1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
12 //===----------------------------------------------------------------------===//
16 #include "ABIInfoImpl.h"
19 #include "CGCleanup.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/AttributeMask.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Transforms/Utils/Local.h"
45 using namespace clang
;
46 using namespace CodeGen
;
50 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC
) {
52 default: return llvm::CallingConv::C
;
53 case CC_X86StdCall
: return llvm::CallingConv::X86_StdCall
;
54 case CC_X86FastCall
: return llvm::CallingConv::X86_FastCall
;
55 case CC_X86RegCall
: return llvm::CallingConv::X86_RegCall
;
56 case CC_X86ThisCall
: return llvm::CallingConv::X86_ThisCall
;
57 case CC_Win64
: return llvm::CallingConv::Win64
;
58 case CC_X86_64SysV
: return llvm::CallingConv::X86_64_SysV
;
59 case CC_AAPCS
: return llvm::CallingConv::ARM_AAPCS
;
60 case CC_AAPCS_VFP
: return llvm::CallingConv::ARM_AAPCS_VFP
;
61 case CC_IntelOclBicc
: return llvm::CallingConv::Intel_OCL_BI
;
62 // TODO: Add support for __pascal to LLVM.
63 case CC_X86Pascal
: return llvm::CallingConv::C
;
64 // TODO: Add support for __vectorcall to LLVM.
65 case CC_X86VectorCall
: return llvm::CallingConv::X86_VectorCall
;
66 case CC_AArch64VectorCall
: return llvm::CallingConv::AArch64_VectorCall
;
67 case CC_AArch64SVEPCS
: return llvm::CallingConv::AArch64_SVE_VectorCall
;
68 case CC_AMDGPUKernelCall
: return llvm::CallingConv::AMDGPU_KERNEL
;
69 case CC_SpirFunction
: return llvm::CallingConv::SPIR_FUNC
;
70 case CC_OpenCLKernel
: return CGM
.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
71 case CC_PreserveMost
: return llvm::CallingConv::PreserveMost
;
72 case CC_PreserveAll
: return llvm::CallingConv::PreserveAll
;
73 case CC_Swift
: return llvm::CallingConv::Swift
;
74 case CC_SwiftAsync
: return llvm::CallingConv::SwiftTail
;
75 case CC_M68kRTD
: return llvm::CallingConv::M68k_RTD
;
79 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
80 /// qualification. Either or both of RD and MD may be null. A null RD indicates
81 /// that there is no meaningful 'this' type, and a null MD can occur when
82 /// calling a method pointer.
83 CanQualType
CodeGenTypes::DeriveThisType(const CXXRecordDecl
*RD
,
84 const CXXMethodDecl
*MD
) {
87 RecTy
= Context
.getTagDeclType(RD
)->getCanonicalTypeInternal();
89 RecTy
= Context
.VoidTy
;
92 RecTy
= Context
.getAddrSpaceQualType(RecTy
, MD
->getMethodQualifiers().getAddressSpace());
93 return Context
.getPointerType(CanQualType::CreateUnsafe(RecTy
));
96 /// Returns the canonical formal type of the given C++ method.
97 static CanQual
<FunctionProtoType
> GetFormalType(const CXXMethodDecl
*MD
) {
98 return MD
->getType()->getCanonicalTypeUnqualified()
99 .getAs
<FunctionProtoType
>();
102 /// Returns the "extra-canonicalized" return type, which discards
103 /// qualifiers on the return type. Codegen doesn't care about them,
104 /// and it makes ABI code a little easier to be able to assume that
105 /// all parameter and return types are top-level unqualified.
106 static CanQualType
GetReturnType(QualType RetTy
) {
107 return RetTy
->getCanonicalTypeUnqualified().getUnqualifiedType();
110 /// Arrange the argument and result information for a value of the given
111 /// unprototyped freestanding function type.
112 const CGFunctionInfo
&
113 CodeGenTypes::arrangeFreeFunctionType(CanQual
<FunctionNoProtoType
> FTNP
) {
114 // When translating an unprototyped function type, always use a
116 return arrangeLLVMFunctionInfo(FTNP
->getReturnType().getUnqualifiedType(),
117 FnInfoOpts::None
, std::nullopt
,
118 FTNP
->getExtInfo(), {}, RequiredArgs(0));
121 static void addExtParameterInfosForCall(
122 llvm::SmallVectorImpl
<FunctionProtoType::ExtParameterInfo
> ¶mInfos
,
123 const FunctionProtoType
*proto
,
125 unsigned totalArgs
) {
126 assert(proto
->hasExtParameterInfos());
127 assert(paramInfos
.size() <= prefixArgs
);
128 assert(proto
->getNumParams() + prefixArgs
<= totalArgs
);
130 paramInfos
.reserve(totalArgs
);
132 // Add default infos for any prefix args that don't already have infos.
133 paramInfos
.resize(prefixArgs
);
135 // Add infos for the prototype.
136 for (const auto &ParamInfo
: proto
->getExtParameterInfos()) {
137 paramInfos
.push_back(ParamInfo
);
138 // pass_object_size params have no parameter info.
139 if (ParamInfo
.hasPassObjectSize())
140 paramInfos
.emplace_back();
143 assert(paramInfos
.size() <= totalArgs
&&
144 "Did we forget to insert pass_object_size args?");
145 // Add default infos for the variadic and/or suffix arguments.
146 paramInfos
.resize(totalArgs
);
149 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
150 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
151 static void appendParameterTypes(const CodeGenTypes
&CGT
,
152 SmallVectorImpl
<CanQualType
> &prefix
,
153 SmallVectorImpl
<FunctionProtoType::ExtParameterInfo
> ¶mInfos
,
154 CanQual
<FunctionProtoType
> FPT
) {
155 // Fast path: don't touch param info if we don't need to.
156 if (!FPT
->hasExtParameterInfos()) {
157 assert(paramInfos
.empty() &&
158 "We have paramInfos, but the prototype doesn't?");
159 prefix
.append(FPT
->param_type_begin(), FPT
->param_type_end());
163 unsigned PrefixSize
= prefix
.size();
164 // In the vast majority of cases, we'll have precisely FPT->getNumParams()
165 // parameters; the only thing that can change this is the presence of
166 // pass_object_size. So, we preallocate for the common case.
167 prefix
.reserve(prefix
.size() + FPT
->getNumParams());
169 auto ExtInfos
= FPT
->getExtParameterInfos();
170 assert(ExtInfos
.size() == FPT
->getNumParams());
171 for (unsigned I
= 0, E
= FPT
->getNumParams(); I
!= E
; ++I
) {
172 prefix
.push_back(FPT
->getParamType(I
));
173 if (ExtInfos
[I
].hasPassObjectSize())
174 prefix
.push_back(CGT
.getContext().getSizeType());
177 addExtParameterInfosForCall(paramInfos
, FPT
.getTypePtr(), PrefixSize
,
181 /// Arrange the LLVM function layout for a value of the given function
182 /// type, on top of any implicit parameters already stored.
183 static const CGFunctionInfo
&
184 arrangeLLVMFunctionInfo(CodeGenTypes
&CGT
, bool instanceMethod
,
185 SmallVectorImpl
<CanQualType
> &prefix
,
186 CanQual
<FunctionProtoType
> FTP
) {
187 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
188 RequiredArgs Required
= RequiredArgs::forPrototypePlus(FTP
, prefix
.size());
190 appendParameterTypes(CGT
, prefix
, paramInfos
, FTP
);
191 CanQualType resultType
= FTP
->getReturnType().getUnqualifiedType();
194 instanceMethod
? FnInfoOpts::IsInstanceMethod
: FnInfoOpts::None
;
195 return CGT
.arrangeLLVMFunctionInfo(resultType
, opts
, prefix
,
196 FTP
->getExtInfo(), paramInfos
, Required
);
199 /// Arrange the argument and result information for a value of the
200 /// given freestanding function type.
201 const CGFunctionInfo
&
202 CodeGenTypes::arrangeFreeFunctionType(CanQual
<FunctionProtoType
> FTP
) {
203 SmallVector
<CanQualType
, 16> argTypes
;
204 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes
,
208 static CallingConv
getCallingConventionForDecl(const ObjCMethodDecl
*D
,
210 // Set the appropriate calling convention for the Function.
211 if (D
->hasAttr
<StdCallAttr
>())
212 return CC_X86StdCall
;
214 if (D
->hasAttr
<FastCallAttr
>())
215 return CC_X86FastCall
;
217 if (D
->hasAttr
<RegCallAttr
>())
218 return CC_X86RegCall
;
220 if (D
->hasAttr
<ThisCallAttr
>())
221 return CC_X86ThisCall
;
223 if (D
->hasAttr
<VectorCallAttr
>())
224 return CC_X86VectorCall
;
226 if (D
->hasAttr
<PascalAttr
>())
229 if (PcsAttr
*PCS
= D
->getAttr
<PcsAttr
>())
230 return (PCS
->getPCS() == PcsAttr::AAPCS
? CC_AAPCS
: CC_AAPCS_VFP
);
232 if (D
->hasAttr
<AArch64VectorPcsAttr
>())
233 return CC_AArch64VectorCall
;
235 if (D
->hasAttr
<AArch64SVEPcsAttr
>())
236 return CC_AArch64SVEPCS
;
238 if (D
->hasAttr
<AMDGPUKernelCallAttr
>())
239 return CC_AMDGPUKernelCall
;
241 if (D
->hasAttr
<IntelOclBiccAttr
>())
242 return CC_IntelOclBicc
;
244 if (D
->hasAttr
<MSABIAttr
>())
245 return IsWindows
? CC_C
: CC_Win64
;
247 if (D
->hasAttr
<SysVABIAttr
>())
248 return IsWindows
? CC_X86_64SysV
: CC_C
;
250 if (D
->hasAttr
<PreserveMostAttr
>())
251 return CC_PreserveMost
;
253 if (D
->hasAttr
<PreserveAllAttr
>())
254 return CC_PreserveAll
;
256 if (D
->hasAttr
<M68kRTDAttr
>())
262 /// Arrange the argument and result information for a call to an
263 /// unknown C++ non-static member function of the given abstract type.
264 /// (A null RD means we don't have any meaningful "this" argument type,
265 /// so fall back to a generic pointer type).
266 /// The member function must be an ordinary function, i.e. not a
267 /// constructor or destructor.
268 const CGFunctionInfo
&
269 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl
*RD
,
270 const FunctionProtoType
*FTP
,
271 const CXXMethodDecl
*MD
) {
272 SmallVector
<CanQualType
, 16> argTypes
;
274 // Add the 'this' pointer.
275 argTypes
.push_back(DeriveThisType(RD
, MD
));
277 return ::arrangeLLVMFunctionInfo(
278 *this, /*instanceMethod=*/true, argTypes
,
279 FTP
->getCanonicalTypeUnqualified().getAs
<FunctionProtoType
>());
282 /// Set calling convention for CUDA/HIP kernel.
283 static void setCUDAKernelCallingConvention(CanQualType
&FTy
, CodeGenModule
&CGM
,
284 const FunctionDecl
*FD
) {
285 if (FD
->hasAttr
<CUDAGlobalAttr
>()) {
286 const FunctionType
*FT
= FTy
->getAs
<FunctionType
>();
287 CGM
.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT
);
288 FTy
= FT
->getCanonicalTypeUnqualified();
292 /// Arrange the argument and result information for a declaration or
293 /// definition of the given C++ non-static member function. The
294 /// member function must be an ordinary function, i.e. not a
295 /// constructor or destructor.
296 const CGFunctionInfo
&
297 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl
*MD
) {
298 assert(!isa
<CXXConstructorDecl
>(MD
) && "wrong method for constructors!");
299 assert(!isa
<CXXDestructorDecl
>(MD
) && "wrong method for destructors!");
301 CanQualType FT
= GetFormalType(MD
).getAs
<Type
>();
302 setCUDAKernelCallingConvention(FT
, CGM
, MD
);
303 auto prototype
= FT
.getAs
<FunctionProtoType
>();
305 if (MD
->isImplicitObjectMemberFunction()) {
306 // The abstract case is perfectly fine.
307 const CXXRecordDecl
*ThisType
= TheCXXABI
.getThisArgumentTypeForMethod(MD
);
308 return arrangeCXXMethodType(ThisType
, prototype
.getTypePtr(), MD
);
311 return arrangeFreeFunctionType(prototype
);
314 bool CodeGenTypes::inheritingCtorHasParams(
315 const InheritedConstructor
&Inherited
, CXXCtorType Type
) {
316 // Parameters are unnecessary if we're constructing a base class subobject
317 // and the inherited constructor lives in a virtual base.
318 return Type
== Ctor_Complete
||
319 !Inherited
.getShadowDecl()->constructsVirtualBase() ||
320 !Target
.getCXXABI().hasConstructorVariants();
323 const CGFunctionInfo
&
324 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD
) {
325 auto *MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
327 SmallVector
<CanQualType
, 16> argTypes
;
328 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
330 const CXXRecordDecl
*ThisType
= TheCXXABI
.getThisArgumentTypeForMethod(GD
);
331 argTypes
.push_back(DeriveThisType(ThisType
, MD
));
333 bool PassParams
= true;
335 if (auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
)) {
336 // A base class inheriting constructor doesn't get forwarded arguments
337 // needed to construct a virtual base (or base class thereof).
338 if (auto Inherited
= CD
->getInheritedConstructor())
339 PassParams
= inheritingCtorHasParams(Inherited
, GD
.getCtorType());
342 CanQual
<FunctionProtoType
> FTP
= GetFormalType(MD
);
344 // Add the formal parameters.
346 appendParameterTypes(*this, argTypes
, paramInfos
, FTP
);
348 CGCXXABI::AddedStructorArgCounts AddedArgs
=
349 TheCXXABI
.buildStructorSignature(GD
, argTypes
);
350 if (!paramInfos
.empty()) {
351 // Note: prefix implies after the first param.
352 if (AddedArgs
.Prefix
)
353 paramInfos
.insert(paramInfos
.begin() + 1, AddedArgs
.Prefix
,
354 FunctionProtoType::ExtParameterInfo
{});
355 if (AddedArgs
.Suffix
)
356 paramInfos
.append(AddedArgs
.Suffix
,
357 FunctionProtoType::ExtParameterInfo
{});
360 RequiredArgs required
=
361 (PassParams
&& MD
->isVariadic() ? RequiredArgs(argTypes
.size())
362 : RequiredArgs::All
);
364 FunctionType::ExtInfo extInfo
= FTP
->getExtInfo();
365 CanQualType resultType
= TheCXXABI
.HasThisReturn(GD
)
367 : TheCXXABI
.hasMostDerivedReturn(GD
)
368 ? CGM
.getContext().VoidPtrTy
370 return arrangeLLVMFunctionInfo(resultType
, FnInfoOpts::IsInstanceMethod
,
371 argTypes
, extInfo
, paramInfos
, required
);
374 static SmallVector
<CanQualType
, 16>
375 getArgTypesForCall(ASTContext
&ctx
, const CallArgList
&args
) {
376 SmallVector
<CanQualType
, 16> argTypes
;
377 for (auto &arg
: args
)
378 argTypes
.push_back(ctx
.getCanonicalParamType(arg
.Ty
));
382 static SmallVector
<CanQualType
, 16>
383 getArgTypesForDeclaration(ASTContext
&ctx
, const FunctionArgList
&args
) {
384 SmallVector
<CanQualType
, 16> argTypes
;
385 for (auto &arg
: args
)
386 argTypes
.push_back(ctx
.getCanonicalParamType(arg
->getType()));
390 static llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16>
391 getExtParameterInfosForCall(const FunctionProtoType
*proto
,
392 unsigned prefixArgs
, unsigned totalArgs
) {
393 llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> result
;
394 if (proto
->hasExtParameterInfos()) {
395 addExtParameterInfosForCall(result
, proto
, prefixArgs
, totalArgs
);
400 /// Arrange a call to a C++ method, passing the given arguments.
402 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
404 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
406 /// PassProtoArgs indicates whether `args` has args for the parameters in the
407 /// given CXXConstructorDecl.
408 const CGFunctionInfo
&
409 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList
&args
,
410 const CXXConstructorDecl
*D
,
411 CXXCtorType CtorKind
,
412 unsigned ExtraPrefixArgs
,
413 unsigned ExtraSuffixArgs
,
414 bool PassProtoArgs
) {
416 SmallVector
<CanQualType
, 16> ArgTypes
;
417 for (const auto &Arg
: args
)
418 ArgTypes
.push_back(Context
.getCanonicalParamType(Arg
.Ty
));
420 // +1 for implicit this, which should always be args[0].
421 unsigned TotalPrefixArgs
= 1 + ExtraPrefixArgs
;
423 CanQual
<FunctionProtoType
> FPT
= GetFormalType(D
);
424 RequiredArgs Required
= PassProtoArgs
425 ? RequiredArgs::forPrototypePlus(
426 FPT
, TotalPrefixArgs
+ ExtraSuffixArgs
)
429 GlobalDecl
GD(D
, CtorKind
);
430 CanQualType ResultType
= TheCXXABI
.HasThisReturn(GD
)
432 : TheCXXABI
.hasMostDerivedReturn(GD
)
433 ? CGM
.getContext().VoidPtrTy
436 FunctionType::ExtInfo Info
= FPT
->getExtInfo();
437 llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> ParamInfos
;
438 // If the prototype args are elided, we should only have ABI-specific args,
439 // which never have param info.
440 if (PassProtoArgs
&& FPT
->hasExtParameterInfos()) {
441 // ABI-specific suffix arguments are treated the same as variadic arguments.
442 addExtParameterInfosForCall(ParamInfos
, FPT
.getTypePtr(), TotalPrefixArgs
,
446 return arrangeLLVMFunctionInfo(ResultType
, FnInfoOpts::IsInstanceMethod
,
447 ArgTypes
, Info
, ParamInfos
, Required
);
450 /// Arrange the argument and result information for the declaration or
451 /// definition of the given function.
452 const CGFunctionInfo
&
453 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl
*FD
) {
454 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
))
455 if (MD
->isImplicitObjectMemberFunction())
456 return arrangeCXXMethodDeclaration(MD
);
458 CanQualType FTy
= FD
->getType()->getCanonicalTypeUnqualified();
460 assert(isa
<FunctionType
>(FTy
));
461 setCUDAKernelCallingConvention(FTy
, CGM
, FD
);
463 // When declaring a function without a prototype, always use a
464 // non-variadic type.
465 if (CanQual
<FunctionNoProtoType
> noProto
= FTy
.getAs
<FunctionNoProtoType
>()) {
466 return arrangeLLVMFunctionInfo(noProto
->getReturnType(), FnInfoOpts::None
,
467 std::nullopt
, noProto
->getExtInfo(), {},
471 return arrangeFreeFunctionType(FTy
.castAs
<FunctionProtoType
>());
474 /// Arrange the argument and result information for the declaration or
475 /// definition of an Objective-C method.
476 const CGFunctionInfo
&
477 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl
*MD
) {
478 // It happens that this is the same as a call with no optional
479 // arguments, except also using the formal 'self' type.
480 return arrangeObjCMessageSendSignature(MD
, MD
->getSelfDecl()->getType());
483 /// Arrange the argument and result information for the function type
484 /// through which to perform a send to the given Objective-C method,
485 /// using the given receiver type. The receiver type is not always
486 /// the 'self' type of the method or even an Objective-C pointer type.
487 /// This is *not* the right method for actually performing such a
488 /// message send, due to the possibility of optional arguments.
489 const CGFunctionInfo
&
490 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl
*MD
,
491 QualType receiverType
) {
492 SmallVector
<CanQualType
, 16> argTys
;
493 SmallVector
<FunctionProtoType::ExtParameterInfo
, 4> extParamInfos(
494 MD
->isDirectMethod() ? 1 : 2);
495 argTys
.push_back(Context
.getCanonicalParamType(receiverType
));
496 if (!MD
->isDirectMethod())
497 argTys
.push_back(Context
.getCanonicalParamType(Context
.getObjCSelType()));
499 for (const auto *I
: MD
->parameters()) {
500 argTys
.push_back(Context
.getCanonicalParamType(I
->getType()));
501 auto extParamInfo
= FunctionProtoType::ExtParameterInfo().withIsNoEscape(
502 I
->hasAttr
<NoEscapeAttr
>());
503 extParamInfos
.push_back(extParamInfo
);
506 FunctionType::ExtInfo einfo
;
507 bool IsWindows
= getContext().getTargetInfo().getTriple().isOSWindows();
508 einfo
= einfo
.withCallingConv(getCallingConventionForDecl(MD
, IsWindows
));
510 if (getContext().getLangOpts().ObjCAutoRefCount
&&
511 MD
->hasAttr
<NSReturnsRetainedAttr
>())
512 einfo
= einfo
.withProducesResult(true);
514 RequiredArgs required
=
515 (MD
->isVariadic() ? RequiredArgs(argTys
.size()) : RequiredArgs::All
);
517 return arrangeLLVMFunctionInfo(GetReturnType(MD
->getReturnType()),
518 FnInfoOpts::None
, argTys
, einfo
, extParamInfos
,
522 const CGFunctionInfo
&
523 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType
,
524 const CallArgList
&args
) {
525 auto argTypes
= getArgTypesForCall(Context
, args
);
526 FunctionType::ExtInfo einfo
;
528 return arrangeLLVMFunctionInfo(GetReturnType(returnType
), FnInfoOpts::None
,
529 argTypes
, einfo
, {}, RequiredArgs::All
);
532 const CGFunctionInfo
&
533 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD
) {
534 // FIXME: Do we need to handle ObjCMethodDecl?
535 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
537 if (isa
<CXXConstructorDecl
>(GD
.getDecl()) ||
538 isa
<CXXDestructorDecl
>(GD
.getDecl()))
539 return arrangeCXXStructorDeclaration(GD
);
541 return arrangeFunctionDeclaration(FD
);
544 /// Arrange a thunk that takes 'this' as the first parameter followed by
545 /// varargs. Return a void pointer, regardless of the actual return type.
546 /// The body of the thunk will end in a musttail call to a function of the
547 /// correct type, and the caller will bitcast the function to the correct
549 const CGFunctionInfo
&
550 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl
*MD
) {
551 assert(MD
->isVirtual() && "only methods have thunks");
552 CanQual
<FunctionProtoType
> FTP
= GetFormalType(MD
);
553 CanQualType ArgTys
[] = {DeriveThisType(MD
->getParent(), MD
)};
554 return arrangeLLVMFunctionInfo(Context
.VoidTy
, FnInfoOpts::None
, ArgTys
,
555 FTP
->getExtInfo(), {}, RequiredArgs(1));
558 const CGFunctionInfo
&
559 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl
*CD
,
561 assert(CT
== Ctor_CopyingClosure
|| CT
== Ctor_DefaultClosure
);
563 CanQual
<FunctionProtoType
> FTP
= GetFormalType(CD
);
564 SmallVector
<CanQualType
, 2> ArgTys
;
565 const CXXRecordDecl
*RD
= CD
->getParent();
566 ArgTys
.push_back(DeriveThisType(RD
, CD
));
567 if (CT
== Ctor_CopyingClosure
)
568 ArgTys
.push_back(*FTP
->param_type_begin());
569 if (RD
->getNumVBases() > 0)
570 ArgTys
.push_back(Context
.IntTy
);
571 CallingConv CC
= Context
.getDefaultCallingConvention(
572 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
573 return arrangeLLVMFunctionInfo(Context
.VoidTy
, FnInfoOpts::IsInstanceMethod
,
574 ArgTys
, FunctionType::ExtInfo(CC
), {},
578 /// Arrange a call as unto a free function, except possibly with an
579 /// additional number of formal parameters considered required.
580 static const CGFunctionInfo
&
581 arrangeFreeFunctionLikeCall(CodeGenTypes
&CGT
,
583 const CallArgList
&args
,
584 const FunctionType
*fnType
,
585 unsigned numExtraRequiredArgs
,
587 assert(args
.size() >= numExtraRequiredArgs
);
589 llvm::SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
591 // In most cases, there are no optional arguments.
592 RequiredArgs required
= RequiredArgs::All
;
594 // If we have a variadic prototype, the required arguments are the
595 // extra prefix plus the arguments in the prototype.
596 if (const FunctionProtoType
*proto
= dyn_cast
<FunctionProtoType
>(fnType
)) {
597 if (proto
->isVariadic())
598 required
= RequiredArgs::forPrototypePlus(proto
, numExtraRequiredArgs
);
600 if (proto
->hasExtParameterInfos())
601 addExtParameterInfosForCall(paramInfos
, proto
, numExtraRequiredArgs
,
604 // If we don't have a prototype at all, but we're supposed to
605 // explicitly use the variadic convention for unprototyped calls,
606 // treat all of the arguments as required but preserve the nominal
607 // possibility of variadics.
608 } else if (CGM
.getTargetCodeGenInfo()
609 .isNoProtoCallVariadic(args
,
610 cast
<FunctionNoProtoType
>(fnType
))) {
611 required
= RequiredArgs(args
.size());
615 SmallVector
<CanQualType
, 16> argTypes
;
616 for (const auto &arg
: args
)
617 argTypes
.push_back(CGT
.getContext().getCanonicalParamType(arg
.Ty
));
618 FnInfoOpts opts
= chainCall
? FnInfoOpts::IsChainCall
: FnInfoOpts::None
;
619 return CGT
.arrangeLLVMFunctionInfo(GetReturnType(fnType
->getReturnType()),
620 opts
, argTypes
, fnType
->getExtInfo(),
621 paramInfos
, required
);
624 /// Figure out the rules for calling a function with the given formal
625 /// type using the given arguments. The arguments are necessary
626 /// because the function might be unprototyped, in which case it's
627 /// target-dependent in crazy ways.
628 const CGFunctionInfo
&
629 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList
&args
,
630 const FunctionType
*fnType
,
632 return arrangeFreeFunctionLikeCall(*this, CGM
, args
, fnType
,
633 chainCall
? 1 : 0, chainCall
);
636 /// A block function is essentially a free function with an
637 /// extra implicit argument.
638 const CGFunctionInfo
&
639 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList
&args
,
640 const FunctionType
*fnType
) {
641 return arrangeFreeFunctionLikeCall(*this, CGM
, args
, fnType
, 1,
642 /*chainCall=*/false);
645 const CGFunctionInfo
&
646 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType
*proto
,
647 const FunctionArgList
¶ms
) {
648 auto paramInfos
= getExtParameterInfosForCall(proto
, 1, params
.size());
649 auto argTypes
= getArgTypesForDeclaration(Context
, params
);
651 return arrangeLLVMFunctionInfo(GetReturnType(proto
->getReturnType()),
652 FnInfoOpts::None
, argTypes
,
653 proto
->getExtInfo(), paramInfos
,
654 RequiredArgs::forPrototypePlus(proto
, 1));
657 const CGFunctionInfo
&
658 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType
,
659 const CallArgList
&args
) {
661 SmallVector
<CanQualType
, 16> argTypes
;
662 for (const auto &Arg
: args
)
663 argTypes
.push_back(Context
.getCanonicalParamType(Arg
.Ty
));
664 return arrangeLLVMFunctionInfo(GetReturnType(resultType
), FnInfoOpts::None
,
665 argTypes
, FunctionType::ExtInfo(),
666 /*paramInfos=*/{}, RequiredArgs::All
);
669 const CGFunctionInfo
&
670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType
,
671 const FunctionArgList
&args
) {
672 auto argTypes
= getArgTypesForDeclaration(Context
, args
);
674 return arrangeLLVMFunctionInfo(GetReturnType(resultType
), FnInfoOpts::None
,
675 argTypes
, FunctionType::ExtInfo(), {},
679 const CGFunctionInfo
&
680 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType
,
681 ArrayRef
<CanQualType
> argTypes
) {
682 return arrangeLLVMFunctionInfo(resultType
, FnInfoOpts::None
, argTypes
,
683 FunctionType::ExtInfo(), {},
687 /// Arrange a call to a C++ method, passing the given arguments.
689 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
690 /// does not count `this`.
691 const CGFunctionInfo
&
692 CodeGenTypes::arrangeCXXMethodCall(const CallArgList
&args
,
693 const FunctionProtoType
*proto
,
694 RequiredArgs required
,
695 unsigned numPrefixArgs
) {
696 assert(numPrefixArgs
+ 1 <= args
.size() &&
697 "Emitting a call with less args than the required prefix?");
698 // Add one to account for `this`. It's a bit awkward here, but we don't count
699 // `this` in similar places elsewhere.
701 getExtParameterInfosForCall(proto
, numPrefixArgs
+ 1, args
.size());
704 auto argTypes
= getArgTypesForCall(Context
, args
);
706 FunctionType::ExtInfo info
= proto
->getExtInfo();
707 return arrangeLLVMFunctionInfo(GetReturnType(proto
->getReturnType()),
708 FnInfoOpts::IsInstanceMethod
, argTypes
, info
,
709 paramInfos
, required
);
712 const CGFunctionInfo
&CodeGenTypes::arrangeNullaryFunction() {
713 return arrangeLLVMFunctionInfo(getContext().VoidTy
, FnInfoOpts::None
,
714 std::nullopt
, FunctionType::ExtInfo(), {},
718 const CGFunctionInfo
&
719 CodeGenTypes::arrangeCall(const CGFunctionInfo
&signature
,
720 const CallArgList
&args
) {
721 assert(signature
.arg_size() <= args
.size());
722 if (signature
.arg_size() == args
.size())
725 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16> paramInfos
;
726 auto sigParamInfos
= signature
.getExtParameterInfos();
727 if (!sigParamInfos
.empty()) {
728 paramInfos
.append(sigParamInfos
.begin(), sigParamInfos
.end());
729 paramInfos
.resize(args
.size());
732 auto argTypes
= getArgTypesForCall(Context
, args
);
734 assert(signature
.getRequiredArgs().allowsOptionalArgs());
735 FnInfoOpts opts
= FnInfoOpts::None
;
736 if (signature
.isInstanceMethod())
737 opts
|= FnInfoOpts::IsInstanceMethod
;
738 if (signature
.isChainCall())
739 opts
|= FnInfoOpts::IsChainCall
;
740 if (signature
.isDelegateCall())
741 opts
|= FnInfoOpts::IsDelegateCall
;
742 return arrangeLLVMFunctionInfo(signature
.getReturnType(), opts
, argTypes
,
743 signature
.getExtInfo(), paramInfos
,
744 signature
.getRequiredArgs());
749 void computeSPIRKernelABIInfo(CodeGenModule
&CGM
, CGFunctionInfo
&FI
);
753 /// Arrange the argument and result information for an abstract value
754 /// of a given function type. This is the method which all of the
755 /// above functions ultimately defer to.
756 const CGFunctionInfo
&CodeGenTypes::arrangeLLVMFunctionInfo(
757 CanQualType resultType
, FnInfoOpts opts
, ArrayRef
<CanQualType
> argTypes
,
758 FunctionType::ExtInfo info
,
759 ArrayRef
<FunctionProtoType::ExtParameterInfo
> paramInfos
,
760 RequiredArgs required
) {
761 assert(llvm::all_of(argTypes
,
762 [](CanQualType T
) { return T
.isCanonicalAsParam(); }));
764 // Lookup or create unique function info.
765 llvm::FoldingSetNodeID ID
;
766 bool isInstanceMethod
=
767 (opts
& FnInfoOpts::IsInstanceMethod
) == FnInfoOpts::IsInstanceMethod
;
769 (opts
& FnInfoOpts::IsChainCall
) == FnInfoOpts::IsChainCall
;
770 bool isDelegateCall
=
771 (opts
& FnInfoOpts::IsDelegateCall
) == FnInfoOpts::IsDelegateCall
;
772 CGFunctionInfo::Profile(ID
, isInstanceMethod
, isChainCall
, isDelegateCall
,
773 info
, paramInfos
, required
, resultType
, argTypes
);
775 void *insertPos
= nullptr;
776 CGFunctionInfo
*FI
= FunctionInfos
.FindNodeOrInsertPos(ID
, insertPos
);
780 unsigned CC
= ClangCallConvToLLVMCallConv(info
.getCC());
782 // Construct the function info. We co-allocate the ArgInfos.
783 FI
= CGFunctionInfo::create(CC
, isInstanceMethod
, isChainCall
, isDelegateCall
,
784 info
, paramInfos
, resultType
, argTypes
, required
);
785 FunctionInfos
.InsertNode(FI
, insertPos
);
787 bool inserted
= FunctionsBeingProcessed
.insert(FI
).second
;
789 assert(inserted
&& "Recursively being processed?");
791 // Compute ABI information.
