFunction &CGF) {
1171 // We can't dive into a zero-element struct.
1172 if (SrcSTy->getNumElements() == 0) return SrcPtr;
1174 llvm::Type *FirstElt = SrcSTy->getElementType(0);
1176 // If the first elt is at least as large as what we're looking for, or if the
1177 // first element is the same size as the whole struct, we can enter it. The
1178 // comparison must be made on the store size and not the alloca size. Using
1179 // the alloca size may overstate the size of the load.
1180 uint64_t FirstEltSize =
1181 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1182 if (FirstEltSize < DstSize &&
1183 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1184 return SrcPtr;
1186 // GEP into the first element.
1187 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1189 // If the first element is a struct, recurse.
1190 llvm::Type *SrcTy = SrcPtr.getElementType();
1191 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1192 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1194 return SrcPtr;
1197 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1198 /// are either integers or pointers. This does a truncation of the value if it
1199 /// is too large or a zero extension if it is too small.
1201 /// This behaves as if the value were coerced through memory, so on big-endian
1202 /// targets the high bits are preserved in a truncation, while little-endian
1203 /// targets preserve the low bits.
1204 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1205 llvm::Type *Ty,
1206 CodeGenFunction &CGF) {
1207 if (Val->getType() == Ty)
1208 return Val;
1210 if (isa<llvm::PointerType>(Val->getType())) {
1211 // If this is Pointer->Pointer avoid conversion to and from int.
1212 if (isa<llvm::PointerType>(Ty))
1213 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1215 // Convert the pointer to an integer so we can play with its width.
1216 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1219 llvm::Type *DestIntTy = Ty;
1220 if (isa<llvm::PointerType>(DestIntTy))
1221 DestIntTy = CGF.IntPtrTy;
1223 if (Val->getType() != DestIntTy) {
1224 const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1225 if (DL.isBigEndian()) {
1226 // Preserve the high bits on big-endian targets.
1227 // That is what memory coercion does.
1228 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1229 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1231 if (SrcSize > DstSize) {
1232 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1233 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1234 } else {
1235 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1236 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1238 } else {
1239 // Little-endian targets preserve the low bits. No shifts required.
1240 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1244 if (isa<llvm::PointerType>(Ty))
1245 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1246 return Val;
1251 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1252 /// a pointer to an object of type \arg Ty, known to be aligned to
1253 /// \arg SrcAlign bytes.
1255 /// This safely handles the case when the src type is smaller than the
1256 /// destination type; in this situation the values of bits which not
1257 /// present in the src are undefined.
1258 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1259 CodeGenFunction &CGF) {
1260 llvm::Type *SrcTy = Src.getElementType();
1262 // If SrcTy and Ty are the same, just do a load.
1263 if (SrcTy == Ty)
1264 return CGF.Builder.CreateLoad(Src);
1266 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1268 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1269 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1270 DstSize.getFixedValue(), CGF);
1271 SrcTy = Src.getElementType();
1274 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1276 // If the source and destination are integer or pointer types, just do an
1277 // extension or truncation to the desired type.
1278 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1279 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1280 llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1281 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1284 // If load is legal, just bitcast the src pointer.
1285 if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1286 SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
1287 // Generally SrcSize is never greater than DstSize, since this means we are
1288 // losing bits. However, this can happen in cases where the structure has
1289 // additional padding, for example due to a user specified alignment.
1291 // FIXME: Assert that we aren't truncating non-padding bits when have access
1292 // to that information.
1293 Src = Src.withElementType(Ty);
1294 return CGF.Builder.CreateLoad(Src);
1297 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1298 // the types match, use the llvm.vector.insert intrinsic to perform the
1299 // conversion.
1300 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1301 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1302 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1303 // vector, use a vector insert and bitcast the result.
1304 bool NeedsBitcast = false;
1305 auto PredType =
1306 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
1307 llvm::Type *OrigType = Ty;
1308 if (ScalableDst == PredType &&
1309 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
1310 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
1311 NeedsBitcast = true;
1313 if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1314 auto *Load = CGF.Builder.CreateLoad(Src);
1315 auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1316 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1317 llvm::Value *Result = CGF.Builder.CreateInsertVector(
1318 ScalableDst, UndefVec, Load, Zero, "cast.scalable");
1319 if (NeedsBitcast)
1320 Result = CGF.Builder.CreateBitCast(Result, OrigType);
1321 return Result;
1326 // Otherwise do coercion through memory. This is stupid, but simple.
1327 Address Tmp =
1328 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1329 CGF.Builder.CreateMemCpy(
1330 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1331 Src.getAlignment().getAsAlign(),
1332 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue()));
1333 return CGF.Builder.CreateLoad(Tmp);
1336 // Function to store a first-class aggregate into memory. We prefer to
1337 // store the elements rather than the aggregate to be more friendly to
1338 // fast-isel.
1339 // FIXME: Do we need to recurse here?
1340 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1341 bool DestIsVolatile) {
1342 // Prefer scalar stores to first-class aggregate stores.
1343 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1344 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1345 Address EltPtr = Builder.CreateStructGEP(Dest, i);
1346 llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1347 Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1349 } else {
1350 Builder.CreateStore(Val, Dest, DestIsVolatile);
1354 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1355 /// where the source and destination may have different types. The
1356 /// destination is known to be aligned to \arg DstAlign bytes.
1358 /// This safely handles the case when the src type is larger than the
1359 /// destination type; the upper bits of the src will be lost.
1360 static void CreateCoercedStore(llvm::Value *Src,
1361 Address Dst,
1362 bool DstIsVolatile,
1363 CodeGenFunction &CGF) {
1364 llvm::Type *SrcTy = Src->getType();
1365 llvm::Type *DstTy = Dst.getElementType();
1366 if (SrcTy == DstTy) {
1367 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1368 return;
1371 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1373 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1374 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1375 SrcSize.getFixedValue(), CGF);
1376 DstTy = Dst.getElementType();
1379 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1380 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1381 if (SrcPtrTy && DstPtrTy &&
1382 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1383 Src = CGF.Builder.CreateAddrSpaceCast(Src, DstTy);
1384 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1385 return;
1388 // If the source and destination are integer or pointer types, just do an
1389 // extension or truncation to the desired type.
1390 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1391 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1392 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1393 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1394 return;
1397 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1399 // If store is legal, just bitcast the src pointer.
1400 if (isa<llvm::ScalableVectorType>(SrcTy) ||
1401 isa<llvm::ScalableVectorType>(DstTy) ||
1402 SrcSize.getFixedValue() <= DstSize.getFixedValue()) {
1403 Dst = Dst.withElementType(SrcTy);
1404 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1405 } else {
1406 // Otherwise do coercion through memory. This is stupid, but
1407 // simple.
1409 // Generally SrcSize is never greater than DstSize, since this means we are
1410 // losing bits. However, this can happen in cases where the structure has
1411 // additional padding, for example due to a user specified alignment.
1413 // FIXME: Assert that we aren't truncating non-padding bits when have access
1414 // to that information.
1415 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1416 CGF.Builder.CreateStore(Src, Tmp);
1417 CGF.Builder.CreateMemCpy(
1418 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1419 Tmp.getAlignment().getAsAlign(),
1420 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue()));
1424 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1425 const ABIArgInfo &info) {
1426 if (unsigned offset = info.getDirectOffset()) {
1427 addr = addr.withElementType(CGF.Int8Ty);
1428 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1429 CharUnits::fromQuantity(offset));
1430 addr = addr.withElementType(info.getCoerceToType());
1432 return addr;
1435 namespace {
1437 /// Encapsulates information about the way function arguments from
1438 /// CGFunctionInfo should be passed to actual LLVM IR function.
1439 class ClangToLLVMArgMapping {
1440 static const unsigned InvalidIndex = ~0U;
1441 unsigned InallocaArgNo;
1442 unsigned SRetArgNo;
1443 unsigned TotalIRArgs;
1445 /// Arguments of LLVM IR function corresponding to single Clang argument.
1446 struct IRArgs {
1447 unsigned PaddingArgIndex;
1448 // Argument is expanded to IR arguments at positions
1449 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1450 unsigned FirstArgIndex;
1451 unsigned NumberOfArgs;
1453 IRArgs()
1454 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1455 NumberOfArgs(0) {}
1458 SmallVector<IRArgs, 8> ArgInfo;
1460 public:
1461 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1462 bool OnlyRequiredArgs = false)
1463 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1464 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1465 construct(Context, FI, OnlyRequiredArgs);
1468 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1469 unsigned getInallocaArgNo() const {
1470 assert(hasInallocaArg());
1471 return InallocaArgNo;
1474 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1475 unsigned getSRetArgNo() const {
1476 assert(hasSRetArg());
1477 return SRetArgNo;
1480 unsigned totalIRArgs() const { return TotalIRArgs; }
1482 bool hasPaddingArg(unsigned ArgNo) const {
1483 assert(ArgNo < ArgInfo.size());
1484 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1486 unsigned getPaddingArgNo(unsigned ArgNo) const {
1487 assert(hasPaddingArg(ArgNo));
1488 return ArgInfo[ArgNo].PaddingArgIndex;
1491 /// Returns index of first IR argument corresponding to ArgNo, and their
1492 /// quantity.
1493 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1494 assert(ArgNo < ArgInfo.size());
1495 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1496 ArgInfo[ArgNo].NumberOfArgs);
1499 private:
1500 void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1501 bool OnlyRequiredArgs);
1504 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1505 const CGFunctionInfo &FI,
1506 bool OnlyRequiredArgs) {
1507 unsigned IRArgNo = 0;
1508 bool SwapThisWithSRet = false;
1509 const ABIArgInfo &RetAI = FI.getReturnInfo();
1511 if (RetAI.getKind() == ABIArgInfo::Indirect) {
1512 SwapThisWithSRet = RetAI.isSRetAfterThis();
1513 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1516 unsigned ArgNo = 0;
1517 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1518 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1519 ++I, ++ArgNo) {
1520 assert(I != FI.arg_end());
1521 QualType ArgType = I->type;
1522 const ABIArgInfo &AI = I->info;
1523 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1524 auto &IRArgs = ArgInfo[ArgNo];
1526 if (AI.getPaddingType())
1527 IRArgs.PaddingArgIndex = IRArgNo++;
1529 switch (AI.getKind()) {
1530 case ABIArgInfo::Extend:
1531 case ABIArgInfo::Direct: {
1532 // FIXME: handle sseregparm someday...
1533 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1534 if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1535 IRArgs.NumberOfArgs = STy->getNumElements();
1536 } else {
1537 IRArgs.NumberOfArgs = 1;
1539 break;
1541 case ABIArgInfo::Indirect:
1542 case ABIArgInfo::IndirectAliased:
1543 IRArgs.NumberOfArgs = 1;
1544 break;
1545 case ABIArgInfo::Ignore:
1546 case ABIArgInfo::InAlloca:
1547 // ignore and inalloca doesn't have matching LLVM parameters.
1548 IRArgs.NumberOfArgs = 0;
1549 break;
1550 case ABIArgInfo::CoerceAndExpand:
1551 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1552 break;
1553 case ABIArgInfo::Expand:
1554 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1555 break;
1558 if (IRArgs.NumberOfArgs > 0) {
1559 IRArgs.FirstArgIndex = IRArgNo;
1560 IRArgNo += IRArgs.NumberOfArgs;
1563 // Skip over the sret parameter when it comes second. We already handled it
1564 // above.
1565 if (IRArgNo == 1 && SwapThisWithSRet)
1566 IRArgNo++;
1568 assert(ArgNo == ArgInfo.size());
1570 if (FI.usesInAlloca())
1571 InallocaArgNo = IRArgNo++;
1573 TotalIRArgs = IRArgNo;
1575 } // namespace
1577 /***/
1579 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1580 const auto &RI = FI.getReturnInfo();
1581 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1584 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1585 return ReturnTypeUsesSRet(FI) &&
1586 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1589 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1590 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1591 switch (BT->getKind()) {
1592 default:
1593 return false;
1594 case BuiltinType::Float:
1595 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
1596 case BuiltinType::Double:
1597 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
1598 case BuiltinType::LongDouble:
1599 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
1603 return false;
1606 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1607 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1608 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1609 if (BT->getKind() == BuiltinType::LongDouble)
1610 return getTarget().useObjCFP2RetForComplexLongDouble();
1614 return false;
1617 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1618 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1619 return GetFunctionType(FI);
1622 llvm::FunctionType *
1623 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1625 bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1626 (void)Inserted;
1627 assert(Inserted && "Recursively being processed?");
1629 llvm::Type *resultType = nullptr;
1630 const ABIArgInfo &retAI = FI.getReturnInfo();
1631 switch (retAI.getKind()) {
1632 case ABIArgInfo::Expand:
1633 case ABIArgInfo::IndirectAliased:
1634 llvm_unreachable("Invalid ABI kind for return argument");
1636 case ABIArgInfo::Extend:
1637 case ABIArgInfo::Direct:
1638 resultType = retAI.getCoerceToType();
1639 break;
1641 case ABIArgInfo::InAlloca:
1642 if (retAI.getInAllocaSRet()) {
1643 // sret things on win32 aren't void, they return the sret pointer.
1644 QualType ret = FI.getReturnType();
1645 unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret);
1646 resultType = llvm::PointerType::get(getLLVMContext(), addressSpace);
1647 } else {
1648 resultType = llvm::Type::getVoidTy(getLLVMContext());
1650 break;
1652 case ABIArgInfo::Indirect:
1653 case ABIArgInfo::Ignore:
1654 resultType = llvm::Type::getVoidTy(getLLVMContext());
1655 break;
1657 case ABIArgInfo::CoerceAndExpand:
1658 resultType = retAI.getUnpaddedCoerceAndExpandType();
1659 break;
1662 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1663 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1665 // Add type for sret argument.
1666 if (IRFunctionArgs.hasSRetArg()) {
1667 QualType Ret = FI.getReturnType();
1668 unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret);
1669 ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1670 llvm::PointerType::get(getLLVMContext(), AddressSpace);
1673 // Add type for inalloca argument.
1674 if (IRFunctionArgs.hasInallocaArg())
1675 ArgTypes[IRFunctionArgs.getInallocaArgNo()] =
1676 llvm::PointerType::getUnqual(getLLVMContext());
1678 // Add in all of the required arguments.
1679 unsigned ArgNo = 0;
1680 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1681 ie = it + FI.getNumRequiredArgs();
1682 for (; it != ie; ++it, ++ArgNo) {
1683 const ABIArgInfo &ArgInfo = it->info;
1685 // Insert a padding type to ensure proper alignment.
1686 if (IRFunctionArgs.hasPaddingArg(ArgNo))
1687 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1688 ArgInfo.getPaddingType();
1690 unsigned FirstIRArg, NumIRArgs;
1691 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1693 switch (ArgInfo.getKind()) {
1694 case ABIArgInfo::Ignore:
1695 case ABIArgInfo::InAlloca:
1696 assert(NumIRArgs == 0);
1697 break;
1699 case ABIArgInfo::Indirect:
1700 assert(NumIRArgs == 1);
1701 // indirect arguments are always on the stack, which is alloca addr space.
1702 ArgTypes[FirstIRArg] = llvm::PointerType::get(
1703 getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
1704 break;
1705 case ABIArgInfo::IndirectAliased:
1706 assert(NumIRArgs == 1);
1707 ArgTypes[FirstIRArg] = llvm::PointerType::get(
1708 getLLVMContext(), ArgInfo.getIndirectAddrSpace());
1709 break;
1710 case ABIArgInfo::Extend:
1711 case ABIArgInfo::Direct: {
1712 // Fast-isel and the optimizer generally like scalar values better than
1713 // FCAs, so we flatten them if this is safe to do for this argument.
1714 llvm::Type *argType = ArgInfo.getCoerceToType();
1715 llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1716 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1717 assert(NumIRArgs == st->getNumElements());
1718 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1719 ArgTypes[FirstIRArg + i] = st->getElementType(i);
1720 } else {
1721 assert(NumIRArgs == 1);
1722 ArgTypes[FirstIRArg] = argType;
1724 break;
1727 case ABIArgInfo::CoerceAndExpand: {
1728 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1729 for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1730 *ArgTypesIter++ = EltTy;
1732 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1733 break;
1736 case ABIArgInfo::Expand:
1737 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1738 getExpandedTypes(it->type, ArgTypesIter);
1739 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1740 break;
1744 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1745 assert(Erased && "Not in set?");
1747 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1750 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1751 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1752 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1754 if (!isFuncTypeConvertible(FPT))
1755 return llvm::StructType::get(getLLVMContext());
1757 return GetFunctionType(GD);
1760 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1761 llvm::AttrBuilder &FuncAttrs,
1762 const FunctionProtoType *FPT) {
1763 if (!FPT)
1764 return;
1766 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1767 FPT->isNothrow())
1768 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1770 unsigned SMEBits = FPT->getAArch64SMEAttributes();
1771 if (SMEBits & FunctionType::SME_PStateSMEnabledMask)
1772 FuncAttrs.addAttribute("aarch64_pstate_sm_enabled");
1773 if (SMEBits & FunctionType::SME_PStateSMCompatibleMask)
1774 FuncAttrs.addAttribute("aarch64_pstate_sm_compatible");
1776 // ZA
1777 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Out ||
1778 FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_InOut)
1779 FuncAttrs.addAttribute("aarch64_pstate_za_shared");
1780 if (FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_Preserves ||
1781 FunctionType::getArmZAState(SMEBits) == FunctionType::ARM_In) {
1782 FuncAttrs.addAttribute("aarch64_pstate_za_shared");
1783 FuncAttrs.addAttribute("aarch64_pstate_za_preserved");
1786 // ZT0
1787 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Preserves)
1788 FuncAttrs.addAttribute("aarch64_preserves_zt0");
1789 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_In)
1790 FuncAttrs.addAttribute("aarch64_in_zt0");
1791 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_Out)
1792 FuncAttrs.addAttribute("aarch64_out_zt0");
1793 if (FunctionType::getArmZT0State(SMEBits) == FunctionType::ARM_InOut)
1794 FuncAttrs.addAttribute("aarch64_inout_zt0");
1797 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
1798 const Decl *Callee) {
1799 if (!Callee)
1800 return;
1802 SmallVector<StringRef, 4> Attrs;
1804 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
1805 AA->getAssumption().split(Attrs, ",");
1807 if (!Attrs.empty())
1808 FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
1809 llvm::join(Attrs.begin(), Attrs.end(), ","));
1812 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
1813 QualType ReturnType) const {
1814 // We can't just discard the return value for a record type with a
1815 // complex destructor or a non-trivially copyable type.
1816 if (const RecordType *RT =
1817 ReturnType.getCanonicalType()->getAs<RecordType>()) {
1818 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1819 return ClassDecl->hasTrivialDestructor();
1821 return ReturnType.isTriviallyCopyableType(Context);
1824 static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
1825 const Decl *TargetDecl) {
1826 // As-is msan can not tolerate noundef mismatch between caller and
1827 // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1828 // into C++. Such mismatches lead to confusing false reports. To avoid
1829 // expensive workaround on msan we enforce initialization event in uncommon
1830 // cases where it's allowed.
