[cmake] Add minor version to library SONAME (#79376)
[llvm-project.git] / clang / lib / CodeGen / CodeGenFunction.cpp
blob2673e4a5cee7bb524cbe5a0ffead5e663541007b
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/CodeGen/CGFunctionInfo.h"
36 #include "clang/Frontend/FrontendDiagnostic.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/FPEnv.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <optional>
52 using namespace clang;
53 using namespace CodeGen;
55 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
56 /// markers.
57 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
58 const LangOptions &LangOpts) {
59 if (CGOpts.DisableLifetimeMarkers)
60 return false;
62 // Sanitizers may use markers.
63 if (CGOpts.SanitizeAddressUseAfterScope ||
64 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
65 LangOpts.Sanitize.has(SanitizerKind::Memory))
66 return true;
68 // For now, only in optimized builds.
69 return CGOpts.OptimizationLevel != 0;
72 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
73 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
74 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
75 CGBuilderInserterTy(this)),
76 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
77 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
78 ShouldEmitLifetimeMarkers(
79 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
80 if (!suppressNewContext)
81 CGM.getCXXABI().getMangleContext().startNewFunction();
82 EHStack.setCGF(this);
84 SetFastMathFlags(CurFPFeatures);
87 CodeGenFunction::~CodeGenFunction() {
88 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
90 if (getLangOpts().OpenMP && CurFn)
91 CGM.getOpenMPRuntime().functionFinished(*this);
93 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
94 // outlining etc) at some point. Doing it once the function codegen is done
95 // seems to be a reasonable spot. We do it here, as opposed to the deletion
96 // time of the CodeGenModule, because we have to ensure the IR has not yet
97 // been "emitted" to the outside, thus, modifications are still sensible.
98 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
99 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
102 // Map the LangOption for exception behavior into
103 // the corresponding enum in the IR.
104 llvm::fp::ExceptionBehavior
105 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
107 switch (Kind) {
108 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
109 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
110 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
111 default:
112 llvm_unreachable("Unsupported FP Exception Behavior");
116 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
117 llvm::FastMathFlags FMF;
118 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
119 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
120 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
121 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
122 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
123 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
124 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
125 Builder.setFastMathFlags(FMF);
128 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
129 const Expr *E)
130 : CGF(CGF) {
131 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
135 FPOptions FPFeatures)
136 : CGF(CGF) {
137 ConstructorHelper(FPFeatures);
140 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
141 OldFPFeatures = CGF.CurFPFeatures;
142 CGF.CurFPFeatures = FPFeatures;
144 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
145 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
147 if (OldFPFeatures == FPFeatures)
148 return;
150 FMFGuard.emplace(CGF.Builder);
152 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
153 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
154 auto NewExceptionBehavior =
155 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
156 FPFeatures.getExceptionMode()));
157 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
159 CGF.SetFastMathFlags(FPFeatures);
161 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
162 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
163 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
164 (NewExceptionBehavior == llvm::fp::ebIgnore &&
165 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
166 "FPConstrained should be enabled on entire function");
168 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
169 auto OldValue =
170 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
171 auto NewValue = OldValue & Value;
172 if (OldValue != NewValue)
173 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
175 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
176 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
177 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
178 mergeFnAttrValue(
179 "unsafe-fp-math",
180 FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() &&
181 FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() &&
182 FPFeatures.allowFPContractAcrossStatement());
185 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
186 CGF.CurFPFeatures = OldFPFeatures;
187 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
188 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
191 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
192 LValueBaseInfo BaseInfo;
193 TBAAAccessInfo TBAAInfo;
194 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
195 Address Addr(V, ConvertTypeForMem(T), Alignment);
196 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
199 /// Given a value of type T* that may not be to a complete object,
200 /// construct an l-value with the natural pointee alignment of T.
201 LValue
202 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
203 LValueBaseInfo BaseInfo;
204 TBAAAccessInfo TBAAInfo;
205 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
206 /* forPointeeType= */ true);
207 Address Addr(V, ConvertTypeForMem(T), Align);
208 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
212 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
213 return CGM.getTypes().ConvertTypeForMem(T);
216 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
217 return CGM.getTypes().ConvertType(T);
220 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
221 type = type.getCanonicalType();
222 while (true) {
223 switch (type->getTypeClass()) {
224 #define TYPE(name, parent)
225 #define ABSTRACT_TYPE(name, parent)
226 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
227 #define DEPENDENT_TYPE(name, parent) case Type::name:
228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
229 #include "clang/AST/TypeNodes.inc"
230 llvm_unreachable("non-canonical or dependent type in IR-generation");
232 case Type::Auto:
233 case Type::DeducedTemplateSpecialization:
234 llvm_unreachable("undeduced type in IR-generation");
236 // Various scalar types.
237 case Type::Builtin:
238 case Type::Pointer:
239 case Type::BlockPointer:
240 case Type::LValueReference:
241 case Type::RValueReference:
242 case Type::MemberPointer:
243 case Type::Vector:
244 case Type::ExtVector:
245 case Type::ConstantMatrix:
246 case Type::FunctionProto:
247 case Type::FunctionNoProto:
248 case Type::Enum:
249 case Type::ObjCObjectPointer:
250 case Type::Pipe:
251 case Type::BitInt:
252 return TEK_Scalar;
254 // Complexes.
255 case Type::Complex:
256 return TEK_Complex;
258 // Arrays, records, and Objective-C objects.
259 case Type::ConstantArray:
260 case Type::IncompleteArray:
261 case Type::VariableArray:
262 case Type::Record:
263 case Type::ObjCObject:
264 case Type::ObjCInterface:
265 return TEK_Aggregate;
267 // We operate on atomic values according to their underlying type.
268 case Type::Atomic:
269 type = cast<AtomicType>(type)->getValueType();
270 continue;
272 llvm_unreachable("unknown type kind!");
276 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
277 // For cleanliness, we try to avoid emitting the return block for
278 // simple cases.
279 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
281 if (CurBB) {
282 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
284 // We have a valid insert point, reuse it if it is empty or there are no
285 // explicit jumps to the return block.
286 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
287 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
288 delete ReturnBlock.getBlock();
289 ReturnBlock = JumpDest();
290 } else
291 EmitBlock(ReturnBlock.getBlock());
292 return llvm::DebugLoc();
295 // Otherwise, if the return block is the target of a single direct
296 // branch then we can just put the code in that block instead. This
297 // cleans up functions which started with a unified return block.
298 if (ReturnBlock.getBlock()->hasOneUse()) {
299 llvm::BranchInst *BI =
300 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
301 if (BI && BI->isUnconditional() &&
302 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
303 // Record/return the DebugLoc of the simple 'return' expression to be used
304 // later by the actual 'ret' instruction.
305 llvm::DebugLoc Loc = BI->getDebugLoc();
306 Builder.SetInsertPoint(BI->getParent());
307 BI->eraseFromParent();
308 delete ReturnBlock.getBlock();
309 ReturnBlock = JumpDest();
310 return Loc;
314 // FIXME: We are at an unreachable point, there is no reason to emit the block
315 // unless it has uses. However, we still need a place to put the debug
316 // region.end for now.
318 EmitBlock(ReturnBlock.getBlock());
319 return llvm::DebugLoc();
322 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
323 if (!BB) return;
324 if (!BB->use_empty()) {
325 CGF.CurFn->insert(CGF.CurFn->end(), BB);
326 return;
328 delete BB;
331 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
332 assert(BreakContinueStack.empty() &&
333 "mismatched push/pop in break/continue stack!");
335 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
336 && NumSimpleReturnExprs == NumReturnExprs
337 && ReturnBlock.getBlock()->use_empty();
338 // Usually the return expression is evaluated before the cleanup
339 // code. If the function contains only a simple return statement,
340 // such as a constant, the location before the cleanup code becomes
341 // the last useful breakpoint in the function, because the simple
342 // return expression will be evaluated after the cleanup code. To be
343 // safe, set the debug location for cleanup code to the location of
344 // the return statement. Otherwise the cleanup code should be at the
345 // end of the function's lexical scope.
347 // If there are multiple branches to the return block, the branch
348 // instructions will get the location of the return statements and
349 // all will be fine.
350 if (CGDebugInfo *DI = getDebugInfo()) {
351 if (OnlySimpleReturnStmts)
352 DI->EmitLocation(Builder, LastStopPoint);
353 else
354 DI->EmitLocation(Builder, EndLoc);
357 // Pop any cleanups that might have been associated with the
358 // parameters. Do this in whatever block we're currently in; it's
359 // important to do this before we enter the return block or return
360 // edges will be *really* confused.
361 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
362 bool HasOnlyLifetimeMarkers =
363 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
364 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
366 std::optional<ApplyDebugLocation> OAL;
367 if (HasCleanups) {
368 // Make sure the line table doesn't jump back into the body for
369 // the ret after it's been at EndLoc.
370 if (CGDebugInfo *DI = getDebugInfo()) {
371 if (OnlySimpleReturnStmts)
372 DI->EmitLocation(Builder, EndLoc);
373 else
374 // We may not have a valid end location. Try to apply it anyway, and
375 // fall back to an artificial location if needed.
376 OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
379 PopCleanupBlocks(PrologueCleanupDepth);
382 // Emit function epilog (to return).
383 llvm::DebugLoc Loc = EmitReturnBlock();
385 if (ShouldInstrumentFunction()) {
386 if (CGM.getCodeGenOpts().InstrumentFunctions)
387 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
388 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
389 CurFn->addFnAttr("instrument-function-exit-inlined",
390 "__cyg_profile_func_exit");
393 // Emit debug descriptor for function end.
394 if (CGDebugInfo *DI = getDebugInfo())
395 DI->EmitFunctionEnd(Builder, CurFn);
397 // Reset the debug location to that of the simple 'return' expression, if any
398 // rather than that of the end of the function's scope '}'.
399 ApplyDebugLocation AL(*this, Loc);
400 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
401 EmitEndEHSpec(CurCodeDecl);
403 assert(EHStack.empty() &&
404 "did not remove all scopes from cleanup stack!");
406 // If someone did an indirect goto, emit the indirect goto block at the end of
407 // the function.
408 if (IndirectBranch) {
409 EmitBlock(IndirectBranch->getParent());
410 Builder.ClearInsertionPoint();
413 // If some of our locals escaped, insert a call to llvm.localescape in the
414 // entry block.
415 if (!EscapedLocals.empty()) {
416 // Invert the map from local to index into a simple vector. There should be
417 // no holes.
418 SmallVector<llvm::Value *, 4> EscapeArgs;
419 EscapeArgs.resize(EscapedLocals.size());
420 for (auto &Pair : EscapedLocals)
421 EscapeArgs[Pair.second] = Pair.first;
422 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
423 &CGM.getModule(), llvm::Intrinsic::localescape);
424 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
427 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
428 llvm::Instruction *Ptr = AllocaInsertPt;
429 AllocaInsertPt = nullptr;
430 Ptr->eraseFromParent();
432 // PostAllocaInsertPt, if created, was lazily created when it was required,
433 // remove it now since it was just created for our own convenience.
