1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-function state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ASTLambda.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/Expr.h"
30 #include "clang/AST/StmtCXX.h"
31 #include "clang/AST/StmtObjC.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "clang/CodeGen/CGFunctionInfo.h"
36 #include "clang/Frontend/FrontendDiagnostic.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/FPEnv.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/MDBuilder.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/Support/CRC.h"
47 #include "llvm/Support/xxhash.h"
48 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
52 using namespace clang
;
53 using namespace CodeGen
;
55 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
57 static bool shouldEmitLifetimeMarkers(const CodeGenOptions
&CGOpts
,
58 const LangOptions
&LangOpts
) {
59 if (CGOpts
.DisableLifetimeMarkers
)
62 // Sanitizers may use markers.
63 if (CGOpts
.SanitizeAddressUseAfterScope
||
64 LangOpts
.Sanitize
.has(SanitizerKind::HWAddress
) ||
65 LangOpts
.Sanitize
.has(SanitizerKind::Memory
))
68 // For now, only in optimized builds.
69 return CGOpts
.OptimizationLevel
!= 0;
72 CodeGenFunction::CodeGenFunction(CodeGenModule
&cgm
, bool suppressNewContext
)
73 : CodeGenTypeCache(cgm
), CGM(cgm
), Target(cgm
.getTarget()),
74 Builder(cgm
, cgm
.getModule().getContext(), llvm::ConstantFolder(),
75 CGBuilderInserterTy(this)),
76 SanOpts(CGM
.getLangOpts().Sanitize
), CurFPFeatures(CGM
.getLangOpts()),
77 DebugInfo(CGM
.getModuleDebugInfo()), PGO(cgm
),
78 ShouldEmitLifetimeMarkers(
79 shouldEmitLifetimeMarkers(CGM
.getCodeGenOpts(), CGM
.getLangOpts())) {
80 if (!suppressNewContext
)
81 CGM
.getCXXABI().getMangleContext().startNewFunction();
84 SetFastMathFlags(CurFPFeatures
);
87 CodeGenFunction::~CodeGenFunction() {
88 assert(LifetimeExtendedCleanupStack
.empty() && "failed to emit a cleanup");
90 if (getLangOpts().OpenMP
&& CurFn
)
91 CGM
.getOpenMPRuntime().functionFinished(*this);
93 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
94 // outlining etc) at some point. Doing it once the function codegen is done
95 // seems to be a reasonable spot. We do it here, as opposed to the deletion
96 // time of the CodeGenModule, because we have to ensure the IR has not yet
97 // been "emitted" to the outside, thus, modifications are still sensible.
98 if (CGM
.getLangOpts().OpenMPIRBuilder
&& CurFn
)
99 CGM
.getOpenMPRuntime().getOMPBuilder().finalize(CurFn
);
102 // Map the LangOption for exception behavior into
103 // the corresponding enum in the IR.
104 llvm::fp::ExceptionBehavior
105 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind
) {
108 case LangOptions::FPE_Ignore
: return llvm::fp::ebIgnore
;
109 case LangOptions::FPE_MayTrap
: return llvm::fp::ebMayTrap
;
110 case LangOptions::FPE_Strict
: return llvm::fp::ebStrict
;
112 llvm_unreachable("Unsupported FP Exception Behavior");
116 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures
) {
117 llvm::FastMathFlags FMF
;
118 FMF
.setAllowReassoc(FPFeatures
.getAllowFPReassociate());
119 FMF
.setNoNaNs(FPFeatures
.getNoHonorNaNs());
120 FMF
.setNoInfs(FPFeatures
.getNoHonorInfs());
121 FMF
.setNoSignedZeros(FPFeatures
.getNoSignedZero());
122 FMF
.setAllowReciprocal(FPFeatures
.getAllowReciprocal());
123 FMF
.setApproxFunc(FPFeatures
.getAllowApproxFunc());
124 FMF
.setAllowContract(FPFeatures
.allowFPContractAcrossStatement());
125 Builder
.setFastMathFlags(FMF
);
128 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
131 ConstructorHelper(E
->getFPFeaturesInEffect(CGF
.getLangOpts()));
134 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction
&CGF
,
135 FPOptions FPFeatures
)
137 ConstructorHelper(FPFeatures
);
140 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures
) {
141 OldFPFeatures
= CGF
.CurFPFeatures
;
142 CGF
.CurFPFeatures
= FPFeatures
;
144 OldExcept
= CGF
.Builder
.getDefaultConstrainedExcept();
145 OldRounding
= CGF
.Builder
.getDefaultConstrainedRounding();
147 if (OldFPFeatures
== FPFeatures
)
150 FMFGuard
.emplace(CGF
.Builder
);
152 llvm::RoundingMode NewRoundingBehavior
= FPFeatures
.getRoundingMode();
153 CGF
.Builder
.setDefaultConstrainedRounding(NewRoundingBehavior
);
154 auto NewExceptionBehavior
=
155 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind
>(
156 FPFeatures
.getExceptionMode()));
157 CGF
.Builder
.setDefaultConstrainedExcept(NewExceptionBehavior
);
159 CGF
.SetFastMathFlags(FPFeatures
);
161 assert((CGF
.CurFuncDecl
== nullptr || CGF
.Builder
.getIsFPConstrained() ||
162 isa
<CXXConstructorDecl
>(CGF
.CurFuncDecl
) ||
163 isa
<CXXDestructorDecl
>(CGF
.CurFuncDecl
) ||
164 (NewExceptionBehavior
== llvm::fp::ebIgnore
&&
165 NewRoundingBehavior
== llvm::RoundingMode::NearestTiesToEven
)) &&
166 "FPConstrained should be enabled on entire function");
168 auto mergeFnAttrValue
= [&](StringRef Name
, bool Value
) {
170 CGF
.CurFn
->getFnAttribute(Name
).getValueAsBool();
171 auto NewValue
= OldValue
& Value
;
172 if (OldValue
!= NewValue
)
173 CGF
.CurFn
->addFnAttr(Name
, llvm::toStringRef(NewValue
));
175 mergeFnAttrValue("no-infs-fp-math", FPFeatures
.getNoHonorInfs());
176 mergeFnAttrValue("no-nans-fp-math", FPFeatures
.getNoHonorNaNs());
177 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures
.getNoSignedZero());
180 FPFeatures
.getAllowFPReassociate() && FPFeatures
.getAllowReciprocal() &&
181 FPFeatures
.getAllowApproxFunc() && FPFeatures
.getNoSignedZero() &&
182 FPFeatures
.allowFPContractAcrossStatement());
185 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
186 CGF
.CurFPFeatures
= OldFPFeatures
;
187 CGF
.Builder
.setDefaultConstrainedExcept(OldExcept
);
188 CGF
.Builder
.setDefaultConstrainedRounding(OldRounding
);
191 LValue
CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value
*V
, QualType T
) {
192 LValueBaseInfo BaseInfo
;
193 TBAAAccessInfo TBAAInfo
;
194 CharUnits Alignment
= CGM
.getNaturalTypeAlignment(T
, &BaseInfo
, &TBAAInfo
);
195 Address
Addr(V
, ConvertTypeForMem(T
), Alignment
);
196 return LValue::MakeAddr(Addr
, T
, getContext(), BaseInfo
, TBAAInfo
);
199 /// Given a value of type T* that may not be to a complete object,
200 /// construct an l-value with the natural pointee alignment of T.
202 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value
*V
, QualType T
) {
203 LValueBaseInfo BaseInfo
;
204 TBAAAccessInfo TBAAInfo
;
205 CharUnits Align
= CGM
.getNaturalTypeAlignment(T
, &BaseInfo
, &TBAAInfo
,
206 /* forPointeeType= */ true);
207 Address
Addr(V
, ConvertTypeForMem(T
), Align
);
208 return MakeAddrLValue(Addr
, T
, BaseInfo
, TBAAInfo
);
212 llvm::Type
*CodeGenFunction::ConvertTypeForMem(QualType T
) {
213 return CGM
.getTypes().ConvertTypeForMem(T
);
216 llvm::Type
*CodeGenFunction::ConvertType(QualType T
) {
217 return CGM
.getTypes().ConvertType(T
);
220 TypeEvaluationKind
CodeGenFunction::getEvaluationKind(QualType type
) {
221 type
= type
.getCanonicalType();
223 switch (type
->getTypeClass()) {
224 #define TYPE(name, parent)
225 #define ABSTRACT_TYPE(name, parent)
226 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
227 #define DEPENDENT_TYPE(name, parent) case Type::name:
228 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
229 #include "clang/AST/TypeNodes.inc"
230 llvm_unreachable("non-canonical or dependent type in IR-generation");
233 case Type::DeducedTemplateSpecialization
:
234 llvm_unreachable("undeduced type in IR-generation");
236 // Various scalar types.
239 case Type::BlockPointer
:
240 case Type::LValueReference
:
241 case Type::RValueReference
:
242 case Type::MemberPointer
:
244 case Type::ExtVector
:
245 case Type::ConstantMatrix
:
246 case Type::FunctionProto
:
247 case Type::FunctionNoProto
:
249 case Type::ObjCObjectPointer
:
258 // Arrays, records, and Objective-C objects.
259 case Type::ConstantArray
:
260 case Type::IncompleteArray
:
261 case Type::VariableArray
:
263 case Type::ObjCObject
:
264 case Type::ObjCInterface
:
265 return TEK_Aggregate
;
267 // We operate on atomic values according to their underlying type.
269 type
= cast
<AtomicType
>(type
)->getValueType();
272 llvm_unreachable("unknown type kind!");
276 llvm::DebugLoc
CodeGenFunction::EmitReturnBlock() {
277 // For cleanliness, we try to avoid emitting the return block for
279 llvm::BasicBlock
*CurBB
= Builder
.GetInsertBlock();
282 assert(!CurBB
->getTerminator() && "Unexpected terminated block.");
284 // We have a valid insert point, reuse it if it is empty or there are no
285 // explicit jumps to the return block.
286 if (CurBB
->empty() || ReturnBlock
.getBlock()->use_empty()) {
287 ReturnBlock
.getBlock()->replaceAllUsesWith(CurBB
);
288 delete ReturnBlock
.getBlock();
289 ReturnBlock
= JumpDest();
291 EmitBlock(ReturnBlock
.getBlock());
292 return llvm::DebugLoc();
295 // Otherwise, if the return block is the target of a single direct
296 // branch then we can just put the code in that block instead. This
297 // cleans up functions which started with a unified return block.