1831 if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory))
1832 return true;
1833 // C++ explicitly makes returning undefined values UB. C's rule only applies
1834 // to used values, so we never mark them noundef for now.
1835 if (!Module.getLangOpts().CPlusPlus)
1836 return false;
1837 if (TargetDecl) {
1838 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) {
1839 if (FDecl->isExternC())
1840 return false;
1841 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) {
1842 // Function pointer.
1843 if (VDecl->isExternC())
1844 return false;
1848 // We don't want to be too aggressive with the return checking, unless
1849 // it's explicit in the code opts or we're using an appropriate sanitizer.
1850 // Try to respect what the programmer intended.
1851 return Module.getCodeGenOpts().StrictReturn ||
1852 !Module.MayDropFunctionReturn(Module.getContext(), RetTy) ||
1853 Module.getLangOpts().Sanitize.has(SanitizerKind::Return);
1856 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1857 /// requested denormal behavior, accounting for the overriding behavior of the
1858 /// -f32 case.
1859 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode,
1860 llvm::DenormalMode FP32DenormalMode,
1861 llvm::AttrBuilder &FuncAttrs) {
1862 if (FPDenormalMode != llvm::DenormalMode::getDefault())
1863 FuncAttrs.addAttribute("denormal-fp-math", FPDenormalMode.str());
1865 if (FP32DenormalMode != FPDenormalMode && FP32DenormalMode.isValid())
1866 FuncAttrs.addAttribute("denormal-fp-math-f32", FP32DenormalMode.str());
1869 /// Add default attributes to a function, which have merge semantics under
1870 /// -mlink-builtin-bitcode and should not simply overwrite any existing
1871 /// attributes in the linked library.
1872 static void
1873 addMergableDefaultFunctionAttributes(const CodeGenOptions &CodeGenOpts,
1874 llvm::AttrBuilder &FuncAttrs) {
1875 addDenormalModeAttrs(CodeGenOpts.FPDenormalMode, CodeGenOpts.FP32DenormalMode,
1876 FuncAttrs);
1879 static void getTrivialDefaultFunctionAttributes(
1880 StringRef Name, bool HasOptnone, const CodeGenOptions &CodeGenOpts,
1881 const LangOptions &LangOpts, bool AttrOnCallSite,
1882 llvm::AttrBuilder &FuncAttrs) {
1883 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1884 if (!HasOptnone) {
1885 if (CodeGenOpts.OptimizeSize)
1886 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1887 if (CodeGenOpts.OptimizeSize == 2)
1888 FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1891 if (CodeGenOpts.DisableRedZone)
1892 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1893 if (CodeGenOpts.IndirectTlsSegRefs)
1894 FuncAttrs.addAttribute("indirect-tls-seg-refs");
1895 if (CodeGenOpts.NoImplicitFloat)
1896 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1898 if (AttrOnCallSite) {
1899 // Attributes that should go on the call site only.
1900 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1901 // the -fno-builtin-foo list.
1902 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
1903 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1904 if (!CodeGenOpts.TrapFuncName.empty())
1905 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1906 } else {
1907 switch (CodeGenOpts.getFramePointer()) {
1908 case CodeGenOptions::FramePointerKind::None:
1909 // This is the default behavior.
1910 break;
1911 case CodeGenOptions::FramePointerKind::NonLeaf:
1912 case CodeGenOptions::FramePointerKind::All:
1913 FuncAttrs.addAttribute("frame-pointer",
1914 CodeGenOptions::getFramePointerKindName(
1915 CodeGenOpts.getFramePointer()));
1918 if (CodeGenOpts.LessPreciseFPMAD)
1919 FuncAttrs.addAttribute("less-precise-fpmad", "true");
1921 if (CodeGenOpts.NullPointerIsValid)
1922 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1924 if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
1925 FuncAttrs.addAttribute("no-trapping-math", "true");
1927 // TODO: Are these all needed?
1928 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1929 if (LangOpts.NoHonorInfs)
1930 FuncAttrs.addAttribute("no-infs-fp-math", "true");
1931 if (LangOpts.NoHonorNaNs)
1932 FuncAttrs.addAttribute("no-nans-fp-math", "true");
1933 if (LangOpts.ApproxFunc)
1934 FuncAttrs.addAttribute("approx-func-fp-math", "true");
1935 if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
1936 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
1937 (LangOpts.getDefaultFPContractMode() ==
1938 LangOptions::FPModeKind::FPM_Fast ||
1939 LangOpts.getDefaultFPContractMode() ==
1940 LangOptions::FPModeKind::FPM_FastHonorPragmas))
1941 FuncAttrs.addAttribute("unsafe-fp-math", "true");
1942 if (CodeGenOpts.SoftFloat)
1943 FuncAttrs.addAttribute("use-soft-float", "true");
1944 FuncAttrs.addAttribute("stack-protector-buffer-size",
1945 llvm::utostr(CodeGenOpts.SSPBufferSize));
1946 if (LangOpts.NoSignedZero)
1947 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1949 // TODO: Reciprocal estimate codegen options should apply to instructions?
1950 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1951 if (!Recips.empty())
1952 FuncAttrs.addAttribute("reciprocal-estimates",
1953 llvm::join(Recips, ","));
1955 if (!CodeGenOpts.PreferVectorWidth.empty() &&
1956 CodeGenOpts.PreferVectorWidth != "none")
1957 FuncAttrs.addAttribute("prefer-vector-width",
1958 CodeGenOpts.PreferVectorWidth);
1960 if (CodeGenOpts.StackRealignment)
1961 FuncAttrs.addAttribute("stackrealign");
1962 if (CodeGenOpts.Backchain)
1963 FuncAttrs.addAttribute("backchain");
1964 if (CodeGenOpts.EnableSegmentedStacks)
1965 FuncAttrs.addAttribute("split-stack");
1967 if (CodeGenOpts.SpeculativeLoadHardening)
1968 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1970 // Add zero-call-used-regs attribute.
1971 switch (CodeGenOpts.getZeroCallUsedRegs()) {
1972 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
1973 FuncAttrs.removeAttribute("zero-call-used-regs");
1974 break;
1975 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
1976 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
1977 break;
1978 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
1979 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
1980 break;
1981 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
1982 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
1983 break;
1984 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
1985 FuncAttrs.addAttribute("zero-call-used-regs", "used");
1986 break;
1987 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
1988 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
1989 break;
1990 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
1991 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
1992 break;
1993 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
1994 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
1995 break;
1996 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
1997 FuncAttrs.addAttribute("zero-call-used-regs", "all");
1998 break;
2002 if (LangOpts.assumeFunctionsAreConvergent()) {
2003 // Conservatively, mark all functions and calls in CUDA and OpenCL as
2004 // convergent (meaning, they may call an intrinsically convergent op, such
2005 // as __syncthreads() / barrier(), and so can't have certain optimizations
2006 // applied around them). LLVM will remove this attribute where it safely
2007 // can.
2008 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2011 // TODO: NoUnwind attribute should be added for other GPU modes HIP,
2012 // OpenMP offload. AFAIK, neither of them support exceptions in device code.
2013 if ((LangOpts.CUDA && LangOpts.CUDAIsDevice) || LangOpts.OpenCL ||
2014 LangOpts.SYCLIsDevice) {
2015 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2018 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
2019 StringRef Var, Value;
2020 std::tie(Var, Value) = Attr.split('=');
2021 FuncAttrs.addAttribute(Var, Value);
2025 /// Merges `target-features` from \TargetOpts and \F, and sets the result in
2026 /// \FuncAttr
2027 /// * features from \F are always kept
2028 /// * a feature from \TargetOpts is kept if itself and its opposite are absent
2029 /// from \F
2030 static void
2031 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder &FuncAttr,
2032 const llvm::Function &F,
2033 const TargetOptions &TargetOpts) {
2034 auto FFeatures = F.getFnAttribute("target-features");
2036 llvm::StringSet<> MergedNames;
2037 SmallVector<StringRef> MergedFeatures;
2038 MergedFeatures.reserve(TargetOpts.Features.size());
2040 auto AddUnmergedFeatures = [&](auto &&FeatureRange) {
2041 for (StringRef Feature : FeatureRange) {
2042 if (Feature.empty())
2043 continue;
2044 assert(Feature[0] == '+' || Feature[0] == '-');
2045 StringRef Name = Feature.drop_front(1);
2046 bool Merged = !MergedNames.insert(Name).second;
2047 if (!Merged)
2048 MergedFeatures.push_back(Feature);
2052 if (FFeatures.isValid())
2053 AddUnmergedFeatures(llvm::split(FFeatures.getValueAsString(), ','));
2054 AddUnmergedFeatures(TargetOpts.Features);
2056 if (!MergedFeatures.empty()) {
2057 llvm::sort(MergedFeatures);
2058 FuncAttr.addAttribute("target-features", llvm::join(MergedFeatures, ","));
2062 void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2063 llvm::Function &F, const CodeGenOptions &CodeGenOpts,
2064 const LangOptions &LangOpts, const TargetOptions &TargetOpts,
2065 bool WillInternalize) {
2067 llvm::AttrBuilder FuncAttrs(F.getContext());
2068 // Here we only extract the options that are relevant compared to the version
2069 // from GetCPUAndFeaturesAttributes.
2070 if (!TargetOpts.CPU.empty())
2071 FuncAttrs.addAttribute("target-cpu", TargetOpts.CPU);
2072 if (!TargetOpts.TuneCPU.empty())
2073 FuncAttrs.addAttribute("tune-cpu", TargetOpts.TuneCPU);
2075 ::getTrivialDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
2076 CodeGenOpts, LangOpts,
2077 /*AttrOnCallSite=*/false, FuncAttrs);
2079 if (!WillInternalize && F.isInterposable()) {
2080 // Do not promote "dynamic" denormal-fp-math to this translation unit's
2081 // setting for weak functions that won't be internalized. The user has no
2082 // real control for how builtin bitcode is linked, so we shouldn't assume
2083 // later copies will use a consistent mode.
2084 F.addFnAttrs(FuncAttrs);
2085 return;
2088 llvm::AttributeMask AttrsToRemove;
2090 llvm::DenormalMode DenormModeToMerge = F.getDenormalModeRaw();
2091 llvm::DenormalMode DenormModeToMergeF32 = F.getDenormalModeF32Raw();
2092 llvm::DenormalMode Merged =
2093 CodeGenOpts.FPDenormalMode.mergeCalleeMode(DenormModeToMerge);
2094 llvm::DenormalMode MergedF32 = CodeGenOpts.FP32DenormalMode;
2096 if (DenormModeToMergeF32.isValid()) {
2097 MergedF32 =
2098 CodeGenOpts.FP32DenormalMode.mergeCalleeMode(DenormModeToMergeF32);
2101 if (Merged == llvm::DenormalMode::getDefault()) {
2102 AttrsToRemove.addAttribute("denormal-fp-math");
2103 } else if (Merged != DenormModeToMerge) {
2104 // Overwrite existing attribute
2105 FuncAttrs.addAttribute("denormal-fp-math",
2106 CodeGenOpts.FPDenormalMode.str());
2109 if (MergedF32 == llvm::DenormalMode::getDefault()) {
2110 AttrsToRemove.addAttribute("denormal-fp-math-f32");
2111 } else if (MergedF32 != DenormModeToMergeF32) {
2112 // Overwrite existing attribute
2113 FuncAttrs.addAttribute("denormal-fp-math-f32",
2114 CodeGenOpts.FP32DenormalMode.str());
2117 F.removeFnAttrs(AttrsToRemove);
2118 addDenormalModeAttrs(Merged, MergedF32, FuncAttrs);
2120 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs, F, TargetOpts);
2122 F.addFnAttrs(FuncAttrs);
2125 void CodeGenModule::getTrivialDefaultFunctionAttributes(
2126 StringRef Name, bool HasOptnone, bool AttrOnCallSite,
2127 llvm::AttrBuilder &FuncAttrs) {
2128 ::getTrivialDefaultFunctionAttributes(Name, HasOptnone, getCodeGenOpts(),
2129 getLangOpts(), AttrOnCallSite,
2130 FuncAttrs);
2133 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
2134 bool HasOptnone,
2135 bool AttrOnCallSite,
2136 llvm::AttrBuilder &FuncAttrs) {
2137 getTrivialDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite,
2138 FuncAttrs);
2139 // If we're just getting the default, get the default values for mergeable
2140 // attributes.
2141 if (!AttrOnCallSite)
2142 addMergableDefaultFunctionAttributes(CodeGenOpts, FuncAttrs);
2145 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2146 llvm::AttrBuilder &attrs) {
2147 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2148 /*for call*/ false, attrs);
2149 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
2152 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
2153 const LangOptions &LangOpts,
2154 const NoBuiltinAttr *NBA = nullptr) {
2155 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
2156 SmallString<32> AttributeName;
2157 AttributeName += "no-builtin-";
2158 AttributeName += BuiltinName;
2159 FuncAttrs.addAttribute(AttributeName);
2162 // First, handle the language options passed through -fno-builtin.
2163 if (LangOpts.NoBuiltin) {
2164 // -fno-builtin disables them all.
2165 FuncAttrs.addAttribute("no-builtins");
2166 return;
2169 // Then, add attributes for builtins specified through -fno-builtin-<name>.
2170 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
2172 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2173 // the source.
2174 if (!NBA)
2175 return;
2177 // If there is a wildcard in the builtin names specified through the
2178 // attribute, disable them all.
2179 if (llvm::is_contained(NBA->builtinNames(), "*")) {
2180 FuncAttrs.addAttribute("no-builtins");
2181 return;
2184 // And last, add the rest of the builtin names.
2185 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
2188 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
2189 const llvm::DataLayout &DL, const ABIArgInfo &AI,
2190 bool CheckCoerce = true) {
2191 llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
2192 if (AI.getKind() == ABIArgInfo::Indirect ||
2193 AI.getKind() == ABIArgInfo::IndirectAliased)
2194 return true;
2195 if (AI.getKind() == ABIArgInfo::Extend)
2196 return true;
2197 if (!DL.typeSizeEqualsStoreSize(Ty))
2198 // TODO: This will result in a modest amount of values not marked noundef
2199 // when they could be. We care about values that *invisibly* contain undef
2200 // bits from the perspective of LLVM IR.
2201 return false;
2202 if (CheckCoerce && AI.canHaveCoerceToType()) {
2203 llvm::Type *CoerceTy = AI.getCoerceToType();
2204 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
2205 DL.getTypeSizeInBits(Ty)))
2206 // If we're coercing to a type with a greater size than the canonical one,
2207 // we're introducing new undef bits.
2208 // Coercing to a type of smaller or equal size is ok, as we know that
2209 // there's no internal padding (typeSizeEqualsStoreSize).
2210 return false;
2212 if (QTy->isBitIntType())
2213 return true;
2214 if (QTy->isReferenceType())
2215 return true;
2216 if (QTy->isNullPtrType())
2217 return false;
2218 if (QTy->isMemberPointerType())
2219 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2220 // now, never mark them.
2221 return false;
2222 if (QTy->isScalarType()) {
2223 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
2224 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
2225 return true;
2227 if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
2228 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
2229 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
2230 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
2231 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
2232 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
2234 // TODO: Some structs may be `noundef`, in specific situations.
2235 return false;
2238 /// Check if the argument of a function has maybe_undef attribute.
2239 static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
2240 unsigned NumRequiredArgs, unsigned ArgNo) {
2241 const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
2242 if (!FD)
2243 return false;
2245 // Assume variadic arguments do not have maybe_undef attribute.
2246 if (ArgNo >= NumRequiredArgs)
2247 return false;
2249 // Check if argument has maybe_undef attribute.
2250 if (ArgNo < FD->getNumParams()) {
2251 const ParmVarDecl *Param = FD->getParamDecl(ArgNo);
2252 if (Param && Param->hasAttr<MaybeUndefAttr>())
2253 return true;
2256 return false;
2259 /// Test if it's legal to apply nofpclass for the given parameter type and it's
2260 /// lowered IR type.
2261 static bool canApplyNoFPClass(const ABIArgInfo &AI, QualType ParamType,
2262 bool IsReturn) {
2263 // Should only apply to FP types in the source, not ABI promoted.
2264 if (!ParamType->hasFloatingRepresentation())
2265 return false;
2267 // The promoted-to IR type also needs to support nofpclass.
2268 llvm::Type *IRTy = AI.getCoerceToType();
2269 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy))
2270 return true;
2272 if (llvm::StructType *ST = dyn_cast<llvm::StructType>(IRTy)) {
2273 return !IsReturn && AI.getCanBeFlattened() &&
2274 llvm::all_of(ST->elements(), [](llvm::Type *Ty) {
2275 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty);
2279 return false;
2282 /// Return the nofpclass mask that can be applied to floating-point parameters.
2283 static llvm::FPClassTest getNoFPClassTestMask(const LangOptions &LangOpts) {
2284 llvm::FPClassTest Mask = llvm::fcNone;
2285 if (LangOpts.NoHonorInfs)
2286 Mask |= llvm::fcInf;
2287 if (LangOpts.NoHonorNaNs)
2288 Mask |= llvm::fcNan;
2289 return Mask;
2292 void CodeGenModule::AdjustMemoryAttribute(StringRef Name,
2293 CGCalleeInfo CalleeInfo,
2294 llvm::AttributeList &Attrs) {
2295 if (Attrs.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef) {
2296 Attrs = Attrs.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory);
2297 llvm::Attribute MemoryAttr = llvm::Attribute::getWithMemoryEffects(
2298 getLLVMContext(), llvm::MemoryEffects::writeOnly());
2299 Attrs = Attrs.addFnAttribute(getLLVMContext(), MemoryAttr);
2303 /// Construct the IR attribute list of a function or call.
2305 /// When adding an attribute, please consider where it should be handled:
2307 /// - getDefaultFunctionAttributes is for attributes that are essentially
2308 /// part of the global target configuration (but perhaps can be
2309 /// overridden on a per-function basis). Adding attributes there
2310 /// will cause them to also be set in frontends that build on Clang's
2311 /// target-configuration logic, as well as for code defined in library
2312 /// modules such as CUDA's libdevice.
2314 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2315 /// and adds declaration-specific, convention-specific, and
2316 /// frontend-specific logic. The last is of particular importance:
2317 /// attributes that restrict how the frontend generates code must be
2318 /// added here rather than getDefaultFunctionAttributes.
2320 void CodeGenModule::ConstructAttributeList(StringRef Name,
2321 const CGFunctionInfo &FI,
2322 CGCalleeInfo CalleeInfo,
2323 llvm::AttributeList &AttrList,
2324 unsigned &CallingConv,
2325 bool AttrOnCallSite, bool IsThunk) {
2326 llvm::AttrBuilder FuncAttrs(getLLVMContext());
2327 llvm::AttrBuilder RetAttrs(getLLVMContext());
2329 // Collect function IR attributes from the CC lowering.
2330 // We'll collect the paramete and result attributes later.
2331 CallingConv = FI.getEffectiveCallingConvention();
2332 if (FI.isNoReturn())
2333 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2334 if (FI.isCmseNSCall())
2335 FuncAttrs.addAttribute("cmse_nonsecure_call");
2337 // Collect function IR attributes from the callee prototype if we have one.