434 if (PostAllocaInsertPt) {
435 llvm::Instruction *PostPtr = PostAllocaInsertPt;
436 PostAllocaInsertPt = nullptr;
437 PostPtr->eraseFromParent();
440 // If someone took the address of a label but never did an indirect goto, we
441 // made a zero entry PHI node, which is illegal, zap it now.
442 if (IndirectBranch) {
443 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
444 if (PN->getNumIncomingValues() == 0) {
445 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
446 PN->eraseFromParent();
450 EmitIfUsed(*this, EHResumeBlock);
451 EmitIfUsed(*this, TerminateLandingPad);
452 EmitIfUsed(*this, TerminateHandler);
453 EmitIfUsed(*this, UnreachableBlock);
455 for (const auto &FuncletAndParent : TerminateFunclets)
456 EmitIfUsed(*this, FuncletAndParent.second);
458 if (CGM.getCodeGenOpts().EmitDeclMetadata)
459 EmitDeclMetadata();
461 for (const auto &R : DeferredReplacements) {
462 if (llvm::Value *Old = R.first) {
463 Old->replaceAllUsesWith(R.second);
464 cast<llvm::Instruction>(Old)->eraseFromParent();
467 DeferredReplacements.clear();
469 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
470 // PHIs if the current function is a coroutine. We don't do it for all
471 // functions as it may result in slight increase in numbers of instructions
472 // if compiled with no optimizations. We do it for coroutine as the lifetime
473 // of CleanupDestSlot alloca make correct coroutine frame building very
474 // difficult.
475 if (NormalCleanupDest.isValid() && isCoroutine()) {
476 llvm::DominatorTree DT(*CurFn);
477 llvm::PromoteMemToReg(
478 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
479 NormalCleanupDest = Address::invalid();
482 // Scan function arguments for vector width.
483 for (llvm::Argument &A : CurFn->args())
484 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
485 LargestVectorWidth =
486 std::max((uint64_t)LargestVectorWidth,
487 VT->getPrimitiveSizeInBits().getKnownMinValue());
489 // Update vector width based on return type.
490 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
491 LargestVectorWidth =
492 std::max((uint64_t)LargestVectorWidth,
493 VT->getPrimitiveSizeInBits().getKnownMinValue());
495 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
496 LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
498 // Add the min-legal-vector-width attribute. This contains the max width from:
499 // 1. min-vector-width attribute used in the source program.
500 // 2. Any builtins used that have a vector width specified.
501 // 3. Values passed in and out of inline assembly.
502 // 4. Width of vector arguments and return types for this function.
503 // 5. Width of vector arguments and return types for functions called by this
504 // function.
505 if (getContext().getTargetInfo().getTriple().isX86())
506 CurFn->addFnAttr("min-legal-vector-width",
507 llvm::utostr(LargestVectorWidth));
509 // Add vscale_range attribute if appropriate.
510 std::optional<std::pair<unsigned, unsigned>> VScaleRange =
511 getContext().getTargetInfo().getVScaleRange(getLangOpts());
512 if (VScaleRange) {
513 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
514 getLLVMContext(), VScaleRange->first, VScaleRange->second));
517 // If we generated an unreachable return block, delete it now.
518 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
519 Builder.ClearInsertionPoint();
520 ReturnBlock.getBlock()->eraseFromParent();
522 if (ReturnValue.isValid()) {
523 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
524 if (RetAlloca && RetAlloca->use_empty()) {
525 RetAlloca->eraseFromParent();
526 ReturnValue = Address::invalid();
531 /// ShouldInstrumentFunction - Return true if the current function should be
532 /// instrumented with __cyg_profile_func_* calls
533 bool CodeGenFunction::ShouldInstrumentFunction() {
534 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
535 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
536 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
537 return false;
538 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
539 return false;
540 return true;
543 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
544 if (!CurFuncDecl)
545 return false;
546 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
549 /// ShouldXRayInstrument - Return true if the current function should be
550 /// instrumented with XRay nop sleds.
551 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
552 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
555 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
556 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
557 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
558 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
559 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
560 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
561 XRayInstrKind::Custom);
564 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
565 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
566 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
567 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
568 XRayInstrKind::Typed);
571 llvm::ConstantInt *
572 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const {
573 // Remove any (C++17) exception specifications, to allow calling e.g. a
574 // noexcept function through a non-noexcept pointer.
575 if (!Ty->isFunctionNoProtoType())
576 Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None);
577 std::string Mangled;
578 llvm::raw_string_ostream Out(Mangled);
579 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
580 return llvm::ConstantInt::get(
581 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
585 llvm::Function *Fn) {
586 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
587 return;
589 llvm::LLVMContext &Context = getLLVMContext();
591 CGM.GenKernelArgMetadata(Fn, FD, this);
593 if (!getLangOpts().OpenCL)
594 return;
596 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
597 QualType HintQTy = A->getTypeHint();
598 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
599 bool IsSignedInteger =
600 HintQTy->isSignedIntegerType() ||
601 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
602 llvm::Metadata *AttrMDArgs[] = {
603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
604 CGM.getTypes().ConvertType(A->getTypeHint()))),
605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606 llvm::IntegerType::get(Context, 32),
607 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
608 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
611 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
612 llvm::Metadata *AttrMDArgs[] = {
613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
619 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
620 llvm::Metadata *AttrMDArgs[] = {
621 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
623 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
624 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
627 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
628 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
629 llvm::Metadata *AttrMDArgs[] = {
630 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
631 Fn->setMetadata("intel_reqd_sub_group_size",
632 llvm::MDNode::get(Context, AttrMDArgs));
636 /// Determine whether the function F ends with a return stmt.
637 static bool endsWithReturn(const Decl* F) {
638 const Stmt *Body = nullptr;
639 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
640 Body = FD->getBody();
641 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
642 Body = OMD->getBody();
644 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
645 auto LastStmt = CS->body_rbegin();
646 if (LastStmt != CS->body_rend())
647 return isa<ReturnStmt>(*LastStmt);
649 return false;
652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
653 if (SanOpts.has(SanitizerKind::Thread)) {
654 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
655 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
659 /// Check if the return value of this function requires sanitization.
660 bool CodeGenFunction::requiresReturnValueCheck() const {
661 return requiresReturnValueNullabilityCheck() ||
662 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
663 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
666 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
667 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
668 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
669 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
670 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
671 return false;
673 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
674 return false;
676 if (MD->getNumParams() == 2) {
677 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
678 if (!PT || !PT->isVoidPointerType() ||
679 !PT->getPointeeType().isConstQualified())
680 return false;
683 return true;
686 bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
687 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
688 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
691 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
692 return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
693 getTarget().getCXXABI().isMicrosoft() &&
694 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
695 return isInAllocaArgument(CGM.getCXXABI(), P->getType());
699 /// Return the UBSan prologue signature for \p FD if one is available.
700 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
701 const FunctionDecl *FD) {
702 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
703 if (!MD->isStatic())
704 return nullptr;
705 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
708 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
709 llvm::Function *Fn,
710 const CGFunctionInfo &FnInfo,
711 const FunctionArgList &Args,
712 SourceLocation Loc,
713 SourceLocation StartLoc) {
714 assert(!CurFn &&
715 "Do not use a CodeGenFunction object for more than one function");
717 const Decl *D = GD.getDecl();
719 DidCallStackSave = false;
720 CurCodeDecl = D;
721 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
722 if (FD && FD->usesSEHTry())
723 CurSEHParent = GD;
724 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
725 FnRetTy = RetTy;
726 CurFn = Fn;
727 CurFnInfo = &FnInfo;
728 assert(CurFn->isDeclaration() && "Function already has body?");
730 // If this function is ignored for any of the enabled sanitizers,
731 // disable the sanitizer for the function.
732 do {
733 #define SANITIZER(NAME, ID) \
734 if (SanOpts.empty()) \
735 break; \
736 if (SanOpts.has(SanitizerKind::ID)) \
737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
738 SanOpts.set(SanitizerKind::ID, false);
740 #include "clang/Basic/Sanitizers.def"
741 #undef SANITIZER
742 } while (false);
744 if (D) {
745 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
746 SanitizerMask no_sanitize_mask;
747 bool NoSanitizeCoverage = false;
749 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
750 no_sanitize_mask |= Attr->getMask();
751 // SanitizeCoverage is not handled by SanOpts.
752 if (Attr->hasCoverage())
753 NoSanitizeCoverage = true;
756 // Apply the no_sanitize* attributes to SanOpts.
757 SanOpts.Mask &= ~no_sanitize_mask;
758 if (no_sanitize_mask & SanitizerKind::Address)
759 SanOpts.set(SanitizerKind::KernelAddress, false);
760 if (no_sanitize_mask & SanitizerKind::KernelAddress)
761 SanOpts.set(SanitizerKind::Address, false);
762 if (no_sanitize_mask & SanitizerKind::HWAddress)
763 SanOpts.set(SanitizerKind::KernelHWAddress, false);
764 if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
765 SanOpts.set(SanitizerKind::HWAddress, false);
767 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
768 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
770 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
771 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
773 // Some passes need the non-negated no_sanitize attribute. Pass them on.
774 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
775 if (no_sanitize_mask & SanitizerKind::Thread)
776 Fn->addFnAttr("no_sanitize_thread");
780 if (ShouldSkipSanitizerInstrumentation()) {
781 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
782 } else {
783 // Apply sanitizer attributes to the function.
784 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
785 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
786 if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
787 SanitizerKind::KernelHWAddress))
788 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
789 if (SanOpts.has(SanitizerKind::MemtagStack))
790 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
791 if (SanOpts.has(SanitizerKind::Thread))
792 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
793 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
794 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
796 if (SanOpts.has(SanitizerKind::SafeStack))
797 Fn->addFnAttr(llvm::Attribute::SafeStack);
798 if (SanOpts.has(SanitizerKind::ShadowCallStack))
799 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
801 // Apply fuzzing attribute to the function.
802 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
803 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
805 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
806 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
807 if (SanOpts.has(SanitizerKind::Thread)) {
808 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
809 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
810 if (OMD->getMethodFamily() == OMF_dealloc ||
811 OMD->getMethodFamily() == OMF_initialize ||
812 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
813 markAsIgnoreThreadCheckingAtRuntime(Fn);
818 // Ignore unrelated casts in STL allocate() since the allocator must cast
819 // from void* to T* before object initialization completes. Don't match on the
820 // namespace because not all allocators are in std::
821 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
822 if (matchesStlAllocatorFn(D, getContext()))
823 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
826 // Ignore null checks in coroutine functions since the coroutines passes
827 // are not aware of how to move the extra UBSan instructions across the split
828 // coroutine boundaries.
