1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code dealing with C++ code generation of classes
11 //===----------------------------------------------------------------------===//
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 #include "llvm/Transforms/Utils/SanitizerStats.h"
35 using namespace clang
;
36 using namespace CodeGen
;
38 /// Return the best known alignment for an unknown pointer to a
40 CharUnits
CodeGenModule::getClassPointerAlignment(const CXXRecordDecl
*RD
) {
41 if (!RD
->hasDefinition())
42 return CharUnits::One(); // Hopefully won't be used anywhere.
44 auto &layout
= getContext().getASTRecordLayout(RD
);
46 // If the class is final, then we know that the pointer points to an
47 // object of that type and can use the full alignment.
48 if (RD
->isEffectivelyFinal())
49 return layout
.getAlignment();
51 // Otherwise, we have to assume it could be a subclass.
52 return layout
.getNonVirtualAlignment();
55 /// Return the smallest possible amount of storage that might be allocated
56 /// starting from the beginning of an object of a particular class.
58 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
59 CharUnits
CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl
*RD
) {
60 if (!RD
->hasDefinition())
61 return CharUnits::One();
63 auto &layout
= getContext().getASTRecordLayout(RD
);
65 // If the class is final, then we know that the pointer points to an
66 // object of that type and can use the full alignment.
67 if (RD
->isEffectivelyFinal())
68 return layout
.getSize();
70 // Otherwise, we have to assume it could be a subclass.
71 return std::max(layout
.getNonVirtualSize(), CharUnits::One());
74 /// Return the best known alignment for a pointer to a virtual base,
75 /// given the alignment of a pointer to the derived class.
76 CharUnits
CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign
,
77 const CXXRecordDecl
*derivedClass
,
78 const CXXRecordDecl
*vbaseClass
) {
79 // The basic idea here is that an underaligned derived pointer might
80 // indicate an underaligned base pointer.
82 assert(vbaseClass
->isCompleteDefinition());
83 auto &baseLayout
= getContext().getASTRecordLayout(vbaseClass
);
84 CharUnits expectedVBaseAlign
= baseLayout
.getNonVirtualAlignment();
86 return getDynamicOffsetAlignment(actualDerivedAlign
, derivedClass
,
91 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign
,
92 const CXXRecordDecl
*baseDecl
,
93 CharUnits expectedTargetAlign
) {
94 // If the base is an incomplete type (which is, alas, possible with
95 // member pointers), be pessimistic.
96 if (!baseDecl
->isCompleteDefinition())
97 return std::min(actualBaseAlign
, expectedTargetAlign
);
99 auto &baseLayout
= getContext().getASTRecordLayout(baseDecl
);
100 CharUnits expectedBaseAlign
= baseLayout
.getNonVirtualAlignment();
102 // If the class is properly aligned, assume the target offset is, too.
104 // This actually isn't necessarily the right thing to do --- if the
105 // class is a complete object, but it's only properly aligned for a
106 // base subobject, then the alignments of things relative to it are
107 // probably off as well. (Note that this requires the alignment of
108 // the target to be greater than the NV alignment of the derived
111 // However, our approach to this kind of under-alignment can only
112 // ever be best effort; after all, we're never going to propagate
113 // alignments through variables or parameters. Note, in particular,
114 // that constructing a polymorphic type in an address that's less
115 // than pointer-aligned will generally trap in the constructor,
116 // unless we someday add some sort of attribute to change the
117 // assumed alignment of 'this'. So our goal here is pretty much
118 // just to allow the user to explicitly say that a pointer is
119 // under-aligned and then safely access its fields and vtables.
120 if (actualBaseAlign
>= expectedBaseAlign
) {
121 return expectedTargetAlign
;
124 // Otherwise, we might be offset by an arbitrary multiple of the
125 // actual alignment. The correct adjustment is to take the min of
126 // the two alignments.
127 return std::min(actualBaseAlign
, expectedTargetAlign
);
130 Address
CodeGenFunction::LoadCXXThisAddress() {
131 assert(CurFuncDecl
&& "loading 'this' without a func declaration?");
132 auto *MD
= cast
<CXXMethodDecl
>(CurFuncDecl
);
134 // Lazily compute CXXThisAlignment.
135 if (CXXThisAlignment
.isZero()) {
136 // Just use the best known alignment for the parent.
137 // TODO: if we're currently emitting a complete-object ctor/dtor,
138 // we can always use the complete-object alignment.
139 CXXThisAlignment
= CGM
.getClassPointerAlignment(MD
->getParent());
142 llvm::Type
*Ty
= ConvertType(MD
->getFunctionObjectParameterType());
143 return Address(LoadCXXThis(), Ty
, CXXThisAlignment
, KnownNonNull
);
146 /// Emit the address of a field using a member data pointer.
148 /// \param E Only used for emergency diagnostics
150 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr
*E
, Address base
,
151 llvm::Value
*memberPtr
,
152 const MemberPointerType
*memberPtrType
,
153 LValueBaseInfo
*BaseInfo
,
154 TBAAAccessInfo
*TBAAInfo
) {
155 // Ask the ABI to compute the actual address.
157 CGM
.getCXXABI().EmitMemberDataPointerAddress(*this, E
, base
,
158 memberPtr
, memberPtrType
);
160 QualType memberType
= memberPtrType
->getPointeeType();
161 CharUnits memberAlign
=
162 CGM
.getNaturalTypeAlignment(memberType
, BaseInfo
, TBAAInfo
);
164 CGM
.getDynamicOffsetAlignment(base
.getAlignment(),
165 memberPtrType
->getClass()->getAsCXXRecordDecl(),
167 return Address(ptr
, ConvertTypeForMem(memberPtrType
->getPointeeType()),
171 CharUnits
CodeGenModule::computeNonVirtualBaseClassOffset(
172 const CXXRecordDecl
*DerivedClass
, CastExpr::path_const_iterator Start
,
173 CastExpr::path_const_iterator End
) {
174 CharUnits Offset
= CharUnits::Zero();
176 const ASTContext
&Context
= getContext();
177 const CXXRecordDecl
*RD
= DerivedClass
;
179 for (CastExpr::path_const_iterator I
= Start
; I
!= End
; ++I
) {
180 const CXXBaseSpecifier
*Base
= *I
;
181 assert(!Base
->isVirtual() && "Should not see virtual bases here!");
184 const ASTRecordLayout
&Layout
= Context
.getASTRecordLayout(RD
);
186 const auto *BaseDecl
=
187 cast
<CXXRecordDecl
>(Base
->getType()->castAs
<RecordType
>()->getDecl());
190 Offset
+= Layout
.getBaseClassOffset(BaseDecl
);
199 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl
*ClassDecl
,
200 CastExpr::path_const_iterator PathBegin
,
201 CastExpr::path_const_iterator PathEnd
) {
202 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
205 computeNonVirtualBaseClassOffset(ClassDecl
, PathBegin
, PathEnd
);
209 llvm::Type
*PtrDiffTy
=
210 Types
.ConvertType(getContext().getPointerDiffType());
212 return llvm::ConstantInt::get(PtrDiffTy
, Offset
.getQuantity());
215 /// Gets the address of a direct base class within a complete object.
216 /// This should only be used for (1) non-virtual bases or (2) virtual bases
217 /// when the type is known to be complete (e.g. in complete destructors).
219 /// The object pointed to by 'This' is assumed to be non-null.
221 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This
,
222 const CXXRecordDecl
*Derived
,
223 const CXXRecordDecl
*Base
,
224 bool BaseIsVirtual
) {
225 // 'this' must be a pointer (in some address space) to Derived.
226 assert(This
.getElementType() == ConvertType(Derived
));
228 // Compute the offset of the virtual base.
230 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(Derived
);
232 Offset
= Layout
.getVBaseClassOffset(Base
);
234 Offset
= Layout
.getBaseClassOffset(Base
);
236 // Shift and cast down to the base type.
237 // TODO: for complete types, this should be possible with a GEP.
239 if (!Offset
.isZero()) {
240 V
= V
.withElementType(Int8Ty
);
241 V
= Builder
.CreateConstInBoundsByteGEP(V
, Offset
);
243 return V
.withElementType(ConvertType(Base
));
247 ApplyNonVirtualAndVirtualOffset(CodeGenFunction
&CGF
, Address addr
,
248 CharUnits nonVirtualOffset
,
249 llvm::Value
*virtualOffset
,
250 const CXXRecordDecl
*derivedClass
,
251 const CXXRecordDecl
*nearestVBase
) {
252 // Assert that we have something to do.
253 assert(!nonVirtualOffset
.isZero() || virtualOffset
!= nullptr);
255 // Compute the offset from the static and dynamic components.
256 llvm::Value
*baseOffset
;
257 if (!nonVirtualOffset
.isZero()) {
258 llvm::Type
*OffsetType
=
259 (CGF
.CGM
.getTarget().getCXXABI().isItaniumFamily() &&
260 CGF
.CGM
.getItaniumVTableContext().isRelativeLayout())
264 llvm::ConstantInt::get(OffsetType
, nonVirtualOffset
.getQuantity());
266 baseOffset
= CGF
.Builder
.CreateAdd(virtualOffset
, baseOffset
);
269 baseOffset
= virtualOffset
;
272 // Apply the base offset.
273 llvm::Value
*ptr
= addr
.getPointer();
274 ptr
= CGF
.Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, ptr
, baseOffset
, "add.ptr");
276 // If we have a virtual component, the alignment of the result will
277 // be relative only to the known alignment of that vbase.
280 assert(nearestVBase
&& "virtual offset without vbase?");
281 alignment
= CGF
.CGM
.getVBaseAlignment(addr
.getAlignment(),
282 derivedClass
, nearestVBase
);
284 alignment
= addr
.getAlignment();
286 alignment
= alignment
.alignmentAtOffset(nonVirtualOffset
);
288 return Address(ptr
, CGF
.Int8Ty
, alignment
);
291 Address
CodeGenFunction::GetAddressOfBaseClass(
292 Address Value
, const CXXRecordDecl
*Derived
,
293 CastExpr::path_const_iterator PathBegin
,
294 CastExpr::path_const_iterator PathEnd
, bool NullCheckValue
,
295 SourceLocation Loc
) {
296 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
298 CastExpr::path_const_iterator Start
= PathBegin
;
299 const CXXRecordDecl
*VBase
= nullptr;
301 // Sema has done some convenient canonicalization here: if the
302 // access path involved any virtual steps, the conversion path will
303 // *start* with a step down to the correct virtual base subobject,
304 // and hence will not require any further steps.
305 if ((*Start
)->isVirtual()) {
306 VBase
= cast
<CXXRecordDecl
>(
307 (*Start
)->getType()->castAs
<RecordType
>()->getDecl());
311 // Compute the static offset of the ultimate destination within its
312 // allocating subobject (the virtual base, if there is one, or else
313 // the "complete" object that we see).
314 CharUnits NonVirtualOffset
= CGM
.computeNonVirtualBaseClassOffset(
315 VBase
? VBase
: Derived
, Start
, PathEnd
);
317 // If there's a virtual step, we can sometimes "devirtualize" it.
318 // For now, that's limited to when the derived type is final.
319 // TODO: "devirtualize" this for accesses to known-complete objects.
320 if (VBase
&& Derived
->hasAttr
<FinalAttr
>()) {
321 const ASTRecordLayout
&layout
= getContext().getASTRecordLayout(Derived
);
322 CharUnits vBaseOffset
= layout
.getVBaseClassOffset(VBase
);
323 NonVirtualOffset
+= vBaseOffset
;
324 VBase
= nullptr; // we no longer have a virtual step
327 // Get the base pointer type.
328 llvm::Type
*BaseValueTy
= ConvertType((PathEnd
[-1])->getType());
329 llvm::Type
*PtrTy
= llvm::PointerType::get(
330 CGM
.getLLVMContext(), Value
.getType()->getPointerAddressSpace());
332 QualType DerivedTy
= getContext().getRecordType(Derived
);
333 CharUnits DerivedAlign
= CGM
.getClassPointerAlignment(Derived
);
335 // If the static offset is zero and we don't have a virtual step,
336 // just do a bitcast; null checks are unnecessary.
337 if (NonVirtualOffset
.isZero() && !VBase
) {
338 if (sanitizePerformTypeCheck()) {
339 SanitizerSet SkippedChecks
;
340 SkippedChecks
.set(SanitizerKind::Null
, !NullCheckValue
);
341 EmitTypeCheck(TCK_Upcast
, Loc
, Value
.getPointer(),
342 DerivedTy
, DerivedAlign
, SkippedChecks
);
344 return Value
.withElementType(BaseValueTy
);
347 llvm::BasicBlock
*origBB
= nullptr;
348 llvm::BasicBlock
*endBB
= nullptr;
350 // Skip over the offset (and the vtable load) if we're supposed to
351 // null-check the pointer.
352 if (NullCheckValue
) {
353 origBB
= Builder
.GetInsertBlock();
354 llvm::BasicBlock
*notNullBB
= createBasicBlock("cast.notnull");
355 endBB
= createBasicBlock("cast.end");
357 llvm::Value
*isNull
= Builder
.CreateIsNull(Value
.getPointer());
358 Builder
.CreateCondBr(isNull
, endBB
, notNullBB
);
359 EmitBlock(notNullBB
);
362 if (sanitizePerformTypeCheck()) {
363 SanitizerSet SkippedChecks
;
364 SkippedChecks
.set(SanitizerKind::Null
, true);
365 EmitTypeCheck(VBase
? TCK_UpcastToVirtualBase
: TCK_Upcast
, Loc
,
366 Value
.getPointer(), DerivedTy
, DerivedAlign
, SkippedChecks
);
369 // Compute the virtual offset.
370 llvm::Value
*VirtualOffset
= nullptr;
373 CGM
.getCXXABI().GetVirtualBaseClassOffset(*this, Value
, Derived
, VBase
);
376 // Apply both offsets.
377 Value
= ApplyNonVirtualAndVirtualOffset(*this, Value
, NonVirtualOffset
,
378 VirtualOffset
, Derived
, VBase
);
380 // Cast to the destination type.
381 Value
= Value
.withElementType(BaseValueTy
);
383 // Build a phi if we needed a null check.
384 if (NullCheckValue
) {
385 llvm::BasicBlock
*notNullBB
= Builder
.GetInsertBlock();
386 Builder
.CreateBr(endBB
);
389 llvm::PHINode
*PHI
= Builder
.CreatePHI(PtrTy
, 2, "cast.result");
390 PHI
->addIncoming(Value
.getPointer(), notNullBB
);
391 PHI
->addIncoming(llvm::Constant::getNullValue(PtrTy
), origBB
);
392 Value
= Value
.withPointer(PHI
, NotKnownNonNull
);
399 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr
,
400 const CXXRecordDecl
*Derived
,
401 CastExpr::path_const_iterator PathBegin
,
402 CastExpr::path_const_iterator PathEnd
,
403 bool NullCheckValue
) {
404 assert(PathBegin
!= PathEnd
&& "Base path should not be empty!");
407 getContext().getCanonicalType(getContext().getTagDeclType(Derived
));
408 llvm::Type
*DerivedValueTy
= ConvertType(DerivedTy
);
410 llvm::Value
*NonVirtualOffset
=
411 CGM
.GetNonVirtualBaseClassOffset(Derived
, PathBegin
, PathEnd
);
413 if (!NonVirtualOffset
) {
414 // No offset, we can just cast back.
415 return BaseAddr
.withElementType(DerivedValueTy
);
418 llvm::BasicBlock
*CastNull
= nullptr;
419 llvm::BasicBlock
*CastNotNull
= nullptr;
420 llvm::BasicBlock
*CastEnd
= nullptr;
422 if (NullCheckValue
) {
423 CastNull
= createBasicBlock("cast.null");
424 CastNotNull
= createBasicBlock("cast.notnull");
425 CastEnd
= createBasicBlock("cast.end");
427 llvm::Value
*IsNull
= Builder
.CreateIsNull(BaseAddr
.getPointer());
428 Builder
.CreateCondBr(IsNull
, CastNull
, CastNotNull
);
429 EmitBlock(CastNotNull
);
433 llvm::Value
*Value
= BaseAddr
.getPointer();
434 Value
= Builder
.CreateInBoundsGEP(
435 Int8Ty
, Value
, Builder
.CreateNeg(NonVirtualOffset
), "sub.ptr");
437 // Produce a PHI if we had a null-check.