2338 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
2339 CalleeInfo.getCalleeFunctionProtoType());
2341 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
2343 // Attach assumption attributes to the declaration. If this is a call
2344 // site, attach assumptions from the caller to the call as well.
2345 AddAttributesFromAssumes(FuncAttrs, TargetDecl);
2347 bool HasOptnone = false;
2348 // The NoBuiltinAttr attached to the target FunctionDecl.
2349 const NoBuiltinAttr *NBA = nullptr;
2351 // Some ABIs may result in additional accesses to arguments that may
2352 // otherwise not be present.
2353 auto AddPotentialArgAccess = [&]() {
2354 llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory);
2355 if (A.isValid())
2356 FuncAttrs.addMemoryAttr(A.getMemoryEffects() |
2357 llvm::MemoryEffects::argMemOnly());
2360 // Collect function IR attributes based on declaration-specific
2361 // information.
2362 // FIXME: handle sseregparm someday...
2363 if (TargetDecl) {
2364 if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
2365 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
2366 if (TargetDecl->hasAttr<NoThrowAttr>())
2367 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2368 if (TargetDecl->hasAttr<NoReturnAttr>())
2369 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2370 if (TargetDecl->hasAttr<ColdAttr>())
2371 FuncAttrs.addAttribute(llvm::Attribute::Cold);
2372 if (TargetDecl->hasAttr<HotAttr>())
2373 FuncAttrs.addAttribute(llvm::Attribute::Hot);
2374 if (TargetDecl->hasAttr<NoDuplicateAttr>())
2375 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
2376 if (TargetDecl->hasAttr<ConvergentAttr>())
2377 FuncAttrs.addAttribute(llvm::Attribute::Convergent);
2379 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2380 AddAttributesFromFunctionProtoType(
2381 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
2382 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
2383 // A sane operator new returns a non-aliasing pointer.
2384 auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
2385 if (getCodeGenOpts().AssumeSaneOperatorNew &&
2386 (Kind == OO_New || Kind == OO_Array_New))
2387 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2389 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
2390 const bool IsVirtualCall = MD && MD->isVirtual();
2391 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2392 // virtual function. These attributes are not inherited by overloads.
2393 if (!(AttrOnCallSite && IsVirtualCall)) {
2394 if (Fn->isNoReturn())
2395 FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
2396 NBA = Fn->getAttr<NoBuiltinAttr>();
2400 if (isa<FunctionDecl>(TargetDecl) || isa<VarDecl>(TargetDecl)) {
2401 // Only place nomerge attribute on call sites, never functions. This
2402 // allows it to work on indirect virtual function calls.
2403 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
2404 FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
2407 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2408 if (TargetDecl->hasAttr<ConstAttr>()) {
2409 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none());
2410 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2411 // gcc specifies that 'const' functions have greater restrictions than
2412 // 'pure' functions, so they also cannot have infinite loops.
2413 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2414 } else if (TargetDecl->hasAttr<PureAttr>()) {
2415 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly());
2416 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2417 // gcc specifies that 'pure' functions cannot have infinite loops.
2418 FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
2419 } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2420 FuncAttrs.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2421 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2423 if (TargetDecl->hasAttr<RestrictAttr>())
2424 RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2425 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2426 !CodeGenOpts.NullPointerIsValid)
2427 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2428 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2429 FuncAttrs.addAttribute("no_caller_saved_registers");
2430 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2431 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2432 if (TargetDecl->hasAttr<LeafAttr>())
2433 FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2435 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2436 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2437 std::optional<unsigned> NumElemsParam;
2438 if (AllocSize->getNumElemsParam().isValid())
2439 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2440 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2441 NumElemsParam);
2444 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2445 if (getLangOpts().OpenCLVersion <= 120) {
2446 // OpenCL v1.2 Work groups are always uniform
2447 FuncAttrs.addAttribute("uniform-work-group-size", "true");
2448 } else {
2449 // OpenCL v2.0 Work groups may be whether uniform or not.
2450 // '-cl-uniform-work-group-size' compile option gets a hint
2451 // to the compiler that the global work-size be a multiple of
2452 // the work-group size specified to clEnqueueNDRangeKernel
2453 // (i.e. work groups are uniform).
2454 FuncAttrs.addAttribute(
2455 "uniform-work-group-size",
2456 llvm::toStringRef(getLangOpts().OffloadUniformBlock));
2460 if (TargetDecl->hasAttr<CUDAGlobalAttr>() &&
2461 getLangOpts().OffloadUniformBlock)
2462 FuncAttrs.addAttribute("uniform-work-group-size", "true");
2464 if (TargetDecl->hasAttr<ArmLocallyStreamingAttr>())
2465 FuncAttrs.addAttribute("aarch64_pstate_sm_body");
2468 // Attach "no-builtins" attributes to:
2469 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2470 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2471 // The attributes can come from:
2472 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2473 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2474 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2476 // Collect function IR attributes based on global settiings.
2477 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2479 // Override some default IR attributes based on declaration-specific
2480 // information.
2481 if (TargetDecl) {
2482 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2483 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2484 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2485 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2486 if (TargetDecl->hasAttr<NoSplitStackAttr>())
2487 FuncAttrs.removeAttribute("split-stack");
2488 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
2489 // A function "__attribute__((...))" overrides the command-line flag.
2490 auto Kind =
2491 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
2492 FuncAttrs.removeAttribute("zero-call-used-regs");
2493 FuncAttrs.addAttribute(
2494 "zero-call-used-regs",
2495 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
2498 // Add NonLazyBind attribute to function declarations when -fno-plt
2499 // is used.
2500 // FIXME: what if we just haven't processed the function definition
2501 // yet, or if it's an external definition like C99 inline?
2502 if (CodeGenOpts.NoPLT) {
2503 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2504 if (!Fn->isDefined() && !AttrOnCallSite) {
2505 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2511 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2512 // functions with -funique-internal-linkage-names.
2513 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
2514 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2515 if (!FD->isExternallyVisible())
2516 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
2517 "selected");
2521 // Collect non-call-site function IR attributes from declaration-specific
2522 // information.
2523 if (!AttrOnCallSite) {
2524 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2525 FuncAttrs.addAttribute("cmse_nonsecure_entry");
2527 // Whether tail calls are enabled.
2528 auto shouldDisableTailCalls = [&] {
2529 // Should this be honored in getDefaultFunctionAttributes?
2530 if (CodeGenOpts.DisableTailCalls)
2531 return true;
2533 if (!TargetDecl)
2534 return false;
2536 if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2537 TargetDecl->hasAttr<AnyX86InterruptAttr>())
2538 return true;
2540 if (CodeGenOpts.NoEscapingBlockTailCalls) {
2541 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2542 if (!BD->doesNotEscape())
2543 return true;
2546 return false;
2548 if (shouldDisableTailCalls())
2549 FuncAttrs.addAttribute("disable-tail-calls", "true");
2551 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2552 // handles these separately to set them based on the global defaults.
2553 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2556 // Collect attributes from arguments and return values.
2557 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2559 QualType RetTy = FI.getReturnType();
2560 const ABIArgInfo &RetAI = FI.getReturnInfo();
2561 const llvm::DataLayout &DL = getDataLayout();
2563 // Determine if the return type could be partially undef
2564 if (CodeGenOpts.EnableNoundefAttrs &&
2565 HasStrictReturn(*this, RetTy, TargetDecl)) {
2566 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
2567 DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
2568 RetAttrs.addAttribute(llvm::Attribute::NoUndef);
2571 switch (RetAI.getKind()) {
2572 case ABIArgInfo::Extend:
2573 if (RetAI.isSignExt())
2574 RetAttrs.addAttribute(llvm::Attribute::SExt);
2575 else
2576 RetAttrs.addAttribute(llvm::Attribute::ZExt);
2577 [[fallthrough]];
2578 case ABIArgInfo::Direct:
2579 if (RetAI.getInReg())
2580 RetAttrs.addAttribute(llvm::Attribute::InReg);
2582 if (canApplyNoFPClass(RetAI, RetTy, true))
2583 RetAttrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2585 break;
2586 case ABIArgInfo::Ignore:
2587 break;
2589 case ABIArgInfo::InAlloca:
2590 case ABIArgInfo::Indirect: {
2591 // inalloca and sret disable readnone and readonly
2592 AddPotentialArgAccess();
2593 break;
2596 case ABIArgInfo::CoerceAndExpand:
2597 break;
2599 case ABIArgInfo::Expand:
2600 case ABIArgInfo::IndirectAliased:
2601 llvm_unreachable("Invalid ABI kind for return argument");
2604 if (!IsThunk) {
2605 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2606 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2607 QualType PTy = RefTy->getPointeeType();
2608 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2609 RetAttrs.addDereferenceableAttr(
2610 getMinimumObjectSize(PTy).getQuantity());
2611 if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2612 !CodeGenOpts.NullPointerIsValid)
2613 RetAttrs.addAttribute(llvm::Attribute::NonNull);
2614 if (PTy->isObjectType()) {
2615 llvm::Align Alignment =
2616 getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2617 RetAttrs.addAlignmentAttr(Alignment);
2622 bool hasUsedSRet = false;
2623 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2625 // Attach attributes to sret.
2626 if (IRFunctionArgs.hasSRetArg()) {
2627 llvm::AttrBuilder SRETAttrs(getLLVMContext());
2628 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2629 SRETAttrs.addAttribute(llvm::Attribute::Writable);
2630 SRETAttrs.addAttribute(llvm::Attribute::DeadOnUnwind);
2631 hasUsedSRet = true;
2632 if (RetAI.getInReg())
2633 SRETAttrs.addAttribute(llvm::Attribute::InReg);
2634 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2635 ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2636 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2639 // Attach attributes to inalloca argument.
2640 if (IRFunctionArgs.hasInallocaArg()) {
2641 llvm::AttrBuilder Attrs(getLLVMContext());
2642 Attrs.addInAllocaAttr(FI.getArgStruct());
2643 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2644 llvm::AttributeSet::get(getLLVMContext(), Attrs);
2647 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2648 // unless this is a thunk function.
2649 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2650 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2651 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
2652 auto IRArgs = IRFunctionArgs.getIRArgs(0);
2654 assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2656 llvm::AttrBuilder Attrs(getLLVMContext());
2658 QualType ThisTy =
2659 FI.arg_begin()->type.getTypePtr()->getPointeeType();
2661 if (!CodeGenOpts.NullPointerIsValid &&
2662 getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2663 Attrs.addAttribute(llvm::Attribute::NonNull);
2664 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
2665 } else {
2666 // FIXME dereferenceable should be correct here, regardless of
2667 // NullPointerIsValid. However, dereferenceable currently does not always
2668 // respect NullPointerIsValid and may imply nonnull and break the program.
2669 // See https://reviews.llvm.org/D66618 for discussions.
2670 Attrs.addDereferenceableOrNullAttr(
2671 getMinimumObjectSize(
2672 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2673 .getQuantity());
2676 llvm::Align Alignment =
2677 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
2678 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2679 .getAsAlign();
2680 Attrs.addAlignmentAttr(Alignment);
2682 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2685 unsigned ArgNo = 0;
2686 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2687 E = FI.arg_end();
2688 I != E; ++I, ++ArgNo) {
2689 QualType ParamType = I->type;
2690 const ABIArgInfo &AI = I->info;
2691 llvm::AttrBuilder Attrs(getLLVMContext());
2693 // Add attribute for padding argument, if necessary.
2694 if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2695 if (AI.getPaddingInReg()) {
2696 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2697 llvm::AttributeSet::get(
2698 getLLVMContext(),
2699 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
2703 // Decide whether the argument we're handling could be partially undef
2704 if (CodeGenOpts.EnableNoundefAttrs &&
2705 DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
2706 Attrs.addAttribute(llvm::Attribute::NoUndef);
2709 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2710 // have the corresponding parameter variable. It doesn't make
2711 // sense to do it here because parameters are so messed up.
2712 switch (AI.getKind()) {
2713 case ABIArgInfo::Extend:
2714 if (AI.isSignExt())
2715 Attrs.addAttribute(llvm::Attribute::SExt);
2716 else
2717 Attrs.addAttribute(llvm::Attribute::ZExt);
2718 [[fallthrough]];
2719 case ABIArgInfo::Direct:
2720 if (ArgNo == 0 && FI.isChainCall())
2721 Attrs.addAttribute(llvm::Attribute::Nest);
2722 else if (AI.getInReg())
2723 Attrs.addAttribute(llvm::Attribute::InReg);
2724 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
2726 if (canApplyNoFPClass(AI, ParamType, false))
2727 Attrs.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2728 break;
2729 case ABIArgInfo::Indirect: {
2730 if (AI.getInReg())
2731 Attrs.addAttribute(llvm::Attribute::InReg);
2733 if (AI.getIndirectByVal())
2734 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2736 auto *Decl = ParamType->getAsRecordDecl();
2737 if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2738 Decl->getArgPassingRestrictions() ==
2739 RecordArgPassingKind::CanPassInRegs)
2740 // When calling the function, the pointer passed in will be the only
2741 // reference to the underlying object. Mark it accordingly.
2742 Attrs.addAttribute(llvm::Attribute::NoAlias);
2744 // TODO: We could add the byref attribute if not byval, but it would
2745 // require updating many testcases.
2747 CharUnits Align = AI.getIndirectAlign();
2749 // In a byval argument, it is important that the required
2750 // alignment of the type is honored, as LLVM might be creating a
2751 // *new* stack object, and needs to know what alignment to give
2752 // it. (Sometimes it can deduce a sensible alignment on its own,
2753 // but not if clang decides it must emit a packed struct, or the
2754 // user specifies increased alignment requirements.)
2756 // This is different from indirect *not* byval, where the object
2757 // exists already, and the align attribute is purely
2758 // informative.
2759 assert(!Align.isZero());
2761 // For now, only add this when we have a byval argument.
2762 // TODO: be less lazy about updating test cases.
2763 if (AI.getIndirectByVal())
2764 Attrs.addAlignmentAttr(Align.getQuantity());
2766 // byval disables readnone and readonly.
2767 AddPotentialArgAccess();
2768 break;
2770 case ABIArgInfo::IndirectAliased: {
2771 CharUnits Align = AI.getIndirectAlign();
2772 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2773 Attrs.addAlignmentAttr(Align.getQuantity());
2774 break;
2776 case ABIArgInfo::Ignore:
2777 case ABIArgInfo::Expand:
2778 case ABIArgInfo::CoerceAndExpand:
2779 break;
2781 case ABIArgInfo::InAlloca:
2782 // inalloca disables readnone and readonly.
2783 AddPotentialArgAccess();
2784 continue;
2787 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2788 QualType PTy = RefTy->getPointeeType();
2789 if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2790 Attrs.addDereferenceableAttr(
2791 getMinimumObjectSize(PTy).getQuantity());
2792 if (getTypes().getTargetAddressSpace(PTy) == 0 &&
2793 !CodeGenOpts.NullPointerIsValid)
2794 Attrs.addAttribute(llvm::Attribute::NonNull);
2795 if (PTy->isObjectType()) {
2796 llvm::Align Alignment =
2797 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2798 Attrs.addAlignmentAttr(Alignment);
2802 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2803 // > For arguments to a __kernel function declared to be a pointer to a
2804 // > data type, the OpenCL compiler can assume that the pointee is always
2805 // > appropriately aligned as required by the data type.
2806 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
2807 ParamType->isPointerType()) {
2808 QualType PTy = ParamType->getPointeeType();
2809 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2810 llvm::Align Alignment =
2811 getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2812 Attrs.addAlignmentAttr(Alignment);
2816 switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2817 case ParameterABI::Ordinary:
2818 break;
2820 case ParameterABI::SwiftIndirectResult: {
2821 // Add 'sret' if we haven't already used it for something, but
2822 // only if the result is void.
2823 if (!hasUsedSRet && RetTy->isVoidType()) {
2824 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2825 hasUsedSRet = true;
2828 // Add 'noalias' in either case.
2829 Attrs.addAttribute(llvm::Attribute::NoAlias);
2831 // Add 'dereferenceable' and 'alignment'.
2832 auto PTy = ParamType->getPointeeType();
2833 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2834 auto info = getContext().getTypeInfoInChars(PTy);
2835 Attrs.addDereferenceableAttr(info.Width.getQuantity());
2836 Attrs.addAlignmentAttr(info.Align.getAsAlign());
2838 break;
2841 case ParameterABI::SwiftErrorResult:
2842 Attrs.addAttribute(llvm::Attribute::SwiftError);
2843 break;
2845 case ParameterABI::SwiftContext:
2846 Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2847 break;
2849 case ParameterABI::SwiftAsyncContext:
2850 Attrs.addAttribute(llvm::Attribute::SwiftAsync);
2851 break;
2854 if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2855 Attrs.addAttribute(llvm::Attribute::NoCapture);
2857 if (Attrs.hasAttributes()) {
2858 unsigned FirstIRArg, NumIRArgs;
2859 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2860 for (unsigned i = 0; i < NumIRArgs; i++)
2861 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
2862 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
2865 assert(ArgNo == FI.arg_size());
2867 AttrList = llvm::AttributeList::get(
2868 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2869 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2872 /// An argument came in as a promoted argument; demote it back to its
2873 /// declared type.
2874 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2875 const VarDecl *var,
2876 llvm::Value *value) {
2877 llvm::Type *varType = CGF.ConvertType(var->getType());
2879 // This can happen with promotions that actually don't change the
2880 // underlying type, like the enum promotions.
2881 if (value->getType() == varType) return value;
2883 assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2884 && "unexpected promotion type");
2886 if (isa<llvm::IntegerType>(varType))
2887 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2889 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2892 /// Returns the attribute (either parameter attribute, or function
2893 /// attribute), which declares argument ArgNo to be non-null.
2894 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2895 QualType ArgType, unsigned ArgNo) {
2896 // FIXME: __attribute__((nonnull)) can also be applied to:
2897 // - references to pointers, where the pointee is known to be
2898 // nonnull (apparently a Clang extension)
2899 // - transparent unions containing pointers
2900 // In the former case, LLVM IR cannot represent the constraint. In
2901 // the latter case, we have no guarantee that the transparent union
2902 // is in fact passed as a pointer.
2903 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2904 return nullptr;
2905 // First, check attribute on parameter itself.
2906 if (PVD) {
2907 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2908 return ParmNNAttr;
2910 // Check function attributes.
2911 if (!FD)
2912 return nullptr;
2913 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2914 if (NNAttr->isNonNull(ArgNo))
2915 return NNAttr;
2917 return nullptr;
2920 namespace {
2921 struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2922 Address Temp;
2923 Address Arg;
2924 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2925 void Emit(CodeGenFunction &CGF, Flags flags) override {
2926 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2927 CGF.Builder.CreateStore(errorValue, Arg);
2932 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2933 llvm::Function *Fn,
2934 const FunctionArgList &Args) {
2935 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2936 // Naked functions don't have prologues.