829 if (D && SanOpts.has(SanitizerKind::Null))
830 if (FD && FD->getBody() &&
831 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
832 SanOpts.Mask &= ~SanitizerKind::Null;
834 // Apply xray attributes to the function (as a string, for now)
835 bool AlwaysXRayAttr = false;
836 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
837 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
838 XRayInstrKind::FunctionEntry) ||
839 CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840 XRayInstrKind::FunctionExit)) {
841 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
842 Fn->addFnAttr("function-instrument", "xray-always");
843 AlwaysXRayAttr = true;
845 if (XRayAttr->neverXRayInstrument())
846 Fn->addFnAttr("function-instrument", "xray-never");
847 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
848 if (ShouldXRayInstrumentFunction())
849 Fn->addFnAttr("xray-log-args",
850 llvm::utostr(LogArgs->getArgumentCount()));
852 } else {
853 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
854 Fn->addFnAttr(
855 "xray-instruction-threshold",
856 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
859 if (ShouldXRayInstrumentFunction()) {
860 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
861 Fn->addFnAttr("xray-ignore-loops");
863 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
864 XRayInstrKind::FunctionExit))
865 Fn->addFnAttr("xray-skip-exit");
867 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
868 XRayInstrKind::FunctionEntry))
869 Fn->addFnAttr("xray-skip-entry");
871 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
872 if (FuncGroups > 1) {
873 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
874 CurFn->getName().bytes_end());
875 auto Group = crc32(FuncName) % FuncGroups;
876 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
877 !AlwaysXRayAttr)
878 Fn->addFnAttr("function-instrument", "xray-never");
882 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) {
883 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
884 case ProfileList::Skip:
885 Fn->addFnAttr(llvm::Attribute::SkipProfile);
886 break;
887 case ProfileList::Forbid:
888 Fn->addFnAttr(llvm::Attribute::NoProfile);
889 break;
890 case ProfileList::Allow:
891 break;
895 unsigned Count, Offset;
896 if (const auto *Attr =
897 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
898 Count = Attr->getCount();
899 Offset = Attr->getOffset();
900 } else {
901 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
902 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
904 if (Count && Offset <= Count) {
905 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
906 if (Offset)
907 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
909 // Instruct that functions for COFF/CodeView targets should start with a
910 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
911 // backends as they don't need it -- instructions on these architectures are
912 // always atomically patchable at runtime.
913 if (CGM.getCodeGenOpts().HotPatch &&
914 getContext().getTargetInfo().getTriple().isX86() &&
915 getContext().getTargetInfo().getTriple().getEnvironment() !=
916 llvm::Triple::CODE16)
917 Fn->addFnAttr("patchable-function", "prologue-short-redirect");
919 // Add no-jump-tables value.
920 if (CGM.getCodeGenOpts().NoUseJumpTables)
921 Fn->addFnAttr("no-jump-tables", "true");
923 // Add no-inline-line-tables value.
924 if (CGM.getCodeGenOpts().NoInlineLineTables)
925 Fn->addFnAttr("no-inline-line-tables");
927 // Add profile-sample-accurate value.
928 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
929 Fn->addFnAttr("profile-sample-accurate");
931 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
932 Fn->addFnAttr("use-sample-profile");
934 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
935 Fn->addFnAttr("cfi-canonical-jump-table");
937 if (D && D->hasAttr<NoProfileFunctionAttr>())
938 Fn->addFnAttr(llvm::Attribute::NoProfile);
940 if (D) {
941 // Function attributes take precedence over command line flags.
942 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
943 switch (A->getThunkType()) {
944 case FunctionReturnThunksAttr::Kind::Keep:
945 break;
946 case FunctionReturnThunksAttr::Kind::Extern:
947 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
948 break;
950 } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
951 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
954 if (FD && (getLangOpts().OpenCL ||
955 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
956 // Add metadata for a kernel function.
957 EmitKernelMetadata(FD, Fn);
960 // If we are checking function types, emit a function type signature as
961 // prologue data.
962 if (FD && SanOpts.has(SanitizerKind::Function)) {
963 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
964 llvm::LLVMContext &Ctx = Fn->getContext();
965 llvm::MDBuilder MDB(Ctx);
966 Fn->setMetadata(
967 llvm::LLVMContext::MD_func_sanitize,
968 MDB.createRTTIPointerPrologue(
969 PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
973 // If we're checking nullability, we need to know whether we can check the
974 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
975 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
976 auto Nullability = FnRetTy->getNullability();
977 if (Nullability && *Nullability == NullabilityKind::NonNull) {
978 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
979 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
980 RetValNullabilityPrecondition =
981 llvm::ConstantInt::getTrue(getLLVMContext());
985 // If we're in C++ mode and the function name is "main", it is guaranteed
986 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
987 // used within a program").
989 // OpenCL C 2.0 v2.2-11 s6.9.i:
990 // Recursion is not supported.
992 // SYCL v1.2.1 s3.10:
993 // kernels cannot include RTTI information, exception classes,
994 // recursive code, virtual functions or make use of C++ libraries that
995 // are not compiled for the device.
996 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
997 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
998 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
999 Fn->addFnAttr(llvm::Attribute::NoRecurse);
1001 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1002 llvm::fp::ExceptionBehavior FPExceptionBehavior =
1003 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1004 Builder.setDefaultConstrainedRounding(RM);
1005 Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1006 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1007 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1008 RM != llvm::RoundingMode::NearestTiesToEven))) {
1009 Builder.setIsFPConstrained(true);
1010 Fn->addFnAttr(llvm::Attribute::StrictFP);
1013 // If a custom alignment is used, force realigning to this alignment on
1014 // any main function which certainly will need it.
1015 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1016 CGM.getCodeGenOpts().StackAlignment))
1017 Fn->addFnAttr("stackrealign");
1019 // "main" doesn't need to zero out call-used registers.
1020 if (FD && FD->isMain())
1021 Fn->removeFnAttr("zero-call-used-regs");
1023 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1025 // Create a marker to make it easy to insert allocas into the entryblock
1026 // later. Don't create this with the builder, because we don't want it
1027 // folded.
1028 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
1029 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
1031 ReturnBlock = getJumpDestInCurrentScope("return");
1033 Builder.SetInsertPoint(EntryBB);
1035 // If we're checking the return value, allocate space for a pointer to a
1036 // precise source location of the checked return statement.
1037 if (requiresReturnValueCheck()) {
1038 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1039 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1040 ReturnLocation);
1043 // Emit subprogram debug descriptor.
1044 if (CGDebugInfo *DI = getDebugInfo()) {
1045 // Reconstruct the type from the argument list so that implicit parameters,
1046 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1047 // convention.
1048 DI->emitFunctionStart(GD, Loc, StartLoc,
1049 DI->getFunctionType(FD, RetTy, Args), CurFn,
1050 CurFuncIsThunk);
1053 if (ShouldInstrumentFunction()) {
1054 if (CGM.getCodeGenOpts().InstrumentFunctions)
1055 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1056 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1057 CurFn->addFnAttr("instrument-function-entry-inlined",
1058 "__cyg_profile_func_enter");
1059 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1060 CurFn->addFnAttr("instrument-function-entry-inlined",
1061 "__cyg_profile_func_enter_bare");
1064 // Since emitting the mcount call here impacts optimizations such as function
1065 // inlining, we just add an attribute to insert a mcount call in backend.
1066 // The attribute "counting-function" is set to mcount function name which is
1067 // architecture dependent.
1068 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1069 // Calls to fentry/mcount should not be generated if function has
1070 // the no_instrument_function attribute.
1071 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1072 if (CGM.getCodeGenOpts().CallFEntry)
1073 Fn->addFnAttr("fentry-call", "true");
1074 else {
1075 Fn->addFnAttr("instrument-function-entry-inlined",
1076 getTarget().getMCountName());
1078 if (CGM.getCodeGenOpts().MNopMCount) {
1079 if (!CGM.getCodeGenOpts().CallFEntry)
1080 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1081 << "-mnop-mcount" << "-mfentry";
1082 Fn->addFnAttr("mnop-mcount");
1085 if (CGM.getCodeGenOpts().RecordMCount) {
1086 if (!CGM.getCodeGenOpts().CallFEntry)
1087 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1088 << "-mrecord-mcount" << "-mfentry";
1089 Fn->addFnAttr("mrecord-mcount");
1094 if (CGM.getCodeGenOpts().PackedStack) {
1095 if (getContext().getTargetInfo().getTriple().getArch() !=
1096 llvm::Triple::systemz)
1097 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1098 << "-mpacked-stack";
1099 Fn->addFnAttr("packed-stack");
1102 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1103 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1104 Fn->addFnAttr("warn-stack-size",
1105 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1107 if (RetTy->isVoidType()) {
1108 // Void type; nothing to return.
1109 ReturnValue = Address::invalid();
1111 // Count the implicit return.
1112 if (!endsWithReturn(D))
1113 ++NumReturnExprs;
1114 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1115 // Indirect return; emit returned value directly into sret slot.
1116 // This reduces code size, and affects correctness in C++.
1117 auto AI = CurFn->arg_begin();
1118 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1119 ++AI;
1120 ReturnValue =
1121 Address(&*AI, ConvertType(RetTy),
1122 CurFnInfo->getReturnInfo().getIndirectAlign(), KnownNonNull);
1123 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1124 ReturnValuePointer = CreateDefaultAlignTempAlloca(
1125 ReturnValue.getPointer()->getType(), "result.ptr");
1126 Builder.CreateStore(ReturnValue.getPointer(), ReturnValuePointer);
1128 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1129 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1130 // Load the sret pointer from the argument struct and return into that.
1131 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1132 llvm::Function::arg_iterator EI = CurFn->arg_end();
1133 --EI;
1134 llvm::Value *Addr = Builder.CreateStructGEP(
1135 CurFnInfo->getArgStruct(), &*EI, Idx);
1136 llvm::Type *Ty =
1137 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1138 ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1139 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1140 ReturnValue = Address(Addr, ConvertType(RetTy),
1141 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1142 } else {
1143 ReturnValue = CreateIRTemp(RetTy, "retval");
1145 // Tell the epilog emitter to autorelease the result. We do this
1146 // now so that various specialized functions can suppress it
1147 // during their IR-generation.
1148 if (getLangOpts().ObjCAutoRefCount &&
1149 !CurFnInfo->isReturnsRetained() &&
1150 RetTy->isObjCRetainableType())
1151 AutoreleaseResult = true;
1154 EmitStartEHSpec(CurCodeDecl);
1156 PrologueCleanupDepth = EHStack.stable_begin();
1158 // Emit OpenMP specific initialization of the device functions.
1159 if (getLangOpts().OpenMP && CurCodeDecl)
1160 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1162 // Handle emitting HLSL entry functions.
1163 if (D && D->hasAttr<HLSLShaderAttr>())
1164 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1166 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1168 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1169 MD && !MD->isStatic()) {
1170 bool IsInLambda =
1171 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1172 if (MD->isImplicitObjectMemberFunction())
1173 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1174 if (IsInLambda) {
1175 // We're in a lambda; figure out the captures.
1176 MD->getParent()->getCaptureFields(LambdaCaptureFields,
1177 LambdaThisCaptureField);
1178 if (LambdaThisCaptureField) {
1179 // If the lambda captures the object referred to by '*this' - either by
1180 // value or by reference, make sure CXXThisValue points to the correct
1181 // object.
