[cmake] Add minor version to library SONAME (#79376)
[llvm-project.git] / clang / lib / CodeGen / CGClass.cpp
blob34319381901af6c9458fd6cea2af18cf97be75e7
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
11 //===----------------------------------------------------------------------===//
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 #include "llvm/Transforms/Utils/SanitizerStats.h"
33 #include <optional>
35 using namespace clang;
36 using namespace CodeGen;
38 /// Return the best known alignment for an unknown pointer to a
39 /// particular class.
40 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
41 if (!RD->hasDefinition())
42 return CharUnits::One(); // Hopefully won't be used anywhere.
44 auto &layout = getContext().getASTRecordLayout(RD);
46 // If the class is final, then we know that the pointer points to an
47 // object of that type and can use the full alignment.
48 if (RD->isEffectivelyFinal())
49 return layout.getAlignment();
51 // Otherwise, we have to assume it could be a subclass.
52 return layout.getNonVirtualAlignment();
55 /// Return the smallest possible amount of storage that might be allocated
56 /// starting from the beginning of an object of a particular class.
57 ///
58 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
59 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
60 if (!RD->hasDefinition())
61 return CharUnits::One();
63 auto &layout = getContext().getASTRecordLayout(RD);
65 // If the class is final, then we know that the pointer points to an
66 // object of that type and can use the full alignment.
67 if (RD->isEffectivelyFinal())
68 return layout.getSize();
70 // Otherwise, we have to assume it could be a subclass.
71 return std::max(layout.getNonVirtualSize(), CharUnits::One());
74 /// Return the best known alignment for a pointer to a virtual base,
75 /// given the alignment of a pointer to the derived class.
76 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
77 const CXXRecordDecl *derivedClass,
78 const CXXRecordDecl *vbaseClass) {
79 // The basic idea here is that an underaligned derived pointer might
80 // indicate an underaligned base pointer.
82 assert(vbaseClass->isCompleteDefinition());
83 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
84 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
86 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
87 expectedVBaseAlign);
90 CharUnits
91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
92 const CXXRecordDecl *baseDecl,
93 CharUnits expectedTargetAlign) {
94 // If the base is an incomplete type (which is, alas, possible with
95 // member pointers), be pessimistic.
96 if (!baseDecl->isCompleteDefinition())
97 return std::min(actualBaseAlign, expectedTargetAlign);
99 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
100 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
102 // If the class is properly aligned, assume the target offset is, too.
104 // This actually isn't necessarily the right thing to do --- if the
105 // class is a complete object, but it's only properly aligned for a
106 // base subobject, then the alignments of things relative to it are
107 // probably off as well. (Note that this requires the alignment of
108 // the target to be greater than the NV alignment of the derived
109 // class.)
111 // However, our approach to this kind of under-alignment can only
112 // ever be best effort; after all, we're never going to propagate
113 // alignments through variables or parameters. Note, in particular,
114 // that constructing a polymorphic type in an address that's less
115 // than pointer-aligned will generally trap in the constructor,
116 // unless we someday add some sort of attribute to change the
117 // assumed alignment of 'this'. So our goal here is pretty much
118 // just to allow the user to explicitly say that a pointer is
119 // under-aligned and then safely access its fields and vtables.
120 if (actualBaseAlign >= expectedBaseAlign) {
121 return expectedTargetAlign;
124 // Otherwise, we might be offset by an arbitrary multiple of the
125 // actual alignment. The correct adjustment is to take the min of
126 // the two alignments.
127 return std::min(actualBaseAlign, expectedTargetAlign);
130 Address CodeGenFunction::LoadCXXThisAddress() {
131 assert(CurFuncDecl && "loading 'this' without a func declaration?");
132 auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
134 // Lazily compute CXXThisAlignment.
135 if (CXXThisAlignment.isZero()) {
136 // Just use the best known alignment for the parent.
137 // TODO: if we're currently emitting a complete-object ctor/dtor,
138 // we can always use the complete-object alignment.
139 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
142 llvm::Type *Ty = ConvertType(MD->getFunctionObjectParameterType());
143 return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull);
146 /// Emit the address of a field using a member data pointer.
148 /// \param E Only used for emergency diagnostics
149 Address
150 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
151 llvm::Value *memberPtr,
152 const MemberPointerType *memberPtrType,
153 LValueBaseInfo *BaseInfo,
154 TBAAAccessInfo *TBAAInfo) {
155 // Ask the ABI to compute the actual address.
156 llvm::Value *ptr =
157 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
158 memberPtr, memberPtrType);
160 QualType memberType = memberPtrType->getPointeeType();
161 CharUnits memberAlign =
162 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
163 memberAlign =
164 CGM.getDynamicOffsetAlignment(base.getAlignment(),
165 memberPtrType->getClass()->getAsCXXRecordDecl(),
166 memberAlign);
167 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
168 memberAlign);
171 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
172 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
173 CastExpr::path_const_iterator End) {
174 CharUnits Offset = CharUnits::Zero();
176 const ASTContext &Context = getContext();
177 const CXXRecordDecl *RD = DerivedClass;
179 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
180 const CXXBaseSpecifier *Base = *I;
181 assert(!Base->isVirtual() && "Should not see virtual bases here!");
183 // Get the layout.
184 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
186 const auto *BaseDecl =
187 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
189 // Add the offset.
190 Offset += Layout.getBaseClassOffset(BaseDecl);
192 RD = BaseDecl;
195 return Offset;
198 llvm::Constant *
199 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
200 CastExpr::path_const_iterator PathBegin,
201 CastExpr::path_const_iterator PathEnd) {
202 assert(PathBegin != PathEnd && "Base path should not be empty!");
204 CharUnits Offset =
205 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
206 if (Offset.isZero())
207 return nullptr;
209 llvm::Type *PtrDiffTy =
210 Types.ConvertType(getContext().getPointerDiffType());
212 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
215 /// Gets the address of a direct base class within a complete object.
216 /// This should only be used for (1) non-virtual bases or (2) virtual bases
217 /// when the type is known to be complete (e.g. in complete destructors).
219 /// The object pointed to by 'This' is assumed to be non-null.
220 Address
221 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
222 const CXXRecordDecl *Derived,
223 const CXXRecordDecl *Base,
224 bool BaseIsVirtual) {
225 // 'this' must be a pointer (in some address space) to Derived.
226 assert(This.getElementType() == ConvertType(Derived));
228 // Compute the offset of the virtual base.
229 CharUnits Offset;
230 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
231 if (BaseIsVirtual)
232 Offset = Layout.getVBaseClassOffset(Base);
233 else
234 Offset = Layout.getBaseClassOffset(Base);
236 // Shift and cast down to the base type.
237 // TODO: for complete types, this should be possible with a GEP.
238 Address V = This;
239 if (!Offset.isZero()) {
240 V = V.withElementType(Int8Ty);
241 V = Builder.CreateConstInBoundsByteGEP(V, Offset);
243 return V.withElementType(ConvertType(Base));
246 static Address
247 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
248 CharUnits nonVirtualOffset,
249 llvm::Value *virtualOffset,
250 const CXXRecordDecl *derivedClass,
251 const CXXRecordDecl *nearestVBase) {
252 // Assert that we have something to do.
253 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
255 // Compute the offset from the static and dynamic components.
256 llvm::Value *baseOffset;
257 if (!nonVirtualOffset.isZero()) {
258 llvm::Type *OffsetType =
259 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
260 CGF.CGM.getItaniumVTableContext().isRelativeLayout())
261 ? CGF.Int32Ty
262 : CGF.PtrDiffTy;
263 baseOffset =
264 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
265 if (virtualOffset) {
266 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
268 } else {
269 baseOffset = virtualOffset;
272 // Apply the base offset.
273 llvm::Value *ptr = addr.getPointer();
274 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
276 // If we have a virtual component, the alignment of the result will
277 // be relative only to the known alignment of that vbase.
278 CharUnits alignment;
279 if (virtualOffset) {
280 assert(nearestVBase && "virtual offset without vbase?");
281 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
282 derivedClass, nearestVBase);
283 } else {
284 alignment = addr.getAlignment();
286 alignment = alignment.alignmentAtOffset(nonVirtualOffset);
288 return Address(ptr, CGF.Int8Ty, alignment);
291 Address CodeGenFunction::GetAddressOfBaseClass(
292 Address Value, const CXXRecordDecl *Derived,
293 CastExpr::path_const_iterator PathBegin,
294 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
295 SourceLocation Loc) {
296 assert(PathBegin != PathEnd && "Base path should not be empty!");
298 CastExpr::path_const_iterator Start = PathBegin;
299 const CXXRecordDecl *VBase = nullptr;
301 // Sema has done some convenient canonicalization here: if the
302 // access path involved any virtual steps, the conversion path will
303 // *start* with a step down to the correct virtual base subobject,
304 // and hence will not require any further steps.
305 if ((*Start)->isVirtual()) {
306 VBase = cast<CXXRecordDecl>(
307 (*Start)->getType()->castAs<RecordType>()->getDecl());
308 ++Start;
311 // Compute the static offset of the ultimate destination within its
312 // allocating subobject (the virtual base, if there is one, or else
313 // the "complete" object that we see).
314 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
315 VBase ? VBase : Derived, Start, PathEnd);
317 // If there's a virtual step, we can sometimes "devirtualize" it.
318 // For now, that's limited to when the derived type is final.
319 // TODO: "devirtualize" this for accesses to known-complete objects.
320 if (VBase && Derived->hasAttr<FinalAttr>()) {
321 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
322 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
323 NonVirtualOffset += vBaseOffset;
324 VBase = nullptr; // we no longer have a virtual step
327 // Get the base pointer type.
328 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
329 llvm::Type *PtrTy = llvm::PointerType::get(
330 CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
332 QualType DerivedTy = getContext().getRecordType(Derived);
333 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
335 // If the static offset is zero and we don't have a virtual step,
336 // just do a bitcast; null checks are unnecessary.
337 if (NonVirtualOffset.isZero() && !VBase) {
338 if (sanitizePerformTypeCheck()) {
339 SanitizerSet SkippedChecks;
340 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
341 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
342 DerivedTy, DerivedAlign, SkippedChecks);
344 return Value.withElementType(BaseValueTy);
347 llvm::BasicBlock *origBB = nullptr;
348 llvm::BasicBlock *endBB = nullptr;
350 // Skip over the offset (and the vtable load) if we're supposed to
351 // null-check the pointer.
352 if (NullCheckValue) {
353 origBB = Builder.GetInsertBlock();
354 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
355 endBB = createBasicBlock("cast.end");
357 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
358 Builder.CreateCondBr(isNull, endBB, notNullBB);
359 EmitBlock(notNullBB);
362 if (sanitizePerformTypeCheck()) {
363 SanitizerSet SkippedChecks;
364 SkippedChecks.set(SanitizerKind::Null, true);
365 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
366 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
369 // Compute the virtual offset.
370 llvm::Value *VirtualOffset = nullptr;
371 if (VBase) {
372 VirtualOffset =
373 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
376 // Apply both offsets.