792 if (CC
== llvm::CallingConv::SPIR_KERNEL
) {
793 // Force target independent argument handling for the host visible
795 computeSPIRKernelABIInfo(CGM
, *FI
);
796 } else if (info
.getCC() == CC_Swift
|| info
.getCC() == CC_SwiftAsync
) {
797 swiftcall::computeABIInfo(CGM
, *FI
);
799 getABIInfo().computeInfo(*FI
);
802 // Loop over all of the computed argument and return value info. If any of
803 // them are direct or extend without a specified coerce type, specify the
805 ABIArgInfo
&retInfo
= FI
->getReturnInfo();
806 if (retInfo
.canHaveCoerceToType() && retInfo
.getCoerceToType() == nullptr)
807 retInfo
.setCoerceToType(ConvertType(FI
->getReturnType()));
809 for (auto &I
: FI
->arguments())
810 if (I
.info
.canHaveCoerceToType() && I
.info
.getCoerceToType() == nullptr)
811 I
.info
.setCoerceToType(ConvertType(I
.type
));
813 bool erased
= FunctionsBeingProcessed
.erase(FI
); (void)erased
;
814 assert(erased
&& "Not in set?");
819 CGFunctionInfo
*CGFunctionInfo::create(unsigned llvmCC
, bool instanceMethod
,
820 bool chainCall
, bool delegateCall
,
821 const FunctionType::ExtInfo
&info
,
822 ArrayRef
<ExtParameterInfo
> paramInfos
,
823 CanQualType resultType
,
824 ArrayRef
<CanQualType
> argTypes
,
825 RequiredArgs required
) {
826 assert(paramInfos
.empty() || paramInfos
.size() == argTypes
.size());
827 assert(!required
.allowsOptionalArgs() ||
828 required
.getNumRequiredArgs() <= argTypes
.size());
831 operator new(totalSizeToAlloc
<ArgInfo
, ExtParameterInfo
>(
832 argTypes
.size() + 1, paramInfos
.size()));
834 CGFunctionInfo
*FI
= new(buffer
) CGFunctionInfo();
835 FI
->CallingConvention
= llvmCC
;
836 FI
->EffectiveCallingConvention
= llvmCC
;
837 FI
->ASTCallingConvention
= info
.getCC();
838 FI
->InstanceMethod
= instanceMethod
;
839 FI
->ChainCall
= chainCall
;
840 FI
->DelegateCall
= delegateCall
;
841 FI
->CmseNSCall
= info
.getCmseNSCall();
842 FI
->NoReturn
= info
.getNoReturn();
843 FI
->ReturnsRetained
= info
.getProducesResult();
844 FI
->NoCallerSavedRegs
= info
.getNoCallerSavedRegs();
845 FI
->NoCfCheck
= info
.getNoCfCheck();
846 FI
->Required
= required
;
847 FI
->HasRegParm
= info
.getHasRegParm();
848 FI
->RegParm
= info
.getRegParm();
849 FI
->ArgStruct
= nullptr;
850 FI
->ArgStructAlign
= 0;
851 FI
->NumArgs
= argTypes
.size();
852 FI
->HasExtParameterInfos
= !paramInfos
.empty();
853 FI
->getArgsBuffer()[0].type
= resultType
;
854 FI
->MaxVectorWidth
= 0;
855 for (unsigned i
= 0, e
= argTypes
.size(); i
!= e
; ++i
)
856 FI
->getArgsBuffer()[i
+ 1].type
= argTypes
[i
];
857 for (unsigned i
= 0, e
= paramInfos
.size(); i
!= e
; ++i
)
858 FI
->getExtParameterInfosBuffer()[i
] = paramInfos
[i
];
865 // ABIArgInfo::Expand implementation.
867 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
868 struct TypeExpansion
{
869 enum TypeExpansionKind
{
870 // Elements of constant arrays are expanded recursively.
872 // Record fields are expanded recursively (but if record is a union, only
873 // the field with the largest size is expanded).
875 // For complex types, real and imaginary parts are expanded recursively.
877 // All other types are not expandable.
881 const TypeExpansionKind Kind
;
883 TypeExpansion(TypeExpansionKind K
) : Kind(K
) {}
884 virtual ~TypeExpansion() {}
887 struct ConstantArrayExpansion
: TypeExpansion
{
891 ConstantArrayExpansion(QualType EltTy
, uint64_t NumElts
)
892 : TypeExpansion(TEK_ConstantArray
), EltTy(EltTy
), NumElts(NumElts
) {}
893 static bool classof(const TypeExpansion
*TE
) {
894 return TE
->Kind
== TEK_ConstantArray
;
898 struct RecordExpansion
: TypeExpansion
{
899 SmallVector
<const CXXBaseSpecifier
*, 1> Bases
;
901 SmallVector
<const FieldDecl
*, 1> Fields
;
903 RecordExpansion(SmallVector
<const CXXBaseSpecifier
*, 1> &&Bases
,
904 SmallVector
<const FieldDecl
*, 1> &&Fields
)
905 : TypeExpansion(TEK_Record
), Bases(std::move(Bases
)),
906 Fields(std::move(Fields
)) {}
907 static bool classof(const TypeExpansion
*TE
) {
908 return TE
->Kind
== TEK_Record
;
912 struct ComplexExpansion
: TypeExpansion
{
915 ComplexExpansion(QualType EltTy
) : TypeExpansion(TEK_Complex
), EltTy(EltTy
) {}
916 static bool classof(const TypeExpansion
*TE
) {
917 return TE
->Kind
== TEK_Complex
;
921 struct NoExpansion
: TypeExpansion
{
922 NoExpansion() : TypeExpansion(TEK_None
) {}
923 static bool classof(const TypeExpansion
*TE
) {
924 return TE
->Kind
== TEK_None
;
929 static std::unique_ptr
<TypeExpansion
>
930 getTypeExpansion(QualType Ty
, const ASTContext
&Context
) {
931 if (const ConstantArrayType
*AT
= Context
.getAsConstantArrayType(Ty
)) {
932 return std::make_unique
<ConstantArrayExpansion
>(
933 AT
->getElementType(), AT
->getSize().getZExtValue());
935 if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
936 SmallVector
<const CXXBaseSpecifier
*, 1> Bases
;
937 SmallVector
<const FieldDecl
*, 1> Fields
;
938 const RecordDecl
*RD
= RT
->getDecl();
939 assert(!RD
->hasFlexibleArrayMember() &&
940 "Cannot expand structure with flexible array.");
942 // Unions can be here only in degenerative cases - all the fields are same
943 // after flattening. Thus we have to use the "largest" field.
944 const FieldDecl
*LargestFD
= nullptr;
945 CharUnits UnionSize
= CharUnits::Zero();
947 for (const auto *FD
: RD
->fields()) {
948 if (FD
->isZeroLengthBitField(Context
))
950 assert(!FD
->isBitField() &&
951 "Cannot expand structure with bit-field members.");
952 CharUnits FieldSize
= Context
.getTypeSizeInChars(FD
->getType());
953 if (UnionSize
< FieldSize
) {
954 UnionSize
= FieldSize
;
959 Fields
.push_back(LargestFD
);
961 if (const auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
962 assert(!CXXRD
->isDynamicClass() &&
963 "cannot expand vtable pointers in dynamic classes");
964 llvm::append_range(Bases
, llvm::make_pointer_range(CXXRD
->bases()));
967 for (const auto *FD
: RD
->fields()) {
968 if (FD
->isZeroLengthBitField(Context
))
970 assert(!FD
->isBitField() &&
971 "Cannot expand structure with bit-field members.");
972 Fields
.push_back(FD
);
975 return std::make_unique
<RecordExpansion
>(std::move(Bases
),
978 if (const ComplexType
*CT
= Ty
->getAs
<ComplexType
>()) {
979 return std::make_unique
<ComplexExpansion
>(CT
->getElementType());
981 return std::make_unique
<NoExpansion
>();
984 static int getExpansionSize(QualType Ty
, const ASTContext
&Context
) {
985 auto Exp
= getTypeExpansion(Ty
, Context
);
986 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
987 return CAExp
->NumElts
* getExpansionSize(CAExp
->EltTy
, Context
);
989 if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
991 for (auto BS
: RExp
->Bases
)
992 Res
+= getExpansionSize(BS
->getType(), Context
);
993 for (auto FD
: RExp
->Fields
)
994 Res
+= getExpansionSize(FD
->getType(), Context
);
997 if (isa
<ComplexExpansion
>(Exp
.get()))
999 assert(isa
<NoExpansion
>(Exp
.get()));
1004 CodeGenTypes::getExpandedTypes(QualType Ty
,
1005 SmallVectorImpl
<llvm::Type
*>::iterator
&TI
) {
1006 auto Exp
= getTypeExpansion(Ty
, Context
);
1007 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
1008 for (int i
= 0, n
= CAExp
->NumElts
; i
< n
; i
++) {
1009 getExpandedTypes(CAExp
->EltTy
, TI
);
1011 } else if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
1012 for (auto BS
: RExp
->Bases
)
1013 getExpandedTypes(BS
->getType(), TI
);
1014 for (auto FD
: RExp
->Fields
)
1015 getExpandedTypes(FD
->getType(), TI
);
1016 } else if (auto CExp
= dyn_cast
<ComplexExpansion
>(Exp
.get())) {
1017 llvm::Type
*EltTy
= ConvertType(CExp
->EltTy
);
1021 assert(isa
<NoExpansion
>(Exp
.get()));
1022 *TI
++ = ConvertType(Ty
);
1026 static void forConstantArrayExpansion(CodeGenFunction
&CGF
,
1027 ConstantArrayExpansion
*CAE
,
1029 llvm::function_ref
<void(Address
)> Fn
) {
1030 CharUnits EltSize
= CGF
.getContext().getTypeSizeInChars(CAE
->EltTy
);
1031 CharUnits EltAlign
=
1032 BaseAddr
.getAlignment().alignmentOfArrayElement(EltSize
);
1033 llvm::Type
*EltTy
= CGF
.ConvertTypeForMem(CAE
->EltTy
);
1035 for (int i
= 0, n
= CAE
->NumElts
; i
< n
; i
++) {
1036 llvm::Value
*EltAddr
= CGF
.Builder
.CreateConstGEP2_32(
1037 BaseAddr
.getElementType(), BaseAddr
.getPointer(), 0, i
);
1038 Fn(Address(EltAddr
, EltTy
, EltAlign
));
1042 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty
, LValue LV
,
1043 llvm::Function::arg_iterator
&AI
) {
1044 assert(LV
.isSimple() &&
1045 "Unexpected non-simple lvalue during struct expansion.");
1047 auto Exp
= getTypeExpansion(Ty
, getContext());
1048 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
1049 forConstantArrayExpansion(
1050 *this, CAExp
, LV
.getAddress(*this), [&](Address EltAddr
) {
1051 LValue LV
= MakeAddrLValue(EltAddr
, CAExp
->EltTy
);
1052 ExpandTypeFromArgs(CAExp
->EltTy
, LV
, AI
);
1054 } else if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
1055 Address This
= LV
.getAddress(*this);
1056 for (const CXXBaseSpecifier
*BS
: RExp
->Bases
) {
1057 // Perform a single step derived-to-base conversion.
1059 GetAddressOfBaseClass(This
, Ty
->getAsCXXRecordDecl(), &BS
, &BS
+ 1,
1060 /*NullCheckValue=*/false, SourceLocation());
1061 LValue SubLV
= MakeAddrLValue(Base
, BS
->getType());
1063 // Recurse onto bases.
1064 ExpandTypeFromArgs(BS
->getType(), SubLV
, AI
);
1066 for (auto FD
: RExp
->Fields
) {
1067 // FIXME: What are the right qualifiers here?
1068 LValue SubLV
= EmitLValueForFieldInitialization(LV
, FD
);
1069 ExpandTypeFromArgs(FD
->getType(), SubLV
, AI
);
1071 } else if (isa
<ComplexExpansion
>(Exp
.get())) {
1072 auto realValue
= &*AI
++;
1073 auto imagValue
= &*AI
++;
1074 EmitStoreOfComplex(ComplexPairTy(realValue
, imagValue
), LV
, /*init*/ true);
1076 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1078 assert(isa
<NoExpansion
>(Exp
.get()));
1079 llvm::Value
*Arg
= &*AI
++;
1080 if (LV
.isBitField()) {
1081 EmitStoreThroughLValue(RValue::get(Arg
), LV
);
1083 // TODO: currently there are some places are inconsistent in what LLVM
1084 // pointer type they use (see D118744). Once clang uses opaque pointers
1085 // all LLVM pointer types will be the same and we can remove this check.
1086 if (Arg
->getType()->isPointerTy()) {
1087 Address Addr
= LV
.getAddress(*this);
1088 Arg
= Builder
.CreateBitCast(Arg
, Addr
.getElementType());
1090 EmitStoreOfScalar(Arg
, LV
);
1095 void CodeGenFunction::ExpandTypeToArgs(
1096 QualType Ty
, CallArg Arg
, llvm::FunctionType
*IRFuncTy
,
1097 SmallVectorImpl
<llvm::Value
*> &IRCallArgs
, unsigned &IRCallArgPos
) {
1098 auto Exp
= getTypeExpansion(Ty
, getContext());
1099 if (auto CAExp
= dyn_cast
<ConstantArrayExpansion
>(Exp
.get())) {
1100 Address Addr
= Arg
.hasLValue() ? Arg
.getKnownLValue().getAddress(*this)
1101 : Arg
.getKnownRValue().getAggregateAddress();
1102 forConstantArrayExpansion(
1103 *this, CAExp
, Addr
, [&](Address EltAddr
) {
1104 CallArg EltArg
= CallArg(
1105 convertTempToRValue(EltAddr
, CAExp
->EltTy
, SourceLocation()),
1107 ExpandTypeToArgs(CAExp
->EltTy
, EltArg
, IRFuncTy
, IRCallArgs
,
1110 } else if (auto RExp
= dyn_cast
<RecordExpansion
>(Exp
.get())) {
1111 Address This
= Arg
.hasLValue() ? Arg
.getKnownLValue().getAddress(*this)
1112 : Arg
.getKnownRValue().getAggregateAddress();
1113 for (const CXXBaseSpecifier
*BS
: RExp
->Bases
) {
1114 // Perform a single step derived-to-base conversion.
1116 GetAddressOfBaseClass(This
, Ty
->getAsCXXRecordDecl(), &BS
, &BS
+ 1,
1117 /*NullCheckValue=*/false, SourceLocation());
1118 CallArg BaseArg
= CallArg(RValue::getAggregate(Base
), BS
->getType());
1120 // Recurse onto bases.
1121 ExpandTypeToArgs(BS
->getType(), BaseArg
, IRFuncTy
, IRCallArgs
,
1125 LValue LV
= MakeAddrLValue(This
, Ty
);
1126 for (auto FD
: RExp
->Fields
) {
1128 CallArg(EmitRValueForField(LV
, FD
, SourceLocation()), FD
->getType());
1129 ExpandTypeToArgs(FD
->getType(), FldArg
, IRFuncTy
, IRCallArgs
,
1132 } else if (isa
<ComplexExpansion
>(Exp
.get())) {
1133 ComplexPairTy CV
= Arg
.getKnownRValue().getComplexVal();
1134 IRCallArgs
[IRCallArgPos
++] = CV
.first
;
1135 IRCallArgs
[IRCallArgPos
++] = CV
.second
;
1137 assert(isa
<NoExpansion
>(Exp
.get()));
1138 auto RV
= Arg
.getKnownRValue();
1139 assert(RV
.isScalar() &&
1140 "Unexpected non-scalar rvalue during struct expansion.");
1142 // Insert a bitcast as needed.
1143 llvm::Value
*V
= RV
.getScalarVal();
1144 if (IRCallArgPos
< IRFuncTy
->getNumParams() &&
1145 V
->getType() != IRFuncTy
->getParamType(IRCallArgPos
))
1146 V
= Builder
.CreateBitCast(V
, IRFuncTy
->getParamType(IRCallArgPos
));
1148 IRCallArgs
[IRCallArgPos
++] = V
;
1152 /// Create a temporary allocation for the purposes of coercion.
1153 static Address
CreateTempAllocaForCoercion(CodeGenFunction
&CGF
, llvm::Type
*Ty
,
1155 const Twine
&Name
= "tmp") {
1156 // Don't use an alignment that's worse than what LLVM would prefer.
1157 auto PrefAlign
= CGF
.CGM
.getDataLayout().getPrefTypeAlign(Ty
);
1158 CharUnits Align
= std::max(MinAlign
, CharUnits::fromQuantity(PrefAlign
));
1160 return CGF
.CreateTempAlloca(Ty
, Align
, Name
+ ".coerce");
1163 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1164 /// accessing some number of bytes out of it, try to gep into the struct to get
1165 /// at its inner goodness. Dive as deep as possible without entering an element
1166 /// with an in-memory size smaller than DstSize.
1168 EnterStructPointerForCoercedAccess(Address SrcPtr
,
1169 llvm::StructType
*SrcSTy
,
1170 uint64_t DstSize
, CodeGenFunction
&CGF
) {
1171 // We can't dive into a zero-element struct.
1172 if (SrcSTy
->getNumElements() == 0) return SrcPtr
;
1174 llvm::Type
*FirstElt
= SrcSTy
->getElementType(0);
1176 // If the first elt is at least as large as what we're looking for, or if the
1177 // first element is the same size as the whole struct, we can enter it. The
1178 // comparison must be made on the store size and not the alloca size. Using
1179 // the alloca size may overstate the size of the load.
1180 uint64_t FirstEltSize
=
1181 CGF
.CGM
.getDataLayout().getTypeStoreSize(FirstElt
);
1182 if (FirstEltSize
< DstSize
&&
1183 FirstEltSize
< CGF
.CGM
.getDataLayout().getTypeStoreSize(SrcSTy
))
1186 // GEP into the first element.
1187 SrcPtr
= CGF
.Builder
.CreateStructGEP(SrcPtr
, 0, "coerce.dive");
1189 // If the first element is a struct, recurse.
1190 llvm::Type
*SrcTy
= SrcPtr
.getElementType();
1191 if (llvm::StructType
*SrcSTy
= dyn_cast
<llvm::StructType
>(SrcTy
))
1192 return EnterStructPointerForCoercedAccess(SrcPtr
, SrcSTy
, DstSize
, CGF
);
1197 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1198 /// are either integers or pointers. This does a truncation of the value if it
1199 /// is too large or a zero extension if it is too small.
1201 /// This behaves as if the value were coerced through memory, so on big-endian
1202 /// targets the high bits are preserved in a truncation, while little-endian
1203 /// targets preserve the low bits.
1204 static llvm::Value
*CoerceIntOrPtrToIntOrPtr(llvm::Value
*Val
,
1206 CodeGenFunction
&CGF
) {
1207 if (Val
->getType() == Ty
)
1210 if (isa
<llvm::PointerType
>(Val
->getType())) {
1211 // If this is Pointer->Pointer avoid conversion to and from int.
1212 if (isa
<llvm::PointerType
>(Ty
))
1213 return CGF
.Builder
.CreateBitCast(Val
, Ty
, "coerce.val");
1215 // Convert the pointer to an integer so we can play with its width.
1216 Val
= CGF
.Builder
.CreatePtrToInt(Val
, CGF
.IntPtrTy
, "coerce.val.pi");
1219 llvm::Type
*DestIntTy
= Ty
;
1220 if (isa
<llvm::PointerType
>(DestIntTy
))
1221 DestIntTy
= CGF
.IntPtrTy
;
1223 if (Val
->getType() != DestIntTy
) {
1224 const llvm::DataLayout
&DL
= CGF
.CGM
.getDataLayout();
1225 if (DL
.isBigEndian()) {
1226 // Preserve the high bits on big-endian targets.
1227 // That is what memory coercion does.
1228 uint64_t SrcSize
= DL
.getTypeSizeInBits(Val
->getType());
1229 uint64_t DstSize
= DL
.getTypeSizeInBits(DestIntTy
);
1231 if (SrcSize
> DstSize
) {
1232 Val
= CGF
.Builder
.CreateLShr(Val
, SrcSize
- DstSize
, "coerce.highbits");
1233 Val
= CGF
.Builder
.CreateTrunc(Val
, DestIntTy
, "coerce.val.ii");
1235 Val
= CGF
.Builder
.CreateZExt(Val
, DestIntTy
, "coerce.val.ii");
1236 Val
= CGF
.Builder
.CreateShl(Val
, DstSize
- SrcSize
, "coerce.highbits");
1239 // Little-endian targets preserve the low bits. No shifts required.
1240 Val
= CGF
.Builder
.CreateIntCast(Val
, DestIntTy
, false, "coerce.val.ii");
1244 if (isa
<llvm::PointerType
>(Ty
))
1245 Val
= CGF
.Builder
.CreateIntToPtr(Val
, Ty
, "coerce.val.ip");
1251 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1252 /// a pointer to an object of type \arg Ty, known to be aligned to
1253 /// \arg SrcAlign bytes.
1255 /// This safely handles the case when the src type is smaller than the
1256 /// destination type; in this situation the values of bits which not
1257 /// present in the src are undefined.
1258 static llvm::Value
*CreateCoercedLoad(Address Src
, llvm::Type
*Ty
,
1259 CodeGenFunction
&CGF
) {
1260 llvm::Type
*SrcTy
= Src
.getElementType();
1262 // If SrcTy and Ty are the same, just do a load.
1264 return CGF
.Builder
.CreateLoad(Src
);
1266 llvm::TypeSize DstSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(Ty
);
1268 if (llvm::StructType
*SrcSTy
= dyn_cast
<llvm::StructType
>(SrcTy
)) {
1269 Src
= EnterStructPointerForCoercedAccess(Src
, SrcSTy
,
1270 DstSize
.getFixedValue(), CGF
);
1271 SrcTy
= Src
.getElementType();
1274 llvm::TypeSize SrcSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(SrcTy
);
1276 // If the source and destination are integer or pointer types, just do an
1277 // extension or truncation to the desired type.
1278 if ((isa
<llvm::IntegerType
>(Ty
) || isa
<llvm::PointerType
>(Ty
)) &&
1279 (isa
<llvm::IntegerType
>(SrcTy
) || isa
<llvm::PointerType
>(SrcTy
))) {
1280 llvm::Value
*Load
= CGF
.Builder
.CreateLoad(Src
);
1281 return CoerceIntOrPtrToIntOrPtr(Load
, Ty
, CGF
);
1284 // If load is legal, just bitcast the src pointer.
1285 if (!SrcSize
.isScalable() && !DstSize
.isScalable() &&
1286 SrcSize
.getFixedValue() >= DstSize
.getFixedValue()) {
1287 // Generally SrcSize is never greater than DstSize, since this means we are
1288 // losing bits. However, this can happen in cases where the structure has
1289 // additional padding, for example due to a user specified alignment.
1291 // FIXME: Assert that we aren't truncating non-padding bits when have access
1292 // to that information.
1293 Src
= Src
.withElementType(Ty
);
1294 return CGF
.Builder
.CreateLoad(Src
);
1297 // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1298 // the types match, use the llvm.vector.insert intrinsic to perform the
1300 if (auto *ScalableDst
= dyn_cast
<llvm::ScalableVectorType
>(Ty
)) {
1301 if (auto *FixedSrc
= dyn_cast
<llvm::FixedVectorType
>(SrcTy
)) {
1302 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
1303 // vector, use a vector insert and bitcast the result.
1304 bool NeedsBitcast
= false;
1306 llvm::ScalableVectorType::get(CGF
.Builder
.getInt1Ty(), 16);
1307 llvm::Type
*OrigType
= Ty
;
1308 if (ScalableDst
== PredType
&&
1309 FixedSrc
->getElementType() == CGF
.Builder
.getInt8Ty()) {
1310 ScalableDst
= llvm::ScalableVectorType::get(CGF
.Builder
.getInt8Ty(), 2);
1311 NeedsBitcast
= true;
1313 if (ScalableDst
->getElementType() == FixedSrc
->getElementType()) {
1314 auto *Load
= CGF
.Builder
.CreateLoad(Src
);
1315 auto *UndefVec
= llvm::UndefValue::get(ScalableDst
);
1316 auto *Zero
= llvm::Constant::getNullValue(CGF
.CGM
.Int64Ty
);
1317 llvm::Value
*Result
= CGF
.Builder
.CreateInsertVector(
1318 ScalableDst
, UndefVec
, Load
, Zero
, "cast.scalable");
1320 Result
= CGF
.Builder
.CreateBitCast(Result
, OrigType
);
1326 // Otherwise do coercion through memory. This is stupid, but simple.
1328 CreateTempAllocaForCoercion(CGF
, Ty
, Src
.getAlignment(), Src
.getName());
1329 CGF
.Builder
.CreateMemCpy(
1330 Tmp
.getPointer(), Tmp
.getAlignment().getAsAlign(), Src
.getPointer(),
1331 Src
.getAlignment().getAsAlign(),
1332 llvm::ConstantInt::get(CGF
.IntPtrTy
, SrcSize
.getKnownMinValue()));
1333 return CGF
.Builder
.CreateLoad(Tmp
);
1336 // Function to store a first-class aggregate into memory. We prefer to
1337 // store the elements rather than the aggregate to be more friendly to
1339 // FIXME: Do we need to recurse here?
1340 void CodeGenFunction::EmitAggregateStore(llvm::Value
*Val
, Address Dest
,
1341 bool DestIsVolatile
) {
1342 // Prefer scalar stores to first-class aggregate stores.
1343 if (llvm::StructType
*STy
= dyn_cast
<llvm::StructType
>(Val
->getType())) {
1344 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1345 Address EltPtr
= Builder
.CreateStructGEP(Dest
, i
);
1346 llvm::Value
*Elt
= Builder
.CreateExtractValue(Val
, i
);
1347 Builder
.CreateStore(Elt
, EltPtr
, DestIsVolatile
);
1350 Builder
.CreateStore(Val
, Dest
, DestIsVolatile
);
1354 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1355 /// where the source and destination may have different types. The
1356 /// destination is known to be aligned to \arg DstAlign bytes.
1358 /// This safely handles the case when the src type is larger than the
1359 /// destination type; the upper bits of the src will be lost.
1360 static void CreateCoercedStore(llvm::Value
*Src
,
1363 CodeGenFunction
&CGF
) {
1364 llvm::Type
*SrcTy
= Src
->getType();
1365 llvm::Type
*DstTy
= Dst
.getElementType();
1366 if (SrcTy
== DstTy
) {
1367 CGF
.Builder
.CreateStore(Src
, Dst
, DstIsVolatile
);
1371 llvm::TypeSize SrcSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(SrcTy
);
1373 if (llvm::StructType
*DstSTy
= dyn_cast
<llvm::StructType
>(DstTy
)) {
1374 Dst
= EnterStructPointerForCoercedAccess(Dst
, DstSTy
,
1375 SrcSize
.getFixedValue(), CGF
);
1376 DstTy
= Dst
.getElementType();
1379 llvm::PointerType
*SrcPtrTy
= llvm::dyn_cast
<llvm::PointerType
>(SrcTy
);
1380 llvm::PointerType
*DstPtrTy
= llvm::dyn_cast
<llvm::PointerType
>(DstTy
);
1381 if (SrcPtrTy
&& DstPtrTy
&&
1382 SrcPtrTy
->getAddressSpace() != DstPtrTy
->getAddressSpace()) {
1383 Src
= CGF
.Builder
.CreateAddrSpaceCast(Src
, DstTy
);
1384 CGF
.Builder
.CreateStore(Src
, Dst
, DstIsVolatile
);
1388 // If the source and destination are integer or pointer types, just do an
1389 // extension or truncation to the desired type.
1390 if ((isa
<llvm::IntegerType
>(SrcTy
) || isa
<llvm::PointerType
>(SrcTy
)) &&
1391 (isa
<llvm::IntegerType
>(DstTy
) || isa
<llvm::PointerType
>(DstTy
))) {
1392 Src
= CoerceIntOrPtrToIntOrPtr(Src
, DstTy
, CGF
);
1393 CGF
.Builder
.CreateStore(Src
, Dst
, DstIsVolatile
);
1397 llvm::TypeSize DstSize
= CGF
.CGM
.getDataLayout().getTypeAllocSize(DstTy
);
1399 // If store is legal, just bitcast the src pointer.
1400 if (isa
<llvm::ScalableVectorType
>(SrcTy
) ||
1401 isa
<llvm::ScalableVectorType
>(DstTy
) ||
1402 SrcSize
.getFixedValue() <= DstSize
.getFixedValue()) {
1403 Dst
= Dst
.withElementType(SrcTy
);
1404 CGF
.EmitAggregateStore(Src
, Dst
, DstIsVolatile
);
1406 // Otherwise do coercion through memory. This is stupid, but
1409 // Generally SrcSize is never greater than DstSize, since this means we are
1410 // losing bits. However, this can happen in cases where the structure has
1411 // additional padding, for example due to a user specified alignment.
1413 // FIXME: Assert that we aren't truncating non-padding bits when have access
1414 // to that information.
1415 Address Tmp
= CreateTempAllocaForCoercion(CGF
, SrcTy
, Dst
.getAlignment());
1416 CGF
.Builder
.CreateStore(Src
, Tmp
);
1417 CGF
.Builder
.CreateMemCpy(
1418 Dst
.getPointer(), Dst
.getAlignment().getAsAlign(), Tmp
.getPointer(),
1419 Tmp
.getAlignment().getAsAlign(),
1420 llvm::ConstantInt::get(CGF
.IntPtrTy
, DstSize
.getFixedValue()));
1424 static Address
emitAddressAtOffset(CodeGenFunction
&CGF
, Address addr
,
1425 const ABIArgInfo
&info
) {
1426 if (unsigned offset
= info
.getDirectOffset()) {
1427 addr
= addr
.withElementType(CGF
.Int8Ty
);
1428 addr
= CGF
.Builder
.CreateConstInBoundsByteGEP(addr
,
1429 CharUnits::fromQuantity(offset
));
1430 addr
= addr
.withElementType(info
.getCoerceToType());
1437 /// Encapsulates information about the way function arguments from
1438 /// CGFunctionInfo should be passed to actual LLVM IR function.
1439 class ClangToLLVMArgMapping
{
1440 static const unsigned InvalidIndex
= ~0U;
1441 unsigned InallocaArgNo
;
1443 unsigned TotalIRArgs
;
1445 /// Arguments of LLVM IR function corresponding to single Clang argument.
1447 unsigned PaddingArgIndex
;
1448 // Argument is expanded to IR arguments at positions
1449 // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1450 unsigned FirstArgIndex
;
1451 unsigned NumberOfArgs
;
1454 : PaddingArgIndex(InvalidIndex
), FirstArgIndex(InvalidIndex
),
1458 SmallVector
<IRArgs
, 8> ArgInfo
;
1461 ClangToLLVMArgMapping(const ASTContext
&Context
, const CGFunctionInfo
&FI
,
1462 bool OnlyRequiredArgs
= false)
1463 : InallocaArgNo(InvalidIndex
), SRetArgNo(InvalidIndex
), TotalIRArgs(0),
1464 ArgInfo(OnlyRequiredArgs
? FI
.getNumRequiredArgs() : FI
.arg_size()) {
1465 construct(Context
, FI
, OnlyRequiredArgs
);
1468 bool hasInallocaArg() const { return InallocaArgNo
!= InvalidIndex
; }
1469 unsigned getInallocaArgNo() const {
1470 assert(hasInallocaArg());
1471 return InallocaArgNo
;
1474 bool hasSRetArg() const { return SRetArgNo
!= InvalidIndex
; }
1475 unsigned getSRetArgNo() const {
1476 assert(hasSRetArg());
1480 unsigned totalIRArgs() const { return TotalIRArgs
; }
1482 bool hasPaddingArg(unsigned ArgNo
) const {
1483 assert(ArgNo
< ArgInfo
.size());
1484 return ArgInfo
[ArgNo
].PaddingArgIndex
!= InvalidIndex
;
1486 unsigned getPaddingArgNo(unsigned ArgNo
) const {
1487 assert(hasPaddingArg(ArgNo
));
1488 return ArgInfo
[ArgNo
].PaddingArgIndex
;
1491 /// Returns index of first IR argument corresponding to ArgNo, and their
1493 std::pair
<unsigned, unsigned> getIRArgs(unsigned ArgNo
) const {
1494 assert(ArgNo
< ArgInfo
.size());
1495 return std::make_pair(ArgInfo
[ArgNo
].FirstArgIndex
,
1496 ArgInfo
[ArgNo
].NumberOfArgs
);
1500 void construct(const ASTContext
&Context
, const CGFunctionInfo
&FI
,
1501 bool OnlyRequiredArgs
);
1504 void ClangToLLVMArgMapping::construct(const ASTContext
&Context
,
1505 const CGFunctionInfo
&FI
,
1506 bool OnlyRequiredArgs
) {
1507 unsigned IRArgNo
= 0;
1508 bool SwapThisWithSRet
= false;
1509 const ABIArgInfo
&RetAI
= FI
.getReturnInfo();
1511 if (RetAI
.getKind() == ABIArgInfo::Indirect
) {
1512 SwapThisWithSRet
= RetAI
.isSRetAfterThis();
1513 SRetArgNo
= SwapThisWithSRet
? 1 : IRArgNo
++;
1517 unsigned NumArgs
= OnlyRequiredArgs
? FI
.getNumRequiredArgs() : FI
.arg_size();
1518 for (CGFunctionInfo::const_arg_iterator I
= FI
.arg_begin(); ArgNo
< NumArgs
;
1520 assert(I
!= FI
.arg_end());
1521 QualType ArgType
= I
->type
;
1522 const ABIArgInfo
&AI
= I
->info
;
1523 // Collect data about IR arguments corresponding to Clang argument ArgNo.