438 if (NullCheckValue
) {
439 Builder
.CreateBr(CastEnd
);
441 Builder
.CreateBr(CastEnd
);
444 llvm::PHINode
*PHI
= Builder
.CreatePHI(Value
->getType(), 2);
445 PHI
->addIncoming(Value
, CastNotNull
);
446 PHI
->addIncoming(llvm::Constant::getNullValue(Value
->getType()), CastNull
);
450 return Address(Value
, DerivedValueTy
, CGM
.getClassPointerAlignment(Derived
));
453 llvm::Value
*CodeGenFunction::GetVTTParameter(GlobalDecl GD
,
456 if (!CGM
.getCXXABI().NeedsVTTParameter(GD
)) {
457 // This constructor/destructor does not need a VTT parameter.
461 const CXXRecordDecl
*RD
= cast
<CXXMethodDecl
>(CurCodeDecl
)->getParent();
462 const CXXRecordDecl
*Base
= cast
<CXXMethodDecl
>(GD
.getDecl())->getParent();
464 uint64_t SubVTTIndex
;
467 // If this is a delegating constructor call, just load the VTT.
469 } else if (RD
== Base
) {
470 // If the record matches the base, this is the complete ctor/dtor
471 // variant calling the base variant in a class with virtual bases.
472 assert(!CGM
.getCXXABI().NeedsVTTParameter(CurGD
) &&
473 "doing no-op VTT offset in base dtor/ctor?");
474 assert(!ForVirtualBase
&& "Can't have same class as virtual base!");
477 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(RD
);
478 CharUnits BaseOffset
= ForVirtualBase
?
479 Layout
.getVBaseClassOffset(Base
) :
480 Layout
.getBaseClassOffset(Base
);
483 CGM
.getVTables().getSubVTTIndex(RD
, BaseSubobject(Base
, BaseOffset
));
484 assert(SubVTTIndex
!= 0 && "Sub-VTT index must be greater than zero!");
487 if (CGM
.getCXXABI().NeedsVTTParameter(CurGD
)) {
488 // A VTT parameter was passed to the constructor, use it.
489 llvm::Value
*VTT
= LoadCXXVTT();
490 return Builder
.CreateConstInBoundsGEP1_64(VoidPtrTy
, VTT
, SubVTTIndex
);
492 // We're the complete constructor, so get the VTT by name.
493 llvm::GlobalValue
*VTT
= CGM
.getVTables().GetAddrOfVTT(RD
);
494 return Builder
.CreateConstInBoundsGEP2_64(
495 VTT
->getValueType(), VTT
, 0, SubVTTIndex
);
500 /// Call the destructor for a direct base class.
501 struct CallBaseDtor final
: EHScopeStack::Cleanup
{
502 const CXXRecordDecl
*BaseClass
;
504 CallBaseDtor(const CXXRecordDecl
*Base
, bool BaseIsVirtual
)
505 : BaseClass(Base
), BaseIsVirtual(BaseIsVirtual
) {}
507 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
508 const CXXRecordDecl
*DerivedClass
=
509 cast
<CXXMethodDecl
>(CGF
.CurCodeDecl
)->getParent();
511 const CXXDestructorDecl
*D
= BaseClass
->getDestructor();
512 // We are already inside a destructor, so presumably the object being
513 // destroyed should have the expected type.
514 QualType ThisTy
= D
->getFunctionObjectParameterType();
516 CGF
.GetAddressOfDirectBaseInCompleteClass(CGF
.LoadCXXThisAddress(),
517 DerivedClass
, BaseClass
,
519 CGF
.EmitCXXDestructorCall(D
, Dtor_Base
, BaseIsVirtual
,
520 /*Delegating=*/false, Addr
, ThisTy
);
524 /// A visitor which checks whether an initializer uses 'this' in a
525 /// way which requires the vtable to be properly set.
526 struct DynamicThisUseChecker
: ConstEvaluatedExprVisitor
<DynamicThisUseChecker
> {
527 typedef ConstEvaluatedExprVisitor
<DynamicThisUseChecker
> super
;
531 DynamicThisUseChecker(const ASTContext
&C
) : super(C
), UsesThis(false) {}
533 // Black-list all explicit and implicit references to 'this'.
535 // Do we need to worry about external references to 'this' derived
536 // from arbitrary code? If so, then anything which runs arbitrary
537 // external code might potentially access the vtable.
538 void VisitCXXThisExpr(const CXXThisExpr
*E
) { UsesThis
= true; }
540 } // end anonymous namespace
542 static bool BaseInitializerUsesThis(ASTContext
&C
, const Expr
*Init
) {
543 DynamicThisUseChecker
Checker(C
);
545 return Checker
.UsesThis
;
548 static void EmitBaseInitializer(CodeGenFunction
&CGF
,
549 const CXXRecordDecl
*ClassDecl
,
550 CXXCtorInitializer
*BaseInit
) {
551 assert(BaseInit
->isBaseInitializer() &&
552 "Must have base initializer!");
554 Address ThisPtr
= CGF
.LoadCXXThisAddress();
556 const Type
*BaseType
= BaseInit
->getBaseClass();
557 const auto *BaseClassDecl
=
558 cast
<CXXRecordDecl
>(BaseType
->castAs
<RecordType
>()->getDecl());
560 bool isBaseVirtual
= BaseInit
->isBaseVirtual();
562 // If the initializer for the base (other than the constructor
563 // itself) accesses 'this' in any way, we need to initialize the
565 if (BaseInitializerUsesThis(CGF
.getContext(), BaseInit
->getInit()))
566 CGF
.InitializeVTablePointers(ClassDecl
);
568 // We can pretend to be a complete class because it only matters for
569 // virtual bases, and we only do virtual bases for complete ctors.
571 CGF
.GetAddressOfDirectBaseInCompleteClass(ThisPtr
, ClassDecl
,
574 AggValueSlot AggSlot
=
575 AggValueSlot::forAddr(
577 AggValueSlot::IsDestructed
,
578 AggValueSlot::DoesNotNeedGCBarriers
,
579 AggValueSlot::IsNotAliased
,
580 CGF
.getOverlapForBaseInit(ClassDecl
, BaseClassDecl
, isBaseVirtual
));
582 CGF
.EmitAggExpr(BaseInit
->getInit(), AggSlot
);
584 if (CGF
.CGM
.getLangOpts().Exceptions
&&
585 !BaseClassDecl
->hasTrivialDestructor())
586 CGF
.EHStack
.pushCleanup
<CallBaseDtor
>(EHCleanup
, BaseClassDecl
,
590 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl
*D
) {
591 auto *CD
= dyn_cast
<CXXConstructorDecl
>(D
);
592 if (!(CD
&& CD
->isCopyOrMoveConstructor()) &&
593 !D
->isCopyAssignmentOperator() && !D
->isMoveAssignmentOperator())
596 // We can emit a memcpy for a trivial copy or move constructor/assignment.
597 if (D
->isTrivial() && !D
->getParent()->mayInsertExtraPadding())
600 // We *must* emit a memcpy for a defaulted union copy or move op.
601 if (D
->getParent()->isUnion() && D
->isDefaulted())
607 static void EmitLValueForAnyFieldInitialization(CodeGenFunction
&CGF
,
608 CXXCtorInitializer
*MemberInit
,
610 FieldDecl
*Field
= MemberInit
->getAnyMember();
611 if (MemberInit
->isIndirectMemberInitializer()) {
612 // If we are initializing an anonymous union field, drill down to the field.
613 IndirectFieldDecl
*IndirectField
= MemberInit
->getIndirectMember();
614 for (const auto *I
: IndirectField
->chain())
615 LHS
= CGF
.EmitLValueForFieldInitialization(LHS
, cast
<FieldDecl
>(I
));
617 LHS
= CGF
.EmitLValueForFieldInitialization(LHS
, Field
);
621 static void EmitMemberInitializer(CodeGenFunction
&CGF
,
622 const CXXRecordDecl
*ClassDecl
,
623 CXXCtorInitializer
*MemberInit
,
624 const CXXConstructorDecl
*Constructor
,
625 FunctionArgList
&Args
) {
626 ApplyDebugLocation
Loc(CGF
, MemberInit
->getSourceLocation());
627 assert(MemberInit
->isAnyMemberInitializer() &&
628 "Must have member initializer!");
629 assert(MemberInit
->getInit() && "Must have initializer!");
631 // non-static data member initializers.
632 FieldDecl
*Field
= MemberInit
->getAnyMember();
633 QualType FieldType
= Field
->getType();
635 llvm::Value
*ThisPtr
= CGF
.LoadCXXThis();
636 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
639 // If a base constructor is being emitted, create an LValue that has the
640 // non-virtual alignment.
641 if (CGF
.CurGD
.getCtorType() == Ctor_Base
)
642 LHS
= CGF
.MakeNaturalAlignPointeeAddrLValue(ThisPtr
, RecordTy
);
644 LHS
= CGF
.MakeNaturalAlignAddrLValue(ThisPtr
, RecordTy
);
646 EmitLValueForAnyFieldInitialization(CGF
, MemberInit
, LHS
);
648 // Special case: if we are in a copy or move constructor, and we are copying
649 // an array of PODs or classes with trivial copy constructors, ignore the
650 // AST and perform the copy we know is equivalent.
651 // FIXME: This is hacky at best... if we had a bit more explicit information
652 // in the AST, we could generalize it more easily.
653 const ConstantArrayType
*Array
654 = CGF
.getContext().getAsConstantArrayType(FieldType
);
655 if (Array
&& Constructor
->isDefaulted() &&
656 Constructor
->isCopyOrMoveConstructor()) {
657 QualType BaseElementTy
= CGF
.getContext().getBaseElementType(Array
);
658 CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(MemberInit
->getInit());
659 if (BaseElementTy
.isPODType(CGF
.getContext()) ||
660 (CE
&& isMemcpyEquivalentSpecialMember(CE
->getConstructor()))) {
661 unsigned SrcArgIndex
=
662 CGF
.CGM
.getCXXABI().getSrcArgforCopyCtor(Constructor
, Args
);
664 = CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(Args
[SrcArgIndex
]));
665 LValue ThisRHSLV
= CGF
.MakeNaturalAlignAddrLValue(SrcPtr
, RecordTy
);
666 LValue Src
= CGF
.EmitLValueForFieldInitialization(ThisRHSLV
, Field
);
668 // Copy the aggregate.
669 CGF
.EmitAggregateCopy(LHS
, Src
, FieldType
, CGF
.getOverlapForFieldInit(Field
),
670 LHS
.isVolatileQualified());
671 // Ensure that we destroy the objects if an exception is thrown later in
673 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
674 if (CGF
.needsEHCleanup(dtorKind
))
675 CGF
.pushEHDestroy(dtorKind
, LHS
.getAddress(CGF
), FieldType
);
680 CGF
.EmitInitializerForField(Field
, LHS
, MemberInit
->getInit());
683 void CodeGenFunction::EmitInitializerForField(FieldDecl
*Field
, LValue LHS
,
685 QualType FieldType
= Field
->getType();
686 switch (getEvaluationKind(FieldType
)) {
688 if (LHS
.isSimple()) {
689 EmitExprAsInit(Init
, Field
, LHS
, false);
691 RValue RHS
= RValue::get(EmitScalarExpr(Init
));
692 EmitStoreThroughLValue(RHS
, LHS
);
696 EmitComplexExprIntoLValue(Init
, LHS
, /*isInit*/ true);
698 case TEK_Aggregate
: {
699 AggValueSlot Slot
= AggValueSlot::forLValue(
700 LHS
, *this, AggValueSlot::IsDestructed
,
701 AggValueSlot::DoesNotNeedGCBarriers
, AggValueSlot::IsNotAliased
,
702 getOverlapForFieldInit(Field
), AggValueSlot::IsNotZeroed
,
703 // Checks are made by the code that calls constructor.
704 AggValueSlot::IsSanitizerChecked
);
705 EmitAggExpr(Init
, Slot
);
710 // Ensure that we destroy this object if an exception is thrown
711 // later in the constructor.
712 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
713 if (needsEHCleanup(dtorKind
))
714 pushEHDestroy(dtorKind
, LHS
.getAddress(*this), FieldType
);
717 /// Checks whether the given constructor is a valid subject for the
718 /// complete-to-base constructor delegation optimization, i.e.
719 /// emitting the complete constructor as a simple call to the base
721 bool CodeGenFunction::IsConstructorDelegationValid(
722 const CXXConstructorDecl
*Ctor
) {
724 // Currently we disable the optimization for classes with virtual
725 // bases because (1) the addresses of parameter variables need to be
726 // consistent across all initializers but (2) the delegate function
727 // call necessarily creates a second copy of the parameter variable.
729 // The limiting example (purely theoretical AFAIK):
730 // struct A { A(int &c) { c++; } };
731 // struct B : virtual A {
732 // B(int count) : A(count) { printf("%d\n", count); }
734 // ...although even this example could in principle be emitted as a
735 // delegation since the address of the parameter doesn't escape.
736 if (Ctor
->getParent()->getNumVBases()) {
737 // TODO: white-list trivial vbase initializers. This case wouldn't
738 // be subject to the restrictions below.
740 // TODO: white-list cases where:
741 // - there are no non-reference parameters to the constructor
742 // - the initializers don't access any non-reference parameters
743 // - the initializers don't take the address of non-reference
746 // If we ever add any of the above cases, remember that:
747 // - function-try-blocks will always exclude this optimization
748 // - we need to perform the constructor prologue and cleanup in
749 // EmitConstructorBody.
754 // We also disable the optimization for variadic functions because
755 // it's impossible to "re-pass" varargs.
756 if (Ctor
->getType()->castAs
<FunctionProtoType
>()->isVariadic())
759 // FIXME: Decide if we can do a delegation of a delegating constructor.
760 if (Ctor
->isDelegatingConstructor())
766 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
767 // to poison the extra field paddings inserted under
768 // -fsanitize-address-field-padding=1|2.
769 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue
) {
770 ASTContext
&Context
= getContext();
771 const CXXRecordDecl
*ClassDecl
=
772 Prologue
? cast
<CXXConstructorDecl
>(CurGD
.getDecl())->getParent()
773 : cast
<CXXDestructorDecl
>(CurGD
.getDecl())->getParent();
774 if (!ClassDecl
->mayInsertExtraPadding()) return;
776 struct SizeAndOffset
{
781 unsigned PtrSize
= CGM
.getDataLayout().getPointerSizeInBits();
782 const ASTRecordLayout
&Info
= Context
.getASTRecordLayout(ClassDecl
);
784 // Populate sizes and offsets of fields.
785 SmallVector
<SizeAndOffset
, 16> SSV(Info
.getFieldCount());
786 for (unsigned i
= 0, e
= Info
.getFieldCount(); i
!= e
; ++i
)
788 Context
.toCharUnitsFromBits(Info
.getFieldOffset(i
)).getQuantity();
790 size_t NumFields
= 0;
791 for (const auto *Field
: ClassDecl
->fields()) {
792 const FieldDecl
*D
= Field
;
793 auto FieldInfo
= Context
.getTypeInfoInChars(D
->getType());
794 CharUnits FieldSize
= FieldInfo
.Width
;
795 assert(NumFields
< SSV
.size());
796 SSV
[NumFields
].Size
= D
->isBitField() ? 0 : FieldSize
.getQuantity();
799 assert(NumFields
== SSV
.size());
800 if (SSV
.size() <= 1) return;
802 // We will insert calls to __asan_* run-time functions.
803 // LLVM AddressSanitizer pass may decide to inline them later.
804 llvm::Type
*Args
[2] = {IntPtrTy
, IntPtrTy
};
805 llvm::FunctionType
*FTy
=
806 llvm::FunctionType::get(CGM
.VoidTy
, Args
, false);
807 llvm::FunctionCallee F
= CGM
.CreateRuntimeFunction(
808 FTy
, Prologue
? "__asan_poison_intra_object_redzone"
809 : "__asan_unpoison_intra_object_redzone");
811 llvm::Value
*ThisPtr
= LoadCXXThis();
812 ThisPtr
= Builder
.CreatePtrToInt(ThisPtr
, IntPtrTy
);
813 uint64_t TypeSize
= Info
.getNonVirtualSize().getQuantity();
814 // For each field check if it has sufficient padding,
815 // if so (un)poison it with a call.