298 if (ReturnBlock
.getBlock()->hasOneUse()) {
299 llvm::BranchInst
*BI
=
300 dyn_cast
<llvm::BranchInst
>(*ReturnBlock
.getBlock()->user_begin());
301 if (BI
&& BI
->isUnconditional() &&
302 BI
->getSuccessor(0) == ReturnBlock
.getBlock()) {
303 // Record/return the DebugLoc of the simple 'return' expression to be used
304 // later by the actual 'ret' instruction.
305 llvm::DebugLoc Loc
= BI
->getDebugLoc();
306 Builder
.SetInsertPoint(BI
->getParent());
307 BI
->eraseFromParent();
308 delete ReturnBlock
.getBlock();
309 ReturnBlock
= JumpDest();
314 // FIXME: We are at an unreachable point, there is no reason to emit the block
315 // unless it has uses. However, we still need a place to put the debug
316 // region.end for now.
318 EmitBlock(ReturnBlock
.getBlock());
319 return llvm::DebugLoc();
322 static void EmitIfUsed(CodeGenFunction
&CGF
, llvm::BasicBlock
*BB
) {
324 if (!BB
->use_empty()) {
325 CGF
.CurFn
->insert(CGF
.CurFn
->end(), BB
);
331 void CodeGenFunction::FinishFunction(SourceLocation EndLoc
) {
332 assert(BreakContinueStack
.empty() &&
333 "mismatched push/pop in break/continue stack!");
335 bool OnlySimpleReturnStmts
= NumSimpleReturnExprs
> 0
336 && NumSimpleReturnExprs
== NumReturnExprs
337 && ReturnBlock
.getBlock()->use_empty();
338 // Usually the return expression is evaluated before the cleanup
339 // code. If the function contains only a simple return statement,
340 // such as a constant, the location before the cleanup code becomes
341 // the last useful breakpoint in the function, because the simple
342 // return expression will be evaluated after the cleanup code. To be
343 // safe, set the debug location for cleanup code to the location of
344 // the return statement. Otherwise the cleanup code should be at the
345 // end of the function's lexical scope.
347 // If there are multiple branches to the return block, the branch
348 // instructions will get the location of the return statements and
350 if (CGDebugInfo
*DI
= getDebugInfo()) {
351 if (OnlySimpleReturnStmts
)
352 DI
->EmitLocation(Builder
, LastStopPoint
);
354 DI
->EmitLocation(Builder
, EndLoc
);
357 // Pop any cleanups that might have been associated with the
358 // parameters. Do this in whatever block we're currently in; it's
359 // important to do this before we enter the return block or return
360 // edges will be *really* confused.
361 bool HasCleanups
= EHStack
.stable_begin() != PrologueCleanupDepth
;
362 bool HasOnlyLifetimeMarkers
=
363 HasCleanups
&& EHStack
.containsOnlyLifetimeMarkers(PrologueCleanupDepth
);
364 bool EmitRetDbgLoc
= !HasCleanups
|| HasOnlyLifetimeMarkers
;
366 std::optional
<ApplyDebugLocation
> OAL
;
368 // Make sure the line table doesn't jump back into the body for
369 // the ret after it's been at EndLoc.
370 if (CGDebugInfo
*DI
= getDebugInfo()) {
371 if (OnlySimpleReturnStmts
)
372 DI
->EmitLocation(Builder
, EndLoc
);
374 // We may not have a valid end location. Try to apply it anyway, and
375 // fall back to an artificial location if needed.
376 OAL
= ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc
);
379 PopCleanupBlocks(PrologueCleanupDepth
);
382 // Emit function epilog (to return).
383 llvm::DebugLoc Loc
= EmitReturnBlock();
385 if (ShouldInstrumentFunction()) {
386 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
387 CurFn
->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
388 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
389 CurFn
->addFnAttr("instrument-function-exit-inlined",
390 "__cyg_profile_func_exit");
393 // Emit debug descriptor for function end.
394 if (CGDebugInfo
*DI
= getDebugInfo())
395 DI
->EmitFunctionEnd(Builder
, CurFn
);
397 // Reset the debug location to that of the simple 'return' expression, if any
398 // rather than that of the end of the function's scope '}'.
399 ApplyDebugLocation
AL(*this, Loc
);
400 EmitFunctionEpilog(*CurFnInfo
, EmitRetDbgLoc
, EndLoc
);
401 EmitEndEHSpec(CurCodeDecl
);
403 assert(EHStack
.empty() &&
404 "did not remove all scopes from cleanup stack!");
406 // If someone did an indirect goto, emit the indirect goto block at the end of
408 if (IndirectBranch
) {
409 EmitBlock(IndirectBranch
->getParent());
410 Builder
.ClearInsertionPoint();
413 // If some of our locals escaped, insert a call to llvm.localescape in the
415 if (!EscapedLocals
.empty()) {
416 // Invert the map from local to index into a simple vector. There should be
418 SmallVector
<llvm::Value
*, 4> EscapeArgs
;
419 EscapeArgs
.resize(EscapedLocals
.size());
420 for (auto &Pair
: EscapedLocals
)
421 EscapeArgs
[Pair
.second
] = Pair
.first
;
422 llvm::Function
*FrameEscapeFn
= llvm::Intrinsic::getDeclaration(
423 &CGM
.getModule(), llvm::Intrinsic::localescape
);
424 CGBuilderTy(*this, AllocaInsertPt
).CreateCall(FrameEscapeFn
, EscapeArgs
);
427 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
428 llvm::Instruction
*Ptr
= AllocaInsertPt
;
429 AllocaInsertPt
= nullptr;
430 Ptr
->eraseFromParent();
432 // PostAllocaInsertPt, if created, was lazily created when it was required,
433 // remove it now since it was just created for our own convenience.
434 if (PostAllocaInsertPt
) {
435 llvm::Instruction
*PostPtr
= PostAllocaInsertPt
;
436 PostAllocaInsertPt
= nullptr;
437 PostPtr
->eraseFromParent();
440 // If someone took the address of a label but never did an indirect goto, we
441 // made a zero entry PHI node, which is illegal, zap it now.
442 if (IndirectBranch
) {
443 llvm::PHINode
*PN
= cast
<llvm::PHINode
>(IndirectBranch
->getAddress());
444 if (PN
->getNumIncomingValues() == 0) {
445 PN
->replaceAllUsesWith(llvm::UndefValue::get(PN
->getType()));
446 PN
->eraseFromParent();
450 EmitIfUsed(*this, EHResumeBlock
);
451 EmitIfUsed(*this, TerminateLandingPad
);
452 EmitIfUsed(*this, TerminateHandler
);
453 EmitIfUsed(*this, UnreachableBlock
);
455 for (const auto &FuncletAndParent
: TerminateFunclets
)
456 EmitIfUsed(*this, FuncletAndParent
.second
);
458 if (CGM
.getCodeGenOpts().EmitDeclMetadata
)
461 for (const auto &R
: DeferredReplacements
) {
462 if (llvm::Value
*Old
= R
.first
) {
463 Old
->replaceAllUsesWith(R
.second
);
464 cast
<llvm::Instruction
>(Old
)->eraseFromParent();
467 DeferredReplacements
.clear();
469 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
470 // PHIs if the current function is a coroutine. We don't do it for all
471 // functions as it may result in slight increase in numbers of instructions
472 // if compiled with no optimizations. We do it for coroutine as the lifetime
473 // of CleanupDestSlot alloca make correct coroutine frame building very
475 if (NormalCleanupDest
.isValid() && isCoroutine()) {
476 llvm::DominatorTree
DT(*CurFn
);
477 llvm::PromoteMemToReg(
478 cast
<llvm::AllocaInst
>(NormalCleanupDest
.getPointer()), DT
);
479 NormalCleanupDest
= Address::invalid();
482 // Scan function arguments for vector width.
483 for (llvm::Argument
&A
: CurFn
->args())
484 if (auto *VT
= dyn_cast
<llvm::VectorType
>(A
.getType()))
486 std::max((uint64_t)LargestVectorWidth
,
487 VT
->getPrimitiveSizeInBits().getKnownMinValue());
489 // Update vector width based on return type.
490 if (auto *VT
= dyn_cast
<llvm::VectorType
>(CurFn
->getReturnType()))
492 std::max((uint64_t)LargestVectorWidth
,
493 VT
->getPrimitiveSizeInBits().getKnownMinValue());
495 if (CurFnInfo
->getMaxVectorWidth() > LargestVectorWidth
)
496 LargestVectorWidth
= CurFnInfo
->getMaxVectorWidth();
498 // Add the min-legal-vector-width attribute. This contains the max width from:
499 // 1. min-vector-width attribute used in the source program.
500 // 2. Any builtins used that have a vector width specified.
501 // 3. Values passed in and out of inline assembly.
502 // 4. Width of vector arguments and return types for this function.
503 // 5. Width of vector arguments and return types for functions called by this
505 if (getContext().getTargetInfo().getTriple().isX86())
506 CurFn
->addFnAttr("min-legal-vector-width",
507 llvm::utostr(LargestVectorWidth
));
509 // Add vscale_range attribute if appropriate.
510 std::optional
<std::pair
<unsigned, unsigned>> VScaleRange
=
511 getContext().getTargetInfo().getVScaleRange(getLangOpts());
513 CurFn
->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
514 getLLVMContext(), VScaleRange
->first
, VScaleRange
->second
));
517 // If we generated an unreachable return block, delete it now.
518 if (ReturnBlock
.isValid() && ReturnBlock
.getBlock()->use_empty()) {
519 Builder
.ClearInsertionPoint();
520 ReturnBlock
.getBlock()->eraseFromParent();
522 if (ReturnValue
.isValid()) {
523 auto *RetAlloca
= dyn_cast
<llvm::AllocaInst
>(ReturnValue
.getPointer());
524 if (RetAlloca
&& RetAlloca
->use_empty()) {
525 RetAlloca
->eraseFromParent();
526 ReturnValue
= Address::invalid();
531 /// ShouldInstrumentFunction - Return true if the current function should be
532 /// instrumented with __cyg_profile_func_* calls
533 bool CodeGenFunction::ShouldInstrumentFunction() {
534 if (!CGM
.getCodeGenOpts().InstrumentFunctions
&&
535 !CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
&&
536 !CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
538 if (!CurFuncDecl
|| CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>())
543 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
546 return CurFuncDecl
->hasAttr
<DisableSanitizerInstrumentationAttr
>();
549 /// ShouldXRayInstrument - Return true if the current function should be
550 /// instrumented with XRay nop sleds.