1524 auto &IRArgs
= ArgInfo
[ArgNo
];
1526 if (AI
.getPaddingType())
1527 IRArgs
.PaddingArgIndex
= IRArgNo
++;
1529 switch (AI
.getKind()) {
1530 case ABIArgInfo::Extend
:
1531 case ABIArgInfo::Direct
: {
1532 // FIXME: handle sseregparm someday...
1533 llvm::StructType
*STy
= dyn_cast
<llvm::StructType
>(AI
.getCoerceToType());
1534 if (AI
.isDirect() && AI
.getCanBeFlattened() && STy
) {
1535 IRArgs
.NumberOfArgs
= STy
->getNumElements();
1537 IRArgs
.NumberOfArgs
= 1;
1541 case ABIArgInfo::Indirect
:
1542 case ABIArgInfo::IndirectAliased
:
1543 IRArgs
.NumberOfArgs
= 1;
1545 case ABIArgInfo::Ignore
:
1546 case ABIArgInfo::InAlloca
:
1547 // ignore and inalloca doesn't have matching LLVM parameters.
1548 IRArgs
.NumberOfArgs
= 0;
1550 case ABIArgInfo::CoerceAndExpand
:
1551 IRArgs
.NumberOfArgs
= AI
.getCoerceAndExpandTypeSequence().size();
1553 case ABIArgInfo::Expand
:
1554 IRArgs
.NumberOfArgs
= getExpansionSize(ArgType
, Context
);
1558 if (IRArgs
.NumberOfArgs
> 0) {
1559 IRArgs
.FirstArgIndex
= IRArgNo
;
1560 IRArgNo
+= IRArgs
.NumberOfArgs
;
1563 // Skip over the sret parameter when it comes second. We already handled it
1565 if (IRArgNo
== 1 && SwapThisWithSRet
)
1568 assert(ArgNo
== ArgInfo
.size());
1570 if (FI
.usesInAlloca())
1571 InallocaArgNo
= IRArgNo
++;
1573 TotalIRArgs
= IRArgNo
;
1579 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo
&FI
) {
1580 const auto &RI
= FI
.getReturnInfo();
1581 return RI
.isIndirect() || (RI
.isInAlloca() && RI
.getInAllocaSRet());
1584 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo
&FI
) {
1585 return ReturnTypeUsesSRet(FI
) &&
1586 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1589 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType
) {
1590 if (const BuiltinType
*BT
= ResultType
->getAs
<BuiltinType
>()) {
1591 switch (BT
->getKind()) {
1594 case BuiltinType::Float
:
1595 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float
);
1596 case BuiltinType::Double
:
1597 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double
);
1598 case BuiltinType::LongDouble
:
1599 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble
);
1606 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType
) {
1607 if (const ComplexType
*CT
= ResultType
->getAs
<ComplexType
>()) {
1608 if (const BuiltinType
*BT
= CT
->getElementType()->getAs
<BuiltinType
>()) {
1609 if (BT
->getKind() == BuiltinType::LongDouble
)
1610 return getTarget().useObjCFP2RetForComplexLongDouble();
1617 llvm::FunctionType
*CodeGenTypes::GetFunctionType(GlobalDecl GD
) {
1618 const CGFunctionInfo
&FI
= arrangeGlobalDeclaration(GD
);
1619 return GetFunctionType(FI
);
1622 llvm::FunctionType
*
1623 CodeGenTypes::GetFunctionType(const CGFunctionInfo
&FI
) {
1625 bool Inserted
= FunctionsBeingProcessed
.insert(&FI
).second
;
1627 assert(Inserted
&& "Recursively being processed?");
1629 llvm::Type
*resultType
= nullptr;
1630 const ABIArgInfo
&retAI
= FI
.getReturnInfo();
1631 switch (retAI
.getKind()) {
1632 case ABIArgInfo::Expand
:
1633 case ABIArgInfo::IndirectAliased
:
1634 llvm_unreachable("Invalid ABI kind for return argument");
1636 case ABIArgInfo::Extend
:
1637 case ABIArgInfo::Direct
:
1638 resultType
= retAI
.getCoerceToType();
1641 case ABIArgInfo::InAlloca
:
1642 if (retAI
.getInAllocaSRet()) {
1643 // sret things on win32 aren't void, they return the sret pointer.
1644 QualType ret
= FI
.getReturnType();
1645 unsigned addressSpace
= CGM
.getTypes().getTargetAddressSpace(ret
);
1646 resultType
= llvm::PointerType::get(getLLVMContext(), addressSpace
);
1648 resultType
= llvm::Type::getVoidTy(getLLVMContext());
1652 case ABIArgInfo::Indirect
:
1653 case ABIArgInfo::Ignore
:
1654 resultType
= llvm::Type::getVoidTy(getLLVMContext());
1657 case ABIArgInfo::CoerceAndExpand
:
1658 resultType
= retAI
.getUnpaddedCoerceAndExpandType();
1662 ClangToLLVMArgMapping
IRFunctionArgs(getContext(), FI
, true);
1663 SmallVector
<llvm::Type
*, 8> ArgTypes(IRFunctionArgs
.totalIRArgs());
1665 // Add type for sret argument.
1666 if (IRFunctionArgs
.hasSRetArg()) {
1667 QualType Ret
= FI
.getReturnType();
1668 unsigned AddressSpace
= CGM
.getTypes().getTargetAddressSpace(Ret
);
1669 ArgTypes
[IRFunctionArgs
.getSRetArgNo()] =
1670 llvm::PointerType::get(getLLVMContext(), AddressSpace
);
1673 // Add type for inalloca argument.
1674 if (IRFunctionArgs
.hasInallocaArg())
1675 ArgTypes
[IRFunctionArgs
.getInallocaArgNo()] =
1676 llvm::PointerType::getUnqual(getLLVMContext());
1678 // Add in all of the required arguments.
1680 CGFunctionInfo::const_arg_iterator it
= FI
.arg_begin(),
1681 ie
= it
+ FI
.getNumRequiredArgs();
1682 for (; it
!= ie
; ++it
, ++ArgNo
) {
1683 const ABIArgInfo
&ArgInfo
= it
->info
;
1685 // Insert a padding type to ensure proper alignment.
1686 if (IRFunctionArgs
.hasPaddingArg(ArgNo
))
1687 ArgTypes
[IRFunctionArgs
.getPaddingArgNo(ArgNo
)] =
1688 ArgInfo
.getPaddingType();
1690 unsigned FirstIRArg
, NumIRArgs
;
1691 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
1693 switch (ArgInfo
.getKind()) {
1694 case ABIArgInfo::Ignore
:
1695 case ABIArgInfo::InAlloca
:
1696 assert(NumIRArgs
== 0);
1699 case ABIArgInfo::Indirect
:
1700 assert(NumIRArgs
== 1);
1701 // indirect arguments are always on the stack, which is alloca addr space.
1702 ArgTypes
[FirstIRArg
] = llvm::PointerType::get(
1703 getLLVMContext(), CGM
.getDataLayout().getAllocaAddrSpace());
1705 case ABIArgInfo::IndirectAliased
:
1706 assert(NumIRArgs
== 1);
1707 ArgTypes
[FirstIRArg
] = llvm::PointerType::get(
1708 getLLVMContext(), ArgInfo
.getIndirectAddrSpace());
1710 case ABIArgInfo::Extend
:
1711 case ABIArgInfo::Direct
: {
1712 // Fast-isel and the optimizer generally like scalar values better than
1713 // FCAs, so we flatten them if this is safe to do for this argument.
1714 llvm::Type
*argType
= ArgInfo
.getCoerceToType();
1715 llvm::StructType
*st
= dyn_cast
<llvm::StructType
>(argType
);
1716 if (st
&& ArgInfo
.isDirect() && ArgInfo
.getCanBeFlattened()) {
1717 assert(NumIRArgs
== st
->getNumElements());
1718 for (unsigned i
= 0, e
= st
->getNumElements(); i
!= e
; ++i
)
1719 ArgTypes
[FirstIRArg
+ i
] = st
->getElementType(i
);
1721 assert(NumIRArgs
== 1);
1722 ArgTypes
[FirstIRArg
] = argType
;
1727 case ABIArgInfo::CoerceAndExpand
: {
1728 auto ArgTypesIter
= ArgTypes
.begin() + FirstIRArg
;
1729 for (auto *EltTy
: ArgInfo
.getCoerceAndExpandTypeSequence()) {
1730 *ArgTypesIter
++ = EltTy
;
1732 assert(ArgTypesIter
== ArgTypes
.begin() + FirstIRArg
+ NumIRArgs
);
1736 case ABIArgInfo::Expand
:
1737 auto ArgTypesIter
= ArgTypes
.begin() + FirstIRArg
;
1738 getExpandedTypes(it
->type
, ArgTypesIter
);
1739 assert(ArgTypesIter
== ArgTypes
.begin() + FirstIRArg
+ NumIRArgs
);
1744 bool Erased
= FunctionsBeingProcessed
.erase(&FI
); (void)Erased
;
1745 assert(Erased
&& "Not in set?");
1747 return llvm::FunctionType::get(resultType
, ArgTypes
, FI
.isVariadic());
1750 llvm::Type
*CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD
) {
1751 const CXXMethodDecl
*MD
= cast
<CXXMethodDecl
>(GD
.getDecl());
1752 const FunctionProtoType
*FPT
= MD
->getType()->castAs
<FunctionProtoType
>();
1754 if (!isFuncTypeConvertible(FPT
))
1755 return llvm::StructType::get(getLLVMContext());
1757 return GetFunctionType(GD
);
1760 static void AddAttributesFromFunctionProtoType(ASTContext
&Ctx
,
1761 llvm::AttrBuilder
&FuncAttrs
,
1762 const FunctionProtoType
*FPT
) {
1766 if (!isUnresolvedExceptionSpec(FPT
->getExceptionSpecType()) &&
1768 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
1770 unsigned SMEBits
= FPT
->getAArch64SMEAttributes();
1771 if (SMEBits
& FunctionType::SME_PStateSMEnabledMask
)
1772 FuncAttrs
.addAttribute("aarch64_pstate_sm_enabled");
1773 if (SMEBits
& FunctionType::SME_PStateSMCompatibleMask
)
1774 FuncAttrs
.addAttribute("aarch64_pstate_sm_compatible");
1777 if (FunctionType::getArmZAState(SMEBits
) == FunctionType::ARM_Out
||
1778 FunctionType::getArmZAState(SMEBits
) == FunctionType::ARM_InOut
)
1779 FuncAttrs
.addAttribute("aarch64_pstate_za_shared");
1780 if (FunctionType::getArmZAState(SMEBits
) == FunctionType::ARM_Preserves
||
1781 FunctionType::getArmZAState(SMEBits
) == FunctionType::ARM_In
) {
1782 FuncAttrs
.addAttribute("aarch64_pstate_za_shared");
1783 FuncAttrs
.addAttribute("aarch64_pstate_za_preserved");
1787 if (FunctionType::getArmZT0State(SMEBits
) == FunctionType::ARM_Preserves
)
1788 FuncAttrs
.addAttribute("aarch64_preserves_zt0");
1789 if (FunctionType::getArmZT0State(SMEBits
) == FunctionType::ARM_In
)
1790 FuncAttrs
.addAttribute("aarch64_in_zt0");
1791 if (FunctionType::getArmZT0State(SMEBits
) == FunctionType::ARM_Out
)
1792 FuncAttrs
.addAttribute("aarch64_out_zt0");
1793 if (FunctionType::getArmZT0State(SMEBits
) == FunctionType::ARM_InOut
)
1794 FuncAttrs
.addAttribute("aarch64_inout_zt0");
1797 static void AddAttributesFromAssumes(llvm::AttrBuilder
&FuncAttrs
,
1798 const Decl
*Callee
) {
1802 SmallVector
<StringRef
, 4> Attrs
;
1804 for (const AssumptionAttr
*AA
: Callee
->specific_attrs
<AssumptionAttr
>())
1805 AA
->getAssumption().split(Attrs
, ",");
1808 FuncAttrs
.addAttribute(llvm::AssumptionAttrKey
,
1809 llvm::join(Attrs
.begin(), Attrs
.end(), ","));
1812 bool CodeGenModule::MayDropFunctionReturn(const ASTContext
&Context
,
1813 QualType ReturnType
) const {
1814 // We can't just discard the return value for a record type with a
1815 // complex destructor or a non-trivially copyable type.
1816 if (const RecordType
*RT
=
1817 ReturnType
.getCanonicalType()->getAs
<RecordType
>()) {
1818 if (const auto *ClassDecl
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
1819 return ClassDecl
->hasTrivialDestructor();
1821 return ReturnType
.isTriviallyCopyableType(Context
);
1824 static bool HasStrictReturn(const CodeGenModule
&Module
, QualType RetTy
,
1825 const Decl
*TargetDecl
) {
1826 // As-is msan can not tolerate noundef mismatch between caller and
1827 // implementation. Mismatch is possible for e.g. indirect calls from C-caller
1828 // into C++. Such mismatches lead to confusing false reports. To avoid
1829 // expensive workaround on msan we enforce initialization event in uncommon
1830 // cases where it's allowed.
1831 if (Module
.getLangOpts().Sanitize
.has(SanitizerKind::Memory
))
1833 // C++ explicitly makes returning undefined values UB. C's rule only applies
1834 // to used values, so we never mark them noundef for now.
1835 if (!Module
.getLangOpts().CPlusPlus
)
1838 if (const FunctionDecl
*FDecl
= dyn_cast
<FunctionDecl
>(TargetDecl
)) {
1839 if (FDecl
->isExternC())
1841 } else if (const VarDecl
*VDecl
= dyn_cast
<VarDecl
>(TargetDecl
)) {
1842 // Function pointer.
1843 if (VDecl
->isExternC())
1848 // We don't want to be too aggressive with the return checking, unless
1849 // it's explicit in the code opts or we're using an appropriate sanitizer.
1850 // Try to respect what the programmer intended.
1851 return Module
.getCodeGenOpts().StrictReturn
||
1852 !Module
.MayDropFunctionReturn(Module
.getContext(), RetTy
) ||
1853 Module
.getLangOpts().Sanitize
.has(SanitizerKind::Return
);
1856 /// Add denormal-fp-math and denormal-fp-math-f32 as appropriate for the
1857 /// requested denormal behavior, accounting for the overriding behavior of the
1859 static void addDenormalModeAttrs(llvm::DenormalMode FPDenormalMode
,
1860 llvm::DenormalMode FP32DenormalMode
,
1861 llvm::AttrBuilder
&FuncAttrs
) {
1862 if (FPDenormalMode
!= llvm::DenormalMode::getDefault())
1863 FuncAttrs
.addAttribute("denormal-fp-math", FPDenormalMode
.str());
1865 if (FP32DenormalMode
!= FPDenormalMode
&& FP32DenormalMode
.isValid())
1866 FuncAttrs
.addAttribute("denormal-fp-math-f32", FP32DenormalMode
.str());
1869 /// Add default attributes to a function, which have merge semantics under
1870 /// -mlink-builtin-bitcode and should not simply overwrite any existing
1871 /// attributes in the linked library.
1873 addMergableDefaultFunctionAttributes(const CodeGenOptions
&CodeGenOpts
,
1874 llvm::AttrBuilder
&FuncAttrs
) {
1875 addDenormalModeAttrs(CodeGenOpts
.FPDenormalMode
, CodeGenOpts
.FP32DenormalMode
,
1879 static void getTrivialDefaultFunctionAttributes(
1880 StringRef Name
, bool HasOptnone
, const CodeGenOptions
&CodeGenOpts
,
1881 const LangOptions
&LangOpts
, bool AttrOnCallSite
,
1882 llvm::AttrBuilder
&FuncAttrs
) {
1883 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1885 if (CodeGenOpts
.OptimizeSize
)
1886 FuncAttrs
.addAttribute(llvm::Attribute::OptimizeForSize
);
1887 if (CodeGenOpts
.OptimizeSize
== 2)
1888 FuncAttrs
.addAttribute(llvm::Attribute::MinSize
);
1891 if (CodeGenOpts
.DisableRedZone
)
1892 FuncAttrs
.addAttribute(llvm::Attribute::NoRedZone
);
1893 if (CodeGenOpts
.IndirectTlsSegRefs
)
1894 FuncAttrs
.addAttribute("indirect-tls-seg-refs");
1895 if (CodeGenOpts
.NoImplicitFloat
)
1896 FuncAttrs
.addAttribute(llvm::Attribute::NoImplicitFloat
);
1898 if (AttrOnCallSite
) {
1899 // Attributes that should go on the call site only.
1900 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
1901 // the -fno-builtin-foo list.
1902 if (!CodeGenOpts
.SimplifyLibCalls
|| LangOpts
.isNoBuiltinFunc(Name
))
1903 FuncAttrs
.addAttribute(llvm::Attribute::NoBuiltin
);
1904 if (!CodeGenOpts
.TrapFuncName
.empty())
1905 FuncAttrs
.addAttribute("trap-func-name", CodeGenOpts
.TrapFuncName
);
1907 switch (CodeGenOpts
.getFramePointer()) {
1908 case CodeGenOptions::FramePointerKind::None
:
1909 // This is the default behavior.
1911 case CodeGenOptions::FramePointerKind::NonLeaf
:
1912 case CodeGenOptions::FramePointerKind::All
:
1913 FuncAttrs
.addAttribute("frame-pointer",
1914 CodeGenOptions::getFramePointerKindName(
1915 CodeGenOpts
.getFramePointer()));
1918 if (CodeGenOpts
.LessPreciseFPMAD
)
1919 FuncAttrs
.addAttribute("less-precise-fpmad", "true");
1921 if (CodeGenOpts
.NullPointerIsValid
)
1922 FuncAttrs
.addAttribute(llvm::Attribute::NullPointerIsValid
);
1924 if (LangOpts
.getDefaultExceptionMode() == LangOptions::FPE_Ignore
)
1925 FuncAttrs
.addAttribute("no-trapping-math", "true");
1927 // TODO: Are these all needed?
1928 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1929 if (LangOpts
.NoHonorInfs
)
1930 FuncAttrs
.addAttribute("no-infs-fp-math", "true");
1931 if (LangOpts
.NoHonorNaNs
)
1932 FuncAttrs
.addAttribute("no-nans-fp-math", "true");
1933 if (LangOpts
.ApproxFunc
)
1934 FuncAttrs
.addAttribute("approx-func-fp-math", "true");
1935 if (LangOpts
.AllowFPReassoc
&& LangOpts
.AllowRecip
&&
1936 LangOpts
.NoSignedZero
&& LangOpts
.ApproxFunc
&&
1937 (LangOpts
.getDefaultFPContractMode() ==
1938 LangOptions::FPModeKind::FPM_Fast
||
1939 LangOpts
.getDefaultFPContractMode() ==
1940 LangOptions::FPModeKind::FPM_FastHonorPragmas
))
1941 FuncAttrs
.addAttribute("unsafe-fp-math", "true");
1942 if (CodeGenOpts
.SoftFloat
)
1943 FuncAttrs
.addAttribute("use-soft-float", "true");
1944 FuncAttrs
.addAttribute("stack-protector-buffer-size",
1945 llvm::utostr(CodeGenOpts
.SSPBufferSize
));
1946 if (LangOpts
.NoSignedZero
)
1947 FuncAttrs
.addAttribute("no-signed-zeros-fp-math", "true");
1949 // TODO: Reciprocal estimate codegen options should apply to instructions?
1950 const std::vector
<std::string
> &Recips
= CodeGenOpts
.Reciprocals
;
1951 if (!Recips
.empty())
1952 FuncAttrs
.addAttribute("reciprocal-estimates",
1953 llvm::join(Recips
, ","));
1955 if (!CodeGenOpts
.PreferVectorWidth
.empty() &&
1956 CodeGenOpts
.PreferVectorWidth
!= "none")
1957 FuncAttrs
.addAttribute("prefer-vector-width",
1958 CodeGenOpts
.PreferVectorWidth
);
1960 if (CodeGenOpts
.StackRealignment
)
1961 FuncAttrs
.addAttribute("stackrealign");
1962 if (CodeGenOpts
.Backchain
)
1963 FuncAttrs
.addAttribute("backchain");
1964 if (CodeGenOpts
.EnableSegmentedStacks
)
1965 FuncAttrs
.addAttribute("split-stack");
1967 if (CodeGenOpts
.SpeculativeLoadHardening
)
1968 FuncAttrs
.addAttribute(llvm::Attribute::SpeculativeLoadHardening
);
1970 // Add zero-call-used-regs attribute.
1971 switch (CodeGenOpts
.getZeroCallUsedRegs()) {
1972 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip
:
1973 FuncAttrs
.removeAttribute("zero-call-used-regs");
1975 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg
:
1976 FuncAttrs
.addAttribute("zero-call-used-regs", "used-gpr-arg");
1978 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR
:
1979 FuncAttrs
.addAttribute("zero-call-used-regs", "used-gpr");
1981 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg
:
1982 FuncAttrs
.addAttribute("zero-call-used-regs", "used-arg");
1984 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used
:
1985 FuncAttrs
.addAttribute("zero-call-used-regs", "used");
1987 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg
:
1988 FuncAttrs
.addAttribute("zero-call-used-regs", "all-gpr-arg");
1990 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR
:
1991 FuncAttrs
.addAttribute("zero-call-used-regs", "all-gpr");
1993 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg
:
1994 FuncAttrs
.addAttribute("zero-call-used-regs", "all-arg");
1996 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All
:
1997 FuncAttrs
.addAttribute("zero-call-used-regs", "all");
2002 if (LangOpts
.assumeFunctionsAreConvergent()) {
2003 // Conservatively, mark all functions and calls in CUDA and OpenCL as
2004 // convergent (meaning, they may call an intrinsically convergent op, such
2005 // as __syncthreads() / barrier(), and so can't have certain optimizations
2006 // applied around them). LLVM will remove this attribute where it safely
2008 FuncAttrs
.addAttribute(llvm::Attribute::Convergent
);
2011 // TODO: NoUnwind attribute should be added for other GPU modes HIP,
2012 // OpenMP offload. AFAIK, neither of them support exceptions in device code.
2013 if ((LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
) || LangOpts
.OpenCL
||
2014 LangOpts
.SYCLIsDevice
) {
2015 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2018 for (StringRef Attr
: CodeGenOpts
.DefaultFunctionAttrs
) {
2019 StringRef Var
, Value
;
2020 std::tie(Var
, Value
) = Attr
.split('=');
2021 FuncAttrs
.addAttribute(Var
, Value
);
2025 /// Merges `target-features` from \TargetOpts and \F, and sets the result in
2027 /// * features from \F are always kept
2028 /// * a feature from \TargetOpts is kept if itself and its opposite are absent
2031 overrideFunctionFeaturesWithTargetFeatures(llvm::AttrBuilder
&FuncAttr
,
2032 const llvm::Function
&F
,
2033 const TargetOptions
&TargetOpts
) {
2034 auto FFeatures
= F
.getFnAttribute("target-features");
2036 llvm::StringSet
<> MergedNames
;
2037 SmallVector
<StringRef
> MergedFeatures
;
2038 MergedFeatures
.reserve(TargetOpts
.Features
.size());
2040 auto AddUnmergedFeatures
= [&](auto &&FeatureRange
) {
2041 for (StringRef Feature
: FeatureRange
) {
2042 if (Feature
.empty())
2044 assert(Feature
[0] == '+' || Feature
[0] == '-');
2045 StringRef Name
= Feature
.drop_front(1);
2046 bool Merged
= !MergedNames
.insert(Name
).second
;
2048 MergedFeatures
.push_back(Feature
);
2052 if (FFeatures
.isValid())
2053 AddUnmergedFeatures(llvm::split(FFeatures
.getValueAsString(), ','));
2054 AddUnmergedFeatures(TargetOpts
.Features
);
2056 if (!MergedFeatures
.empty()) {
2057 llvm::sort(MergedFeatures
);
2058 FuncAttr
.addAttribute("target-features", llvm::join(MergedFeatures
, ","));
2062 void CodeGen::mergeDefaultFunctionDefinitionAttributes(
2063 llvm::Function
&F
, const CodeGenOptions
&CodeGenOpts
,
2064 const LangOptions
&LangOpts
, const TargetOptions
&TargetOpts
,
2065 bool WillInternalize
) {
2067 llvm::AttrBuilder
FuncAttrs(F
.getContext());
2068 // Here we only extract the options that are relevant compared to the version
2069 // from GetCPUAndFeaturesAttributes.
2070 if (!TargetOpts
.CPU
.empty())
2071 FuncAttrs
.addAttribute("target-cpu", TargetOpts
.CPU
);
2072 if (!TargetOpts
.TuneCPU
.empty())
2073 FuncAttrs
.addAttribute("tune-cpu", TargetOpts
.TuneCPU
);
2075 ::getTrivialDefaultFunctionAttributes(F
.getName(), F
.hasOptNone(),
2076 CodeGenOpts
, LangOpts
,
2077 /*AttrOnCallSite=*/false, FuncAttrs
);
2079 if (!WillInternalize
&& F
.isInterposable()) {
2080 // Do not promote "dynamic" denormal-fp-math to this translation unit's
2081 // setting for weak functions that won't be internalized. The user has no
2082 // real control for how builtin bitcode is linked, so we shouldn't assume
2083 // later copies will use a consistent mode.
2084 F
.addFnAttrs(FuncAttrs
);
2088 llvm::AttributeMask AttrsToRemove
;
2090 llvm::DenormalMode DenormModeToMerge
= F
.getDenormalModeRaw();
2091 llvm::DenormalMode DenormModeToMergeF32
= F
.getDenormalModeF32Raw();
2092 llvm::DenormalMode Merged
=
2093 CodeGenOpts
.FPDenormalMode
.mergeCalleeMode(DenormModeToMerge
);
2094 llvm::DenormalMode MergedF32
= CodeGenOpts
.FP32DenormalMode
;
2096 if (DenormModeToMergeF32
.isValid()) {
2098 CodeGenOpts
.FP32DenormalMode
.mergeCalleeMode(DenormModeToMergeF32
);
2101 if (Merged
== llvm::DenormalMode::getDefault()) {
2102 AttrsToRemove
.addAttribute("denormal-fp-math");
2103 } else if (Merged
!= DenormModeToMerge
) {
2104 // Overwrite existing attribute
2105 FuncAttrs
.addAttribute("denormal-fp-math",
2106 CodeGenOpts
.FPDenormalMode
.str());
2109 if (MergedF32
== llvm::DenormalMode::getDefault()) {
2110 AttrsToRemove
.addAttribute("denormal-fp-math-f32");
2111 } else if (MergedF32
!= DenormModeToMergeF32
) {
2112 // Overwrite existing attribute
2113 FuncAttrs
.addAttribute("denormal-fp-math-f32",
2114 CodeGenOpts
.FP32DenormalMode
.str());
2117 F
.removeFnAttrs(AttrsToRemove
);
2118 addDenormalModeAttrs(Merged
, MergedF32
, FuncAttrs
);
2120 overrideFunctionFeaturesWithTargetFeatures(FuncAttrs
, F
, TargetOpts
);
2122 F
.addFnAttrs(FuncAttrs
);
2125 void CodeGenModule::getTrivialDefaultFunctionAttributes(
2126 StringRef Name
, bool HasOptnone
, bool AttrOnCallSite
,
2127 llvm::AttrBuilder
&FuncAttrs
) {
2128 ::getTrivialDefaultFunctionAttributes(Name
, HasOptnone
, getCodeGenOpts(),
2129 getLangOpts(), AttrOnCallSite
,
2133 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name
,
2135 bool AttrOnCallSite
,
2136 llvm::AttrBuilder
&FuncAttrs
) {
2137 getTrivialDefaultFunctionAttributes(Name
, HasOptnone
, AttrOnCallSite
,
2139 // If we're just getting the default, get the default values for mergeable
2141 if (!AttrOnCallSite
)
2142 addMergableDefaultFunctionAttributes(CodeGenOpts
, FuncAttrs
);
2145 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
2146 llvm::AttrBuilder
&attrs
) {
2147 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
2148 /*for call*/ false, attrs
);
2149 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs
);
2152 static void addNoBuiltinAttributes(llvm::AttrBuilder
&FuncAttrs
,
2153 const LangOptions
&LangOpts
,
2154 const NoBuiltinAttr
*NBA
= nullptr) {
2155 auto AddNoBuiltinAttr
= [&FuncAttrs
](StringRef BuiltinName
) {
2156 SmallString
<32> AttributeName
;
2157 AttributeName
+= "no-builtin-";
2158 AttributeName
+= BuiltinName
;
2159 FuncAttrs
.addAttribute(AttributeName
);
2162 // First, handle the language options passed through -fno-builtin.
2163 if (LangOpts
.NoBuiltin
) {
2164 // -fno-builtin disables them all.
2165 FuncAttrs
.addAttribute("no-builtins");
2169 // Then, add attributes for builtins specified through -fno-builtin-<name>.
2170 llvm::for_each(LangOpts
.NoBuiltinFuncs
, AddNoBuiltinAttr
);
2172 // Now, let's check the __attribute__((no_builtin("...")) attribute added to
2177 // If there is a wildcard in the builtin names specified through the
2178 // attribute, disable them all.
2179 if (llvm::is_contained(NBA
->builtinNames(), "*")) {
2180 FuncAttrs
.addAttribute("no-builtins");
2184 // And last, add the rest of the builtin names.
2185 llvm::for_each(NBA
->builtinNames(), AddNoBuiltinAttr
);
2188 static bool DetermineNoUndef(QualType QTy
, CodeGenTypes
&Types
,
2189 const llvm::DataLayout
&DL
, const ABIArgInfo
&AI
,
2190 bool CheckCoerce
= true) {
2191 llvm::Type
*Ty
= Types
.ConvertTypeForMem(QTy
);
2192 if (AI
.getKind() == ABIArgInfo::Indirect
||
2193 AI
.getKind() == ABIArgInfo::IndirectAliased
)
2195 if (AI
.getKind() == ABIArgInfo::Extend
)
2197 if (!DL
.typeSizeEqualsStoreSize(Ty
))
2198 // TODO: This will result in a modest amount of values not marked noundef
2199 // when they could be. We care about values that *invisibly* contain undef
2200 // bits from the perspective of LLVM IR.
2202 if (CheckCoerce
&& AI
.canHaveCoerceToType()) {
2203 llvm::Type
*CoerceTy
= AI
.getCoerceToType();
2204 if (llvm::TypeSize::isKnownGT(DL
.getTypeSizeInBits(CoerceTy
),
2205 DL
.getTypeSizeInBits(Ty
)))
2206 // If we're coercing to a type with a greater size than the canonical one,
2207 // we're introducing new undef bits.
2208 // Coercing to a type of smaller or equal size is ok, as we know that
2209 // there's no internal padding (typeSizeEqualsStoreSize).
2212 if (QTy
->isBitIntType())
2214 if (QTy
->isReferenceType())
2216 if (QTy
->isNullPtrType())
2218 if (QTy
->isMemberPointerType())
2219 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
2220 // now, never mark them.
2222 if (QTy
->isScalarType()) {
2223 if (const ComplexType
*Complex
= dyn_cast
<ComplexType
>(QTy
))
2224 return DetermineNoUndef(Complex
->getElementType(), Types
, DL
, AI
, false);
2227 if (const VectorType
*Vector
= dyn_cast
<VectorType
>(QTy
))
2228 return DetermineNoUndef(Vector
->getElementType(), Types
, DL
, AI
, false);
2229 if (const MatrixType
*Matrix
= dyn_cast
<MatrixType
>(QTy
))
2230 return DetermineNoUndef(Matrix
->getElementType(), Types
, DL
, AI
, false);
2231 if (const ArrayType
*Array
= dyn_cast
<ArrayType
>(QTy
))
2232 return DetermineNoUndef(Array
->getElementType(), Types
, DL
, AI
, false);
2234 // TODO: Some structs may be `noundef`, in specific situations.
2238 /// Check if the argument of a function has maybe_undef attribute.
2239 static bool IsArgumentMaybeUndef(const Decl
*TargetDecl
,
2240 unsigned NumRequiredArgs
, unsigned ArgNo
) {
2241 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
);
2245 // Assume variadic arguments do not have maybe_undef attribute.