816 for (size_t i
= 0; i
< SSV
.size(); i
++) {
817 uint64_t AsanAlignment
= 8;
818 uint64_t NextField
= i
== SSV
.size() - 1 ? TypeSize
: SSV
[i
+ 1].Offset
;
819 uint64_t PoisonSize
= NextField
- SSV
[i
].Offset
- SSV
[i
].Size
;
820 uint64_t EndOffset
= SSV
[i
].Offset
+ SSV
[i
].Size
;
821 if (PoisonSize
< AsanAlignment
|| !SSV
[i
].Size
||
822 (NextField
% AsanAlignment
) != 0)
825 F
, {Builder
.CreateAdd(ThisPtr
, Builder
.getIntN(PtrSize
, EndOffset
)),
826 Builder
.getIntN(PtrSize
, PoisonSize
)});
830 /// EmitConstructorBody - Emits the body of the current constructor.
831 void CodeGenFunction::EmitConstructorBody(FunctionArgList
&Args
) {
832 EmitAsanPrologueOrEpilogue(true);
833 const CXXConstructorDecl
*Ctor
= cast
<CXXConstructorDecl
>(CurGD
.getDecl());
834 CXXCtorType CtorType
= CurGD
.getCtorType();
836 assert((CGM
.getTarget().getCXXABI().hasConstructorVariants() ||
837 CtorType
== Ctor_Complete
) &&
838 "can only generate complete ctor for this ABI");
840 // Before we go any further, try the complete->base constructor
841 // delegation optimization.
842 if (CtorType
== Ctor_Complete
&& IsConstructorDelegationValid(Ctor
) &&
843 CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
844 EmitDelegateCXXConstructorCall(Ctor
, Ctor_Base
, Args
, Ctor
->getEndLoc());
848 const FunctionDecl
*Definition
= nullptr;
849 Stmt
*Body
= Ctor
->getBody(Definition
);
850 assert(Definition
== Ctor
&& "emitting wrong constructor body");
852 // Enter the function-try-block before the constructor prologue if
854 bool IsTryBody
= (Body
&& isa
<CXXTryStmt
>(Body
));
856 EnterCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
858 incrementProfileCounter(Body
);
859 maybeCreateMCDCCondBitmap();
861 RunCleanupsScope
RunCleanups(*this);
863 // TODO: in restricted cases, we can emit the vbase initializers of
864 // a complete ctor and then delegate to the base ctor.
866 // Emit the constructor prologue, i.e. the base and member
868 EmitCtorPrologue(Ctor
, CtorType
, Args
);
870 // Emit the body of the statement.
872 EmitStmt(cast
<CXXTryStmt
>(Body
)->getTryBlock());
876 // Emit any cleanup blocks associated with the member or base
877 // initializers, which includes (along the exceptional path) the
878 // destructors for those members and bases that were fully
880 RunCleanups
.ForceCleanup();
883 ExitCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
887 /// RAII object to indicate that codegen is copying the value representation
888 /// instead of the object representation. Useful when copying a struct or
889 /// class which has uninitialized members and we're only performing
890 /// lvalue-to-rvalue conversion on the object but not its members.
891 class CopyingValueRepresentation
{
893 explicit CopyingValueRepresentation(CodeGenFunction
&CGF
)
894 : CGF(CGF
), OldSanOpts(CGF
.SanOpts
) {
895 CGF
.SanOpts
.set(SanitizerKind::Bool
, false);
896 CGF
.SanOpts
.set(SanitizerKind::Enum
, false);
898 ~CopyingValueRepresentation() {
899 CGF
.SanOpts
= OldSanOpts
;
902 CodeGenFunction
&CGF
;
903 SanitizerSet OldSanOpts
;
905 } // end anonymous namespace
908 class FieldMemcpyizer
{
910 FieldMemcpyizer(CodeGenFunction
&CGF
, const CXXRecordDecl
*ClassDecl
,
911 const VarDecl
*SrcRec
)
912 : CGF(CGF
), ClassDecl(ClassDecl
), SrcRec(SrcRec
),
913 RecLayout(CGF
.getContext().getASTRecordLayout(ClassDecl
)),
914 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
915 LastFieldOffset(0), LastAddedFieldIndex(0) {}
917 bool isMemcpyableField(FieldDecl
*F
) const {
918 // Never memcpy fields when we are adding poisoned paddings.
919 if (CGF
.getContext().getLangOpts().SanitizeAddressFieldPadding
)
921 Qualifiers Qual
= F
->getType().getQualifiers();
922 if (Qual
.hasVolatile() || Qual
.hasObjCLifetime())
927 void addMemcpyableField(FieldDecl
*F
) {
928 if (F
->isZeroSize(CGF
.getContext()))
936 CharUnits
getMemcpySize(uint64_t FirstByteOffset
) const {
937 ASTContext
&Ctx
= CGF
.getContext();
938 unsigned LastFieldSize
=
939 LastField
->isBitField()
940 ? LastField
->getBitWidthValue(Ctx
)
942 Ctx
.getTypeInfoDataSizeInChars(LastField
->getType()).Width
);
943 uint64_t MemcpySizeBits
= LastFieldOffset
+ LastFieldSize
-
944 FirstByteOffset
+ Ctx
.getCharWidth() - 1;
945 CharUnits MemcpySize
= Ctx
.toCharUnitsFromBits(MemcpySizeBits
);
950 // Give the subclass a chance to bail out if it feels the memcpy isn't
951 // worth it (e.g. Hasn't aggregated enough data).
956 uint64_t FirstByteOffset
;
957 if (FirstField
->isBitField()) {
958 const CGRecordLayout
&RL
=
959 CGF
.getTypes().getCGRecordLayout(FirstField
->getParent());
960 const CGBitFieldInfo
&BFInfo
= RL
.getBitFieldInfo(FirstField
);
961 // FirstFieldOffset is not appropriate for bitfields,
962 // we need to use the storage offset instead.
963 FirstByteOffset
= CGF
.getContext().toBits(BFInfo
.StorageOffset
);
965 FirstByteOffset
= FirstFieldOffset
;
968 CharUnits MemcpySize
= getMemcpySize(FirstByteOffset
);
969 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
970 Address ThisPtr
= CGF
.LoadCXXThisAddress();
971 LValue DestLV
= CGF
.MakeAddrLValue(ThisPtr
, RecordTy
);
972 LValue Dest
= CGF
.EmitLValueForFieldInitialization(DestLV
, FirstField
);
973 llvm::Value
*SrcPtr
= CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(SrcRec
));
974 LValue SrcLV
= CGF
.MakeNaturalAlignAddrLValue(SrcPtr
, RecordTy
);
975 LValue Src
= CGF
.EmitLValueForFieldInitialization(SrcLV
, FirstField
);
978 Dest
.isBitField() ? Dest
.getBitFieldAddress() : Dest
.getAddress(CGF
),
979 Src
.isBitField() ? Src
.getBitFieldAddress() : Src
.getAddress(CGF
),
985 FirstField
= nullptr;
989 CodeGenFunction
&CGF
;
990 const CXXRecordDecl
*ClassDecl
;
993 void emitMemcpyIR(Address DestPtr
, Address SrcPtr
, CharUnits Size
) {
994 DestPtr
= DestPtr
.withElementType(CGF
.Int8Ty
);
995 SrcPtr
= SrcPtr
.withElementType(CGF
.Int8Ty
);
996 CGF
.Builder
.CreateMemCpy(DestPtr
, SrcPtr
, Size
.getQuantity());
999 void addInitialField(FieldDecl
*F
) {
1002 FirstFieldOffset
= RecLayout
.getFieldOffset(F
->getFieldIndex());
1003 LastFieldOffset
= FirstFieldOffset
;
1004 LastAddedFieldIndex
= F
->getFieldIndex();
1007 void addNextField(FieldDecl
*F
) {
1008 // For the most part, the following invariant will hold:
1009 // F->getFieldIndex() == LastAddedFieldIndex + 1
1010 // The one exception is that Sema won't add a copy-initializer for an
1011 // unnamed bitfield, which will show up here as a gap in the sequence.
1012 assert(F
->getFieldIndex() >= LastAddedFieldIndex
+ 1 &&
1013 "Cannot aggregate fields out of order.");
1014 LastAddedFieldIndex
= F
->getFieldIndex();
1016 // The 'first' and 'last' fields are chosen by offset, rather than field
1017 // index. This allows the code to support bitfields, as well as regular
1019 uint64_t FOffset
= RecLayout
.getFieldOffset(F
->getFieldIndex());
1020 if (FOffset
< FirstFieldOffset
) {
1022 FirstFieldOffset
= FOffset
;
1023 } else if (FOffset
>= LastFieldOffset
) {
1025 LastFieldOffset
= FOffset
;
1029 const VarDecl
*SrcRec
;
1030 const ASTRecordLayout
&RecLayout
;
1031 FieldDecl
*FirstField
;
1032 FieldDecl
*LastField
;
1033 uint64_t FirstFieldOffset
, LastFieldOffset
;
1034 unsigned LastAddedFieldIndex
;
1037 class ConstructorMemcpyizer
: public FieldMemcpyizer
{
1039 /// Get source argument for copy constructor. Returns null if not a copy
1041 static const VarDecl
*getTrivialCopySource(CodeGenFunction
&CGF
,
1042 const CXXConstructorDecl
*CD
,
1043 FunctionArgList
&Args
) {
1044 if (CD
->isCopyOrMoveConstructor() && CD
->isDefaulted())
1045 return Args
[CGF
.CGM
.getCXXABI().getSrcArgforCopyCtor(CD
, Args
)];
1049 // Returns true if a CXXCtorInitializer represents a member initialization
1050 // that can be rolled into a memcpy.
1051 bool isMemberInitMemcpyable(CXXCtorInitializer
*MemberInit
) const {
1052 if (!MemcpyableCtor
)
1054 FieldDecl
*Field
= MemberInit
->getMember();
1055 assert(Field
&& "No field for member init.");
1056 QualType FieldType
= Field
->getType();
1057 CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(MemberInit
->getInit());
1059 // Bail out on non-memcpyable, not-trivially-copyable members.
1060 if (!(CE
&& isMemcpyEquivalentSpecialMember(CE
->getConstructor())) &&
1061 !(FieldType
.isTriviallyCopyableType(CGF
.getContext()) ||
1062 FieldType
->isReferenceType()))
1065 // Bail out on volatile fields.
1066 if (!isMemcpyableField(Field
))
1069 // Otherwise we're good.
1074 ConstructorMemcpyizer(CodeGenFunction
&CGF
, const CXXConstructorDecl
*CD
,
1075 FunctionArgList
&Args
)
1076 : FieldMemcpyizer(CGF
, CD
->getParent(), getTrivialCopySource(CGF
, CD
, Args
)),
1077 ConstructorDecl(CD
),
1078 MemcpyableCtor(CD
->isDefaulted() &&
1079 CD
->isCopyOrMoveConstructor() &&
1080 CGF
.getLangOpts().getGC() == LangOptions::NonGC
),
1083 void addMemberInitializer(CXXCtorInitializer
*MemberInit
) {
1084 if (isMemberInitMemcpyable(MemberInit
)) {
1085 AggregatedInits
.push_back(MemberInit
);
1086 addMemcpyableField(MemberInit
->getMember());
1088 emitAggregatedInits();
1089 EmitMemberInitializer(CGF
, ConstructorDecl
->getParent(), MemberInit
,
1090 ConstructorDecl
, Args
);
1094 void emitAggregatedInits() {
1095 if (AggregatedInits
.size() <= 1) {
1096 // This memcpy is too small to be worthwhile. Fall back on default
1098 if (!AggregatedInits
.empty()) {
1099 CopyingValueRepresentation
CVR(CGF
);
1100 EmitMemberInitializer(CGF
, ConstructorDecl
->getParent(),
1101 AggregatedInits
[0], ConstructorDecl
, Args
);
1102 AggregatedInits
.clear();
1108 pushEHDestructors();
1110 AggregatedInits
.clear();
1113 void pushEHDestructors() {
1114 Address ThisPtr
= CGF
.LoadCXXThisAddress();
1115 QualType RecordTy
= CGF
.getContext().getTypeDeclType(ClassDecl
);
1116 LValue LHS
= CGF
.MakeAddrLValue(ThisPtr
, RecordTy
);
1118 for (unsigned i
= 0; i
< AggregatedInits
.size(); ++i
) {
1119 CXXCtorInitializer
*MemberInit
= AggregatedInits
[i
];
1120 QualType FieldType
= MemberInit
->getAnyMember()->getType();
1121 QualType::DestructionKind dtorKind
= FieldType
.isDestructedType();
1122 if (!CGF
.needsEHCleanup(dtorKind
))
1124 LValue FieldLHS
= LHS
;
1125 EmitLValueForAnyFieldInitialization(CGF
, MemberInit
, FieldLHS
);
1126 CGF
.pushEHDestroy(dtorKind
, FieldLHS
.getAddress(CGF
), FieldType
);
1131 emitAggregatedInits();
1135 const CXXConstructorDecl
*ConstructorDecl
;
1136 bool MemcpyableCtor
;
1137 FunctionArgList
&Args
;
1138 SmallVector
<CXXCtorInitializer
*, 16> AggregatedInits
;
1141 class AssignmentMemcpyizer
: public FieldMemcpyizer
{
1143 // Returns the memcpyable field copied by the given statement, if one
1144 // exists. Otherwise returns null.
1145 FieldDecl
*getMemcpyableField(Stmt
*S
) {
1146 if (!AssignmentsMemcpyable
)
1148 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(S
)) {
1149 // Recognise trivial assignments.
1150 if (BO
->getOpcode() != BO_Assign
)
1152 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(BO
->getLHS());
1155 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
1156 if (!Field
|| !isMemcpyableField(Field
))
1158 Stmt
*RHS
= BO
->getRHS();
1159 if (ImplicitCastExpr
*EC
= dyn_cast
<ImplicitCastExpr
>(RHS
))
1160 RHS
= EC
->getSubExpr();
1163 if (MemberExpr
*ME2
= dyn_cast
<MemberExpr
>(RHS
)) {
1164 if (ME2
->getMemberDecl() == Field
)
1168 } else if (CXXMemberCallExpr
*MCE
= dyn_cast
<CXXMemberCallExpr
>(S
)) {
1169 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(MCE
->getCalleeDecl());
1170 if (!(MD
&& isMemcpyEquivalentSpecialMember(MD
)))
1172 MemberExpr
*IOA
= dyn_cast
<MemberExpr
>(MCE
->getImplicitObjectArgument());
1175 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(IOA
->getMemberDecl());
1176 if (!Field
|| !isMemcpyableField(Field
))
1178 MemberExpr
*Arg0
= dyn_cast
<MemberExpr
>(MCE
->getArg(0));
1179 if (!Arg0
|| Field
!= dyn_cast
<FieldDecl
>(Arg0
->getMemberDecl()))
1182 } else if (CallExpr
*CE
= dyn_cast
<CallExpr
>(S
)) {
1183 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CE
->getCalleeDecl());
1184 if (!FD
|| FD
->getBuiltinID() != Builtin::BI__builtin_memcpy
)
1186 Expr
*DstPtr
= CE
->getArg(0);
1187 if (ImplicitCastExpr
*DC
= dyn_cast
<ImplicitCastExpr
>(DstPtr
))
1188 DstPtr
= DC
->getSubExpr();
1189 UnaryOperator
*DUO
= dyn_cast
<UnaryOperator
>(DstPtr
);
1190 if (!DUO
|| DUO
->getOpcode() != UO_AddrOf
)
1192 MemberExpr
*ME
= dyn_cast
<MemberExpr
>(DUO
->getSubExpr());
1195 FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
1196 if (!Field
|| !isMemcpyableField(Field
))
1198 Expr
*SrcPtr
= CE
->getArg(1);
1199 if (ImplicitCastExpr
*SC
= dyn_cast
<ImplicitCastExpr
>(SrcPtr
))
1200 SrcPtr
= SC
->getSubExpr();
1201 UnaryOperator
*SUO
= dyn_cast
<UnaryOperator
>(SrcPtr
);
1202 if (!SUO
|| SUO
->getOpcode() != UO_AddrOf
)
1204 MemberExpr
*ME2
= dyn_cast
<MemberExpr
>(SUO
->getSubExpr());
1205 if (!ME2
|| Field
!= dyn_cast
<FieldDecl
>(ME2
->getMemberDecl()))
1213 bool AssignmentsMemcpyable
;
1214 SmallVector
<Stmt
*, 16> AggregatedStmts
;
1217 AssignmentMemcpyizer(CodeGenFunction
&CGF
, const CXXMethodDecl
*AD
,
1218 FunctionArgList
&Args
)
1219 : FieldMemcpyizer(CGF
, AD
->getParent(), Args
[Args
.size() - 1]),
1220 AssignmentsMemcpyable(CGF
.getLangOpts().getGC() == LangOptions::NonGC
) {
1221 assert(Args
.size() == 2);
1224 void emitAssignment(Stmt
*S
) {
1225 FieldDecl
*F
= getMemcpyableField(S
);
1227 addMemcpyableField(F
);
1228 AggregatedStmts
.push_back(S
);
1230 emitAggregatedStmts();
1235 void emitAggregatedStmts() {
1236 if (AggregatedStmts
.size() <= 1) {
1237 if (!AggregatedStmts
.empty()) {
1238 CopyingValueRepresentation
CVR(CGF
);
1239 CGF
.EmitStmt(AggregatedStmts
[0]);
1245 AggregatedStmts
.clear();
1249 emitAggregatedStmts();
1252 } // end anonymous namespace
1254 static bool isInitializerOfDynamicClass(const CXXCtorInitializer
*BaseInit
) {
1255 const Type
*BaseType
= BaseInit
->getBaseClass();
1256 const auto *BaseClassDecl
=
1257 cast
<CXXRecordDecl
>(BaseType
->castAs
<RecordType
>()->getDecl());
1258 return BaseClassDecl
->isDynamicClass();
1261 /// EmitCtorPrologue - This routine generates necessary code to initialize
1262 /// base classes and non-static data members belonging to this constructor.