551 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
552 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
;
555 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
556 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
557 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
558 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
559 (CGM
.getCodeGenOpts().XRayAlwaysEmitCustomEvents
||
560 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
561 XRayInstrKind::Custom
);
564 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
565 return CGM
.getCodeGenOpts().XRayInstrumentFunctions
&&
566 (CGM
.getCodeGenOpts().XRayAlwaysEmitTypedEvents
||
567 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.Mask
==
568 XRayInstrKind::Typed
);
572 CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty
) const {
573 // Remove any (C++17) exception specifications, to allow calling e.g. a
574 // noexcept function through a non-noexcept pointer.
575 if (!Ty
->isFunctionNoProtoType())
576 Ty
= getContext().getFunctionTypeWithExceptionSpec(Ty
, EST_None
);
578 llvm::raw_string_ostream
Out(Mangled
);
579 CGM
.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty
, Out
, false);
580 return llvm::ConstantInt::get(
581 CGM
.Int32Ty
, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled
)));
584 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl
*FD
,
585 llvm::Function
*Fn
) {
586 if (!FD
->hasAttr
<OpenCLKernelAttr
>() && !FD
->hasAttr
<CUDAGlobalAttr
>())
589 llvm::LLVMContext
&Context
= getLLVMContext();
591 CGM
.GenKernelArgMetadata(Fn
, FD
, this);
593 if (!getLangOpts().OpenCL
)
596 if (const VecTypeHintAttr
*A
= FD
->getAttr
<VecTypeHintAttr
>()) {
597 QualType HintQTy
= A
->getTypeHint();
598 const ExtVectorType
*HintEltQTy
= HintQTy
->getAs
<ExtVectorType
>();
599 bool IsSignedInteger
=
600 HintQTy
->isSignedIntegerType() ||
601 (HintEltQTy
&& HintEltQTy
->getElementType()->isSignedIntegerType());
602 llvm::Metadata
*AttrMDArgs
[] = {
603 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
604 CGM
.getTypes().ConvertType(A
->getTypeHint()))),
605 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606 llvm::IntegerType::get(Context
, 32),
607 llvm::APInt(32, (uint64_t)(IsSignedInteger
? 1 : 0))))};
608 Fn
->setMetadata("vec_type_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
611 if (const WorkGroupSizeHintAttr
*A
= FD
->getAttr
<WorkGroupSizeHintAttr
>()) {
612 llvm::Metadata
*AttrMDArgs
[] = {
613 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
614 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
615 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
616 Fn
->setMetadata("work_group_size_hint", llvm::MDNode::get(Context
, AttrMDArgs
));
619 if (const ReqdWorkGroupSizeAttr
*A
= FD
->getAttr
<ReqdWorkGroupSizeAttr
>()) {
620 llvm::Metadata
*AttrMDArgs
[] = {
621 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getXDim())),
622 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getYDim())),
623 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getZDim()))};
624 Fn
->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context
, AttrMDArgs
));
627 if (const OpenCLIntelReqdSubGroupSizeAttr
*A
=
628 FD
->getAttr
<OpenCLIntelReqdSubGroupSizeAttr
>()) {
629 llvm::Metadata
*AttrMDArgs
[] = {
630 llvm::ConstantAsMetadata::get(Builder
.getInt32(A
->getSubGroupSize()))};
631 Fn
->setMetadata("intel_reqd_sub_group_size",
632 llvm::MDNode::get(Context
, AttrMDArgs
));
636 /// Determine whether the function F ends with a return stmt.
637 static bool endsWithReturn(const Decl
* F
) {
638 const Stmt
*Body
= nullptr;
639 if (auto *FD
= dyn_cast_or_null
<FunctionDecl
>(F
))
640 Body
= FD
->getBody();
641 else if (auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(F
))
642 Body
= OMD
->getBody();
644 if (auto *CS
= dyn_cast_or_null
<CompoundStmt
>(Body
)) {
645 auto LastStmt
= CS
->body_rbegin();
646 if (LastStmt
!= CS
->body_rend())
647 return isa
<ReturnStmt
>(*LastStmt
);
652 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function
*Fn
) {
653 if (SanOpts
.has(SanitizerKind::Thread
)) {
654 Fn
->addFnAttr("sanitize_thread_no_checking_at_run_time");
655 Fn
->removeFnAttr(llvm::Attribute::SanitizeThread
);
659 /// Check if the return value of this function requires sanitization.
660 bool CodeGenFunction::requiresReturnValueCheck() const {
661 return requiresReturnValueNullabilityCheck() ||
662 (SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) && CurCodeDecl
&&
663 CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>());
666 static bool matchesStlAllocatorFn(const Decl
*D
, const ASTContext
&Ctx
) {
667 auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(D
);
668 if (!MD
|| !MD
->getDeclName().getAsIdentifierInfo() ||
669 !MD
->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
670 (MD
->getNumParams() != 1 && MD
->getNumParams() != 2))
673 if (MD
->parameters()[0]->getType().getCanonicalType() != Ctx
.getSizeType())
676 if (MD
->getNumParams() == 2) {
677 auto *PT
= MD
->parameters()[1]->getType()->getAs
<PointerType
>();
678 if (!PT
|| !PT
->isVoidPointerType() ||
679 !PT
->getPointeeType().isConstQualified())
686 bool CodeGenFunction::isInAllocaArgument(CGCXXABI
&ABI
, QualType Ty
) {
687 const CXXRecordDecl
*RD
= Ty
->getAsCXXRecordDecl();
688 return RD
&& ABI
.getRecordArgABI(RD
) == CGCXXABI::RAA_DirectInMemory
;
691 bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl
*MD
) {
692 return getTarget().getTriple().getArch() == llvm::Triple::x86
&&
693 getTarget().getCXXABI().isMicrosoft() &&
694 llvm::any_of(MD
->parameters(), [&](ParmVarDecl
*P
) {
695 return isInAllocaArgument(CGM
.getCXXABI(), P
->getType());
699 /// Return the UBSan prologue signature for \p FD if one is available.
700 static llvm::Constant
*getPrologueSignature(CodeGenModule
&CGM
,
701 const FunctionDecl
*FD
) {
702 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
705 return CGM
.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM
);
708 void CodeGenFunction::StartFunction(GlobalDecl GD
, QualType RetTy
,
710 const CGFunctionInfo
&FnInfo
,
711 const FunctionArgList
&Args
,
713 SourceLocation StartLoc
) {
715 "Do not use a CodeGenFunction object for more than one function");
717 const Decl
*D
= GD
.getDecl();
719 DidCallStackSave
= false;
721 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(D
);
722 if (FD
&& FD
->usesSEHTry())
724 CurFuncDecl
= (D
? D
->getNonClosureContext() : nullptr);
728 assert(CurFn
->isDeclaration() && "Function already has body?");
730 // If this function is ignored for any of the enabled sanitizers,
731 // disable the sanitizer for the function.
733 #define SANITIZER(NAME, ID) \
734 if (SanOpts.empty()) \
736 if (SanOpts.has(SanitizerKind::ID)) \
737 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
738 SanOpts.set(SanitizerKind::ID, false);
740 #include "clang/Basic/Sanitizers.def"
745 const bool SanitizeBounds
= SanOpts
.hasOneOf(SanitizerKind::Bounds
);
746 SanitizerMask no_sanitize_mask
;
747 bool NoSanitizeCoverage
= false;
749 for (auto *Attr
: D
->specific_attrs
<NoSanitizeAttr
>()) {
750 no_sanitize_mask
|= Attr
->getMask();
751 // SanitizeCoverage is not handled by SanOpts.
752 if (Attr
->hasCoverage())
753 NoSanitizeCoverage
= true;
756 // Apply the no_sanitize* attributes to SanOpts.
757 SanOpts
.Mask
&= ~no_sanitize_mask
;
758 if (no_sanitize_mask
& SanitizerKind::Address
)
759 SanOpts
.set(SanitizerKind::KernelAddress
, false);
760 if (no_sanitize_mask
& SanitizerKind::KernelAddress
)
761 SanOpts
.set(SanitizerKind::Address
, false);
762 if (no_sanitize_mask
& SanitizerKind::HWAddress
)
763 SanOpts
.set(SanitizerKind::KernelHWAddress
, false);
764 if (no_sanitize_mask
& SanitizerKind::KernelHWAddress
)
765 SanOpts
.set(SanitizerKind::HWAddress
, false);
767 if (SanitizeBounds
&& !SanOpts
.hasOneOf(SanitizerKind::Bounds
))
768 Fn
->addFnAttr(llvm::Attribute::NoSanitizeBounds
);
770 if (NoSanitizeCoverage
&& CGM
.getCodeGenOpts().hasSanitizeCoverage())
771 Fn
->addFnAttr(llvm::Attribute::NoSanitizeCoverage
);
773 // Some passes need the non-negated no_sanitize attribute. Pass them on.
774 if (CGM
.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
775 if (no_sanitize_mask
& SanitizerKind::Thread
)
776 Fn
->addFnAttr("no_sanitize_thread");
780 if (ShouldSkipSanitizerInstrumentation()) {
781 CurFn
->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation
);
783 // Apply sanitizer attributes to the function.
784 if (SanOpts
.hasOneOf(SanitizerKind::Address
| SanitizerKind::KernelAddress
))
785 Fn
->addFnAttr(llvm::Attribute::SanitizeAddress
);
786 if (SanOpts
.hasOneOf(SanitizerKind::HWAddress
|
787 SanitizerKind::KernelHWAddress
))
788 Fn
->addFnAttr(llvm::Attribute::SanitizeHWAddress
);
789 if (SanOpts
.has(SanitizerKind::MemtagStack
))
790 Fn
->addFnAttr(llvm::Attribute::SanitizeMemTag
);
791 if (SanOpts
.has(SanitizerKind::Thread
))
792 Fn
->addFnAttr(llvm::Attribute::SanitizeThread
);
793 if (SanOpts
.hasOneOf(SanitizerKind::Memory
| SanitizerKind::KernelMemory
))
794 Fn
->addFnAttr(llvm::Attribute::SanitizeMemory
);
796 if (SanOpts
.has(SanitizerKind::SafeStack
))
797 Fn
->addFnAttr(llvm::Attribute::SafeStack
);
798 if (SanOpts
.has(SanitizerKind::ShadowCallStack
))
799 Fn
->addFnAttr(llvm::Attribute::ShadowCallStack
);
801 // Apply fuzzing attribute to the function.