2246 if (ArgNo
>= NumRequiredArgs
)
2249 // Check if argument has maybe_undef attribute.
2250 if (ArgNo
< FD
->getNumParams()) {
2251 const ParmVarDecl
*Param
= FD
->getParamDecl(ArgNo
);
2252 if (Param
&& Param
->hasAttr
<MaybeUndefAttr
>())
2259 /// Test if it's legal to apply nofpclass for the given parameter type and it's
2260 /// lowered IR type.
2261 static bool canApplyNoFPClass(const ABIArgInfo
&AI
, QualType ParamType
,
2263 // Should only apply to FP types in the source, not ABI promoted.
2264 if (!ParamType
->hasFloatingRepresentation())
2267 // The promoted-to IR type also needs to support nofpclass.
2268 llvm::Type
*IRTy
= AI
.getCoerceToType();
2269 if (llvm::AttributeFuncs::isNoFPClassCompatibleType(IRTy
))
2272 if (llvm::StructType
*ST
= dyn_cast
<llvm::StructType
>(IRTy
)) {
2273 return !IsReturn
&& AI
.getCanBeFlattened() &&
2274 llvm::all_of(ST
->elements(), [](llvm::Type
*Ty
) {
2275 return llvm::AttributeFuncs::isNoFPClassCompatibleType(Ty
);
2282 /// Return the nofpclass mask that can be applied to floating-point parameters.
2283 static llvm::FPClassTest
getNoFPClassTestMask(const LangOptions
&LangOpts
) {
2284 llvm::FPClassTest Mask
= llvm::fcNone
;
2285 if (LangOpts
.NoHonorInfs
)
2286 Mask
|= llvm::fcInf
;
2287 if (LangOpts
.NoHonorNaNs
)
2288 Mask
|= llvm::fcNan
;
2292 void CodeGenModule::AdjustMemoryAttribute(StringRef Name
,
2293 CGCalleeInfo CalleeInfo
,
2294 llvm::AttributeList
&Attrs
) {
2295 if (Attrs
.getMemoryEffects().getModRef() == llvm::ModRefInfo::NoModRef
) {
2296 Attrs
= Attrs
.removeFnAttribute(getLLVMContext(), llvm::Attribute::Memory
);
2297 llvm::Attribute MemoryAttr
= llvm::Attribute::getWithMemoryEffects(
2298 getLLVMContext(), llvm::MemoryEffects::writeOnly());
2299 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), MemoryAttr
);
2303 /// Construct the IR attribute list of a function or call.
2305 /// When adding an attribute, please consider where it should be handled:
2307 /// - getDefaultFunctionAttributes is for attributes that are essentially
2308 /// part of the global target configuration (but perhaps can be
2309 /// overridden on a per-function basis). Adding attributes there
2310 /// will cause them to also be set in frontends that build on Clang's
2311 /// target-configuration logic, as well as for code defined in library
2312 /// modules such as CUDA's libdevice.
2314 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
2315 /// and adds declaration-specific, convention-specific, and
2316 /// frontend-specific logic. The last is of particular importance:
2317 /// attributes that restrict how the frontend generates code must be
2318 /// added here rather than getDefaultFunctionAttributes.
2320 void CodeGenModule::ConstructAttributeList(StringRef Name
,
2321 const CGFunctionInfo
&FI
,
2322 CGCalleeInfo CalleeInfo
,
2323 llvm::AttributeList
&AttrList
,
2324 unsigned &CallingConv
,
2325 bool AttrOnCallSite
, bool IsThunk
) {
2326 llvm::AttrBuilder
FuncAttrs(getLLVMContext());
2327 llvm::AttrBuilder
RetAttrs(getLLVMContext());
2329 // Collect function IR attributes from the CC lowering.
2330 // We'll collect the paramete and result attributes later.
2331 CallingConv
= FI
.getEffectiveCallingConvention();
2332 if (FI
.isNoReturn())
2333 FuncAttrs
.addAttribute(llvm::Attribute::NoReturn
);
2334 if (FI
.isCmseNSCall())
2335 FuncAttrs
.addAttribute("cmse_nonsecure_call");
2337 // Collect function IR attributes from the callee prototype if we have one.
2338 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs
,
2339 CalleeInfo
.getCalleeFunctionProtoType());
2341 const Decl
*TargetDecl
= CalleeInfo
.getCalleeDecl().getDecl();
2343 // Attach assumption attributes to the declaration. If this is a call
2344 // site, attach assumptions from the caller to the call as well.
2345 AddAttributesFromAssumes(FuncAttrs
, TargetDecl
);
2347 bool HasOptnone
= false;
2348 // The NoBuiltinAttr attached to the target FunctionDecl.
2349 const NoBuiltinAttr
*NBA
= nullptr;
2351 // Some ABIs may result in additional accesses to arguments that may
2352 // otherwise not be present.
2353 auto AddPotentialArgAccess
= [&]() {
2354 llvm::Attribute A
= FuncAttrs
.getAttribute(llvm::Attribute::Memory
);
2356 FuncAttrs
.addMemoryAttr(A
.getMemoryEffects() |
2357 llvm::MemoryEffects::argMemOnly());
2360 // Collect function IR attributes based on declaration-specific
2362 // FIXME: handle sseregparm someday...
2364 if (TargetDecl
->hasAttr
<ReturnsTwiceAttr
>())
2365 FuncAttrs
.addAttribute(llvm::Attribute::ReturnsTwice
);
2366 if (TargetDecl
->hasAttr
<NoThrowAttr
>())
2367 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2368 if (TargetDecl
->hasAttr
<NoReturnAttr
>())
2369 FuncAttrs
.addAttribute(llvm::Attribute::NoReturn
);
2370 if (TargetDecl
->hasAttr
<ColdAttr
>())
2371 FuncAttrs
.addAttribute(llvm::Attribute::Cold
);
2372 if (TargetDecl
->hasAttr
<HotAttr
>())
2373 FuncAttrs
.addAttribute(llvm::Attribute::Hot
);
2374 if (TargetDecl
->hasAttr
<NoDuplicateAttr
>())
2375 FuncAttrs
.addAttribute(llvm::Attribute::NoDuplicate
);
2376 if (TargetDecl
->hasAttr
<ConvergentAttr
>())
2377 FuncAttrs
.addAttribute(llvm::Attribute::Convergent
);
2379 if (const FunctionDecl
*Fn
= dyn_cast
<FunctionDecl
>(TargetDecl
)) {
2380 AddAttributesFromFunctionProtoType(
2381 getContext(), FuncAttrs
, Fn
->getType()->getAs
<FunctionProtoType
>());
2382 if (AttrOnCallSite
&& Fn
->isReplaceableGlobalAllocationFunction()) {
2383 // A sane operator new returns a non-aliasing pointer.
2384 auto Kind
= Fn
->getDeclName().getCXXOverloadedOperator();
2385 if (getCodeGenOpts().AssumeSaneOperatorNew
&&
2386 (Kind
== OO_New
|| Kind
== OO_Array_New
))
2387 RetAttrs
.addAttribute(llvm::Attribute::NoAlias
);
2389 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(Fn
);
2390 const bool IsVirtualCall
= MD
&& MD
->isVirtual();
2391 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
2392 // virtual function. These attributes are not inherited by overloads.
2393 if (!(AttrOnCallSite
&& IsVirtualCall
)) {
2394 if (Fn
->isNoReturn())
2395 FuncAttrs
.addAttribute(llvm::Attribute::NoReturn
);
2396 NBA
= Fn
->getAttr
<NoBuiltinAttr
>();
2400 if (isa
<FunctionDecl
>(TargetDecl
) || isa
<VarDecl
>(TargetDecl
)) {
2401 // Only place nomerge attribute on call sites, never functions. This
2402 // allows it to work on indirect virtual function calls.
2403 if (AttrOnCallSite
&& TargetDecl
->hasAttr
<NoMergeAttr
>())
2404 FuncAttrs
.addAttribute(llvm::Attribute::NoMerge
);
2407 // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
2408 if (TargetDecl
->hasAttr
<ConstAttr
>()) {
2409 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::none());
2410 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2411 // gcc specifies that 'const' functions have greater restrictions than
2412 // 'pure' functions, so they also cannot have infinite loops.
2413 FuncAttrs
.addAttribute(llvm::Attribute::WillReturn
);
2414 } else if (TargetDecl
->hasAttr
<PureAttr
>()) {
2415 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::readOnly());
2416 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2417 // gcc specifies that 'pure' functions cannot have infinite loops.
2418 FuncAttrs
.addAttribute(llvm::Attribute::WillReturn
);
2419 } else if (TargetDecl
->hasAttr
<NoAliasAttr
>()) {
2420 FuncAttrs
.addMemoryAttr(llvm::MemoryEffects::inaccessibleOrArgMemOnly());
2421 FuncAttrs
.addAttribute(llvm::Attribute::NoUnwind
);
2423 if (TargetDecl
->hasAttr
<RestrictAttr
>())
2424 RetAttrs
.addAttribute(llvm::Attribute::NoAlias
);
2425 if (TargetDecl
->hasAttr
<ReturnsNonNullAttr
>() &&
2426 !CodeGenOpts
.NullPointerIsValid
)
2427 RetAttrs
.addAttribute(llvm::Attribute::NonNull
);
2428 if (TargetDecl
->hasAttr
<AnyX86NoCallerSavedRegistersAttr
>())
2429 FuncAttrs
.addAttribute("no_caller_saved_registers");
2430 if (TargetDecl
->hasAttr
<AnyX86NoCfCheckAttr
>())
2431 FuncAttrs
.addAttribute(llvm::Attribute::NoCfCheck
);
2432 if (TargetDecl
->hasAttr
<LeafAttr
>())
2433 FuncAttrs
.addAttribute(llvm::Attribute::NoCallback
);
2435 HasOptnone
= TargetDecl
->hasAttr
<OptimizeNoneAttr
>();
2436 if (auto *AllocSize
= TargetDecl
->getAttr
<AllocSizeAttr
>()) {
2437 std::optional
<unsigned> NumElemsParam
;
2438 if (AllocSize
->getNumElemsParam().isValid())
2439 NumElemsParam
= AllocSize
->getNumElemsParam().getLLVMIndex();
2440 FuncAttrs
.addAllocSizeAttr(AllocSize
->getElemSizeParam().getLLVMIndex(),
2444 if (TargetDecl
->hasAttr
<OpenCLKernelAttr
>()) {
2445 if (getLangOpts().OpenCLVersion
<= 120) {
2446 // OpenCL v1.2 Work groups are always uniform
2447 FuncAttrs
.addAttribute("uniform-work-group-size", "true");
2449 // OpenCL v2.0 Work groups may be whether uniform or not.
2450 // '-cl-uniform-work-group-size' compile option gets a hint
2451 // to the compiler that the global work-size be a multiple of
2452 // the work-group size specified to clEnqueueNDRangeKernel
2453 // (i.e. work groups are uniform).
2454 FuncAttrs
.addAttribute(
2455 "uniform-work-group-size",
2456 llvm::toStringRef(getLangOpts().OffloadUniformBlock
));
2460 if (TargetDecl
->hasAttr
<CUDAGlobalAttr
>() &&
2461 getLangOpts().OffloadUniformBlock
)
2462 FuncAttrs
.addAttribute("uniform-work-group-size", "true");
2464 if (TargetDecl
->hasAttr
<ArmLocallyStreamingAttr
>())
2465 FuncAttrs
.addAttribute("aarch64_pstate_sm_body");
2468 // Attach "no-builtins" attributes to:
2469 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2470 // * definitions: "no-builtins" or "no-builtin-<name>" only.
2471 // The attributes can come from:
2472 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2473 // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2474 addNoBuiltinAttributes(FuncAttrs
, getLangOpts(), NBA
);
2476 // Collect function IR attributes based on global settiings.
2477 getDefaultFunctionAttributes(Name
, HasOptnone
, AttrOnCallSite
, FuncAttrs
);
2479 // Override some default IR attributes based on declaration-specific
2482 if (TargetDecl
->hasAttr
<NoSpeculativeLoadHardeningAttr
>())
2483 FuncAttrs
.removeAttribute(llvm::Attribute::SpeculativeLoadHardening
);
2484 if (TargetDecl
->hasAttr
<SpeculativeLoadHardeningAttr
>())
2485 FuncAttrs
.addAttribute(llvm::Attribute::SpeculativeLoadHardening
);
2486 if (TargetDecl
->hasAttr
<NoSplitStackAttr
>())
2487 FuncAttrs
.removeAttribute("split-stack");
2488 if (TargetDecl
->hasAttr
<ZeroCallUsedRegsAttr
>()) {
2489 // A function "__attribute__((...))" overrides the command-line flag.
2491 TargetDecl
->getAttr
<ZeroCallUsedRegsAttr
>()->getZeroCallUsedRegs();
2492 FuncAttrs
.removeAttribute("zero-call-used-regs");
2493 FuncAttrs
.addAttribute(
2494 "zero-call-used-regs",
2495 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind
));
2498 // Add NonLazyBind attribute to function declarations when -fno-plt
2500 // FIXME: what if we just haven't processed the function definition
2501 // yet, or if it's an external definition like C99 inline?
2502 if (CodeGenOpts
.NoPLT
) {
2503 if (auto *Fn
= dyn_cast
<FunctionDecl
>(TargetDecl
)) {
2504 if (!Fn
->isDefined() && !AttrOnCallSite
) {
2505 FuncAttrs
.addAttribute(llvm::Attribute::NonLazyBind
);
2511 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
2512 // functions with -funique-internal-linkage-names.
2513 if (TargetDecl
&& CodeGenOpts
.UniqueInternalLinkageNames
) {
2514 if (const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
)) {
2515 if (!FD
->isExternallyVisible())
2516 FuncAttrs
.addAttribute("sample-profile-suffix-elision-policy",
2521 // Collect non-call-site function IR attributes from declaration-specific
2523 if (!AttrOnCallSite
) {
2524 if (TargetDecl
&& TargetDecl
->hasAttr
<CmseNSEntryAttr
>())
2525 FuncAttrs
.addAttribute("cmse_nonsecure_entry");
2527 // Whether tail calls are enabled.
2528 auto shouldDisableTailCalls
= [&] {
2529 // Should this be honored in getDefaultFunctionAttributes?
2530 if (CodeGenOpts
.DisableTailCalls
)
2536 if (TargetDecl
->hasAttr
<DisableTailCallsAttr
>() ||
2537 TargetDecl
->hasAttr
<AnyX86InterruptAttr
>())
2540 if (CodeGenOpts
.NoEscapingBlockTailCalls
) {
2541 if (const auto *BD
= dyn_cast
<BlockDecl
>(TargetDecl
))
2542 if (!BD
->doesNotEscape())
2548 if (shouldDisableTailCalls())
2549 FuncAttrs
.addAttribute("disable-tail-calls", "true");
2551 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
2552 // handles these separately to set them based on the global defaults.
2553 GetCPUAndFeaturesAttributes(CalleeInfo
.getCalleeDecl(), FuncAttrs
);
2556 // Collect attributes from arguments and return values.
2557 ClangToLLVMArgMapping
IRFunctionArgs(getContext(), FI
);
2559 QualType RetTy
= FI
.getReturnType();
2560 const ABIArgInfo
&RetAI
= FI
.getReturnInfo();
2561 const llvm::DataLayout
&DL
= getDataLayout();
2563 // Determine if the return type could be partially undef
2564 if (CodeGenOpts
.EnableNoundefAttrs
&&
2565 HasStrictReturn(*this, RetTy
, TargetDecl
)) {
2566 if (!RetTy
->isVoidType() && RetAI
.getKind() != ABIArgInfo::Indirect
&&
2567 DetermineNoUndef(RetTy
, getTypes(), DL
, RetAI
))
2568 RetAttrs
.addAttribute(llvm::Attribute::NoUndef
);
2571 switch (RetAI
.getKind()) {
2572 case ABIArgInfo::Extend
:
2573 if (RetAI
.isSignExt())
2574 RetAttrs
.addAttribute(llvm::Attribute::SExt
);
2576 RetAttrs
.addAttribute(llvm::Attribute::ZExt
);
2578 case ABIArgInfo::Direct
:
2579 if (RetAI
.getInReg())
2580 RetAttrs
.addAttribute(llvm::Attribute::InReg
);
2582 if (canApplyNoFPClass(RetAI
, RetTy
, true))
2583 RetAttrs
.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2586 case ABIArgInfo::Ignore
:
2589 case ABIArgInfo::InAlloca
:
2590 case ABIArgInfo::Indirect
: {
2591 // inalloca and sret disable readnone and readonly
2592 AddPotentialArgAccess();
2596 case ABIArgInfo::CoerceAndExpand
:
2599 case ABIArgInfo::Expand
:
2600 case ABIArgInfo::IndirectAliased
:
2601 llvm_unreachable("Invalid ABI kind for return argument");
2605 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2606 if (const auto *RefTy
= RetTy
->getAs
<ReferenceType
>()) {
2607 QualType PTy
= RefTy
->getPointeeType();
2608 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType())
2609 RetAttrs
.addDereferenceableAttr(
2610 getMinimumObjectSize(PTy
).getQuantity());
2611 if (getTypes().getTargetAddressSpace(PTy
) == 0 &&
2612 !CodeGenOpts
.NullPointerIsValid
)
2613 RetAttrs
.addAttribute(llvm::Attribute::NonNull
);
2614 if (PTy
->isObjectType()) {
2615 llvm::Align Alignment
=
2616 getNaturalPointeeTypeAlignment(RetTy
).getAsAlign();
2617 RetAttrs
.addAlignmentAttr(Alignment
);
2622 bool hasUsedSRet
= false;
2623 SmallVector
<llvm::AttributeSet
, 4> ArgAttrs(IRFunctionArgs
.totalIRArgs());
2625 // Attach attributes to sret.
2626 if (IRFunctionArgs
.hasSRetArg()) {
2627 llvm::AttrBuilder
SRETAttrs(getLLVMContext());
2628 SRETAttrs
.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy
));
2629 SRETAttrs
.addAttribute(llvm::Attribute::Writable
);
2630 SRETAttrs
.addAttribute(llvm::Attribute::DeadOnUnwind
);
2632 if (RetAI
.getInReg())
2633 SRETAttrs
.addAttribute(llvm::Attribute::InReg
);
2634 SRETAttrs
.addAlignmentAttr(RetAI
.getIndirectAlign().getQuantity());
2635 ArgAttrs
[IRFunctionArgs
.getSRetArgNo()] =
2636 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs
);
2639 // Attach attributes to inalloca argument.
2640 if (IRFunctionArgs
.hasInallocaArg()) {
2641 llvm::AttrBuilder
Attrs(getLLVMContext());
2642 Attrs
.addInAllocaAttr(FI
.getArgStruct());
2643 ArgAttrs
[IRFunctionArgs
.getInallocaArgNo()] =
2644 llvm::AttributeSet::get(getLLVMContext(), Attrs
);
2647 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
2648 // unless this is a thunk function.
2649 // FIXME: fix this properly, https://reviews.llvm.org/D100388
2650 if (FI
.isInstanceMethod() && !IRFunctionArgs
.hasInallocaArg() &&
2651 !FI
.arg_begin()->type
->isVoidPointerType() && !IsThunk
) {
2652 auto IRArgs
= IRFunctionArgs
.getIRArgs(0);
2654 assert(IRArgs
.second
== 1 && "Expected only a single `this` pointer.");
2656 llvm::AttrBuilder
Attrs(getLLVMContext());
2659 FI
.arg_begin()->type
.getTypePtr()->getPointeeType();
2661 if (!CodeGenOpts
.NullPointerIsValid
&&
2662 getTypes().getTargetAddressSpace(FI
.arg_begin()->type
) == 0) {
2663 Attrs
.addAttribute(llvm::Attribute::NonNull
);
2664 Attrs
.addDereferenceableAttr(getMinimumObjectSize(ThisTy
).getQuantity());
2666 // FIXME dereferenceable should be correct here, regardless of
2667 // NullPointerIsValid. However, dereferenceable currently does not always
2668 // respect NullPointerIsValid and may imply nonnull and break the program.
2669 // See https://reviews.llvm.org/D66618 for discussions.
2670 Attrs
.addDereferenceableOrNullAttr(
2671 getMinimumObjectSize(
2672 FI
.arg_begin()->type
.castAs
<PointerType
>()->getPointeeType())
2676 llvm::Align Alignment
=
2677 getNaturalTypeAlignment(ThisTy
, /*BaseInfo=*/nullptr,
2678 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
2680 Attrs
.addAlignmentAttr(Alignment
);
2682 ArgAttrs
[IRArgs
.first
] = llvm::AttributeSet::get(getLLVMContext(), Attrs
);
2686 for (CGFunctionInfo::const_arg_iterator I
= FI
.arg_begin(),
2688 I
!= E
; ++I
, ++ArgNo
) {
2689 QualType ParamType
= I
->type
;
2690 const ABIArgInfo
&AI
= I
->info
;
2691 llvm::AttrBuilder
Attrs(getLLVMContext());
2693 // Add attribute for padding argument, if necessary.
2694 if (IRFunctionArgs
.hasPaddingArg(ArgNo
)) {
2695 if (AI
.getPaddingInReg()) {
2696 ArgAttrs
[IRFunctionArgs
.getPaddingArgNo(ArgNo
)] =
2697 llvm::AttributeSet::get(
2699 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg
));
2703 // Decide whether the argument we're handling could be partially undef
2704 if (CodeGenOpts
.EnableNoundefAttrs
&&
2705 DetermineNoUndef(ParamType
, getTypes(), DL
, AI
)) {
2706 Attrs
.addAttribute(llvm::Attribute::NoUndef
);
2709 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2710 // have the corresponding parameter variable. It doesn't make
2711 // sense to do it here because parameters are so messed up.
2712 switch (AI
.getKind()) {
2713 case ABIArgInfo::Extend
:
2715 Attrs
.addAttribute(llvm::Attribute::SExt
);
2717 Attrs
.addAttribute(llvm::Attribute::ZExt
);
2719 case ABIArgInfo::Direct
:
2720 if (ArgNo
== 0 && FI
.isChainCall())
2721 Attrs
.addAttribute(llvm::Attribute::Nest
);
2722 else if (AI
.getInReg())
2723 Attrs
.addAttribute(llvm::Attribute::InReg
);
2724 Attrs
.addStackAlignmentAttr(llvm::MaybeAlign(AI
.getDirectAlign()));
2726 if (canApplyNoFPClass(AI
, ParamType
, false))
2727 Attrs
.addNoFPClassAttr(getNoFPClassTestMask(getLangOpts()));
2729 case ABIArgInfo::Indirect
: {
2731 Attrs
.addAttribute(llvm::Attribute::InReg
);
2733 if (AI
.getIndirectByVal())
2734 Attrs
.addByValAttr(getTypes().ConvertTypeForMem(ParamType
));
2736 auto *Decl
= ParamType
->getAsRecordDecl();
2737 if (CodeGenOpts
.PassByValueIsNoAlias
&& Decl
&&
2738 Decl
->getArgPassingRestrictions() ==
2739 RecordArgPassingKind::CanPassInRegs
)
2740 // When calling the function, the pointer passed in will be the only
2741 // reference to the underlying object. Mark it accordingly.
2742 Attrs
.addAttribute(llvm::Attribute::NoAlias
);
2744 // TODO: We could add the byref attribute if not byval, but it would
2745 // require updating many testcases.
2747 CharUnits Align
= AI
.getIndirectAlign();
2749 // In a byval argument, it is important that the required
2750 // alignment of the type is honored, as LLVM might be creating a
2751 // *new* stack object, and needs to know what alignment to give
2752 // it. (Sometimes it can deduce a sensible alignment on its own,
2753 // but not if clang decides it must emit a packed struct, or the
2754 // user specifies increased alignment requirements.)
2756 // This is different from indirect *not* byval, where the object
2757 // exists already, and the align attribute is purely
2759 assert(!Align
.isZero());
2761 // For now, only add this when we have a byval argument.
2762 // TODO: be less lazy about updating test cases.
2763 if (AI
.getIndirectByVal())
2764 Attrs
.addAlignmentAttr(Align
.getQuantity());
2766 // byval disables readnone and readonly.
2767 AddPotentialArgAccess();
2770 case ABIArgInfo::IndirectAliased
: {
2771 CharUnits Align
= AI
.getIndirectAlign();
2772 Attrs
.addByRefAttr(getTypes().ConvertTypeForMem(ParamType
));
2773 Attrs
.addAlignmentAttr(Align
.getQuantity());
2776 case ABIArgInfo::Ignore
:
2777 case ABIArgInfo::Expand
:
2778 case ABIArgInfo::CoerceAndExpand
:
2781 case ABIArgInfo::InAlloca
:
2782 // inalloca disables readnone and readonly.
2783 AddPotentialArgAccess();
2787 if (const auto *RefTy
= ParamType
->getAs
<ReferenceType
>()) {
2788 QualType PTy
= RefTy
->getPointeeType();
2789 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType())
2790 Attrs
.addDereferenceableAttr(
2791 getMinimumObjectSize(PTy
).getQuantity());
2792 if (getTypes().getTargetAddressSpace(PTy
) == 0 &&
2793 !CodeGenOpts
.NullPointerIsValid
)
2794 Attrs
.addAttribute(llvm::Attribute::NonNull
);
2795 if (PTy
->isObjectType()) {
2796 llvm::Align Alignment
=
2797 getNaturalPointeeTypeAlignment(ParamType
).getAsAlign();
2798 Attrs
.addAlignmentAttr(Alignment
);
2802 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
2803 // > For arguments to a __kernel function declared to be a pointer to a
2804 // > data type, the OpenCL compiler can assume that the pointee is always
2805 // > appropriately aligned as required by the data type.
2806 if (TargetDecl
&& TargetDecl
->hasAttr
<OpenCLKernelAttr
>() &&
2807 ParamType
->isPointerType()) {
2808 QualType PTy
= ParamType
->getPointeeType();
2809 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType()) {
2810 llvm::Align Alignment
=
2811 getNaturalPointeeTypeAlignment(ParamType
).getAsAlign();
2812 Attrs
.addAlignmentAttr(Alignment
);
2816 switch (FI
.getExtParameterInfo(ArgNo
).getABI()) {
2817 case ParameterABI::Ordinary
:
2820 case ParameterABI::SwiftIndirectResult
: {
2821 // Add 'sret' if we haven't already used it for something, but
2822 // only if the result is void.
2823 if (!hasUsedSRet
&& RetTy
->isVoidType()) {
2824 Attrs
.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType
));
2828 // Add 'noalias' in either case.
2829 Attrs
.addAttribute(llvm::Attribute::NoAlias
);
2831 // Add 'dereferenceable' and 'alignment'.
2832 auto PTy
= ParamType
->getPointeeType();
2833 if (!PTy
->isIncompleteType() && PTy
->isConstantSizeType()) {
2834 auto info
= getContext().getTypeInfoInChars(PTy
);
2835 Attrs
.addDereferenceableAttr(info
.Width
.getQuantity());
2836 Attrs
.addAlignmentAttr(info
.Align
.getAsAlign());
2841 case ParameterABI::SwiftErrorResult
:
2842 Attrs
.addAttribute(llvm::Attribute::SwiftError
);
2845 case ParameterABI::SwiftContext
:
2846 Attrs
.addAttribute(llvm::Attribute::SwiftSelf
);
2849 case ParameterABI::SwiftAsyncContext
:
2850 Attrs
.addAttribute(llvm::Attribute::SwiftAsync
);
2854 if (FI
.getExtParameterInfo(ArgNo
).isNoEscape())
2855 Attrs
.addAttribute(llvm::Attribute::NoCapture
);
2857 if (Attrs
.hasAttributes()) {
2858 unsigned FirstIRArg
, NumIRArgs
;
2859 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
2860 for (unsigned i
= 0; i
< NumIRArgs
; i
++)
2861 ArgAttrs
[FirstIRArg
+ i
] = ArgAttrs
[FirstIRArg
+ i
].addAttributes(
2862 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs
));
2865 assert(ArgNo
== FI
.arg_size());
2867 AttrList
= llvm::AttributeList::get(
2868 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs
),
2869 llvm::AttributeSet::get(getLLVMContext(), RetAttrs
), ArgAttrs
);
2872 /// An argument came in as a promoted argument; demote it back to its
2874 static llvm::Value
*emitArgumentDemotion(CodeGenFunction
&CGF
,
2876 llvm::Value
*value
) {
2877 llvm::Type
*varType
= CGF
.ConvertType(var
->getType());
2879 // This can happen with promotions that actually don't change the
2880 // underlying type, like the enum promotions.
2881 if (value
->getType() == varType
) return value
;
2883 assert((varType
->isIntegerTy() || varType
->isFloatingPointTy())
2884 && "unexpected promotion type");
2886 if (isa
<llvm::IntegerType
>(varType
))
2887 return CGF
.Builder
.CreateTrunc(value
, varType
, "arg.unpromote");
2889 return CGF
.Builder
.CreateFPCast(value
, varType
, "arg.unpromote");
2892 /// Returns the attribute (either parameter attribute, or function
2893 /// attribute), which declares argument ArgNo to be non-null.
2894 static const NonNullAttr
*getNonNullAttr(const Decl
*FD
, const ParmVarDecl
*PVD
,
2895 QualType ArgType
, unsigned ArgNo
) {
2896 // FIXME: __attribute__((nonnull)) can also be applied to:
2897 // - references to pointers, where the pointee is known to be
2898 // nonnull (apparently a Clang extension)
2899 // - transparent unions containing pointers
2900 // In the former case, LLVM IR cannot represent the constraint. In
2901 // the latter case, we have no guarantee that the transparent union
2902 // is in fact passed as a pointer.
2903 if (!ArgType
->isAnyPointerType() && !ArgType
->isBlockPointerType())
2905 // First, check attribute on parameter itself.
2907 if (auto ParmNNAttr
= PVD
->getAttr
<NonNullAttr
>())
2910 // Check function attributes.
2913 for (const auto *NNAttr
: FD
->specific_attrs
<NonNullAttr
>()) {
2914 if (NNAttr
->isNonNull(ArgNo
))
2921 struct CopyBackSwiftError final
: EHScopeStack::Cleanup
{
2924 CopyBackSwiftError(Address temp
, Address arg
) : Temp(temp
), Arg(arg
) {}
2925 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2926 llvm::Value
*errorValue
= CGF
.Builder
.CreateLoad(Temp
);
2927 CGF
.Builder
.CreateStore(errorValue
, Arg
);
2932 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo
&FI
,
2934 const FunctionArgList
&Args
) {
2935 if (CurCodeDecl
&& CurCodeDecl
->hasAttr
<NakedAttr
>())
2936 // Naked functions don't have prologues.
2939 // If this is an implicit-return-zero function, go ahead and
2940 // initialize the return value. TODO: it might be nice to have
2941 // a more general mechanism for this that didn't require synthesized
2942 // return statements.
2943 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
)) {
2944 if (FD
->hasImplicitReturnZero()) {
2945 QualType RetTy
= FD
->getReturnType().getUnqualifiedType();
2946 llvm::Type
* LLVMTy
= CGM
.getTypes().ConvertType(RetTy
);
2947 llvm::Constant
* Zero
= llvm::Constant::getNullValue(LLVMTy
);
2948 Builder
.CreateStore(Zero
, ReturnValue
);
2952 // FIXME: We no longer need the types from FunctionArgList; lift up and
2955 ClangToLLVMArgMapping
IRFunctionArgs(CGM
.getContext(), FI
);
2956 assert(Fn
->arg_size() == IRFunctionArgs
.totalIRArgs());
2958 // If we're using inalloca, all the memory arguments are GEPs off of the last
2959 // parameter, which is a pointer to the complete memory area.
2960 Address ArgStruct
= Address::invalid();
2961 if (IRFunctionArgs
.hasInallocaArg())
2962 ArgStruct
= Address(Fn
->getArg(IRFunctionArgs
.getInallocaArgNo()),
2963 FI
.getArgStruct(), FI
.getArgStructAlignment());
2965 // Name the struct return parameter.
2966 if (IRFunctionArgs
.hasSRetArg()) {
2967 auto AI
= Fn
->getArg(IRFunctionArgs
.getSRetArgNo());
2968 AI
->setName("agg.result");
2969 AI
->addAttr(llvm::Attribute::NoAlias
);
2972 // Track if we received the parameter as a pointer (indirect, byval, or
2973 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
2974 // into a local alloca for us.
2975 SmallVector
<ParamValue
, 16> ArgVals
;
2976 ArgVals
.reserve(Args
.size());
2978 // Create a pointer value for every parameter declaration. This usually
2979 // entails copying one or more LLVM IR arguments into an alloca. Don't push
2980 // any cleanups or do anything that might unwind. We do that separately, so
2981 // we can push the cleanups in the correct order for the ABI.