2937 return;
2939 // If this is an implicit-return-zero function, go ahead and
2940 // initialize the return value. TODO: it might be nice to have
2941 // a more general mechanism for this that didn't require synthesized
2942 // return statements.
2943 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2944 if (FD->hasImplicitReturnZero()) {
2945 QualType RetTy = FD->getReturnType().getUnqualifiedType();
2946 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2947 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2948 Builder.CreateStore(Zero, ReturnValue);
2952 // FIXME: We no longer need the types from FunctionArgList; lift up and
2953 // simplify.
2955 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2956 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2958 // If we're using inalloca, all the memory arguments are GEPs off of the last
2959 // parameter, which is a pointer to the complete memory area.
2960 Address ArgStruct = Address::invalid();
2961 if (IRFunctionArgs.hasInallocaArg())
2962 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2963 FI.getArgStruct(), FI.getArgStructAlignment());
2965 // Name the struct return parameter.
2966 if (IRFunctionArgs.hasSRetArg()) {
2967 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2968 AI->setName("agg.result");
2969 AI->addAttr(llvm::Attribute::NoAlias);
2972 // Track if we received the parameter as a pointer (indirect, byval, or
2973 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2974 // into a local alloca for us.
2975 SmallVector<ParamValue, 16> ArgVals;
2976 ArgVals.reserve(Args.size());
2978 // Create a pointer value for every parameter declaration. This usually
2979 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2980 // any cleanups or do anything that might unwind. We do that separately, so
2981 // we can push the cleanups in the correct order for the ABI.
2982 assert(FI.arg_size() == Args.size() &&
2983 "Mismatch between function signature & arguments.");
2984 unsigned ArgNo = 0;
2985 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2986 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2987 i != e; ++i, ++info_it, ++ArgNo) {
2988 const VarDecl *Arg = *i;
2989 const ABIArgInfo &ArgI = info_it->info;
2991 bool isPromoted =
2992 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2993 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2994 // the parameter is promoted. In this case we convert to
2995 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2996 QualType Ty = isPromoted ? info_it->type : Arg->getType();
2997 assert(hasScalarEvaluationKind(Ty) ==
2998 hasScalarEvaluationKind(Arg->getType()));
3000 unsigned FirstIRArg, NumIRArgs;
3001 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3003 switch (ArgI.getKind()) {
3004 case ABIArgInfo::InAlloca: {
3005 assert(NumIRArgs == 0);
3006 auto FieldIndex = ArgI.getInAllocaFieldIndex();
3007 Address V =
3008 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
3009 if (ArgI.getInAllocaIndirect())
3010 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
3011 getContext().getTypeAlignInChars(Ty));
3012 ArgVals.push_back(ParamValue::forIndirect(V));
3013 break;
3016 case ABIArgInfo::Indirect:
3017 case ABIArgInfo::IndirectAliased: {
3018 assert(NumIRArgs == 1);
3019 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
3020 ArgI.getIndirectAlign(), KnownNonNull);
3022 if (!hasScalarEvaluationKind(Ty)) {
3023 // Aggregates and complex variables are accessed by reference. All we
3024 // need to do is realign the value, if requested. Also, if the address
3025 // may be aliased, copy it to ensure that the parameter variable is
3026 // mutable and has a unique adress, as C requires.
3027 Address V = ParamAddr;
3028 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
3029 Address AlignedTemp = CreateMemTemp(Ty, "coerce");
3031 // Copy from the incoming argument pointer to the temporary with the
3032 // appropriate alignment.
3034 // FIXME: We should have a common utility for generating an aggregate
3035 // copy.
3036 CharUnits Size = getContext().getTypeSizeInChars(Ty);
3037 Builder.CreateMemCpy(
3038 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
3039 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
3040 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
3041 V = AlignedTemp;
3043 ArgVals.push_back(ParamValue::forIndirect(V));
3044 } else {
3045 // Load scalar value from indirect argument.
3046 llvm::Value *V =
3047 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
3049 if (isPromoted)
3050 V = emitArgumentDemotion(*this, Arg, V);
3051 ArgVals.push_back(ParamValue::forDirect(V));
3053 break;
3056 case ABIArgInfo::Extend:
3057 case ABIArgInfo::Direct: {
3058 auto AI = Fn->getArg(FirstIRArg);
3059 llvm::Type *LTy = ConvertType(Arg->getType());
3061 // Prepare parameter attributes. So far, only attributes for pointer
3062 // parameters are prepared. See
3063 // http://llvm.org/docs/LangRef.html#paramattrs.
3064 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
3065 ArgI.getCoerceToType()->isPointerTy()) {
3066 assert(NumIRArgs == 1);
3068 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
3069 // Set `nonnull` attribute if any.
3070 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
3071 PVD->getFunctionScopeIndex()) &&
3072 !CGM.getCodeGenOpts().NullPointerIsValid)
3073 AI->addAttr(llvm::Attribute::NonNull);
3075 QualType OTy = PVD->getOriginalType();
3076 if (const auto *ArrTy =
3077 getContext().getAsConstantArrayType(OTy)) {
3078 // A C99 array parameter declaration with the static keyword also
3079 // indicates dereferenceability, and if the size is constant we can
3080 // use the dereferenceable attribute (which requires the size in
3081 // bytes).
3082 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3083 QualType ETy = ArrTy->getElementType();
3084 llvm::Align Alignment =
3085 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3086 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3087 uint64_t ArrSize = ArrTy->getSize().getZExtValue();
3088 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
3089 ArrSize) {
3090 llvm::AttrBuilder Attrs(getLLVMContext());
3091 Attrs.addDereferenceableAttr(
3092 getContext().getTypeSizeInChars(ETy).getQuantity() *
3093 ArrSize);
3094 AI->addAttrs(Attrs);
3095 } else if (getContext().getTargetInfo().getNullPointerValue(
3096 ETy.getAddressSpace()) == 0 &&
3097 !CGM.getCodeGenOpts().NullPointerIsValid) {
3098 AI->addAttr(llvm::Attribute::NonNull);
3101 } else if (const auto *ArrTy =
3102 getContext().getAsVariableArrayType(OTy)) {
3103 // For C99 VLAs with the static keyword, we don't know the size so
3104 // we can't use the dereferenceable attribute, but in addrspace(0)
3105 // we know that it must be nonnull.
3106 if (ArrTy->getSizeModifier() == ArraySizeModifier::Static) {
3107 QualType ETy = ArrTy->getElementType();
3108 llvm::Align Alignment =
3109 CGM.getNaturalTypeAlignment(ETy).getAsAlign();
3110 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
3111 if (!getTypes().getTargetAddressSpace(ETy) &&
3112 !CGM.getCodeGenOpts().NullPointerIsValid)
3113 AI->addAttr(llvm::Attribute::NonNull);
3117 // Set `align` attribute if any.
3118 const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
3119 if (!AVAttr)
3120 if (const auto *TOTy = OTy->getAs<TypedefType>())
3121 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
3122 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
3123 // If alignment-assumption sanitizer is enabled, we do *not* add
3124 // alignment attribute here, but emit normal alignment assumption,
3125 // so the UBSAN check could function.
3126 llvm::ConstantInt *AlignmentCI =
3127 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
3128 uint64_t AlignmentInt =
3129 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
3130 if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
3131 AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
3132 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3133 llvm::Align(AlignmentInt)));
3138 // Set 'noalias' if an argument type has the `restrict` qualifier.
3139 if (Arg->getType().isRestrictQualified())
3140 AI->addAttr(llvm::Attribute::NoAlias);
3143 // Prepare the argument value. If we have the trivial case, handle it
3144 // with no muss and fuss.
3145 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
3146 ArgI.getCoerceToType() == ConvertType(Ty) &&
3147 ArgI.getDirectOffset() == 0) {
3148 assert(NumIRArgs == 1);
3150 // LLVM expects swifterror parameters to be used in very restricted
3151 // ways. Copy the value into a less-restricted temporary.
3152 llvm::Value *V = AI;
3153 if (FI.getExtParameterInfo(ArgNo).getABI()
3154 == ParameterABI::SwiftErrorResult) {
3155 QualType pointeeTy = Ty->getPointeeType();
3156 assert(pointeeTy->isPointerType());
3157 Address temp =
3158 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3159 Address arg(V, ConvertTypeForMem(pointeeTy),
3160 getContext().getTypeAlignInChars(pointeeTy));
3161 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
3162 Builder.CreateStore(incomingErrorValue, temp);
3163 V = temp.getPointer();
3165 // Push a cleanup to copy the value back at the end of the function.
3166 // The convention does not guarantee that the value will be written
3167 // back if the function exits with an unwind exception.
3168 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
3171 // Ensure the argument is the correct type.
3172 if (V->getType() != ArgI.getCoerceToType())
3173 V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
3175 if (isPromoted)
3176 V = emitArgumentDemotion(*this, Arg, V);
3178 // Because of merging of function types from multiple decls it is
3179 // possible for the type of an argument to not match the corresponding
3180 // type in the function type. Since we are codegening the callee
3181 // in here, add a cast to the argument type.
3182 llvm::Type *LTy = ConvertType(Arg->getType());
3183 if (V->getType() != LTy)
3184 V = Builder.CreateBitCast(V, LTy);
3186 ArgVals.push_back(ParamValue::forDirect(V));
3187 break;
3190 // VLST arguments are coerced to VLATs at the function boundary for
3191 // ABI consistency. If this is a VLST that was coerced to
3192 // a VLAT at the function boundary and the types match up, use
3193 // llvm.vector.extract to convert back to the original VLST.
3194 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
3195 llvm::Value *Coerced = Fn->getArg(FirstIRArg);
3196 if (auto *VecTyFrom =
3197 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
3198 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
3199 // vector, bitcast the source and use a vector extract.
3200 auto PredType =
3201 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
3202 if (VecTyFrom == PredType &&
3203 VecTyTo->getElementType() == Builder.getInt8Ty()) {
3204 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
3205 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
3207 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
3208 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
3210 assert(NumIRArgs == 1);
3211 Coerced->setName(Arg->getName() + ".coerce");
3212 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
3213 VecTyTo, Coerced, Zero, "cast.fixed")));
3214 break;
3219 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
3220 Arg->getName());
3222 // Pointer to store into.
3223 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
3225 // Fast-isel and the optimizer generally like scalar values better than
3226 // FCAs, so we flatten them if this is safe to do for this argument.
3227 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
3228 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
3229 STy->getNumElements() > 1) {
3230 llvm::TypeSize StructSize = CGM.getDataLayout().getTypeAllocSize(STy);
3231 llvm::TypeSize PtrElementSize =
3232 CGM.getDataLayout().getTypeAllocSize(Ptr.getElementType());
3233 if (StructSize.isScalable()) {
3234 assert(STy->containsHomogeneousScalableVectorTypes() &&
3235 "ABI only supports structure with homogeneous scalable vector "
3236 "type");
3237 assert(StructSize == PtrElementSize &&
3238 "Only allow non-fractional movement of structure with"
3239 "homogeneous scalable vector type");
3240 assert(STy->getNumElements() == NumIRArgs);
3242 llvm::Value *LoadedStructValue = llvm::PoisonValue::get(STy);
3243 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3244 auto *AI = Fn->getArg(FirstIRArg + i);
3245 AI->setName(Arg->getName() + ".coerce" + Twine(i));
3246 LoadedStructValue =
3247 Builder.CreateInsertValue(LoadedStructValue, AI, i);
3250 Builder.CreateStore(LoadedStructValue, Ptr);
3251 } else {
3252 uint64_t SrcSize = StructSize.getFixedValue();
3253 uint64_t DstSize = PtrElementSize.getFixedValue();
3255 Address AddrToStoreInto = Address::invalid();
3256 if (SrcSize <= DstSize) {
3257 AddrToStoreInto = Ptr.withElementType(STy);
3258 } else {
3259 AddrToStoreInto =
3260 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
3263 assert(STy->getNumElements() == NumIRArgs);
3264 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3265 auto AI = Fn->getArg(FirstIRArg + i);
3266 AI->setName(Arg->getName() + ".coerce" + Twine(i));
3267 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
3268 Builder.CreateStore(AI, EltPtr);
3271 if (SrcSize > DstSize) {
3272 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
3275 } else {
3276 // Simple case, just do a coerced store of the argument into the alloca.
3277 assert(NumIRArgs == 1);
3278 auto AI = Fn->getArg(FirstIRArg);
3279 AI->setName(Arg->getName() + ".coerce");
3280 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
3283 // Match to what EmitParmDecl is expecting for this type.
3284 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
3285 llvm::Value *V =
3286 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
3287 if (isPromoted)
3288 V = emitArgumentDemotion(*this, Arg, V);
3289 ArgVals.push_back(ParamValue::forDirect(V));
3290 } else {
3291 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3293 break;
3296 case ABIArgInfo::CoerceAndExpand: {
3297 // Reconstruct into a temporary.
3298 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3299 ArgVals.push_back(ParamValue::forIndirect(alloca));
3301 auto coercionType = ArgI.getCoerceAndExpandType();
3302 alloca = alloca.withElementType(coercionType);
3304 unsigned argIndex = FirstIRArg;
3305 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3306 llvm::Type *eltType = coercionType->getElementType(i);
3307 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
3308 continue;
3310 auto eltAddr = Builder.CreateStructGEP(alloca, i);
3311 auto elt = Fn->getArg(argIndex++);
3312 Builder.CreateStore(elt, eltAddr);
3314 assert(argIndex == FirstIRArg + NumIRArgs);
3315 break;
3318 case ABIArgInfo::Expand: {
3319 // If this structure was expanded into multiple arguments then
3320 // we need to create a temporary and reconstruct it from the
3321 // arguments.
3322 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
3323 LValue LV = MakeAddrLValue(Alloca, Ty);
3324 ArgVals.push_back(ParamValue::forIndirect(Alloca));
3326 auto FnArgIter = Fn->arg_begin() + FirstIRArg;
3327 ExpandTypeFromArgs(Ty, LV, FnArgIter);
3328 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
3329 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
3330 auto AI = Fn->getArg(FirstIRArg + i);
3331 AI->setName(Arg->getName() + "." + Twine(i));
3333 break;
3336 case ABIArgInfo::Ignore:
3337 assert(NumIRArgs == 0);
3338 // Initialize the local variable appropriately.
3339 if (!hasScalarEvaluationKind(Ty)) {
3340 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
3341 } else {
3342 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
3343 ArgVals.push_back(ParamValue::forDirect(U));
3345 break;
3349 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3350 for (int I = Args.size() - 1; I >= 0; --I)
3351 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3352 } else {
3353 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3354 EmitParmDecl(*Args[I], ArgVals[I], I + 1);
3358 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
3359 while (insn->use_empty()) {
3360 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
3361 if (!bitcast) return;
3363 // This is "safe" because we would have used a ConstantExpr otherwise.
3364 insn = cast<llvm::Instruction>(bitcast->getOperand(0));
3365 bitcast->eraseFromParent();
3369 /// Try to emit a fused autorelease of a return result.
3370 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
3371 llvm::Value *result) {
3372 // We must be immediately followed the cast.
3373 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
3374 if (BB->empty()) return nullptr;
3375 if (&BB->back() != result) return nullptr;
3377 llvm::Type *resultType = result->getType();
3379 // result is in a BasicBlock and is therefore an Instruction.
3380 llvm::Instruction *generator = cast<llvm::Instruction>(result);
3382 SmallVector<llvm::Instruction *, 4> InstsToKill;
3384 // Look for:
3385 // %generator = bitcast %type1* %generator2 to %type2*
3386 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
3387 // We would have emitted this as a constant if the operand weren't
3388 // an Instruction.
3389 generator = cast<llvm::Instruction>(bitcast->getOperand(0));
3391 // Require the generator to be immediately followed by the cast.
3392 if (generator->getNextNode() != bitcast)
3393 return nullptr;
3395 InstsToKill.push_back(bitcast);
3398 // Look for:
3399 // %generator = call i8* @objc_retain(i8* %originalResult)
3400 // or
3401 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3402 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
3403 if (!call) return nullptr;
3405 bool doRetainAutorelease;
3407 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
3408 doRetainAutorelease = true;
3409 } else if (call->getCalledOperand() ==
3410 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
3411 doRetainAutorelease = false;
3413 // If we emitted an assembly marker for this call (and the
3414 // ARCEntrypoints field should have been set if so), go looking
3415 // for that call. If we can't find it, we can't do this
3416 // optimization. But it should always be the immediately previous
3417 // instruction, unless we needed bitcasts around the call.
3418 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
3419 llvm::Instruction *prev = call->getPrevNode();
3420 assert(prev);
3421 if (isa<llvm::BitCastInst>(prev)) {
3422 prev = prev->getPrevNode();
3423 assert(prev);
3425 assert(isa<llvm::CallInst>(prev));
3426 assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
3427 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
3428 InstsToKill.push_back(prev);
3430 } else {
3431 return nullptr;
3434 result = call->getArgOperand(0);
3435 InstsToKill.push_back(call);
3437 // Keep killing bitcasts, for sanity. Note that we no longer care
3438 // about precise ordering as long as there's exactly one use.
3439 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
3440 if (!bitcast->hasOneUse()) break;
3441 InstsToKill.push_back(bitcast);
3442 result = bitcast->getOperand(0);
3445 // Delete all the unnecessary instructions, from latest to earliest.
3446 for (auto *I : InstsToKill)
3447 I->eraseFromParent();
3449 // Do the fused retain/autorelease if we were asked to.
3450 if (doRetainAutorelease)
3451 result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
3453 // Cast back to the result type.
3454 return CGF.Builder.CreateBitCast(result, resultType);
3457 /// If this is a +1 of the value of an immutable 'self', remove it.
3458 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
3459 llvm::Value *result) {
3460 // This is only applicable to a method with an immutable 'self'.
3461 const ObjCMethodDecl *method =
3462 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
3463 if (!method) return nullptr;
3464 const VarDecl *self = method->getSelfDecl();
3465 if (!self->getType().isConstQualified()) return nullptr;
3467 // Look for a retain call. Note: stripPointerCasts looks through returned arg
3468 // functions, which would cause us to miss the retain.
3469 llvm::CallInst *retainCall = dyn_cast<llvm::CallInst>(result);
3470 if (!retainCall || retainCall->getCalledOperand() !=
3471 CGF.CGM.getObjCEntrypoints().objc_retain)
3472 return nullptr;
3474 // Look for an ordinary load of 'self'.
3475 llvm::Value *retainedValue = retainCall->getArgOperand(0);
3476 llvm::LoadInst *load =
3477 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
3478 if (!load || load->isAtomic() || load->isVolatile() ||
3479 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
3480 return nullptr;
3482 // Okay! Burn it all down. This relies for correctness on the
3483 // assumption that the retain is emitted as part of the return and
3484 // that thereafter everything is used "linearly".
3485 llvm::Type *resultType = result->getType();
3486 eraseUnusedBitCasts(cast<llvm::Instruction>(result));
3487 assert(retainCall->use_empty());
3488 retainCall->eraseFromParent();
3489 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
3491 return CGF.Builder.CreateBitCast(load, resultType);
3494 /// Emit an ARC autorelease of the result of a function.