1263 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl
*CD
,
1264 CXXCtorType CtorType
,
1265 FunctionArgList
&Args
) {
1266 if (CD
->isDelegatingConstructor())
1267 return EmitDelegatingCXXConstructorCall(CD
, Args
);
1269 const CXXRecordDecl
*ClassDecl
= CD
->getParent();
1271 CXXConstructorDecl::init_const_iterator B
= CD
->init_begin(),
1274 // Virtual base initializers first, if any. They aren't needed if:
1275 // - This is a base ctor variant
1276 // - There are no vbases
1277 // - The class is abstract, so a complete object of it cannot be constructed
1279 // The check for an abstract class is necessary because sema may not have
1280 // marked virtual base destructors referenced.
1281 bool ConstructVBases
= CtorType
!= Ctor_Base
&&
1282 ClassDecl
->getNumVBases() != 0 &&
1283 !ClassDecl
->isAbstract();
1285 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1286 // constructor of a class with virtual bases takes an additional parameter to
1287 // conditionally construct the virtual bases. Emit that check here.
1288 llvm::BasicBlock
*BaseCtorContinueBB
= nullptr;
1289 if (ConstructVBases
&&
1290 !CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
1291 BaseCtorContinueBB
=
1292 CGM
.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl
);
1293 assert(BaseCtorContinueBB
);
1296 for (; B
!= E
&& (*B
)->isBaseInitializer() && (*B
)->isBaseVirtual(); B
++) {
1297 if (!ConstructVBases
)
1299 SaveAndRestore
ThisRAII(CXXThisValue
);
1300 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1301 CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
1302 isInitializerOfDynamicClass(*B
))
1303 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1304 EmitBaseInitializer(*this, ClassDecl
, *B
);
1307 if (BaseCtorContinueBB
) {
1308 // Complete object handler should continue to the remaining initializers.
1309 Builder
.CreateBr(BaseCtorContinueBB
);
1310 EmitBlock(BaseCtorContinueBB
);
1313 // Then, non-virtual base initializers.
1314 for (; B
!= E
&& (*B
)->isBaseInitializer(); B
++) {
1315 assert(!(*B
)->isBaseVirtual());
1316 SaveAndRestore
ThisRAII(CXXThisValue
);
1317 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1318 CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
1319 isInitializerOfDynamicClass(*B
))
1320 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1321 EmitBaseInitializer(*this, ClassDecl
, *B
);
1324 InitializeVTablePointers(ClassDecl
);
1326 // And finally, initialize class members.
1327 FieldConstructionScope
FCS(*this, LoadCXXThisAddress());
1328 ConstructorMemcpyizer
CM(*this, CD
, Args
);
1329 for (; B
!= E
; B
++) {
1330 CXXCtorInitializer
*Member
= (*B
);
1331 assert(!Member
->isBaseInitializer());
1332 assert(Member
->isAnyMemberInitializer() &&
1333 "Delegating initializer on non-delegating constructor");
1334 CM
.addMemberInitializer(Member
);
1340 FieldHasTrivialDestructorBody(ASTContext
&Context
, const FieldDecl
*Field
);
1343 HasTrivialDestructorBody(ASTContext
&Context
,
1344 const CXXRecordDecl
*BaseClassDecl
,
1345 const CXXRecordDecl
*MostDerivedClassDecl
)
1347 // If the destructor is trivial we don't have to check anything else.
1348 if (BaseClassDecl
->hasTrivialDestructor())
1351 if (!BaseClassDecl
->getDestructor()->hasTrivialBody())
1355 for (const auto *Field
: BaseClassDecl
->fields())
1356 if (!FieldHasTrivialDestructorBody(Context
, Field
))
1359 // Check non-virtual bases.
1360 for (const auto &I
: BaseClassDecl
->bases()) {
1364 const CXXRecordDecl
*NonVirtualBase
=
1365 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
1366 if (!HasTrivialDestructorBody(Context
, NonVirtualBase
,
1367 MostDerivedClassDecl
))
1371 if (BaseClassDecl
== MostDerivedClassDecl
) {
1372 // Check virtual bases.
1373 for (const auto &I
: BaseClassDecl
->vbases()) {
1374 const CXXRecordDecl
*VirtualBase
=
1375 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
1376 if (!HasTrivialDestructorBody(Context
, VirtualBase
,
1377 MostDerivedClassDecl
))
1386 FieldHasTrivialDestructorBody(ASTContext
&Context
,
1387 const FieldDecl
*Field
)
1389 QualType FieldBaseElementType
= Context
.getBaseElementType(Field
->getType());
1391 const RecordType
*RT
= FieldBaseElementType
->getAs
<RecordType
>();
1395 CXXRecordDecl
*FieldClassDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
1397 // The destructor for an implicit anonymous union member is never invoked.
1398 if (FieldClassDecl
->isUnion() && FieldClassDecl
->isAnonymousStructOrUnion())
1401 return HasTrivialDestructorBody(Context
, FieldClassDecl
, FieldClassDecl
);
1404 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1405 /// any vtable pointers before calling this destructor.
1406 static bool CanSkipVTablePointerInitialization(CodeGenFunction
&CGF
,
1407 const CXXDestructorDecl
*Dtor
) {
1408 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1409 if (!ClassDecl
->isDynamicClass())
1412 // For a final class, the vtable pointer is known to already point to the
1414 if (ClassDecl
->isEffectivelyFinal())
1417 if (!Dtor
->hasTrivialBody())
1420 // Check the fields.
1421 for (const auto *Field
: ClassDecl
->fields())
1422 if (!FieldHasTrivialDestructorBody(CGF
.getContext(), Field
))
1428 /// EmitDestructorBody - Emits the body of the current destructor.
1429 void CodeGenFunction::EmitDestructorBody(FunctionArgList
&Args
) {
1430 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CurGD
.getDecl());
1431 CXXDtorType DtorType
= CurGD
.getDtorType();
1433 // For an abstract class, non-base destructors are never used (and can't
1434 // be emitted in general, because vbase dtors may not have been validated
1435 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1436 // in fact emit references to them from other compilations, so emit them
1437 // as functions containing a trap instruction.
1438 if (DtorType
!= Dtor_Base
&& Dtor
->getParent()->isAbstract()) {
1439 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
1440 TrapCall
->setDoesNotReturn();
1441 TrapCall
->setDoesNotThrow();
1442 Builder
.CreateUnreachable();
1443 Builder
.ClearInsertionPoint();
1447 Stmt
*Body
= Dtor
->getBody();
1449 incrementProfileCounter(Body
);
1450 maybeCreateMCDCCondBitmap();
1453 // The call to operator delete in a deleting destructor happens
1454 // outside of the function-try-block, which means it's always
1455 // possible to delegate the destructor body to the complete
1456 // destructor. Do so.
1457 if (DtorType
== Dtor_Deleting
) {
1458 RunCleanupsScope
DtorEpilogue(*this);
1459 EnterDtorCleanups(Dtor
, Dtor_Deleting
);
1460 if (HaveInsertPoint()) {
1461 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
1462 EmitCXXDestructorCall(Dtor
, Dtor_Complete
, /*ForVirtualBase=*/false,
1463 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy
);
1468 // If the body is a function-try-block, enter the try before
1470 bool isTryBody
= (Body
&& isa
<CXXTryStmt
>(Body
));
1472 EnterCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
1473 EmitAsanPrologueOrEpilogue(false);
1475 // Enter the epilogue cleanups.
1476 RunCleanupsScope
DtorEpilogue(*this);
1478 // If this is the complete variant, just invoke the base variant;
1479 // the epilogue will destruct the virtual bases. But we can't do
1480 // this optimization if the body is a function-try-block, because
1481 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1482 // always delegate because we might not have a definition in this TU.
1484 case Dtor_Comdat
: llvm_unreachable("not expecting a COMDAT");
1485 case Dtor_Deleting
: llvm_unreachable("already handled deleting case");
1488 assert((Body
|| getTarget().getCXXABI().isMicrosoft()) &&
1489 "can't emit a dtor without a body for non-Microsoft ABIs");
1491 // Enter the cleanup scopes for virtual bases.
1492 EnterDtorCleanups(Dtor
, Dtor_Complete
);
1495 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
1496 EmitCXXDestructorCall(Dtor
, Dtor_Base
, /*ForVirtualBase=*/false,
1497 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy
);
1501 // Fallthrough: act like we're in the base variant.
1507 // Enter the cleanup scopes for fields and non-virtual bases.
1508 EnterDtorCleanups(Dtor
, Dtor_Base
);
1510 // Initialize the vtable pointers before entering the body.
1511 if (!CanSkipVTablePointerInitialization(*this, Dtor
)) {
1512 // Insert the llvm.launder.invariant.group intrinsic before initializing
1513 // the vptrs to cancel any previous assumptions we might have made.
1514 if (CGM
.getCodeGenOpts().StrictVTablePointers
&&
1515 CGM
.getCodeGenOpts().OptimizationLevel
> 0)
1516 CXXThisValue
= Builder
.CreateLaunderInvariantGroup(LoadCXXThis());
1517 InitializeVTablePointers(Dtor
->getParent());
1521 EmitStmt(cast
<CXXTryStmt
>(Body
)->getTryBlock());
1525 assert(Dtor
->isImplicit() && "bodyless dtor not implicit");
1526 // nothing to do besides what's in the epilogue
1528 // -fapple-kext must inline any call to this dtor into
1529 // the caller's body.
1530 if (getLangOpts().AppleKext
)
1531 CurFn
->addFnAttr(llvm::Attribute::AlwaysInline
);
1536 // Jump out through the epilogue cleanups.
1537 DtorEpilogue
.ForceCleanup();
1539 // Exit the try if applicable.
1541 ExitCXXTryStmt(*cast
<CXXTryStmt
>(Body
), true);
1544 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList
&Args
) {
1545 const CXXMethodDecl
*AssignOp
= cast
<CXXMethodDecl
>(CurGD
.getDecl());
1546 const Stmt
*RootS
= AssignOp
->getBody();
1547 assert(isa
<CompoundStmt
>(RootS
) &&
1548 "Body of an implicit assignment operator should be compound stmt.");
1549 const CompoundStmt
*RootCS
= cast
<CompoundStmt
>(RootS
);
1551 LexicalScope
Scope(*this, RootCS
->getSourceRange());
1553 incrementProfileCounter(RootCS
);
1554 maybeCreateMCDCCondBitmap();
1555 AssignmentMemcpyizer
AM(*this, AssignOp
, Args
);
1556 for (auto *I
: RootCS
->body())
1557 AM
.emitAssignment(I
);
1562 llvm::Value
*LoadThisForDtorDelete(CodeGenFunction
&CGF
,
1563 const CXXDestructorDecl
*DD
) {
1564 if (Expr
*ThisArg
= DD
->getOperatorDeleteThisArg())
1565 return CGF
.EmitScalarExpr(ThisArg
);
1566 return CGF
.LoadCXXThis();
1569 /// Call the operator delete associated with the current destructor.
1570 struct CallDtorDelete final
: EHScopeStack::Cleanup
{
1573 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1574 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CGF
.CurCodeDecl
);
1575 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1576 CGF
.EmitDeleteCall(Dtor
->getOperatorDelete(),
1577 LoadThisForDtorDelete(CGF
, Dtor
),
1578 CGF
.getContext().getTagDeclType(ClassDecl
));
1582 void EmitConditionalDtorDeleteCall(CodeGenFunction
&CGF
,
1583 llvm::Value
*ShouldDeleteCondition
,
1584 bool ReturnAfterDelete
) {
1585 llvm::BasicBlock
*callDeleteBB
= CGF
.createBasicBlock("dtor.call_delete");
1586 llvm::BasicBlock
*continueBB
= CGF
.createBasicBlock("dtor.continue");
1587 llvm::Value
*ShouldCallDelete
1588 = CGF
.Builder
.CreateIsNull(ShouldDeleteCondition
);
1589 CGF
.Builder
.CreateCondBr(ShouldCallDelete
, continueBB
, callDeleteBB
);
1591 CGF
.EmitBlock(callDeleteBB
);
1592 const CXXDestructorDecl
*Dtor
= cast
<CXXDestructorDecl
>(CGF
.CurCodeDecl
);
1593 const CXXRecordDecl
*ClassDecl
= Dtor
->getParent();
1594 CGF
.EmitDeleteCall(Dtor
->getOperatorDelete(),
1595 LoadThisForDtorDelete(CGF
, Dtor
),
1596 CGF
.getContext().getTagDeclType(ClassDecl
));
1597 assert(Dtor
->getOperatorDelete()->isDestroyingOperatorDelete() ==
1598 ReturnAfterDelete
&&
1599 "unexpected value for ReturnAfterDelete");
1600 if (ReturnAfterDelete
)
1601 CGF
.EmitBranchThroughCleanup(CGF
.ReturnBlock
);
1603 CGF
.Builder
.CreateBr(continueBB
);
1605 CGF
.EmitBlock(continueBB
);
1608 struct CallDtorDeleteConditional final
: EHScopeStack::Cleanup
{
1609 llvm::Value
*ShouldDeleteCondition
;
1612 CallDtorDeleteConditional(llvm::Value
*ShouldDeleteCondition
)
1613 : ShouldDeleteCondition(ShouldDeleteCondition
) {
1614 assert(ShouldDeleteCondition
!= nullptr);
1617 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1618 EmitConditionalDtorDeleteCall(CGF
, ShouldDeleteCondition
,
1619 /*ReturnAfterDelete*/false);
1623 class DestroyField final
: public EHScopeStack::Cleanup
{
1624 const FieldDecl
*field
;
1625 CodeGenFunction::Destroyer
*destroyer
;
1626 bool useEHCleanupForArray
;
1629 DestroyField(const FieldDecl
*field
, CodeGenFunction::Destroyer
*destroyer
,
1630 bool useEHCleanupForArray
)
1631 : field(field
), destroyer(destroyer
),
1632 useEHCleanupForArray(useEHCleanupForArray
) {}
1634 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1635 // Find the address of the field.