377 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
378 VirtualOffset, Derived, VBase);
380 // Cast to the destination type.
381 Value = Value.withElementType(BaseValueTy);
383 // Build a phi if we needed a null check.
384 if (NullCheckValue) {
385 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
386 Builder.CreateBr(endBB);
387 EmitBlock(endBB);
389 llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
390 PHI->addIncoming(Value.getPointer(), notNullBB);
391 PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
392 Value = Value.withPointer(PHI, NotKnownNonNull);
395 return Value;
398 Address
399 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
400 const CXXRecordDecl *Derived,
401 CastExpr::path_const_iterator PathBegin,
402 CastExpr::path_const_iterator PathEnd,
403 bool NullCheckValue) {
404 assert(PathBegin != PathEnd && "Base path should not be empty!");
406 QualType DerivedTy =
407 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
408 llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
410 llvm::Value *NonVirtualOffset =
411 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
413 if (!NonVirtualOffset) {
414 // No offset, we can just cast back.
415 return BaseAddr.withElementType(DerivedValueTy);
418 llvm::BasicBlock *CastNull = nullptr;
419 llvm::BasicBlock *CastNotNull = nullptr;
420 llvm::BasicBlock *CastEnd = nullptr;
422 if (NullCheckValue) {
423 CastNull = createBasicBlock("cast.null");
424 CastNotNull = createBasicBlock("cast.notnull");
425 CastEnd = createBasicBlock("cast.end");
427 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
428 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
429 EmitBlock(CastNotNull);
432 // Apply the offset.
433 llvm::Value *Value = BaseAddr.getPointer();
434 Value = Builder.CreateInBoundsGEP(
435 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
437 // Produce a PHI if we had a null-check.
438 if (NullCheckValue) {
439 Builder.CreateBr(CastEnd);
440 EmitBlock(CastNull);
441 Builder.CreateBr(CastEnd);
442 EmitBlock(CastEnd);
444 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
445 PHI->addIncoming(Value, CastNotNull);
446 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
447 Value = PHI;
450 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived));
453 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
454 bool ForVirtualBase,
455 bool Delegating) {
456 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
457 // This constructor/destructor does not need a VTT parameter.
458 return nullptr;
461 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
462 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
464 uint64_t SubVTTIndex;
466 if (Delegating) {
467 // If this is a delegating constructor call, just load the VTT.
468 return LoadCXXVTT();
469 } else if (RD == Base) {
470 // If the record matches the base, this is the complete ctor/dtor
471 // variant calling the base variant in a class with virtual bases.
472 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
473 "doing no-op VTT offset in base dtor/ctor?");
474 assert(!ForVirtualBase && "Can't have same class as virtual base!");
475 SubVTTIndex = 0;
476 } else {
477 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
478 CharUnits BaseOffset = ForVirtualBase ?
479 Layout.getVBaseClassOffset(Base) :
480 Layout.getBaseClassOffset(Base);
482 SubVTTIndex =
483 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
484 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
487 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
488 // A VTT parameter was passed to the constructor, use it.
489 llvm::Value *VTT = LoadCXXVTT();
490 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
491 } else {
492 // We're the complete constructor, so get the VTT by name.
493 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
494 return Builder.CreateConstInBoundsGEP2_64(
495 VTT->getValueType(), VTT, 0, SubVTTIndex);
499 namespace {
500 /// Call the destructor for a direct base class.
501 struct CallBaseDtor final : EHScopeStack::Cleanup {
502 const CXXRecordDecl *BaseClass;
503 bool BaseIsVirtual;
504 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
505 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
507 void Emit(CodeGenFunction &CGF, Flags flags) override {
508 const CXXRecordDecl *DerivedClass =
509 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
511 const CXXDestructorDecl *D = BaseClass->getDestructor();
512 // We are already inside a destructor, so presumably the object being
513 // destroyed should have the expected type.
514 QualType ThisTy = D->getFunctionObjectParameterType();
515 Address Addr =
516 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
517 DerivedClass, BaseClass,
518 BaseIsVirtual);
519 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
520 /*Delegating=*/false, Addr, ThisTy);
524 /// A visitor which checks whether an initializer uses 'this' in a
525 /// way which requires the vtable to be properly set.
526 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
527 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
529 bool UsesThis;
531 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
533 // Black-list all explicit and implicit references to 'this'.
535 // Do we need to worry about external references to 'this' derived
536 // from arbitrary code? If so, then anything which runs arbitrary
537 // external code might potentially access the vtable.
538 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
540 } // end anonymous namespace
542 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
543 DynamicThisUseChecker Checker(C);
544 Checker.Visit(Init);
545 return Checker.UsesThis;
548 static void EmitBaseInitializer(CodeGenFunction &CGF,
549 const CXXRecordDecl *ClassDecl,
550 CXXCtorInitializer *BaseInit) {
551 assert(BaseInit->isBaseInitializer() &&
552 "Must have base initializer!");
554 Address ThisPtr = CGF.LoadCXXThisAddress();
556 const Type *BaseType = BaseInit->getBaseClass();
557 const auto *BaseClassDecl =
558 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
560 bool isBaseVirtual = BaseInit->isBaseVirtual();
562 // If the initializer for the base (other than the constructor
563 // itself) accesses 'this' in any way, we need to initialize the
564 // vtables.
565 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
566 CGF.InitializeVTablePointers(ClassDecl);
568 // We can pretend to be a complete class because it only matters for
569 // virtual bases, and we only do virtual bases for complete ctors.
570 Address V =
571 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
572 BaseClassDecl,
573 isBaseVirtual);
574 AggValueSlot AggSlot =
575 AggValueSlot::forAddr(
576 V, Qualifiers(),
577 AggValueSlot::IsDestructed,
578 AggValueSlot::DoesNotNeedGCBarriers,
579 AggValueSlot::IsNotAliased,
580 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
582 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
584 if (CGF.CGM.getLangOpts().Exceptions &&
585 !BaseClassDecl->hasTrivialDestructor())
586 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
587 isBaseVirtual);
590 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
591 auto *CD = dyn_cast<CXXConstructorDecl>(D);
592 if (!(CD && CD->isCopyOrMoveConstructor()) &&
593 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
594 return false;
596 // We can emit a memcpy for a trivial copy or move constructor/assignment.
597 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
598 return true;
600 // We *must* emit a memcpy for a defaulted union copy or move op.
601 if (D->getParent()->isUnion() && D->isDefaulted())
602 return true;
604 return false;
607 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
608 CXXCtorInitializer *MemberInit,
609 LValue &LHS) {
610 FieldDecl *Field = MemberInit->getAnyMember();
611 if (MemberInit->isIndirectMemberInitializer()) {
612 // If we are initializing an anonymous union field, drill down to the field.
613 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
614 for (const auto *I : IndirectField->chain())
615 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
616 } else {
617 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
621 static void EmitMemberInitializer(CodeGenFunction &CGF,
622 const CXXRecordDecl *ClassDecl,
623 CXXCtorInitializer *MemberInit,
624 const CXXConstructorDecl *Constructor,
625 FunctionArgList &Args) {
626 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
627 assert(MemberInit->isAnyMemberInitializer() &&
628 "Must have member initializer!");
629 assert(MemberInit->getInit() && "Must have initializer!");
631 // non-static data member initializers.
632 FieldDecl *Field = MemberInit->getAnyMember();
633 QualType FieldType = Field->getType();
635 llvm::Value *ThisPtr = CGF.LoadCXXThis();
636 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
637 LValue LHS;
639 // If a base constructor is being emitted, create an LValue that has the
640 // non-virtual alignment.
641 if (CGF.CurGD.getCtorType() == Ctor_Base)
642 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
643 else
644 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
646 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
648 // Special case: if we are in a copy or move constructor, and we are copying
649 // an array of PODs or classes with trivial copy constructors, ignore the
650 // AST and perform the copy we know is equivalent.
651 // FIXME: This is hacky at best... if we had a bit more explicit information
652 // in the AST, we could generalize it more easily.
653 const ConstantArrayType *Array
654 = CGF.getContext().getAsConstantArrayType(FieldType);
655 if (Array && Constructor->isDefaulted() &&
656 Constructor->isCopyOrMoveConstructor()) {
657 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
658 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
659 if (BaseElementTy.isPODType(CGF.getContext()) ||
660 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
661 unsigned SrcArgIndex =
662 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
663 llvm::Value *SrcPtr
664 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
665 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
666 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
668 // Copy the aggregate.
669 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
670 LHS.isVolatileQualified());
671 // Ensure that we destroy the objects if an exception is thrown later in
672 // the constructor.
673 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
674 if (CGF.needsEHCleanup(dtorKind))
675 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
676 return;
680 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
683 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
684 Expr *Init) {
685 QualType FieldType = Field->getType();
686 switch (getEvaluationKind(FieldType)) {
687 case TEK_Scalar:
688 if (LHS.isSimple()) {
689 EmitExprAsInit(Init, Field, LHS, false);
690 } else {
691 RValue RHS = RValue::get(EmitScalarExpr(Init));
692 EmitStoreThroughLValue(RHS, LHS);
694 break;
695 case TEK_Complex:
696 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
697 break;
698 case TEK_Aggregate: {
699 AggValueSlot Slot = AggValueSlot::forLValue(
700 LHS, *this, AggValueSlot::IsDestructed,
701 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
702 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
703 // Checks are made by the code that calls constructor.
704 AggValueSlot::IsSanitizerChecked);
705 EmitAggExpr(Init, Slot);
706 break;
710 // Ensure that we destroy this object if an exception is thrown
711 // later in the constructor.
712 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
713 if (needsEHCleanup(dtorKind))
714 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
717 /// Checks whether the given constructor is a valid subject for the
718 /// complete-to-base constructor delegation optimization, i.e.
719 /// emitting the complete constructor as a simple call to the base
720 /// constructor.
721 bool CodeGenFunction::IsConstructorDelegationValid(
722 const CXXConstructorDecl *Ctor) {
724 // Currently we disable the optimization for classes with virtual
725 // bases because (1) the addresses of parameter variables need to be
726 // consistent across all initializers but (2) the delegate function
727 // call necessarily creates a second copy of the parameter variable.
729 // The limiting example (purely theoretical AFAIK):
730 // struct A { A(int &c) { c++; } };
731 // struct B : virtual A {
732 // B(int count) : A(count) { printf("%d\n", count); }
733 // };
734 // ...although even this example could in principle be emitted as a
735 // delegation since the address of the parameter doesn't escape.
736 if (Ctor->getParent()->getNumVBases()) {
737 // TODO: white-list trivial vbase initializers. This case wouldn't
738 // be subject to the restrictions below.
740 // TODO: white-list cases where:
741 // - there are no non-reference parameters to the constructor
742 // - the initializers don't access any non-reference parameters
743 // - the initializers don't take the address of non-reference
744 // parameters
745 // - etc.
746 // If we ever add any of the above cases, remember that:
747 // - function-try-blocks will always exclude this optimization
748 // - we need to perform the constructor prologue and cleanup in
749 // EmitConstructorBody.