802 if (SanOpts
.hasOneOf(SanitizerKind::Fuzzer
| SanitizerKind::FuzzerNoLink
))
803 Fn
->addFnAttr(llvm::Attribute::OptForFuzzing
);
805 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
806 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
807 if (SanOpts
.has(SanitizerKind::Thread
)) {
808 if (const auto *OMD
= dyn_cast_or_null
<ObjCMethodDecl
>(D
)) {
809 IdentifierInfo
*II
= OMD
->getSelector().getIdentifierInfoForSlot(0);
810 if (OMD
->getMethodFamily() == OMF_dealloc
||
811 OMD
->getMethodFamily() == OMF_initialize
||
812 (OMD
->getSelector().isUnarySelector() && II
->isStr(".cxx_destruct"))) {
813 markAsIgnoreThreadCheckingAtRuntime(Fn
);
818 // Ignore unrelated casts in STL allocate() since the allocator must cast
819 // from void* to T* before object initialization completes. Don't match on the
820 // namespace because not all allocators are in std::
821 if (D
&& SanOpts
.has(SanitizerKind::CFIUnrelatedCast
)) {
822 if (matchesStlAllocatorFn(D
, getContext()))
823 SanOpts
.Mask
&= ~SanitizerKind::CFIUnrelatedCast
;
826 // Ignore null checks in coroutine functions since the coroutines passes
827 // are not aware of how to move the extra UBSan instructions across the split
828 // coroutine boundaries.
829 if (D
&& SanOpts
.has(SanitizerKind::Null
))
830 if (FD
&& FD
->getBody() &&
831 FD
->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass
)
832 SanOpts
.Mask
&= ~SanitizerKind::Null
;
834 // Apply xray attributes to the function (as a string, for now)
835 bool AlwaysXRayAttr
= false;
836 if (const auto *XRayAttr
= D
? D
->getAttr
<XRayInstrumentAttr
>() : nullptr) {
837 if (CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
838 XRayInstrKind::FunctionEntry
) ||
839 CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
840 XRayInstrKind::FunctionExit
)) {
841 if (XRayAttr
->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
842 Fn
->addFnAttr("function-instrument", "xray-always");
843 AlwaysXRayAttr
= true;
845 if (XRayAttr
->neverXRayInstrument())
846 Fn
->addFnAttr("function-instrument", "xray-never");
847 if (const auto *LogArgs
= D
->getAttr
<XRayLogArgsAttr
>())
848 if (ShouldXRayInstrumentFunction())
849 Fn
->addFnAttr("xray-log-args",
850 llvm::utostr(LogArgs
->getArgumentCount()));
853 if (ShouldXRayInstrumentFunction() && !CGM
.imbueXRayAttrs(Fn
, Loc
))
855 "xray-instruction-threshold",
856 llvm::itostr(CGM
.getCodeGenOpts().XRayInstructionThreshold
));
859 if (ShouldXRayInstrumentFunction()) {
860 if (CGM
.getCodeGenOpts().XRayIgnoreLoops
)
861 Fn
->addFnAttr("xray-ignore-loops");
863 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
864 XRayInstrKind::FunctionExit
))
865 Fn
->addFnAttr("xray-skip-exit");
867 if (!CGM
.getCodeGenOpts().XRayInstrumentationBundle
.has(
868 XRayInstrKind::FunctionEntry
))
869 Fn
->addFnAttr("xray-skip-entry");
871 auto FuncGroups
= CGM
.getCodeGenOpts().XRayTotalFunctionGroups
;
872 if (FuncGroups
> 1) {
873 auto FuncName
= llvm::ArrayRef
<uint8_t>(CurFn
->getName().bytes_begin(),
874 CurFn
->getName().bytes_end());
875 auto Group
= crc32(FuncName
) % FuncGroups
;
876 if (Group
!= CGM
.getCodeGenOpts().XRaySelectedFunctionGroup
&&
878 Fn
->addFnAttr("function-instrument", "xray-never");
882 if (CGM
.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone
) {
883 switch (CGM
.isFunctionBlockedFromProfileInstr(Fn
, Loc
)) {
884 case ProfileList::Skip
:
885 Fn
->addFnAttr(llvm::Attribute::SkipProfile
);
887 case ProfileList::Forbid
:
888 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
890 case ProfileList::Allow
:
895 unsigned Count
, Offset
;
896 if (const auto *Attr
=
897 D
? D
->getAttr
<PatchableFunctionEntryAttr
>() : nullptr) {
898 Count
= Attr
->getCount();
899 Offset
= Attr
->getOffset();
901 Count
= CGM
.getCodeGenOpts().PatchableFunctionEntryCount
;
902 Offset
= CGM
.getCodeGenOpts().PatchableFunctionEntryOffset
;
904 if (Count
&& Offset
<= Count
) {
905 Fn
->addFnAttr("patchable-function-entry", std::to_string(Count
- Offset
));
907 Fn
->addFnAttr("patchable-function-prefix", std::to_string(Offset
));
909 // Instruct that functions for COFF/CodeView targets should start with a
910 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
911 // backends as they don't need it -- instructions on these architectures are
912 // always atomically patchable at runtime.
913 if (CGM
.getCodeGenOpts().HotPatch
&&
914 getContext().getTargetInfo().getTriple().isX86() &&
915 getContext().getTargetInfo().getTriple().getEnvironment() !=
916 llvm::Triple::CODE16
)
917 Fn
->addFnAttr("patchable-function", "prologue-short-redirect");
919 // Add no-jump-tables value.
920 if (CGM
.getCodeGenOpts().NoUseJumpTables
)
921 Fn
->addFnAttr("no-jump-tables", "true");
923 // Add no-inline-line-tables value.
924 if (CGM
.getCodeGenOpts().NoInlineLineTables
)
925 Fn
->addFnAttr("no-inline-line-tables");
927 // Add profile-sample-accurate value.
928 if (CGM
.getCodeGenOpts().ProfileSampleAccurate
)
929 Fn
->addFnAttr("profile-sample-accurate");
931 if (!CGM
.getCodeGenOpts().SampleProfileFile
.empty())
932 Fn
->addFnAttr("use-sample-profile");
934 if (D
&& D
->hasAttr
<CFICanonicalJumpTableAttr
>())
935 Fn
->addFnAttr("cfi-canonical-jump-table");
937 if (D
&& D
->hasAttr
<NoProfileFunctionAttr
>())
938 Fn
->addFnAttr(llvm::Attribute::NoProfile
);
941 // Function attributes take precedence over command line flags.
942 if (auto *A
= D
->getAttr
<FunctionReturnThunksAttr
>()) {
943 switch (A
->getThunkType()) {
944 case FunctionReturnThunksAttr::Kind::Keep
:
946 case FunctionReturnThunksAttr::Kind::Extern
:
947 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
950 } else if (CGM
.getCodeGenOpts().FunctionReturnThunks
)
951 Fn
->addFnAttr(llvm::Attribute::FnRetThunkExtern
);
954 if (FD
&& (getLangOpts().OpenCL
||
955 (getLangOpts().HIP
&& getLangOpts().CUDAIsDevice
))) {
956 // Add metadata for a kernel function.
957 EmitKernelMetadata(FD
, Fn
);
960 // If we are checking function types, emit a function type signature as
962 if (FD
&& SanOpts
.has(SanitizerKind::Function
)) {
963 if (llvm::Constant
*PrologueSig
= getPrologueSignature(CGM
, FD
)) {
964 llvm::LLVMContext
&Ctx
= Fn
->getContext();
965 llvm::MDBuilder
MDB(Ctx
);
967 llvm::LLVMContext::MD_func_sanitize
,
968 MDB
.createRTTIPointerPrologue(
969 PrologueSig
, getUBSanFunctionTypeHash(FD
->getType())));
973 // If we're checking nullability, we need to know whether we can check the
974 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
975 if (SanOpts
.has(SanitizerKind::NullabilityReturn
)) {
976 auto Nullability
= FnRetTy
->getNullability();
977 if (Nullability
&& *Nullability
== NullabilityKind::NonNull
) {
978 if (!(SanOpts
.has(SanitizerKind::ReturnsNonnullAttribute
) &&
979 CurCodeDecl
&& CurCodeDecl
->getAttr
<ReturnsNonNullAttr
>()))
980 RetValNullabilityPrecondition
=
981 llvm::ConstantInt::getTrue(getLLVMContext());
985 // If we're in C++ mode and the function name is "main", it is guaranteed
986 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
987 // used within a program").
989 // OpenCL C 2.0 v2.2-11 s6.9.i:
990 // Recursion is not supported.
992 // SYCL v1.2.1 s3.10:
993 // kernels cannot include RTTI information, exception classes,
994 // recursive code, virtual functions or make use of C++ libraries that
995 // are not compiled for the device.
996 if (FD
&& ((getLangOpts().CPlusPlus
&& FD
->isMain()) ||
997 getLangOpts().OpenCL
|| getLangOpts().SYCLIsDevice
||
998 (getLangOpts().CUDA
&& FD
->hasAttr
<CUDAGlobalAttr
>())))
999 Fn
->addFnAttr(llvm::Attribute::NoRecurse
);
1001 llvm::RoundingMode RM
= getLangOpts().getDefaultRoundingMode();
1002 llvm::fp::ExceptionBehavior FPExceptionBehavior
=
1003 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1004 Builder
.setDefaultConstrainedRounding(RM
);
1005 Builder
.setDefaultConstrainedExcept(FPExceptionBehavior
);
1006 if ((FD
&& (FD
->UsesFPIntrin() || FD
->hasAttr
<StrictFPAttr
>())) ||
1007 (!FD
&& (FPExceptionBehavior
!= llvm::fp::ebIgnore
||
1008 RM
!= llvm::RoundingMode::NearestTiesToEven
))) {
1009 Builder
.setIsFPConstrained(true);
1010 Fn
->addFnAttr(llvm::Attribute::StrictFP
);
1013 // If a custom alignment is used, force realigning to this alignment on
1014 // any main function which certainly will need it.
1015 if (FD
&& ((FD
->isMain() || FD
->isMSVCRTEntryPoint()) &&
1016 CGM
.getCodeGenOpts().StackAlignment
))
1017 Fn
->addFnAttr("stackrealign");
1019 // "main" doesn't need to zero out call-used registers.