1636 Address thisValue
= CGF
.LoadCXXThisAddress();
1637 QualType RecordTy
= CGF
.getContext().getTagDeclType(field
->getParent());
1638 LValue ThisLV
= CGF
.MakeAddrLValue(thisValue
, RecordTy
);
1639 LValue LV
= CGF
.EmitLValueForField(ThisLV
, field
);
1640 assert(LV
.isSimple());
1642 CGF
.emitDestroy(LV
.getAddress(CGF
), field
->getType(), destroyer
,
1643 flags
.isForNormalCleanup() && useEHCleanupForArray
);
1647 class DeclAsInlineDebugLocation
{
1649 llvm::MDNode
*InlinedAt
;
1650 std::optional
<ApplyDebugLocation
> Location
;
1653 DeclAsInlineDebugLocation(CodeGenFunction
&CGF
, const NamedDecl
&Decl
)
1654 : DI(CGF
.getDebugInfo()) {
1657 InlinedAt
= DI
->getInlinedAt();
1658 DI
->setInlinedAt(CGF
.Builder
.getCurrentDebugLocation());
1659 Location
.emplace(CGF
, Decl
.getLocation());
1662 ~DeclAsInlineDebugLocation() {
1666 DI
->setInlinedAt(InlinedAt
);
1670 static void EmitSanitizerDtorCallback(
1671 CodeGenFunction
&CGF
, StringRef Name
, llvm::Value
*Ptr
,
1672 std::optional
<CharUnits::QuantityType
> PoisonSize
= {}) {
1673 CodeGenFunction::SanitizerScope
SanScope(&CGF
);
1674 // Pass in void pointer and size of region as arguments to runtime
1676 SmallVector
<llvm::Value
*, 2> Args
= {Ptr
};
1677 SmallVector
<llvm::Type
*, 2> ArgTypes
= {CGF
.VoidPtrTy
};
1679 if (PoisonSize
.has_value()) {
1680 Args
.emplace_back(llvm::ConstantInt::get(CGF
.SizeTy
, *PoisonSize
));
1681 ArgTypes
.emplace_back(CGF
.SizeTy
);
1684 llvm::FunctionType
*FnType
=
1685 llvm::FunctionType::get(CGF
.VoidTy
, ArgTypes
, false);
1686 llvm::FunctionCallee Fn
= CGF
.CGM
.CreateRuntimeFunction(FnType
, Name
);
1688 CGF
.EmitNounwindRuntimeCall(Fn
, Args
);
1692 EmitSanitizerDtorFieldsCallback(CodeGenFunction
&CGF
, llvm::Value
*Ptr
,
1693 CharUnits::QuantityType PoisonSize
) {
1694 EmitSanitizerDtorCallback(CGF
, "__sanitizer_dtor_callback_fields", Ptr
,
1698 /// Poison base class with a trivial destructor.
1699 struct SanitizeDtorTrivialBase final
: EHScopeStack::Cleanup
{
1700 const CXXRecordDecl
*BaseClass
;
1702 SanitizeDtorTrivialBase(const CXXRecordDecl
*Base
, bool BaseIsVirtual
)
1703 : BaseClass(Base
), BaseIsVirtual(BaseIsVirtual
) {}
1705 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1706 const CXXRecordDecl
*DerivedClass
=
1707 cast
<CXXMethodDecl
>(CGF
.CurCodeDecl
)->getParent();
1709 Address Addr
= CGF
.GetAddressOfDirectBaseInCompleteClass(
1710 CGF
.LoadCXXThisAddress(), DerivedClass
, BaseClass
, BaseIsVirtual
);
1712 const ASTRecordLayout
&BaseLayout
=
1713 CGF
.getContext().getASTRecordLayout(BaseClass
);
1714 CharUnits BaseSize
= BaseLayout
.getSize();
1716 if (!BaseSize
.isPositive())
1719 // Use the base class declaration location as inline DebugLocation. All
1720 // fields of the class are destroyed.
1721 DeclAsInlineDebugLocation
InlineHere(CGF
, *BaseClass
);
1722 EmitSanitizerDtorFieldsCallback(CGF
, Addr
.getPointer(),
1723 BaseSize
.getQuantity());
1725 // Prevent the current stack frame from disappearing from the stack trace.
1726 CGF
.CurFn
->addFnAttr("disable-tail-calls", "true");
1730 class SanitizeDtorFieldRange final
: public EHScopeStack::Cleanup
{
1731 const CXXDestructorDecl
*Dtor
;
1732 unsigned StartIndex
;
1736 SanitizeDtorFieldRange(const CXXDestructorDecl
*Dtor
, unsigned StartIndex
,
1738 : Dtor(Dtor
), StartIndex(StartIndex
), EndIndex(EndIndex
) {}
1740 // Generate function call for handling object poisoning.
1741 // Disables tail call elimination, to prevent the current stack frame
1742 // from disappearing from the stack trace.
1743 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1744 const ASTContext
&Context
= CGF
.getContext();
1745 const ASTRecordLayout
&Layout
=
1746 Context
.getASTRecordLayout(Dtor
->getParent());
1748 // It's a first trivial field so it should be at the begining of a char,
1749 // still round up start offset just in case.
1750 CharUnits PoisonStart
= Context
.toCharUnitsFromBits(
1751 Layout
.getFieldOffset(StartIndex
) + Context
.getCharWidth() - 1);
1752 llvm::ConstantInt
*OffsetSizePtr
=
1753 llvm::ConstantInt::get(CGF
.SizeTy
, PoisonStart
.getQuantity());
1755 llvm::Value
*OffsetPtr
=
1756 CGF
.Builder
.CreateGEP(CGF
.Int8Ty
, CGF
.LoadCXXThis(), OffsetSizePtr
);
1758 CharUnits PoisonEnd
;
1759 if (EndIndex
>= Layout
.getFieldCount()) {
1760 PoisonEnd
= Layout
.getNonVirtualSize();
1763 Context
.toCharUnitsFromBits(Layout
.getFieldOffset(EndIndex
));
1765 CharUnits PoisonSize
= PoisonEnd
- PoisonStart
;
1766 if (!PoisonSize
.isPositive())
1769 // Use the top field declaration location as inline DebugLocation.
1770 DeclAsInlineDebugLocation
InlineHere(
1771 CGF
, **std::next(Dtor
->getParent()->field_begin(), StartIndex
));
1772 EmitSanitizerDtorFieldsCallback(CGF
, OffsetPtr
, PoisonSize
.getQuantity());
1774 // Prevent the current stack frame from disappearing from the stack trace.
1775 CGF
.CurFn
->addFnAttr("disable-tail-calls", "true");
1779 class SanitizeDtorVTable final
: public EHScopeStack::Cleanup
{
1780 const CXXDestructorDecl
*Dtor
;
1783 SanitizeDtorVTable(const CXXDestructorDecl
*Dtor
) : Dtor(Dtor
) {}
1785 // Generate function call for handling vtable pointer poisoning.
1786 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1787 assert(Dtor
->getParent()->isDynamicClass());
1789 // Poison vtable and vtable ptr if they exist for this class.
1790 llvm::Value
*VTablePtr
= CGF
.LoadCXXThis();
1792 // Pass in void pointer and size of region as arguments to runtime
1794 EmitSanitizerDtorCallback(CGF
, "__sanitizer_dtor_callback_vptr",
1799 class SanitizeDtorCleanupBuilder
{
1800 ASTContext
&Context
;
1801 EHScopeStack
&EHStack
;
1802 const CXXDestructorDecl
*DD
;
1803 std::optional
<unsigned> StartIndex
;
1806 SanitizeDtorCleanupBuilder(ASTContext
&Context
, EHScopeStack
&EHStack
,
1807 const CXXDestructorDecl
*DD
)
1808 : Context(Context
), EHStack(EHStack
), DD(DD
), StartIndex(std::nullopt
) {}
1809 void PushCleanupForField(const FieldDecl
*Field
) {
1810 if (Field
->isZeroSize(Context
))
1812 unsigned FieldIndex
= Field
->getFieldIndex();
1813 if (FieldHasTrivialDestructorBody(Context
, Field
)) {
1815 StartIndex
= FieldIndex
;
1816 } else if (StartIndex
) {
1817 EHStack
.pushCleanup
<SanitizeDtorFieldRange
>(NormalAndEHCleanup
, DD
,
1818 *StartIndex
, FieldIndex
);
1819 StartIndex
= std::nullopt
;
1824 EHStack
.pushCleanup
<SanitizeDtorFieldRange
>(NormalAndEHCleanup
, DD
,
1828 } // end anonymous namespace
1830 /// Emit all code that comes at the end of class's
1831 /// destructor. This is to call destructors on members and base classes
1832 /// in reverse order of their construction.
1834 /// For a deleting destructor, this also handles the case where a destroying
1835 /// operator delete completely overrides the definition.
1836 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl
*DD
,
1837 CXXDtorType DtorType
) {
1838 assert((!DD
->isTrivial() || DD
->hasAttr
<DLLExportAttr
>()) &&
1839 "Should not emit dtor epilogue for non-exported trivial dtor!");
1841 // The deleting-destructor phase just needs to call the appropriate
1842 // operator delete that Sema picked up.
1843 if (DtorType
== Dtor_Deleting
) {
1844 assert(DD
->getOperatorDelete() &&
1845 "operator delete missing - EnterDtorCleanups");
1846 if (CXXStructorImplicitParamValue
) {
1847 // If there is an implicit param to the deleting dtor, it's a boolean
1848 // telling whether this is a deleting destructor.
1849 if (DD
->getOperatorDelete()->isDestroyingOperatorDelete())
1850 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue
,
1851 /*ReturnAfterDelete*/true);
1853 EHStack
.pushCleanup
<CallDtorDeleteConditional
>(
1854 NormalAndEHCleanup
, CXXStructorImplicitParamValue
);
1856 if (DD
->getOperatorDelete()->isDestroyingOperatorDelete()) {
1857 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
1858 EmitDeleteCall(DD
->getOperatorDelete(),
1859 LoadThisForDtorDelete(*this, DD
),
1860 getContext().getTagDeclType(ClassDecl
));
1861 EmitBranchThroughCleanup(ReturnBlock
);
1863 EHStack
.pushCleanup
<CallDtorDelete
>(NormalAndEHCleanup
);
1869 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
1871 // Unions have no bases and do not call field destructors.
1872 if (ClassDecl
->isUnion())
1875 // The complete-destructor phase just destructs all the virtual bases.
1876 if (DtorType
== Dtor_Complete
) {
1877 // Poison the vtable pointer such that access after the base
1878 // and member destructors are invoked is invalid.
1879 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1880 SanOpts
.has(SanitizerKind::Memory
) && ClassDecl
->getNumVBases() &&
1881 ClassDecl
->isPolymorphic())
1882 EHStack
.pushCleanup
<SanitizeDtorVTable
>(NormalAndEHCleanup
, DD
);
1884 // We push them in the forward order so that they'll be popped in
1885 // the reverse order.
1886 for (const auto &Base
: ClassDecl
->vbases()) {
1887 auto *BaseClassDecl
=
1888 cast
<CXXRecordDecl
>(Base
.getType()->castAs
<RecordType
>()->getDecl());
1890 if (BaseClassDecl
->hasTrivialDestructor()) {
1891 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1892 // memory. For non-trival base classes the same is done in the class
1894 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1895 SanOpts
.has(SanitizerKind::Memory
) && !BaseClassDecl
->isEmpty())
1896 EHStack
.pushCleanup
<SanitizeDtorTrivialBase
>(NormalAndEHCleanup
,
1898 /*BaseIsVirtual*/ true);
1900 EHStack
.pushCleanup
<CallBaseDtor
>(NormalAndEHCleanup
, BaseClassDecl
,
1901 /*BaseIsVirtual*/ true);
1908 assert(DtorType
== Dtor_Base
);
1909 // Poison the vtable pointer if it has no virtual bases, but inherits
1910 // virtual functions.
1911 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1912 SanOpts
.has(SanitizerKind::Memory
) && !ClassDecl
->getNumVBases() &&
1913 ClassDecl
->isPolymorphic())
1914 EHStack
.pushCleanup
<SanitizeDtorVTable
>(NormalAndEHCleanup
, DD
);
1916 // Destroy non-virtual bases.
1917 for (const auto &Base
: ClassDecl
->bases()) {
1918 // Ignore virtual bases.
1919 if (Base
.isVirtual())
1922 CXXRecordDecl
*BaseClassDecl
= Base
.getType()->getAsCXXRecordDecl();
1924 if (BaseClassDecl
->hasTrivialDestructor()) {
1925 if (CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1926 SanOpts
.has(SanitizerKind::Memory
) && !BaseClassDecl
->isEmpty())
1927 EHStack
.pushCleanup
<SanitizeDtorTrivialBase
>(NormalAndEHCleanup
,
1929 /*BaseIsVirtual*/ false);
1931 EHStack
.pushCleanup
<CallBaseDtor
>(NormalAndEHCleanup
, BaseClassDecl
,
1932 /*BaseIsVirtual*/ false);
1936 // Poison fields such that access after their destructors are
1937 // invoked, and before the base class destructor runs, is invalid.
1938 bool SanitizeFields
= CGM
.getCodeGenOpts().SanitizeMemoryUseAfterDtor
&&
1939 SanOpts
.has(SanitizerKind::Memory
);
1940 SanitizeDtorCleanupBuilder
SanitizeBuilder(getContext(), EHStack
, DD
);
1942 // Destroy direct fields.
1943 for (const auto *Field
: ClassDecl
->fields()) {
1945 SanitizeBuilder
.PushCleanupForField(Field
);
1947 QualType type
= Field
->getType();
1948 QualType::DestructionKind dtorKind
= type
.isDestructedType();
1952 // Anonymous union members do not have their destructors called.
1953 const RecordType
*RT
= type
->getAsUnionType();
1954 if (RT
&& RT
->getDecl()->isAnonymousStructOrUnion())
1957 CleanupKind cleanupKind
= getCleanupKind(dtorKind
);
1958 EHStack
.pushCleanup
<DestroyField
>(
1959 cleanupKind
, Field
, getDestroyer(dtorKind
), cleanupKind
& EHCleanup
);
1963 SanitizeBuilder
.End();
1966 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1967 /// constructor for each of several members of an array.
1969 /// \param ctor the constructor to call for each element
1970 /// \param arrayType the type of the array to initialize
1971 /// \param arrayBegin an arrayType*
1972 /// \param zeroInitialize true if each element should be
1973 /// zero-initialized before it is constructed
1974 void CodeGenFunction::EmitCXXAggrConstructorCall(
1975 const CXXConstructorDecl
*ctor
, const ArrayType
*arrayType
,
1976 Address arrayBegin
, const CXXConstructExpr
*E
, bool NewPointerIsChecked
,
1977 bool zeroInitialize
) {
1978 QualType elementType
;
1979 llvm::Value
*numElements
=
1980 emitArrayLength(arrayType
, elementType
, arrayBegin
);
1982 EmitCXXAggrConstructorCall(ctor
, numElements
, arrayBegin
, E
,
1983 NewPointerIsChecked
, zeroInitialize
);
1986 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1987 /// constructor for each of several members of an array.
1989 /// \param ctor the constructor to call for each element
1990 /// \param numElements the number of elements in the array;
1992 /// \param arrayBase a T*, where T is the type constructed by ctor
1993 /// \param zeroInitialize true if each element should be
1994 /// zero-initialized before it is constructed
1995 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl
*ctor
,
1996 llvm::Value
*numElements
,
1998 const CXXConstructExpr
*E
,
1999 bool NewPointerIsChecked
,
2000 bool zeroInitialize
) {
2001 // It's legal for numElements to be zero. This can happen both
2002 // dynamically, because x can be zero in 'new A[x]', and statically,
2003 // because of GCC extensions that permit zero-length arrays. There
2004 // are probably legitimate places where we could assume that this
2005 // doesn't happen, but it's not clear that it's worth it.
2006 llvm::BranchInst
*zeroCheckBranch
= nullptr;
2008 // Optimize for a constant count.
2009 llvm::ConstantInt
*constantCount
2010 = dyn_cast
<llvm::ConstantInt
>(numElements
);
2011 if (constantCount
) {
2012 // Just skip out if the constant count is zero.
2013 if (constantCount
->isZero()) return;
2015 // Otherwise, emit the check.
2017 llvm::BasicBlock
*loopBB
= createBasicBlock("new.ctorloop");
2018 llvm::Value
*iszero
= Builder
.CreateIsNull(numElements
, "isempty");
2019 zeroCheckBranch
= Builder
.CreateCondBr(iszero
, loopBB
, loopBB
);
2023 // Find the end of the array.