751 return false;
754 // We also disable the optimization for variadic functions because
755 // it's impossible to "re-pass" varargs.
756 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
757 return false;
759 // FIXME: Decide if we can do a delegation of a delegating constructor.
760 if (Ctor->isDelegatingConstructor())
761 return false;
763 return true;
766 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
767 // to poison the extra field paddings inserted under
768 // -fsanitize-address-field-padding=1|2.
769 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
770 ASTContext &Context = getContext();
771 const CXXRecordDecl *ClassDecl =
772 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
773 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
774 if (!ClassDecl->mayInsertExtraPadding()) return;
776 struct SizeAndOffset {
777 uint64_t Size;
778 uint64_t Offset;
781 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
782 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
784 // Populate sizes and offsets of fields.
785 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
786 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
787 SSV[i].Offset =
788 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
790 size_t NumFields = 0;
791 for (const auto *Field : ClassDecl->fields()) {
792 const FieldDecl *D = Field;
793 auto FieldInfo = Context.getTypeInfoInChars(D->getType());
794 CharUnits FieldSize = FieldInfo.Width;
795 assert(NumFields < SSV.size());
796 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
797 NumFields++;
799 assert(NumFields == SSV.size());
800 if (SSV.size() <= 1) return;
802 // We will insert calls to __asan_* run-time functions.
803 // LLVM AddressSanitizer pass may decide to inline them later.
804 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
805 llvm::FunctionType *FTy =
806 llvm::FunctionType::get(CGM.VoidTy, Args, false);
807 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
808 FTy, Prologue ? "__asan_poison_intra_object_redzone"
809 : "__asan_unpoison_intra_object_redzone");
811 llvm::Value *ThisPtr = LoadCXXThis();
812 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
813 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
814 // For each field check if it has sufficient padding,
815 // if so (un)poison it with a call.
816 for (size_t i = 0; i < SSV.size(); i++) {
817 uint64_t AsanAlignment = 8;
818 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
819 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
820 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
821 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
822 (NextField % AsanAlignment) != 0)
823 continue;
824 Builder.CreateCall(
825 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
826 Builder.getIntN(PtrSize, PoisonSize)});
830 /// EmitConstructorBody - Emits the body of the current constructor.
831 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
832 EmitAsanPrologueOrEpilogue(true);
833 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
834 CXXCtorType CtorType = CurGD.getCtorType();
836 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
837 CtorType == Ctor_Complete) &&
838 "can only generate complete ctor for this ABI");
840 // Before we go any further, try the complete->base constructor
841 // delegation optimization.
842 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
843 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
844 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
845 return;
848 const FunctionDecl *Definition = nullptr;
849 Stmt *Body = Ctor->getBody(Definition);
850 assert(Definition == Ctor && "emitting wrong constructor body");
852 // Enter the function-try-block before the constructor prologue if
853 // applicable.
854 bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
855 if (IsTryBody)
856 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
858 incrementProfileCounter(Body);
859 maybeCreateMCDCCondBitmap();
861 RunCleanupsScope RunCleanups(*this);
863 // TODO: in restricted cases, we can emit the vbase initializers of
864 // a complete ctor and then delegate to the base ctor.
866 // Emit the constructor prologue, i.e. the base and member
867 // initializers.
868 EmitCtorPrologue(Ctor, CtorType, Args);
870 // Emit the body of the statement.
871 if (IsTryBody)
872 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
873 else if (Body)
874 EmitStmt(Body);
876 // Emit any cleanup blocks associated with the member or base
877 // initializers, which includes (along the exceptional path) the
878 // destructors for those members and bases that were fully
879 // constructed.
880 RunCleanups.ForceCleanup();
882 if (IsTryBody)
883 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
886 namespace {
887 /// RAII object to indicate that codegen is copying the value representation
888 /// instead of the object representation. Useful when copying a struct or
889 /// class which has uninitialized members and we're only performing
890 /// lvalue-to-rvalue conversion on the object but not its members.
891 class CopyingValueRepresentation {
892 public:
893 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
894 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
895 CGF.SanOpts.set(SanitizerKind::Bool, false);
896 CGF.SanOpts.set(SanitizerKind::Enum, false);
898 ~CopyingValueRepresentation() {
899 CGF.SanOpts = OldSanOpts;
901 private:
902 CodeGenFunction &CGF;
903 SanitizerSet OldSanOpts;
905 } // end anonymous namespace
907 namespace {
908 class FieldMemcpyizer {
909 public:
910 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
911 const VarDecl *SrcRec)
912 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
913 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
914 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
915 LastFieldOffset(0), LastAddedFieldIndex(0) {}
917 bool isMemcpyableField(FieldDecl *F) const {
918 // Never memcpy fields when we are adding poisoned paddings.
919 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
920 return false;
921 Qualifiers Qual = F->getType().getQualifiers();
922 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
923 return false;
924 return true;
927 void addMemcpyableField(FieldDecl *F) {
928 if (F->isZeroSize(CGF.getContext()))
929 return;
930 if (!FirstField)
931 addInitialField(F);
932 else
933 addNextField(F);
936 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
937 ASTContext &Ctx = CGF.getContext();
938 unsigned LastFieldSize =
939 LastField->isBitField()
940 ? LastField->getBitWidthValue(Ctx)
941 : Ctx.toBits(
942 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
943 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
944 FirstByteOffset + Ctx.getCharWidth() - 1;
945 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
946 return MemcpySize;
949 void emitMemcpy() {
950 // Give the subclass a chance to bail out if it feels the memcpy isn't
951 // worth it (e.g. Hasn't aggregated enough data).
952 if (!FirstField) {
953 return;
956 uint64_t FirstByteOffset;
957 if (FirstField->isBitField()) {
958 const CGRecordLayout &RL =
959 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
960 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
961 // FirstFieldOffset is not appropriate for bitfields,
962 // we need to use the storage offset instead.
963 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
964 } else {
965 FirstByteOffset = FirstFieldOffset;
968 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
969 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
970 Address ThisPtr = CGF.LoadCXXThisAddress();
971 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
972 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
973 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
974 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
975 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
977 emitMemcpyIR(
978 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
979 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
980 MemcpySize);
981 reset();
984 void reset() {
985 FirstField = nullptr;
988 protected:
989 CodeGenFunction &CGF;
990 const CXXRecordDecl *ClassDecl;
992 private:
993 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
994 DestPtr = DestPtr.withElementType(CGF.Int8Ty);
995 SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
996 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
999 void addInitialField(FieldDecl *F) {
1000 FirstField = F;
1001 LastField = F;
1002 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1003 LastFieldOffset = FirstFieldOffset;
1004 LastAddedFieldIndex = F->getFieldIndex();
1007 void addNextField(FieldDecl *F) {
1008 // For the most part, the following invariant will hold:
1009 // F->getFieldIndex() == LastAddedFieldIndex + 1
1010 // The one exception is that Sema won't add a copy-initializer for an
1011 // unnamed bitfield, which will show up here as a gap in the sequence.
1012 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1013 "Cannot aggregate fields out of order.");
1014 LastAddedFieldIndex = F->getFieldIndex();
1016 // The 'first' and 'last' fields are chosen by offset, rather than field
1017 // index. This allows the code to support bitfields, as well as regular
1018 // fields.
1019 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1020 if (FOffset < FirstFieldOffset) {
1021 FirstField = F;
1022 FirstFieldOffset = FOffset;
1023 } else if (FOffset >= LastFieldOffset) {
1024 LastField = F;
1025 LastFieldOffset = FOffset;
1029 const VarDecl *SrcRec;
1030 const ASTRecordLayout &RecLayout;
1031 FieldDecl *FirstField;
1032 FieldDecl *LastField;
1033 uint64_t FirstFieldOffset, LastFieldOffset;
1034 unsigned LastAddedFieldIndex;
1037 class ConstructorMemcpyizer : public FieldMemcpyizer {
1038 private:
1039 /// Get source argument for copy constructor. Returns null if not a copy
1040 /// constructor.
1041 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1042 const CXXConstructorDecl *CD,
1043 FunctionArgList &Args) {
1044 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1045 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1046 return nullptr;
1049 // Returns true if a CXXCtorInitializer represents a member initialization
1050 // that can be rolled into a memcpy.
1051 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1052 if (!MemcpyableCtor)
1053 return false;
1054 FieldDecl *Field = MemberInit->getMember();
1055 assert(Field && "No field for member init.");
1056 QualType FieldType = Field->getType();
1057 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1059 // Bail out on non-memcpyable, not-trivially-copyable members.
1060 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1061 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1062 FieldType->isReferenceType()))
1063 return false;
1065 // Bail out on volatile fields.
1066 if (!isMemcpyableField(Field))
1067 return false;
1069 // Otherwise we're good.
1070 return true;
1073 public:
1074 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1075 FunctionArgList &Args)
1076 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1077 ConstructorDecl(CD),
1078 MemcpyableCtor(CD->isDefaulted() &&
1079 CD->isCopyOrMoveConstructor() &&
1080 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1081 Args(Args) { }
1083 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1084 if (isMemberInitMemcpyable(MemberInit)) {
1085 AggregatedInits.push_back(MemberInit);
1086 addMemcpyableField(MemberInit->getMember());
1087 } else {
1088 emitAggregatedInits();
1089 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1090 ConstructorDecl, Args);
1094 void emitAggregatedInits() {
1095 if (AggregatedInits.size() <= 1) {
1096 // This memcpy is too small to be worthwhile. Fall back on default
1097 // codegen.
1098 if (!AggregatedInits.empty()) {
1099 CopyingValueRepresentation CVR(CGF);
1100 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1101 AggregatedInits[0], ConstructorDecl, Args);
1102 AggregatedInits.clear();
1104 reset();
1105 return;
1108 pushEHDestructors();
1109 emitMemcpy();
1110 AggregatedInits.clear();
1113 void pushEHDestructors() {
1114 Address ThisPtr = CGF.LoadCXXThisAddress();
1115 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1116 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1118 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1119 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1120 QualType FieldType = MemberInit->getAnyMember()->getType();
1121 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1122 if (!CGF.needsEHCleanup(dtorKind))
1123 continue;
1124 LValue FieldLHS = LHS;
1125 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1126 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1130 void finish() {
1131 emitAggregatedInits();
1134 private:
1135 const CXXConstructorDecl *ConstructorDecl;
1136 bool MemcpyableCtor;
1137 FunctionArgList &Args;
1138 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1141 class AssignmentMemcpyizer : public FieldMemcpyizer {
1142 private:
1143 // Returns the memcpyable field copied by the given statement, if one
1144 // exists. Otherwise returns null.
1145 FieldDecl *getMemcpyableField(Stmt *S) {
1146 if (!AssignmentsMemcpyable)
1147 return nullptr;
1148 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1149 // Recognise trivial assignments.