1020 if (FD
&& FD
->isMain())
1021 Fn
->removeFnAttr("zero-call-used-regs");
1023 llvm::BasicBlock
*EntryBB
= createBasicBlock("entry", CurFn
);
1025 // Create a marker to make it easy to insert allocas into the entryblock
1026 // later. Don't create this with the builder, because we don't want it
1028 llvm::Value
*Undef
= llvm::UndefValue::get(Int32Ty
);
1029 AllocaInsertPt
= new llvm::BitCastInst(Undef
, Int32Ty
, "allocapt", EntryBB
);
1031 ReturnBlock
= getJumpDestInCurrentScope("return");
1033 Builder
.SetInsertPoint(EntryBB
);
1035 // If we're checking the return value, allocate space for a pointer to a
1036 // precise source location of the checked return statement.
1037 if (requiresReturnValueCheck()) {
1038 ReturnLocation
= CreateDefaultAlignTempAlloca(Int8PtrTy
, "return.sloc.ptr");
1039 Builder
.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy
),
1043 // Emit subprogram debug descriptor.
1044 if (CGDebugInfo
*DI
= getDebugInfo()) {
1045 // Reconstruct the type from the argument list so that implicit parameters,
1046 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1048 DI
->emitFunctionStart(GD
, Loc
, StartLoc
,
1049 DI
->getFunctionType(FD
, RetTy
, Args
), CurFn
,
1053 if (ShouldInstrumentFunction()) {
1054 if (CGM
.getCodeGenOpts().InstrumentFunctions
)
1055 CurFn
->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1056 if (CGM
.getCodeGenOpts().InstrumentFunctionsAfterInlining
)
1057 CurFn
->addFnAttr("instrument-function-entry-inlined",
1058 "__cyg_profile_func_enter");
1059 if (CGM
.getCodeGenOpts().InstrumentFunctionEntryBare
)
1060 CurFn
->addFnAttr("instrument-function-entry-inlined",
1061 "__cyg_profile_func_enter_bare");
1064 // Since emitting the mcount call here impacts optimizations such as function
1065 // inlining, we just add an attribute to insert a mcount call in backend.
1066 // The attribute "counting-function" is set to mcount function name which is
1067 // architecture dependent.
1068 if (CGM
.getCodeGenOpts().InstrumentForProfiling
) {
1069 // Calls to fentry/mcount should not be generated if function has
1070 // the no_instrument_function attribute.
1071 if (!CurFuncDecl
|| !CurFuncDecl
->hasAttr
<NoInstrumentFunctionAttr
>()) {
1072 if (CGM
.getCodeGenOpts().CallFEntry
)
1073 Fn
->addFnAttr("fentry-call", "true");
1075 Fn
->addFnAttr("instrument-function-entry-inlined",
1076 getTarget().getMCountName());
1078 if (CGM
.getCodeGenOpts().MNopMCount
) {
1079 if (!CGM
.getCodeGenOpts().CallFEntry
)
1080 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1081 << "-mnop-mcount" << "-mfentry";
1082 Fn
->addFnAttr("mnop-mcount");
1085 if (CGM
.getCodeGenOpts().RecordMCount
) {
1086 if (!CGM
.getCodeGenOpts().CallFEntry
)
1087 CGM
.getDiags().Report(diag::err_opt_not_valid_without_opt
)
1088 << "-mrecord-mcount" << "-mfentry";
1089 Fn
->addFnAttr("mrecord-mcount");
1094 if (CGM
.getCodeGenOpts().PackedStack
) {
1095 if (getContext().getTargetInfo().getTriple().getArch() !=
1096 llvm::Triple::systemz
)
1097 CGM
.getDiags().Report(diag::err_opt_not_valid_on_target
)
1098 << "-mpacked-stack";
1099 Fn
->addFnAttr("packed-stack");
1102 if (CGM
.getCodeGenOpts().WarnStackSize
!= UINT_MAX
&&
1103 !CGM
.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than
, Loc
))
1104 Fn
->addFnAttr("warn-stack-size",
1105 std::to_string(CGM
.getCodeGenOpts().WarnStackSize
));
1107 if (RetTy
->isVoidType()) {
1108 // Void type; nothing to return.
1109 ReturnValue
= Address::invalid();
1111 // Count the implicit return.
1112 if (!endsWithReturn(D
))
1114 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::Indirect
) {
1115 // Indirect return; emit returned value directly into sret slot.
1116 // This reduces code size, and affects correctness in C++.
1117 auto AI
= CurFn
->arg_begin();
1118 if (CurFnInfo
->getReturnInfo().isSRetAfterThis())
1121 Address(&*AI
, ConvertType(RetTy
),
1122 CurFnInfo
->getReturnInfo().getIndirectAlign(), KnownNonNull
);
1123 if (!CurFnInfo
->getReturnInfo().getIndirectByVal()) {
1124 ReturnValuePointer
= CreateDefaultAlignTempAlloca(
1125 ReturnValue
.getPointer()->getType(), "result.ptr");
1126 Builder
.CreateStore(ReturnValue
.getPointer(), ReturnValuePointer
);
1128 } else if (CurFnInfo
->getReturnInfo().getKind() == ABIArgInfo::InAlloca
&&
1129 !hasScalarEvaluationKind(CurFnInfo
->getReturnType())) {
1130 // Load the sret pointer from the argument struct and return into that.
1131 unsigned Idx
= CurFnInfo
->getReturnInfo().getInAllocaFieldIndex();
1132 llvm::Function::arg_iterator EI
= CurFn
->arg_end();
1134 llvm::Value
*Addr
= Builder
.CreateStructGEP(
1135 CurFnInfo
->getArgStruct(), &*EI
, Idx
);
1137 cast
<llvm::GetElementPtrInst
>(Addr
)->getResultElementType();
1138 ReturnValuePointer
= Address(Addr
, Ty
, getPointerAlign());
1139 Addr
= Builder
.CreateAlignedLoad(Ty
, Addr
, getPointerAlign(), "agg.result");
1140 ReturnValue
= Address(Addr
, ConvertType(RetTy
),
1141 CGM
.getNaturalTypeAlignment(RetTy
), KnownNonNull
);
1143 ReturnValue
= CreateIRTemp(RetTy
, "retval");
1145 // Tell the epilog emitter to autorelease the result. We do this
1146 // now so that various specialized functions can suppress it
1147 // during their IR-generation.
1148 if (getLangOpts().ObjCAutoRefCount
&&
1149 !CurFnInfo
->isReturnsRetained() &&
1150 RetTy
->isObjCRetainableType())
1151 AutoreleaseResult
= true;
1154 EmitStartEHSpec(CurCodeDecl
);
1156 PrologueCleanupDepth
= EHStack
.stable_begin();
1158 // Emit OpenMP specific initialization of the device functions.
1159 if (getLangOpts().OpenMP
&& CurCodeDecl
)
1160 CGM
.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl
);
1162 // Handle emitting HLSL entry functions.
1163 if (D
&& D
->hasAttr
<HLSLShaderAttr
>())
1164 CGM
.getHLSLRuntime().emitEntryFunction(FD
, Fn
);
1166 EmitFunctionProlog(*CurFnInfo
, CurFn
, Args
);
1168 if (const CXXMethodDecl
*MD
= dyn_cast_if_present
<CXXMethodDecl
>(D
);
1169 MD
&& !MD
->isStatic()) {
1171 MD
->getParent()->isLambda() && MD
->getOverloadedOperator() == OO_Call
;
1172 if (MD
->isImplicitObjectMemberFunction())
1173 CGM
.getCXXABI().EmitInstanceFunctionProlog(*this);
1175 // We're in a lambda; figure out the captures.
1176 MD
->getParent()->getCaptureFields(LambdaCaptureFields
,
1177 LambdaThisCaptureField
);
1178 if (LambdaThisCaptureField
) {
1179 // If the lambda captures the object referred to by '*this' - either by
1180 // value or by reference, make sure CXXThisValue points to the correct
1183 // Get the lvalue for the field (which is a copy of the enclosing object
1184 // or contains the address of the enclosing object).
1185 LValue ThisFieldLValue
= EmitLValueForLambdaField(LambdaThisCaptureField
);
1186 if (!LambdaThisCaptureField
->getType()->isPointerType()) {
1187 // If the enclosing object was captured by value, just use its address.
1188 CXXThisValue
= ThisFieldLValue
.getAddress(*this).getPointer();
1190 // Load the lvalue pointed to by the field, since '*this' was captured
1193 EmitLoadOfLValue(ThisFieldLValue
, SourceLocation()).getScalarVal();
1196 for (auto *FD
: MD
->getParent()->fields()) {
1197 if (FD
->hasCapturedVLAType()) {
1198 auto *ExprArg
= EmitLoadOfLValue(EmitLValueForLambdaField(FD
),
1199 SourceLocation()).getScalarVal();
1200 auto VAT
= FD
->getCapturedVLAType();
1201 VLASizeMap
[VAT
->getSizeExpr()] = ExprArg
;
1204 } else if (MD
->isImplicitObjectMemberFunction()) {
1205 // Not in a lambda; just use 'this' from the method.
1206 // FIXME: Should we generate a new load for each use of 'this'? The
1207 // fast register allocator would be happier...
1208 CXXThisValue
= CXXABIThisValue
;
1211 // Check the 'this' pointer once per function, if it's available.
1212 if (CXXABIThisValue
) {
1213 SanitizerSet SkippedChecks
;
1214 SkippedChecks
.set(SanitizerKind::ObjectSize
, true);
1215 QualType ThisTy
= MD
->getThisType();
1217 // If this is the call operator of a lambda with no captures, it
1218 // may have a static invoker function, which may call this operator with
1219 // a null 'this' pointer.
1220 if (isLambdaCallOperator(MD
) && MD
->getParent()->isCapturelessLambda())
1221 SkippedChecks
.set(SanitizerKind::Null
, true);
1224 isa
<CXXConstructorDecl
>(MD
) ? TCK_ConstructorCall
: TCK_MemberCall
,
1225 Loc
, CXXABIThisValue
, ThisTy
, CXXABIThisAlignment
, SkippedChecks
);
1229 // If any of the arguments have a variably modified type, make sure to
1230 // emit the type size, but only if the function is not naked. Naked functions
1231 // have no prolog to run this evaluation.