3496 /// \return the value to actually return from the function
3497 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
3498 llvm::Value *result) {
3499 // If we're returning 'self', kill the initial retain. This is a
3500 // heuristic attempt to "encourage correctness" in the really unfortunate
3501 // case where we have a return of self during a dealloc and we desperately
3502 // need to avoid the possible autorelease.
3503 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
3504 return self;
3506 // At -O0, try to emit a fused retain/autorelease.
3507 if (CGF.shouldUseFusedARCCalls())
3508 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
3509 return fused;
3511 return CGF.EmitARCAutoreleaseReturnValue(result);
3514 /// Heuristically search for a dominating store to the return-value slot.
3515 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3516 // Check if a User is a store which pointerOperand is the ReturnValue.
3517 // We are looking for stores to the ReturnValue, not for stores of the
3518 // ReturnValue to some other location.
3519 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3520 auto *SI = dyn_cast<llvm::StoreInst>(U);
3521 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() ||
3522 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
3523 return nullptr;
3524 // These aren't actually possible for non-coerced returns, and we
3525 // only care about non-coerced returns on this code path.
3526 // All memory instructions inside __try block are volatile.
3527 assert(!SI->isAtomic() &&
3528 (!SI->isVolatile() || CGF.currentFunctionUsesSEHTry()));
3529 return SI;
3531 // If there are multiple uses of the return-value slot, just check
3532 // for something immediately preceding the IP. Sometimes this can
3533 // happen with how we generate implicit-returns; it can also happen
3534 // with noreturn cleanups.
3535 if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3536 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3537 if (IP->empty()) return nullptr;
3539 // Look at directly preceding instruction, skipping bitcasts and lifetime
3540 // markers.
3541 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
3542 if (isa<llvm::BitCastInst>(&I))
3543 continue;
3544 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
3545 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
3546 continue;
3548 return GetStoreIfValid(&I);
3550 return nullptr;
3553 llvm::StoreInst *store =
3554 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3555 if (!store) return nullptr;
3557 // Now do a first-and-dirty dominance check: just walk up the
3558 // single-predecessors chain from the current insertion point.
3559 llvm::BasicBlock *StoreBB = store->getParent();
3560 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3561 llvm::SmallPtrSet<llvm::BasicBlock *, 4> SeenBBs;
3562 while (IP != StoreBB) {
3563 if (!SeenBBs.insert(IP).second || !(IP = IP->getSinglePredecessor()))
3564 return nullptr;
3567 // Okay, the store's basic block dominates the insertion point; we
3568 // can do our thing.
3569 return store;
3572 // Helper functions for EmitCMSEClearRecord
3574 // Set the bits corresponding to a field having width `BitWidth` and located at
3575 // offset `BitOffset` (from the least significant bit) within a storage unit of
3576 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3577 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3578 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3579 int BitWidth, int CharWidth) {
3580 assert(CharWidth <= 64);
3581 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3583 int Pos = 0;
3584 if (BitOffset >= CharWidth) {
3585 Pos += BitOffset / CharWidth;
3586 BitOffset = BitOffset % CharWidth;
3589 const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3590 if (BitOffset + BitWidth >= CharWidth) {
3591 Bits[Pos++] |= (Used << BitOffset) & Used;
3592 BitWidth -= CharWidth - BitOffset;
3593 BitOffset = 0;
3596 while (BitWidth >= CharWidth) {
3597 Bits[Pos++] = Used;
3598 BitWidth -= CharWidth;
3601 if (BitWidth > 0)
3602 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3605 // Set the bits corresponding to a field having width `BitWidth` and located at
3606 // offset `BitOffset` (from the least significant bit) within a storage unit of
3607 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3608 // `Bits` corresponds to one target byte. Use target endian layout.
3609 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3610 int StorageSize, int BitOffset, int BitWidth,
3611 int CharWidth, bool BigEndian) {
3613 SmallVector<uint64_t, 8> TmpBits(StorageSize);
3614 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3616 if (BigEndian)
3617 std::reverse(TmpBits.begin(), TmpBits.end());
3619 for (uint64_t V : TmpBits)
3620 Bits[StorageOffset++] |= V;
3623 static void setUsedBits(CodeGenModule &, QualType, int,
3624 SmallVectorImpl<uint64_t> &);
3626 // Set the bits in `Bits`, which correspond to the value representations of
3627 // the actual members of the record type `RTy`. Note that this function does
3628 // not handle base classes, virtual tables, etc, since they cannot happen in
3629 // CMSE function arguments or return. The bit mask corresponds to the target
3630 // memory layout, i.e. it's endian dependent.
3631 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3632 SmallVectorImpl<uint64_t> &Bits) {
3633 ASTContext &Context = CGM.getContext();
3634 int CharWidth = Context.getCharWidth();
3635 const RecordDecl *RD = RTy->getDecl()->getDefinition();
3636 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3637 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3639 int Idx = 0;
3640 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3641 const FieldDecl *F = *I;
3643 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3644 F->getType()->isIncompleteArrayType())
3645 continue;
3647 if (F->isBitField()) {
3648 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3649 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3650 BFI.StorageSize / CharWidth, BFI.Offset,
3651 BFI.Size, CharWidth,
3652 CGM.getDataLayout().isBigEndian());
3653 continue;
3656 setUsedBits(CGM, F->getType(),
3657 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3661 // Set the bits in `Bits`, which correspond to the value representations of
3662 // the elements of an array type `ATy`.
3663 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3664 int Offset, SmallVectorImpl<uint64_t> &Bits) {
3665 const ASTContext &Context = CGM.getContext();
3667 QualType ETy = Context.getBaseElementType(ATy);
3668 int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3669 SmallVector<uint64_t, 4> TmpBits(Size);
3670 setUsedBits(CGM, ETy, 0, TmpBits);
3672 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3673 auto Src = TmpBits.begin();
3674 auto Dst = Bits.begin() + Offset + I * Size;
3675 for (int J = 0; J < Size; ++J)
3676 *Dst++ |= *Src++;
3680 // Set the bits in `Bits`, which correspond to the value representations of
3681 // the type `QTy`.
3682 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3683 SmallVectorImpl<uint64_t> &Bits) {
3684 if (const auto *RTy = QTy->getAs<RecordType>())
3685 return setUsedBits(CGM, RTy, Offset, Bits);
3687 ASTContext &Context = CGM.getContext();
3688 if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3689 return setUsedBits(CGM, ATy, Offset, Bits);
3691 int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3692 if (Size <= 0)
3693 return;
3695 std::fill_n(Bits.begin() + Offset, Size,
3696 (uint64_t(1) << Context.getCharWidth()) - 1);
3699 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3700 int Pos, int Size, int CharWidth,
3701 bool BigEndian) {
3702 assert(Size > 0);
3703 uint64_t Mask = 0;
3704 if (BigEndian) {
3705 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3706 ++P)
3707 Mask = (Mask << CharWidth) | *P;
3708 } else {
3709 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3711 Mask = (Mask << CharWidth) | *--P;
3712 while (P != End);
3714 return Mask;
3717 // Emit code to clear the bits in a record, which aren't a part of any user
3718 // declared member, when the record is a function return.
3719 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3720 llvm::IntegerType *ITy,
3721 QualType QTy) {
3722 assert(Src->getType() == ITy);
3723 assert(ITy->getScalarSizeInBits() <= 64);
3725 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3726 int Size = DataLayout.getTypeStoreSize(ITy);
3727 SmallVector<uint64_t, 4> Bits(Size);
3728 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3730 int CharWidth = CGM.getContext().getCharWidth();
3731 uint64_t Mask =
3732 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3734 return Builder.CreateAnd(Src, Mask, "cmse.clear");
3737 // Emit code to clear the bits in a record, which aren't a part of any user
3738 // declared member, when the record is a function argument.
3739 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3740 llvm::ArrayType *ATy,
3741 QualType QTy) {
3742 const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3743 int Size = DataLayout.getTypeStoreSize(ATy);
3744 SmallVector<uint64_t, 16> Bits(Size);
3745 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3747 // Clear each element of the LLVM array.
3748 int CharWidth = CGM.getContext().getCharWidth();
3749 int CharsPerElt =
3750 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3751 int MaskIndex = 0;
3752 llvm::Value *R = llvm::PoisonValue::get(ATy);
3753 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3754 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3755 DataLayout.isBigEndian());
3756 MaskIndex += CharsPerElt;
3757 llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3758 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3759 R = Builder.CreateInsertValue(R, T1, I);
3762 return R;
3765 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3766 bool EmitRetDbgLoc,
3767 SourceLocation EndLoc) {
3768 if (FI.isNoReturn()) {
3769 // Noreturn functions don't return.
3770 EmitUnreachable(EndLoc);
3771 return;
3774 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3775 // Naked functions don't have epilogues.
3776 Builder.CreateUnreachable();
3777 return;
3780 // Functions with no result always return void.
3781 if (!ReturnValue.isValid()) {
3782 Builder.CreateRetVoid();
3783 return;
3786 llvm::DebugLoc RetDbgLoc;
3787 llvm::Value *RV = nullptr;
3788 QualType RetTy = FI.getReturnType();
3789 const ABIArgInfo &RetAI = FI.getReturnInfo();
3791 switch (RetAI.getKind()) {
3792 case ABIArgInfo::InAlloca:
3793 // Aggregates get evaluated directly into the destination. Sometimes we
3794 // need to return the sret value in a register, though.
3795 assert(hasAggregateEvaluationKind(RetTy));
3796 if (RetAI.getInAllocaSRet()) {
3797 llvm::Function::arg_iterator EI = CurFn->arg_end();
3798 --EI;
3799 llvm::Value *ArgStruct = &*EI;
3800 llvm::Value *SRet = Builder.CreateStructGEP(
3801 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
3802 llvm::Type *Ty =
3803 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
3804 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
3806 break;
3808 case ABIArgInfo::Indirect: {
3809 auto AI = CurFn->arg_begin();
3810 if (RetAI.isSRetAfterThis())
3811 ++AI;
3812 switch (getEvaluationKind(RetTy)) {
3813 case TEK_Complex: {
3814 ComplexPairTy RT =
3815 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3816 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3817 /*isInit*/ true);
3818 break;
3820 case TEK_Aggregate:
3821 // Do nothing; aggregates get evaluated directly into the destination.
3822 break;
3823 case TEK_Scalar: {
3824 LValueBaseInfo BaseInfo;
3825 TBAAAccessInfo TBAAInfo;
3826 CharUnits Alignment =
3827 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
3828 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
3829 LValue ArgVal =
3830 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
3831 EmitStoreOfScalar(
3832 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
3833 break;
3836 break;
3839 case ABIArgInfo::Extend:
3840 case ABIArgInfo::Direct:
3841 if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3842 RetAI.getDirectOffset() == 0) {
3843 // The internal return value temp always will have pointer-to-return-type
3844 // type, just do a load.
3846 // If there is a dominating store to ReturnValue, we can elide
3847 // the load, zap the store, and usually zap the alloca.
3848 if (llvm::StoreInst *SI =
3849 findDominatingStoreToReturnValue(*this)) {
3850 // Reuse the debug location from the store unless there is
3851 // cleanup code to be emitted between the store and return
3852 // instruction.
3853 if (EmitRetDbgLoc && !AutoreleaseResult)
3854 RetDbgLoc = SI->getDebugLoc();
3855 // Get the stored value and nuke the now-dead store.
3856 RV = SI->getValueOperand();
3857 SI->eraseFromParent();
3859 // Otherwise, we have to do a simple load.
3860 } else {
3861 RV = Builder.CreateLoad(ReturnValue);
3863 } else {
3864 // If the value is offset in memory, apply the offset now.
3865 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3867 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3870 // In ARC, end functions that return a retainable type with a call
3871 // to objc_autoreleaseReturnValue.
3872 if (AutoreleaseResult) {
3873 #ifndef NDEBUG
3874 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3875 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3876 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3877 // CurCodeDecl or BlockInfo.
3878 QualType RT;
3880 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3881 RT = FD->getReturnType();
3882 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3883 RT = MD->getReturnType();
3884 else if (isa<BlockDecl>(CurCodeDecl))
3885 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3886 else
3887 llvm_unreachable("Unexpected function/method type");
3889 assert(getLangOpts().ObjCAutoRefCount &&
3890 !FI.isReturnsRetained() &&
3891 RT->isObjCRetainableType());
3892 #endif
3893 RV = emitAutoreleaseOfResult(*this, RV);
3896 break;
3898 case ABIArgInfo::Ignore:
3899 break;
3901 case ABIArgInfo::CoerceAndExpand: {
3902 auto coercionType = RetAI.getCoerceAndExpandType();
3904 // Load all of the coerced elements out into results.
3905 llvm::SmallVector<llvm::Value*, 4> results;
3906 Address addr = ReturnValue.withElementType(coercionType);
3907 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3908 auto coercedEltType = coercionType->getElementType(i);
3909 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3910 continue;
3912 auto eltAddr = Builder.CreateStructGEP(addr, i);
3913 auto elt = Builder.CreateLoad(eltAddr);
3914 results.push_back(elt);
3917 // If we have one result, it's the single direct result type.
3918 if (results.size() == 1) {
3919 RV = results[0];
3921 // Otherwise, we need to make a first-class aggregate.
3922 } else {
3923 // Construct a return type that lacks padding elements.
3924 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3926 RV = llvm::PoisonValue::get(returnType);
3927 for (unsigned i = 0, e = results.size(); i != e; ++i) {
3928 RV = Builder.CreateInsertValue(RV, results[i], i);
3931 break;
3933 case ABIArgInfo::Expand:
3934 case ABIArgInfo::IndirectAliased:
3935 llvm_unreachable("Invalid ABI kind for return argument");
3938 llvm::Instruction *Ret;
3939 if (RV) {
3940 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3941 // For certain return types, clear padding bits, as they may reveal
3942 // sensitive information.
3943 // Small struct/union types are passed as integers.
3944 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3945 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3946 RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3948 EmitReturnValueCheck(RV);
3949 Ret = Builder.CreateRet(RV);
3950 } else {
3951 Ret = Builder.CreateRetVoid();
3954 if (RetDbgLoc)
3955 Ret->setDebugLoc(std::move(RetDbgLoc));
3958 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3959 // A current decl may not be available when emitting vtable thunks.
3960 if (!CurCodeDecl)
3961 return;
3963 // If the return block isn't reachable, neither is this check, so don't emit
3964 // it.
3965 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3966 return;
3968 ReturnsNonNullAttr *RetNNAttr = nullptr;
3969 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3970 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3972 if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3973 return;
3975 // Prefer the returns_nonnull attribute if it's present.
3976 SourceLocation AttrLoc;
3977 SanitizerMask CheckKind;
3978 SanitizerHandler Handler;
3979 if (RetNNAttr) {
3980 assert(!requiresReturnValueNullabilityCheck() &&
3981 "Cannot check nullability and the nonnull attribute");
3982 AttrLoc = RetNNAttr->getLocation();
3983 CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3984 Handler = SanitizerHandler::NonnullReturn;
3985 } else {
3986 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3987 if (auto *TSI = DD->getTypeSourceInfo())
3988 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3989 AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3990 CheckKind = SanitizerKind::NullabilityReturn;
3991 Handler = SanitizerHandler::NullabilityReturn;
3994 SanitizerScope SanScope(this);
3996 // Make sure the "return" source location is valid. If we're checking a
3997 // nullability annotation, make sure the preconditions for the check are met.
3998 llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3999 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
4000 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
4001 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
4002 if (requiresReturnValueNullabilityCheck())
4003 CanNullCheck =
4004 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
4005 Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
4006 EmitBlock(Check);
4008 // Now do the null check.
4009 llvm::Value *Cond = Builder.CreateIsNotNull(RV);
4010 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
4011 llvm::Value *DynamicData[] = {SLocPtr};
4012 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
4014 EmitBlock(NoCheck);
4016 #ifndef NDEBUG
4017 // The return location should not be used after the check has been emitted.
4018 ReturnLocation = Address::invalid();
4019 #endif
4022 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
4023 const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
4024 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
4027 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
4028 QualType Ty) {
4029 // FIXME: Generate IR in one pass, rather than going back and fixing up these
4030 // placeholders.
4031 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
4032 llvm::Type *IRPtrTy = llvm::PointerType::getUnqual(CGF.getLLVMContext());
4033 llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy);
4035 // FIXME: When we generate this IR in one pass, we shouldn't need
4036 // this win32-specific alignment hack.
4037 CharUnits Align = CharUnits::fromQuantity(4);
4038 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
4040 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
4041 Ty.getQualifiers(),
4042 AggValueSlot::IsNotDestructed,
4043 AggValueSlot::DoesNotNeedGCBarriers,
4044 AggValueSlot::IsNotAliased,
4045 AggValueSlot::DoesNotOverlap);
4048 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
4049 const VarDecl *param,
4050 SourceLocation loc) {
4051 // StartFunction converted the ABI-lowered parameter(s) into a
4052 // local alloca. We need to turn that into an r-value suitable
4053 // for EmitCall.
4054 Address local = GetAddrOfLocalVar(param);
4056 QualType type = param->getType();
4058 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4059 // but the argument needs to be the original pointer.
4060 if (type->isReferenceType()) {
4061 args.add(RValue::get(Builder.CreateLoad(local)), type);
4063 // In ARC, move out of consumed arguments so that the release cleanup
4064 // entered by StartFunction doesn't cause an over-release. This isn't
4065 // optimal -O0 code generation, but it should get cleaned up when
4066 // optimization is enabled. This also assumes that delegate calls are
4067 // performed exactly once for a set of arguments, but that should be safe.
4068 } else if (getLangOpts().ObjCAutoRefCount &&
4069 param->hasAttr<NSConsumedAttr>() &&
4070 type->isObjCRetainableType()) {
4071 llvm::Value *ptr = Builder.CreateLoad(local);
4072 auto null =
4073 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
4074 Builder.CreateStore(null, local);
4075 args.add(RValue::get(ptr), type);
4077 // For the most part, we just need to load the alloca, except that
4078 // aggregate r-values are actually pointers to temporaries.
4079 } else {
4080 args.add(convertTempToRValue(local, type, loc), type);
4083 // Deactivate the cleanup for the callee-destructed param that was pushed.
4084 if (type->isRecordType() && !CurFuncIsThunk &&
4085 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
4086 param->needsDestruction(getContext())) {
4087 EHScopeStack::stable_iterator cleanup =
4088 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
4089 assert(cleanup.isValid() &&
4090 "cleanup for callee-destructed param not recorded");
4091 // This unreachable is a temporary marker which will be removed later.
4092 llvm::Instruction *isActive = Builder.CreateUnreachable();
4093 args.addArgCleanupDeactivation(cleanup, isActive);
4097 static bool isProvablyNull(llvm::Value *addr) {
4098 return isa<llvm::ConstantPointerNull>(addr);
4101 /// Emit the actual writing-back of a writeback.
4102 static void emitWriteback(CodeGenFunction &CGF,
4103 const CallArgList::Writeback &writeback) {
4104 const LValue &srcLV = writeback.Source;
4105 Address srcAddr = srcLV.getAddress(CGF);
4106 assert(!isProvablyNull(srcAddr.getPointer()) &&
4107 "shouldn't have writeback for provably null argument");
4109 llvm::BasicBlock *contBB = nullptr;
4111 // If the argument wasn't provably non-null, we need to null check
4112 // before doing the store.