2982 assert(FI
.arg_size() == Args
.size() &&
2983 "Mismatch between function signature & arguments.");
2985 CGFunctionInfo::const_arg_iterator info_it
= FI
.arg_begin();
2986 for (FunctionArgList::const_iterator i
= Args
.begin(), e
= Args
.end();
2987 i
!= e
; ++i
, ++info_it
, ++ArgNo
) {
2988 const VarDecl
*Arg
= *i
;
2989 const ABIArgInfo
&ArgI
= info_it
->info
;
2992 isa
<ParmVarDecl
>(Arg
) && cast
<ParmVarDecl
>(Arg
)->isKNRPromoted();
2993 // We are converting from ABIArgInfo type to VarDecl type directly, unless
2994 // the parameter is promoted. In this case we convert to
2995 // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2996 QualType Ty
= isPromoted
? info_it
->type
: Arg
->getType();
2997 assert(hasScalarEvaluationKind(Ty
) ==
2998 hasScalarEvaluationKind(Arg
->getType()));
3000 unsigned FirstIRArg
, NumIRArgs
;
3001 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
3003 switch (ArgI
.getKind()) {
3004 case ABIArgInfo::InAlloca
: {
3005 assert(NumIRArgs
== 0);
3006 auto FieldIndex
= ArgI
.getInAllocaFieldIndex();
3008 Builder
.CreateStructGEP(ArgStruct
, FieldIndex
, Arg
->getName());
3009 if (ArgI
.getInAllocaIndirect())
3010 V
= Address(Builder
.CreateLoad(V
), ConvertTypeForMem(Ty
),
3011 getContext().getTypeAlignInChars(Ty
));
3012 ArgVals
.push_back(ParamValue::forIndirect(V
));
3016 case ABIArgInfo::Indirect
:
3017 case ABIArgInfo::IndirectAliased
: {
3018 assert(NumIRArgs
== 1);
3019 Address ParamAddr
= Address(Fn
->getArg(FirstIRArg
), ConvertTypeForMem(Ty
),
3020 ArgI
.getIndirectAlign(), KnownNonNull
);
3022 if (!hasScalarEvaluationKind(Ty
)) {
3023 // Aggregates and complex variables are accessed by reference. All we
3024 // need to do is realign the value, if requested. Also, if the address
3025 // may be aliased, copy it to ensure that the parameter variable is
3026 // mutable and has a unique adress, as C requires.
3027 Address V
= ParamAddr
;
3028 if (ArgI
.getIndirectRealign() || ArgI
.isIndirectAliased()) {
3029 Address AlignedTemp
= CreateMemTemp(Ty
, "coerce");
3031 // Copy from the incoming argument pointer to the temporary with the
3032 // appropriate alignment.
3034 // FIXME: We should have a common utility for generating an aggregate
3036 CharUnits Size
= getContext().getTypeSizeInChars(Ty
);
3037 Builder
.CreateMemCpy(
3038 AlignedTemp
.getPointer(), AlignedTemp
.getAlignment().getAsAlign(),
3039 ParamAddr
.getPointer(), ParamAddr
.getAlignment().getAsAlign(),
3040 llvm::ConstantInt::get(IntPtrTy
, Size
.getQuantity()));
3043 ArgVals
.push_back(ParamValue::forIndirect(V
));
3045 // Load scalar value from indirect argument.
3047 EmitLoadOfScalar(ParamAddr
, false, Ty
, Arg
->getBeginLoc());
3050 V
= emitArgumentDemotion(*this, Arg
, V
);
3051 ArgVals
.push_back(ParamValue::forDirect(V
));
3056 case ABIArgInfo::Extend
:
3057 case ABIArgInfo::Direct
: {
3058 auto AI
= Fn
->getArg(FirstIRArg
);
3059 llvm::Type
*LTy
= ConvertType(Arg
->getType());
3061 // Prepare parameter attributes. So far, only attributes for pointer
3062 // parameters are prepared. See
3063 // http://llvm.org/docs/LangRef.html#paramattrs.
3064 if (ArgI
.getDirectOffset() == 0 && LTy
->isPointerTy() &&
3065 ArgI
.getCoerceToType()->isPointerTy()) {
3066 assert(NumIRArgs
== 1);
3068 if (const ParmVarDecl
*PVD
= dyn_cast
<ParmVarDecl
>(Arg
)) {
3069 // Set `nonnull` attribute if any.
3070 if (getNonNullAttr(CurCodeDecl
, PVD
, PVD
->getType(),
3071 PVD
->getFunctionScopeIndex()) &&
3072 !CGM
.getCodeGenOpts().NullPointerIsValid
)
3073 AI
->addAttr(llvm::Attribute::NonNull
);
3075 QualType OTy
= PVD
->getOriginalType();
3076 if (const auto *ArrTy
=
3077 getContext().getAsConstantArrayType(OTy
)) {
3078 // A C99 array parameter declaration with the static keyword also
3079 // indicates dereferenceability, and if the size is constant we can
3080 // use the dereferenceable attribute (which requires the size in
3082 if (ArrTy
->getSizeModifier() == ArraySizeModifier::Static
) {
3083 QualType ETy
= ArrTy
->getElementType();
3084 llvm::Align Alignment
=
3085 CGM
.getNaturalTypeAlignment(ETy
).getAsAlign();
3086 AI
->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment
));
3087 uint64_t ArrSize
= ArrTy
->getSize().getZExtValue();
3088 if (!ETy
->isIncompleteType() && ETy
->isConstantSizeType() &&
3090 llvm::AttrBuilder
Attrs(getLLVMContext());
3091 Attrs
.addDereferenceableAttr(
3092 getContext().getTypeSizeInChars(ETy
).getQuantity() *
3094 AI
->addAttrs(Attrs
);
3095 } else if (getContext().getTargetInfo().getNullPointerValue(
3096 ETy
.getAddressSpace()) == 0 &&
3097 !CGM
.getCodeGenOpts().NullPointerIsValid
) {
3098 AI
->addAttr(llvm::Attribute::NonNull
);
3101 } else if (const auto *ArrTy
=
3102 getContext().getAsVariableArrayType(OTy
)) {
3103 // For C99 VLAs with the static keyword, we don't know the size so
3104 // we can't use the dereferenceable attribute, but in addrspace(0)
3105 // we know that it must be nonnull.
3106 if (ArrTy
->getSizeModifier() == ArraySizeModifier::Static
) {
3107 QualType ETy
= ArrTy
->getElementType();
3108 llvm::Align Alignment
=
3109 CGM
.getNaturalTypeAlignment(ETy
).getAsAlign();
3110 AI
->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment
));
3111 if (!getTypes().getTargetAddressSpace(ETy
) &&
3112 !CGM
.getCodeGenOpts().NullPointerIsValid
)
3113 AI
->addAttr(llvm::Attribute::NonNull
);
3117 // Set `align` attribute if any.
3118 const auto *AVAttr
= PVD
->getAttr
<AlignValueAttr
>();
3120 if (const auto *TOTy
= OTy
->getAs
<TypedefType
>())
3121 AVAttr
= TOTy
->getDecl()->getAttr
<AlignValueAttr
>();
3122 if (AVAttr
&& !SanOpts
.has(SanitizerKind::Alignment
)) {
3123 // If alignment-assumption sanitizer is enabled, we do *not* add
3124 // alignment attribute here, but emit normal alignment assumption,
3125 // so the UBSAN check could function.
3126 llvm::ConstantInt
*AlignmentCI
=
3127 cast
<llvm::ConstantInt
>(EmitScalarExpr(AVAttr
->getAlignment()));
3128 uint64_t AlignmentInt
=
3129 AlignmentCI
->getLimitedValue(llvm::Value::MaximumAlignment
);
3130 if (AI
->getParamAlign().valueOrOne() < AlignmentInt
) {
3131 AI
->removeAttr(llvm::Attribute::AttrKind::Alignment
);
3132 AI
->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
3133 llvm::Align(AlignmentInt
)));
3138 // Set 'noalias' if an argument type has the `restrict` qualifier.
3139 if (Arg
->getType().isRestrictQualified())
3140 AI
->addAttr(llvm::Attribute::NoAlias
);
3143 // Prepare the argument value. If we have the trivial case, handle it
3144 // with no muss and fuss.
3145 if (!isa
<llvm::StructType
>(ArgI
.getCoerceToType()) &&
3146 ArgI
.getCoerceToType() == ConvertType(Ty
) &&
3147 ArgI
.getDirectOffset() == 0) {
3148 assert(NumIRArgs
== 1);
3150 // LLVM expects swifterror parameters to be used in very restricted
3151 // ways. Copy the value into a less-restricted temporary.
3152 llvm::Value
*V
= AI
;
3153 if (FI
.getExtParameterInfo(ArgNo
).getABI()
3154 == ParameterABI::SwiftErrorResult
) {
3155 QualType pointeeTy
= Ty
->getPointeeType();
3156 assert(pointeeTy
->isPointerType());
3158 CreateMemTemp(pointeeTy
, getPointerAlign(), "swifterror.temp");
3159 Address
arg(V
, ConvertTypeForMem(pointeeTy
),
3160 getContext().getTypeAlignInChars(pointeeTy
));
3161 llvm::Value
*incomingErrorValue
= Builder
.CreateLoad(arg
);
3162 Builder
.CreateStore(incomingErrorValue
, temp
);
3163 V
= temp
.getPointer();
3165 // Push a cleanup to copy the value back at the end of the function.
3166 // The convention does not guarantee that the value will be written
3167 // back if the function exits with an unwind exception.
3168 EHStack
.pushCleanup
<CopyBackSwiftError
>(NormalCleanup
, temp
, arg
);
3171 // Ensure the argument is the correct type.
3172 if (V
->getType() != ArgI
.getCoerceToType())
3173 V
= Builder
.CreateBitCast(V
, ArgI
.getCoerceToType());
3176 V
= emitArgumentDemotion(*this, Arg
, V
);
3178 // Because of merging of function types from multiple decls it is
3179 // possible for the type of an argument to not match the corresponding
3180 // type in the function type. Since we are codegening the callee
3181 // in here, add a cast to the argument type.
3182 llvm::Type
*LTy
= ConvertType(Arg
->getType());
3183 if (V
->getType() != LTy
)
3184 V
= Builder
.CreateBitCast(V
, LTy
);
3186 ArgVals
.push_back(ParamValue::forDirect(V
));
3190 // VLST arguments are coerced to VLATs at the function boundary for
3191 // ABI consistency. If this is a VLST that was coerced to
3192 // a VLAT at the function boundary and the types match up, use
3193 // llvm.vector.extract to convert back to the original VLST.
3194 if (auto *VecTyTo
= dyn_cast
<llvm::FixedVectorType
>(ConvertType(Ty
))) {
3195 llvm::Value
*Coerced
= Fn
->getArg(FirstIRArg
);
3196 if (auto *VecTyFrom
=
3197 dyn_cast
<llvm::ScalableVectorType
>(Coerced
->getType())) {
3198 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
3199 // vector, bitcast the source and use a vector extract.
3201 llvm::ScalableVectorType::get(Builder
.getInt1Ty(), 16);
3202 if (VecTyFrom
== PredType
&&
3203 VecTyTo
->getElementType() == Builder
.getInt8Ty()) {
3204 VecTyFrom
= llvm::ScalableVectorType::get(Builder
.getInt8Ty(), 2);
3205 Coerced
= Builder
.CreateBitCast(Coerced
, VecTyFrom
);
3207 if (VecTyFrom
->getElementType() == VecTyTo
->getElementType()) {
3208 llvm::Value
*Zero
= llvm::Constant::getNullValue(CGM
.Int64Ty
);
3210 assert(NumIRArgs
== 1);
3211 Coerced
->setName(Arg
->getName() + ".coerce");
3212 ArgVals
.push_back(ParamValue::forDirect(Builder
.CreateExtractVector(
3213 VecTyTo
, Coerced
, Zero
, "cast.fixed")));
3219 Address Alloca
= CreateMemTemp(Ty
, getContext().getDeclAlign(Arg
),
3222 // Pointer to store into.
3223 Address Ptr
= emitAddressAtOffset(*this, Alloca
, ArgI
);
3225 // Fast-isel and the optimizer generally like scalar values better than
3226 // FCAs, so we flatten them if this is safe to do for this argument.
3227 llvm::StructType
*STy
= dyn_cast
<llvm::StructType
>(ArgI
.getCoerceToType());
3228 if (ArgI
.isDirect() && ArgI
.getCanBeFlattened() && STy
&&
3229 STy
->getNumElements() > 1) {
3230 llvm::TypeSize StructSize
= CGM
.getDataLayout().getTypeAllocSize(STy
);
3231 llvm::TypeSize PtrElementSize
=
3232 CGM
.getDataLayout().getTypeAllocSize(Ptr
.getElementType());
3233 if (StructSize
.isScalable()) {
3234 assert(STy
->containsHomogeneousScalableVectorTypes() &&
3235 "ABI only supports structure with homogeneous scalable vector "
3237 assert(StructSize
== PtrElementSize
&&
3238 "Only allow non-fractional movement of structure with"
3239 "homogeneous scalable vector type");
3240 assert(STy
->getNumElements() == NumIRArgs
);
3242 llvm::Value
*LoadedStructValue
= llvm::PoisonValue::get(STy
);
3243 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
3244 auto *AI
= Fn
->getArg(FirstIRArg
+ i
);
3245 AI
->setName(Arg
->getName() + ".coerce" + Twine(i
));
3247 Builder
.CreateInsertValue(LoadedStructValue
, AI
, i
);
3250 Builder
.CreateStore(LoadedStructValue
, Ptr
);
3252 uint64_t SrcSize
= StructSize
.getFixedValue();
3253 uint64_t DstSize
= PtrElementSize
.getFixedValue();
3255 Address AddrToStoreInto
= Address::invalid();
3256 if (SrcSize
<= DstSize
) {
3257 AddrToStoreInto
= Ptr
.withElementType(STy
);
3260 CreateTempAlloca(STy
, Alloca
.getAlignment(), "coerce");
3263 assert(STy
->getNumElements() == NumIRArgs
);
3264 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
3265 auto AI
= Fn
->getArg(FirstIRArg
+ i
);
3266 AI
->setName(Arg
->getName() + ".coerce" + Twine(i
));
3267 Address EltPtr
= Builder
.CreateStructGEP(AddrToStoreInto
, i
);
3268 Builder
.CreateStore(AI
, EltPtr
);
3271 if (SrcSize
> DstSize
) {
3272 Builder
.CreateMemCpy(Ptr
, AddrToStoreInto
, DstSize
);
3276 // Simple case, just do a coerced store of the argument into the alloca.
3277 assert(NumIRArgs
== 1);
3278 auto AI
= Fn
->getArg(FirstIRArg
);
3279 AI
->setName(Arg
->getName() + ".coerce");
3280 CreateCoercedStore(AI
, Ptr
, /*DstIsVolatile=*/false, *this);
3283 // Match to what EmitParmDecl is expecting for this type.
3284 if (CodeGenFunction::hasScalarEvaluationKind(Ty
)) {
3286 EmitLoadOfScalar(Alloca
, false, Ty
, Arg
->getBeginLoc());
3288 V
= emitArgumentDemotion(*this, Arg
, V
);
3289 ArgVals
.push_back(ParamValue::forDirect(V
));
3291 ArgVals
.push_back(ParamValue::forIndirect(Alloca
));
3296 case ABIArgInfo::CoerceAndExpand
: {
3297 // Reconstruct into a temporary.
3298 Address alloca
= CreateMemTemp(Ty
, getContext().getDeclAlign(Arg
));
3299 ArgVals
.push_back(ParamValue::forIndirect(alloca
));
3301 auto coercionType
= ArgI
.getCoerceAndExpandType();
3302 alloca
= alloca
.withElementType(coercionType
);
3304 unsigned argIndex
= FirstIRArg
;
3305 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
3306 llvm::Type
*eltType
= coercionType
->getElementType(i
);
3307 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType
))
3310 auto eltAddr
= Builder
.CreateStructGEP(alloca
, i
);
3311 auto elt
= Fn
->getArg(argIndex
++);
3312 Builder
.CreateStore(elt
, eltAddr
);
3314 assert(argIndex
== FirstIRArg
+ NumIRArgs
);
3318 case ABIArgInfo::Expand
: {
3319 // If this structure was expanded into multiple arguments then
3320 // we need to create a temporary and reconstruct it from the
3322 Address Alloca
= CreateMemTemp(Ty
, getContext().getDeclAlign(Arg
));
3323 LValue LV
= MakeAddrLValue(Alloca
, Ty
);
3324 ArgVals
.push_back(ParamValue::forIndirect(Alloca
));
3326 auto FnArgIter
= Fn
->arg_begin() + FirstIRArg
;
3327 ExpandTypeFromArgs(Ty
, LV
, FnArgIter
);
3328 assert(FnArgIter
== Fn
->arg_begin() + FirstIRArg
+ NumIRArgs
);
3329 for (unsigned i
= 0, e
= NumIRArgs
; i
!= e
; ++i
) {
3330 auto AI
= Fn
->getArg(FirstIRArg
+ i
);
3331 AI
->setName(Arg
->getName() + "." + Twine(i
));
3336 case ABIArgInfo::Ignore
:
3337 assert(NumIRArgs
== 0);
3338 // Initialize the local variable appropriately.
3339 if (!hasScalarEvaluationKind(Ty
)) {
3340 ArgVals
.push_back(ParamValue::forIndirect(CreateMemTemp(Ty
)));
3342 llvm::Value
*U
= llvm::UndefValue::get(ConvertType(Arg
->getType()));
3343 ArgVals
.push_back(ParamValue::forDirect(U
));
3349 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3350 for (int I
= Args
.size() - 1; I
>= 0; --I
)
3351 EmitParmDecl(*Args
[I
], ArgVals
[I
], I
+ 1);
3353 for (unsigned I
= 0, E
= Args
.size(); I
!= E
; ++I
)
3354 EmitParmDecl(*Args
[I
], ArgVals
[I
], I
+ 1);
3358 static void eraseUnusedBitCasts(llvm::Instruction
*insn
) {
3359 while (insn
->use_empty()) {
3360 llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(insn
);
3361 if (!bitcast
) return;
3363 // This is "safe" because we would have used a ConstantExpr otherwise.
3364 insn
= cast
<llvm::Instruction
>(bitcast
->getOperand(0));
3365 bitcast
->eraseFromParent();
3369 /// Try to emit a fused autorelease of a return result.
3370 static llvm::Value
*tryEmitFusedAutoreleaseOfResult(CodeGenFunction
&CGF
,
3371 llvm::Value
*result
) {
3372 // We must be immediately followed the cast.
3373 llvm::BasicBlock
*BB
= CGF
.Builder
.GetInsertBlock();
3374 if (BB
->empty()) return nullptr;
3375 if (&BB
->back() != result
) return nullptr;
3377 llvm::Type
*resultType
= result
->getType();
3379 // result is in a BasicBlock and is therefore an Instruction.
3380 llvm::Instruction
*generator
= cast
<llvm::Instruction
>(result
);
3382 SmallVector
<llvm::Instruction
*, 4> InstsToKill
;
3385 // %generator = bitcast %type1* %generator2 to %type2*
3386 while (llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(generator
)) {
3387 // We would have emitted this as a constant if the operand weren't
3389 generator
= cast
<llvm::Instruction
>(bitcast
->getOperand(0));
3391 // Require the generator to be immediately followed by the cast.
3392 if (generator
->getNextNode() != bitcast
)
3395 InstsToKill
.push_back(bitcast
);
3399 // %generator = call i8* @objc_retain(i8* %originalResult)
3401 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
3402 llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(generator
);
3403 if (!call
) return nullptr;
3405 bool doRetainAutorelease
;
3407 if (call
->getCalledOperand() == CGF
.CGM
.getObjCEntrypoints().objc_retain
) {
3408 doRetainAutorelease
= true;
3409 } else if (call
->getCalledOperand() ==
3410 CGF
.CGM
.getObjCEntrypoints().objc_retainAutoreleasedReturnValue
) {
3411 doRetainAutorelease
= false;
3413 // If we emitted an assembly marker for this call (and the
3414 // ARCEntrypoints field should have been set if so), go looking
3415 // for that call. If we can't find it, we can't do this
3416 // optimization. But it should always be the immediately previous
3417 // instruction, unless we needed bitcasts around the call.
3418 if (CGF
.CGM
.getObjCEntrypoints().retainAutoreleasedReturnValueMarker
) {
3419 llvm::Instruction
*prev
= call
->getPrevNode();
3421 if (isa
<llvm::BitCastInst
>(prev
)) {
3422 prev
= prev
->getPrevNode();
3425 assert(isa
<llvm::CallInst
>(prev
));
3426 assert(cast
<llvm::CallInst
>(prev
)->getCalledOperand() ==
3427 CGF
.CGM
.getObjCEntrypoints().retainAutoreleasedReturnValueMarker
);
3428 InstsToKill
.push_back(prev
);
3434 result
= call
->getArgOperand(0);
3435 InstsToKill
.push_back(call
);
3437 // Keep killing bitcasts, for sanity. Note that we no longer care
3438 // about precise ordering as long as there's exactly one use.
3439 while (llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(result
)) {
3440 if (!bitcast
->hasOneUse()) break;
3441 InstsToKill
.push_back(bitcast
);
3442 result
= bitcast
->getOperand(0);
3445 // Delete all the unnecessary instructions, from latest to earliest.
3446 for (auto *I
: InstsToKill
)
3447 I
->eraseFromParent();
3449 // Do the fused retain/autorelease if we were asked to.
3450 if (doRetainAutorelease
)
3451 result
= CGF
.EmitARCRetainAutoreleaseReturnValue(result
);
3453 // Cast back to the result type.
3454 return CGF
.Builder
.CreateBitCast(result
, resultType
);
3457 /// If this is a +1 of the value of an immutable 'self', remove it.
3458 static llvm::Value
*tryRemoveRetainOfSelf(CodeGenFunction
&CGF
,
3459 llvm::Value
*result
) {
3460 // This is only applicable to a method with an immutable 'self'.
3461 const ObjCMethodDecl
*method
=
3462 dyn_cast_or_null
<ObjCMethodDecl
>(CGF
.CurCodeDecl
);
3463 if (!method
) return nullptr;
3464 const VarDecl
*self
= method
->getSelfDecl();
3465 if (!self
->getType().isConstQualified()) return nullptr;
3467 // Look for a retain call. Note: stripPointerCasts looks through returned arg
3468 // functions, which would cause us to miss the retain.
3469 llvm::CallInst
*retainCall
= dyn_cast
<llvm::CallInst
>(result
);
3470 if (!retainCall
|| retainCall
->getCalledOperand() !=
3471 CGF
.CGM
.getObjCEntrypoints().objc_retain
)
3474 // Look for an ordinary load of 'self'.
3475 llvm::Value
*retainedValue
= retainCall
->getArgOperand(0);
3476 llvm::LoadInst
*load
=
3477 dyn_cast
<llvm::LoadInst
>(retainedValue
->stripPointerCasts());
3478 if (!load
|| load
->isAtomic() || load
->isVolatile() ||
3479 load
->getPointerOperand() != CGF
.GetAddrOfLocalVar(self
).getPointer())
3482 // Okay! Burn it all down. This relies for correctness on the
3483 // assumption that the retain is emitted as part of the return and
3484 // that thereafter everything is used "linearly".
3485 llvm::Type
*resultType
= result
->getType();
3486 eraseUnusedBitCasts(cast
<llvm::Instruction
>(result
));
3487 assert(retainCall
->use_empty());
3488 retainCall
->eraseFromParent();
3489 eraseUnusedBitCasts(cast
<llvm::Instruction
>(retainedValue
));
3491 return CGF
.Builder
.CreateBitCast(load
, resultType
);
3494 /// Emit an ARC autorelease of the result of a function.
3496 /// \return the value to actually return from the function
3497 static llvm::Value
*emitAutoreleaseOfResult(CodeGenFunction
&CGF
,
3498 llvm::Value
*result
) {
3499 // If we're returning 'self', kill the initial retain. This is a
3500 // heuristic attempt to "encourage correctness" in the really unfortunate
3501 // case where we have a return of self during a dealloc and we desperately
3502 // need to avoid the possible autorelease.
3503 if (llvm::Value
*self
= tryRemoveRetainOfSelf(CGF
, result
))
3506 // At -O0, try to emit a fused retain/autorelease.
3507 if (CGF
.shouldUseFusedARCCalls())
3508 if (llvm::Value
*fused
= tryEmitFusedAutoreleaseOfResult(CGF
, result
))
3511 return CGF
.EmitARCAutoreleaseReturnValue(result
);
3514 /// Heuristically search for a dominating store to the return-value slot.
3515 static llvm::StoreInst
*findDominatingStoreToReturnValue(CodeGenFunction
&CGF
) {
3516 // Check if a User is a store which pointerOperand is the ReturnValue.
3517 // We are looking for stores to the ReturnValue, not for stores of the
3518 // ReturnValue to some other location.
3519 auto GetStoreIfValid
= [&CGF
](llvm::User
*U
) -> llvm::StoreInst
* {
3520 auto *SI
= dyn_cast
<llvm::StoreInst
>(U
);
3521 if (!SI
|| SI
->getPointerOperand() != CGF
.ReturnValue
.getPointer() ||
3522 SI
->getValueOperand()->getType() != CGF
.ReturnValue
.getElementType())
3524 // These aren't actually possible for non-coerced returns, and we
3525 // only care about non-coerced returns on this code path.
3526 // All memory instructions inside __try block are volatile.
3527 assert(!SI
->isAtomic() &&
3528 (!SI
->isVolatile() || CGF
.currentFunctionUsesSEHTry()));
3531 // If there are multiple uses of the return-value slot, just check
3532 // for something immediately preceding the IP. Sometimes this can
3533 // happen with how we generate implicit-returns; it can also happen
3534 // with noreturn cleanups.
3535 if (!CGF
.ReturnValue
.getPointer()->hasOneUse()) {
3536 llvm::BasicBlock
*IP
= CGF
.Builder
.GetInsertBlock();
3537 if (IP
->empty()) return nullptr;
3539 // Look at directly preceding instruction, skipping bitcasts and lifetime
3541 for (llvm::Instruction
&I
: make_range(IP
->rbegin(), IP
->rend())) {
3542 if (isa
<llvm::BitCastInst
>(&I
))
3544 if (auto *II
= dyn_cast
<llvm::IntrinsicInst
>(&I
))
3545 if (II
->getIntrinsicID() == llvm::Intrinsic::lifetime_end
)
3548 return GetStoreIfValid(&I
);
3553 llvm::StoreInst
*store
=
3554 GetStoreIfValid(CGF
.ReturnValue
.getPointer()->user_back());
3555 if (!store
) return nullptr;
3557 // Now do a first-and-dirty dominance check: just walk up the
3558 // single-predecessors chain from the current insertion point.
3559 llvm::BasicBlock
*StoreBB
= store
->getParent();
3560 llvm::BasicBlock
*IP
= CGF
.Builder
.GetInsertBlock();
3561 llvm::SmallPtrSet
<llvm::BasicBlock
*, 4> SeenBBs
;
3562 while (IP
!= StoreBB
) {
3563 if (!SeenBBs
.insert(IP
).second
|| !(IP
= IP
->getSinglePredecessor()))
3567 // Okay, the store's basic block dominates the insertion point; we
3568 // can do our thing.
3572 // Helper functions for EmitCMSEClearRecord
3574 // Set the bits corresponding to a field having width `BitWidth` and located at
3575 // offset `BitOffset` (from the least significant bit) within a storage unit of
3576 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3577 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3578 static void setBitRange(SmallVectorImpl
<uint64_t> &Bits
, int BitOffset
,
3579 int BitWidth
, int CharWidth
) {
3580 assert(CharWidth
<= 64);
3581 assert(static_cast<unsigned>(BitWidth
) <= Bits
.size() * CharWidth
);
3584 if (BitOffset
>= CharWidth
) {
3585 Pos
+= BitOffset
/ CharWidth
;
3586 BitOffset
= BitOffset
% CharWidth
;
3589 const uint64_t Used
= (uint64_t(1) << CharWidth
) - 1;
3590 if (BitOffset
+ BitWidth
>= CharWidth
) {
3591 Bits
[Pos
++] |= (Used
<< BitOffset
) & Used
;
3592 BitWidth
-= CharWidth
- BitOffset
;
3596 while (BitWidth
>= CharWidth
) {
3598 BitWidth
-= CharWidth
;
3602 Bits
[Pos
++] |= (Used
>> (CharWidth
- BitWidth
)) << BitOffset
;
3605 // Set the bits corresponding to a field having width `BitWidth` and located at
3606 // offset `BitOffset` (from the least significant bit) within a storage unit of
3607 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3608 // `Bits` corresponds to one target byte. Use target endian layout.
3609 static void setBitRange(SmallVectorImpl
<uint64_t> &Bits
, int StorageOffset
,
3610 int StorageSize
, int BitOffset
, int BitWidth
,
3611 int CharWidth
, bool BigEndian
) {
3613 SmallVector
<uint64_t, 8> TmpBits(StorageSize
);
3614 setBitRange(TmpBits
, BitOffset
, BitWidth
, CharWidth
);
3617 std::reverse(TmpBits
.begin(), TmpBits
.end());
3619 for (uint64_t V
: TmpBits
)
3620 Bits
[StorageOffset
++] |= V
;
3623 static void setUsedBits(CodeGenModule
&, QualType
, int,
3624 SmallVectorImpl
<uint64_t> &);
3626 // Set the bits in `Bits`, which correspond to the value representations of
3627 // the actual members of the record type `RTy`. Note that this function does
3628 // not handle base classes, virtual tables, etc, since they cannot happen in
3629 // CMSE function arguments or return. The bit mask corresponds to the target
3630 // memory layout, i.e. it's endian dependent.
3631 static void setUsedBits(CodeGenModule
&CGM
, const RecordType
*RTy
, int Offset
,
3632 SmallVectorImpl
<uint64_t> &Bits
) {
3633 ASTContext
&Context
= CGM
.getContext();
3634 int CharWidth
= Context
.getCharWidth();
3635 const RecordDecl
*RD
= RTy
->getDecl()->getDefinition();
3636 const ASTRecordLayout
&ASTLayout
= Context
.getASTRecordLayout(RD
);
3637 const CGRecordLayout
&Layout
= CGM
.getTypes().getCGRecordLayout(RD
);
3640 for (auto I
= RD
->field_begin(), E
= RD
->field_end(); I
!= E
; ++I
, ++Idx
) {
3641 const FieldDecl
*F
= *I
;
3643 if (F
->isUnnamedBitfield() || F
->isZeroLengthBitField(Context
) ||
3644 F
->getType()->isIncompleteArrayType())
3647 if (F
->isBitField()) {
3648 const CGBitFieldInfo
&BFI
= Layout
.getBitFieldInfo(F
);
3649 setBitRange(Bits
, Offset
+ BFI
.StorageOffset
.getQuantity(),
3650 BFI
.StorageSize
/ CharWidth
, BFI
.Offset
,
3651 BFI
.Size
, CharWidth
,
3652 CGM
.getDataLayout().isBigEndian());
3656 setUsedBits(CGM
, F
->getType(),
3657 Offset
+ ASTLayout
.getFieldOffset(Idx
) / CharWidth
, Bits
);
3661 // Set the bits in `Bits`, which correspond to the value representations of
3662 // the elements of an array type `ATy`.
3663 static void setUsedBits(CodeGenModule
&CGM
, const ConstantArrayType
*ATy
,
3664 int Offset
, SmallVectorImpl
<uint64_t> &Bits
) {
3665 const ASTContext
&Context
= CGM
.getContext();
3667 QualType ETy
= Context
.getBaseElementType(ATy
);
3668 int Size
= Context
.getTypeSizeInChars(ETy
).getQuantity();
3669 SmallVector
<uint64_t, 4> TmpBits(Size
);
3670 setUsedBits(CGM
, ETy
, 0, TmpBits
);
3672 for (int I
= 0, N
= Context
.getConstantArrayElementCount(ATy
); I
< N
; ++I
) {
3673 auto Src
= TmpBits
.begin();
3674 auto Dst
= Bits
.begin() + Offset
+ I
* Size
;
3675 for (int J
= 0; J
< Size
; ++J
)
3680 // Set the bits in `Bits`, which correspond to the value representations of
3682 static void setUsedBits(CodeGenModule
&CGM
, QualType QTy
, int Offset
,
3683 SmallVectorImpl
<uint64_t> &Bits
) {
3684 if (const auto *RTy
= QTy
->getAs
<RecordType
>())
3685 return setUsedBits(CGM
, RTy
, Offset
, Bits
);
3687 ASTContext
&Context
= CGM
.getContext();
3688 if (const auto *ATy
= Context
.getAsConstantArrayType(QTy
))
3689 return setUsedBits(CGM
, ATy
, Offset
, Bits
);
3691 int Size
= Context
.getTypeSizeInChars(QTy
).getQuantity();
3695 std::fill_n(Bits
.begin() + Offset
, Size
,
3696 (uint64_t(1) << Context
.getCharWidth()) - 1);
3699 static uint64_t buildMultiCharMask(const SmallVectorImpl
<uint64_t> &Bits
,
3700 int Pos
, int Size
, int CharWidth
,
3705 for (auto P
= Bits
.begin() + Pos
, E
= Bits
.begin() + Pos
+ Size
; P
!= E
;
3707 Mask
= (Mask
<< CharWidth
) | *P
;
3709 auto P
= Bits
.begin() + Pos
+ Size
, End
= Bits
.begin() + Pos
;
3711 Mask
= (Mask
<< CharWidth
) | *--P
;
3717 // Emit code to clear the bits in a record, which aren't a part of any user
3718 // declared member, when the record is a function return.