1183 // Get the lvalue for the field (which is a copy of the enclosing object
1184 // or contains the address of the enclosing object).
1185 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1186 if (!LambdaThisCaptureField->getType()->isPointerType()) {
1187 // If the enclosing object was captured by value, just use its address.
1188 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1189 } else {
1190 // Load the lvalue pointed to by the field, since '*this' was captured
1191 // by reference.
1192 CXXThisValue =
1193 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1196 for (auto *FD : MD->getParent()->fields()) {
1197 if (FD->hasCapturedVLAType()) {
1198 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1199 SourceLocation()).getScalarVal();
1200 auto VAT = FD->getCapturedVLAType();
1201 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1204 } else if (MD->isImplicitObjectMemberFunction()) {
1205 // Not in a lambda; just use 'this' from the method.
1206 // FIXME: Should we generate a new load for each use of 'this'? The
1207 // fast register allocator would be happier...
1208 CXXThisValue = CXXABIThisValue;
1211 // Check the 'this' pointer once per function, if it's available.
1212 if (CXXABIThisValue) {
1213 SanitizerSet SkippedChecks;
1214 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1215 QualType ThisTy = MD->getThisType();
1217 // If this is the call operator of a lambda with no captures, it
1218 // may have a static invoker function, which may call this operator with
1219 // a null 'this' pointer.
1220 if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda())
1221 SkippedChecks.set(SanitizerKind::Null, true);
1223 EmitTypeCheck(
1224 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1225 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1229 // If any of the arguments have a variably modified type, make sure to
1230 // emit the type size, but only if the function is not naked. Naked functions
1231 // have no prolog to run this evaluation.
1232 if (!FD || !FD->hasAttr<NakedAttr>()) {
1233 for (const VarDecl *VD : Args) {
1234 // Dig out the type as written from ParmVarDecls; it's unclear whether
1235 // the standard (C99 6.9.1p10) requires this, but we're following the
1236 // precedent set by gcc.
1237 QualType Ty;
1238 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1239 Ty = PVD->getOriginalType();
1240 else
1241 Ty = VD->getType();
1243 if (Ty->isVariablyModifiedType())
1244 EmitVariablyModifiedType(Ty);
1247 // Emit a location at the end of the prologue.
1248 if (CGDebugInfo *DI = getDebugInfo())
1249 DI->EmitLocation(Builder, StartLoc);
1250 // TODO: Do we need to handle this in two places like we do with
1251 // target-features/target-cpu?
1252 if (CurFuncDecl)
1253 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1254 LargestVectorWidth = VecWidth->getVectorWidth();
1257 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1258 incrementProfileCounter(Body);
1259 maybeCreateMCDCCondBitmap();
1260 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1261 EmitCompoundStmtWithoutScope(*S);
1262 else
1263 EmitStmt(Body);
1266 /// When instrumenting to collect profile data, the counts for some blocks
1267 /// such as switch cases need to not include the fall-through counts, so
1268 /// emit a branch around the instrumentation code. When not instrumenting,
1269 /// this just calls EmitBlock().
1270 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1271 const Stmt *S) {
1272 llvm::BasicBlock *SkipCountBB = nullptr;
1273 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1274 // When instrumenting for profiling, the fallthrough to certain
1275 // statements needs to skip over the instrumentation code so that we
1276 // get an accurate count.
1277 SkipCountBB = createBasicBlock("skipcount");
1278 EmitBranch(SkipCountBB);
1280 EmitBlock(BB);
1281 uint64_t CurrentCount = getCurrentProfileCount();
1282 incrementProfileCounter(S);
1283 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1284 if (SkipCountBB)
1285 EmitBlock(SkipCountBB);
1288 /// Tries to mark the given function nounwind based on the
1289 /// non-existence of any throwing calls within it. We believe this is
1290 /// lightweight enough to do at -O0.
1291 static void TryMarkNoThrow(llvm::Function *F) {
1292 // LLVM treats 'nounwind' on a function as part of the type, so we
1293 // can't do this on functions that can be overwritten.
1294 if (F->isInterposable()) return;
1296 for (llvm::BasicBlock &BB : *F)
1297 for (llvm::Instruction &I : BB)
1298 if (I.mayThrow())
1299 return;
1301 F->setDoesNotThrow();
1304 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1305 FunctionArgList &Args) {
1306 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1307 QualType ResTy = FD->getReturnType();
1309 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1310 if (MD && MD->isImplicitObjectMemberFunction()) {
1311 if (CGM.getCXXABI().HasThisReturn(GD))
1312 ResTy = MD->getThisType();
1313 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1314 ResTy = CGM.getContext().VoidPtrTy;
1315 CGM.getCXXABI().buildThisParam(*this, Args);
1318 // The base version of an inheriting constructor whose constructed base is a
1319 // virtual base is not passed any arguments (because it doesn't actually call
1320 // the inherited constructor).
1321 bool PassedParams = true;
1322 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1323 if (auto Inherited = CD->getInheritedConstructor())
1324 PassedParams =
1325 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1327 if (PassedParams) {
1328 for (auto *Param : FD->parameters()) {
1329 Args.push_back(Param);
1330 if (!Param->hasAttr<PassObjectSizeAttr>())
1331 continue;
1333 auto *Implicit = ImplicitParamDecl::Create(
1334 getContext(), Param->getDeclContext(), Param->getLocation(),
1335 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1336 SizeArguments[Param] = Implicit;
1337 Args.push_back(Implicit);
1341 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1342 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1344 return ResTy;
1347 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1348 const CGFunctionInfo &FnInfo) {
1349 assert(Fn && "generating code for null Function");
1350 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1351 CurGD = GD;
1353 FunctionArgList Args;
1354 QualType ResTy = BuildFunctionArgList(GD, Args);
1356 if (FD->isInlineBuiltinDeclaration()) {
1357 // When generating code for a builtin with an inline declaration, use a
1358 // mangled name to hold the actual body, while keeping an external
1359 // definition in case the function pointer is referenced somewhere.
1360 std::string FDInlineName = (Fn->getName() + ".inline").str();
1361 llvm::Module *M = Fn->getParent();
1362 llvm::Function *Clone = M->getFunction(FDInlineName);
1363 if (!Clone) {
1364 Clone = llvm::Function::Create(Fn->getFunctionType(),
1365 llvm::GlobalValue::InternalLinkage,
1366 Fn->getAddressSpace(), FDInlineName, M);
1367 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1369 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1370 Fn = Clone;
1371 } else {
1372 // Detect the unusual situation where an inline version is shadowed by a
1373 // non-inline version. In that case we should pick the external one
1374 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1375 // to detect that situation before we reach codegen, so do some late
1376 // replacement.
1377 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1378 PD = PD->getPreviousDecl()) {
1379 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1380 std::string FDInlineName = (Fn->getName() + ".inline").str();
1381 llvm::Module *M = Fn->getParent();
1382 if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1383 Clone->replaceAllUsesWith(Fn);
1384 Clone->eraseFromParent();
1386 break;
1391 // Check if we should generate debug info for this function.
1392 if (FD->hasAttr<NoDebugAttr>()) {
1393 // Clear non-distinct debug info that was possibly attached to the function
1394 // due to an earlier declaration without the nodebug attribute
1395 Fn->setSubprogram(nullptr);
1396 // Disable debug info indefinitely for this function
1397 DebugInfo = nullptr;
1400 // The function might not have a body if we're generating thunks for a
1401 // function declaration.
1402 SourceRange BodyRange;
1403 if (Stmt *Body = FD->getBody())
1404 BodyRange = Body->getSourceRange();
1405 else
1406 BodyRange = FD->getLocation();
1407 CurEHLocation = BodyRange.getEnd();
1409 // Use the location of the start of the function to determine where
1410 // the function definition is located. By default use the location
1411 // of the declaration as the location for the subprogram. A function
1412 // may lack a declaration in the source code if it is created by code
1413 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1414 SourceLocation Loc = FD->getLocation();
1416 // If this is a function specialization then use the pattern body
1417 // as the location for the function.
1418 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1419 if (SpecDecl->hasBody(SpecDecl))
1420 Loc = SpecDecl->getLocation();
1422 Stmt *Body = FD->getBody();
1424 if (Body) {
1425 // Coroutines always emit lifetime markers.
1426 if (isa<CoroutineBodyStmt>(Body))
1427 ShouldEmitLifetimeMarkers = true;
1429 // Initialize helper which will detect jumps which can cause invalid
1430 // lifetime markers.
1431 if (ShouldEmitLifetimeMarkers)
1432 Bypasses.Init(Body);
1435 // Emit the standard function prologue.
1436 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1438 // Save parameters for coroutine function.
1439 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1440 llvm::append_range(FnArgs, FD->parameters());
1442 // Ensure that the function adheres to the forward progress guarantee, which
1443 // is required by certain optimizations.
1444 if (checkIfFunctionMustProgress())
1445 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1447 // Generate the body of the function.
1448 PGO.assignRegionCounters(GD, CurFn);
1449 if (isa<CXXDestructorDecl>(FD))
1450 EmitDestructorBody(Args);
1451 else if (isa<CXXConstructorDecl>(FD))
1452 EmitConstructorBody(Args);
1453 else if (getLangOpts().CUDA &&
1454 !getLangOpts().CUDAIsDevice &&
1455 FD->hasAttr<CUDAGlobalAttr>())
1456 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1457 else if (isa<CXXMethodDecl>(FD) &&
1458 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1459 // The lambda static invoker function is special, because it forwards or
1460 // clones the body of the function call operator (but is actually static).
1461 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1462 } else if (isa<CXXMethodDecl>(FD) &&
1463 isLambdaCallOperator(cast<CXXMethodDecl>(FD)) &&
1464 !FnInfo.isDelegateCall() &&
1465 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1466 hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1467 // If emitting a lambda with static invoker on X86 Windows, change
1468 // the call operator body.
1469 // Make sure that this is a call operator with an inalloca arg and check
1470 // for delegate call to make sure this is the original call op and not the
1471 // new forwarding function for the static invoker.
1472 EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD));
1473 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1474 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1475 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1476 // Implicit copy-assignment gets the same special treatment as implicit
1477 // copy-constructors.
1478 emitImplicitAssignmentOperatorBody(Args);
1479 } else if (Body) {
1480 EmitFunctionBody(Body);
1481 } else
1482 llvm_unreachable("no definition for emitted function");
1484 // C++11 [stmt.return]p2:
1485 // Flowing off the end of a function [...] results in undefined behavior in
1486 // a value-returning function.
1487 // C11 6.9.1p12:
1488 // If the '}' that terminates a function is reached, and the value of the
1489 // function call is used by the caller, the behavior is undefined.