4113 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
4114 CGF.CGM.getDataLayout());
4115 if (!provablyNonNull) {
4116 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
4117 contBB = CGF.createBasicBlock("icr.done");
4119 llvm::Value *isNull =
4120 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
4121 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
4122 CGF.EmitBlock(writebackBB);
4125 // Load the value to writeback.
4126 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
4128 // Cast it back, in case we're writing an id to a Foo* or something.
4129 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
4130 "icr.writeback-cast");
4132 // Perform the writeback.
4134 // If we have a "to use" value, it's something we need to emit a use
4135 // of. This has to be carefully threaded in: if it's done after the
4136 // release it's potentially undefined behavior (and the optimizer
4137 // will ignore it), and if it happens before the retain then the
4138 // optimizer could move the release there.
4139 if (writeback.ToUse) {
4140 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
4142 // Retain the new value. No need to block-copy here: the block's
4143 // being passed up the stack.
4144 value = CGF.EmitARCRetainNonBlock(value);
4146 // Emit the intrinsic use here.
4147 CGF.EmitARCIntrinsicUse(writeback.ToUse);
4149 // Load the old value (primitively).
4150 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
4152 // Put the new value in place (primitively).
4153 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
4155 // Release the old value.
4156 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
4158 // Otherwise, we can just do a normal lvalue store.
4159 } else {
4160 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
4163 // Jump to the continuation block.
4164 if (!provablyNonNull)
4165 CGF.EmitBlock(contBB);
4168 static void emitWritebacks(CodeGenFunction &CGF,
4169 const CallArgList &args) {
4170 for (const auto &I : args.writebacks())
4171 emitWriteback(CGF, I);
4174 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
4175 const CallArgList &CallArgs) {
4176 ArrayRef<CallArgList::CallArgCleanup> Cleanups =
4177 CallArgs.getCleanupsToDeactivate();
4178 // Iterate in reverse to increase the likelihood of popping the cleanup.
4179 for (const auto &I : llvm::reverse(Cleanups)) {
4180 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
4181 I.IsActiveIP->eraseFromParent();
4185 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
4186 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
4187 if (uop->getOpcode() == UO_AddrOf)
4188 return uop->getSubExpr();
4189 return nullptr;
4192 /// Emit an argument that's being passed call-by-writeback. That is,
4193 /// we are passing the address of an __autoreleased temporary; it
4194 /// might be copy-initialized with the current value of the given
4195 /// address, but it will definitely be copied out of after the call.
4196 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
4197 const ObjCIndirectCopyRestoreExpr *CRE) {
4198 LValue srcLV;
4200 // Make an optimistic effort to emit the address as an l-value.
4201 // This can fail if the argument expression is more complicated.
4202 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
4203 srcLV = CGF.EmitLValue(lvExpr);
4205 // Otherwise, just emit it as a scalar.
4206 } else {
4207 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
4209 QualType srcAddrType =
4210 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
4211 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
4213 Address srcAddr = srcLV.getAddress(CGF);
4215 // The dest and src types don't necessarily match in LLVM terms
4216 // because of the crazy ObjC compatibility rules.
4218 llvm::PointerType *destType =
4219 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
4220 llvm::Type *destElemType =
4221 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
4223 // If the address is a constant null, just pass the appropriate null.
4224 if (isProvablyNull(srcAddr.getPointer())) {
4225 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
4226 CRE->getType());
4227 return;
4230 // Create the temporary.
4231 Address temp =
4232 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
4233 // Loading an l-value can introduce a cleanup if the l-value is __weak,
4234 // and that cleanup will be conditional if we can't prove that the l-value
4235 // isn't null, so we need to register a dominating point so that the cleanups
4236 // system will make valid IR.
4237 CodeGenFunction::ConditionalEvaluation condEval(CGF);
4239 // Zero-initialize it if we're not doing a copy-initialization.
4240 bool shouldCopy = CRE->shouldCopy();
4241 if (!shouldCopy) {
4242 llvm::Value *null =
4243 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
4244 CGF.Builder.CreateStore(null, temp);
4247 llvm::BasicBlock *contBB = nullptr;
4248 llvm::BasicBlock *originBB = nullptr;
4250 // If the address is *not* known to be non-null, we need to switch.
4251 llvm::Value *finalArgument;
4253 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
4254 CGF.CGM.getDataLayout());
4255 if (provablyNonNull) {
4256 finalArgument = temp.getPointer();
4257 } else {
4258 llvm::Value *isNull =
4259 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
4261 finalArgument = CGF.Builder.CreateSelect(isNull,
4262 llvm::ConstantPointerNull::get(destType),
4263 temp.getPointer(), "icr.argument");
4265 // If we need to copy, then the load has to be conditional, which
4266 // means we need control flow.
4267 if (shouldCopy) {
4268 originBB = CGF.Builder.GetInsertBlock();
4269 contBB = CGF.createBasicBlock("icr.cont");
4270 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
4271 CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
4272 CGF.EmitBlock(copyBB);
4273 condEval.begin(CGF);
4277 llvm::Value *valueToUse = nullptr;
4279 // Perform a copy if necessary.
4280 if (shouldCopy) {
4281 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
4282 assert(srcRV.isScalar());
4284 llvm::Value *src = srcRV.getScalarVal();
4285 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
4287 // Use an ordinary store, not a store-to-lvalue.
4288 CGF.Builder.CreateStore(src, temp);
4290 // If optimization is enabled, and the value was held in a
4291 // __strong variable, we need to tell the optimizer that this
4292 // value has to stay alive until we're doing the store back.
4293 // This is because the temporary is effectively unretained,
4294 // and so otherwise we can violate the high-level semantics.
4295 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4296 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
4297 valueToUse = src;
4301 // Finish the control flow if we needed it.
4302 if (shouldCopy && !provablyNonNull) {
4303 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
4304 CGF.EmitBlock(contBB);
4306 // Make a phi for the value to intrinsically use.
4307 if (valueToUse) {
4308 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
4309 "icr.to-use");
4310 phiToUse->addIncoming(valueToUse, copyBB);
4311 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
4312 originBB);
4313 valueToUse = phiToUse;
4316 condEval.end(CGF);
4319 args.addWriteback(srcLV, temp, valueToUse);
4320 args.add(RValue::get(finalArgument), CRE->getType());
4323 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
4324 assert(!StackBase);
4326 // Save the stack.
4327 StackBase = CGF.Builder.CreateStackSave("inalloca.save");
4330 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
4331 if (StackBase) {
4332 // Restore the stack after the call.
4333 CGF.Builder.CreateStackRestore(StackBase);
4337 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
4338 SourceLocation ArgLoc,
4339 AbstractCallee AC,
4340 unsigned ParmNum) {
4341 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
4342 SanOpts.has(SanitizerKind::NullabilityArg)))
4343 return;
4345 // The param decl may be missing in a variadic function.
4346 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
4347 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
4349 // Prefer the nonnull attribute if it's present.
4350 const NonNullAttr *NNAttr = nullptr;
4351 if (SanOpts.has(SanitizerKind::NonnullAttribute))
4352 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
4354 bool CanCheckNullability = false;
4355 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
4356 auto Nullability = PVD->getType()->getNullability();
4357 CanCheckNullability = Nullability &&
4358 *Nullability == NullabilityKind::NonNull &&
4359 PVD->getTypeSourceInfo();
4362 if (!NNAttr && !CanCheckNullability)
4363 return;
4365 SourceLocation AttrLoc;
4366 SanitizerMask CheckKind;
4367 SanitizerHandler Handler;
4368 if (NNAttr) {
4369 AttrLoc = NNAttr->getLocation();
4370 CheckKind = SanitizerKind::NonnullAttribute;
4371 Handler = SanitizerHandler::NonnullArg;
4372 } else {
4373 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4374 CheckKind = SanitizerKind::NullabilityArg;
4375 Handler = SanitizerHandler::NullabilityArg;
4378 SanitizerScope SanScope(this);
4379 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
4380 llvm::Constant *StaticData[] = {
4381 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
4382 llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
4384 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt);
4387 // Check if the call is going to use the inalloca convention. This needs to
4388 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4389 // later, so we can't check it directly.
4390 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
4391 ArrayRef<QualType> ArgTypes) {
4392 // The Swift calling conventions don't go through the target-specific
4393 // argument classification, they never use inalloca.
4394 // TODO: Consider limiting inalloca use to only calling conventions supported
4395 // by MSVC.
4396 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
4397 return false;
4398 if (!CGM.getTarget().getCXXABI().isMicrosoft())
4399 return false;
4400 return llvm::any_of(ArgTypes, [&](QualType Ty) {
4401 return isInAllocaArgument(CGM.getCXXABI(), Ty);
4405 #ifndef NDEBUG
4406 // Determine whether the given argument is an Objective-C method
4407 // that may have type parameters in its signature.
4408 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4409 const DeclContext *dc = method->getDeclContext();
4410 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
4411 return classDecl->getTypeParamListAsWritten();
4414 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4415 return catDecl->getTypeParamList();
4418 return false;
4420 #endif
4422 /// EmitCallArgs - Emit call arguments for a function.
4423 void CodeGenFunction::EmitCallArgs(
4424 CallArgList &Args, PrototypeWrapper Prototype,
4425 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4426 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
4427 SmallVector<QualType, 16> ArgTypes;
4429 assert((ParamsToSkip == 0 || Prototype.P) &&
4430 "Can't skip parameters if type info is not provided");
4432 // This variable only captures *explicitly* written conventions, not those
4433 // applied by default via command line flags or target defaults, such as
4434 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4435 // require knowing if this is a C++ instance method or being able to see
4436 // unprototyped FunctionTypes.
4437 CallingConv ExplicitCC = CC_C;
4439 // First, if a prototype was provided, use those argument types.
4440 bool IsVariadic = false;
4441 if (Prototype.P) {
4442 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
4443 if (MD) {
4444 IsVariadic = MD->isVariadic();
4445 ExplicitCC = getCallingConventionForDecl(
4446 MD, CGM.getTarget().getTriple().isOSWindows());
4447 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
4448 MD->param_type_end());
4449 } else {
4450 const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
4451 IsVariadic = FPT->isVariadic();
4452 ExplicitCC = FPT->getExtInfo().getCC();
4453 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
4454 FPT->param_type_end());
4457 #ifndef NDEBUG
4458 // Check that the prototyped types match the argument expression types.
4459 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
4460 CallExpr::const_arg_iterator Arg = ArgRange.begin();
4461 for (QualType Ty : ArgTypes) {
4462 assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4463 assert(
4464 (isGenericMethod || Ty->isVariablyModifiedType() ||
4465 Ty.getNonReferenceType()->isObjCRetainableType() ||
4466 getContext()
4467 .getCanonicalType(Ty.getNonReferenceType())
4468 .getTypePtr() ==
4469 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
4470 "type mismatch in call argument!");
4471 ++Arg;
4474 // Either we've emitted all the call args, or we have a call to variadic
4475 // function.
4476 assert((Arg == ArgRange.end() || IsVariadic) &&
4477 "Extra arguments in non-variadic function!");
4478 #endif
4481 // If we still have any arguments, emit them using the type of the argument.
4482 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
4483 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
4484 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
4486 // We must evaluate arguments from right to left in the MS C++ ABI,
4487 // because arguments are destroyed left to right in the callee. As a special
4488 // case, there are certain language constructs that require left-to-right
4489 // evaluation, and in those cases we consider the evaluation order requirement
4490 // to trump the "destruction order is reverse construction order" guarantee.
4491 bool LeftToRight =
4492 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4493 ? Order == EvaluationOrder::ForceLeftToRight
4494 : Order != EvaluationOrder::ForceRightToLeft;
4496 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
4497 RValue EmittedArg) {
4498 if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
4499 return;
4500 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
4501 if (PS == nullptr)
4502 return;
4504 const auto &Context = getContext();
4505 auto SizeTy = Context.getSizeType();
4506 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4507 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4508 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4509 EmittedArg.getScalarVal(),
4510 PS->isDynamic());
4511 Args.add(RValue::get(V), SizeTy);
4512 // If we're emitting args in reverse, be sure to do so with
4513 // pass_object_size, as well.
4514 if (!LeftToRight)
4515 std::swap(Args.back(), *(&Args.back() - 1));
4518 // Insert a stack save if we're going to need any inalloca args.
4519 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4520 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4521 "inalloca only supported on x86");
4522 Args.allocateArgumentMemory(*this);
4525 // Evaluate each argument in the appropriate order.
4526 size_t CallArgsStart = Args.size();
4527 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4528 unsigned Idx = LeftToRight ? I : E - I - 1;
4529 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4530 unsigned InitialArgSize = Args.size();
4531 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4532 // the argument and parameter match or the objc method is parameterized.
4533 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4534 getContext().hasSameUnqualifiedType((*Arg)->getType(),
4535 ArgTypes[Idx]) ||
4536 (isa<ObjCMethodDecl>(AC.getDecl()) &&
4537 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4538 "Argument and parameter types don't match");
4539 EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4540 // In particular, we depend on it being the last arg in Args, and the
4541 // objectsize bits depend on there only being one arg if !LeftToRight.
4542 assert(InitialArgSize + 1 == Args.size() &&
4543 "The code below depends on only adding one arg per EmitCallArg");
4544 (void)InitialArgSize;
4545 // Since pointer argument are never emitted as LValue, it is safe to emit
4546 // non-null argument check for r-value only.
4547 if (!Args.back().hasLValue()) {
4548 RValue RVArg = Args.back().getKnownRValue();
4549 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4550 ParamsToSkip + Idx);
4551 // @llvm.objectsize should never have side-effects and shouldn't need
4552 // destruction/cleanups, so we can safely "emit" it after its arg,
4553 // regardless of right-to-leftness
4554 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4558 if (!LeftToRight) {
4559 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4560 // IR function.
4561 std::reverse(Args.begin() + CallArgsStart, Args.end());
4565 namespace {
4567 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4568 DestroyUnpassedArg(Address Addr, QualType Ty)
4569 : Addr(Addr), Ty(Ty) {}
4571 Address Addr;
4572 QualType Ty;
4574 void Emit(CodeGenFunction &CGF, Flags flags) override {
4575 QualType::DestructionKind DtorKind = Ty.isDestructedType();
4576 if (DtorKind == QualType::DK_cxx_destructor) {
4577 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4578 assert(!Dtor->isTrivial());
4579 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4580 /*Delegating=*/false, Addr, Ty);
4581 } else {
4582 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4587 struct DisableDebugLocationUpdates {
4588 CodeGenFunction &CGF;
4589 bool disabledDebugInfo;
4590 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4591 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4592 CGF.disableDebugInfo();
4594 ~DisableDebugLocationUpdates() {
4595 if (disabledDebugInfo)
4596 CGF.enableDebugInfo();
4600 } // end anonymous namespace
4602 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4603 if (!HasLV)
4604 return RV;
4605 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4606 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4607 LV.isVolatile());
4608 IsUsed = true;
4609 return RValue::getAggregate(Copy.getAddress(CGF));
4612 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4613 LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4614 if (!HasLV && RV.isScalar())
4615 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4616 else if (!HasLV && RV.isComplex())
4617 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4618 else {
4619 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4620 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4621 // We assume that call args are never copied into subobjects.
4622 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4623 HasLV ? LV.isVolatileQualified()
4624 : RV.isVolatileQualified());
4626 IsUsed = true;
4629 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4630 QualType type) {
4631 DisableDebugLocationUpdates Dis(*this, E);
4632 if (const ObjCIndirectCopyRestoreExpr *CRE
4633 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4634 assert(getLangOpts().ObjCAutoRefCount);
4635 return emitWritebackArg(*this, args, CRE);
4638 assert(type->isReferenceType() == E->isGLValue() &&
4639 "reference binding to unmaterialized r-value!");
4641 if (E->isGLValue()) {
4642 assert(E->getObjectKind() == OK_Ordinary);
4643 return args.add(EmitReferenceBindingToExpr(E), type);
4646 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4648 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4649 // However, we still have to push an EH-only cleanup in case we unwind before
4650 // we make it to the call.
4651 if (type->isRecordType() &&
4652 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4653 // If we're using inalloca, use the argument memory. Otherwise, use a
4654 // temporary.
4655 AggValueSlot Slot = args.isUsingInAlloca()
4656 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
4658 bool DestroyedInCallee = true, NeedsEHCleanup = true;
4659 if (const auto *RD = type->getAsCXXRecordDecl())
4660 DestroyedInCallee = RD->hasNonTrivialDestructor();
4661 else
4662 NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4664 if (DestroyedInCallee)
4665 Slot.setExternallyDestructed();
4667 EmitAggExpr(E, Slot);
4668 RValue RV = Slot.asRValue();
4669 args.add(RV, type);
4671 if (DestroyedInCallee && NeedsEHCleanup) {
4672 // Create a no-op GEP between the placeholder and the cleanup so we can
4673 // RAUW it successfully. It also serves as a marker of the first
4674 // instruction where the cleanup is active.
4675 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4676 type);
4677 // This unreachable is a temporary marker which will be removed later.
4678 llvm::Instruction *IsActive = Builder.CreateUnreachable();
4679 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
4681 return;
4684 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4685 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4686 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4687 assert(L.isSimple());
4688 args.addUncopiedAggregate(L, type);
4689 return;
4692 args.add(EmitAnyExprToTemp(E), type);
4695 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4696 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4697 // implicitly widens null pointer constants that are arguments to varargs
4698 // functions to pointer-sized ints.
4699 if (!getTarget().getTriple().isOSWindows())
4700 return Arg->getType();
4702 if (Arg->getType()->isIntegerType() &&
4703 getContext().getTypeSize(Arg->getType()) <
4704 getContext().getTargetInfo().getPointerWidth(LangAS::Default) &&
4705 Arg->isNullPointerConstant(getContext(),
4706 Expr::NPC_ValueDependentIsNotNull)) {
4707 return getContext().getIntPtrType();
4710 return Arg->getType();
4713 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4714 // optimizer it can aggressively ignore unwind edges.
4715 void
4716 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4717 if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4718 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4719 Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4720 CGM.getNoObjCARCExceptionsMetadata());
4723 /// Emits a call to the given no-arguments nounwind runtime function.
4724 llvm::CallInst *
4725 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4726 const llvm::Twine &name) {
4727 return EmitNounwindRuntimeCall(callee, std::nullopt, name);
4730 /// Emits a call to the given nounwind runtime function.
4731 llvm::CallInst *
4732 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4733 ArrayRef<llvm::Value *> args,
4734 const llvm::Twine &name) {
4735 llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4736 call->setDoesNotThrow();
4737 return call;
4740 /// Emits a simple call (never an invoke) to the given no-arguments
4741 /// runtime function.
4742 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4743 const llvm::Twine &name) {
4744 return EmitRuntimeCall(callee, std::nullopt, name);
4747 // Calls which may throw must have operand bundles indicating which funclet
4748 // they are nested within.