3719 llvm::Value
*CodeGenFunction::EmitCMSEClearRecord(llvm::Value
*Src
,
3720 llvm::IntegerType
*ITy
,
3722 assert(Src
->getType() == ITy
);
3723 assert(ITy
->getScalarSizeInBits() <= 64);
3725 const llvm::DataLayout
&DataLayout
= CGM
.getDataLayout();
3726 int Size
= DataLayout
.getTypeStoreSize(ITy
);
3727 SmallVector
<uint64_t, 4> Bits(Size
);
3728 setUsedBits(CGM
, QTy
->castAs
<RecordType
>(), 0, Bits
);
3730 int CharWidth
= CGM
.getContext().getCharWidth();
3732 buildMultiCharMask(Bits
, 0, Size
, CharWidth
, DataLayout
.isBigEndian());
3734 return Builder
.CreateAnd(Src
, Mask
, "cmse.clear");
3737 // Emit code to clear the bits in a record, which aren't a part of any user
3738 // declared member, when the record is a function argument.
3739 llvm::Value
*CodeGenFunction::EmitCMSEClearRecord(llvm::Value
*Src
,
3740 llvm::ArrayType
*ATy
,
3742 const llvm::DataLayout
&DataLayout
= CGM
.getDataLayout();
3743 int Size
= DataLayout
.getTypeStoreSize(ATy
);
3744 SmallVector
<uint64_t, 16> Bits(Size
);
3745 setUsedBits(CGM
, QTy
->castAs
<RecordType
>(), 0, Bits
);
3747 // Clear each element of the LLVM array.
3748 int CharWidth
= CGM
.getContext().getCharWidth();
3750 ATy
->getArrayElementType()->getScalarSizeInBits() / CharWidth
;
3752 llvm::Value
*R
= llvm::PoisonValue::get(ATy
);
3753 for (int I
= 0, N
= ATy
->getArrayNumElements(); I
!= N
; ++I
) {
3754 uint64_t Mask
= buildMultiCharMask(Bits
, MaskIndex
, CharsPerElt
, CharWidth
,
3755 DataLayout
.isBigEndian());
3756 MaskIndex
+= CharsPerElt
;
3757 llvm::Value
*T0
= Builder
.CreateExtractValue(Src
, I
);
3758 llvm::Value
*T1
= Builder
.CreateAnd(T0
, Mask
, "cmse.clear");
3759 R
= Builder
.CreateInsertValue(R
, T1
, I
);
3765 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo
&FI
,
3767 SourceLocation EndLoc
) {
3768 if (FI
.isNoReturn()) {
3769 // Noreturn functions don't return.
3770 EmitUnreachable(EndLoc
);
3774 if (CurCodeDecl
&& CurCodeDecl
->hasAttr
<NakedAttr
>()) {
3775 // Naked functions don't have epilogues.
3776 Builder
.CreateUnreachable();
3780 // Functions with no result always return void.
3781 if (!ReturnValue
.isValid()) {
3782 Builder
.CreateRetVoid();
3786 llvm::DebugLoc RetDbgLoc
;
3787 llvm::Value
*RV
= nullptr;
3788 QualType RetTy
= FI
.getReturnType();
3789 const ABIArgInfo
&RetAI
= FI
.getReturnInfo();
3791 switch (RetAI
.getKind()) {
3792 case ABIArgInfo::InAlloca
:
3793 // Aggregates get evaluated directly into the destination. Sometimes we
3794 // need to return the sret value in a register, though.
3795 assert(hasAggregateEvaluationKind(RetTy
));
3796 if (RetAI
.getInAllocaSRet()) {
3797 llvm::Function::arg_iterator EI
= CurFn
->arg_end();
3799 llvm::Value
*ArgStruct
= &*EI
;
3800 llvm::Value
*SRet
= Builder
.CreateStructGEP(
3801 FI
.getArgStruct(), ArgStruct
, RetAI
.getInAllocaFieldIndex());
3803 cast
<llvm::GetElementPtrInst
>(SRet
)->getResultElementType();
3804 RV
= Builder
.CreateAlignedLoad(Ty
, SRet
, getPointerAlign(), "sret");
3808 case ABIArgInfo::Indirect
: {
3809 auto AI
= CurFn
->arg_begin();
3810 if (RetAI
.isSRetAfterThis())
3812 switch (getEvaluationKind(RetTy
)) {
3815 EmitLoadOfComplex(MakeAddrLValue(ReturnValue
, RetTy
), EndLoc
);
3816 EmitStoreOfComplex(RT
, MakeNaturalAlignAddrLValue(&*AI
, RetTy
),
3821 // Do nothing; aggregates get evaluated directly into the destination.
3824 LValueBaseInfo BaseInfo
;
3825 TBAAAccessInfo TBAAInfo
;
3826 CharUnits Alignment
=
3827 CGM
.getNaturalTypeAlignment(RetTy
, &BaseInfo
, &TBAAInfo
);
3828 Address
ArgAddr(&*AI
, ConvertType(RetTy
), Alignment
);
3830 LValue::MakeAddr(ArgAddr
, RetTy
, getContext(), BaseInfo
, TBAAInfo
);
3832 Builder
.CreateLoad(ReturnValue
), ArgVal
, /*isInit*/ true);
3839 case ABIArgInfo::Extend
:
3840 case ABIArgInfo::Direct
:
3841 if (RetAI
.getCoerceToType() == ConvertType(RetTy
) &&
3842 RetAI
.getDirectOffset() == 0) {
3843 // The internal return value temp always will have pointer-to-return-type
3844 // type, just do a load.
3846 // If there is a dominating store to ReturnValue, we can elide
3847 // the load, zap the store, and usually zap the alloca.
3848 if (llvm::StoreInst
*SI
=
3849 findDominatingStoreToReturnValue(*this)) {
3850 // Reuse the debug location from the store unless there is
3851 // cleanup code to be emitted between the store and return
3853 if (EmitRetDbgLoc
&& !AutoreleaseResult
)
3854 RetDbgLoc
= SI
->getDebugLoc();
3855 // Get the stored value and nuke the now-dead store.
3856 RV
= SI
->getValueOperand();
3857 SI
->eraseFromParent();
3859 // Otherwise, we have to do a simple load.
3861 RV
= Builder
.CreateLoad(ReturnValue
);
3864 // If the value is offset in memory, apply the offset now.
3865 Address V
= emitAddressAtOffset(*this, ReturnValue
, RetAI
);
3867 RV
= CreateCoercedLoad(V
, RetAI
.getCoerceToType(), *this);
3870 // In ARC, end functions that return a retainable type with a call
3871 // to objc_autoreleaseReturnValue.
3872 if (AutoreleaseResult
) {
3874 // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3875 // been stripped of the typedefs, so we cannot use RetTy here. Get the
3876 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3877 // CurCodeDecl or BlockInfo.
3880 if (auto *FD
= dyn_cast
<FunctionDecl
>(CurCodeDecl
))
3881 RT
= FD
->getReturnType();
3882 else if (auto *MD
= dyn_cast
<ObjCMethodDecl
>(CurCodeDecl
))
3883 RT
= MD
->getReturnType();
3884 else if (isa
<BlockDecl
>(CurCodeDecl
))
3885 RT
= BlockInfo
->BlockExpression
->getFunctionType()->getReturnType();
3887 llvm_unreachable("Unexpected function/method type");
3889 assert(getLangOpts().ObjCAutoRefCount
&&
3890 !FI
.isReturnsRetained() &&
3891 RT
->isObjCRetainableType());
3893 RV
= emitAutoreleaseOfResult(*this, RV
);
3898 case ABIArgInfo::Ignore
:
3901 case ABIArgInfo::CoerceAndExpand
: {
3902 auto coercionType
= RetAI
.getCoerceAndExpandType();
3904 // Load all of the coerced elements out into results.
3905 llvm::SmallVector
<llvm::Value
*, 4> results
;
3906 Address addr
= ReturnValue
.withElementType(coercionType
);
3907 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
3908 auto coercedEltType
= coercionType
->getElementType(i
);
3909 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType
))
3912 auto eltAddr
= Builder
.CreateStructGEP(addr
, i
);
3913 auto elt
= Builder
.CreateLoad(eltAddr
);
3914 results
.push_back(elt
);
3917 // If we have one result, it's the single direct result type.
3918 if (results
.size() == 1) {
3921 // Otherwise, we need to make a first-class aggregate.
3923 // Construct a return type that lacks padding elements.
3924 llvm::Type
*returnType
= RetAI
.getUnpaddedCoerceAndExpandType();
3926 RV
= llvm::PoisonValue::get(returnType
);
3927 for (unsigned i
= 0, e
= results
.size(); i
!= e
; ++i
) {
3928 RV
= Builder
.CreateInsertValue(RV
, results
[i
], i
);
3933 case ABIArgInfo::Expand
:
3934 case ABIArgInfo::IndirectAliased
:
3935 llvm_unreachable("Invalid ABI kind for return argument");
3938 llvm::Instruction
*Ret
;
3940 if (CurFuncDecl
&& CurFuncDecl
->hasAttr
<CmseNSEntryAttr
>()) {
3941 // For certain return types, clear padding bits, as they may reveal
3942 // sensitive information.
3943 // Small struct/union types are passed as integers.
3944 auto *ITy
= dyn_cast
<llvm::IntegerType
>(RV
->getType());
3945 if (ITy
!= nullptr && isa
<RecordType
>(RetTy
.getCanonicalType()))
3946 RV
= EmitCMSEClearRecord(RV
, ITy
, RetTy
);
3948 EmitReturnValueCheck(RV
);
3949 Ret
= Builder
.CreateRet(RV
);
3951 Ret
= Builder
.CreateRetVoid();
3955 Ret
->setDebugLoc(std::move(RetDbgLoc
));
3958 void CodeGenFunction::EmitReturnValueCheck(llvm::Value
*RV
) {
3959 // A current decl may not be available when emitting vtable thunks.
3963 // If the return block isn't reachable, neither is this check, so don't emit
3965 if (ReturnBlock
.isValid() && ReturnBlock
.getBlock()->use_empty())
3968 ReturnsNonNullAttr
*RetNNAttr
= nullptr;
3969 if (SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
))
3970 RetNNAttr
= CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>();
3972 if (!RetNNAttr
&& !requiresReturnValueNullabilityCheck())
3975 // Prefer the returns_nonnull attribute if it's present.
3976 SourceLocation AttrLoc
;
3977 SanitizerMask CheckKind
;
3978 SanitizerHandler Handler
;
3980 assert(!requiresReturnValueNullabilityCheck() &&
3981 "Cannot check nullability and the nonnull attribute");
3982 AttrLoc
= RetNNAttr
->getLocation();
3983 CheckKind
= SanitizerKind::ReturnsNonnullAttribute
;
3984 Handler
= SanitizerHandler::NonnullReturn
;
3986 if (auto *DD
= dyn_cast
<DeclaratorDecl
>(CurCodeDecl
))
3987 if (auto *TSI
= DD
->getTypeSourceInfo())
3988 if (auto FTL
= TSI
->getTypeLoc().getAsAdjusted
<FunctionTypeLoc
>())
3989 AttrLoc
= FTL
.getReturnLoc().findNullabilityLoc();
3990 CheckKind
= SanitizerKind::NullabilityReturn
;
3991 Handler
= SanitizerHandler::NullabilityReturn
;
3994 SanitizerScope
SanScope(this);
3996 // Make sure the "return" source location is valid. If we're checking a
3997 // nullability annotation, make sure the preconditions for the check are met.
3998 llvm::BasicBlock
*Check
= createBasicBlock("nullcheck");
3999 llvm::BasicBlock
*NoCheck
= createBasicBlock("no.nullcheck");
4000 llvm::Value
*SLocPtr
= Builder
.CreateLoad(ReturnLocation
, "return.sloc.load");
4001 llvm::Value
*CanNullCheck
= Builder
.CreateIsNotNull(SLocPtr
);
4002 if (requiresReturnValueNullabilityCheck())
4004 Builder
.CreateAnd(CanNullCheck
, RetValNullabilityPrecondition
);
4005 Builder
.CreateCondBr(CanNullCheck
, Check
, NoCheck
);
4008 // Now do the null check.
4009 llvm::Value
*Cond
= Builder
.CreateIsNotNull(RV
);
4010 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(AttrLoc
)};
4011 llvm::Value
*DynamicData
[] = {SLocPtr
};
4012 EmitCheck(std::make_pair(Cond
, CheckKind
), Handler
, StaticData
, DynamicData
);
4017 // The return location should not be used after the check has been emitted.
4018 ReturnLocation
= Address::invalid();
4022 static bool isInAllocaArgument(CGCXXABI
&ABI
, QualType type
) {
4023 const CXXRecordDecl
*RD
= type
->getAsCXXRecordDecl();
4024 return RD
&& ABI
.getRecordArgABI(RD
) == CGCXXABI::RAA_DirectInMemory
;
4027 static AggValueSlot
createPlaceholderSlot(CodeGenFunction
&CGF
,
4029 // FIXME: Generate IR in one pass, rather than going back and fixing up these
4031 llvm::Type
*IRTy
= CGF
.ConvertTypeForMem(Ty
);
4032 llvm::Type
*IRPtrTy
= llvm::PointerType::getUnqual(CGF
.getLLVMContext());
4033 llvm::Value
*Placeholder
= llvm::PoisonValue::get(IRPtrTy
);
4035 // FIXME: When we generate this IR in one pass, we shouldn't need
4036 // this win32-specific alignment hack.
4037 CharUnits Align
= CharUnits::fromQuantity(4);
4038 Placeholder
= CGF
.Builder
.CreateAlignedLoad(IRPtrTy
, Placeholder
, Align
);
4040 return AggValueSlot::forAddr(Address(Placeholder
, IRTy
, Align
),
4042 AggValueSlot::IsNotDestructed
,
4043 AggValueSlot::DoesNotNeedGCBarriers
,
4044 AggValueSlot::IsNotAliased
,
4045 AggValueSlot::DoesNotOverlap
);
4048 void CodeGenFunction::EmitDelegateCallArg(CallArgList
&args
,
4049 const VarDecl
*param
,
4050 SourceLocation loc
) {
4051 // StartFunction converted the ABI-lowered parameter(s) into a
4052 // local alloca. We need to turn that into an r-value suitable
4054 Address local
= GetAddrOfLocalVar(param
);
4056 QualType type
= param
->getType();
4058 // GetAddrOfLocalVar returns a pointer-to-pointer for references,
4059 // but the argument needs to be the original pointer.
4060 if (type
->isReferenceType()) {
4061 args
.add(RValue::get(Builder
.CreateLoad(local
)), type
);
4063 // In ARC, move out of consumed arguments so that the release cleanup
4064 // entered by StartFunction doesn't cause an over-release. This isn't
4065 // optimal -O0 code generation, but it should get cleaned up when
4066 // optimization is enabled. This also assumes that delegate calls are
4067 // performed exactly once for a set of arguments, but that should be safe.
4068 } else if (getLangOpts().ObjCAutoRefCount
&&
4069 param
->hasAttr
<NSConsumedAttr
>() &&
4070 type
->isObjCRetainableType()) {
4071 llvm::Value
*ptr
= Builder
.CreateLoad(local
);
4073 llvm::ConstantPointerNull::get(cast
<llvm::PointerType
>(ptr
->getType()));
4074 Builder
.CreateStore(null
, local
);
4075 args
.add(RValue::get(ptr
), type
);
4077 // For the most part, we just need to load the alloca, except that
4078 // aggregate r-values are actually pointers to temporaries.
4080 args
.add(convertTempToRValue(local
, type
, loc
), type
);
4083 // Deactivate the cleanup for the callee-destructed param that was pushed.
4084 if (type
->isRecordType() && !CurFuncIsThunk
&&
4085 type
->castAs
<RecordType
>()->getDecl()->isParamDestroyedInCallee() &&
4086 param
->needsDestruction(getContext())) {
4087 EHScopeStack::stable_iterator cleanup
=
4088 CalleeDestructedParamCleanups
.lookup(cast
<ParmVarDecl
>(param
));
4089 assert(cleanup
.isValid() &&
4090 "cleanup for callee-destructed param not recorded");
4091 // This unreachable is a temporary marker which will be removed later.
4092 llvm::Instruction
*isActive
= Builder
.CreateUnreachable();
4093 args
.addArgCleanupDeactivation(cleanup
, isActive
);
4097 static bool isProvablyNull(llvm::Value
*addr
) {
4098 return isa
<llvm::ConstantPointerNull
>(addr
);
4101 /// Emit the actual writing-back of a writeback.
4102 static void emitWriteback(CodeGenFunction
&CGF
,
4103 const CallArgList::Writeback
&writeback
) {
4104 const LValue
&srcLV
= writeback
.Source
;
4105 Address srcAddr
= srcLV
.getAddress(CGF
);
4106 assert(!isProvablyNull(srcAddr
.getPointer()) &&
4107 "shouldn't have writeback for provably null argument");
4109 llvm::BasicBlock
*contBB
= nullptr;
4111 // If the argument wasn't provably non-null, we need to null check
4112 // before doing the store.
4113 bool provablyNonNull
= llvm::isKnownNonZero(srcAddr
.getPointer(),
4114 CGF
.CGM
.getDataLayout());
4115 if (!provablyNonNull
) {
4116 llvm::BasicBlock
*writebackBB
= CGF
.createBasicBlock("icr.writeback");
4117 contBB
= CGF
.createBasicBlock("icr.done");
4119 llvm::Value
*isNull
=
4120 CGF
.Builder
.CreateIsNull(srcAddr
.getPointer(), "icr.isnull");
4121 CGF
.Builder
.CreateCondBr(isNull
, contBB
, writebackBB
);
4122 CGF
.EmitBlock(writebackBB
);
4125 // Load the value to writeback.
4126 llvm::Value
*value
= CGF
.Builder
.CreateLoad(writeback
.Temporary
);
4128 // Cast it back, in case we're writing an id to a Foo* or something.
4129 value
= CGF
.Builder
.CreateBitCast(value
, srcAddr
.getElementType(),
4130 "icr.writeback-cast");
4132 // Perform the writeback.
4134 // If we have a "to use" value, it's something we need to emit a use
4135 // of. This has to be carefully threaded in: if it's done after the
4136 // release it's potentially undefined behavior (and the optimizer
4137 // will ignore it), and if it happens before the retain then the
4138 // optimizer could move the release there.
4139 if (writeback
.ToUse
) {
4140 assert(srcLV
.getObjCLifetime() == Qualifiers::OCL_Strong
);
4142 // Retain the new value. No need to block-copy here: the block's
4143 // being passed up the stack.
4144 value
= CGF
.EmitARCRetainNonBlock(value
);
4146 // Emit the intrinsic use here.
4147 CGF
.EmitARCIntrinsicUse(writeback
.ToUse
);
4149 // Load the old value (primitively).
4150 llvm::Value
*oldValue
= CGF
.EmitLoadOfScalar(srcLV
, SourceLocation());
4152 // Put the new value in place (primitively).
4153 CGF
.EmitStoreOfScalar(value
, srcLV
, /*init*/ false);
4155 // Release the old value.
4156 CGF
.EmitARCRelease(oldValue
, srcLV
.isARCPreciseLifetime());
4158 // Otherwise, we can just do a normal lvalue store.
4160 CGF
.EmitStoreThroughLValue(RValue::get(value
), srcLV
);
4163 // Jump to the continuation block.
4164 if (!provablyNonNull
)
4165 CGF
.EmitBlock(contBB
);
4168 static void emitWritebacks(CodeGenFunction
&CGF
,
4169 const CallArgList
&args
) {
4170 for (const auto &I
: args
.writebacks())
4171 emitWriteback(CGF
, I
);
4174 static void deactivateArgCleanupsBeforeCall(CodeGenFunction
&CGF
,
4175 const CallArgList
&CallArgs
) {
4176 ArrayRef
<CallArgList::CallArgCleanup
> Cleanups
=
4177 CallArgs
.getCleanupsToDeactivate();
4178 // Iterate in reverse to increase the likelihood of popping the cleanup.
4179 for (const auto &I
: llvm::reverse(Cleanups
)) {
4180 CGF
.DeactivateCleanupBlock(I
.Cleanup
, I
.IsActiveIP
);
4181 I
.IsActiveIP
->eraseFromParent();
4185 static const Expr
*maybeGetUnaryAddrOfOperand(const Expr
*E
) {
4186 if (const UnaryOperator
*uop
= dyn_cast
<UnaryOperator
>(E
->IgnoreParens()))
4187 if (uop
->getOpcode() == UO_AddrOf
)
4188 return uop
->getSubExpr();
4192 /// Emit an argument that's being passed call-by-writeback. That is,
4193 /// we are passing the address of an __autoreleased temporary; it
4194 /// might be copy-initialized with the current value of the given
4195 /// address, but it will definitely be copied out of after the call.
4196 static void emitWritebackArg(CodeGenFunction
&CGF
, CallArgList
&args
,
4197 const ObjCIndirectCopyRestoreExpr
*CRE
) {
4200 // Make an optimistic effort to emit the address as an l-value.
4201 // This can fail if the argument expression is more complicated.
4202 if (const Expr
*lvExpr
= maybeGetUnaryAddrOfOperand(CRE
->getSubExpr())) {
4203 srcLV
= CGF
.EmitLValue(lvExpr
);
4205 // Otherwise, just emit it as a scalar.
4207 Address srcAddr
= CGF
.EmitPointerWithAlignment(CRE
->getSubExpr());
4209 QualType srcAddrType
=
4210 CRE
->getSubExpr()->getType()->castAs
<PointerType
>()->getPointeeType();
4211 srcLV
= CGF
.MakeAddrLValue(srcAddr
, srcAddrType
);
4213 Address srcAddr
= srcLV
.getAddress(CGF
);
4215 // The dest and src types don't necessarily match in LLVM terms
4216 // because of the crazy ObjC compatibility rules.
4218 llvm::PointerType
*destType
=
4219 cast
<llvm::PointerType
>(CGF
.ConvertType(CRE
->getType()));
4220 llvm::Type
*destElemType
=
4221 CGF
.ConvertTypeForMem(CRE
->getType()->getPointeeType());
4223 // If the address is a constant null, just pass the appropriate null.
4224 if (isProvablyNull(srcAddr
.getPointer())) {
4225 args
.add(RValue::get(llvm::ConstantPointerNull::get(destType
)),
4230 // Create the temporary.
4232 CGF
.CreateTempAlloca(destElemType
, CGF
.getPointerAlign(), "icr.temp");
4233 // Loading an l-value can introduce a cleanup if the l-value is __weak,
4234 // and that cleanup will be conditional if we can't prove that the l-value
4235 // isn't null, so we need to register a dominating point so that the cleanups
4236 // system will make valid IR.
4237 CodeGenFunction::ConditionalEvaluation
condEval(CGF
);
4239 // Zero-initialize it if we're not doing a copy-initialization.
4240 bool shouldCopy
= CRE
->shouldCopy();
4243 llvm::ConstantPointerNull::get(cast
<llvm::PointerType
>(destElemType
));
4244 CGF
.Builder
.CreateStore(null
, temp
);
4247 llvm::BasicBlock
*contBB
= nullptr;
4248 llvm::BasicBlock
*originBB
= nullptr;
4250 // If the address is *not* known to be non-null, we need to switch.
4251 llvm::Value
*finalArgument
;
4253 bool provablyNonNull
= llvm::isKnownNonZero(srcAddr
.getPointer(),
4254 CGF
.CGM
.getDataLayout());
4255 if (provablyNonNull
) {
4256 finalArgument
= temp
.getPointer();
4258 llvm::Value
*isNull
=
4259 CGF
.Builder
.CreateIsNull(srcAddr
.getPointer(), "icr.isnull");
4261 finalArgument
= CGF
.Builder
.CreateSelect(isNull
,
4262 llvm::ConstantPointerNull::get(destType
),
4263 temp
.getPointer(), "icr.argument");
4265 // If we need to copy, then the load has to be conditional, which
4266 // means we need control flow.
4268 originBB
= CGF
.Builder
.GetInsertBlock();
4269 contBB
= CGF
.createBasicBlock("icr.cont");
4270 llvm::BasicBlock
*copyBB
= CGF
.createBasicBlock("icr.copy");
4271 CGF
.Builder
.CreateCondBr(isNull
, contBB
, copyBB
);
4272 CGF
.EmitBlock(copyBB
);
4273 condEval
.begin(CGF
);
4277 llvm::Value
*valueToUse
= nullptr;
4279 // Perform a copy if necessary.
4281 RValue srcRV
= CGF
.EmitLoadOfLValue(srcLV
, SourceLocation());
4282 assert(srcRV
.isScalar());
4284 llvm::Value
*src
= srcRV
.getScalarVal();
4285 src
= CGF
.Builder
.CreateBitCast(src
, destElemType
, "icr.cast");
4287 // Use an ordinary store, not a store-to-lvalue.
4288 CGF
.Builder
.CreateStore(src
, temp
);
4290 // If optimization is enabled, and the value was held in a
4291 // __strong variable, we need to tell the optimizer that this
4292 // value has to stay alive until we're doing the store back.
4293 // This is because the temporary is effectively unretained,
4294 // and so otherwise we can violate the high-level semantics.
4295 if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
!= 0 &&
4296 srcLV
.getObjCLifetime() == Qualifiers::OCL_Strong
) {
4301 // Finish the control flow if we needed it.
4302 if (shouldCopy
&& !provablyNonNull
) {
4303 llvm::BasicBlock
*copyBB
= CGF
.Builder
.GetInsertBlock();
4304 CGF
.EmitBlock(contBB
);
4306 // Make a phi for the value to intrinsically use.
4308 llvm::PHINode
*phiToUse
= CGF
.Builder
.CreatePHI(valueToUse
->getType(), 2,
4310 phiToUse
->addIncoming(valueToUse
, copyBB
);
4311 phiToUse
->addIncoming(llvm::UndefValue::get(valueToUse
->getType()),
4313 valueToUse
= phiToUse
;
4319 args
.addWriteback(srcLV
, temp
, valueToUse
);
4320 args
.add(RValue::get(finalArgument
), CRE
->getType());
4323 void CallArgList::allocateArgumentMemory(CodeGenFunction
&CGF
) {
4327 StackBase
= CGF
.Builder
.CreateStackSave("inalloca.save");
4330 void CallArgList::freeArgumentMemory(CodeGenFunction
&CGF
) const {
4332 // Restore the stack after the call.
4333 CGF
.Builder
.CreateStackRestore(StackBase
);
4337 void CodeGenFunction::EmitNonNullArgCheck(RValue RV
, QualType ArgType
,
4338 SourceLocation ArgLoc
,
4341 if (!AC
.getDecl() || !(SanOpts
.has(SanitizerKind::NonnullAttribute
) ||
4342 SanOpts
.has(SanitizerKind::NullabilityArg
)))
4345 // The param decl may be missing in a variadic function.
4346 auto PVD
= ParmNum
< AC
.getNumParams() ? AC
.getParamDecl(ParmNum
) : nullptr;
4347 unsigned ArgNo
= PVD
? PVD
->getFunctionScopeIndex() : ParmNum
;
4349 // Prefer the nonnull attribute if it's present.
4350 const NonNullAttr
*NNAttr
= nullptr;
4351 if (SanOpts
.has(SanitizerKind::NonnullAttribute
))
4352 NNAttr
= getNonNullAttr(AC
.getDecl(), PVD
, ArgType
, ArgNo
);
4354 bool CanCheckNullability
= false;
4355 if (SanOpts
.has(SanitizerKind::NullabilityArg
) && !NNAttr
&& PVD
) {
4356 auto Nullability
= PVD
->getType()->getNullability();
4357 CanCheckNullability
= Nullability
&&
4358 *Nullability
== NullabilityKind::NonNull
&&
4359 PVD
->getTypeSourceInfo();
4362 if (!NNAttr
&& !CanCheckNullability
)
4365 SourceLocation AttrLoc
;
4366 SanitizerMask CheckKind
;
4367 SanitizerHandler Handler
;
4369 AttrLoc
= NNAttr
->getLocation();
4370 CheckKind
= SanitizerKind::NonnullAttribute
;
4371 Handler
= SanitizerHandler::NonnullArg
;
4373 AttrLoc
= PVD
->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
4374 CheckKind
= SanitizerKind::NullabilityArg
;
4375 Handler
= SanitizerHandler::NullabilityArg
;
4378 SanitizerScope
SanScope(this);
4379 llvm::Value
*Cond
= EmitNonNullRValueCheck(RV
, ArgType
);
4380 llvm::Constant
*StaticData
[] = {
4381 EmitCheckSourceLocation(ArgLoc
), EmitCheckSourceLocation(AttrLoc
),
4382 llvm::ConstantInt::get(Int32Ty
, ArgNo
+ 1),
4384 EmitCheck(std::make_pair(Cond
, CheckKind
), Handler
, StaticData
, std::nullopt
);
4387 // Check if the call is going to use the inalloca convention. This needs to
4388 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
4389 // later, so we can't check it directly.
4390 static bool hasInAllocaArgs(CodeGenModule
&CGM
, CallingConv ExplicitCC
,
4391 ArrayRef
<QualType
> ArgTypes
) {
4392 // The Swift calling conventions don't go through the target-specific
4393 // argument classification, they never use inalloca.
4394 // TODO: Consider limiting inalloca use to only calling conventions supported
4396 if (ExplicitCC
== CC_Swift
|| ExplicitCC
== CC_SwiftAsync
)
4398 if (!CGM
.getTarget().getCXXABI().isMicrosoft())
4400 return llvm::any_of(ArgTypes
, [&](QualType Ty
) {
4401 return isInAllocaArgument(CGM
.getCXXABI(), Ty
);
4406 // Determine whether the given argument is an Objective-C method
4407 // that may have type parameters in its signature.
4408 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl
*method
) {
4409 const DeclContext
*dc
= method
->getDeclContext();
4410 if (const ObjCInterfaceDecl
*classDecl
= dyn_cast
<ObjCInterfaceDecl
>(dc
)) {
4411 return classDecl
->getTypeParamListAsWritten();
4414 if (const ObjCCategoryDecl
*catDecl
= dyn_cast
<ObjCCategoryDecl
>(dc
)) {
4415 return catDecl
->getTypeParamList();
4422 /// EmitCallArgs - Emit call arguments for a function.
4423 void CodeGenFunction::EmitCallArgs(
4424 CallArgList
&Args
, PrototypeWrapper Prototype
,
4425 llvm::iterator_range
<CallExpr::const_arg_iterator
> ArgRange
,
4426 AbstractCallee AC
, unsigned ParamsToSkip
, EvaluationOrder Order
) {
4427 SmallVector
<QualType
, 16> ArgTypes
;
4429 assert((ParamsToSkip
== 0 || Prototype
.P
) &&
4430 "Can't skip parameters if type info is not provided");
4432 // This variable only captures *explicitly* written conventions, not those
4433 // applied by default via command line flags or target defaults, such as
4434 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
4435 // require knowing if this is a C++ instance method or being able to see
4436 // unprototyped FunctionTypes.
4437 CallingConv ExplicitCC
= CC_C
;
4439 // First, if a prototype was provided, use those argument types.
4440 bool IsVariadic
= false;
4442 const auto *MD
= Prototype
.P
.dyn_cast
<const ObjCMethodDecl
*>();
4444 IsVariadic
= MD
->isVariadic();
4445 ExplicitCC
= getCallingConventionForDecl(
4446 MD
, CGM
.getTarget().getTriple().isOSWindows());
4447 ArgTypes
.assign(MD
->param_type_begin() + ParamsToSkip
,
4448 MD
->param_type_end());
4450 const auto *FPT
= Prototype
.P
.get
<const FunctionProtoType
*>();
4451 IsVariadic
= FPT
->isVariadic();
4452 ExplicitCC
= FPT
->getExtInfo().getCC();
4453 ArgTypes
.assign(FPT
->param_type_begin() + ParamsToSkip
,
4454 FPT
->param_type_end());
4458 // Check that the prototyped types match the argument expression types.