1232 if (!FD
|| !FD
->hasAttr
<NakedAttr
>()) {
1233 for (const VarDecl
*VD
: Args
) {
1234 // Dig out the type as written from ParmVarDecls; it's unclear whether
1235 // the standard (C99 6.9.1p10) requires this, but we're following the
1236 // precedent set by gcc.
1238 if (const ParmVarDecl
*PVD
= dyn_cast
<ParmVarDecl
>(VD
))
1239 Ty
= PVD
->getOriginalType();
1243 if (Ty
->isVariablyModifiedType())
1244 EmitVariablyModifiedType(Ty
);
1247 // Emit a location at the end of the prologue.
1248 if (CGDebugInfo
*DI
= getDebugInfo())
1249 DI
->EmitLocation(Builder
, StartLoc
);
1250 // TODO: Do we need to handle this in two places like we do with
1251 // target-features/target-cpu?
1253 if (const auto *VecWidth
= CurFuncDecl
->getAttr
<MinVectorWidthAttr
>())
1254 LargestVectorWidth
= VecWidth
->getVectorWidth();
1257 void CodeGenFunction::EmitFunctionBody(const Stmt
*Body
) {
1258 incrementProfileCounter(Body
);
1259 maybeCreateMCDCCondBitmap();
1260 if (const CompoundStmt
*S
= dyn_cast
<CompoundStmt
>(Body
))
1261 EmitCompoundStmtWithoutScope(*S
);
1266 /// When instrumenting to collect profile data, the counts for some blocks
1267 /// such as switch cases need to not include the fall-through counts, so
1268 /// emit a branch around the instrumentation code. When not instrumenting,
1269 /// this just calls EmitBlock().
1270 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock
*BB
,
1272 llvm::BasicBlock
*SkipCountBB
= nullptr;
1273 if (HaveInsertPoint() && CGM
.getCodeGenOpts().hasProfileClangInstr()) {
1274 // When instrumenting for profiling, the fallthrough to certain
1275 // statements needs to skip over the instrumentation code so that we
1276 // get an accurate count.
1277 SkipCountBB
= createBasicBlock("skipcount");
1278 EmitBranch(SkipCountBB
);
1281 uint64_t CurrentCount
= getCurrentProfileCount();
1282 incrementProfileCounter(S
);
1283 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount
);
1285 EmitBlock(SkipCountBB
);
1288 /// Tries to mark the given function nounwind based on the
1289 /// non-existence of any throwing calls within it. We believe this is
1290 /// lightweight enough to do at -O0.
1291 static void TryMarkNoThrow(llvm::Function
*F
) {
1292 // LLVM treats 'nounwind' on a function as part of the type, so we
1293 // can't do this on functions that can be overwritten.
1294 if (F
->isInterposable()) return;
1296 for (llvm::BasicBlock
&BB
: *F
)
1297 for (llvm::Instruction
&I
: BB
)
1301 F
->setDoesNotThrow();
1304 QualType
CodeGenFunction::BuildFunctionArgList(GlobalDecl GD
,
1305 FunctionArgList
&Args
) {
1306 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1307 QualType ResTy
= FD
->getReturnType();
1309 const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
1310 if (MD
&& MD
->isImplicitObjectMemberFunction()) {
1311 if (CGM
.getCXXABI().HasThisReturn(GD
))
1312 ResTy
= MD
->getThisType();
1313 else if (CGM
.getCXXABI().hasMostDerivedReturn(GD
))
1314 ResTy
= CGM
.getContext().VoidPtrTy
;
1315 CGM
.getCXXABI().buildThisParam(*this, Args
);
1318 // The base version of an inheriting constructor whose constructed base is a
1319 // virtual base is not passed any arguments (because it doesn't actually call
1320 // the inherited constructor).
1321 bool PassedParams
= true;
1322 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(FD
))
1323 if (auto Inherited
= CD
->getInheritedConstructor())
1325 getTypes().inheritingCtorHasParams(Inherited
, GD
.getCtorType());
1328 for (auto *Param
: FD
->parameters()) {
1329 Args
.push_back(Param
);
1330 if (!Param
->hasAttr
<PassObjectSizeAttr
>())
1333 auto *Implicit
= ImplicitParamDecl::Create(
1334 getContext(), Param
->getDeclContext(), Param
->getLocation(),
1335 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other
);
1336 SizeArguments
[Param
] = Implicit
;
1337 Args
.push_back(Implicit
);
1341 if (MD
&& (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)))
1342 CGM
.getCXXABI().addImplicitStructorParams(*this, ResTy
, Args
);
1347 void CodeGenFunction::GenerateCode(GlobalDecl GD
, llvm::Function
*Fn
,
1348 const CGFunctionInfo
&FnInfo
) {
1349 assert(Fn
&& "generating code for null Function");
1350 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
1353 FunctionArgList Args
;
1354 QualType ResTy
= BuildFunctionArgList(GD
, Args
);
1356 if (FD
->isInlineBuiltinDeclaration()) {
1357 // When generating code for a builtin with an inline declaration, use a
1358 // mangled name to hold the actual body, while keeping an external
1359 // definition in case the function pointer is referenced somewhere.
1360 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1361 llvm::Module
*M
= Fn
->getParent();
1362 llvm::Function
*Clone
= M
->getFunction(FDInlineName
);
1364 Clone
= llvm::Function::Create(Fn
->getFunctionType(),
1365 llvm::GlobalValue::InternalLinkage
,
1366 Fn
->getAddressSpace(), FDInlineName
, M
);
1367 Clone
->addFnAttr(llvm::Attribute::AlwaysInline
);
1369 Fn
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
1372 // Detect the unusual situation where an inline version is shadowed by a
1373 // non-inline version. In that case we should pick the external one
1374 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1375 // to detect that situation before we reach codegen, so do some late
1377 for (const FunctionDecl
*PD
= FD
->getPreviousDecl(); PD
;
1378 PD
= PD
->getPreviousDecl()) {
1379 if (LLVM_UNLIKELY(PD
->isInlineBuiltinDeclaration())) {
1380 std::string FDInlineName
= (Fn
->getName() + ".inline").str();
1381 llvm::Module
*M
= Fn
->getParent();
1382 if (llvm::Function
*Clone
= M
->getFunction(FDInlineName
)) {
1383 Clone
->replaceAllUsesWith(Fn
);
1384 Clone
->eraseFromParent();
1391 // Check if we should generate debug info for this function.
1392 if (FD
->hasAttr
<NoDebugAttr
>()) {
1393 // Clear non-distinct debug info that was possibly attached to the function
1394 // due to an earlier declaration without the nodebug attribute
1395 Fn
->setSubprogram(nullptr);
1396 // Disable debug info indefinitely for this function
1397 DebugInfo
= nullptr;
1400 // The function might not have a body if we're generating thunks for a
1401 // function declaration.
1402 SourceRange BodyRange
;
1403 if (Stmt
*Body
= FD
->getBody())
1404 BodyRange
= Body
->getSourceRange();
1406 BodyRange
= FD
->getLocation();
1407 CurEHLocation
= BodyRange
.getEnd();
1409 // Use the location of the start of the function to determine where
1410 // the function definition is located. By default use the location
1411 // of the declaration as the location for the subprogram. A function
1412 // may lack a declaration in the source code if it is created by code
1413 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1414 SourceLocation Loc
= FD
->getLocation();
1416 // If this is a function specialization then use the pattern body
1417 // as the location for the function.
1418 if (const FunctionDecl
*SpecDecl
= FD
->getTemplateInstantiationPattern())
1419 if (SpecDecl
->hasBody(SpecDecl
))
1420 Loc
= SpecDecl
->getLocation();
1422 Stmt
*Body
= FD
->getBody();
1425 // Coroutines always emit lifetime markers.
1426 if (isa
<CoroutineBodyStmt
>(Body
))
1427 ShouldEmitLifetimeMarkers
= true;
1429 // Initialize helper which will detect jumps which can cause invalid
1430 // lifetime markers.
1431 if (ShouldEmitLifetimeMarkers
)
1432 Bypasses
.Init(Body
);
1435 // Emit the standard function prologue.
1436 StartFunction(GD
, ResTy
, Fn
, FnInfo
, Args
, Loc
, BodyRange
.getBegin());
1438 // Save parameters for coroutine function.
1439 if (Body
&& isa_and_nonnull
<CoroutineBodyStmt
>(Body
))
1440 llvm::append_range(FnArgs
, FD
->parameters());
1442 // Ensure that the function adheres to the forward progress guarantee, which
1443 // is required by certain optimizations.
1444 if (checkIfFunctionMustProgress())
1445 CurFn
->addFnAttr(llvm::Attribute::MustProgress
);
1447 // Generate the body of the function.
1448 PGO
.assignRegionCounters(GD
, CurFn
);
1449 if (isa
<CXXDestructorDecl
>(FD
))
1450 EmitDestructorBody(Args
);
1451 else if (isa
<CXXConstructorDecl
>(FD
))
1452 EmitConstructorBody(Args
);
1453 else if (getLangOpts().CUDA
&&
1454 !getLangOpts().CUDAIsDevice
&&
1455 FD
->hasAttr
<CUDAGlobalAttr
>())
1456 CGM
.getCUDARuntime().emitDeviceStub(*this, Args
);
1457 else if (isa
<CXXMethodDecl
>(FD
) &&
1458 cast
<CXXMethodDecl
>(FD
)->isLambdaStaticInvoker()) {
1459 // The lambda static invoker function is special, because it forwards or
1460 // clones the body of the function call operator (but is actually static).
1461 EmitLambdaStaticInvokeBody(cast
<CXXMethodDecl
>(FD
));
1462 } else if (isa
<CXXMethodDecl
>(FD
) &&
1463 isLambdaCallOperator(cast
<CXXMethodDecl
>(FD
)) &&
1464 !FnInfo
.isDelegateCall() &&
1465 cast
<CXXMethodDecl
>(FD
)->getParent()->getLambdaStaticInvoker() &&
1466 hasInAllocaArg(cast
<CXXMethodDecl
>(FD
))) {
1467 // If emitting a lambda with static invoker on X86 Windows, change
1468 // the call operator body.
1469 // Make sure that this is a call operator with an inalloca arg and check
1470 // for delegate call to make sure this is the original call op and not the
1471 // new forwarding function for the static invoker.