2024 llvm::Type
*elementType
= arrayBase
.getElementType();
2025 llvm::Value
*arrayBegin
= arrayBase
.getPointer();
2026 llvm::Value
*arrayEnd
= Builder
.CreateInBoundsGEP(
2027 elementType
, arrayBegin
, numElements
, "arrayctor.end");
2029 // Enter the loop, setting up a phi for the current location to initialize.
2030 llvm::BasicBlock
*entryBB
= Builder
.GetInsertBlock();
2031 llvm::BasicBlock
*loopBB
= createBasicBlock("arrayctor.loop");
2033 llvm::PHINode
*cur
= Builder
.CreatePHI(arrayBegin
->getType(), 2,
2035 cur
->addIncoming(arrayBegin
, entryBB
);
2037 // Inside the loop body, emit the constructor call on the array element.
2039 // The alignment of the base, adjusted by the size of a single element,
2040 // provides a conservative estimate of the alignment of every element.
2041 // (This assumes we never start tracking offsetted alignments.)
2043 // Note that these are complete objects and so we don't need to
2044 // use the non-virtual size or alignment.
2045 QualType type
= getContext().getTypeDeclType(ctor
->getParent());
2046 CharUnits eltAlignment
=
2047 arrayBase
.getAlignment()
2048 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type
));
2049 Address curAddr
= Address(cur
, elementType
, eltAlignment
);
2051 // Zero initialize the storage, if requested.
2053 EmitNullInitialization(curAddr
, type
);
2055 // C++ [class.temporary]p4:
2056 // There are two contexts in which temporaries are destroyed at a different
2057 // point than the end of the full-expression. The first context is when a
2058 // default constructor is called to initialize an element of an array.
2059 // If the constructor has one or more default arguments, the destruction of
2060 // every temporary created in a default argument expression is sequenced
2061 // before the construction of the next array element, if any.
2064 RunCleanupsScope
Scope(*this);
2066 // Evaluate the constructor and its arguments in a regular
2067 // partial-destroy cleanup.
2068 if (getLangOpts().Exceptions
&&
2069 !ctor
->getParent()->hasTrivialDestructor()) {
2070 Destroyer
*destroyer
= destroyCXXObject
;
2071 pushRegularPartialArrayCleanup(arrayBegin
, cur
, type
, eltAlignment
,
2074 auto currAVS
= AggValueSlot::forAddr(
2075 curAddr
, type
.getQualifiers(), AggValueSlot::IsDestructed
,
2076 AggValueSlot::DoesNotNeedGCBarriers
, AggValueSlot::IsNotAliased
,
2077 AggValueSlot::DoesNotOverlap
, AggValueSlot::IsNotZeroed
,
2078 NewPointerIsChecked
? AggValueSlot::IsSanitizerChecked
2079 : AggValueSlot::IsNotSanitizerChecked
);
2080 EmitCXXConstructorCall(ctor
, Ctor_Complete
, /*ForVirtualBase=*/false,
2081 /*Delegating=*/false, currAVS
, E
);
2084 // Go to the next element.
2085 llvm::Value
*next
= Builder
.CreateInBoundsGEP(
2086 elementType
, cur
, llvm::ConstantInt::get(SizeTy
, 1), "arrayctor.next");
2087 cur
->addIncoming(next
, Builder
.GetInsertBlock());
2089 // Check whether that's the end of the loop.
2090 llvm::Value
*done
= Builder
.CreateICmpEQ(next
, arrayEnd
, "arrayctor.done");
2091 llvm::BasicBlock
*contBB
= createBasicBlock("arrayctor.cont");
2092 Builder
.CreateCondBr(done
, contBB
, loopBB
);
2094 // Patch the earlier check to skip over the loop.
2095 if (zeroCheckBranch
) zeroCheckBranch
->setSuccessor(0, contBB
);
2100 void CodeGenFunction::destroyCXXObject(CodeGenFunction
&CGF
,
2103 const RecordType
*rtype
= type
->castAs
<RecordType
>();
2104 const CXXRecordDecl
*record
= cast
<CXXRecordDecl
>(rtype
->getDecl());
2105 const CXXDestructorDecl
*dtor
= record
->getDestructor();
2106 assert(!dtor
->isTrivial());
2107 CGF
.EmitCXXDestructorCall(dtor
, Dtor_Complete
, /*for vbase*/ false,
2108 /*Delegating=*/false, addr
, type
);
2111 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl
*D
,
2113 bool ForVirtualBase
,
2115 AggValueSlot ThisAVS
,
2116 const CXXConstructExpr
*E
) {
2118 Address This
= ThisAVS
.getAddress();
2119 LangAS SlotAS
= ThisAVS
.getQualifiers().getAddressSpace();
2120 LangAS ThisAS
= D
->getFunctionObjectParameterType().getAddressSpace();
2121 llvm::Value
*ThisPtr
= This
.getPointer();
2123 if (SlotAS
!= ThisAS
) {
2124 unsigned TargetThisAS
= getContext().getTargetAddressSpace(ThisAS
);
2125 llvm::Type
*NewType
=
2126 llvm::PointerType::get(getLLVMContext(), TargetThisAS
);
2127 ThisPtr
= getTargetHooks().performAddrSpaceCast(*this, This
.getPointer(),
2128 ThisAS
, SlotAS
, NewType
);
2131 // Push the this ptr.
2132 Args
.add(RValue::get(ThisPtr
), D
->getThisType());
2134 // If this is a trivial constructor, emit a memcpy now before we lose
2135 // the alignment information on the argument.
2136 // FIXME: It would be better to preserve alignment information into CallArg.
2137 if (isMemcpyEquivalentSpecialMember(D
)) {
2138 assert(E
->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2140 const Expr
*Arg
= E
->getArg(0);
2141 LValue Src
= EmitLValue(Arg
);
2142 QualType DestTy
= getContext().getTypeDeclType(D
->getParent());
2143 LValue Dest
= MakeAddrLValue(This
, DestTy
);
2144 EmitAggregateCopyCtor(Dest
, Src
, ThisAVS
.mayOverlap());
2148 // Add the rest of the user-supplied arguments.
2149 const FunctionProtoType
*FPT
= D
->getType()->castAs
<FunctionProtoType
>();
2150 EvaluationOrder Order
= E
->isListInitialization()
2151 ? EvaluationOrder::ForceLeftToRight
2152 : EvaluationOrder::Default
;
2153 EmitCallArgs(Args
, FPT
, E
->arguments(), E
->getConstructor(),
2154 /*ParamsToSkip*/ 0, Order
);
2156 EmitCXXConstructorCall(D
, Type
, ForVirtualBase
, Delegating
, This
, Args
,
2157 ThisAVS
.mayOverlap(), E
->getExprLoc(),
2158 ThisAVS
.isSanitizerChecked());
2161 static bool canEmitDelegateCallArgs(CodeGenFunction
&CGF
,
2162 const CXXConstructorDecl
*Ctor
,
2163 CXXCtorType Type
, CallArgList
&Args
) {
2164 // We can't forward a variadic call.
2165 if (Ctor
->isVariadic())
2168 if (CGF
.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2169 // If the parameters are callee-cleanup, it's not safe to forward.
2170 for (auto *P
: Ctor
->parameters())
2171 if (P
->needsDestruction(CGF
.getContext()))
2174 // Likewise if they're inalloca.
2175 const CGFunctionInfo
&Info
=
2176 CGF
.CGM
.getTypes().arrangeCXXConstructorCall(Args
, Ctor
, Type
, 0, 0);
2177 if (Info
.usesInAlloca())
2181 // Anything else should be OK.
2185 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl
*D
,
2187 bool ForVirtualBase
,
2191 AggValueSlot::Overlap_t Overlap
,
2193 bool NewPointerIsChecked
) {
2194 const CXXRecordDecl
*ClassDecl
= D
->getParent();
2196 if (!NewPointerIsChecked
)
2197 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall
, Loc
, This
.getPointer(),
2198 getContext().getRecordType(ClassDecl
), CharUnits::Zero());
2200 if (D
->isTrivial() && D
->isDefaultConstructor()) {
2201 assert(Args
.size() == 1 && "trivial default ctor with args");
2205 // If this is a trivial constructor, just emit what's needed. If this is a
2206 // union copy constructor, we must emit a memcpy, because the AST does not
2208 if (isMemcpyEquivalentSpecialMember(D
)) {
2209 assert(Args
.size() == 2 && "unexpected argcount for trivial ctor");
2211 QualType SrcTy
= D
->getParamDecl(0)->getType().getNonReferenceType();
2212 Address Src
= Address(Args
[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy
),
2213 CGM
.getNaturalTypeAlignment(SrcTy
));
2214 LValue SrcLVal
= MakeAddrLValue(Src
, SrcTy
);
2215 QualType DestTy
= getContext().getTypeDeclType(ClassDecl
);
2216 LValue DestLVal
= MakeAddrLValue(This
, DestTy
);
2217 EmitAggregateCopyCtor(DestLVal
, SrcLVal
, Overlap
);
2221 bool PassPrototypeArgs
= true;
2222 // Check whether we can actually emit the constructor before trying to do so.
2223 if (auto Inherited
= D
->getInheritedConstructor()) {
2224 PassPrototypeArgs
= getTypes().inheritingCtorHasParams(Inherited
, Type
);
2225 if (PassPrototypeArgs
&& !canEmitDelegateCallArgs(*this, D
, Type
, Args
)) {
2226 EmitInlinedInheritingCXXConstructorCall(D
, Type
, ForVirtualBase
,
2232 // Insert any ABI-specific implicit constructor arguments.
2233 CGCXXABI::AddedStructorArgCounts ExtraArgs
=
2234 CGM
.getCXXABI().addImplicitConstructorArgs(*this, D
, Type
, ForVirtualBase
,
2238 llvm::Constant
*CalleePtr
= CGM
.getAddrOfCXXStructor(GlobalDecl(D
, Type
));
2239 const CGFunctionInfo
&Info
= CGM
.getTypes().arrangeCXXConstructorCall(
2240 Args
, D
, Type
, ExtraArgs
.Prefix
, ExtraArgs
.Suffix
, PassPrototypeArgs
);
2241 CGCallee Callee
= CGCallee::forDirect(CalleePtr
, GlobalDecl(D
, Type
));
2242 EmitCall(Info
, Callee
, ReturnValueSlot(), Args
, nullptr, false, Loc
);
2244 // Generate vtable assumptions if we're constructing a complete object
2245 // with a vtable. We don't do this for base subobjects for two reasons:
2246 // first, it's incorrect for classes with virtual bases, and second, we're
2247 // about to overwrite the vptrs anyway.
2248 // We also have to make sure if we can refer to vtable:
2249 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2250 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2251 // sure that definition of vtable is not hidden,
2252 // then we are always safe to refer to it.
2253 // FIXME: It looks like InstCombine is very inefficient on dealing with
2254 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2255 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2256 ClassDecl
->isDynamicClass() && Type
!= Ctor_Base
&&
2257 CGM
.getCXXABI().canSpeculativelyEmitVTable(ClassDecl
) &&
2258 CGM
.getCodeGenOpts().StrictVTablePointers
)
2259 EmitVTableAssumptionLoads(ClassDecl
, This
);
2262 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2263 const CXXConstructorDecl
*D
, bool ForVirtualBase
, Address This
,
2264 bool InheritedFromVBase
, const CXXInheritedCtorInitExpr
*E
) {
2266 CallArg
ThisArg(RValue::get(This
.getPointer()), D
->getThisType());
2268 // Forward the parameters.
2269 if (InheritedFromVBase
&&
2270 CGM
.getTarget().getCXXABI().hasConstructorVariants()) {
2271 // Nothing to do; this construction is not responsible for constructing
2272 // the base class containing the inherited constructor.
2273 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2274 // have constructor variants?
2275 Args
.push_back(ThisArg
);
2276 } else if (!CXXInheritedCtorInitExprArgs
.empty()) {
2277 // The inheriting constructor was inlined; just inject its arguments.
2278 assert(CXXInheritedCtorInitExprArgs
.size() >= D
->getNumParams() &&
2279 "wrong number of parameters for inherited constructor call");
2280 Args
= CXXInheritedCtorInitExprArgs
;
2283 // The inheriting constructor was not inlined. Emit delegating arguments.
2284 Args
.push_back(ThisArg
);
2285 const auto *OuterCtor
= cast
<CXXConstructorDecl
>(CurCodeDecl
);
2286 assert(OuterCtor
->getNumParams() == D
->getNumParams());
2287 assert(!OuterCtor
->isVariadic() && "should have been inlined");
2289 for (const auto *Param
: OuterCtor
->parameters()) {
2290 assert(getContext().hasSameUnqualifiedType(
2291 OuterCtor
->getParamDecl(Param
->getFunctionScopeIndex())->getType(),
2293 EmitDelegateCallArg(Args
, Param
, E
->getLocation());
2295 // Forward __attribute__(pass_object_size).
2296 if (Param
->hasAttr
<PassObjectSizeAttr
>()) {
2297 auto *POSParam
= SizeArguments
[Param
];
2298 assert(POSParam
&& "missing pass_object_size value for forwarding");
2299 EmitDelegateCallArg(Args
, POSParam
, E
->getLocation());
2304 EmitCXXConstructorCall(D
, Ctor_Base
, ForVirtualBase
, /*Delegating*/false,
2305 This
, Args
, AggValueSlot::MayOverlap
,
2306 E
->getLocation(), /*NewPointerIsChecked*/true);
2309 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2310 const CXXConstructorDecl
*Ctor
, CXXCtorType CtorType
, bool ForVirtualBase
,
2311 bool Delegating
, CallArgList
&Args
) {
2312 GlobalDecl
GD(Ctor
, CtorType
);
2313 InlinedInheritingConstructorScope
Scope(*this, GD
);
2314 ApplyInlineDebugLocation
DebugScope(*this, GD
);
2315 RunCleanupsScope
RunCleanups(*this);
2317 // Save the arguments to be passed to the inherited constructor.
2318 CXXInheritedCtorInitExprArgs
= Args
;
2320 FunctionArgList Params
;
2321 QualType RetType
= BuildFunctionArgList(CurGD
, Params
);
2324 // Insert any ABI-specific implicit constructor arguments.
2325 CGM
.getCXXABI().addImplicitConstructorArgs(*this, Ctor
, CtorType
,
2326 ForVirtualBase
, Delegating
, Args
);
2328 // Emit a simplified prolog. We only need to emit the implicit params.
2329 assert(Args
.size() >= Params
.size() && "too few arguments for call");
2330 for (unsigned I
= 0, N
= Args
.size(); I
!= N
; ++I
) {
2331 if (I
< Params
.size() && isa
<ImplicitParamDecl
>(Params
[I
])) {
2332 const RValue
&RV
= Args
[I
].getRValue(*this);
2333 assert(!RV
.isComplex() && "complex indirect params not supported");
2334 ParamValue Val
= RV
.isScalar()
2335 ? ParamValue::forDirect(RV
.getScalarVal())
2336 : ParamValue::forIndirect(RV
.getAggregateAddress());
2337 EmitParmDecl(*Params
[I
], Val
, I
+ 1);
2341 // Create a return value slot if the ABI implementation wants one.
2342 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2344 if (!RetType
->isVoidType())
2345 ReturnValue
= CreateIRTemp(RetType
, "retval.inhctor");
2347 CGM
.getCXXABI().EmitInstanceFunctionProlog(*this);
2348 CXXThisValue
= CXXABIThisValue
;
2350 // Directly emit the constructor initializers.
2351 EmitCtorPrologue(Ctor
, CtorType
, Params
);
2354 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr
&Vptr
, Address This
) {
2355 llvm::Value
*VTableGlobal
=
2356 CGM
.getCXXABI().getVTableAddressPoint(Vptr
.Base
, Vptr
.VTableClass
);
2360 // We can just use the base offset in the complete class.