1150 if (BO->getOpcode() != BO_Assign)
1151 return nullptr;
1152 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1153 if (!ME)
1154 return nullptr;
1155 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1156 if (!Field || !isMemcpyableField(Field))
1157 return nullptr;
1158 Stmt *RHS = BO->getRHS();
1159 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1160 RHS = EC->getSubExpr();
1161 if (!RHS)
1162 return nullptr;
1163 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1164 if (ME2->getMemberDecl() == Field)
1165 return Field;
1167 return nullptr;
1168 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1169 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1170 if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1171 return nullptr;
1172 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1173 if (!IOA)
1174 return nullptr;
1175 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1176 if (!Field || !isMemcpyableField(Field))
1177 return nullptr;
1178 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1179 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1180 return nullptr;
1181 return Field;
1182 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1183 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1184 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1185 return nullptr;
1186 Expr *DstPtr = CE->getArg(0);
1187 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1188 DstPtr = DC->getSubExpr();
1189 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1190 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1191 return nullptr;
1192 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1193 if (!ME)
1194 return nullptr;
1195 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1196 if (!Field || !isMemcpyableField(Field))
1197 return nullptr;
1198 Expr *SrcPtr = CE->getArg(1);
1199 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1200 SrcPtr = SC->getSubExpr();
1201 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1202 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1203 return nullptr;
1204 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1205 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1206 return nullptr;
1207 return Field;
1210 return nullptr;
1213 bool AssignmentsMemcpyable;
1214 SmallVector<Stmt*, 16> AggregatedStmts;
1216 public:
1217 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1218 FunctionArgList &Args)
1219 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1220 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1221 assert(Args.size() == 2);
1224 void emitAssignment(Stmt *S) {
1225 FieldDecl *F = getMemcpyableField(S);
1226 if (F) {
1227 addMemcpyableField(F);
1228 AggregatedStmts.push_back(S);
1229 } else {
1230 emitAggregatedStmts();
1231 CGF.EmitStmt(S);
1235 void emitAggregatedStmts() {
1236 if (AggregatedStmts.size() <= 1) {
1237 if (!AggregatedStmts.empty()) {
1238 CopyingValueRepresentation CVR(CGF);
1239 CGF.EmitStmt(AggregatedStmts[0]);
1241 reset();
1244 emitMemcpy();
1245 AggregatedStmts.clear();
1248 void finish() {
1249 emitAggregatedStmts();
1252 } // end anonymous namespace
1254 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1255 const Type *BaseType = BaseInit->getBaseClass();
1256 const auto *BaseClassDecl =
1257 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1258 return BaseClassDecl->isDynamicClass();
1261 /// EmitCtorPrologue - This routine generates necessary code to initialize
1262 /// base classes and non-static data members belonging to this constructor.
1263 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1264 CXXCtorType CtorType,
1265 FunctionArgList &Args) {
1266 if (CD->isDelegatingConstructor())
1267 return EmitDelegatingCXXConstructorCall(CD, Args);
1269 const CXXRecordDecl *ClassDecl = CD->getParent();
1271 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1272 E = CD->init_end();
1274 // Virtual base initializers first, if any. They aren't needed if:
1275 // - This is a base ctor variant
1276 // - There are no vbases
1277 // - The class is abstract, so a complete object of it cannot be constructed
1279 // The check for an abstract class is necessary because sema may not have
1280 // marked virtual base destructors referenced.
1281 bool ConstructVBases = CtorType != Ctor_Base &&
1282 ClassDecl->getNumVBases() != 0 &&
1283 !ClassDecl->isAbstract();
1285 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1286 // constructor of a class with virtual bases takes an additional parameter to
1287 // conditionally construct the virtual bases. Emit that check here.
1288 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1289 if (ConstructVBases &&
1290 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1291 BaseCtorContinueBB =
1292 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1293 assert(BaseCtorContinueBB);
1296 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1297 if (!ConstructVBases)
1298 continue;
1299 SaveAndRestore ThisRAII(CXXThisValue);
1300 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1301 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1302 isInitializerOfDynamicClass(*B))
1303 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1304 EmitBaseInitializer(*this, ClassDecl, *B);
1307 if (BaseCtorContinueBB) {
1308 // Complete object handler should continue to the remaining initializers.
1309 Builder.CreateBr(BaseCtorContinueBB);
1310 EmitBlock(BaseCtorContinueBB);
1313 // Then, non-virtual base initializers.
1314 for (; B != E && (*B)->isBaseInitializer(); B++) {
1315 assert(!(*B)->isBaseVirtual());
1316 SaveAndRestore ThisRAII(CXXThisValue);
1317 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1318 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1319 isInitializerOfDynamicClass(*B))
1320 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1321 EmitBaseInitializer(*this, ClassDecl, *B);
1324 InitializeVTablePointers(ClassDecl);
1326 // And finally, initialize class members.
1327 FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1328 ConstructorMemcpyizer CM(*this, CD, Args);
1329 for (; B != E; B++) {
1330 CXXCtorInitializer *Member = (*B);
1331 assert(!Member->isBaseInitializer());
1332 assert(Member->isAnyMemberInitializer() &&
1333 "Delegating initializer on non-delegating constructor");
1334 CM.addMemberInitializer(Member);
1336 CM.finish();
1339 static bool
1340 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1342 static bool
1343 HasTrivialDestructorBody(ASTContext &Context,
1344 const CXXRecordDecl *BaseClassDecl,
1345 const CXXRecordDecl *MostDerivedClassDecl)
1347 // If the destructor is trivial we don't have to check anything else.
1348 if (BaseClassDecl->hasTrivialDestructor())
1349 return true;
1351 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1352 return false;
1354 // Check fields.
1355 for (const auto *Field : BaseClassDecl->fields())
1356 if (!FieldHasTrivialDestructorBody(Context, Field))
1357 return false;
1359 // Check non-virtual bases.
1360 for (const auto &I : BaseClassDecl->bases()) {
1361 if (I.isVirtual())
1362 continue;
1364 const CXXRecordDecl *NonVirtualBase =
1365 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1366 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1367 MostDerivedClassDecl))
1368 return false;
1371 if (BaseClassDecl == MostDerivedClassDecl) {
1372 // Check virtual bases.
1373 for (const auto &I : BaseClassDecl->vbases()) {
1374 const CXXRecordDecl *VirtualBase =
1375 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1376 if (!HasTrivialDestructorBody(Context, VirtualBase,
1377 MostDerivedClassDecl))
1378 return false;
1382 return true;
1385 static bool
1386 FieldHasTrivialDestructorBody(ASTContext &Context,
1387 const FieldDecl *Field)
1389 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1391 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1392 if (!RT)
1393 return true;
1395 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1397 // The destructor for an implicit anonymous union member is never invoked.
1398 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1399 return false;
1401 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1404 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1405 /// any vtable pointers before calling this destructor.
1406 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1407 const CXXDestructorDecl *Dtor) {
1408 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1409 if (!ClassDecl->isDynamicClass())
1410 return true;
1412 // For a final class, the vtable pointer is known to already point to the
1413 // class's vtable.
1414 if (ClassDecl->isEffectivelyFinal())
1415 return true;
1417 if (!Dtor->hasTrivialBody())
1418 return false;
1420 // Check the fields.
1421 for (const auto *Field : ClassDecl->fields())
1422 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1423 return false;
1425 return true;
1428 /// EmitDestructorBody - Emits the body of the current destructor.
1429 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1430 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1431 CXXDtorType DtorType = CurGD.getDtorType();
1433 // For an abstract class, non-base destructors are never used (and can't
1434 // be emitted in general, because vbase dtors may not have been validated
1435 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1436 // in fact emit references to them from other compilations, so emit them
1437 // as functions containing a trap instruction.
1438 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1439 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1440 TrapCall->setDoesNotReturn();
1441 TrapCall->setDoesNotThrow();
1442 Builder.CreateUnreachable();
1443 Builder.ClearInsertionPoint();
1444 return;
1447 Stmt *Body = Dtor->getBody();
1448 if (Body) {
1449 incrementProfileCounter(Body);
1450 maybeCreateMCDCCondBitmap();
1453 // The call to operator delete in a deleting destructor happens
1454 // outside of the function-try-block, which means it's always
1455 // possible to delegate the destructor body to the complete
1456 // destructor. Do so.
1457 if (DtorType == Dtor_Deleting) {
1458 RunCleanupsScope DtorEpilogue(*this);
1459 EnterDtorCleanups(Dtor, Dtor_Deleting);
1460 if (HaveInsertPoint()) {
1461 QualType ThisTy = Dtor->getFunctionObjectParameterType();
1462 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1463 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1465 return;
1468 // If the body is a function-try-block, enter the try before
1469 // anything else.
1470 bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1471 if (isTryBody)
1472 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1473 EmitAsanPrologueOrEpilogue(false);
1475 // Enter the epilogue cleanups.
1476 RunCleanupsScope DtorEpilogue(*this);
1478 // If this is the complete variant, just invoke the base variant;
1479 // the epilogue will destruct the virtual bases. But we can't do
1480 // this optimization if the body is a function-try-block, because
1481 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1482 // always delegate because we might not have a definition in this TU.
1483 switch (DtorType) {
1484 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1485 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1487 case Dtor_Complete:
1488 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1489 "can't emit a dtor without a body for non-Microsoft ABIs");
1491 // Enter the cleanup scopes for virtual bases.
1492 EnterDtorCleanups(Dtor, Dtor_Complete);
1494 if (!isTryBody) {
1495 QualType ThisTy = Dtor->getFunctionObjectParameterType();
1496 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1497 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1498 break;
1501 // Fallthrough: act like we're in the base variant.
1502 [[fallthrough]];
1504 case Dtor_Base:
1505 assert(Body);
1507 // Enter the cleanup scopes for fields and non-virtual bases.
1508 EnterDtorCleanups(Dtor, Dtor_Base);
1510 // Initialize the vtable pointers before entering the body.
1511 if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1512 // Insert the llvm.launder.invariant.group intrinsic before initializing
1513 // the vptrs to cancel any previous assumptions we might have made.
1514 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1515 CGM.getCodeGenOpts().OptimizationLevel > 0)
1516 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1517 InitializeVTablePointers(Dtor->getParent());
1520 if (isTryBody)
1521 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1522 else if (Body)
1523 EmitStmt(Body);
1524 else {
1525 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1526 // nothing to do besides what's in the epilogue
1528 // -fapple-kext must inline any call to this dtor into
1529 // the caller's body.
1530 if (getLangOpts().AppleKext)
1531 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1533 break;
1536 // Jump out through the epilogue cleanups.
1537 DtorEpilogue.ForceCleanup();
1539 // Exit the try if applicable.
1540 if (isTryBody)
1541 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1544 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1545 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1546 const Stmt *RootS = AssignOp->getBody();
1547 assert(isa<CompoundStmt>(RootS) &&
1548 "Body of an implicit assignment operator should be compound stmt.");
1549 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1551 LexicalScope Scope(*this, RootCS->getSourceRange());
1553 incrementProfileCounter(RootCS);
1554 maybeCreateMCDCCondBitmap();
1555 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1556 for (auto *I : RootCS->body())
1557 AM.emitAssignment(I);
1558 AM.finish();
1561 namespace {
1562 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1563 const CXXDestructorDecl *DD) {
1564 if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1565 return CGF.EmitScalarExpr(ThisArg);
1566 return CGF.LoadCXXThis();
1569 /// Call the operator delete associated with the current destructor.