1472 EmitLambdaInAllocaCallOpBody(cast
<CXXMethodDecl
>(FD
));
1473 } else if (FD
->isDefaulted() && isa
<CXXMethodDecl
>(FD
) &&
1474 (cast
<CXXMethodDecl
>(FD
)->isCopyAssignmentOperator() ||
1475 cast
<CXXMethodDecl
>(FD
)->isMoveAssignmentOperator())) {
1476 // Implicit copy-assignment gets the same special treatment as implicit
1477 // copy-constructors.
1478 emitImplicitAssignmentOperatorBody(Args
);
1480 EmitFunctionBody(Body
);
1482 llvm_unreachable("no definition for emitted function");
1484 // C++11 [stmt.return]p2:
1485 // Flowing off the end of a function [...] results in undefined behavior in
1486 // a value-returning function.
1488 // If the '}' that terminates a function is reached, and the value of the
1489 // function call is used by the caller, the behavior is undefined.
1490 if (getLangOpts().CPlusPlus
&& !FD
->hasImplicitReturnZero() && !SawAsmBlock
&&
1491 !FD
->getReturnType()->isVoidType() && Builder
.GetInsertBlock()) {
1492 bool ShouldEmitUnreachable
=
1493 CGM
.getCodeGenOpts().StrictReturn
||
1494 !CGM
.MayDropFunctionReturn(FD
->getASTContext(), FD
->getReturnType());
1495 if (SanOpts
.has(SanitizerKind::Return
)) {
1496 SanitizerScope
SanScope(this);
1497 llvm::Value
*IsFalse
= Builder
.getFalse();
1498 EmitCheck(std::make_pair(IsFalse
, SanitizerKind::Return
),
1499 SanitizerHandler::MissingReturn
,
1500 EmitCheckSourceLocation(FD
->getLocation()), std::nullopt
);
1501 } else if (ShouldEmitUnreachable
) {
1502 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
1503 EmitTrapCall(llvm::Intrinsic::trap
);
1505 if (SanOpts
.has(SanitizerKind::Return
) || ShouldEmitUnreachable
) {
1506 Builder
.CreateUnreachable();
1507 Builder
.ClearInsertionPoint();
1511 // Emit the standard function epilogue.
1512 FinishFunction(BodyRange
.getEnd());
1514 // If we haven't marked the function nothrow through other means, do
1515 // a quick pass now to see if we can.
1516 if (!CurFn
->doesNotThrow())
1517 TryMarkNoThrow(CurFn
);
1520 /// ContainsLabel - Return true if the statement contains a label in it. If
1521 /// this statement is not executed normally, it not containing a label means
1522 /// that we can just remove the code.
1523 bool CodeGenFunction::ContainsLabel(const Stmt
*S
, bool IgnoreCaseStmts
) {
1524 // Null statement, not a label!
1525 if (!S
) return false;
1527 // If this is a label, we have to emit the code, consider something like:
1528 // if (0) { ... foo: bar(); } goto foo;
1530 // TODO: If anyone cared, we could track __label__'s, since we know that you
1531 // can't jump to one from outside their declared region.
1532 if (isa
<LabelStmt
>(S
))
1535 // If this is a case/default statement, and we haven't seen a switch, we have
1536 // to emit the code.
1537 if (isa
<SwitchCase
>(S
) && !IgnoreCaseStmts
)
1540 // If this is a switch statement, we want to ignore cases below it.
1541 if (isa
<SwitchStmt
>(S
))
1542 IgnoreCaseStmts
= true;
1544 // Scan subexpressions for verboten labels.
1545 for (const Stmt
*SubStmt
: S
->children())
1546 if (ContainsLabel(SubStmt
, IgnoreCaseStmts
))
1552 /// containsBreak - Return true if the statement contains a break out of it.
1553 /// If the statement (recursively) contains a switch or loop with a break
1554 /// inside of it, this is fine.
1555 bool CodeGenFunction::containsBreak(const Stmt
*S
) {
1556 // Null statement, not a label!
1557 if (!S
) return false;
1559 // If this is a switch or loop that defines its own break scope, then we can
1560 // include it and anything inside of it.
1561 if (isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) || isa
<DoStmt
>(S
) ||
1565 if (isa
<BreakStmt
>(S
))
1568 // Scan subexpressions for verboten breaks.
1569 for (const Stmt
*SubStmt
: S
->children())
1570 if (containsBreak(SubStmt
))
1576 bool CodeGenFunction::mightAddDeclToScope(const Stmt
*S
) {
1577 if (!S
) return false;
1579 // Some statement kinds add a scope and thus never add a decl to the current
1580 // scope. Note, this list is longer than the list of statements that might
1581 // have an unscoped decl nested within them, but this way is conservatively
1582 // correct even if more statement kinds are added.
1583 if (isa
<IfStmt
>(S
) || isa
<SwitchStmt
>(S
) || isa
<WhileStmt
>(S
) ||
1584 isa
<DoStmt
>(S
) || isa
<ForStmt
>(S
) || isa
<CompoundStmt
>(S
) ||
1585 isa
<CXXForRangeStmt
>(S
) || isa
<CXXTryStmt
>(S
) ||
1586 isa
<ObjCForCollectionStmt
>(S
) || isa
<ObjCAtTryStmt
>(S
))
1589 if (isa
<DeclStmt
>(S
))
1592 for (const Stmt
*SubStmt
: S
->children())
1593 if (mightAddDeclToScope(SubStmt
))
1599 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1600 /// to a constant, or if it does but contains a label, return false. If it
1601 /// constant folds return true and set the boolean result in Result.
1602 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1605 // If MC/DC is enabled, disable folding so that we can instrument all
1606 // conditions to yield complete test vectors. We still keep track of
1607 // folded conditions during region mapping and visualization.
1608 if (!AllowLabels
&& CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1609 CGM
.getCodeGenOpts().MCDCCoverage
)
1612 llvm::APSInt ResultInt
;
1613 if (!ConstantFoldsToSimpleInteger(Cond
, ResultInt
, AllowLabels
))
1616 ResultBool
= ResultInt
.getBoolValue();
1620 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1621 /// to a constant, or if it does but contains a label, return false. If it
1622 /// constant folds return true and set the folded value.
1623 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr
*Cond
,
1624 llvm::APSInt
&ResultInt
,
1626 // FIXME: Rename and handle conversion of other evaluatable things
1628 Expr::EvalResult Result
;
1629 if (!Cond
->EvaluateAsInt(Result
, getContext()))
1630 return false; // Not foldable, not integer or not fully evaluatable.
1632 llvm::APSInt Int
= Result
.Val
.getInt();
1633 if (!AllowLabels
&& CodeGenFunction::ContainsLabel(Cond
))
1634 return false; // Contains a label.
1640 /// Strip parentheses and simplistic logical-NOT operators.
1641 const Expr
*CodeGenFunction::stripCond(const Expr
*C
) {
1642 while (const UnaryOperator
*Op
= dyn_cast
<UnaryOperator
>(C
->IgnoreParens())) {
1643 if (Op
->getOpcode() != UO_LNot
)
1645 C
= Op
->getSubExpr();
1647 return C
->IgnoreParens();
1650 /// Determine whether the given condition is an instrumentable condition
1651 /// (i.e. no "&&" or "||").
1652 bool CodeGenFunction::isInstrumentedCondition(const Expr
*C
) {
1653 const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(stripCond(C
));
1654 return (!BOp
|| !BOp
->isLogicalOp());
1657 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1658 /// increments a profile counter based on the semantics of the given logical
1659 /// operator opcode. This is used to instrument branch condition coverage for
1660 /// logical operators.
1661 void CodeGenFunction::EmitBranchToCounterBlock(
1662 const Expr
*Cond
, BinaryOperator::Opcode LOp
, llvm::BasicBlock
*TrueBlock
,
1663 llvm::BasicBlock
*FalseBlock
, uint64_t TrueCount
/* = 0 */,
1664 Stmt::Likelihood LH
/* =None */, const Expr
*CntrIdx
/* = nullptr */) {
1665 // If not instrumenting, just emit a branch.
1666 bool InstrumentRegions
= CGM
.getCodeGenOpts().hasProfileClangInstr();
1667 if (!InstrumentRegions
|| !isInstrumentedCondition(Cond
))
1668 return EmitBranchOnBoolExpr(Cond
, TrueBlock
, FalseBlock
, TrueCount
, LH
);
1670 llvm::BasicBlock
*ThenBlock
= nullptr;
1671 llvm::BasicBlock
*ElseBlock
= nullptr;
1672 llvm::BasicBlock
*NextBlock
= nullptr;
1674 // Create the block we'll use to increment the appropriate counter.
1675 llvm::BasicBlock
*CounterIncrBlock
= createBasicBlock("lop.rhscnt");
1677 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1678 // means we need to evaluate the condition and increment the counter on TRUE:
1681 // goto CounterIncrBlock;
1685 // CounterIncrBlock:
1689 if (LOp
== BO_LAnd
) {
1690 ThenBlock
= CounterIncrBlock
;
1691 ElseBlock
= FalseBlock
;
1692 NextBlock
= TrueBlock
;
1695 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1696 // we need to evaluate the condition and increment the counter on FALSE:
1701 // goto CounterIncrBlock;
1703 // CounterIncrBlock:
1707 else if (LOp
== BO_LOr
) {
1708 ThenBlock
= TrueBlock
;
1709 ElseBlock
= CounterIncrBlock
;
1710 NextBlock
= FalseBlock
;
1712 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1715 // Emit Branch based on condition.
1716 EmitBranchOnBoolExpr(Cond
, ThenBlock
, ElseBlock
, TrueCount
, LH
);
1718 // Emit the block containing the counter increment(s).
1719 EmitBlock(CounterIncrBlock
);
1721 // Increment corresponding counter; if index not provided, use Cond as index.
1722 incrementProfileCounter(CntrIdx
? CntrIdx
: Cond
);
1724 // Go to the next block.
1725 EmitBranch(NextBlock
);
1728 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1729 /// statement) to the specified blocks. Based on the condition, this might try
1730 /// to simplify the codegen of the conditional based on the branch.
1731 /// \param LH The value of the likelihood attribute on the True branch.
1732 /// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1733 /// ConditionalOperator (ternary) through a recursive call for the operator's
1734 /// LHS and RHS nodes.