4459 bool isGenericMethod
= MD
&& isObjCMethodWithTypeParams(MD
);
4460 CallExpr::const_arg_iterator Arg
= ArgRange
.begin();
4461 for (QualType Ty
: ArgTypes
) {
4462 assert(Arg
!= ArgRange
.end() && "Running over edge of argument list!");
4464 (isGenericMethod
|| Ty
->isVariablyModifiedType() ||
4465 Ty
.getNonReferenceType()->isObjCRetainableType() ||
4467 .getCanonicalType(Ty
.getNonReferenceType())
4469 getContext().getCanonicalType((*Arg
)->getType()).getTypePtr()) &&
4470 "type mismatch in call argument!");
4474 // Either we've emitted all the call args, or we have a call to variadic
4476 assert((Arg
== ArgRange
.end() || IsVariadic
) &&
4477 "Extra arguments in non-variadic function!");
4481 // If we still have any arguments, emit them using the type of the argument.
4482 for (auto *A
: llvm::drop_begin(ArgRange
, ArgTypes
.size()))
4483 ArgTypes
.push_back(IsVariadic
? getVarArgType(A
) : A
->getType());
4484 assert((int)ArgTypes
.size() == (ArgRange
.end() - ArgRange
.begin()));
4486 // We must evaluate arguments from right to left in the MS C++ ABI,
4487 // because arguments are destroyed left to right in the callee. As a special
4488 // case, there are certain language constructs that require left-to-right
4489 // evaluation, and in those cases we consider the evaluation order requirement
4490 // to trump the "destruction order is reverse construction order" guarantee.
4492 CGM
.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
4493 ? Order
== EvaluationOrder::ForceLeftToRight
4494 : Order
!= EvaluationOrder::ForceRightToLeft
;
4496 auto MaybeEmitImplicitObjectSize
= [&](unsigned I
, const Expr
*Arg
,
4497 RValue EmittedArg
) {
4498 if (!AC
.hasFunctionDecl() || I
>= AC
.getNumParams())
4500 auto *PS
= AC
.getParamDecl(I
)->getAttr
<PassObjectSizeAttr
>();
4504 const auto &Context
= getContext();
4505 auto SizeTy
= Context
.getSizeType();
4506 auto T
= Builder
.getIntNTy(Context
.getTypeSize(SizeTy
));
4507 assert(EmittedArg
.getScalarVal() && "We emitted nothing for the arg?");
4508 llvm::Value
*V
= evaluateOrEmitBuiltinObjectSize(Arg
, PS
->getType(), T
,
4509 EmittedArg
.getScalarVal(),
4511 Args
.add(RValue::get(V
), SizeTy
);
4512 // If we're emitting args in reverse, be sure to do so with
4513 // pass_object_size, as well.
4515 std::swap(Args
.back(), *(&Args
.back() - 1));
4518 // Insert a stack save if we're going to need any inalloca args.
4519 if (hasInAllocaArgs(CGM
, ExplicitCC
, ArgTypes
)) {
4520 assert(getTarget().getTriple().getArch() == llvm::Triple::x86
&&
4521 "inalloca only supported on x86");
4522 Args
.allocateArgumentMemory(*this);
4525 // Evaluate each argument in the appropriate order.
4526 size_t CallArgsStart
= Args
.size();
4527 for (unsigned I
= 0, E
= ArgTypes
.size(); I
!= E
; ++I
) {
4528 unsigned Idx
= LeftToRight
? I
: E
- I
- 1;
4529 CallExpr::const_arg_iterator Arg
= ArgRange
.begin() + Idx
;
4530 unsigned InitialArgSize
= Args
.size();
4531 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4532 // the argument and parameter match or the objc method is parameterized.
4533 assert((!isa
<ObjCIndirectCopyRestoreExpr
>(*Arg
) ||
4534 getContext().hasSameUnqualifiedType((*Arg
)->getType(),
4536 (isa
<ObjCMethodDecl
>(AC
.getDecl()) &&
4537 isObjCMethodWithTypeParams(cast
<ObjCMethodDecl
>(AC
.getDecl())))) &&
4538 "Argument and parameter types don't match");
4539 EmitCallArg(Args
, *Arg
, ArgTypes
[Idx
]);
4540 // In particular, we depend on it being the last arg in Args, and the
4541 // objectsize bits depend on there only being one arg if !LeftToRight.
4542 assert(InitialArgSize
+ 1 == Args
.size() &&
4543 "The code below depends on only adding one arg per EmitCallArg");
4544 (void)InitialArgSize
;
4545 // Since pointer argument are never emitted as LValue, it is safe to emit
4546 // non-null argument check for r-value only.
4547 if (!Args
.back().hasLValue()) {
4548 RValue RVArg
= Args
.back().getKnownRValue();
4549 EmitNonNullArgCheck(RVArg
, ArgTypes
[Idx
], (*Arg
)->getExprLoc(), AC
,
4550 ParamsToSkip
+ Idx
);
4551 // @llvm.objectsize should never have side-effects and shouldn't need
4552 // destruction/cleanups, so we can safely "emit" it after its arg,
4553 // regardless of right-to-leftness
4554 MaybeEmitImplicitObjectSize(Idx
, *Arg
, RVArg
);
4559 // Un-reverse the arguments we just evaluated so they match up with the LLVM
4561 std::reverse(Args
.begin() + CallArgsStart
, Args
.end());
4567 struct DestroyUnpassedArg final
: EHScopeStack::Cleanup
{
4568 DestroyUnpassedArg(Address Addr
, QualType Ty
)
4569 : Addr(Addr
), Ty(Ty
) {}
4574 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
4575 QualType::DestructionKind DtorKind
= Ty
.isDestructedType();
4576 if (DtorKind
== QualType::DK_cxx_destructor
) {
4577 const CXXDestructorDecl
*Dtor
= Ty
->getAsCXXRecordDecl()->getDestructor();
4578 assert(!Dtor
->isTrivial());
4579 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
, /*for vbase*/ false,
4580 /*Delegating=*/false, Addr
, Ty
);
4582 CGF
.callCStructDestructor(CGF
.MakeAddrLValue(Addr
, Ty
));
4587 struct DisableDebugLocationUpdates
{
4588 CodeGenFunction
&CGF
;
4589 bool disabledDebugInfo
;
4590 DisableDebugLocationUpdates(CodeGenFunction
&CGF
, const Expr
*E
) : CGF(CGF
) {
4591 if ((disabledDebugInfo
= isa
<CXXDefaultArgExpr
>(E
) && CGF
.getDebugInfo()))
4592 CGF
.disableDebugInfo();
4594 ~DisableDebugLocationUpdates() {
4595 if (disabledDebugInfo
)
4596 CGF
.enableDebugInfo();
4600 } // end anonymous namespace
4602 RValue
CallArg::getRValue(CodeGenFunction
&CGF
) const {
4605 LValue Copy
= CGF
.MakeAddrLValue(CGF
.CreateMemTemp(Ty
), Ty
);
4606 CGF
.EmitAggregateCopy(Copy
, LV
, Ty
, AggValueSlot::DoesNotOverlap
,
4609 return RValue::getAggregate(Copy
.getAddress(CGF
));
4612 void CallArg::copyInto(CodeGenFunction
&CGF
, Address Addr
) const {
4613 LValue Dst
= CGF
.MakeAddrLValue(Addr
, Ty
);
4614 if (!HasLV
&& RV
.isScalar())
4615 CGF
.EmitStoreOfScalar(RV
.getScalarVal(), Dst
, /*isInit=*/true);
4616 else if (!HasLV
&& RV
.isComplex())
4617 CGF
.EmitStoreOfComplex(RV
.getComplexVal(), Dst
, /*init=*/true);
4619 auto Addr
= HasLV
? LV
.getAddress(CGF
) : RV
.getAggregateAddress();
4620 LValue SrcLV
= CGF
.MakeAddrLValue(Addr
, Ty
);
4621 // We assume that call args are never copied into subobjects.
4622 CGF
.EmitAggregateCopy(Dst
, SrcLV
, Ty
, AggValueSlot::DoesNotOverlap
,
4623 HasLV
? LV
.isVolatileQualified()
4624 : RV
.isVolatileQualified());
4629 void CodeGenFunction::EmitCallArg(CallArgList
&args
, const Expr
*E
,
4631 DisableDebugLocationUpdates
Dis(*this, E
);
4632 if (const ObjCIndirectCopyRestoreExpr
*CRE
4633 = dyn_cast
<ObjCIndirectCopyRestoreExpr
>(E
)) {
4634 assert(getLangOpts().ObjCAutoRefCount
);
4635 return emitWritebackArg(*this, args
, CRE
);
4638 assert(type
->isReferenceType() == E
->isGLValue() &&
4639 "reference binding to unmaterialized r-value!");
4641 if (E
->isGLValue()) {
4642 assert(E
->getObjectKind() == OK_Ordinary
);
4643 return args
.add(EmitReferenceBindingToExpr(E
), type
);
4646 bool HasAggregateEvalKind
= hasAggregateEvaluationKind(type
);
4648 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4649 // However, we still have to push an EH-only cleanup in case we unwind before
4650 // we make it to the call.
4651 if (type
->isRecordType() &&
4652 type
->castAs
<RecordType
>()->getDecl()->isParamDestroyedInCallee()) {
4653 // If we're using inalloca, use the argument memory. Otherwise, use a
4655 AggValueSlot Slot
= args
.isUsingInAlloca()
4656 ? createPlaceholderSlot(*this, type
) : CreateAggTemp(type
, "agg.tmp");
4658 bool DestroyedInCallee
= true, NeedsEHCleanup
= true;
4659 if (const auto *RD
= type
->getAsCXXRecordDecl())
4660 DestroyedInCallee
= RD
->hasNonTrivialDestructor();
4662 NeedsEHCleanup
= needsEHCleanup(type
.isDestructedType());
4664 if (DestroyedInCallee
)
4665 Slot
.setExternallyDestructed();
4667 EmitAggExpr(E
, Slot
);
4668 RValue RV
= Slot
.asRValue();
4671 if (DestroyedInCallee
&& NeedsEHCleanup
) {
4672 // Create a no-op GEP between the placeholder and the cleanup so we can
4673 // RAUW it successfully. It also serves as a marker of the first
4674 // instruction where the cleanup is active.
4675 pushFullExprCleanup
<DestroyUnpassedArg
>(EHCleanup
, Slot
.getAddress(),
4677 // This unreachable is a temporary marker which will be removed later.
4678 llvm::Instruction
*IsActive
= Builder
.CreateUnreachable();
4679 args
.addArgCleanupDeactivation(EHStack
.stable_begin(), IsActive
);
4684 if (HasAggregateEvalKind
&& isa
<ImplicitCastExpr
>(E
) &&
4685 cast
<CastExpr
>(E
)->getCastKind() == CK_LValueToRValue
) {
4686 LValue L
= EmitLValue(cast
<CastExpr
>(E
)->getSubExpr());
4687 assert(L
.isSimple());
4688 args
.addUncopiedAggregate(L
, type
);
4692 args
.add(EmitAnyExprToTemp(E
), type
);
4695 QualType
CodeGenFunction::getVarArgType(const Expr
*Arg
) {
4696 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4697 // implicitly widens null pointer constants that are arguments to varargs
4698 // functions to pointer-sized ints.
4699 if (!getTarget().getTriple().isOSWindows())
4700 return Arg
->getType();
4702 if (Arg
->getType()->isIntegerType() &&
4703 getContext().getTypeSize(Arg
->getType()) <
4704 getContext().getTargetInfo().getPointerWidth(LangAS::Default
) &&
4705 Arg
->isNullPointerConstant(getContext(),
4706 Expr::NPC_ValueDependentIsNotNull
)) {
4707 return getContext().getIntPtrType();
4710 return Arg
->getType();
4713 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4714 // optimizer it can aggressively ignore unwind edges.
4716 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction
*Inst
) {
4717 if (CGM
.getCodeGenOpts().OptimizationLevel
!= 0 &&
4718 !CGM
.getCodeGenOpts().ObjCAutoRefCountExceptions
)
4719 Inst
->setMetadata("clang.arc.no_objc_arc_exceptions",
4720 CGM
.getNoObjCARCExceptionsMetadata());
4723 /// Emits a call to the given no-arguments nounwind runtime function.
4725 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee
,
4726 const llvm::Twine
&name
) {
4727 return EmitNounwindRuntimeCall(callee
, std::nullopt
, name
);
4730 /// Emits a call to the given nounwind runtime function.
4732 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee
,
4733 ArrayRef
<llvm::Value
*> args
,
4734 const llvm::Twine
&name
) {
4735 llvm::CallInst
*call
= EmitRuntimeCall(callee
, args
, name
);
4736 call
->setDoesNotThrow();
4740 /// Emits a simple call (never an invoke) to the given no-arguments
4741 /// runtime function.
4742 llvm::CallInst
*CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee
,
4743 const llvm::Twine
&name
) {
4744 return EmitRuntimeCall(callee
, std::nullopt
, name
);
4747 // Calls which may throw must have operand bundles indicating which funclet
4748 // they are nested within.
4749 SmallVector
<llvm::OperandBundleDef
, 1>
4750 CodeGenFunction::getBundlesForFunclet(llvm::Value
*Callee
) {
4751 // There is no need for a funclet operand bundle if we aren't inside a
4753 if (!CurrentFuncletPad
)
4754 return (SmallVector
<llvm::OperandBundleDef
, 1>());
4756 // Skip intrinsics which cannot throw (as long as they don't lower into
4757 // regular function calls in the course of IR transformations).
4758 if (auto *CalleeFn
= dyn_cast
<llvm::Function
>(Callee
->stripPointerCasts())) {
4759 if (CalleeFn
->isIntrinsic() && CalleeFn
->doesNotThrow()) {
4760 auto IID
= CalleeFn
->getIntrinsicID();
4761 if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID
))
4762 return (SmallVector
<llvm::OperandBundleDef
, 1>());
4766 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
;
4767 BundleList
.emplace_back("funclet", CurrentFuncletPad
);
4771 /// Emits a simple call (never an invoke) to the given runtime function.
4772 llvm::CallInst
*CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee
,
4773 ArrayRef
<llvm::Value
*> args
,
4774 const llvm::Twine
&name
) {
4775 llvm::CallInst
*call
= Builder
.CreateCall(
4776 callee
, args
, getBundlesForFunclet(callee
.getCallee()), name
);
4777 call
->setCallingConv(getRuntimeCC());
4781 /// Emits a call or invoke to the given noreturn runtime function.
4782 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4783 llvm::FunctionCallee callee
, ArrayRef
<llvm::Value
*> args
) {
4784 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
=
4785 getBundlesForFunclet(callee
.getCallee());
4787 if (getInvokeDest()) {
4788 llvm::InvokeInst
*invoke
=
4789 Builder
.CreateInvoke(callee
,
4790 getUnreachableBlock(),
4794 invoke
->setDoesNotReturn();
4795 invoke
->setCallingConv(getRuntimeCC());
4797 llvm::CallInst
*call
= Builder
.CreateCall(callee
, args
, BundleList
);
4798 call
->setDoesNotReturn();
4799 call
->setCallingConv(getRuntimeCC());
4800 Builder
.CreateUnreachable();
4804 /// Emits a call or invoke instruction to the given nullary runtime function.
4806 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee
,
4807 const Twine
&name
) {
4808 return EmitRuntimeCallOrInvoke(callee
, std::nullopt
, name
);
4811 /// Emits a call or invoke instruction to the given runtime function.
4813 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee
,
4814 ArrayRef
<llvm::Value
*> args
,
4815 const Twine
&name
) {
4816 llvm::CallBase
*call
= EmitCallOrInvoke(callee
, args
, name
);
4817 call
->setCallingConv(getRuntimeCC());
4821 /// Emits a call or invoke instruction to the given function, depending
4822 /// on the current state of the EH stack.
4823 llvm::CallBase
*CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee
,
4824 ArrayRef
<llvm::Value
*> Args
,
4825 const Twine
&Name
) {
4826 llvm::BasicBlock
*InvokeDest
= getInvokeDest();
4827 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
=
4828 getBundlesForFunclet(Callee
.getCallee());
4830 llvm::CallBase
*Inst
;
4832 Inst
= Builder
.CreateCall(Callee
, Args
, BundleList
, Name
);
4834 llvm::BasicBlock
*ContBB
= createBasicBlock("invoke.cont");
4835 Inst
= Builder
.CreateInvoke(Callee
, ContBB
, InvokeDest
, Args
, BundleList
,
4840 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4841 // optimizer it can aggressively ignore unwind edges.
4842 if (CGM
.getLangOpts().ObjCAutoRefCount
)
4843 AddObjCARCExceptionMetadata(Inst
);
4848 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction
*Old
,
4850 DeferredReplacements
.push_back(
4851 std::make_pair(llvm::WeakTrackingVH(Old
), New
));
4856 /// Specify given \p NewAlign as the alignment of return value attribute. If
4857 /// such attribute already exists, re-set it to the maximal one of two options.
4858 [[nodiscard
]] llvm::AttributeList
4859 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext
&Ctx
,
4860 const llvm::AttributeList
&Attrs
,
4861 llvm::Align NewAlign
) {
4862 llvm::Align CurAlign
= Attrs
.getRetAlignment().valueOrOne();
4863 if (CurAlign
>= NewAlign
)
4865 llvm::Attribute AlignAttr
= llvm::Attribute::getWithAlignment(Ctx
, NewAlign
);
4866 return Attrs
.removeRetAttribute(Ctx
, llvm::Attribute::AttrKind::Alignment
)
4867 .addRetAttribute(Ctx
, AlignAttr
);
4870 template <typename AlignedAttrTy
> class AbstractAssumeAlignedAttrEmitter
{
4872 CodeGenFunction
&CGF
;
4874 /// We do nothing if this is, or becomes, nullptr.
4875 const AlignedAttrTy
*AA
= nullptr;
4877 llvm::Value
*Alignment
= nullptr; // May or may not be a constant.
4878 llvm::ConstantInt
*OffsetCI
= nullptr; // Constant, hopefully zero.
4880 AbstractAssumeAlignedAttrEmitter(CodeGenFunction
&CGF_
, const Decl
*FuncDecl
)
4884 AA
= FuncDecl
->getAttr
<AlignedAttrTy
>();
4888 /// If we can, materialize the alignment as an attribute on return value.
4889 [[nodiscard
]] llvm::AttributeList
4890 TryEmitAsCallSiteAttribute(const llvm::AttributeList
&Attrs
) {
4891 if (!AA
|| OffsetCI
|| CGF
.SanOpts
.has(SanitizerKind::Alignment
))
4893 const auto *AlignmentCI
= dyn_cast
<llvm::ConstantInt
>(Alignment
);
4896 // We may legitimately have non-power-of-2 alignment here.
4897 // If so, this is UB land, emit it via `@llvm.assume` instead.
4898 if (!AlignmentCI
->getValue().isPowerOf2())
4900 llvm::AttributeList NewAttrs
= maybeRaiseRetAlignmentAttribute(
4901 CGF
.getLLVMContext(), Attrs
,
4903 AlignmentCI
->getLimitedValue(llvm::Value::MaximumAlignment
)));
4904 AA
= nullptr; // We're done. Disallow doing anything else.
4908 /// Emit alignment assumption.
4909 /// This is a general fallback that we take if either there is an offset,
4910 /// or the alignment is variable or we are sanitizing for alignment.
4911 void EmitAsAnAssumption(SourceLocation Loc
, QualType RetTy
, RValue
&Ret
) {
4914 CGF
.emitAlignmentAssumption(Ret
.getScalarVal(), RetTy
, Loc
,
4915 AA
->getLocation(), Alignment
, OffsetCI
);
4916 AA
= nullptr; // We're done. Disallow doing anything else.
4920 /// Helper data structure to emit `AssumeAlignedAttr`.
4921 class AssumeAlignedAttrEmitter final
4922 : public AbstractAssumeAlignedAttrEmitter
<AssumeAlignedAttr
> {
4924 AssumeAlignedAttrEmitter(CodeGenFunction
&CGF_
, const Decl
*FuncDecl
)
4925 : AbstractAssumeAlignedAttrEmitter(CGF_
, FuncDecl
) {
4928 // It is guaranteed that the alignment/offset are constants.
4929 Alignment
= cast
<llvm::ConstantInt
>(CGF
.EmitScalarExpr(AA
->getAlignment()));
4930 if (Expr
*Offset
= AA
->getOffset()) {
4931 OffsetCI
= cast
<llvm::ConstantInt
>(CGF
.EmitScalarExpr(Offset
));
4932 if (OffsetCI
->isNullValue()) // Canonicalize zero offset to no offset.
4938 /// Helper data structure to emit `AllocAlignAttr`.
4939 class AllocAlignAttrEmitter final
4940 : public AbstractAssumeAlignedAttrEmitter
<AllocAlignAttr
> {
4942 AllocAlignAttrEmitter(CodeGenFunction
&CGF_
, const Decl
*FuncDecl
,
4943 const CallArgList
&CallArgs
)
4944 : AbstractAssumeAlignedAttrEmitter(CGF_
, FuncDecl
) {
4947 // Alignment may or may not be a constant, and that is okay.
4948 Alignment
= CallArgs
[AA
->getParamIndex().getLLVMIndex()]
4956 static unsigned getMaxVectorWidth(const llvm::Type
*Ty
) {
4957 if (auto *VT
= dyn_cast
<llvm::VectorType
>(Ty
))
4958 return VT
->getPrimitiveSizeInBits().getKnownMinValue();
4959 if (auto *AT
= dyn_cast
<llvm::ArrayType
>(Ty
))
4960 return getMaxVectorWidth(AT
->getElementType());
4962 unsigned MaxVectorWidth
= 0;
4963 if (auto *ST
= dyn_cast
<llvm::StructType
>(Ty
))
4964 for (auto *I
: ST
->elements())
4965 MaxVectorWidth
= std::max(MaxVectorWidth
, getMaxVectorWidth(I
));
4966 return MaxVectorWidth
;
4969 RValue
CodeGenFunction::EmitCall(const CGFunctionInfo
&CallInfo
,
4970 const CGCallee
&Callee
,
4971 ReturnValueSlot ReturnValue
,
4972 const CallArgList
&CallArgs
,
4973 llvm::CallBase
**callOrInvoke
, bool IsMustTail
,
4974 SourceLocation Loc
) {
4975 // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4977 assert(Callee
.isOrdinary() || Callee
.isVirtual());
4979 // Handle struct-return functions by passing a pointer to the
4980 // location that we would like to return into.
4981 QualType RetTy
= CallInfo
.getReturnType();
4982 const ABIArgInfo
&RetAI
= CallInfo
.getReturnInfo();
4984 llvm::FunctionType
*IRFuncTy
= getTypes().GetFunctionType(CallInfo
);
4986 const Decl
*TargetDecl
= Callee
.getAbstractInfo().getCalleeDecl().getDecl();
4987 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(TargetDecl
)) {
4988 // We can only guarantee that a function is called from the correct
4989 // context/function based on the appropriate target attributes,
4990 // so only check in the case where we have both always_inline and target
4991 // since otherwise we could be making a conditional call after a check for
4992 // the proper cpu features (and it won't cause code generation issues due to
4993 // function based code generation).
4994 if (TargetDecl
->hasAttr
<AlwaysInlineAttr
>() &&
4995 (TargetDecl
->hasAttr
<TargetAttr
>() ||
4996 (CurFuncDecl
&& CurFuncDecl
->hasAttr
<TargetAttr
>())))
4997 checkTargetFeatures(Loc
, FD
);
4999 // Some architectures (such as x86-64) have the ABI changed based on
5000 // attribute-target/features. Give them a chance to diagnose.
5001 CGM
.getTargetCodeGenInfo().checkFunctionCallABI(
5002 CGM
, Loc
, dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
), FD
, CallArgs
);
5005 // 1. Set up the arguments.
5007 // If we're using inalloca, insert the allocation after the stack save.
5008 // FIXME: Do this earlier rather than hacking it in here!
5009 Address ArgMemory
= Address::invalid();
5010 if (llvm::StructType
*ArgStruct
= CallInfo
.getArgStruct()) {
5011 const llvm::DataLayout
&DL
= CGM
.getDataLayout();
5012 llvm::Instruction
*IP
= CallArgs
.getStackBase();
5013 llvm::AllocaInst
*AI
;
5015 IP
= IP
->getNextNode();
5016 AI
= new llvm::AllocaInst(ArgStruct
, DL
.getAllocaAddrSpace(),
5019 AI
= CreateTempAlloca(ArgStruct
, "argmem");
5021 auto Align
= CallInfo
.getArgStructAlignment();
5022 AI
->setAlignment(Align
.getAsAlign());
5023 AI
->setUsedWithInAlloca(true);
5024 assert(AI
->isUsedWithInAlloca() && !AI
->isStaticAlloca());
5025 ArgMemory
= Address(AI
, ArgStruct
, Align
);
5028 ClangToLLVMArgMapping
IRFunctionArgs(CGM
.getContext(), CallInfo
);
5029 SmallVector
<llvm::Value
*, 16> IRCallArgs(IRFunctionArgs
.totalIRArgs());
5031 // If the call returns a temporary with struct return, create a temporary
5032 // alloca to hold the result, unless one is given to us.
5033 Address SRetPtr
= Address::invalid();
5034 Address SRetAlloca
= Address::invalid();
5035 llvm::Value
*UnusedReturnSizePtr
= nullptr;
5036 if (RetAI
.isIndirect() || RetAI
.isInAlloca() || RetAI
.isCoerceAndExpand()) {
5037 if (!ReturnValue
.isNull()) {
5038 SRetPtr
= ReturnValue
.getValue();
5040 SRetPtr
= CreateMemTemp(RetTy
, "tmp", &SRetAlloca
);
5041 if (HaveInsertPoint() && ReturnValue
.isUnused()) {
5042 llvm::TypeSize size
=
5043 CGM
.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy
));
5044 UnusedReturnSizePtr
= EmitLifetimeStart(size
, SRetAlloca
.getPointer());
5047 if (IRFunctionArgs
.hasSRetArg()) {
5048 IRCallArgs
[IRFunctionArgs
.getSRetArgNo()] = SRetPtr
.getPointer();
5049 } else if (RetAI
.isInAlloca()) {
5051 Builder
.CreateStructGEP(ArgMemory
, RetAI
.getInAllocaFieldIndex());
5052 Builder
.CreateStore(SRetPtr
.getPointer(), Addr
);
5056 Address swiftErrorTemp
= Address::invalid();
5057 Address swiftErrorArg
= Address::invalid();
5059 // When passing arguments using temporary allocas, we need to add the
5060 // appropriate lifetime markers. This vector keeps track of all the lifetime
5061 // markers that need to be ended right after the call.
5062 SmallVector
<CallLifetimeEnd
, 2> CallLifetimeEndAfterCall
;
5064 // Translate all of the arguments as necessary to match the IR lowering.
5065 assert(CallInfo
.arg_size() == CallArgs
.size() &&
5066 "Mismatch between function signature & arguments.");
5068 CGFunctionInfo::const_arg_iterator info_it
= CallInfo
.arg_begin();
5069 for (CallArgList::const_iterator I
= CallArgs
.begin(), E
= CallArgs
.end();
5070 I
!= E
; ++I
, ++info_it
, ++ArgNo
) {
5071 const ABIArgInfo
&ArgInfo
= info_it
->info
;
5073 // Insert a padding argument to ensure proper alignment.
5074 if (IRFunctionArgs
.hasPaddingArg(ArgNo
))
5075 IRCallArgs
[IRFunctionArgs
.getPaddingArgNo(ArgNo
)] =
5076 llvm::UndefValue::get(ArgInfo
.getPaddingType());
5078 unsigned FirstIRArg
, NumIRArgs
;
5079 std::tie(FirstIRArg
, NumIRArgs
) = IRFunctionArgs
.getIRArgs(ArgNo
);
5081 bool ArgHasMaybeUndefAttr
=
5082 IsArgumentMaybeUndef(TargetDecl
, CallInfo
.getNumRequiredArgs(), ArgNo
);
5084 switch (ArgInfo
.getKind()) {
5085 case ABIArgInfo::InAlloca
: {
5086 assert(NumIRArgs
== 0);
5087 assert(getTarget().getTriple().getArch() == llvm::Triple::x86
);
5088 if (I
->isAggregate()) {
5089 Address Addr
= I
->hasLValue()
5090 ? I
->getKnownLValue().getAddress(*this)
5091 : I
->getKnownRValue().getAggregateAddress();
5092 llvm::Instruction
*Placeholder
=
5093 cast
<llvm::Instruction
>(Addr
.getPointer());
5095 if (!ArgInfo
.getInAllocaIndirect()) {
5096 // Replace the placeholder with the appropriate argument slot GEP.
5097 CGBuilderTy::InsertPoint IP
= Builder
.saveIP();
5098 Builder
.SetInsertPoint(Placeholder
);
5099 Addr
= Builder
.CreateStructGEP(ArgMemory
,
5100 ArgInfo
.getInAllocaFieldIndex());
5101 Builder
.restoreIP(IP
);
5103 // For indirect things such as overaligned structs, replace the
5104 // placeholder with a regular aggregate temporary alloca. Store the
5105 // address of this alloca into the struct.
5106 Addr
= CreateMemTemp(info_it
->type
, "inalloca.indirect.tmp");
5107 Address ArgSlot
= Builder
.CreateStructGEP(
5108 ArgMemory
, ArgInfo
.getInAllocaFieldIndex());
5109 Builder
.CreateStore(Addr
.getPointer(), ArgSlot
);
5111 deferPlaceholderReplacement(Placeholder
, Addr
.getPointer());
5112 } else if (ArgInfo
.getInAllocaIndirect()) {
5113 // Make a temporary alloca and store the address of it into the argument
5115 Address Addr
= CreateMemTempWithoutCast(
5116 I
->Ty
, getContext().getTypeAlignInChars(I
->Ty
),
5117 "indirect-arg-temp");
5118 I
->copyInto(*this, Addr
);
5120 Builder
.CreateStructGEP(ArgMemory
, ArgInfo
.getInAllocaFieldIndex());
5121 Builder
.CreateStore(Addr
.getPointer(), ArgSlot
);
5123 // Store the RValue into the argument struct.
5125 Builder
.CreateStructGEP(ArgMemory
, ArgInfo
.getInAllocaFieldIndex());
5126 Addr
= Addr
.withElementType(ConvertTypeForMem(I
->Ty
));
5127 I
->copyInto(*this, Addr
);
5132 case ABIArgInfo::Indirect
:
5133 case ABIArgInfo::IndirectAliased
: {
5134 assert(NumIRArgs
== 1);
5135 if (!I
->isAggregate()) {
5136 // Make a temporary alloca to pass the argument.
5137 Address Addr
= CreateMemTempWithoutCast(
5138 I
->Ty
, ArgInfo
.getIndirectAlign(), "indirect-arg-temp");
5140 llvm::Value
*Val
= Addr
.getPointer();
5141 if (ArgHasMaybeUndefAttr
)
5142 Val
= Builder
.CreateFreeze(Addr
.getPointer());
5143 IRCallArgs
[FirstIRArg
] = Val
;
5145 I
->copyInto(*this, Addr
);
5147 // We want to avoid creating an unnecessary temporary+copy here;
5148 // however, we need one in three cases:
5149 // 1. If the argument is not byval, and we are required to copy the
5150 // source. (This case doesn't occur on any common architecture.)
5151 // 2. If the argument is byval, RV is not sufficiently aligned, and
5152 // we cannot force it to be sufficiently aligned.
5153 // 3. If the argument is byval, but RV is not located in default
5154 // or alloca address space.
5155 Address Addr
= I
->hasLValue()
5156 ? I
->getKnownLValue().getAddress(*this)
5157 : I
->getKnownRValue().getAggregateAddress();
5158 llvm::Value
*V
= Addr
.getPointer();
5159 CharUnits Align
= ArgInfo
.getIndirectAlign();
5160 const llvm::DataLayout
*TD
= &CGM
.getDataLayout();
5162 assert((FirstIRArg
>= IRFuncTy
->getNumParams() ||
5163 IRFuncTy
->getParamType(FirstIRArg
)->getPointerAddressSpace() ==
5164 TD
->getAllocaAddrSpace()) &&
5165 "indirect argument must be in alloca address space");
5167 bool NeedCopy
= false;
5168 if (Addr
.getAlignment() < Align
&&
5169 llvm::getOrEnforceKnownAlignment(V
, Align
.getAsAlign(), *TD
) <
5170 Align
.getAsAlign()) {
5172 } else if (I
->hasLValue()) {
5173 auto LV
= I
->getKnownLValue();
5174 auto AS
= LV
.getAddressSpace();
5177 ArgInfo
.isIndirectAliased() || ArgInfo
.getIndirectByVal();
5179 if (!isByValOrRef
||
5180 (LV
.getAlignment() < getContext().getTypeAlignInChars(I
->Ty
))) {
5183 if (!getLangOpts().OpenCL
) {
5184 if ((isByValOrRef
&&
5185 (AS
!= LangAS::Default
&&
5186 AS
!= CGM
.getASTAllocaAddressSpace()))) {
5190 // For OpenCL even if RV is located in default or alloca address space
5191 // we don't want to perform address space cast for it.