1570 struct CallDtorDelete final : EHScopeStack::Cleanup {
1571 CallDtorDelete() {}
1573 void Emit(CodeGenFunction &CGF, Flags flags) override {
1574 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1575 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1576 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1577 LoadThisForDtorDelete(CGF, Dtor),
1578 CGF.getContext().getTagDeclType(ClassDecl));
1582 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1583 llvm::Value *ShouldDeleteCondition,
1584 bool ReturnAfterDelete) {
1585 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1586 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1587 llvm::Value *ShouldCallDelete
1588 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1589 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1591 CGF.EmitBlock(callDeleteBB);
1592 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1593 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1594 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1595 LoadThisForDtorDelete(CGF, Dtor),
1596 CGF.getContext().getTagDeclType(ClassDecl));
1597 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1598 ReturnAfterDelete &&
1599 "unexpected value for ReturnAfterDelete");
1600 if (ReturnAfterDelete)
1601 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1602 else
1603 CGF.Builder.CreateBr(continueBB);
1605 CGF.EmitBlock(continueBB);
1608 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1609 llvm::Value *ShouldDeleteCondition;
1611 public:
1612 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1613 : ShouldDeleteCondition(ShouldDeleteCondition) {
1614 assert(ShouldDeleteCondition != nullptr);
1617 void Emit(CodeGenFunction &CGF, Flags flags) override {
1618 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1619 /*ReturnAfterDelete*/false);
1623 class DestroyField final : public EHScopeStack::Cleanup {
1624 const FieldDecl *field;
1625 CodeGenFunction::Destroyer *destroyer;
1626 bool useEHCleanupForArray;
1628 public:
1629 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1630 bool useEHCleanupForArray)
1631 : field(field), destroyer(destroyer),
1632 useEHCleanupForArray(useEHCleanupForArray) {}
1634 void Emit(CodeGenFunction &CGF, Flags flags) override {
1635 // Find the address of the field.
1636 Address thisValue = CGF.LoadCXXThisAddress();
1637 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1638 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1639 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1640 assert(LV.isSimple());
1642 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1643 flags.isForNormalCleanup() && useEHCleanupForArray);
1647 class DeclAsInlineDebugLocation {
1648 CGDebugInfo *DI;
1649 llvm::MDNode *InlinedAt;
1650 std::optional<ApplyDebugLocation> Location;
1652 public:
1653 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1654 : DI(CGF.getDebugInfo()) {
1655 if (!DI)
1656 return;
1657 InlinedAt = DI->getInlinedAt();
1658 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1659 Location.emplace(CGF, Decl.getLocation());
1662 ~DeclAsInlineDebugLocation() {
1663 if (!DI)
1664 return;
1665 Location.reset();
1666 DI->setInlinedAt(InlinedAt);
1670 static void EmitSanitizerDtorCallback(
1671 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1672 std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1673 CodeGenFunction::SanitizerScope SanScope(&CGF);
1674 // Pass in void pointer and size of region as arguments to runtime
1675 // function
1676 SmallVector<llvm::Value *, 2> Args = {Ptr};
1677 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1679 if (PoisonSize.has_value()) {
1680 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1681 ArgTypes.emplace_back(CGF.SizeTy);
1684 llvm::FunctionType *FnType =
1685 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1686 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1688 CGF.EmitNounwindRuntimeCall(Fn, Args);
1691 static void
1692 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1693 CharUnits::QuantityType PoisonSize) {
1694 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1695 PoisonSize);
1698 /// Poison base class with a trivial destructor.
1699 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1700 const CXXRecordDecl *BaseClass;
1701 bool BaseIsVirtual;
1702 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1703 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1705 void Emit(CodeGenFunction &CGF, Flags flags) override {
1706 const CXXRecordDecl *DerivedClass =
1707 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1709 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1710 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1712 const ASTRecordLayout &BaseLayout =
1713 CGF.getContext().getASTRecordLayout(BaseClass);
1714 CharUnits BaseSize = BaseLayout.getSize();
1716 if (!BaseSize.isPositive())
1717 return;
1719 // Use the base class declaration location as inline DebugLocation. All
1720 // fields of the class are destroyed.
1721 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1722 EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(),
1723 BaseSize.getQuantity());
1725 // Prevent the current stack frame from disappearing from the stack trace.
1726 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1730 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1731 const CXXDestructorDecl *Dtor;
1732 unsigned StartIndex;
1733 unsigned EndIndex;
1735 public:
1736 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1737 unsigned EndIndex)
1738 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1740 // Generate function call for handling object poisoning.
1741 // Disables tail call elimination, to prevent the current stack frame
1742 // from disappearing from the stack trace.
1743 void Emit(CodeGenFunction &CGF, Flags flags) override {
1744 const ASTContext &Context = CGF.getContext();
1745 const ASTRecordLayout &Layout =
1746 Context.getASTRecordLayout(Dtor->getParent());
1748 // It's a first trivial field so it should be at the begining of a char,
1749 // still round up start offset just in case.
1750 CharUnits PoisonStart = Context.toCharUnitsFromBits(
1751 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1752 llvm::ConstantInt *OffsetSizePtr =
1753 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1755 llvm::Value *OffsetPtr =
1756 CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1758 CharUnits PoisonEnd;
1759 if (EndIndex >= Layout.getFieldCount()) {
1760 PoisonEnd = Layout.getNonVirtualSize();
1761 } else {
1762 PoisonEnd =
1763 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1765 CharUnits PoisonSize = PoisonEnd - PoisonStart;
1766 if (!PoisonSize.isPositive())
1767 return;
1769 // Use the top field declaration location as inline DebugLocation.
1770 DeclAsInlineDebugLocation InlineHere(
1771 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1772 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1774 // Prevent the current stack frame from disappearing from the stack trace.
1775 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1779 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1780 const CXXDestructorDecl *Dtor;
1782 public:
1783 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1785 // Generate function call for handling vtable pointer poisoning.
1786 void Emit(CodeGenFunction &CGF, Flags flags) override {
1787 assert(Dtor->getParent()->isDynamicClass());
1788 (void)Dtor;
1789 // Poison vtable and vtable ptr if they exist for this class.
1790 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1792 // Pass in void pointer and size of region as arguments to runtime
1793 // function
1794 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1795 VTablePtr);
1799 class SanitizeDtorCleanupBuilder {
1800 ASTContext &Context;
1801 EHScopeStack &EHStack;
1802 const CXXDestructorDecl *DD;
1803 std::optional<unsigned> StartIndex;
1805 public:
1806 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1807 const CXXDestructorDecl *DD)
1808 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1809 void PushCleanupForField(const FieldDecl *Field) {
1810 if (Field->isZeroSize(Context))
1811 return;
1812 unsigned FieldIndex = Field->getFieldIndex();
1813 if (FieldHasTrivialDestructorBody(Context, Field)) {
1814 if (!StartIndex)
1815 StartIndex = FieldIndex;
1816 } else if (StartIndex) {
1817 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1818 *StartIndex, FieldIndex);
1819 StartIndex = std::nullopt;
1822 void End() {
1823 if (StartIndex)
1824 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1825 *StartIndex, -1);
1828 } // end anonymous namespace
1830 /// Emit all code that comes at the end of class's
1831 /// destructor. This is to call destructors on members and base classes
1832 /// in reverse order of their construction.
1834 /// For a deleting destructor, this also handles the case where a destroying
1835 /// operator delete completely overrides the definition.
1836 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1837 CXXDtorType DtorType) {
1838 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1839 "Should not emit dtor epilogue for non-exported trivial dtor!");
1841 // The deleting-destructor phase just needs to call the appropriate
1842 // operator delete that Sema picked up.
1843 if (DtorType == Dtor_Deleting) {
1844 assert(DD->getOperatorDelete() &&
1845 "operator delete missing - EnterDtorCleanups");
1846 if (CXXStructorImplicitParamValue) {
1847 // If there is an implicit param to the deleting dtor, it's a boolean
1848 // telling whether this is a deleting destructor.
1849 if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1850 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1851 /*ReturnAfterDelete*/true);
1852 else
1853 EHStack.pushCleanup<CallDtorDeleteConditional>(
1854 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1855 } else {
1856 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1857 const CXXRecordDecl *ClassDecl = DD->getParent();
1858 EmitDeleteCall(DD->getOperatorDelete(),
1859 LoadThisForDtorDelete(*this, DD),
1860 getContext().getTagDeclType(ClassDecl));
1861 EmitBranchThroughCleanup(ReturnBlock);
1862 } else {
1863 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1866 return;
1869 const CXXRecordDecl *ClassDecl = DD->getParent();
1871 // Unions have no bases and do not call field destructors.
1872 if (ClassDecl->isUnion())
1873 return;
1875 // The complete-destructor phase just destructs all the virtual bases.
1876 if (DtorType == Dtor_Complete) {
1877 // Poison the vtable pointer such that access after the base
1878 // and member destructors are invoked is invalid.
1879 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1880 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1881 ClassDecl->isPolymorphic())
1882 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1884 // We push them in the forward order so that they'll be popped in
1885 // the reverse order.
1886 for (const auto &Base : ClassDecl->vbases()) {
1887 auto *BaseClassDecl =
1888 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1890 if (BaseClassDecl->hasTrivialDestructor()) {
1891 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1892 // memory. For non-trival base classes the same is done in the class
1893 // destructor.
1894 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1895 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1896 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1897 BaseClassDecl,
1898 /*BaseIsVirtual*/ true);
1899 } else {
1900 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1901 /*BaseIsVirtual*/ true);
1905 return;
1908 assert(DtorType == Dtor_Base);
1909 // Poison the vtable pointer if it has no virtual bases, but inherits
1910 // virtual functions.
1911 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1912 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1913 ClassDecl->isPolymorphic())
1914 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1916 // Destroy non-virtual bases.
1917 for (const auto &Base : ClassDecl->bases()) {
1918 // Ignore virtual bases.
1919 if (Base.isVirtual())
1920 continue;
1922 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1924 if (BaseClassDecl->hasTrivialDestructor()) {
1925 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1926 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1927 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1928 BaseClassDecl,
1929 /*BaseIsVirtual*/ false);
1930 } else {
1931 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1932 /*BaseIsVirtual*/ false);
1936 // Poison fields such that access after their destructors are
1937 // invoked, and before the base class destructor runs, is invalid.
1938 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1939 SanOpts.has(SanitizerKind::Memory);
1940 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1942 // Destroy direct fields.
1943 for (const auto *Field : ClassDecl->fields()) {
1944 if (SanitizeFields)
1945 SanitizeBuilder.PushCleanupForField(Field);
1947 QualType type = Field->getType();
1948 QualType::DestructionKind dtorKind = type.isDestructedType();
1949 if (!dtorKind)
1950 continue;
1952 // Anonymous union members do not have their destructors called.