4749 SmallVector<llvm::OperandBundleDef, 1>
4750 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4751 // There is no need for a funclet operand bundle if we aren't inside a
4752 // funclet.
4753 if (!CurrentFuncletPad)
4754 return (SmallVector<llvm::OperandBundleDef, 1>());
4756 // Skip intrinsics which cannot throw (as long as they don't lower into
4757 // regular function calls in the course of IR transformations).
4758 if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
4759 if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
4760 auto IID = CalleeFn->getIntrinsicID();
4761 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
4762 return (SmallVector<llvm::OperandBundleDef, 1>());
4766 SmallVector<llvm::OperandBundleDef, 1> BundleList;
4767 BundleList.emplace_back("funclet", CurrentFuncletPad);
4768 return BundleList;
4771 /// Emits a simple call (never an invoke) to the given runtime function.
4772 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4773 ArrayRef<llvm::Value *> args,
4774 const llvm::Twine &name) {
4775 llvm::CallInst *call = Builder.CreateCall(
4776 callee, args, getBundlesForFunclet(callee.getCallee()), name);
4777 call->setCallingConv(getRuntimeCC());
4778 return call;
4781 /// Emits a call or invoke to the given noreturn runtime function.
4782 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4783 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4784 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4785 getBundlesForFunclet(callee.getCallee());
4787 if (getInvokeDest()) {
4788 llvm::InvokeInst *invoke =
4789 Builder.CreateInvoke(callee,
4790 getUnreachableBlock(),
4791 getInvokeDest(),
4792 args,
4793 BundleList);
4794 invoke->setDoesNotReturn();
4795 invoke->setCallingConv(getRuntimeCC());
4796 } else {
4797 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4798 call->setDoesNotReturn();
4799 call->setCallingConv(getRuntimeCC());
4800 Builder.CreateUnreachable();
4804 /// Emits a call or invoke instruction to the given nullary runtime function.
4805 llvm::CallBase *
4806 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4807 const Twine &name) {
4808 return EmitRuntimeCallOrInvoke(callee, std::nullopt, name);
4811 /// Emits a call or invoke instruction to the given runtime function.
4812 llvm::CallBase *
4813 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4814 ArrayRef<llvm::Value *> args,
4815 const Twine &name) {
4816 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4817 call->setCallingConv(getRuntimeCC());
4818 return call;
4821 /// Emits a call or invoke instruction to the given function, depending
4822 /// on the current state of the EH stack.
4823 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4824 ArrayRef<llvm::Value *> Args,
4825 const Twine &Name) {
4826 llvm::BasicBlock *InvokeDest = getInvokeDest();
4827 SmallVector<llvm::OperandBundleDef, 1> BundleList =
4828 getBundlesForFunclet(Callee.getCallee());
4830 llvm::CallBase *Inst;
4831 if (!InvokeDest)
4832 Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4833 else {
4834 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4835 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4836 Name);
4837 EmitBlock(ContBB);
4840 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4841 // optimizer it can aggressively ignore unwind edges.
4842 if (CGM.getLangOpts().ObjCAutoRefCount)
4843 AddObjCARCExceptionMetadata(Inst);
4845 return Inst;
4848 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4849 llvm::Value *New) {
4850 DeferredReplacements.push_back(
4851 std::make_pair(llvm::WeakTrackingVH(Old), New));
4854 namespace {
4856 /// Specify given \p NewAlign as the alignment of return value attribute. If
4857 /// such attribute already exists, re-set it to the maximal one of two options.
4858 [[nodiscard]] llvm::AttributeList
4859 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4860 const llvm::AttributeList &Attrs,
4861 llvm::Align NewAlign) {
4862 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4863 if (CurAlign >= NewAlign)
4864 return Attrs;
4865 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4866 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
4867 .addRetAttribute(Ctx, AlignAttr);
4870 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4871 protected:
4872 CodeGenFunction &CGF;
4874 /// We do nothing if this is, or becomes, nullptr.
4875 const AlignedAttrTy *AA = nullptr;
4877 llvm::Value *Alignment = nullptr; // May or may not be a constant.
4878 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4880 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4881 : CGF(CGF_) {
4882 if (!FuncDecl)
4883 return;
4884 AA = FuncDecl->getAttr<AlignedAttrTy>();
4887 public:
4888 /// If we can, materialize the alignment as an attribute on return value.
4889 [[nodiscard]] llvm::AttributeList
4890 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4891 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4892 return Attrs;
4893 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4894 if (!AlignmentCI)
4895 return Attrs;
4896 // We may legitimately have non-power-of-2 alignment here.
4897 // If so, this is UB land, emit it via `@llvm.assume` instead.
4898 if (!AlignmentCI->getValue().isPowerOf2())
4899 return Attrs;
4900 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4901 CGF.getLLVMContext(), Attrs,
4902 llvm::Align(
4903 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4904 AA = nullptr; // We're done. Disallow doing anything else.
4905 return NewAttrs;
4908 /// Emit alignment assumption.
4909 /// This is a general fallback that we take if either there is an offset,
4910 /// or the alignment is variable or we are sanitizing for alignment.
4911 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4912 if (!AA)
4913 return;
4914 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4915 AA->getLocation(), Alignment, OffsetCI);
4916 AA = nullptr; // We're done. Disallow doing anything else.
4920 /// Helper data structure to emit `AssumeAlignedAttr`.
4921 class AssumeAlignedAttrEmitter final
4922 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4923 public:
4924 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4925 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4926 if (!AA)
4927 return;
4928 // It is guaranteed that the alignment/offset are constants.
4929 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4930 if (Expr *Offset = AA->getOffset()) {
4931 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4932 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4933 OffsetCI = nullptr;
4938 /// Helper data structure to emit `AllocAlignAttr`.
4939 class AllocAlignAttrEmitter final
4940 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4941 public:
4942 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4943 const CallArgList &CallArgs)
4944 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4945 if (!AA)
4946 return;
4947 // Alignment may or may not be a constant, and that is okay.
4948 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4949 .getRValue(CGF)
4950 .getScalarVal();
4954 } // namespace
4956 static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
4957 if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
4958 return VT->getPrimitiveSizeInBits().getKnownMinValue();
4959 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
4960 return getMaxVectorWidth(AT->getElementType());
4962 unsigned MaxVectorWidth = 0;
4963 if (auto *ST = dyn_cast<llvm::StructType>(Ty))
4964 for (auto *I : ST->elements())
4965 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
4966 return MaxVectorWidth;
4969 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4970 const CGCallee &Callee,
4971 ReturnValueSlot ReturnValue,
4972 const CallArgList &CallArgs,
4973 llvm::CallBase **callOrInvoke, bool IsMustTail,
4974 SourceLocation Loc) {
4975 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4977 assert(Callee.isOrdinary() || Callee.isVirtual());
4979 // Handle struct-return functions by passing a pointer to the
4980 // location that we would like to return into.
4981 QualType RetTy = CallInfo.getReturnType();
4982 const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4984 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4986 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4987 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4988 // We can only guarantee that a function is called from the correct
4989 // context/function based on the appropriate target attributes,
4990 // so only check in the case where we have both always_inline and target
4991 // since otherwise we could be making a conditional call after a check for
4992 // the proper cpu features (and it won't cause code generation issues due to
4993 // function based code generation).
4994 if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4995 (TargetDecl->hasAttr<TargetAttr>() ||
4996 (CurFuncDecl && CurFuncDecl->hasAttr<TargetAttr>())))
4997 checkTargetFeatures(Loc, FD);
4999 // Some architectures (such as x86-64) have the ABI changed based on
5000 // attribute-target/features. Give them a chance to diagnose.
5001 CGM.getTargetCodeGenInfo().checkFunctionCallABI(
5002 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
5005 // 1. Set up the arguments.
5007 // If we're using inalloca, insert the allocation after the stack save.
5008 // FIXME: Do this earlier rather than hacking it in here!
5009 Address ArgMemory = Address::invalid();
5010 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
5011 const llvm::DataLayout &DL = CGM.getDataLayout();
5012 llvm::Instruction *IP = CallArgs.getStackBase();
5013 llvm::AllocaInst *AI;
5014 if (IP) {
5015 IP = IP->getNextNode();
5016 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
5017 "argmem", IP);
5018 } else {
5019 AI = CreateTempAlloca(ArgStruct, "argmem");
5021 auto Align = CallInfo.getArgStructAlignment();
5022 AI->setAlignment(Align.getAsAlign());
5023 AI->setUsedWithInAlloca(true);
5024 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
5025 ArgMemory = Address(AI, ArgStruct, Align);
5028 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
5029 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
5031 // If the call returns a temporary with struct return, create a temporary
5032 // alloca to hold the result, unless one is given to us.
5033 Address SRetPtr = Address::invalid();
5034 Address SRetAlloca = Address::invalid();
5035 llvm::Value *UnusedReturnSizePtr = nullptr;
5036 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
5037 if (!ReturnValue.isNull()) {
5038 SRetPtr = ReturnValue.getValue();
5039 } else {
5040 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
5041 if (HaveInsertPoint() && ReturnValue.isUnused()) {
5042 llvm::TypeSize size =
5043 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
5044 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
5047 if (IRFunctionArgs.hasSRetArg()) {
5048 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
5049 } else if (RetAI.isInAlloca()) {
5050 Address Addr =
5051 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
5052 Builder.CreateStore(SRetPtr.getPointer(), Addr);
5056 Address swiftErrorTemp = Address::invalid();
5057 Address swiftErrorArg = Address::invalid();
5059 // When passing arguments using temporary allocas, we need to add the
5060 // appropriate lifetime markers. This vector keeps track of all the lifetime
5061 // markers that need to be ended right after the call.
5062 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
5064 // Translate all of the arguments as necessary to match the IR lowering.
5065 assert(CallInfo.arg_size() == CallArgs.size() &&
5066 "Mismatch between function signature & arguments.");
5067 unsigned ArgNo = 0;
5068 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
5069 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
5070 I != E; ++I, ++info_it, ++ArgNo) {
5071 const ABIArgInfo &ArgInfo = info_it->info;
5073 // Insert a padding argument to ensure proper alignment.
5074 if (IRFunctionArgs.hasPaddingArg(ArgNo))
5075 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
5076 llvm::UndefValue::get(ArgInfo.getPaddingType());
5078 unsigned FirstIRArg, NumIRArgs;
5079 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
5081 bool ArgHasMaybeUndefAttr =
5082 IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo);
5084 switch (ArgInfo.getKind()) {
5085 case ABIArgInfo::InAlloca: {
5086 assert(NumIRArgs == 0);
5087 assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
5088 if (I->isAggregate()) {
5089 Address Addr = I->hasLValue()
5090 ? I->getKnownLValue().getAddress(*this)
5091 : I->getKnownRValue().getAggregateAddress();
5092 llvm::Instruction *Placeholder =
5093 cast<llvm::Instruction>(Addr.getPointer());
5095 if (!ArgInfo.getInAllocaIndirect()) {
5096 // Replace the placeholder with the appropriate argument slot GEP.
5097 CGBuilderTy::InsertPoint IP = Builder.saveIP();
5098 Builder.SetInsertPoint(Placeholder);
5099 Addr = Builder.CreateStructGEP(ArgMemory,
5100 ArgInfo.getInAllocaFieldIndex());
5101 Builder.restoreIP(IP);
5102 } else {
5103 // For indirect things such as overaligned structs, replace the
5104 // placeholder with a regular aggregate temporary alloca. Store the
5105 // address of this alloca into the struct.
5106 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
5107 Address ArgSlot = Builder.CreateStructGEP(
5108 ArgMemory, ArgInfo.getInAllocaFieldIndex());
5109 Builder.CreateStore(Addr.getPointer(), ArgSlot);
5111 deferPlaceholderReplacement(Placeholder, Addr.getPointer());
5112 } else if (ArgInfo.getInAllocaIndirect()) {
5113 // Make a temporary alloca and store the address of it into the argument
5114 // struct.
5115 Address Addr = CreateMemTempWithoutCast(
5116 I->Ty, getContext().getTypeAlignInChars(I->Ty),
5117 "indirect-arg-temp");
5118 I->copyInto(*this, Addr);
5119 Address ArgSlot =
5120 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5121 Builder.CreateStore(Addr.getPointer(), ArgSlot);
5122 } else {
5123 // Store the RValue into the argument struct.
5124 Address Addr =
5125 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
5126 Addr = Addr.withElementType(ConvertTypeForMem(I->Ty));
5127 I->copyInto(*this, Addr);
5129 break;
5132 case ABIArgInfo::Indirect:
5133 case ABIArgInfo::IndirectAliased: {
5134 assert(NumIRArgs == 1);
5135 if (!I->isAggregate()) {
5136 // Make a temporary alloca to pass the argument.
5137 Address Addr = CreateMemTempWithoutCast(
5138 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
5140 llvm::Value *Val = Addr.getPointer();
5141 if (ArgHasMaybeUndefAttr)
5142 Val = Builder.CreateFreeze(Addr.getPointer());
5143 IRCallArgs[FirstIRArg] = Val;
5145 I->copyInto(*this, Addr);
5146 } else {
5147 // We want to avoid creating an unnecessary temporary+copy here;
5148 // however, we need one in three cases:
5149 // 1. If the argument is not byval, and we are required to copy the
5150 // source. (This case doesn't occur on any common architecture.)
5151 // 2. If the argument is byval, RV is not sufficiently aligned, and
5152 // we cannot force it to be sufficiently aligned.
5153 // 3. If the argument is byval, but RV is not located in default
5154 // or alloca address space.
5155 Address Addr = I->hasLValue()
5156 ? I->getKnownLValue().getAddress(*this)
5157 : I->getKnownRValue().getAggregateAddress();
5158 llvm::Value *V = Addr.getPointer();
5159 CharUnits Align = ArgInfo.getIndirectAlign();
5160 const llvm::DataLayout *TD = &CGM.getDataLayout();
5162 assert((FirstIRArg >= IRFuncTy->getNumParams() ||
5163 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
5164 TD->getAllocaAddrSpace()) &&
5165 "indirect argument must be in alloca address space");
5167 bool NeedCopy = false;
5168 if (Addr.getAlignment() < Align &&
5169 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
5170 Align.getAsAlign()) {
5171 NeedCopy = true;
5172 } else if (I->hasLValue()) {
5173 auto LV = I->getKnownLValue();
5174 auto AS = LV.getAddressSpace();
5176 bool isByValOrRef =
5177 ArgInfo.isIndirectAliased() || ArgInfo.getIndirectByVal();
5179 if (!isByValOrRef ||
5180 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
5181 NeedCopy = true;
5183 if (!getLangOpts().OpenCL) {
5184 if ((isByValOrRef &&
5185 (AS != LangAS::Default &&
5186 AS != CGM.getASTAllocaAddressSpace()))) {
5187 NeedCopy = true;
5190 // For OpenCL even if RV is located in default or alloca address space
5191 // we don't want to perform address space cast for it.
5192 else if ((isByValOrRef &&
5193 Addr.getType()->getAddressSpace() != IRFuncTy->
5194 getParamType(FirstIRArg)->getPointerAddressSpace())) {
5195 NeedCopy = true;
5199 if (NeedCopy) {
5200 // Create an aligned temporary, and copy to it.
5201 Address AI = CreateMemTempWithoutCast(
5202 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
5203 llvm::Value *Val = AI.getPointer();
5204 if (ArgHasMaybeUndefAttr)
5205 Val = Builder.CreateFreeze(AI.getPointer());
5206 IRCallArgs[FirstIRArg] = Val;
5208 // Emit lifetime markers for the temporary alloca.
5209 llvm::TypeSize ByvalTempElementSize =
5210 CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
5211 llvm::Value *LifetimeSize =
5212 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
5214 // Add cleanup code to emit the end lifetime marker after the call.
5215 if (LifetimeSize) // In case we disabled lifetime markers.
5216 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
5218 // Generate the copy.
5219 I->copyInto(*this, AI);
5220 } else {
5221 // Skip the extra memcpy call.
5222 auto *T = llvm::PointerType::get(
5223 CGM.getLLVMContext(), CGM.getDataLayout().getAllocaAddrSpace());
5225 llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
5226 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
5227 true);
5228 if (ArgHasMaybeUndefAttr)
5229 Val = Builder.CreateFreeze(Val);
5230 IRCallArgs[FirstIRArg] = Val;
5233 break;
5236 case ABIArgInfo::Ignore:
5237 assert(NumIRArgs == 0);
5238 break;
5240 case ABIArgInfo::Extend:
5241 case ABIArgInfo::Direct: {
5242 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
5243 ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
5244 ArgInfo.getDirectOffset() == 0) {
5245 assert(NumIRArgs == 1);
5246 llvm::Value *V;
5247 if (!I->isAggregate())
5248 V = I->getKnownRValue().getScalarVal();
5249 else
5250 V = Builder.CreateLoad(
5251 I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5252 : I->getKnownRValue().getAggregateAddress());
5254 // Implement swifterror by copying into a new swifterror argument.
5255 // We'll write back in the normal path out of the call.
5256 if (CallInfo.getExtParameterInfo(ArgNo).getABI()
5257 == ParameterABI::SwiftErrorResult) {
5258 assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
5260 QualType pointeeTy = I->Ty->getPointeeType();
5261 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
5262 getContext().getTypeAlignInChars(pointeeTy));
5264 swiftErrorTemp =
5265 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
5266 V = swiftErrorTemp.getPointer();
5267 cast<llvm::AllocaInst>(V)->setSwiftError(true);
5269 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
5270 Builder.CreateStore(errorValue, swiftErrorTemp);
5273 // We might have to widen integers, but we should never truncate.
5274 if (ArgInfo.getCoerceToType() != V->getType() &&
5275 V->getType()->isIntegerTy())
5276 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
5278 // If the argument doesn't match, perform a bitcast to coerce it. This
5279 // can happen due to trivial type mismatches.
5280 if (FirstIRArg < IRFuncTy->getNumParams() &&
5281 V->getType() != IRFuncTy->getParamType(FirstIRArg))
5282 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
5284 if (ArgHasMaybeUndefAttr)
5285 V = Builder.CreateFreeze(V);
5286 IRCallArgs[FirstIRArg] = V;
5287 break;
5290 // FIXME: Avoid the conversion through memory if possible.
5291 Address Src = Address::invalid();
5292 if (!I->isAggregate()) {
5293 Src = CreateMemTemp(I->Ty, "coerce");
5294 I->copyInto(*this, Src);
5295 } else {
5296 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5297 : I->getKnownRValue().getAggregateAddress();
5300 // If the value is offset in memory, apply the offset now.
5301 Src = emitAddressAtOffset(*this, Src, ArgInfo);
5303 // Fast-isel and the optimizer generally like scalar values better than
5304 // FCAs, so we flatten them if this is safe to do for this argument.