1490 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1491 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1492 bool ShouldEmitUnreachable =
1493 CGM.getCodeGenOpts().StrictReturn ||
1494 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1495 if (SanOpts.has(SanitizerKind::Return)) {
1496 SanitizerScope SanScope(this);
1497 llvm::Value *IsFalse = Builder.getFalse();
1498 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1499 SanitizerHandler::MissingReturn,
1500 EmitCheckSourceLocation(FD->getLocation()), std::nullopt);
1501 } else if (ShouldEmitUnreachable) {
1502 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1503 EmitTrapCall(llvm::Intrinsic::trap);
1505 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1506 Builder.CreateUnreachable();
1507 Builder.ClearInsertionPoint();
1511 // Emit the standard function epilogue.
1512 FinishFunction(BodyRange.getEnd());
1514 // If we haven't marked the function nothrow through other means, do
1515 // a quick pass now to see if we can.
1516 if (!CurFn->doesNotThrow())
1517 TryMarkNoThrow(CurFn);
1520 /// ContainsLabel - Return true if the statement contains a label in it. If
1521 /// this statement is not executed normally, it not containing a label means
1522 /// that we can just remove the code.
1523 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1524 // Null statement, not a label!
1525 if (!S) return false;
1527 // If this is a label, we have to emit the code, consider something like:
1528 // if (0) { ... foo: bar(); } goto foo;
1530 // TODO: If anyone cared, we could track __label__'s, since we know that you
1531 // can't jump to one from outside their declared region.
1532 if (isa<LabelStmt>(S))
1533 return true;
1535 // If this is a case/default statement, and we haven't seen a switch, we have
1536 // to emit the code.
1537 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1538 return true;
1540 // If this is a switch statement, we want to ignore cases below it.
1541 if (isa<SwitchStmt>(S))
1542 IgnoreCaseStmts = true;
1544 // Scan subexpressions for verboten labels.
1545 for (const Stmt *SubStmt : S->children())
1546 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1547 return true;
1549 return false;
1552 /// containsBreak - Return true if the statement contains a break out of it.
1553 /// If the statement (recursively) contains a switch or loop with a break
1554 /// inside of it, this is fine.
1555 bool CodeGenFunction::containsBreak(const Stmt *S) {
1556 // Null statement, not a label!
1557 if (!S) return false;
1559 // If this is a switch or loop that defines its own break scope, then we can
1560 // include it and anything inside of it.
1561 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1562 isa<ForStmt>(S))
1563 return false;
1565 if (isa<BreakStmt>(S))
1566 return true;
1568 // Scan subexpressions for verboten breaks.
1569 for (const Stmt *SubStmt : S->children())
1570 if (containsBreak(SubStmt))
1571 return true;
1573 return false;
1576 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1577 if (!S) return false;
1579 // Some statement kinds add a scope and thus never add a decl to the current
1580 // scope. Note, this list is longer than the list of statements that might
1581 // have an unscoped decl nested within them, but this way is conservatively
1582 // correct even if more statement kinds are added.
1583 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1584 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1585 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1586 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1587 return false;
1589 if (isa<DeclStmt>(S))
1590 return true;
1592 for (const Stmt *SubStmt : S->children())
1593 if (mightAddDeclToScope(SubStmt))
1594 return true;
1596 return false;
1599 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1600 /// to a constant, or if it does but contains a label, return false. If it
1601 /// constant folds return true and set the boolean result in Result.
1602 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1603 bool &ResultBool,
1604 bool AllowLabels) {
1605 // If MC/DC is enabled, disable folding so that we can instrument all
1606 // conditions to yield complete test vectors. We still keep track of
1607 // folded conditions during region mapping and visualization.
1608 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1609 CGM.getCodeGenOpts().MCDCCoverage)
1610 return false;
1612 llvm::APSInt ResultInt;
1613 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1614 return false;
1616 ResultBool = ResultInt.getBoolValue();
1617 return true;
1620 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1621 /// to a constant, or if it does but contains a label, return false. If it
1622 /// constant folds return true and set the folded value.
1623 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1624 llvm::APSInt &ResultInt,
1625 bool AllowLabels) {
1626 // FIXME: Rename and handle conversion of other evaluatable things
1627 // to bool.
1628 Expr::EvalResult Result;
1629 if (!Cond->EvaluateAsInt(Result, getContext()))
1630 return false; // Not foldable, not integer or not fully evaluatable.
1632 llvm::APSInt Int = Result.Val.getInt();
1633 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1634 return false; // Contains a label.
1636 ResultInt = Int;
1637 return true;
1640 /// Strip parentheses and simplistic logical-NOT operators.
1641 const Expr *CodeGenFunction::stripCond(const Expr *C) {
1642 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1643 if (Op->getOpcode() != UO_LNot)
1644 break;
1645 C = Op->getSubExpr();
1647 return C->IgnoreParens();
1650 /// Determine whether the given condition is an instrumentable condition
1651 /// (i.e. no "&&" or "||").
1652 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1653 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1654 return (!BOp || !BOp->isLogicalOp());
1657 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1658 /// increments a profile counter based on the semantics of the given logical
1659 /// operator opcode. This is used to instrument branch condition coverage for
1660 /// logical operators.
1661 void CodeGenFunction::EmitBranchToCounterBlock(
1662 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1663 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1664 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1665 // If not instrumenting, just emit a branch.
1666 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1667 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1668 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1670 llvm::BasicBlock *ThenBlock = nullptr;
1671 llvm::BasicBlock *ElseBlock = nullptr;
1672 llvm::BasicBlock *NextBlock = nullptr;
1674 // Create the block we'll use to increment the appropriate counter.
1675 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1677 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1678 // means we need to evaluate the condition and increment the counter on TRUE:
1680 // if (Cond)
1681 // goto CounterIncrBlock;
1682 // else
1683 // goto FalseBlock;
1685 // CounterIncrBlock:
1686 // Counter++;
1687 // goto TrueBlock;
1689 if (LOp == BO_LAnd) {
1690 ThenBlock = CounterIncrBlock;
1691 ElseBlock = FalseBlock;
1692 NextBlock = TrueBlock;
1695 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1696 // we need to evaluate the condition and increment the counter on FALSE:
1698 // if (Cond)
1699 // goto TrueBlock;
1700 // else
1701 // goto CounterIncrBlock;
1703 // CounterIncrBlock:
1704 // Counter++;
1705 // goto FalseBlock;
1707 else if (LOp == BO_LOr) {
1708 ThenBlock = TrueBlock;
1709 ElseBlock = CounterIncrBlock;
1710 NextBlock = FalseBlock;
1711 } else {
1712 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1715 // Emit Branch based on condition.
1716 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1718 // Emit the block containing the counter increment(s).
1719 EmitBlock(CounterIncrBlock);
1721 // Increment corresponding counter; if index not provided, use Cond as index.
1722 incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1724 // Go to the next block.
1725 EmitBranch(NextBlock);
1728 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1729 /// statement) to the specified blocks. Based on the condition, this might try
1730 /// to simplify the codegen of the conditional based on the branch.
1731 /// \param LH The value of the likelihood attribute on the True branch.
1732 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1733 /// ConditionalOperator (ternary) through a recursive call for the operator's
1734 /// LHS and RHS nodes.
1735 void CodeGenFunction::EmitBranchOnBoolExpr(
1736 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1737 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) {
1738 Cond = Cond->IgnoreParens();
1740 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1741 // Handle X && Y in a condition.
1742 if (CondBOp->getOpcode() == BO_LAnd) {
1743 MCDCLogOpStack.push_back(CondBOp);
1745 // If we have "1 && X", simplify the code. "0 && X" would have constant
1746 // folded if the case was simple enough.
1747 bool ConstantBool = false;
1748 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1749 ConstantBool) {
1750 // br(1 && X) -> br(X).
1751 incrementProfileCounter(CondBOp);
1752 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1753 FalseBlock, TrueCount, LH);
1754 MCDCLogOpStack.pop_back();
1755 return;
1758 // If we have "X && 1", simplify the code to use an uncond branch.
1759 // "X && 0" would have been constant folded to 0.
1760 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1761 ConstantBool) {
1762 // br(X && 1) -> br(X).
1763 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1764 FalseBlock, TrueCount, LH, CondBOp);
1765 MCDCLogOpStack.pop_back();
1766 return;
1769 // Emit the LHS as a conditional. If the LHS conditional is false, we
1770 // want to jump to the FalseBlock.
1771 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1772 // The counter tells us how often we evaluate RHS, and all of TrueCount
1773 // can be propagated to that branch.
1774 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1776 ConditionalEvaluation eval(*this);
1778 ApplyDebugLocation DL(*this, Cond);
1779 // Propagate the likelihood attribute like __builtin_expect
1780 // __builtin_expect(X && Y, 1) -> X and Y are likely
1781 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1782 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1783 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1784 EmitBlock(LHSTrue);
1787 incrementProfileCounter(CondBOp);
1788 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1790 // Any temporaries created here are conditional.
1791 eval.begin(*this);
1792 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1793 FalseBlock, TrueCount, LH);
1794 eval.end(*this);
1795 MCDCLogOpStack.pop_back();
1796 return;
1799 if (CondBOp->getOpcode() == BO_LOr) {
1800 MCDCLogOpStack.push_back(CondBOp);
1802 // If we have "0 || X", simplify the code. "1 || X" would have constant
1803 // folded if the case was simple enough.
1804 bool ConstantBool = false;
1805 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1806 !ConstantBool) {
1807 // br(0 || X) -> br(X).
1808 incrementProfileCounter(CondBOp);
1809 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1810 FalseBlock, TrueCount, LH);
1811 MCDCLogOpStack.pop_back();
1812 return;
1815 // If we have "X || 0", simplify the code to use an uncond branch.
1816 // "X || 1" would have been constant folded to 1.
1817 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1818 !ConstantBool) {
1819 // br(X || 0) -> br(X).
1820 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1821 FalseBlock, TrueCount, LH, CondBOp);
1822 MCDCLogOpStack.pop_back();
1823 return;
1825 // Emit the LHS as a conditional. If the LHS conditional is true, we
1826 // want to jump to the TrueBlock.
1827 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1828 // We have the count for entry to the RHS and for the whole expression
1829 // being true, so we can divy up True count between the short circuit and
1830 // the RHS.
1831 uint64_t LHSCount =
1832 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1833 uint64_t RHSCount = TrueCount - LHSCount;
1835 ConditionalEvaluation eval(*this);
1837 // Propagate the likelihood attribute like __builtin_expect
1838 // __builtin_expect(X || Y, 1) -> only Y is likely
1839 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1840 ApplyDebugLocation DL(*this, Cond);
1841 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1842 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1843 EmitBlock(LHSFalse);
1846 incrementProfileCounter(CondBOp);
1847 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1849 // Any temporaries created here are conditional.
1850 eval.begin(*this);
1851 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1852 RHSCount, LH);
1854 eval.end(*this);
1855 MCDCLogOpStack.pop_back();
1856 return;
1860 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1861 // br(!x, t, f) -> br(x, f, t)
1862 // Avoid doing this optimization when instrumenting a condition for MC/DC.
1863 // LNot is taken as part of the condition for simplicity, and changing its
1864 // sense negatively impacts test vector tracking.
1865 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
1866 CGM.getCodeGenOpts().MCDCCoverage &&
1867 isInstrumentedCondition(Cond);
1868 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
1869 // Negate the count.