1953 const RecordType *RT = type->getAsUnionType();
1954 if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1955 continue;
1957 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1958 EHStack.pushCleanup<DestroyField>(
1959 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1962 if (SanitizeFields)
1963 SanitizeBuilder.End();
1966 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1967 /// constructor for each of several members of an array.
1969 /// \param ctor the constructor to call for each element
1970 /// \param arrayType the type of the array to initialize
1971 /// \param arrayBegin an arrayType*
1972 /// \param zeroInitialize true if each element should be
1973 /// zero-initialized before it is constructed
1974 void CodeGenFunction::EmitCXXAggrConstructorCall(
1975 const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1976 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1977 bool zeroInitialize) {
1978 QualType elementType;
1979 llvm::Value *numElements =
1980 emitArrayLength(arrayType, elementType, arrayBegin);
1982 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1983 NewPointerIsChecked, zeroInitialize);
1986 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1987 /// constructor for each of several members of an array.
1989 /// \param ctor the constructor to call for each element
1990 /// \param numElements the number of elements in the array;
1991 /// may be zero
1992 /// \param arrayBase a T*, where T is the type constructed by ctor
1993 /// \param zeroInitialize true if each element should be
1994 /// zero-initialized before it is constructed
1995 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1996 llvm::Value *numElements,
1997 Address arrayBase,
1998 const CXXConstructExpr *E,
1999 bool NewPointerIsChecked,
2000 bool zeroInitialize) {
2001 // It's legal for numElements to be zero. This can happen both
2002 // dynamically, because x can be zero in 'new A[x]', and statically,
2003 // because of GCC extensions that permit zero-length arrays. There
2004 // are probably legitimate places where we could assume that this
2005 // doesn't happen, but it's not clear that it's worth it.
2006 llvm::BranchInst *zeroCheckBranch = nullptr;
2008 // Optimize for a constant count.
2009 llvm::ConstantInt *constantCount
2010 = dyn_cast<llvm::ConstantInt>(numElements);
2011 if (constantCount) {
2012 // Just skip out if the constant count is zero.
2013 if (constantCount->isZero()) return;
2015 // Otherwise, emit the check.
2016 } else {
2017 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2018 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2019 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2020 EmitBlock(loopBB);
2023 // Find the end of the array.
2024 llvm::Type *elementType = arrayBase.getElementType();
2025 llvm::Value *arrayBegin = arrayBase.getPointer();
2026 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2027 elementType, arrayBegin, numElements, "arrayctor.end");
2029 // Enter the loop, setting up a phi for the current location to initialize.
2030 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2031 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2032 EmitBlock(loopBB);
2033 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2034 "arrayctor.cur");
2035 cur->addIncoming(arrayBegin, entryBB);
2037 // Inside the loop body, emit the constructor call on the array element.
2039 // The alignment of the base, adjusted by the size of a single element,
2040 // provides a conservative estimate of the alignment of every element.
2041 // (This assumes we never start tracking offsetted alignments.)
2043 // Note that these are complete objects and so we don't need to
2044 // use the non-virtual size or alignment.
2045 QualType type = getContext().getTypeDeclType(ctor->getParent());
2046 CharUnits eltAlignment =
2047 arrayBase.getAlignment()
2048 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2049 Address curAddr = Address(cur, elementType, eltAlignment);
2051 // Zero initialize the storage, if requested.
2052 if (zeroInitialize)
2053 EmitNullInitialization(curAddr, type);
2055 // C++ [class.temporary]p4:
2056 // There are two contexts in which temporaries are destroyed at a different
2057 // point than the end of the full-expression. The first context is when a
2058 // default constructor is called to initialize an element of an array.
2059 // If the constructor has one or more default arguments, the destruction of
2060 // every temporary created in a default argument expression is sequenced
2061 // before the construction of the next array element, if any.
2064 RunCleanupsScope Scope(*this);
2066 // Evaluate the constructor and its arguments in a regular
2067 // partial-destroy cleanup.
2068 if (getLangOpts().Exceptions &&
2069 !ctor->getParent()->hasTrivialDestructor()) {
2070 Destroyer *destroyer = destroyCXXObject;
2071 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2072 *destroyer);
2074 auto currAVS = AggValueSlot::forAddr(
2075 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2076 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2077 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2078 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2079 : AggValueSlot::IsNotSanitizerChecked);
2080 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2081 /*Delegating=*/false, currAVS, E);
2084 // Go to the next element.
2085 llvm::Value *next = Builder.CreateInBoundsGEP(
2086 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2087 cur->addIncoming(next, Builder.GetInsertBlock());
2089 // Check whether that's the end of the loop.
2090 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2091 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2092 Builder.CreateCondBr(done, contBB, loopBB);
2094 // Patch the earlier check to skip over the loop.
2095 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2097 EmitBlock(contBB);
2100 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2101 Address addr,
2102 QualType type) {
2103 const RecordType *rtype = type->castAs<RecordType>();
2104 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2105 const CXXDestructorDecl *dtor = record->getDestructor();
2106 assert(!dtor->isTrivial());
2107 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2108 /*Delegating=*/false, addr, type);
2111 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2112 CXXCtorType Type,
2113 bool ForVirtualBase,
2114 bool Delegating,
2115 AggValueSlot ThisAVS,
2116 const CXXConstructExpr *E) {
2117 CallArgList Args;
2118 Address This = ThisAVS.getAddress();
2119 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2120 LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2121 llvm::Value *ThisPtr = This.getPointer();
2123 if (SlotAS != ThisAS) {
2124 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2125 llvm::Type *NewType =
2126 llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2127 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2128 ThisAS, SlotAS, NewType);
2131 // Push the this ptr.
2132 Args.add(RValue::get(ThisPtr), D->getThisType());
2134 // If this is a trivial constructor, emit a memcpy now before we lose
2135 // the alignment information on the argument.
2136 // FIXME: It would be better to preserve alignment information into CallArg.
2137 if (isMemcpyEquivalentSpecialMember(D)) {
2138 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2140 const Expr *Arg = E->getArg(0);
2141 LValue Src = EmitLValue(Arg);
2142 QualType DestTy = getContext().getTypeDeclType(D->getParent());
2143 LValue Dest = MakeAddrLValue(This, DestTy);
2144 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2145 return;
2148 // Add the rest of the user-supplied arguments.
2149 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2150 EvaluationOrder Order = E->isListInitialization()
2151 ? EvaluationOrder::ForceLeftToRight
2152 : EvaluationOrder::Default;
2153 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2154 /*ParamsToSkip*/ 0, Order);
2156 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2157 ThisAVS.mayOverlap(), E->getExprLoc(),
2158 ThisAVS.isSanitizerChecked());
2161 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2162 const CXXConstructorDecl *Ctor,
2163 CXXCtorType Type, CallArgList &Args) {
2164 // We can't forward a variadic call.
2165 if (Ctor->isVariadic())
2166 return false;
2168 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2169 // If the parameters are callee-cleanup, it's not safe to forward.
2170 for (auto *P : Ctor->parameters())
2171 if (P->needsDestruction(CGF.getContext()))
2172 return false;
2174 // Likewise if they're inalloca.
2175 const CGFunctionInfo &Info =
2176 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2177 if (Info.usesInAlloca())
2178 return false;
2181 // Anything else should be OK.
2182 return true;
2185 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2186 CXXCtorType Type,
2187 bool ForVirtualBase,
2188 bool Delegating,
2189 Address This,
2190 CallArgList &Args,
2191 AggValueSlot::Overlap_t Overlap,
2192 SourceLocation Loc,
2193 bool NewPointerIsChecked) {
2194 const CXXRecordDecl *ClassDecl = D->getParent();
2196 if (!NewPointerIsChecked)
2197 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2198 getContext().getRecordType(ClassDecl), CharUnits::Zero());
2200 if (D->isTrivial() && D->isDefaultConstructor()) {
2201 assert(Args.size() == 1 && "trivial default ctor with args");
2202 return;
2205 // If this is a trivial constructor, just emit what's needed. If this is a
2206 // union copy constructor, we must emit a memcpy, because the AST does not
2207 // model that copy.
2208 if (isMemcpyEquivalentSpecialMember(D)) {
2209 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2211 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2212 Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy),
2213 CGM.getNaturalTypeAlignment(SrcTy));
2214 LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2215 QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2216 LValue DestLVal = MakeAddrLValue(This, DestTy);
2217 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2218 return;
2221 bool PassPrototypeArgs = true;
2222 // Check whether we can actually emit the constructor before trying to do so.
2223 if (auto Inherited = D->getInheritedConstructor()) {
2224 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2225 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2226 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2227 Delegating, Args);
2228 return;
2232 // Insert any ABI-specific implicit constructor arguments.
2233 CGCXXABI::AddedStructorArgCounts ExtraArgs =
2234 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2235 Delegating, Args);
2237 // Emit the call.
2238 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2239 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2240 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2241 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2242 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2244 // Generate vtable assumptions if we're constructing a complete object
2245 // with a vtable. We don't do this for base subobjects for two reasons:
2246 // first, it's incorrect for classes with virtual bases, and second, we're
2247 // about to overwrite the vptrs anyway.
2248 // We also have to make sure if we can refer to vtable:
2249 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2250 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2251 // sure that definition of vtable is not hidden,
2252 // then we are always safe to refer to it.
2253 // FIXME: It looks like InstCombine is very inefficient on dealing with
2254 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2255 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2256 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2257 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2258 CGM.getCodeGenOpts().StrictVTablePointers)
2259 EmitVTableAssumptionLoads(ClassDecl, This);
2262 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2263 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2264 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2265 CallArgList Args;
2266 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2268 // Forward the parameters.
2269 if (InheritedFromVBase &&
2270 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2271 // Nothing to do; this construction is not responsible for constructing
2272 // the base class containing the inherited constructor.
2273 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2274 // have constructor variants?
2275 Args.push_back(ThisArg);
2276 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2277 // The inheriting constructor was inlined; just inject its arguments.
2278 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2279 "wrong number of parameters for inherited constructor call");
2280 Args = CXXInheritedCtorInitExprArgs;
2281 Args[0] = ThisArg;
2282 } else {
2283 // The inheriting constructor was not inlined. Emit delegating arguments.
2284 Args.push_back(ThisArg);
2285 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2286 assert(OuterCtor->getNumParams() == D->getNumParams());
2287 assert(!OuterCtor->isVariadic() && "should have been inlined");
2289 for (const auto *Param : OuterCtor->parameters()) {
2290 assert(getContext().hasSameUnqualifiedType(
2291 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2292 Param->getType()));
2293 EmitDelegateCallArg(Args, Param, E->getLocation());
2295 // Forward __attribute__(pass_object_size).