5192 else if ((isByValOrRef
&&
5193 Addr
.getType()->getAddressSpace() != IRFuncTy
->
5194 getParamType(FirstIRArg
)->getPointerAddressSpace())) {
5200 // Create an aligned temporary, and copy to it.
5201 Address AI
= CreateMemTempWithoutCast(
5202 I
->Ty
, ArgInfo
.getIndirectAlign(), "byval-temp");
5203 llvm::Value
*Val
= AI
.getPointer();
5204 if (ArgHasMaybeUndefAttr
)
5205 Val
= Builder
.CreateFreeze(AI
.getPointer());
5206 IRCallArgs
[FirstIRArg
] = Val
;
5208 // Emit lifetime markers for the temporary alloca.
5209 llvm::TypeSize ByvalTempElementSize
=
5210 CGM
.getDataLayout().getTypeAllocSize(AI
.getElementType());
5211 llvm::Value
*LifetimeSize
=
5212 EmitLifetimeStart(ByvalTempElementSize
, AI
.getPointer());
5214 // Add cleanup code to emit the end lifetime marker after the call.
5215 if (LifetimeSize
) // In case we disabled lifetime markers.
5216 CallLifetimeEndAfterCall
.emplace_back(AI
, LifetimeSize
);
5218 // Generate the copy.
5219 I
->copyInto(*this, AI
);
5221 // Skip the extra memcpy call.
5222 auto *T
= llvm::PointerType::get(
5223 CGM
.getLLVMContext(), CGM
.getDataLayout().getAllocaAddrSpace());
5225 llvm::Value
*Val
= getTargetHooks().performAddrSpaceCast(
5226 *this, V
, LangAS::Default
, CGM
.getASTAllocaAddressSpace(), T
,
5228 if (ArgHasMaybeUndefAttr
)
5229 Val
= Builder
.CreateFreeze(Val
);
5230 IRCallArgs
[FirstIRArg
] = Val
;
5236 case ABIArgInfo::Ignore
:
5237 assert(NumIRArgs
== 0);
5240 case ABIArgInfo::Extend
:
5241 case ABIArgInfo::Direct
: {
5242 if (!isa
<llvm::StructType
>(ArgInfo
.getCoerceToType()) &&
5243 ArgInfo
.getCoerceToType() == ConvertType(info_it
->type
) &&
5244 ArgInfo
.getDirectOffset() == 0) {
5245 assert(NumIRArgs
== 1);
5247 if (!I
->isAggregate())
5248 V
= I
->getKnownRValue().getScalarVal();
5250 V
= Builder
.CreateLoad(
5251 I
->hasLValue() ? I
->getKnownLValue().getAddress(*this)
5252 : I
->getKnownRValue().getAggregateAddress());
5254 // Implement swifterror by copying into a new swifterror argument.
5255 // We'll write back in the normal path out of the call.
5256 if (CallInfo
.getExtParameterInfo(ArgNo
).getABI()
5257 == ParameterABI::SwiftErrorResult
) {
5258 assert(!swiftErrorTemp
.isValid() && "multiple swifterror args");
5260 QualType pointeeTy
= I
->Ty
->getPointeeType();
5261 swiftErrorArg
= Address(V
, ConvertTypeForMem(pointeeTy
),
5262 getContext().getTypeAlignInChars(pointeeTy
));
5265 CreateMemTemp(pointeeTy
, getPointerAlign(), "swifterror.temp");
5266 V
= swiftErrorTemp
.getPointer();
5267 cast
<llvm::AllocaInst
>(V
)->setSwiftError(true);
5269 llvm::Value
*errorValue
= Builder
.CreateLoad(swiftErrorArg
);
5270 Builder
.CreateStore(errorValue
, swiftErrorTemp
);
5273 // We might have to widen integers, but we should never truncate.
5274 if (ArgInfo
.getCoerceToType() != V
->getType() &&
5275 V
->getType()->isIntegerTy())
5276 V
= Builder
.CreateZExt(V
, ArgInfo
.getCoerceToType());
5278 // If the argument doesn't match, perform a bitcast to coerce it. This
5279 // can happen due to trivial type mismatches.
5280 if (FirstIRArg
< IRFuncTy
->getNumParams() &&
5281 V
->getType() != IRFuncTy
->getParamType(FirstIRArg
))
5282 V
= Builder
.CreateBitCast(V
, IRFuncTy
->getParamType(FirstIRArg
));
5284 if (ArgHasMaybeUndefAttr
)
5285 V
= Builder
.CreateFreeze(V
);
5286 IRCallArgs
[FirstIRArg
] = V
;
5290 // FIXME: Avoid the conversion through memory if possible.
5291 Address Src
= Address::invalid();
5292 if (!I
->isAggregate()) {
5293 Src
= CreateMemTemp(I
->Ty
, "coerce");
5294 I
->copyInto(*this, Src
);
5296 Src
= I
->hasLValue() ? I
->getKnownLValue().getAddress(*this)
5297 : I
->getKnownRValue().getAggregateAddress();
5300 // If the value is offset in memory, apply the offset now.
5301 Src
= emitAddressAtOffset(*this, Src
, ArgInfo
);
5303 // Fast-isel and the optimizer generally like scalar values better than
5304 // FCAs, so we flatten them if this is safe to do for this argument.
5305 llvm::StructType
*STy
=
5306 dyn_cast
<llvm::StructType
>(ArgInfo
.getCoerceToType());
5307 if (STy
&& ArgInfo
.isDirect() && ArgInfo
.getCanBeFlattened()) {
5308 llvm::Type
*SrcTy
= Src
.getElementType();
5309 llvm::TypeSize SrcTypeSize
=
5310 CGM
.getDataLayout().getTypeAllocSize(SrcTy
);
5311 llvm::TypeSize DstTypeSize
= CGM
.getDataLayout().getTypeAllocSize(STy
);
5312 if (SrcTypeSize
.isScalable()) {
5313 assert(STy
->containsHomogeneousScalableVectorTypes() &&
5314 "ABI only supports structure with homogeneous scalable vector "
5316 assert(SrcTypeSize
== DstTypeSize
&&
5317 "Only allow non-fractional movement of structure with "
5318 "homogeneous scalable vector type");
5319 assert(NumIRArgs
== STy
->getNumElements());
5321 llvm::Value
*StoredStructValue
=
5322 Builder
.CreateLoad(Src
, Src
.getName() + ".tuple");
5323 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
5324 llvm::Value
*Extract
= Builder
.CreateExtractValue(
5325 StoredStructValue
, i
, Src
.getName() + ".extract" + Twine(i
));
5326 IRCallArgs
[FirstIRArg
+ i
] = Extract
;
5329 uint64_t SrcSize
= SrcTypeSize
.getFixedValue();
5330 uint64_t DstSize
= DstTypeSize
.getFixedValue();
5332 // If the source type is smaller than the destination type of the
5333 // coerce-to logic, copy the source value into a temp alloca the size
5334 // of the destination type to allow loading all of it. The bits past
5335 // the source value are left undef.
5336 if (SrcSize
< DstSize
) {
5337 Address TempAlloca
= CreateTempAlloca(STy
, Src
.getAlignment(),
5338 Src
.getName() + ".coerce");
5339 Builder
.CreateMemCpy(TempAlloca
, Src
, SrcSize
);
5342 Src
= Src
.withElementType(STy
);
5345 assert(NumIRArgs
== STy
->getNumElements());
5346 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
5347 Address EltPtr
= Builder
.CreateStructGEP(Src
, i
);
5348 llvm::Value
*LI
= Builder
.CreateLoad(EltPtr
);
5349 if (ArgHasMaybeUndefAttr
)
5350 LI
= Builder
.CreateFreeze(LI
);
5351 IRCallArgs
[FirstIRArg
+ i
] = LI
;
5355 // In the simple case, just pass the coerced loaded value.
5356 assert(NumIRArgs
== 1);
5358 CreateCoercedLoad(Src
, ArgInfo
.getCoerceToType(), *this);
5360 if (CallInfo
.isCmseNSCall()) {
5361 // For certain parameter types, clear padding bits, as they may reveal
5362 // sensitive information.
5363 // Small struct/union types are passed as integer arrays.
5364 auto *ATy
= dyn_cast
<llvm::ArrayType
>(Load
->getType());
5365 if (ATy
!= nullptr && isa
<RecordType
>(I
->Ty
.getCanonicalType()))
5366 Load
= EmitCMSEClearRecord(Load
, ATy
, I
->Ty
);
5369 if (ArgHasMaybeUndefAttr
)
5370 Load
= Builder
.CreateFreeze(Load
);
5371 IRCallArgs
[FirstIRArg
] = Load
;
5377 case ABIArgInfo::CoerceAndExpand
: {
5378 auto coercionType
= ArgInfo
.getCoerceAndExpandType();
5379 auto layout
= CGM
.getDataLayout().getStructLayout(coercionType
);
5381 llvm::Value
*tempSize
= nullptr;
5382 Address addr
= Address::invalid();
5383 Address AllocaAddr
= Address::invalid();
5384 if (I
->isAggregate()) {
5385 addr
= I
->hasLValue() ? I
->getKnownLValue().getAddress(*this)
5386 : I
->getKnownRValue().getAggregateAddress();
5389 RValue RV
= I
->getKnownRValue();
5390 assert(RV
.isScalar()); // complex should always just be direct
5392 llvm::Type
*scalarType
= RV
.getScalarVal()->getType();
5393 auto scalarSize
= CGM
.getDataLayout().getTypeAllocSize(scalarType
);
5394 auto scalarAlign
= CGM
.getDataLayout().getPrefTypeAlign(scalarType
);
5396 // Materialize to a temporary.
5397 addr
= CreateTempAlloca(
5398 RV
.getScalarVal()->getType(),
5399 CharUnits::fromQuantity(std::max(layout
->getAlignment(), scalarAlign
)),
5401 /*ArraySize=*/nullptr, &AllocaAddr
);
5402 tempSize
= EmitLifetimeStart(scalarSize
, AllocaAddr
.getPointer());
5404 Builder
.CreateStore(RV
.getScalarVal(), addr
);
5407 addr
= addr
.withElementType(coercionType
);
5409 unsigned IRArgPos
= FirstIRArg
;
5410 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
5411 llvm::Type
*eltType
= coercionType
->getElementType(i
);
5412 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType
)) continue;
5413 Address eltAddr
= Builder
.CreateStructGEP(addr
, i
);
5414 llvm::Value
*elt
= Builder
.CreateLoad(eltAddr
);
5415 if (ArgHasMaybeUndefAttr
)
5416 elt
= Builder
.CreateFreeze(elt
);
5417 IRCallArgs
[IRArgPos
++] = elt
;
5419 assert(IRArgPos
== FirstIRArg
+ NumIRArgs
);
5422 EmitLifetimeEnd(tempSize
, AllocaAddr
.getPointer());
5428 case ABIArgInfo::Expand
: {
5429 unsigned IRArgPos
= FirstIRArg
;
5430 ExpandTypeToArgs(I
->Ty
, *I
, IRFuncTy
, IRCallArgs
, IRArgPos
);
5431 assert(IRArgPos
== FirstIRArg
+ NumIRArgs
);
5437 const CGCallee
&ConcreteCallee
= Callee
.prepareConcreteCallee(*this);
5438 llvm::Value
*CalleePtr
= ConcreteCallee
.getFunctionPointer();
5440 // If we're using inalloca, set up that argument.
5441 if (ArgMemory
.isValid()) {
5442 llvm::Value
*Arg
= ArgMemory
.getPointer();
5443 assert(IRFunctionArgs
.hasInallocaArg());
5444 IRCallArgs
[IRFunctionArgs
.getInallocaArgNo()] = Arg
;
5447 // 2. Prepare the function pointer.
5449 // If the callee is a bitcast of a non-variadic function to have a
5450 // variadic function pointer type, check to see if we can remove the
5451 // bitcast. This comes up with unprototyped functions.
5453 // This makes the IR nicer, but more importantly it ensures that we
5454 // can inline the function at -O0 if it is marked always_inline.
5455 auto simplifyVariadicCallee
= [](llvm::FunctionType
*CalleeFT
,
5456 llvm::Value
*Ptr
) -> llvm::Function
* {
5457 if (!CalleeFT
->isVarArg())
5460 // Get underlying value if it's a bitcast
5461 if (llvm::ConstantExpr
*CE
= dyn_cast
<llvm::ConstantExpr
>(Ptr
)) {
5462 if (CE
->getOpcode() == llvm::Instruction::BitCast
)
5463 Ptr
= CE
->getOperand(0);
5466 llvm::Function
*OrigFn
= dyn_cast
<llvm::Function
>(Ptr
);
5470 llvm::FunctionType
*OrigFT
= OrigFn
->getFunctionType();
5472 // If the original type is variadic, or if any of the component types
5473 // disagree, we cannot remove the cast.
5474 if (OrigFT
->isVarArg() ||
5475 OrigFT
->getNumParams() != CalleeFT
->getNumParams() ||
5476 OrigFT
->getReturnType() != CalleeFT
->getReturnType())
5479 for (unsigned i
= 0, e
= OrigFT
->getNumParams(); i
!= e
; ++i
)
5480 if (OrigFT
->getParamType(i
) != CalleeFT
->getParamType(i
))
5486 if (llvm::Function
*OrigFn
= simplifyVariadicCallee(IRFuncTy
, CalleePtr
)) {
5488 IRFuncTy
= OrigFn
->getFunctionType();
5491 // 3. Perform the actual call.
5493 // Deactivate any cleanups that we're supposed to do immediately before
5495 if (!CallArgs
.getCleanupsToDeactivate().empty())
5496 deactivateArgCleanupsBeforeCall(*this, CallArgs
);
5498 // Assert that the arguments we computed match up. The IR verifier
5499 // will catch this, but this is a common enough source of problems
5500 // during IRGen changes that it's way better for debugging to catch
5501 // it ourselves here.
5503 assert(IRCallArgs
.size() == IRFuncTy
->getNumParams() || IRFuncTy
->isVarArg());
5504 for (unsigned i
= 0; i
< IRCallArgs
.size(); ++i
) {
5505 // Inalloca argument can have different type.
5506 if (IRFunctionArgs
.hasInallocaArg() &&
5507 i
== IRFunctionArgs
.getInallocaArgNo())
5509 if (i
< IRFuncTy
->getNumParams())
5510 assert(IRCallArgs
[i
]->getType() == IRFuncTy
->getParamType(i
));
5514 // Update the largest vector width if any arguments have vector types.
5515 for (unsigned i
= 0; i
< IRCallArgs
.size(); ++i
)
5516 LargestVectorWidth
= std::max(LargestVectorWidth
,
5517 getMaxVectorWidth(IRCallArgs
[i
]->getType()));
5519 // Compute the calling convention and attributes.
5520 unsigned CallingConv
;
5521 llvm::AttributeList Attrs
;
5522 CGM
.ConstructAttributeList(CalleePtr
->getName(), CallInfo
,
5523 Callee
.getAbstractInfo(), Attrs
, CallingConv
,
5524 /*AttrOnCallSite=*/true,
5527 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurFuncDecl
)) {
5528 if (FD
->hasAttr
<StrictFPAttr
>())
5529 // All calls within a strictfp function are marked strictfp
5530 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP
);
5532 // If -ffast-math is enabled and the function is guarded by an
5533 // '__attribute__((optnone)) adjust the memory attribute so the BE emits the
5534 // library call instead of the intrinsic.
5535 if (FD
->hasAttr
<OptimizeNoneAttr
>() && getLangOpts().FastMath
)
5536 CGM
.AdjustMemoryAttribute(CalleePtr
->getName(), Callee
.getAbstractInfo(),
5539 // Add call-site nomerge attribute if exists.
5540 if (InNoMergeAttributedStmt
)
5541 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge
);
5543 // Add call-site noinline attribute if exists.
5544 if (InNoInlineAttributedStmt
)
5545 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline
);
5547 // Add call-site always_inline attribute if exists.
5548 if (InAlwaysInlineAttributedStmt
)
5550 Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline
);
5552 // Apply some call-site-specific attributes.
5553 // TODO: work this into building the attribute set.
5555 // Apply always_inline to all calls within flatten functions.
5556 // FIXME: should this really take priority over __try, below?
5557 if (CurCodeDecl
&& CurCodeDecl
->hasAttr
<FlattenAttr
>() &&
5558 !InNoInlineAttributedStmt
&&
5559 !(TargetDecl
&& TargetDecl
->hasAttr
<NoInlineAttr
>())) {
5561 Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline
);
5564 // Disable inlining inside SEH __try blocks.
5565 if (isSEHTryScope()) {
5566 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline
);
5569 // Decide whether to use a call or an invoke.
5571 if (currentFunctionUsesSEHTry()) {
5572 // SEH cares about asynchronous exceptions, so everything can "throw."
5573 CannotThrow
= false;
5574 } else if (isCleanupPadScope() &&
5575 EHPersonality::get(*this).isMSVCXXPersonality()) {
5576 // The MSVC++ personality will implicitly terminate the program if an
5577 // exception is thrown during a cleanup outside of a try/catch.
5578 // We don't need to model anything in IR to get this behavior.
5581 // Otherwise, nounwind call sites will never throw.
5582 CannotThrow
= Attrs
.hasFnAttr(llvm::Attribute::NoUnwind
);
5584 if (auto *FPtr
= dyn_cast
<llvm::Function
>(CalleePtr
))
5585 if (FPtr
->hasFnAttribute(llvm::Attribute::NoUnwind
))
5589 // If we made a temporary, be sure to clean up after ourselves. Note that we
5590 // can't depend on being inside of an ExprWithCleanups, so we need to manually
5591 // pop this cleanup later on. Being eager about this is OK, since this
5592 // temporary is 'invisible' outside of the callee.
5593 if (UnusedReturnSizePtr
)
5594 pushFullExprCleanup
<CallLifetimeEnd
>(NormalEHLifetimeMarker
, SRetAlloca
,
5595 UnusedReturnSizePtr
);
5597 llvm::BasicBlock
*InvokeDest
= CannotThrow
? nullptr : getInvokeDest();
5599 SmallVector
<llvm::OperandBundleDef
, 1> BundleList
=
5600 getBundlesForFunclet(CalleePtr
);
5602 if (SanOpts
.has(SanitizerKind::KCFI
) &&
5603 !isa_and_nonnull
<FunctionDecl
>(TargetDecl
))
5604 EmitKCFIOperandBundle(ConcreteCallee
, BundleList
);
5606 if (const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurFuncDecl
))
5607 if (FD
->hasAttr
<StrictFPAttr
>())
5608 // All calls within a strictfp function are marked strictfp
5609 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP
);
5611 AssumeAlignedAttrEmitter
AssumeAlignedAttrEmitter(*this, TargetDecl
);
5612 Attrs
= AssumeAlignedAttrEmitter
.TryEmitAsCallSiteAttribute(Attrs
);
5614 AllocAlignAttrEmitter
AllocAlignAttrEmitter(*this, TargetDecl
, CallArgs
);
5615 Attrs
= AllocAlignAttrEmitter
.TryEmitAsCallSiteAttribute(Attrs
);
5617 // Emit the actual call/invoke instruction.
5620 CI
= Builder
.CreateCall(IRFuncTy
, CalleePtr
, IRCallArgs
, BundleList
);
5622 llvm::BasicBlock
*Cont
= createBasicBlock("invoke.cont");
5623 CI
= Builder
.CreateInvoke(IRFuncTy
, CalleePtr
, Cont
, InvokeDest
, IRCallArgs
,
5627 if (CI
->getCalledFunction() && CI
->getCalledFunction()->hasName() &&
5628 CI
->getCalledFunction()->getName().starts_with("_Z4sqrt")) {
5629 SetSqrtFPAccuracy(CI
);
5634 // If this is within a function that has the guard(nocf) attribute and is an
5635 // indirect call, add the "guard_nocf" attribute to this call to indicate that
5636 // Control Flow Guard checks should not be added, even if the call is inlined.
5637 if (const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(CurFuncDecl
)) {
5638 if (const auto *A
= FD
->getAttr
<CFGuardAttr
>()) {
5639 if (A
->getGuard() == CFGuardAttr::GuardArg::nocf
&& !CI
->getCalledFunction())
5640 Attrs
= Attrs
.addFnAttribute(getLLVMContext(), "guard_nocf");
5644 // Apply the attributes and calling convention.
5645 CI
->setAttributes(Attrs
);
5646 CI
->setCallingConv(static_cast<llvm::CallingConv::ID
>(CallingConv
));
5648 // Apply various metadata.
5650 if (!CI
->getType()->isVoidTy())
5651 CI
->setName("call");
5653 // Update largest vector width from the return type.
5654 LargestVectorWidth
=
5655 std::max(LargestVectorWidth
, getMaxVectorWidth(CI
->getType()));
5657 // Insert instrumentation or attach profile metadata at indirect call sites.
5658 // For more details, see the comment before the definition of
5659 // IPVK_IndirectCallTarget in InstrProfData.inc.
5660 if (!CI
->getCalledFunction())
5661 PGO
.valueProfile(Builder
, llvm::IPVK_IndirectCallTarget
,
5664 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5665 // optimizer it can aggressively ignore unwind edges.
5666 if (CGM
.getLangOpts().ObjCAutoRefCount
)
5667 AddObjCARCExceptionMetadata(CI
);
5669 // Set tail call kind if necessary.
5670 if (llvm::CallInst
*Call
= dyn_cast
<llvm::CallInst
>(CI
)) {
5671 if (TargetDecl
&& TargetDecl
->hasAttr
<NotTailCalledAttr
>())
5672 Call
->setTailCallKind(llvm::CallInst::TCK_NoTail
);
5673 else if (IsMustTail
)
5674 Call
->setTailCallKind(llvm::CallInst::TCK_MustTail
);
5677 // Add metadata for calls to MSAllocator functions
5678 if (getDebugInfo() && TargetDecl
&&
5679 TargetDecl
->hasAttr
<MSAllocatorAttr
>())
5680 getDebugInfo()->addHeapAllocSiteMetadata(CI
, RetTy
->getPointeeType(), Loc
);
5682 // Add metadata if calling an __attribute__((error(""))) or warning fn.
5683 if (TargetDecl
&& TargetDecl
->hasAttr
<ErrorAttr
>()) {
5684 llvm::ConstantInt
*Line
=
5685 llvm::ConstantInt::get(Int32Ty
, Loc
.getRawEncoding());
5686 llvm::ConstantAsMetadata
*MD
= llvm::ConstantAsMetadata::get(Line
);
5687 llvm::MDTuple
*MDT
= llvm::MDNode::get(getLLVMContext(), {MD
});
5688 CI
->setMetadata("srcloc", MDT
);
5691 // 4. Finish the call.
5693 // If the call doesn't return, finish the basic block and clear the
5694 // insertion point; this allows the rest of IRGen to discard
5695 // unreachable code.
5696 if (CI
->doesNotReturn()) {
5697 if (UnusedReturnSizePtr
)
5700 // Strip away the noreturn attribute to better diagnose unreachable UB.
5701 if (SanOpts
.has(SanitizerKind::Unreachable
)) {
5702 // Also remove from function since CallBase::hasFnAttr additionally checks
5703 // attributes of the called function.
5704 if (auto *F
= CI
->getCalledFunction())
5705 F
->removeFnAttr(llvm::Attribute::NoReturn
);
5706 CI
->removeFnAttr(llvm::Attribute::NoReturn
);
5708 // Avoid incompatibility with ASan which relies on the `noreturn`
5709 // attribute to insert handler calls.
5710 if (SanOpts
.hasOneOf(SanitizerKind::Address
|
5711 SanitizerKind::KernelAddress
)) {
5712 SanitizerScope
SanScope(this);
5713 llvm::IRBuilder
<>::InsertPointGuard
IPGuard(Builder
);
5714 Builder
.SetInsertPoint(CI
);
5715 auto *FnType
= llvm::FunctionType::get(CGM
.VoidTy
, /*isVarArg=*/false);
5716 llvm::FunctionCallee Fn
=
5717 CGM
.CreateRuntimeFunction(FnType
, "__asan_handle_no_return");
5718 EmitNounwindRuntimeCall(Fn
);
5722 EmitUnreachable(Loc
);
5723 Builder
.ClearInsertionPoint();
5725 // FIXME: For now, emit a dummy basic block because expr emitters in
5726 // generally are not ready to handle emitting expressions at unreachable
5728 EnsureInsertPoint();
5730 // Return a reasonable RValue.
5731 return GetUndefRValue(RetTy
);
5734 // If this is a musttail call, return immediately. We do not branch to the
5735 // epilogue in this case.
5737 for (auto it
= EHStack
.find(CurrentCleanupScopeDepth
); it
!= EHStack
.end();
5739 EHCleanupScope
*Cleanup
= dyn_cast
<EHCleanupScope
>(&*it
);
5740 if (!(Cleanup
&& Cleanup
->getCleanup()->isRedundantBeforeReturn()))
5741 CGM
.ErrorUnsupported(MustTailCall
, "tail call skipping over cleanups");
5743 if (CI
->getType()->isVoidTy())
5744 Builder
.CreateRetVoid();
5746 Builder
.CreateRet(CI
);
5747 Builder
.ClearInsertionPoint();
5748 EnsureInsertPoint();
5749 return GetUndefRValue(RetTy
);
5752 // Perform the swifterror writeback.
5753 if (swiftErrorTemp
.isValid()) {
5754 llvm::Value
*errorResult
= Builder
.CreateLoad(swiftErrorTemp
);
5755 Builder
.CreateStore(errorResult
, swiftErrorArg
);
5758 // Emit any call-associated writebacks immediately. Arguably this
5759 // should happen after any return-value munging.
5760 if (CallArgs
.hasWritebacks())
5761 emitWritebacks(*this, CallArgs
);
5763 // The stack cleanup for inalloca arguments has to run out of the normal
5764 // lexical order, so deactivate it and run it manually here.
5765 CallArgs
.freeArgumentMemory(*this);
5767 // Extract the return value.
5769 switch (RetAI
.getKind()) {
5770 case ABIArgInfo::CoerceAndExpand
: {
5771 auto coercionType
= RetAI
.getCoerceAndExpandType();
5773 Address addr
= SRetPtr
.withElementType(coercionType
);
5775 assert(CI
->getType() == RetAI
.getUnpaddedCoerceAndExpandType());
5776 bool requiresExtract
= isa
<llvm::StructType
>(CI
->getType());
5778 unsigned unpaddedIndex
= 0;
5779 for (unsigned i
= 0, e
= coercionType
->getNumElements(); i
!= e
; ++i
) {
5780 llvm::Type
*eltType
= coercionType
->getElementType(i
);
5781 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType
)) continue;
5782 Address eltAddr
= Builder
.CreateStructGEP(addr
, i
);
5783 llvm::Value
*elt
= CI
;
5784 if (requiresExtract
)
5785 elt
= Builder
.CreateExtractValue(elt
, unpaddedIndex
++);
5787 assert(unpaddedIndex
== 0);
5788 Builder
.CreateStore(elt
, eltAddr
);
5793 case ABIArgInfo::InAlloca
:
5794 case ABIArgInfo::Indirect
: {
5795 RValue ret
= convertTempToRValue(SRetPtr
, RetTy
, SourceLocation());
5796 if (UnusedReturnSizePtr
)
5801 case ABIArgInfo::Ignore
:
5802 // If we are ignoring an argument that had a result, make sure to
5803 // construct the appropriate return value for our caller.
5804 return GetUndefRValue(RetTy
);
5806 case ABIArgInfo::Extend
:
5807 case ABIArgInfo::Direct
: {
5808 llvm::Type
*RetIRTy
= ConvertType(RetTy
);
5809 if (RetAI
.getCoerceToType() == RetIRTy
&& RetAI
.getDirectOffset() == 0) {
5810 switch (getEvaluationKind(RetTy
)) {
5812 llvm::Value
*Real
= Builder
.CreateExtractValue(CI
, 0);
5813 llvm::Value
*Imag
= Builder
.CreateExtractValue(CI
, 1);
5814 return RValue::getComplex(std::make_pair(Real
, Imag
));
5816 case TEK_Aggregate
: {
5817 Address DestPtr
= ReturnValue
.getValue();
5818 bool DestIsVolatile
= ReturnValue
.isVolatile();
5820 if (!DestPtr
.isValid()) {
5821 DestPtr
= CreateMemTemp(RetTy
, "agg.tmp");
5822 DestIsVolatile
= false;
5824 EmitAggregateStore(CI
, DestPtr
, DestIsVolatile
);
5825 return RValue::getAggregate(DestPtr
);
5828 // If the argument doesn't match, perform a bitcast to coerce it. This
5829 // can happen due to trivial type mismatches.
5830 llvm::Value
*V
= CI
;
5831 if (V
->getType() != RetIRTy
)
5832 V
= Builder
.CreateBitCast(V
, RetIRTy
);
5833 return RValue::get(V
);
5836 llvm_unreachable("bad evaluation kind");
5839 // If coercing a fixed vector from a scalable vector for ABI
5840 // compatibility, and the types match, use the llvm.vector.extract
5841 // intrinsic to perform the conversion.
5842 if (auto *FixedDst
= dyn_cast
<llvm::FixedVectorType
>(RetIRTy
)) {
5843 llvm::Value
*V
= CI
;
5844 if (auto *ScalableSrc
= dyn_cast
<llvm::ScalableVectorType
>(V
->getType())) {
5845 if (FixedDst
->getElementType() == ScalableSrc
->getElementType()) {
5846 llvm::Value
*Zero
= llvm::Constant::getNullValue(CGM
.Int64Ty
);
5847 V
= Builder
.CreateExtractVector(FixedDst
, V
, Zero
, "cast.fixed");
5848 return RValue::get(V
);
5853 Address DestPtr
= ReturnValue
.getValue();
5854 bool DestIsVolatile
= ReturnValue
.isVolatile();
5856 if (!DestPtr
.isValid()) {
5857 DestPtr
= CreateMemTemp(RetTy
, "coerce");
5858 DestIsVolatile
= false;
5861 // An empty record can overlap other data (if declared with
5862 // no_unique_address); omit the store for such types - as there is no
5863 // actual data to store.
5864 if (!isEmptyRecord(getContext(), RetTy
, true)) {
5865 // If the value is offset in memory, apply the offset now.
5866 Address StorePtr
= emitAddressAtOffset(*this, DestPtr
, RetAI
);
5867 CreateCoercedStore(CI
, StorePtr
, DestIsVolatile
, *this);
5870 return convertTempToRValue(DestPtr
, RetTy
, SourceLocation());
5873 case ABIArgInfo::Expand
:
5874 case ABIArgInfo::IndirectAliased
:
5875 llvm_unreachable("Invalid ABI kind for return argument");
5878 llvm_unreachable("Unhandled ABIArgInfo::Kind");
5881 // Emit the assume_aligned check on the return value.
5882 if (Ret
.isScalar() && TargetDecl
) {
5883 AssumeAlignedAttrEmitter
.EmitAsAnAssumption(Loc
, RetTy
, Ret
);
5884 AllocAlignAttrEmitter
.EmitAsAnAssumption(Loc
, RetTy
, Ret
);
5887 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5888 // we can't use the full cleanup mechanism.
5889 for (CallLifetimeEnd
&LifetimeEnd
: CallLifetimeEndAfterCall
)
5890 LifetimeEnd
.Emit(*this, /*Flags=*/{});
5892 if (!ReturnValue
.isExternallyDestructed() &&
5893 RetTy
.isDestructedType() == QualType::DK_nontrivial_c_struct
)
5894 pushDestroy(QualType::DK_nontrivial_c_struct
, Ret
.getAggregateAddress(),
5900 CGCallee
CGCallee::prepareConcreteCallee(CodeGenFunction
&CGF
) const {
5902 const CallExpr
*CE
= getVirtualCallExpr();
5903 return CGF
.CGM
.getCXXABI().getVirtualFunctionPointer(
5904 CGF
, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5905 CE
? CE
->getBeginLoc() : SourceLocation());
5911 /* VarArg handling */
5913 Address
CodeGenFunction::EmitVAArg(VAArgExpr
*VE
, Address
&VAListAddr
) {
5914 VAListAddr
= VE
->isMicrosoftABI()
5915 ? EmitMSVAListRef(VE
->getSubExpr())
5916 : EmitVAListRef(VE
->getSubExpr());
5917 QualType Ty
= VE
->getType();
5918 if (VE
->isMicrosoftABI())
5919 return CGM
.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr
, Ty
);
5920 return CGM
.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr
, Ty
);