5305 llvm::StructType *STy =
5306 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
5307 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
5308 llvm::Type *SrcTy = Src.getElementType();
5309 llvm::TypeSize SrcTypeSize =
5310 CGM.getDataLayout().getTypeAllocSize(SrcTy);
5311 llvm::TypeSize DstTypeSize = CGM.getDataLayout().getTypeAllocSize(STy);
5312 if (SrcTypeSize.isScalable()) {
5313 assert(STy->containsHomogeneousScalableVectorTypes() &&
5314 "ABI only supports structure with homogeneous scalable vector "
5315 "type");
5316 assert(SrcTypeSize == DstTypeSize &&
5317 "Only allow non-fractional movement of structure with "
5318 "homogeneous scalable vector type");
5319 assert(NumIRArgs == STy->getNumElements());
5321 llvm::Value *StoredStructValue =
5322 Builder.CreateLoad(Src, Src.getName() + ".tuple");
5323 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5324 llvm::Value *Extract = Builder.CreateExtractValue(
5325 StoredStructValue, i, Src.getName() + ".extract" + Twine(i));
5326 IRCallArgs[FirstIRArg + i] = Extract;
5328 } else {
5329 uint64_t SrcSize = SrcTypeSize.getFixedValue();
5330 uint64_t DstSize = DstTypeSize.getFixedValue();
5332 // If the source type is smaller than the destination type of the
5333 // coerce-to logic, copy the source value into a temp alloca the size
5334 // of the destination type to allow loading all of it. The bits past
5335 // the source value are left undef.
5336 if (SrcSize < DstSize) {
5337 Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(),
5338 Src.getName() + ".coerce");
5339 Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
5340 Src = TempAlloca;
5341 } else {
5342 Src = Src.withElementType(STy);
5345 assert(NumIRArgs == STy->getNumElements());
5346 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
5347 Address EltPtr = Builder.CreateStructGEP(Src, i);
5348 llvm::Value *LI = Builder.CreateLoad(EltPtr);
5349 if (ArgHasMaybeUndefAttr)
5350 LI = Builder.CreateFreeze(LI);
5351 IRCallArgs[FirstIRArg + i] = LI;
5354 } else {
5355 // In the simple case, just pass the coerced loaded value.
5356 assert(NumIRArgs == 1);
5357 llvm::Value *Load =
5358 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
5360 if (CallInfo.isCmseNSCall()) {
5361 // For certain parameter types, clear padding bits, as they may reveal
5362 // sensitive information.
5363 // Small struct/union types are passed as integer arrays.
5364 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
5365 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
5366 Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
5369 if (ArgHasMaybeUndefAttr)
5370 Load = Builder.CreateFreeze(Load);
5371 IRCallArgs[FirstIRArg] = Load;
5374 break;
5377 case ABIArgInfo::CoerceAndExpand: {
5378 auto coercionType = ArgInfo.getCoerceAndExpandType();
5379 auto layout = CGM.getDataLayout().getStructLayout(coercionType);
5381 llvm::Value *tempSize = nullptr;
5382 Address addr = Address::invalid();
5383 Address AllocaAddr = Address::invalid();
5384 if (I->isAggregate()) {
5385 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
5386 : I->getKnownRValue().getAggregateAddress();
5388 } else {
5389 RValue RV = I->getKnownRValue();
5390 assert(RV.isScalar()); // complex should always just be direct
5392 llvm::Type *scalarType = RV.getScalarVal()->getType();
5393 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
5394 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType);
5396 // Materialize to a temporary.
5397 addr = CreateTempAlloca(
5398 RV.getScalarVal()->getType(),
5399 CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)),
5400 "tmp",
5401 /*ArraySize=*/nullptr, &AllocaAddr);
5402 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
5404 Builder.CreateStore(RV.getScalarVal(), addr);
5407 addr = addr.withElementType(coercionType);
5409 unsigned IRArgPos = FirstIRArg;
5410 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5411 llvm::Type *eltType = coercionType->getElementType(i);
5412 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5413 Address eltAddr = Builder.CreateStructGEP(addr, i);
5414 llvm::Value *elt = Builder.CreateLoad(eltAddr);
5415 if (ArgHasMaybeUndefAttr)
5416 elt = Builder.CreateFreeze(elt);
5417 IRCallArgs[IRArgPos++] = elt;
5419 assert(IRArgPos == FirstIRArg + NumIRArgs);
5421 if (tempSize) {
5422 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
5425 break;
5428 case ABIArgInfo::Expand: {
5429 unsigned IRArgPos = FirstIRArg;
5430 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
5431 assert(IRArgPos == FirstIRArg + NumIRArgs);
5432 break;
5437 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
5438 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
5440 // If we're using inalloca, set up that argument.
5441 if (ArgMemory.isValid()) {
5442 llvm::Value *Arg = ArgMemory.getPointer();
5443 assert(IRFunctionArgs.hasInallocaArg());
5444 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
5447 // 2. Prepare the function pointer.
5449 // If the callee is a bitcast of a non-variadic function to have a
5450 // variadic function pointer type, check to see if we can remove the
5451 // bitcast. This comes up with unprototyped functions.
5453 // This makes the IR nicer, but more importantly it ensures that we
5454 // can inline the function at -O0 if it is marked always_inline.
5455 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
5456 llvm::Value *Ptr) -> llvm::Function * {
5457 if (!CalleeFT->isVarArg())
5458 return nullptr;
5460 // Get underlying value if it's a bitcast
5461 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
5462 if (CE->getOpcode() == llvm::Instruction::BitCast)
5463 Ptr = CE->getOperand(0);
5466 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
5467 if (!OrigFn)
5468 return nullptr;
5470 llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
5472 // If the original type is variadic, or if any of the component types
5473 // disagree, we cannot remove the cast.
5474 if (OrigFT->isVarArg() ||
5475 OrigFT->getNumParams() != CalleeFT->getNumParams() ||
5476 OrigFT->getReturnType() != CalleeFT->getReturnType())
5477 return nullptr;
5479 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
5480 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
5481 return nullptr;
5483 return OrigFn;
5486 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
5487 CalleePtr = OrigFn;
5488 IRFuncTy = OrigFn->getFunctionType();
5491 // 3. Perform the actual call.
5493 // Deactivate any cleanups that we're supposed to do immediately before
5494 // the call.
5495 if (!CallArgs.getCleanupsToDeactivate().empty())
5496 deactivateArgCleanupsBeforeCall(*this, CallArgs);
5498 // Assert that the arguments we computed match up. The IR verifier
5499 // will catch this, but this is a common enough source of problems
5500 // during IRGen changes that it's way better for debugging to catch
5501 // it ourselves here.
5502 #ifndef NDEBUG
5503 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
5504 for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5505 // Inalloca argument can have different type.
5506 if (IRFunctionArgs.hasInallocaArg() &&
5507 i == IRFunctionArgs.getInallocaArgNo())
5508 continue;
5509 if (i < IRFuncTy->getNumParams())
5510 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
5512 #endif
5514 // Update the largest vector width if any arguments have vector types.
5515 for (unsigned i = 0; i < IRCallArgs.size(); ++i)
5516 LargestVectorWidth = std::max(LargestVectorWidth,
5517 getMaxVectorWidth(IRCallArgs[i]->getType()));
5519 // Compute the calling convention and attributes.
5520 unsigned CallingConv;
5521 llvm::AttributeList Attrs;
5522 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5523 Callee.getAbstractInfo(), Attrs, CallingConv,
5524 /*AttrOnCallSite=*/true,
5525 /*IsThunk=*/false);
5527 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5528 if (FD->hasAttr<StrictFPAttr>())
5529 // All calls within a strictfp function are marked strictfp
5530 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5532 // If -ffast-math is enabled and the function is guarded by an
5533 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5534 // library call instead of the intrinsic.
5535 if (FD->hasAttr<OptimizeNoneAttr>() && getLangOpts().FastMath)
5536 CGM.AdjustMemoryAttribute(CalleePtr->getName(), Callee.getAbstractInfo(),
5537 Attrs);
5539 // Add call-site nomerge attribute if exists.
5540 if (InNoMergeAttributedStmt)
5541 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
5543 // Add call-site noinline attribute if exists.
5544 if (InNoInlineAttributedStmt)
5545 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5547 // Add call-site always_inline attribute if exists.
5548 if (InAlwaysInlineAttributedStmt)
5549 Attrs =
5550 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5552 // Apply some call-site-specific attributes.
5553 // TODO: work this into building the attribute set.
5555 // Apply always_inline to all calls within flatten functions.
5556 // FIXME: should this really take priority over __try, below?
5557 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5558 !InNoInlineAttributedStmt &&
5559 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5560 Attrs =
5561 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
5564 // Disable inlining inside SEH __try blocks.
5565 if (isSEHTryScope()) {
5566 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
5569 // Decide whether to use a call or an invoke.
5570 bool CannotThrow;
5571 if (currentFunctionUsesSEHTry()) {
5572 // SEH cares about asynchronous exceptions, so everything can "throw."
5573 CannotThrow = false;
5574 } else if (isCleanupPadScope() &&
5575 EHPersonality::get(*this).isMSVCXXPersonality()) {
5576 // The MSVC++ personality will implicitly terminate the program if an
5577 // exception is thrown during a cleanup outside of a try/catch.
5578 // We don't need to model anything in IR to get this behavior.
5579 CannotThrow = true;
5580 } else {
5581 // Otherwise, nounwind call sites will never throw.
5582 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
5584 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5585 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5586 CannotThrow = true;
5589 // If we made a temporary, be sure to clean up after ourselves. Note that we
5590 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5591 // pop this cleanup later on. Being eager about this is OK, since this
5592 // temporary is 'invisible' outside of the callee.
5593 if (UnusedReturnSizePtr)
5594 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5595 UnusedReturnSizePtr);
5597 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5599 SmallVector<llvm::OperandBundleDef, 1> BundleList =
5600 getBundlesForFunclet(CalleePtr);
5602 if (SanOpts.has(SanitizerKind::KCFI) &&
5603 !isa_and_nonnull<FunctionDecl>(TargetDecl))
5604 EmitKCFIOperandBundle(ConcreteCallee, BundleList);
5606 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5607 if (FD->hasAttr<StrictFPAttr>())
5608 // All calls within a strictfp function are marked strictfp
5609 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
5611 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5612 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5614 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5615 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5617 // Emit the actual call/invoke instruction.
5618 llvm::CallBase *CI;
5619 if (!InvokeDest) {
5620 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5621 } else {
5622 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5623 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5624 BundleList);
5625 EmitBlock(Cont);
5627 if (CI->getCalledFunction() && CI->getCalledFunction()->hasName() &&
5628 CI->getCalledFunction()->getName().starts_with("_Z4sqrt")) {
5629 SetSqrtFPAccuracy(CI);
5631 if (callOrInvoke)
5632 *callOrInvoke = CI;
5634 // If this is within a function that has the guard(nocf) attribute and is an
5635 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5636 // Control Flow Guard checks should not be added, even if the call is inlined.
5637 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5638 if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5639 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5640 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
5644 // Apply the attributes and calling convention.
5645 CI->setAttributes(Attrs);
5646 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5648 // Apply various metadata.
5650 if (!CI->getType()->isVoidTy())
5651 CI->setName("call");
5653 // Update largest vector width from the return type.
5654 LargestVectorWidth =
5655 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
5657 // Insert instrumentation or attach profile metadata at indirect call sites.
5658 // For more details, see the comment before the definition of
5659 // IPVK_IndirectCallTarget in InstrProfData.inc.
5660 if (!CI->getCalledFunction())
5661 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5662 CI, CalleePtr);
5664 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5665 // optimizer it can aggressively ignore unwind edges.
5666 if (CGM.getLangOpts().ObjCAutoRefCount)
5667 AddObjCARCExceptionMetadata(CI);
5669 // Set tail call kind if necessary.
5670 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5671 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5672 Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5673 else if (IsMustTail)
5674 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
5677 // Add metadata for calls to MSAllocator functions
5678 if (getDebugInfo() && TargetDecl &&
5679 TargetDecl->hasAttr<MSAllocatorAttr>())
5680 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5682 // Add metadata if calling an __attribute__((error(""))) or warning fn.
5683 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
5684 llvm::ConstantInt *Line =
5685 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
5686 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
5687 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
5688 CI->setMetadata("srcloc", MDT);
5691 // 4. Finish the call.
5693 // If the call doesn't return, finish the basic block and clear the
5694 // insertion point; this allows the rest of IRGen to discard
5695 // unreachable code.
5696 if (CI->doesNotReturn()) {
5697 if (UnusedReturnSizePtr)
5698 PopCleanupBlock();
5700 // Strip away the noreturn attribute to better diagnose unreachable UB.
5701 if (SanOpts.has(SanitizerKind::Unreachable)) {
5702 // Also remove from function since CallBase::hasFnAttr additionally checks
5703 // attributes of the called function.
5704 if (auto *F = CI->getCalledFunction())
5705 F->removeFnAttr(llvm::Attribute::NoReturn);
5706 CI->removeFnAttr(llvm::Attribute::NoReturn);
5708 // Avoid incompatibility with ASan which relies on the `noreturn`
5709 // attribute to insert handler calls.
5710 if (SanOpts.hasOneOf(SanitizerKind::Address |
5711 SanitizerKind::KernelAddress)) {
5712 SanitizerScope SanScope(this);
5713 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5714 Builder.SetInsertPoint(CI);
5715 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5716 llvm::FunctionCallee Fn =
5717 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5718 EmitNounwindRuntimeCall(Fn);
5722 EmitUnreachable(Loc);
5723 Builder.ClearInsertionPoint();
5725 // FIXME: For now, emit a dummy basic block because expr emitters in
5726 // generally are not ready to handle emitting expressions at unreachable
5727 // points.
5728 EnsureInsertPoint();
5730 // Return a reasonable RValue.
5731 return GetUndefRValue(RetTy);
5734 // If this is a musttail call, return immediately. We do not branch to the
5735 // epilogue in this case.
5736 if (IsMustTail) {
5737 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
5738 ++it) {
5739 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
5740 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
5741 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
5743 if (CI->getType()->isVoidTy())
5744 Builder.CreateRetVoid();
5745 else
5746 Builder.CreateRet(CI);
5747 Builder.ClearInsertionPoint();
5748 EnsureInsertPoint();
5749 return GetUndefRValue(RetTy);
5752 // Perform the swifterror writeback.
5753 if (swiftErrorTemp.isValid()) {
5754 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5755 Builder.CreateStore(errorResult, swiftErrorArg);
5758 // Emit any call-associated writebacks immediately. Arguably this
5759 // should happen after any return-value munging.
5760 if (CallArgs.hasWritebacks())
5761 emitWritebacks(*this, CallArgs);
5763 // The stack cleanup for inalloca arguments has to run out of the normal
5764 // lexical order, so deactivate it and run it manually here.
5765 CallArgs.freeArgumentMemory(*this);
5767 // Extract the return value.
5768 RValue Ret = [&] {
5769 switch (RetAI.getKind()) {
5770 case ABIArgInfo::CoerceAndExpand: {
5771 auto coercionType = RetAI.getCoerceAndExpandType();
5773 Address addr = SRetPtr.withElementType(coercionType);
5775 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5776 bool requiresExtract = isa<llvm::StructType>(CI->getType());
5778 unsigned unpaddedIndex = 0;
5779 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5780 llvm::Type *eltType = coercionType->getElementType(i);
5781 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5782 Address eltAddr = Builder.CreateStructGEP(addr, i);
5783 llvm::Value *elt = CI;
5784 if (requiresExtract)
5785 elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5786 else
5787 assert(unpaddedIndex == 0);
5788 Builder.CreateStore(elt, eltAddr);
5790 [[fallthrough]];
5793 case ABIArgInfo::InAlloca:
5794 case ABIArgInfo::Indirect: {
5795 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5796 if (UnusedReturnSizePtr)
5797 PopCleanupBlock();
5798 return ret;
5801 case ABIArgInfo::Ignore:
5802 // If we are ignoring an argument that had a result, make sure to
5803 // construct the appropriate return value for our caller.
5804 return GetUndefRValue(RetTy);
5806 case ABIArgInfo::Extend:
5807 case ABIArgInfo::Direct: {
5808 llvm::Type *RetIRTy = ConvertType(RetTy);
5809 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5810 switch (getEvaluationKind(RetTy)) {
5811 case TEK_Complex: {
5812 llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5813 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5814 return RValue::getComplex(std::make_pair(Real, Imag));
5816 case TEK_Aggregate: {
5817 Address DestPtr = ReturnValue.getValue();
5818 bool DestIsVolatile = ReturnValue.isVolatile();
5820 if (!DestPtr.isValid()) {
5821 DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5822 DestIsVolatile = false;
5824 EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5825 return RValue::getAggregate(DestPtr);
5827 case TEK_Scalar: {
5828 // If the argument doesn't match, perform a bitcast to coerce it. This
5829 // can happen due to trivial type mismatches.
5830 llvm::Value *V = CI;
5831 if (V->getType() != RetIRTy)
5832 V = Builder.CreateBitCast(V, RetIRTy);
5833 return RValue::get(V);
5836 llvm_unreachable("bad evaluation kind");
5839 // If coercing a fixed vector from a scalable vector for ABI
5840 // compatibility, and the types match, use the llvm.vector.extract
5841 // intrinsic to perform the conversion.
5842 if (auto *FixedDst = dyn_cast<llvm::FixedVectorType>(RetIRTy)) {
5843 llvm::Value *V = CI;
5844 if (auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(V->getType())) {
5845 if (FixedDst->getElementType() == ScalableSrc->getElementType()) {
5846 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
5847 V = Builder.CreateExtractVector(FixedDst, V, Zero, "cast.fixed");
5848 return RValue::get(V);
5853 Address DestPtr = ReturnValue.getValue();
5854 bool DestIsVolatile = ReturnValue.isVolatile();
5856 if (!DestPtr.isValid()) {
5857 DestPtr = CreateMemTemp(RetTy, "coerce");
5858 DestIsVolatile = false;
5861 // An empty record can overlap other data (if declared with
5862 // no_unique_address); omit the store for such types - as there is no
5863 // actual data to store.
5864 if (!isEmptyRecord(getContext(), RetTy, true)) {
5865 // If the value is offset in memory, apply the offset now.
5866 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5867 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5870 return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5873 case ABIArgInfo::Expand:
5874 case ABIArgInfo::IndirectAliased:
5875 llvm_unreachable("Invalid ABI kind for return argument");
5878 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5879 } ();
5881 // Emit the assume_aligned check on the return value.
5882 if (Ret.isScalar() && TargetDecl) {
5883 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5884 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5887 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5888 // we can't use the full cleanup mechanism.
5889 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5890 LifetimeEnd.Emit(*this, /*Flags=*/{});
5892 if (!ReturnValue.isExternallyDestructed() &&
5893 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5894 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5895 RetTy);
5897 return Ret;
5900 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5901 if (isVirtual()) {
5902 const CallExpr *CE = getVirtualCallExpr();
5903 return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5904 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5905 CE ? CE->getBeginLoc() : SourceLocation());
5908 return *this;
5911 /* VarArg handling */
5913 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5914 VAListAddr = VE->isMicrosoftABI()
5915 ? EmitMSVAListRef(VE->getSubExpr())
5916 : EmitVAListRef(VE->getSubExpr());
5917 QualType Ty = VE->getType();
5918 if (VE->isMicrosoftABI())
5919 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5920 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);