2296 if (Param->hasAttr<PassObjectSizeAttr>()) {
2297 auto *POSParam = SizeArguments[Param];
2298 assert(POSParam && "missing pass_object_size value for forwarding");
2299 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2304 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2305 This, Args, AggValueSlot::MayOverlap,
2306 E->getLocation(), /*NewPointerIsChecked*/true);
2309 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2310 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2311 bool Delegating, CallArgList &Args) {
2312 GlobalDecl GD(Ctor, CtorType);
2313 InlinedInheritingConstructorScope Scope(*this, GD);
2314 ApplyInlineDebugLocation DebugScope(*this, GD);
2315 RunCleanupsScope RunCleanups(*this);
2317 // Save the arguments to be passed to the inherited constructor.
2318 CXXInheritedCtorInitExprArgs = Args;
2320 FunctionArgList Params;
2321 QualType RetType = BuildFunctionArgList(CurGD, Params);
2322 FnRetTy = RetType;
2324 // Insert any ABI-specific implicit constructor arguments.
2325 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2326 ForVirtualBase, Delegating, Args);
2328 // Emit a simplified prolog. We only need to emit the implicit params.
2329 assert(Args.size() >= Params.size() && "too few arguments for call");
2330 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2331 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2332 const RValue &RV = Args[I].getRValue(*this);
2333 assert(!RV.isComplex() && "complex indirect params not supported");
2334 ParamValue Val = RV.isScalar()
2335 ? ParamValue::forDirect(RV.getScalarVal())
2336 : ParamValue::forIndirect(RV.getAggregateAddress());
2337 EmitParmDecl(*Params[I], Val, I + 1);
2341 // Create a return value slot if the ABI implementation wants one.
2342 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2343 // value instead.
2344 if (!RetType->isVoidType())
2345 ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2347 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2348 CXXThisValue = CXXABIThisValue;
2350 // Directly emit the constructor initializers.
2351 EmitCtorPrologue(Ctor, CtorType, Params);
2354 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2355 llvm::Value *VTableGlobal =
2356 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2357 if (!VTableGlobal)
2358 return;
2360 // We can just use the base offset in the complete class.
2361 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2363 if (!NonVirtualOffset.isZero())
2364 This =
2365 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2366 Vptr.VTableClass, Vptr.NearestVBase);
2368 llvm::Value *VPtrValue =
2369 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2370 llvm::Value *Cmp =
2371 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2372 Builder.CreateAssumption(Cmp);
2375 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2376 Address This) {
2377 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2378 for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2379 EmitVTableAssumptionLoad(Vptr, This);
2382 void
2383 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2384 Address This, Address Src,
2385 const CXXConstructExpr *E) {
2386 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2388 CallArgList Args;
2390 // Push the this ptr.
2391 Args.add(RValue::get(This.getPointer()), D->getThisType());
2393 // Push the src ptr.
2394 QualType QT = *(FPT->param_type_begin());
2395 llvm::Type *t = CGM.getTypes().ConvertType(QT);
2396 llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t);
2397 Args.add(RValue::get(SrcVal), QT);
2399 // Skip over first argument (Src).
2400 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2401 /*ParamsToSkip*/ 1);
2403 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2404 /*Delegating*/false, This, Args,
2405 AggValueSlot::MayOverlap, E->getExprLoc(),
2406 /*NewPointerIsChecked*/false);
2409 void
2410 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2411 CXXCtorType CtorType,
2412 const FunctionArgList &Args,
2413 SourceLocation Loc) {
2414 CallArgList DelegateArgs;
2416 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2417 assert(I != E && "no parameters to constructor");
2419 // this
2420 Address This = LoadCXXThisAddress();
2421 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2422 ++I;
2424 // FIXME: The location of the VTT parameter in the parameter list is
2425 // specific to the Itanium ABI and shouldn't be hardcoded here.
2426 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2427 assert(I != E && "cannot skip vtt parameter, already done with args");
2428 assert((*I)->getType()->isPointerType() &&
2429 "skipping parameter not of vtt type");
2430 ++I;
2433 // Explicit arguments.
2434 for (; I != E; ++I) {
2435 const VarDecl *param = *I;
2436 // FIXME: per-argument source location
2437 EmitDelegateCallArg(DelegateArgs, param, Loc);
2440 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2441 /*Delegating=*/true, This, DelegateArgs,
2442 AggValueSlot::MayOverlap, Loc,
2443 /*NewPointerIsChecked=*/true);
2446 namespace {
2447 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2448 const CXXDestructorDecl *Dtor;
2449 Address Addr;
2450 CXXDtorType Type;
2452 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2453 CXXDtorType Type)
2454 : Dtor(D), Addr(Addr), Type(Type) {}
2456 void Emit(CodeGenFunction &CGF, Flags flags) override {
2457 // We are calling the destructor from within the constructor.
2458 // Therefore, "this" should have the expected type.
2459 QualType ThisTy = Dtor->getFunctionObjectParameterType();
2460 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2461 /*Delegating=*/true, Addr, ThisTy);
2464 } // end anonymous namespace
2466 void
2467 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2468 const FunctionArgList &Args) {
2469 assert(Ctor->isDelegatingConstructor());
2471 Address ThisPtr = LoadCXXThisAddress();
2473 AggValueSlot AggSlot =
2474 AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2475 AggValueSlot::IsDestructed,
2476 AggValueSlot::DoesNotNeedGCBarriers,
2477 AggValueSlot::IsNotAliased,
2478 AggValueSlot::MayOverlap,
2479 AggValueSlot::IsNotZeroed,
2480 // Checks are made by the code that calls constructor.
2481 AggValueSlot::IsSanitizerChecked);
2483 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2485 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2486 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2487 CXXDtorType Type =
2488 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2490 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2491 ClassDecl->getDestructor(),
2492 ThisPtr, Type);
2496 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2497 CXXDtorType Type,
2498 bool ForVirtualBase,
2499 bool Delegating, Address This,
2500 QualType ThisTy) {
2501 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2502 Delegating, This, ThisTy);
2505 namespace {
2506 struct CallLocalDtor final : EHScopeStack::Cleanup {
2507 const CXXDestructorDecl *Dtor;
2508 Address Addr;
2509 QualType Ty;
2511 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2512 : Dtor(D), Addr(Addr), Ty(Ty) {}
2514 void Emit(CodeGenFunction &CGF, Flags flags) override {
2515 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2516 /*ForVirtualBase=*/false,
2517 /*Delegating=*/false, Addr, Ty);
2520 } // end anonymous namespace
2522 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2523 QualType T, Address Addr) {
2524 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2527 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2528 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2529 if (!ClassDecl) return;
2530 if (ClassDecl->hasTrivialDestructor()) return;
2532 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2533 assert(D && D->isUsed() && "destructor not marked as used!");
2534 PushDestructorCleanup(D, T, Addr);
2537 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2538 // Compute the address point.
2539 llvm::Value *VTableAddressPoint =
2540 CGM.getCXXABI().getVTableAddressPointInStructor(
2541 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2543 if (!VTableAddressPoint)
2544 return;
2546 // Compute where to store the address point.
2547 llvm::Value *VirtualOffset = nullptr;
2548 CharUnits NonVirtualOffset = CharUnits::Zero();
2550 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2551 // We need to use the virtual base offset offset because the virtual base
2552 // might have a different offset in the most derived class.
2554 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2555 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2556 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2557 } else {
2558 // We can just use the base offset in the complete class.
2559 NonVirtualOffset = Vptr.Base.getBaseOffset();
2562 // Apply the offsets.
2563 Address VTableField = LoadCXXThisAddress();
2564 if (!NonVirtualOffset.isZero() || VirtualOffset)
2565 VTableField = ApplyNonVirtualAndVirtualOffset(
2566 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2567 Vptr.NearestVBase);
2569 // Finally, store the address point. Use the same LLVM types as the field to
2570 // support optimization.
2571 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2572 llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2573 // vtable field is derived from `this` pointer, therefore they should be in
2574 // the same addr space. Note that this might not be LLVM address space 0.
2575 VTableField = VTableField.withElementType(PtrTy);
2577 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2578 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2579 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2580 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2581 CGM.getCodeGenOpts().StrictVTablePointers)
2582 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2585 CodeGenFunction::VPtrsVector
2586 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2587 CodeGenFunction::VPtrsVector VPtrsResult;
2588 VisitedVirtualBasesSetTy VBases;
2589 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2590 /*NearestVBase=*/nullptr,
2591 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2592 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2593 VPtrsResult);
2594 return VPtrsResult;
2597 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2598 const CXXRecordDecl *NearestVBase,
2599 CharUnits OffsetFromNearestVBase,
2600 bool BaseIsNonVirtualPrimaryBase,
2601 const CXXRecordDecl *VTableClass,
2602 VisitedVirtualBasesSetTy &VBases,
2603 VPtrsVector &Vptrs) {
2604 // If this base is a non-virtual primary base the address point has already
2605 // been set.
2606 if (!BaseIsNonVirtualPrimaryBase) {
2607 // Initialize the vtable pointer for this base.
2608 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2609 Vptrs.push_back(Vptr);
2612 const CXXRecordDecl *RD = Base.getBase();
2614 // Traverse bases.
2615 for (const auto &I : RD->bases()) {
2616 auto *BaseDecl =
2617 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2619 // Ignore classes without a vtable.
2620 if (!BaseDecl->isDynamicClass())
2621 continue;
2623 CharUnits BaseOffset;
2624 CharUnits BaseOffsetFromNearestVBase;
2625 bool BaseDeclIsNonVirtualPrimaryBase;
2627 if (I.isVirtual()) {
2628 // Check if we've visited this virtual base before.
2629 if (!VBases.insert(BaseDecl).second)
2630 continue;
2632 const ASTRecordLayout &Layout =
2633 getContext().getASTRecordLayout(VTableClass);
2635 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2636 BaseOffsetFromNearestVBase = CharUnits::Zero();
2637 BaseDeclIsNonVirtualPrimaryBase = false;
2638 } else {
2639 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2641 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2642 BaseOffsetFromNearestVBase =
2643 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2644 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2647 getVTablePointers(
2648 BaseSubobject(BaseDecl, BaseOffset),
2649 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2650 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2654 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2655 // Ignore classes without a vtable.
2656 if (!RD->isDynamicClass())
2657 return;
2659 // Initialize the vtable pointers for this class and all of its bases.
2660 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2661 for (const VPtr &Vptr : getVTablePointers(RD))
2662 InitializeVTablePointer(Vptr);
2664 if (RD->getNumVBases())
2665 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2668 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2669 llvm::Type *VTableTy,
2670 const CXXRecordDecl *RD) {
2671 Address VTablePtrSrc = This.withElementType(VTableTy);
2672 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2673 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2674 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2676 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2677 CGM.getCodeGenOpts().StrictVTablePointers)
2678 CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2680 return VTable;
2683 // If a class has a single non-virtual base and does not introduce or override
2684 // virtual member functions or fields, it will have the same layout as its base.
2685 // This function returns the least derived such class.