1870 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1871 // The values of the enum are chosen to make this negation possible.
1872 LH = static_cast<Stmt::Likelihood>(-LH);
1873 // Negate the condition and swap the destination blocks.
1874 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1875 FalseCount, LH);
1879 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1880 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1881 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1882 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1884 // The ConditionalOperator itself has no likelihood information for its
1885 // true and false branches. This matches the behavior of __builtin_expect.
1886 ConditionalEvaluation cond(*this);
1887 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1888 getProfileCount(CondOp), Stmt::LH_None);
1890 // When computing PGO branch weights, we only know the overall count for
1891 // the true block. This code is essentially doing tail duplication of the
1892 // naive code-gen, introducing new edges for which counts are not
1893 // available. Divide the counts proportionally between the LHS and RHS of
1894 // the conditional operator.
1895 uint64_t LHSScaledTrueCount = 0;
1896 if (TrueCount) {
1897 double LHSRatio =
1898 getProfileCount(CondOp) / (double)getCurrentProfileCount();
1899 LHSScaledTrueCount = TrueCount * LHSRatio;
1902 cond.begin(*this);
1903 EmitBlock(LHSBlock);
1904 incrementProfileCounter(CondOp);
1906 ApplyDebugLocation DL(*this, Cond);
1907 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1908 LHSScaledTrueCount, LH, CondOp);
1910 cond.end(*this);
1912 cond.begin(*this);
1913 EmitBlock(RHSBlock);
1914 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1915 TrueCount - LHSScaledTrueCount, LH, CondOp);
1916 cond.end(*this);
1918 return;
1921 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1922 // Conditional operator handling can give us a throw expression as a
1923 // condition for a case like:
1924 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1925 // Fold this to:
1926 // br(c, throw x, br(y, t, f))
1927 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1928 return;
1931 // Emit the code with the fully general case.
1932 llvm::Value *CondV;
1934 ApplyDebugLocation DL(*this, Cond);
1935 CondV = EvaluateExprAsBool(Cond);
1938 // If not at the top of the logical operator nest, update MCDC temp with the
1939 // boolean result of the evaluated condition.
1940 if (!MCDCLogOpStack.empty()) {
1941 const Expr *MCDCBaseExpr = Cond;
1942 // When a nested ConditionalOperator (ternary) is encountered in a boolean
1943 // expression, MC/DC tracks the result of the ternary, and this is tied to
1944 // the ConditionalOperator expression and not the ternary's LHS or RHS. If
1945 // this is the case, the ConditionalOperator expression is passed through
1946 // the ConditionalOp parameter and then used as the MCDC base expression.
1947 if (ConditionalOp)
1948 MCDCBaseExpr = ConditionalOp;
1950 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
1953 llvm::MDNode *Weights = nullptr;
1954 llvm::MDNode *Unpredictable = nullptr;
1956 // If the branch has a condition wrapped by __builtin_unpredictable,
1957 // create metadata that specifies that the branch is unpredictable.
1958 // Don't bother if not optimizing because that metadata would not be used.
1959 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1960 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1961 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1962 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1963 llvm::MDBuilder MDHelper(getLLVMContext());
1964 Unpredictable = MDHelper.createUnpredictable();
1968 // If there is a Likelihood knowledge for the cond, lower it.
1969 // Note that if not optimizing this won't emit anything.
1970 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1971 if (CondV != NewCondV)
1972 CondV = NewCondV;
1973 else {
1974 // Otherwise, lower profile counts. Note that we do this even at -O0.
1975 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1976 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1979 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1982 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1983 /// specified stmt yet.
1984 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1985 CGM.ErrorUnsupported(S, Type);
1988 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1989 /// variable-length array whose elements have a non-zero bit-pattern.
1991 /// \param baseType the inner-most element type of the array
1992 /// \param src - a char* pointing to the bit-pattern for a single
1993 /// base element of the array
1994 /// \param sizeInChars - the total size of the VLA, in chars
1995 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1996 Address dest, Address src,
1997 llvm::Value *sizeInChars) {
1998 CGBuilderTy &Builder = CGF.Builder;
2000 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2001 llvm::Value *baseSizeInChars
2002 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2004 Address begin = dest.withElementType(CGF.Int8Ty);
2005 llvm::Value *end = Builder.CreateInBoundsGEP(
2006 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
2008 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2009 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2010 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2012 // Make a loop over the VLA. C99 guarantees that the VLA element
2013 // count must be nonzero.
2014 CGF.EmitBlock(loopBB);
2016 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2017 cur->addIncoming(begin.getPointer(), originBB);
2019 CharUnits curAlign =
2020 dest.getAlignment().alignmentOfArrayElement(baseSize);
2022 // memcpy the individual element bit-pattern.
2023 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2024 /*volatile*/ false);
2026 // Go to the next element.
2027 llvm::Value *next =
2028 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2030 // Leave if that's the end of the VLA.
2031 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2032 Builder.CreateCondBr(done, contBB, loopBB);
2033 cur->addIncoming(next, loopBB);
2035 CGF.EmitBlock(contBB);
2038 void
2039 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
2040 // Ignore empty classes in C++.
2041 if (getLangOpts().CPlusPlus) {
2042 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2043 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
2044 return;
2048 if (DestPtr.getElementType() != Int8Ty)
2049 DestPtr = DestPtr.withElementType(Int8Ty);
2051 // Get size and alignment info for this aggregate.
2052 CharUnits size = getContext().getTypeSizeInChars(Ty);
2054 llvm::Value *SizeVal;
2055 const VariableArrayType *vla;
2057 // Don't bother emitting a zero-byte memset.
2058 if (size.isZero()) {
2059 // But note that getTypeInfo returns 0 for a VLA.
2060 if (const VariableArrayType *vlaType =
2061 dyn_cast_or_null<VariableArrayType>(
2062 getContext().getAsArrayType(Ty))) {
2063 auto VlaSize = getVLASize(vlaType);
2064 SizeVal = VlaSize.NumElts;
2065 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2066 if (!eltSize.isOne())
2067 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2068 vla = vlaType;
2069 } else {
2070 return;
2072 } else {
2073 SizeVal = CGM.getSize(size);
2074 vla = nullptr;
2077 // If the type contains a pointer to data member we can't memset it to zero.
2078 // Instead, create a null constant and copy it to the destination.
2079 // TODO: there are other patterns besides zero that we can usefully memset,
2080 // like -1, which happens to be the pattern used by member-pointers.
2081 if (!CGM.getTypes().isZeroInitializable(Ty)) {
2082 // For a VLA, emit a single element, then splat that over the VLA.
2083 if (vla) Ty = getContext().getBaseElementType(vla);
2085 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2087 llvm::GlobalVariable *NullVariable =
2088 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2089 /*isConstant=*/true,
2090 llvm::GlobalVariable::PrivateLinkage,
2091 NullConstant, Twine());
2092 CharUnits NullAlign = DestPtr.getAlignment();
2093 NullVariable->setAlignment(NullAlign.getAsAlign());
2094 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2096 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2098 // Get and call the appropriate llvm.memcpy overload.
2099 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2100 return;
2103 // Otherwise, just memset the whole thing to zero. This is legal
2104 // because in LLVM, all default initializers (other than the ones we just
2105 // handled above) are guaranteed to have a bit pattern of all zeros.
2106 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2109 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2110 // Make sure that there is a block for the indirect goto.
2111 if (!IndirectBranch)
2112 GetIndirectGotoBlock();
2114 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2116 // Make sure the indirect branch includes all of the address-taken blocks.
2117 IndirectBranch->addDestination(BB);
2118 return llvm::BlockAddress::get(CurFn, BB);
2121 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2122 // If we already made the indirect branch for indirect goto, return its block.
2123 if (IndirectBranch) return IndirectBranch->getParent();
2125 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2127 // Create the PHI node that indirect gotos will add entries to.
2128 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2129 "indirect.goto.dest");
2131 // Create the indirect branch instruction.
2132 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2133 return IndirectBranch->getParent();
2136 /// Computes the length of an array in elements, as well as the base
2137 /// element type and a properly-typed first element pointer.
2138 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2139 QualType &baseType,
2140 Address &addr) {
2141 const ArrayType *arrayType = origArrayType;
2143 // If it's a VLA, we have to load the stored size. Note that
2144 // this is the size of the VLA in bytes, not its size in elements.
2145 llvm::Value *numVLAElements = nullptr;
2146 if (isa<VariableArrayType>(arrayType)) {
2147 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2149 // Walk into all VLAs. This doesn't require changes to addr,
2150 // which has type T* where T is the first non-VLA element type.
2151 do {
2152 QualType elementType = arrayType->getElementType();
2153 arrayType = getContext().getAsArrayType(elementType);
2155 // If we only have VLA components, 'addr' requires no adjustment.
2156 if (!arrayType) {
2157 baseType = elementType;
2158 return numVLAElements;
2160 } while (isa<VariableArrayType>(arrayType));
2162 // We get out here only if we find a constant array type
2163 // inside the VLA.
2166 // We have some number of constant-length arrays, so addr should
2167 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2168 // down to the first element of addr.
2169 SmallVector<llvm::Value*, 8> gepIndices;
2171 // GEP down to the array type.
2172 llvm::ConstantInt *zero = Builder.getInt32(0);
2173 gepIndices.push_back(zero);
2175 uint64_t countFromCLAs = 1;
2176 QualType eltType;
2178 llvm::ArrayType *llvmArrayType =
2179 dyn_cast<llvm::ArrayType>(addr.getElementType());
2180 while (llvmArrayType) {
2181 assert(isa<ConstantArrayType>(arrayType));
2182 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2183 == llvmArrayType->getNumElements());
2185 gepIndices.push_back(zero);
2186 countFromCLAs *= llvmArrayType->getNumElements();
2187 eltType = arrayType->getElementType();
2189 llvmArrayType =
2190 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2191 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2192 assert((!llvmArrayType || arrayType) &&
2193 "LLVM and Clang types are out-of-synch");
2196 if (arrayType) {
2197 // From this point onwards, the Clang array type has been emitted
2198 // as some other type (probably a packed struct). Compute the array
2199 // size, and just emit the 'begin' expression as a bitcast.
2200 while (arrayType) {
2201 countFromCLAs *=
2202 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2203 eltType = arrayType->getElementType();
2204 arrayType = getContext().getAsArrayType(eltType);
2207 llvm::Type *baseType = ConvertType(eltType);
2208 addr = addr.withElementType(baseType);
2209 } else {
2210 // Create the actual GEP.
2211 addr = Address(Builder.CreateInBoundsGEP(
2212 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2213 ConvertTypeForMem(eltType),
2214 addr.getAlignment());
2217 baseType = eltType;
2219 llvm::Value *numElements
2220 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2222 // If we had any VLA dimensions, factor them in.
2223 if (numVLAElements)
2224 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2226 return numElements;
2229 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2230 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2231 assert(vla && "type was not a variable array type!");
2232 return getVLASize(vla);
2235 CodeGenFunction::VlaSizePair
2236 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2237 // The number of elements so far; always size_t.