2361 CharUnits NonVirtualOffset
= Vptr
.Base
.getBaseOffset();
2363 if (!NonVirtualOffset
.isZero())
2365 ApplyNonVirtualAndVirtualOffset(*this, This
, NonVirtualOffset
, nullptr,
2366 Vptr
.VTableClass
, Vptr
.NearestVBase
);
2368 llvm::Value
*VPtrValue
=
2369 GetVTablePtr(This
, VTableGlobal
->getType(), Vptr
.VTableClass
);
2371 Builder
.CreateICmpEQ(VPtrValue
, VTableGlobal
, "cmp.vtables");
2372 Builder
.CreateAssumption(Cmp
);
2375 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl
*ClassDecl
,
2377 if (CGM
.getCXXABI().doStructorsInitializeVPtrs(ClassDecl
))
2378 for (const VPtr
&Vptr
: getVTablePointers(ClassDecl
))
2379 EmitVTableAssumptionLoad(Vptr
, This
);
2383 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl
*D
,
2384 Address This
, Address Src
,
2385 const CXXConstructExpr
*E
) {
2386 const FunctionProtoType
*FPT
= D
->getType()->castAs
<FunctionProtoType
>();
2390 // Push the this ptr.
2391 Args
.add(RValue::get(This
.getPointer()), D
->getThisType());
2393 // Push the src ptr.
2394 QualType QT
= *(FPT
->param_type_begin());
2395 llvm::Type
*t
= CGM
.getTypes().ConvertType(QT
);
2396 llvm::Value
*SrcVal
= Builder
.CreateBitCast(Src
.getPointer(), t
);
2397 Args
.add(RValue::get(SrcVal
), QT
);
2399 // Skip over first argument (Src).
2400 EmitCallArgs(Args
, FPT
, drop_begin(E
->arguments(), 1), E
->getConstructor(),
2401 /*ParamsToSkip*/ 1);
2403 EmitCXXConstructorCall(D
, Ctor_Complete
, /*ForVirtualBase*/false,
2404 /*Delegating*/false, This
, Args
,
2405 AggValueSlot::MayOverlap
, E
->getExprLoc(),
2406 /*NewPointerIsChecked*/false);
2410 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl
*Ctor
,
2411 CXXCtorType CtorType
,
2412 const FunctionArgList
&Args
,
2413 SourceLocation Loc
) {
2414 CallArgList DelegateArgs
;
2416 FunctionArgList::const_iterator I
= Args
.begin(), E
= Args
.end();
2417 assert(I
!= E
&& "no parameters to constructor");
2420 Address This
= LoadCXXThisAddress();
2421 DelegateArgs
.add(RValue::get(This
.getPointer()), (*I
)->getType());
2424 // FIXME: The location of the VTT parameter in the parameter list is
2425 // specific to the Itanium ABI and shouldn't be hardcoded here.
2426 if (CGM
.getCXXABI().NeedsVTTParameter(CurGD
)) {
2427 assert(I
!= E
&& "cannot skip vtt parameter, already done with args");
2428 assert((*I
)->getType()->isPointerType() &&
2429 "skipping parameter not of vtt type");
2433 // Explicit arguments.
2434 for (; I
!= E
; ++I
) {
2435 const VarDecl
*param
= *I
;
2436 // FIXME: per-argument source location
2437 EmitDelegateCallArg(DelegateArgs
, param
, Loc
);
2440 EmitCXXConstructorCall(Ctor
, CtorType
, /*ForVirtualBase=*/false,
2441 /*Delegating=*/true, This
, DelegateArgs
,
2442 AggValueSlot::MayOverlap
, Loc
,
2443 /*NewPointerIsChecked=*/true);
2447 struct CallDelegatingCtorDtor final
: EHScopeStack::Cleanup
{
2448 const CXXDestructorDecl
*Dtor
;
2452 CallDelegatingCtorDtor(const CXXDestructorDecl
*D
, Address Addr
,
2454 : Dtor(D
), Addr(Addr
), Type(Type
) {}
2456 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2457 // We are calling the destructor from within the constructor.
2458 // Therefore, "this" should have the expected type.
2459 QualType ThisTy
= Dtor
->getFunctionObjectParameterType();
2460 CGF
.EmitCXXDestructorCall(Dtor
, Type
, /*ForVirtualBase=*/false,
2461 /*Delegating=*/true, Addr
, ThisTy
);
2464 } // end anonymous namespace
2467 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl
*Ctor
,
2468 const FunctionArgList
&Args
) {
2469 assert(Ctor
->isDelegatingConstructor());
2471 Address ThisPtr
= LoadCXXThisAddress();
2473 AggValueSlot AggSlot
=
2474 AggValueSlot::forAddr(ThisPtr
, Qualifiers(),
2475 AggValueSlot::IsDestructed
,
2476 AggValueSlot::DoesNotNeedGCBarriers
,
2477 AggValueSlot::IsNotAliased
,
2478 AggValueSlot::MayOverlap
,
2479 AggValueSlot::IsNotZeroed
,
2480 // Checks are made by the code that calls constructor.
2481 AggValueSlot::IsSanitizerChecked
);
2483 EmitAggExpr(Ctor
->init_begin()[0]->getInit(), AggSlot
);
2485 const CXXRecordDecl
*ClassDecl
= Ctor
->getParent();
2486 if (CGM
.getLangOpts().Exceptions
&& !ClassDecl
->hasTrivialDestructor()) {
2488 CurGD
.getCtorType() == Ctor_Complete
? Dtor_Complete
: Dtor_Base
;
2490 EHStack
.pushCleanup
<CallDelegatingCtorDtor
>(EHCleanup
,
2491 ClassDecl
->getDestructor(),
2496 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl
*DD
,
2498 bool ForVirtualBase
,
2499 bool Delegating
, Address This
,
2501 CGM
.getCXXABI().EmitDestructorCall(*this, DD
, Type
, ForVirtualBase
,
2502 Delegating
, This
, ThisTy
);
2506 struct CallLocalDtor final
: EHScopeStack::Cleanup
{
2507 const CXXDestructorDecl
*Dtor
;
2511 CallLocalDtor(const CXXDestructorDecl
*D
, Address Addr
, QualType Ty
)
2512 : Dtor(D
), Addr(Addr
), Ty(Ty
) {}
2514 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2515 CGF
.EmitCXXDestructorCall(Dtor
, Dtor_Complete
,
2516 /*ForVirtualBase=*/false,
2517 /*Delegating=*/false, Addr
, Ty
);
2520 } // end anonymous namespace
2522 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl
*D
,
2523 QualType T
, Address Addr
) {
2524 EHStack
.pushCleanup
<CallLocalDtor
>(NormalAndEHCleanup
, D
, Addr
, T
);
2527 void CodeGenFunction::PushDestructorCleanup(QualType T
, Address Addr
) {
2528 CXXRecordDecl
*ClassDecl
= T
->getAsCXXRecordDecl();
2529 if (!ClassDecl
) return;
2530 if (ClassDecl
->hasTrivialDestructor()) return;
2532 const CXXDestructorDecl
*D
= ClassDecl
->getDestructor();
2533 assert(D
&& D
->isUsed() && "destructor not marked as used!");
2534 PushDestructorCleanup(D
, T
, Addr
);
2537 void CodeGenFunction::InitializeVTablePointer(const VPtr
&Vptr
) {
2538 // Compute the address point.
2539 llvm::Value
*VTableAddressPoint
=
2540 CGM
.getCXXABI().getVTableAddressPointInStructor(
2541 *this, Vptr
.VTableClass
, Vptr
.Base
, Vptr
.NearestVBase
);
2543 if (!VTableAddressPoint
)
2546 // Compute where to store the address point.
2547 llvm::Value
*VirtualOffset
= nullptr;
2548 CharUnits NonVirtualOffset
= CharUnits::Zero();
2550 if (CGM
.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr
)) {
2551 // We need to use the virtual base offset offset because the virtual base
2552 // might have a different offset in the most derived class.
2554 VirtualOffset
= CGM
.getCXXABI().GetVirtualBaseClassOffset(
2555 *this, LoadCXXThisAddress(), Vptr
.VTableClass
, Vptr
.NearestVBase
);
2556 NonVirtualOffset
= Vptr
.OffsetFromNearestVBase
;
2558 // We can just use the base offset in the complete class.
2559 NonVirtualOffset
= Vptr
.Base
.getBaseOffset();
2562 // Apply the offsets.
2563 Address VTableField
= LoadCXXThisAddress();
2564 if (!NonVirtualOffset
.isZero() || VirtualOffset
)
2565 VTableField
= ApplyNonVirtualAndVirtualOffset(
2566 *this, VTableField
, NonVirtualOffset
, VirtualOffset
, Vptr
.VTableClass
,
2569 // Finally, store the address point. Use the same LLVM types as the field to
2570 // support optimization.
2571 unsigned GlobalsAS
= CGM
.getDataLayout().getDefaultGlobalsAddressSpace();
2572 llvm::Type
*PtrTy
= llvm::PointerType::get(CGM
.getLLVMContext(), GlobalsAS
);
2573 // vtable field is derived from `this` pointer, therefore they should be in
2574 // the same addr space. Note that this might not be LLVM address space 0.
2575 VTableField
= VTableField
.withElementType(PtrTy
);
2577 llvm::StoreInst
*Store
= Builder
.CreateStore(VTableAddressPoint
, VTableField
);
2578 TBAAAccessInfo TBAAInfo
= CGM
.getTBAAVTablePtrAccessInfo(PtrTy
);
2579 CGM
.DecorateInstructionWithTBAA(Store
, TBAAInfo
);
2580 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2581 CGM
.getCodeGenOpts().StrictVTablePointers
)
2582 CGM
.DecorateInstructionWithInvariantGroup(Store
, Vptr
.VTableClass
);
2585 CodeGenFunction::VPtrsVector
2586 CodeGenFunction::getVTablePointers(const CXXRecordDecl
*VTableClass
) {
2587 CodeGenFunction::VPtrsVector VPtrsResult
;
2588 VisitedVirtualBasesSetTy VBases
;
2589 getVTablePointers(BaseSubobject(VTableClass
, CharUnits::Zero()),
2590 /*NearestVBase=*/nullptr,
2591 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2592 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass
, VBases
,
2597 void CodeGenFunction::getVTablePointers(BaseSubobject Base
,
2598 const CXXRecordDecl
*NearestVBase
,
2599 CharUnits OffsetFromNearestVBase
,
2600 bool BaseIsNonVirtualPrimaryBase
,
2601 const CXXRecordDecl
*VTableClass
,
2602 VisitedVirtualBasesSetTy
&VBases
,
2603 VPtrsVector
&Vptrs
) {
2604 // If this base is a non-virtual primary base the address point has already
2606 if (!BaseIsNonVirtualPrimaryBase
) {
2607 // Initialize the vtable pointer for this base.
2608 VPtr Vptr
= {Base
, NearestVBase
, OffsetFromNearestVBase
, VTableClass
};
2609 Vptrs
.push_back(Vptr
);
2612 const CXXRecordDecl
*RD
= Base
.getBase();
2615 for (const auto &I
: RD
->bases()) {
2617 cast
<CXXRecordDecl
>(I
.getType()->castAs
<RecordType
>()->getDecl());
2619 // Ignore classes without a vtable.
2620 if (!BaseDecl
->isDynamicClass())
2623 CharUnits BaseOffset
;
2624 CharUnits BaseOffsetFromNearestVBase
;
2625 bool BaseDeclIsNonVirtualPrimaryBase
;
2627 if (I
.isVirtual()) {
2628 // Check if we've visited this virtual base before.
2629 if (!VBases
.insert(BaseDecl
).second
)
2632 const ASTRecordLayout
&Layout
=
2633 getContext().getASTRecordLayout(VTableClass
);
2635 BaseOffset
= Layout
.getVBaseClassOffset(BaseDecl
);
2636 BaseOffsetFromNearestVBase
= CharUnits::Zero();
2637 BaseDeclIsNonVirtualPrimaryBase
= false;
2639 const ASTRecordLayout
&Layout
= getContext().getASTRecordLayout(RD
);
2641 BaseOffset
= Base
.getBaseOffset() + Layout
.getBaseClassOffset(BaseDecl
);
2642 BaseOffsetFromNearestVBase
=
2643 OffsetFromNearestVBase
+ Layout
.getBaseClassOffset(BaseDecl
);
2644 BaseDeclIsNonVirtualPrimaryBase
= Layout
.getPrimaryBase() == BaseDecl
;
2648 BaseSubobject(BaseDecl
, BaseOffset
),
2649 I
.isVirtual() ? BaseDecl
: NearestVBase
, BaseOffsetFromNearestVBase
,
2650 BaseDeclIsNonVirtualPrimaryBase
, VTableClass
, VBases
, Vptrs
);
2654 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl
*RD
) {
2655 // Ignore classes without a vtable.
2656 if (!RD
->isDynamicClass())
2659 // Initialize the vtable pointers for this class and all of its bases.
2660 if (CGM
.getCXXABI().doStructorsInitializeVPtrs(RD
))
2661 for (const VPtr
&Vptr
: getVTablePointers(RD
))
2662 InitializeVTablePointer(Vptr
);
2664 if (RD
->getNumVBases())
2665 CGM
.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD
);
2668 llvm::Value
*CodeGenFunction::GetVTablePtr(Address This
,
2669 llvm::Type
*VTableTy
,
2670 const CXXRecordDecl
*RD
) {
2671 Address VTablePtrSrc
= This
.withElementType(VTableTy
);
2672 llvm::Instruction
*VTable
= Builder
.CreateLoad(VTablePtrSrc
, "vtable");
2673 TBAAAccessInfo TBAAInfo
= CGM
.getTBAAVTablePtrAccessInfo(VTableTy
);
2674 CGM
.DecorateInstructionWithTBAA(VTable
, TBAAInfo
);
2676 if (CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2677 CGM
.getCodeGenOpts().StrictVTablePointers
)
2678 CGM
.DecorateInstructionWithInvariantGroup(VTable
, RD
);
2683 // If a class has a single non-virtual base and does not introduce or override
2684 // virtual member functions or fields, it will have the same layout as its base.
2685 // This function returns the least derived such class.
2687 // Casting an instance of a base class to such a derived class is technically
2688 // undefined behavior, but it is a relatively common hack for introducing member
2689 // functions on class instances with specific properties (e.g. llvm::Operator)
2690 // that works under most compilers and should not have security implications, so
2691 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2692 static const CXXRecordDecl
*
2693 LeastDerivedClassWithSameLayout(const CXXRecordDecl
*RD
) {
2694 if (!RD
->field_empty())
2697 if (RD
->getNumVBases() != 0)
2700 if (RD
->getNumBases() != 1)
2703 for (const CXXMethodDecl
*MD
: RD
->methods()) {
2704 if (MD
->isVirtual()) {
2705 // Virtual member functions are only ok if they are implicit destructors
2706 // because the implicit destructor will have the same semantics as the
2707 // base class's destructor if no fields are added.
2708 if (isa
<CXXDestructorDecl
>(MD
) && MD
->isImplicit())
2714 return LeastDerivedClassWithSameLayout(
2715 RD
->bases_begin()->getType()->getAsCXXRecordDecl());
2718 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl
*RD
,
2719 llvm::Value
*VTable
,
2720 SourceLocation Loc
) {
2721 if (SanOpts
.has(SanitizerKind::CFIVCall
))
2722 EmitVTablePtrCheckForCall(RD
, VTable
, CodeGenFunction::CFITCK_VCall
, Loc
);
2723 else if (CGM
.getCodeGenOpts().WholeProgramVTables
&&
2724 // Don't insert type test assumes if we are forcing public
2726 !CGM
.AlwaysHasLTOVisibilityPublic(RD
)) {
2727 QualType Ty
= QualType(RD
->getTypeForDecl(), 0);
2728 llvm::Metadata
*MD
= CGM
.CreateMetadataIdentifierForType(Ty
);
2729 llvm::Value
*TypeId
=
2730 llvm::MetadataAsValue::get(CGM
.getLLVMContext(), MD
);
2732 // If we already know that the call has hidden LTO visibility, emit
2733 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2734 // will convert to @llvm.type.test() if we assert at link time that we have
2735 // whole program visibility.