2687 // Casting an instance of a base class to such a derived class is technically
2688 // undefined behavior, but it is a relatively common hack for introducing member
2689 // functions on class instances with specific properties (e.g. llvm::Operator)
2690 // that works under most compilers and should not have security implications, so
2691 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2692 static const CXXRecordDecl *
2693 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2694 if (!RD->field_empty())
2695 return RD;
2697 if (RD->getNumVBases() != 0)
2698 return RD;
2700 if (RD->getNumBases() != 1)
2701 return RD;
2703 for (const CXXMethodDecl *MD : RD->methods()) {
2704 if (MD->isVirtual()) {
2705 // Virtual member functions are only ok if they are implicit destructors
2706 // because the implicit destructor will have the same semantics as the
2707 // base class's destructor if no fields are added.
2708 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2709 continue;
2710 return RD;
2714 return LeastDerivedClassWithSameLayout(
2715 RD->bases_begin()->getType()->getAsCXXRecordDecl());
2718 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2719 llvm::Value *VTable,
2720 SourceLocation Loc) {
2721 if (SanOpts.has(SanitizerKind::CFIVCall))
2722 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2723 else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2724 // Don't insert type test assumes if we are forcing public
2725 // visibility.
2726 !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2727 QualType Ty = QualType(RD->getTypeForDecl(), 0);
2728 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2729 llvm::Value *TypeId =
2730 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2732 // If we already know that the call has hidden LTO visibility, emit
2733 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2734 // will convert to @llvm.type.test() if we assert at link time that we have
2735 // whole program visibility.
2736 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2737 ? llvm::Intrinsic::type_test
2738 : llvm::Intrinsic::public_type_test;
2739 llvm::Value *TypeTest =
2740 Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2741 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2745 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2746 llvm::Value *VTable,
2747 CFITypeCheckKind TCK,
2748 SourceLocation Loc) {
2749 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2750 RD = LeastDerivedClassWithSameLayout(RD);
2752 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2755 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2756 bool MayBeNull,
2757 CFITypeCheckKind TCK,
2758 SourceLocation Loc) {
2759 if (!getLangOpts().CPlusPlus)
2760 return;
2762 auto *ClassTy = T->getAs<RecordType>();
2763 if (!ClassTy)
2764 return;
2766 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2768 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2769 return;
2771 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2772 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2774 llvm::BasicBlock *ContBlock = nullptr;
2776 if (MayBeNull) {
2777 llvm::Value *DerivedNotNull =
2778 Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull");
2780 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2781 ContBlock = createBasicBlock("cast.cont");
2783 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2785 EmitBlock(CheckBlock);
2788 llvm::Value *VTable;
2789 std::tie(VTable, ClassDecl) =
2790 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2792 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2794 if (MayBeNull) {
2795 Builder.CreateBr(ContBlock);
2796 EmitBlock(ContBlock);
2800 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2801 llvm::Value *VTable,
2802 CFITypeCheckKind TCK,
2803 SourceLocation Loc) {
2804 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2805 !CGM.HasHiddenLTOVisibility(RD))
2806 return;
2808 SanitizerMask M;
2809 llvm::SanitizerStatKind SSK;
2810 switch (TCK) {
2811 case CFITCK_VCall:
2812 M = SanitizerKind::CFIVCall;
2813 SSK = llvm::SanStat_CFI_VCall;
2814 break;
2815 case CFITCK_NVCall:
2816 M = SanitizerKind::CFINVCall;
2817 SSK = llvm::SanStat_CFI_NVCall;
2818 break;
2819 case CFITCK_DerivedCast:
2820 M = SanitizerKind::CFIDerivedCast;
2821 SSK = llvm::SanStat_CFI_DerivedCast;
2822 break;
2823 case CFITCK_UnrelatedCast:
2824 M = SanitizerKind::CFIUnrelatedCast;
2825 SSK = llvm::SanStat_CFI_UnrelatedCast;
2826 break;
2827 case CFITCK_ICall:
2828 case CFITCK_NVMFCall:
2829 case CFITCK_VMFCall:
2830 llvm_unreachable("unexpected sanitizer kind");
2833 std::string TypeName = RD->getQualifiedNameAsString();
2834 if (getContext().getNoSanitizeList().containsType(M, TypeName))
2835 return;
2837 SanitizerScope SanScope(this);
2838 EmitSanitizerStatReport(SSK);
2840 llvm::Metadata *MD =
2841 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2842 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2844 llvm::Value *TypeTest = Builder.CreateCall(
2845 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2847 llvm::Constant *StaticData[] = {
2848 llvm::ConstantInt::get(Int8Ty, TCK),
2849 EmitCheckSourceLocation(Loc),
2850 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2853 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2854 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2855 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2856 return;
2859 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2860 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2861 return;
2864 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2865 CGM.getLLVMContext(),
2866 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2867 llvm::Value *ValidVtable = Builder.CreateCall(
2868 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2869 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2870 StaticData, {VTable, ValidVtable});
2873 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2874 if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2875 !CGM.HasHiddenLTOVisibility(RD))
2876 return false;
2878 if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2879 return true;
2881 if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2882 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2883 return false;
2885 std::string TypeName = RD->getQualifiedNameAsString();
2886 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2887 TypeName);
2890 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2891 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2892 uint64_t VTableByteOffset) {
2893 SanitizerScope SanScope(this);
2895 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2897 llvm::Metadata *MD =
2898 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2899 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2901 llvm::Value *CheckedLoad = Builder.CreateCall(
2902 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2903 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2904 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2906 std::string TypeName = RD->getQualifiedNameAsString();
2907 if (SanOpts.has(SanitizerKind::CFIVCall) &&
2908 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2909 TypeName)) {
2910 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2911 SanitizerHandler::CFICheckFail, {}, {});
2914 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2915 VTableTy);
2918 void CodeGenFunction::EmitForwardingCallToLambda(
2919 const CXXMethodDecl *callOperator, CallArgList &callArgs,
2920 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2921 // Get the address of the call operator.
2922 if (!calleeFnInfo)
2923 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2925 if (!calleePtr)
2926 calleePtr =
2927 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2928 CGM.getTypes().GetFunctionType(*calleeFnInfo));
2930 // Prepare the return slot.
2931 const FunctionProtoType *FPT =
2932 callOperator->getType()->castAs<FunctionProtoType>();
2933 QualType resultType = FPT->getReturnType();
2934 ReturnValueSlot returnSlot;
2935 if (!resultType->isVoidType() &&
2936 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2937 !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2938 returnSlot =
2939 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2940 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2942 // We don't need to separately arrange the call arguments because
2943 // the call can't be variadic anyway --- it's impossible to forward
2944 // variadic arguments.
2946 // Now emit our call.
2947 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2948 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2950 // If necessary, copy the returned value into the slot.
2951 if (!resultType->isVoidType() && returnSlot.isNull()) {
2952 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2953 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2955 EmitReturnOfRValue(RV, resultType);
2956 } else
2957 EmitBranchThroughCleanup(ReturnBlock);
2960 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2961 const BlockDecl *BD = BlockInfo->getBlockDecl();
2962 const VarDecl *variable = BD->capture_begin()->getVariable();
2963 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2964 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2966 if (CallOp->isVariadic()) {
2967 // FIXME: Making this work correctly is nasty because it requires either
2968 // cloning the body of the call operator or making the call operator
2969 // forward.
2970 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2971 return;
2974 // Start building arguments for forwarding call
2975 CallArgList CallArgs;
2977 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2978 Address ThisPtr = GetAddrOfBlockDecl(variable);
2979 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2981 // Add the rest of the parameters.
2982 for (auto *param : BD->parameters())
2983 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2985 assert(!Lambda->isGenericLambda() &&
2986 "generic lambda interconversion to block not implemented");
2987 EmitForwardingCallToLambda(CallOp, CallArgs);
2990 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2991 if (MD->isVariadic()) {
2992 // FIXME: Making this work correctly is nasty because it requires either
2993 // cloning the body of the call operator or making the call operator
2994 // forward.
2995 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2996 return;
2999 const CXXRecordDecl *Lambda = MD->getParent();
3001 // Start building arguments for forwarding call
3002 CallArgList CallArgs;
3004 QualType LambdaType = getContext().getRecordType(Lambda);
3005 QualType ThisType = getContext().getPointerType(LambdaType);
3006 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3007 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
3009 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3012 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3013 CallArgList &CallArgs) {
3014 // Add the rest of the forwarded parameters.
3015 for (auto *Param : MD->parameters())
3016 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3018 const CXXRecordDecl *Lambda = MD->getParent();
3019 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3020 // For a generic lambda, find the corresponding call operator specialization
3021 // to which the call to the static-invoker shall be forwarded.
3022 if (Lambda->isGenericLambda()) {
3023 assert(MD->isFunctionTemplateSpecialization());
3024 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3025 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3026 void *InsertPos = nullptr;
3027 FunctionDecl *CorrespondingCallOpSpecialization =
3028 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3029 assert(CorrespondingCallOpSpecialization);
3030 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3033 // Special lambda forwarding when there are inalloca parameters.
3034 if (hasInAllocaArg(MD)) {
3035 const CGFunctionInfo *ImplFnInfo = nullptr;
3036 llvm::Function *ImplFn = nullptr;
3037 EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3039 EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3040 return;
3043 EmitForwardingCallToLambda(CallOp, CallArgs);
3046 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3047 if (MD->isVariadic()) {
3048 // FIXME: Making this work correctly is nasty because it requires either
3049 // cloning the body of the call operator or making the call operator forward.
3050 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3051 return;
3054 // Forward %this argument.
3055 CallArgList CallArgs;
3056 QualType LambdaType = getContext().getRecordType(MD->getParent());
3057 QualType ThisType = getContext().getPointerType(LambdaType);
3058 llvm::Value *ThisArg = CurFn->getArg(0);
3059 CallArgs.add(RValue::get(ThisArg), ThisType);
3061 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3064 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3065 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3066 llvm::Function **ImplFn) {
3067 const CGFunctionInfo &FnInfo =
3068 CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3069 llvm::Function *CallOpFn =
3070 cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3072 // Emit function containing the original call op body. __invoke will delegate
3073 // to this function.
3074 SmallVector<CanQualType, 4> ArgTypes;
3075 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3076 ArgTypes.push_back(I->type);
3077 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3078 FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3079 FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3081 // Create mangled name as if this was a method named __impl. If for some
3082 // reason the name doesn't look as expected then just tack __impl to the
3083 // front.
3084 // TODO: Use the name mangler to produce the right name instead of using
3085 // string replacement.
3086 StringRef CallOpName = CallOpFn->getName();
3087 std::string ImplName;
3088 if (size_t Pos = CallOpName.find_first_of("<lambda"))
3089 ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3090 else
3091 ImplName = ("__impl" + CallOpName).str();
3093 llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3094 if (!Fn) {
3095 Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3096 llvm::GlobalValue::InternalLinkage, ImplName,
3097 CGM.getModule());
3098 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3100 const GlobalDecl &GD = GlobalDecl(CallOp);
3101 const auto *D = cast<FunctionDecl>(GD.getDecl());
3102 CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3103 CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3105 *ImplFn = Fn;