2238 llvm::Value *numElements = nullptr;
2240 QualType elementType;
2241 do {
2242 elementType = type->getElementType();
2243 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2244 assert(vlaSize && "no size for VLA!");
2245 assert(vlaSize->getType() == SizeTy);
2247 if (!numElements) {
2248 numElements = vlaSize;
2249 } else {
2250 // It's undefined behavior if this wraps around, so mark it that way.
2251 // FIXME: Teach -fsanitize=undefined to trap this.
2252 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2254 } while ((type = getContext().getAsVariableArrayType(elementType)));
2256 return { numElements, elementType };
2259 CodeGenFunction::VlaSizePair
2260 CodeGenFunction::getVLAElements1D(QualType type) {
2261 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2262 assert(vla && "type was not a variable array type!");
2263 return getVLAElements1D(vla);
2266 CodeGenFunction::VlaSizePair
2267 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2268 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2269 assert(VlaSize && "no size for VLA!");
2270 assert(VlaSize->getType() == SizeTy);
2271 return { VlaSize, Vla->getElementType() };
2274 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2275 assert(type->isVariablyModifiedType() &&
2276 "Must pass variably modified type to EmitVLASizes!");
2278 EnsureInsertPoint();
2280 // We're going to walk down into the type and look for VLA
2281 // expressions.
2282 do {
2283 assert(type->isVariablyModifiedType());
2285 const Type *ty = type.getTypePtr();
2286 switch (ty->getTypeClass()) {
2288 #define TYPE(Class, Base)
2289 #define ABSTRACT_TYPE(Class, Base)
2290 #define NON_CANONICAL_TYPE(Class, Base)
2291 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2292 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2293 #include "clang/AST/TypeNodes.inc"
2294 llvm_unreachable("unexpected dependent type!");
2296 // These types are never variably-modified.
2297 case Type::Builtin:
2298 case Type::Complex:
2299 case Type::Vector:
2300 case Type::ExtVector:
2301 case Type::ConstantMatrix:
2302 case Type::Record:
2303 case Type::Enum:
2304 case Type::Using:
2305 case Type::TemplateSpecialization:
2306 case Type::ObjCTypeParam:
2307 case Type::ObjCObject:
2308 case Type::ObjCInterface:
2309 case Type::ObjCObjectPointer:
2310 case Type::BitInt:
2311 llvm_unreachable("type class is never variably-modified!");
2313 case Type::Elaborated:
2314 type = cast<ElaboratedType>(ty)->getNamedType();
2315 break;
2317 case Type::Adjusted:
2318 type = cast<AdjustedType>(ty)->getAdjustedType();
2319 break;
2321 case Type::Decayed:
2322 type = cast<DecayedType>(ty)->getPointeeType();
2323 break;
2325 case Type::Pointer:
2326 type = cast<PointerType>(ty)->getPointeeType();
2327 break;
2329 case Type::BlockPointer:
2330 type = cast<BlockPointerType>(ty)->getPointeeType();
2331 break;
2333 case Type::LValueReference:
2334 case Type::RValueReference:
2335 type = cast<ReferenceType>(ty)->getPointeeType();
2336 break;
2338 case Type::MemberPointer:
2339 type = cast<MemberPointerType>(ty)->getPointeeType();
2340 break;
2342 case Type::ConstantArray:
2343 case Type::IncompleteArray:
2344 // Losing element qualification here is fine.
2345 type = cast<ArrayType>(ty)->getElementType();
2346 break;
2348 case Type::VariableArray: {
2349 // Losing element qualification here is fine.
2350 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2352 // Unknown size indication requires no size computation.
2353 // Otherwise, evaluate and record it.
2354 if (const Expr *sizeExpr = vat->getSizeExpr()) {
2355 // It's possible that we might have emitted this already,
2356 // e.g. with a typedef and a pointer to it.
2357 llvm::Value *&entry = VLASizeMap[sizeExpr];
2358 if (!entry) {
2359 llvm::Value *size = EmitScalarExpr(sizeExpr);
2361 // C11 6.7.6.2p5:
2362 // If the size is an expression that is not an integer constant
2363 // expression [...] each time it is evaluated it shall have a value
2364 // greater than zero.
2365 if (SanOpts.has(SanitizerKind::VLABound)) {
2366 SanitizerScope SanScope(this);
2367 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2368 clang::QualType SEType = sizeExpr->getType();
2369 llvm::Value *CheckCondition =
2370 SEType->isSignedIntegerType()
2371 ? Builder.CreateICmpSGT(size, Zero)
2372 : Builder.CreateICmpUGT(size, Zero);
2373 llvm::Constant *StaticArgs[] = {
2374 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2375 EmitCheckTypeDescriptor(SEType)};
2376 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2377 SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2380 // Always zexting here would be wrong if it weren't
2381 // undefined behavior to have a negative bound.
2382 // FIXME: What about when size's type is larger than size_t?
2383 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2386 type = vat->getElementType();
2387 break;
2390 case Type::FunctionProto:
2391 case Type::FunctionNoProto:
2392 type = cast<FunctionType>(ty)->getReturnType();
2393 break;
2395 case Type::Paren:
2396 case Type::TypeOf:
2397 case Type::UnaryTransform:
2398 case Type::Attributed:
2399 case Type::BTFTagAttributed:
2400 case Type::SubstTemplateTypeParm:
2401 case Type::MacroQualified:
2402 // Keep walking after single level desugaring.
2403 type = type.getSingleStepDesugaredType(getContext());
2404 break;
2406 case Type::Typedef:
2407 case Type::Decltype:
2408 case Type::Auto:
2409 case Type::DeducedTemplateSpecialization:
2410 // Stop walking: nothing to do.
2411 return;
2413 case Type::TypeOfExpr:
2414 // Stop walking: emit typeof expression.
2415 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2416 return;
2418 case Type::Atomic:
2419 type = cast<AtomicType>(ty)->getValueType();
2420 break;
2422 case Type::Pipe:
2423 type = cast<PipeType>(ty)->getElementType();
2424 break;
2426 } while (type->isVariablyModifiedType());
2429 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2430 if (getContext().getBuiltinVaListType()->isArrayType())
2431 return EmitPointerWithAlignment(E);
2432 return EmitLValue(E).getAddress(*this);
2435 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2436 return EmitLValue(E).getAddress(*this);
2439 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2440 const APValue &Init) {
2441 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2442 if (CGDebugInfo *Dbg = getDebugInfo())
2443 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2444 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2447 CodeGenFunction::PeepholeProtection
2448 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2449 // At the moment, the only aggressive peephole we do in IR gen
2450 // is trunc(zext) folding, but if we add more, we can easily
2451 // extend this protection.
2453 if (!rvalue.isScalar()) return PeepholeProtection();
2454 llvm::Value *value = rvalue.getScalarVal();
2455 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2457 // Just make an extra bitcast.
2458 assert(HaveInsertPoint());
2459 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2460 Builder.GetInsertBlock());
2462 PeepholeProtection protection;
2463 protection.Inst = inst;
2464 return protection;
2467 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2468 if (!protection.Inst) return;
2470 // In theory, we could try to duplicate the peepholes now, but whatever.
2471 protection.Inst->eraseFromParent();
2474 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2475 QualType Ty, SourceLocation Loc,
2476 SourceLocation AssumptionLoc,
2477 llvm::Value *Alignment,
2478 llvm::Value *OffsetValue) {
2479 if (Alignment->getType() != IntPtrTy)
2480 Alignment =
2481 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2482 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2483 OffsetValue =
2484 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2485 llvm::Value *TheCheck = nullptr;
2486 if (SanOpts.has(SanitizerKind::Alignment)) {
2487 llvm::Value *PtrIntValue =
2488 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2490 if (OffsetValue) {
2491 bool IsOffsetZero = false;
2492 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2493 IsOffsetZero = CI->isZero();
2495 if (!IsOffsetZero)
2496 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2499 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2500 llvm::Value *Mask =
2501 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2502 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2503 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2505 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2506 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2508 if (!SanOpts.has(SanitizerKind::Alignment))
2509 return;
2510 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2511 OffsetValue, TheCheck, Assumption);
2514 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2515 const Expr *E,
2516 SourceLocation AssumptionLoc,
2517 llvm::Value *Alignment,
2518 llvm::Value *OffsetValue) {
2519 QualType Ty = E->getType();
2520 SourceLocation Loc = E->getExprLoc();
2522 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2523 OffsetValue);
2526 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2527 llvm::Value *AnnotatedVal,
2528 StringRef AnnotationStr,
2529 SourceLocation Location,
2530 const AnnotateAttr *Attr) {
2531 SmallVector<llvm::Value *, 5> Args = {
2532 AnnotatedVal,
2533 CGM.EmitAnnotationString(AnnotationStr),
2534 CGM.EmitAnnotationUnit(Location),
2535 CGM.EmitAnnotationLineNo(Location),
2537 if (Attr)
2538 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2539 return Builder.CreateCall(AnnotationFn, Args);
2542 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2543 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2544 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2545 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2546 {V->getType(), CGM.ConstGlobalsPtrTy}),
2547 V, I->getAnnotation(), D->getLocation(), I);
2550 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2551 Address Addr) {
2552 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2553 llvm::Value *V = Addr.getPointer();
2554 llvm::Type *VTy = V->getType();
2555 auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2556 unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2557 llvm::PointerType *IntrinTy =
2558 llvm::PointerType::get(CGM.getLLVMContext(), AS);
2559 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2560 {IntrinTy, CGM.ConstGlobalsPtrTy});
2562 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2563 // FIXME Always emit the cast inst so we can differentiate between
2564 // annotation on the first field of a struct and annotation on the struct
2565 // itself.
2566 if (VTy != IntrinTy)
2567 V = Builder.CreateBitCast(V, IntrinTy);
2568 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2569 V = Builder.CreateBitCast(V, VTy);
2572 return Address(V, Addr.getElementType(), Addr.getAlignment());
2575 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2577 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2578 : CGF(CGF) {
2579 assert(!CGF->IsSanitizerScope);
2580 CGF->IsSanitizerScope = true;
2583 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2584 CGF->IsSanitizerScope = false;
2587 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2588 const llvm::Twine &Name,
2589 llvm::BasicBlock *BB,
2590 llvm::BasicBlock::iterator InsertPt) const {
2591 LoopStack.InsertHelper(I);
2592 if (IsSanitizerScope)
2593 I->setNoSanitizeMetadata();
2596 void CGBuilderInserter::InsertHelper(
2597 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2598 llvm::BasicBlock::iterator InsertPt) const {
2599 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2600 if (CGF)
2601 CGF->InsertHelper(I, Name, BB, InsertPt);
2604 // Emits an error if we don't have a valid set of target features for the
2605 // called function.
2606 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2607 const FunctionDecl *TargetDecl) {
2608 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2611 // Emits an error if we don't have a valid set of target features for the
2612 // called function.
2613 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2614 const FunctionDecl *TargetDecl) {
2615 // Early exit if this is an indirect call.