2736 llvm::Intrinsic::ID IID
= CGM
.HasHiddenLTOVisibility(RD
)
2737 ? llvm::Intrinsic::type_test
2738 : llvm::Intrinsic::public_type_test
;
2739 llvm::Value
*TypeTest
=
2740 Builder
.CreateCall(CGM
.getIntrinsic(IID
), {VTable
, TypeId
});
2741 Builder
.CreateCall(CGM
.getIntrinsic(llvm::Intrinsic::assume
), TypeTest
);
2745 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl
*RD
,
2746 llvm::Value
*VTable
,
2747 CFITypeCheckKind TCK
,
2748 SourceLocation Loc
) {
2749 if (!SanOpts
.has(SanitizerKind::CFICastStrict
))
2750 RD
= LeastDerivedClassWithSameLayout(RD
);
2752 EmitVTablePtrCheck(RD
, VTable
, TCK
, Loc
);
2755 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T
, Address Derived
,
2757 CFITypeCheckKind TCK
,
2758 SourceLocation Loc
) {
2759 if (!getLangOpts().CPlusPlus
)
2762 auto *ClassTy
= T
->getAs
<RecordType
>();
2766 const CXXRecordDecl
*ClassDecl
= cast
<CXXRecordDecl
>(ClassTy
->getDecl());
2768 if (!ClassDecl
->isCompleteDefinition() || !ClassDecl
->isDynamicClass())
2771 if (!SanOpts
.has(SanitizerKind::CFICastStrict
))
2772 ClassDecl
= LeastDerivedClassWithSameLayout(ClassDecl
);
2774 llvm::BasicBlock
*ContBlock
= nullptr;
2777 llvm::Value
*DerivedNotNull
=
2778 Builder
.CreateIsNotNull(Derived
.getPointer(), "cast.nonnull");
2780 llvm::BasicBlock
*CheckBlock
= createBasicBlock("cast.check");
2781 ContBlock
= createBasicBlock("cast.cont");
2783 Builder
.CreateCondBr(DerivedNotNull
, CheckBlock
, ContBlock
);
2785 EmitBlock(CheckBlock
);
2788 llvm::Value
*VTable
;
2789 std::tie(VTable
, ClassDecl
) =
2790 CGM
.getCXXABI().LoadVTablePtr(*this, Derived
, ClassDecl
);
2792 EmitVTablePtrCheck(ClassDecl
, VTable
, TCK
, Loc
);
2795 Builder
.CreateBr(ContBlock
);
2796 EmitBlock(ContBlock
);
2800 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl
*RD
,
2801 llvm::Value
*VTable
,
2802 CFITypeCheckKind TCK
,
2803 SourceLocation Loc
) {
2804 if (!CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&&
2805 !CGM
.HasHiddenLTOVisibility(RD
))
2809 llvm::SanitizerStatKind SSK
;
2812 M
= SanitizerKind::CFIVCall
;
2813 SSK
= llvm::SanStat_CFI_VCall
;
2816 M
= SanitizerKind::CFINVCall
;
2817 SSK
= llvm::SanStat_CFI_NVCall
;
2819 case CFITCK_DerivedCast
:
2820 M
= SanitizerKind::CFIDerivedCast
;
2821 SSK
= llvm::SanStat_CFI_DerivedCast
;
2823 case CFITCK_UnrelatedCast
:
2824 M
= SanitizerKind::CFIUnrelatedCast
;
2825 SSK
= llvm::SanStat_CFI_UnrelatedCast
;
2828 case CFITCK_NVMFCall
:
2829 case CFITCK_VMFCall
:
2830 llvm_unreachable("unexpected sanitizer kind");
2833 std::string TypeName
= RD
->getQualifiedNameAsString();
2834 if (getContext().getNoSanitizeList().containsType(M
, TypeName
))
2837 SanitizerScope
SanScope(this);
2838 EmitSanitizerStatReport(SSK
);
2840 llvm::Metadata
*MD
=
2841 CGM
.CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
2842 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(getLLVMContext(), MD
);
2844 llvm::Value
*TypeTest
= Builder
.CreateCall(
2845 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, TypeId
});
2847 llvm::Constant
*StaticData
[] = {
2848 llvm::ConstantInt::get(Int8Ty
, TCK
),
2849 EmitCheckSourceLocation(Loc
),
2850 EmitCheckTypeDescriptor(QualType(RD
->getTypeForDecl(), 0)),
2853 auto CrossDsoTypeId
= CGM
.CreateCrossDsoCfiTypeId(MD
);
2854 if (CGM
.getCodeGenOpts().SanitizeCfiCrossDso
&& CrossDsoTypeId
) {
2855 EmitCfiSlowPathCheck(M
, TypeTest
, CrossDsoTypeId
, VTable
, StaticData
);
2859 if (CGM
.getCodeGenOpts().SanitizeTrap
.has(M
)) {
2860 EmitTrapCheck(TypeTest
, SanitizerHandler::CFICheckFail
);
2864 llvm::Value
*AllVtables
= llvm::MetadataAsValue::get(
2865 CGM
.getLLVMContext(),
2866 llvm::MDString::get(CGM
.getLLVMContext(), "all-vtables"));
2867 llvm::Value
*ValidVtable
= Builder
.CreateCall(
2868 CGM
.getIntrinsic(llvm::Intrinsic::type_test
), {VTable
, AllVtables
});
2869 EmitCheck(std::make_pair(TypeTest
, M
), SanitizerHandler::CFICheckFail
,
2870 StaticData
, {VTable
, ValidVtable
});
2873 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl
*RD
) {
2874 if (!CGM
.getCodeGenOpts().WholeProgramVTables
||
2875 !CGM
.HasHiddenLTOVisibility(RD
))
2878 if (CGM
.getCodeGenOpts().VirtualFunctionElimination
)
2881 if (!SanOpts
.has(SanitizerKind::CFIVCall
) ||
2882 !CGM
.getCodeGenOpts().SanitizeTrap
.has(SanitizerKind::CFIVCall
))
2885 std::string TypeName
= RD
->getQualifiedNameAsString();
2886 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall
,
2890 llvm::Value
*CodeGenFunction::EmitVTableTypeCheckedLoad(
2891 const CXXRecordDecl
*RD
, llvm::Value
*VTable
, llvm::Type
*VTableTy
,
2892 uint64_t VTableByteOffset
) {
2893 SanitizerScope
SanScope(this);
2895 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall
);
2897 llvm::Metadata
*MD
=
2898 CGM
.CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
2899 llvm::Value
*TypeId
= llvm::MetadataAsValue::get(CGM
.getLLVMContext(), MD
);
2901 llvm::Value
*CheckedLoad
= Builder
.CreateCall(
2902 CGM
.getIntrinsic(llvm::Intrinsic::type_checked_load
),
2903 {VTable
, llvm::ConstantInt::get(Int32Ty
, VTableByteOffset
), TypeId
});
2904 llvm::Value
*CheckResult
= Builder
.CreateExtractValue(CheckedLoad
, 1);
2906 std::string TypeName
= RD
->getQualifiedNameAsString();
2907 if (SanOpts
.has(SanitizerKind::CFIVCall
) &&
2908 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall
,
2910 EmitCheck(std::make_pair(CheckResult
, SanitizerKind::CFIVCall
),
2911 SanitizerHandler::CFICheckFail
, {}, {});
2914 return Builder
.CreateBitCast(Builder
.CreateExtractValue(CheckedLoad
, 0),
2918 void CodeGenFunction::EmitForwardingCallToLambda(
2919 const CXXMethodDecl
*callOperator
, CallArgList
&callArgs
,
2920 const CGFunctionInfo
*calleeFnInfo
, llvm::Constant
*calleePtr
) {
2921 // Get the address of the call operator.
2923 calleeFnInfo
= &CGM
.getTypes().arrangeCXXMethodDeclaration(callOperator
);
2927 CGM
.GetAddrOfFunction(GlobalDecl(callOperator
),
2928 CGM
.getTypes().GetFunctionType(*calleeFnInfo
));
2930 // Prepare the return slot.
2931 const FunctionProtoType
*FPT
=
2932 callOperator
->getType()->castAs
<FunctionProtoType
>();
2933 QualType resultType
= FPT
->getReturnType();
2934 ReturnValueSlot returnSlot
;
2935 if (!resultType
->isVoidType() &&
2936 calleeFnInfo
->getReturnInfo().getKind() == ABIArgInfo::Indirect
&&
2937 !hasScalarEvaluationKind(calleeFnInfo
->getReturnType()))
2939 ReturnValueSlot(ReturnValue
, resultType
.isVolatileQualified(),
2940 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2942 // We don't need to separately arrange the call arguments because
2943 // the call can't be variadic anyway --- it's impossible to forward
2944 // variadic arguments.
2946 // Now emit our call.
2947 auto callee
= CGCallee::forDirect(calleePtr
, GlobalDecl(callOperator
));
2948 RValue RV
= EmitCall(*calleeFnInfo
, callee
, returnSlot
, callArgs
);
2950 // If necessary, copy the returned value into the slot.
2951 if (!resultType
->isVoidType() && returnSlot
.isNull()) {
2952 if (getLangOpts().ObjCAutoRefCount
&& resultType
->isObjCRetainableType()) {
2953 RV
= RValue::get(EmitARCRetainAutoreleasedReturnValue(RV
.getScalarVal()));
2955 EmitReturnOfRValue(RV
, resultType
);
2957 EmitBranchThroughCleanup(ReturnBlock
);
2960 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2961 const BlockDecl
*BD
= BlockInfo
->getBlockDecl();
2962 const VarDecl
*variable
= BD
->capture_begin()->getVariable();
2963 const CXXRecordDecl
*Lambda
= variable
->getType()->getAsCXXRecordDecl();
2964 const CXXMethodDecl
*CallOp
= Lambda
->getLambdaCallOperator();
2966 if (CallOp
->isVariadic()) {
2967 // FIXME: Making this work correctly is nasty because it requires either
2968 // cloning the body of the call operator or making the call operator
2970 CGM
.ErrorUnsupported(CurCodeDecl
, "lambda conversion to variadic function");
2974 // Start building arguments for forwarding call
2975 CallArgList CallArgs
;
2977 QualType ThisType
= getContext().getPointerType(getContext().getRecordType(Lambda
));
2978 Address ThisPtr
= GetAddrOfBlockDecl(variable
);
2979 CallArgs
.add(RValue::get(ThisPtr
.getPointer()), ThisType
);
2981 // Add the rest of the parameters.
2982 for (auto *param
: BD
->parameters())
2983 EmitDelegateCallArg(CallArgs
, param
, param
->getBeginLoc());
2985 assert(!Lambda
->isGenericLambda() &&
2986 "generic lambda interconversion to block not implemented");
2987 EmitForwardingCallToLambda(CallOp
, CallArgs
);
2990 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl
*MD
) {
2991 if (MD
->isVariadic()) {
2992 // FIXME: Making this work correctly is nasty because it requires either
2993 // cloning the body of the call operator or making the call operator
2995 CGM
.ErrorUnsupported(MD
, "lambda conversion to variadic function");
2999 const CXXRecordDecl
*Lambda
= MD
->getParent();
3001 // Start building arguments for forwarding call
3002 CallArgList CallArgs
;
3004 QualType LambdaType
= getContext().getRecordType(Lambda
);
3005 QualType ThisType
= getContext().getPointerType(LambdaType
);
3006 Address ThisPtr
= CreateMemTemp(LambdaType
, "unused.capture");
3007 CallArgs
.add(RValue::get(ThisPtr
.getPointer()), ThisType
);
3009 EmitLambdaDelegatingInvokeBody(MD
, CallArgs
);
3012 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl
*MD
,
3013 CallArgList
&CallArgs
) {
3014 // Add the rest of the forwarded parameters.
3015 for (auto *Param
: MD
->parameters())
3016 EmitDelegateCallArg(CallArgs
, Param
, Param
->getBeginLoc());
3018 const CXXRecordDecl
*Lambda
= MD
->getParent();
3019 const CXXMethodDecl
*CallOp
= Lambda
->getLambdaCallOperator();
3020 // For a generic lambda, find the corresponding call operator specialization
3021 // to which the call to the static-invoker shall be forwarded.
3022 if (Lambda
->isGenericLambda()) {
3023 assert(MD
->isFunctionTemplateSpecialization());
3024 const TemplateArgumentList
*TAL
= MD
->getTemplateSpecializationArgs();
3025 FunctionTemplateDecl
*CallOpTemplate
= CallOp
->getDescribedFunctionTemplate();
3026 void *InsertPos
= nullptr;
3027 FunctionDecl
*CorrespondingCallOpSpecialization
=
3028 CallOpTemplate
->findSpecialization(TAL
->asArray(), InsertPos
);
3029 assert(CorrespondingCallOpSpecialization
);
3030 CallOp
= cast
<CXXMethodDecl
>(CorrespondingCallOpSpecialization
);
3033 // Special lambda forwarding when there are inalloca parameters.
3034 if (hasInAllocaArg(MD
)) {
3035 const CGFunctionInfo
*ImplFnInfo
= nullptr;
3036 llvm::Function
*ImplFn
= nullptr;
3037 EmitLambdaInAllocaImplFn(CallOp
, &ImplFnInfo
, &ImplFn
);
3039 EmitForwardingCallToLambda(CallOp
, CallArgs
, ImplFnInfo
, ImplFn
);
3043 EmitForwardingCallToLambda(CallOp
, CallArgs
);
3046 void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl
*MD
) {
3047 if (MD
->isVariadic()) {
3048 // FIXME: Making this work correctly is nasty because it requires either
3049 // cloning the body of the call operator or making the call operator forward.
3050 CGM
.ErrorUnsupported(MD
, "lambda conversion to variadic function");
3054 // Forward %this argument.
3055 CallArgList CallArgs
;
3056 QualType LambdaType
= getContext().getRecordType(MD
->getParent());
3057 QualType ThisType
= getContext().getPointerType(LambdaType
);
3058 llvm::Value
*ThisArg
= CurFn
->getArg(0);
3059 CallArgs
.add(RValue::get(ThisArg
), ThisType
);
3061 EmitLambdaDelegatingInvokeBody(MD
, CallArgs
);
3064 void CodeGenFunction::EmitLambdaInAllocaImplFn(
3065 const CXXMethodDecl
*CallOp
, const CGFunctionInfo
**ImplFnInfo
,
3066 llvm::Function
**ImplFn
) {
3067 const CGFunctionInfo
&FnInfo
=
3068 CGM
.getTypes().arrangeCXXMethodDeclaration(CallOp
);
3069 llvm::Function
*CallOpFn
=
3070 cast
<llvm::Function
>(CGM
.GetAddrOfFunction(GlobalDecl(CallOp
)));
3072 // Emit function containing the original call op body. __invoke will delegate
3073 // to this function.
3074 SmallVector
<CanQualType
, 4> ArgTypes
;
3075 for (auto I
= FnInfo
.arg_begin(); I
!= FnInfo
.arg_end(); ++I
)
3076 ArgTypes
.push_back(I
->type
);
3077 *ImplFnInfo
= &CGM
.getTypes().arrangeLLVMFunctionInfo(
3078 FnInfo
.getReturnType(), FnInfoOpts::IsDelegateCall
, ArgTypes
,
3079 FnInfo
.getExtInfo(), {}, FnInfo
.getRequiredArgs());
3081 // Create mangled name as if this was a method named __impl. If for some
3082 // reason the name doesn't look as expected then just tack __impl to the
3084 // TODO: Use the name mangler to produce the right name instead of using
3085 // string replacement.
3086 StringRef CallOpName
= CallOpFn
->getName();
3087 std::string ImplName
;
3088 if (size_t Pos
= CallOpName
.find_first_of("<lambda"))
3089 ImplName
= ("?__impl@" + CallOpName
.drop_front(Pos
)).str();
3091 ImplName
= ("__impl" + CallOpName
).str();
3093 llvm::Function
*Fn
= CallOpFn
->getParent()->getFunction(ImplName
);
3095 Fn
= llvm::Function::Create(CGM
.getTypes().GetFunctionType(**ImplFnInfo
),
3096 llvm::GlobalValue::InternalLinkage
, ImplName
,
3098 CGM
.SetInternalFunctionAttributes(CallOp
, Fn
, **ImplFnInfo
);
3100 const GlobalDecl
&GD
= GlobalDecl(CallOp
);
3101 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
3102 CodeGenFunction(CGM
).GenerateCode(GD
, Fn
, **ImplFnInfo
);
3103 CGM
.SetLLVMFunctionAttributesForDefinition(D
, Fn
);