2616 if (!TargetDecl)
2617 return;
2619 // Get the current enclosing function if it exists. If it doesn't
2620 // we can't check the target features anyhow.
2621 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2622 if (!FD)
2623 return;
2625 // Grab the required features for the call. For a builtin this is listed in
2626 // the td file with the default cpu, for an always_inline function this is any
2627 // listed cpu and any listed features.
2628 unsigned BuiltinID = TargetDecl->getBuiltinID();
2629 std::string MissingFeature;
2630 llvm::StringMap<bool> CallerFeatureMap;
2631 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2632 // When compiling in HipStdPar mode we have to be conservative in rejecting
2633 // target specific features in the FE, and defer the possible error to the
2634 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2635 // referenced by an accelerator executable function, we emit an error.
2636 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2637 if (BuiltinID) {
2638 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2639 if (!Builtin::evaluateRequiredTargetFeatures(
2640 FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2641 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2642 << TargetDecl->getDeclName()
2643 << FeatureList;
2645 } else if (!TargetDecl->isMultiVersion() &&
2646 TargetDecl->hasAttr<TargetAttr>()) {
2647 // Get the required features for the callee.
2649 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2650 ParsedTargetAttr ParsedAttr =
2651 CGM.getContext().filterFunctionTargetAttrs(TD);
2653 SmallVector<StringRef, 1> ReqFeatures;
2654 llvm::StringMap<bool> CalleeFeatureMap;
2655 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2657 for (const auto &F : ParsedAttr.Features) {
2658 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2659 ReqFeatures.push_back(StringRef(F).substr(1));
2662 for (const auto &F : CalleeFeatureMap) {
2663 // Only positive features are "required".
2664 if (F.getValue())
2665 ReqFeatures.push_back(F.getKey());
2667 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2668 if (!CallerFeatureMap.lookup(Feature)) {
2669 MissingFeature = Feature.str();
2670 return false;
2672 return true;
2673 }) && !IsHipStdPar)
2674 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2675 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2676 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2677 llvm::StringMap<bool> CalleeFeatureMap;
2678 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2680 for (const auto &F : CalleeFeatureMap) {
2681 if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) ||
2682 !CallerFeatureMap.find(F.getKey())->getValue()) &&
2683 !IsHipStdPar)
2684 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2685 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2690 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2691 if (!CGM.getCodeGenOpts().SanitizeStats)
2692 return;
2694 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2695 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2696 CGM.getSanStats().create(IRB, SSK);
2699 void CodeGenFunction::EmitKCFIOperandBundle(
2700 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2701 const FunctionProtoType *FP =
2702 Callee.getAbstractInfo().getCalleeFunctionProtoType();
2703 if (FP)
2704 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar()));
2707 llvm::Value *CodeGenFunction::FormAArch64ResolverCondition(
2708 const MultiVersionResolverOption &RO) {
2709 llvm::SmallVector<StringRef, 8> CondFeatures;
2710 for (const StringRef &Feature : RO.Conditions.Features) {
2711 // Form condition for features which are not yet enabled in target
2712 if (!getContext().getTargetInfo().hasFeature(Feature))
2713 CondFeatures.push_back(Feature);
2715 if (!CondFeatures.empty()) {
2716 return EmitAArch64CpuSupports(CondFeatures);
2718 return nullptr;
2721 llvm::Value *CodeGenFunction::FormX86ResolverCondition(
2722 const MultiVersionResolverOption &RO) {
2723 llvm::Value *Condition = nullptr;
2725 if (!RO.Conditions.Architecture.empty()) {
2726 StringRef Arch = RO.Conditions.Architecture;
2727 // If arch= specifies an x86-64 micro-architecture level, test the feature
2728 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2729 if (Arch.starts_with("x86-64"))
2730 Condition = EmitX86CpuSupports({Arch});
2731 else
2732 Condition = EmitX86CpuIs(Arch);
2735 if (!RO.Conditions.Features.empty()) {
2736 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2737 Condition =
2738 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2740 return Condition;
2743 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2744 llvm::Function *Resolver,
2745 CGBuilderTy &Builder,
2746 llvm::Function *FuncToReturn,
2747 bool SupportsIFunc) {
2748 if (SupportsIFunc) {
2749 Builder.CreateRet(FuncToReturn);
2750 return;
2753 llvm::SmallVector<llvm::Value *, 10> Args(
2754 llvm::make_pointer_range(Resolver->args()));
2756 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2757 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2759 if (Resolver->getReturnType()->isVoidTy())
2760 Builder.CreateRetVoid();
2761 else
2762 Builder.CreateRet(Result);
2765 void CodeGenFunction::EmitMultiVersionResolver(
2766 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2768 llvm::Triple::ArchType ArchType =
2769 getContext().getTargetInfo().getTriple().getArch();
2771 switch (ArchType) {
2772 case llvm::Triple::x86:
2773 case llvm::Triple::x86_64:
2774 EmitX86MultiVersionResolver(Resolver, Options);
2775 return;
2776 case llvm::Triple::aarch64:
2777 EmitAArch64MultiVersionResolver(Resolver, Options);
2778 return;
2780 default:
2781 assert(false && "Only implemented for x86 and AArch64 targets");
2785 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2786 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2787 assert(!Options.empty() && "No multiversion resolver options found");
2788 assert(Options.back().Conditions.Features.size() == 0 &&
2789 "Default case must be last");
2790 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2791 assert(SupportsIFunc &&
2792 "Multiversion resolver requires target IFUNC support");
2793 bool AArch64CpuInitialized = false;
2794 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2796 for (const MultiVersionResolverOption &RO : Options) {
2797 Builder.SetInsertPoint(CurBlock);
2798 llvm::Value *Condition = FormAArch64ResolverCondition(RO);
2800 // The 'default' or 'all features enabled' case.
2801 if (!Condition) {
2802 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2803 SupportsIFunc);
2804 return;
2807 if (!AArch64CpuInitialized) {
2808 Builder.SetInsertPoint(CurBlock, CurBlock->begin());
2809 EmitAArch64CpuInit();
2810 AArch64CpuInitialized = true;
2811 Builder.SetInsertPoint(CurBlock);
2814 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2815 CGBuilderTy RetBuilder(*this, RetBlock);
2816 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2817 SupportsIFunc);
2818 CurBlock = createBasicBlock("resolver_else", Resolver);
2819 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2822 // If no default, emit an unreachable.
2823 Builder.SetInsertPoint(CurBlock);
2824 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2825 TrapCall->setDoesNotReturn();
2826 TrapCall->setDoesNotThrow();
2827 Builder.CreateUnreachable();
2828 Builder.ClearInsertionPoint();
2831 void CodeGenFunction::EmitX86MultiVersionResolver(
2832 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2834 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2836 // Main function's basic block.
2837 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2838 Builder.SetInsertPoint(CurBlock);
2839 EmitX86CpuInit();
2841 for (const MultiVersionResolverOption &RO : Options) {
2842 Builder.SetInsertPoint(CurBlock);
2843 llvm::Value *Condition = FormX86ResolverCondition(RO);
2845 // The 'default' or 'generic' case.
2846 if (!Condition) {
2847 assert(&RO == Options.end() - 1 &&
2848 "Default or Generic case must be last");
2849 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2850 SupportsIFunc);
2851 return;
2854 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2855 CGBuilderTy RetBuilder(*this, RetBlock);
2856 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2857 SupportsIFunc);
2858 CurBlock = createBasicBlock("resolver_else", Resolver);
2859 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2862 // If no generic/default, emit an unreachable.
2863 Builder.SetInsertPoint(CurBlock);
2864 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2865 TrapCall->setDoesNotReturn();
2866 TrapCall->setDoesNotThrow();
2867 Builder.CreateUnreachable();
2868 Builder.ClearInsertionPoint();
2871 // Loc - where the diagnostic will point, where in the source code this
2872 // alignment has failed.
2873 // SecondaryLoc - if present (will be present if sufficiently different from
2874 // Loc), the diagnostic will additionally point a "Note:" to this location.
2875 // It should be the location where the __attribute__((assume_aligned))
2876 // was written e.g.
2877 void CodeGenFunction::emitAlignmentAssumptionCheck(
2878 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2879 SourceLocation SecondaryLoc, llvm::Value *Alignment,
2880 llvm::Value *OffsetValue, llvm::Value *TheCheck,
2881 llvm::Instruction *Assumption) {
2882 assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2883 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2884 llvm::Intrinsic::getDeclaration(
2885 Builder.GetInsertBlock()->getParent()->getParent(),
2886 llvm::Intrinsic::assume) &&
2887 "Assumption should be a call to llvm.assume().");
2888 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2889 "Assumption should be the last instruction of the basic block, "
2890 "since the basic block is still being generated.");
2892 if (!SanOpts.has(SanitizerKind::Alignment))
2893 return;
2895 // Don't check pointers to volatile data. The behavior here is implementation-
2896 // defined.
2897 if (Ty->getPointeeType().isVolatileQualified())
2898 return;
2900 // We need to temorairly remove the assumption so we can insert the
2901 // sanitizer check before it, else the check will be dropped by optimizations.
2902 Assumption->removeFromParent();
2905 SanitizerScope SanScope(this);
2907 if (!OffsetValue)
2908 OffsetValue = Builder.getInt1(false); // no offset.
2910 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2911 EmitCheckSourceLocation(SecondaryLoc),
2912 EmitCheckTypeDescriptor(Ty)};
2913 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2914 EmitCheckValue(Alignment),
2915 EmitCheckValue(OffsetValue)};
2916 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2917 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2920 // We are now in the (new, empty) "cont" basic block.
2921 // Reintroduce the assumption.
2922 Builder.Insert(Assumption);
2923 // FIXME: Assumption still has it's original basic block as it's Parent.
2926 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2927 if (CGDebugInfo *DI = getDebugInfo())
2928 return DI->SourceLocToDebugLoc(Location);
2930 return llvm::DebugLoc();
2933 llvm::Value *
2934 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2935 Stmt::Likelihood LH) {
2936 switch (LH) {
2937 case Stmt::LH_None:
2938 return Cond;
2939 case Stmt::LH_Likely:
2940 case Stmt::LH_Unlikely:
2941 // Don't generate llvm.expect on -O0 as the backend won't use it for
2942 // anything.
2943 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2944 return Cond;
2945 llvm::Type *CondTy = Cond->getType();
2946 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2947 llvm::Function *FnExpect =
2948 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2949 llvm::Value *ExpectedValueOfCond =
2950 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2951 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2952 Cond->getName() + ".expval");
2954 llvm_unreachable("Unknown Likelihood");
2957 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2958 unsigned NumElementsDst,
2959 const llvm::Twine &Name) {
2960 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2961 unsigned NumElementsSrc = SrcTy->getNumElements();
2962 if (NumElementsSrc == NumElementsDst)
2963 return SrcVec;
2965 std::vector<int> ShuffleMask(NumElementsDst, -1);
2966 for (unsigned MaskIdx = 0;
2967 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2968 ShuffleMask[MaskIdx] = MaskIdx;
2970 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);