1735 void CodeGenFunction::EmitBranchOnBoolExpr(
1736 const Expr
*Cond
, llvm::BasicBlock
*TrueBlock
, llvm::BasicBlock
*FalseBlock
,
1737 uint64_t TrueCount
, Stmt::Likelihood LH
, const Expr
*ConditionalOp
) {
1738 Cond
= Cond
->IgnoreParens();
1740 if (const BinaryOperator
*CondBOp
= dyn_cast
<BinaryOperator
>(Cond
)) {
1741 // Handle X && Y in a condition.
1742 if (CondBOp
->getOpcode() == BO_LAnd
) {
1743 MCDCLogOpStack
.push_back(CondBOp
);
1745 // If we have "1 && X", simplify the code. "0 && X" would have constant
1746 // folded if the case was simple enough.
1747 bool ConstantBool
= false;
1748 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1750 // br(1 && X) -> br(X).
1751 incrementProfileCounter(CondBOp
);
1752 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1753 FalseBlock
, TrueCount
, LH
);
1754 MCDCLogOpStack
.pop_back();
1758 // If we have "X && 1", simplify the code to use an uncond branch.
1759 // "X && 0" would have been constant folded to 0.
1760 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1762 // br(X && 1) -> br(X).
1763 EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LAnd
, TrueBlock
,
1764 FalseBlock
, TrueCount
, LH
, CondBOp
);
1765 MCDCLogOpStack
.pop_back();
1769 // Emit the LHS as a conditional. If the LHS conditional is false, we
1770 // want to jump to the FalseBlock.
1771 llvm::BasicBlock
*LHSTrue
= createBasicBlock("land.lhs.true");
1772 // The counter tells us how often we evaluate RHS, and all of TrueCount
1773 // can be propagated to that branch.
1774 uint64_t RHSCount
= getProfileCount(CondBOp
->getRHS());
1776 ConditionalEvaluation
eval(*this);
1778 ApplyDebugLocation
DL(*this, Cond
);
1779 // Propagate the likelihood attribute like __builtin_expect
1780 // __builtin_expect(X && Y, 1) -> X and Y are likely
1781 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1782 EmitBranchOnBoolExpr(CondBOp
->getLHS(), LHSTrue
, FalseBlock
, RHSCount
,
1783 LH
== Stmt::LH_Unlikely
? Stmt::LH_None
: LH
);
1787 incrementProfileCounter(CondBOp
);
1788 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1790 // Any temporaries created here are conditional.
1792 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LAnd
, TrueBlock
,
1793 FalseBlock
, TrueCount
, LH
);
1795 MCDCLogOpStack
.pop_back();
1799 if (CondBOp
->getOpcode() == BO_LOr
) {
1800 MCDCLogOpStack
.push_back(CondBOp
);
1802 // If we have "0 || X", simplify the code. "1 || X" would have constant
1803 // folded if the case was simple enough.
1804 bool ConstantBool
= false;
1805 if (ConstantFoldsToSimpleInteger(CondBOp
->getLHS(), ConstantBool
) &&
1807 // br(0 || X) -> br(X).
1808 incrementProfileCounter(CondBOp
);
1809 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
,
1810 FalseBlock
, TrueCount
, LH
);
1811 MCDCLogOpStack
.pop_back();
1815 // If we have "X || 0", simplify the code to use an uncond branch.
1816 // "X || 1" would have been constant folded to 1.
1817 if (ConstantFoldsToSimpleInteger(CondBOp
->getRHS(), ConstantBool
) &&
1819 // br(X || 0) -> br(X).
1820 EmitBranchToCounterBlock(CondBOp
->getLHS(), BO_LOr
, TrueBlock
,
1821 FalseBlock
, TrueCount
, LH
, CondBOp
);
1822 MCDCLogOpStack
.pop_back();
1825 // Emit the LHS as a conditional. If the LHS conditional is true, we
1826 // want to jump to the TrueBlock.
1827 llvm::BasicBlock
*LHSFalse
= createBasicBlock("lor.lhs.false");
1828 // We have the count for entry to the RHS and for the whole expression
1829 // being true, so we can divy up True count between the short circuit and
1832 getCurrentProfileCount() - getProfileCount(CondBOp
->getRHS());
1833 uint64_t RHSCount
= TrueCount
- LHSCount
;
1835 ConditionalEvaluation
eval(*this);
1837 // Propagate the likelihood attribute like __builtin_expect
1838 // __builtin_expect(X || Y, 1) -> only Y is likely
1839 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1840 ApplyDebugLocation
DL(*this, Cond
);
1841 EmitBranchOnBoolExpr(CondBOp
->getLHS(), TrueBlock
, LHSFalse
, LHSCount
,
1842 LH
== Stmt::LH_Likely
? Stmt::LH_None
: LH
);
1843 EmitBlock(LHSFalse
);
1846 incrementProfileCounter(CondBOp
);
1847 setCurrentProfileCount(getProfileCount(CondBOp
->getRHS()));
1849 // Any temporaries created here are conditional.
1851 EmitBranchToCounterBlock(CondBOp
->getRHS(), BO_LOr
, TrueBlock
, FalseBlock
,
1855 MCDCLogOpStack
.pop_back();
1860 if (const UnaryOperator
*CondUOp
= dyn_cast
<UnaryOperator
>(Cond
)) {
1861 // br(!x, t, f) -> br(x, f, t)
1862 // Avoid doing this optimization when instrumenting a condition for MC/DC.
1863 // LNot is taken as part of the condition for simplicity, and changing its
1864 // sense negatively impacts test vector tracking.
1865 bool MCDCCondition
= CGM
.getCodeGenOpts().hasProfileClangInstr() &&
1866 CGM
.getCodeGenOpts().MCDCCoverage
&&
1867 isInstrumentedCondition(Cond
);
1868 if (CondUOp
->getOpcode() == UO_LNot
&& !MCDCCondition
) {
1869 // Negate the count.
1870 uint64_t FalseCount
= getCurrentProfileCount() - TrueCount
;
1871 // The values of the enum are chosen to make this negation possible.
1872 LH
= static_cast<Stmt::Likelihood
>(-LH
);
1873 // Negate the condition and swap the destination blocks.
1874 return EmitBranchOnBoolExpr(CondUOp
->getSubExpr(), FalseBlock
, TrueBlock
,
1879 if (const ConditionalOperator
*CondOp
= dyn_cast
<ConditionalOperator
>(Cond
)) {
1880 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1881 llvm::BasicBlock
*LHSBlock
= createBasicBlock("cond.true");
1882 llvm::BasicBlock
*RHSBlock
= createBasicBlock("cond.false");
1884 // The ConditionalOperator itself has no likelihood information for its
1885 // true and false branches. This matches the behavior of __builtin_expect.
1886 ConditionalEvaluation
cond(*this);
1887 EmitBranchOnBoolExpr(CondOp
->getCond(), LHSBlock
, RHSBlock
,
1888 getProfileCount(CondOp
), Stmt::LH_None
);
1890 // When computing PGO branch weights, we only know the overall count for
1891 // the true block. This code is essentially doing tail duplication of the
1892 // naive code-gen, introducing new edges for which counts are not
1893 // available. Divide the counts proportionally between the LHS and RHS of
1894 // the conditional operator.
1895 uint64_t LHSScaledTrueCount
= 0;
1898 getProfileCount(CondOp
) / (double)getCurrentProfileCount();
1899 LHSScaledTrueCount
= TrueCount
* LHSRatio
;
1903 EmitBlock(LHSBlock
);
1904 incrementProfileCounter(CondOp
);
1906 ApplyDebugLocation
DL(*this, Cond
);
1907 EmitBranchOnBoolExpr(CondOp
->getLHS(), TrueBlock
, FalseBlock
,
1908 LHSScaledTrueCount
, LH
, CondOp
);
1913 EmitBlock(RHSBlock
);
1914 EmitBranchOnBoolExpr(CondOp
->getRHS(), TrueBlock
, FalseBlock
,
1915 TrueCount
- LHSScaledTrueCount
, LH
, CondOp
);
1921 if (const CXXThrowExpr
*Throw
= dyn_cast
<CXXThrowExpr
>(Cond
)) {
1922 // Conditional operator handling can give us a throw expression as a
1923 // condition for a case like:
1924 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1926 // br(c, throw x, br(y, t, f))
1927 EmitCXXThrowExpr(Throw
, /*KeepInsertionPoint*/false);
1931 // Emit the code with the fully general case.
1934 ApplyDebugLocation
DL(*this, Cond
);
1935 CondV
= EvaluateExprAsBool(Cond
);
1938 // If not at the top of the logical operator nest, update MCDC temp with the
1939 // boolean result of the evaluated condition.
1940 if (!MCDCLogOpStack
.empty()) {
1941 const Expr
*MCDCBaseExpr
= Cond
;
1942 // When a nested ConditionalOperator (ternary) is encountered in a boolean
1943 // expression, MC/DC tracks the result of the ternary, and this is tied to
1944 // the ConditionalOperator expression and not the ternary's LHS or RHS. If
1945 // this is the case, the ConditionalOperator expression is passed through
1946 // the ConditionalOp parameter and then used as the MCDC base expression.
1948 MCDCBaseExpr
= ConditionalOp
;
1950 maybeUpdateMCDCCondBitmap(MCDCBaseExpr
, CondV
);
1953 llvm::MDNode
*Weights
= nullptr;
1954 llvm::MDNode
*Unpredictable
= nullptr;
1956 // If the branch has a condition wrapped by __builtin_unpredictable,
1957 // create metadata that specifies that the branch is unpredictable.
1958 // Don't bother if not optimizing because that metadata would not be used.
1959 auto *Call
= dyn_cast
<CallExpr
>(Cond
->IgnoreImpCasts());
1960 if (Call
&& CGM
.getCodeGenOpts().OptimizationLevel
!= 0) {
1961 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(Call
->getCalleeDecl());
1962 if (FD
&& FD
->getBuiltinID() == Builtin::BI__builtin_unpredictable
) {
1963 llvm::MDBuilder
MDHelper(getLLVMContext());
1964 Unpredictable
= MDHelper
.createUnpredictable();
1968 // If there is a Likelihood knowledge for the cond, lower it.
1969 // Note that if not optimizing this won't emit anything.
1970 llvm::Value
*NewCondV
= emitCondLikelihoodViaExpectIntrinsic(CondV
, LH
);
1971 if (CondV
!= NewCondV
)
1974 // Otherwise, lower profile counts. Note that we do this even at -O0.
1975 uint64_t CurrentCount
= std::max(getCurrentProfileCount(), TrueCount
);
1976 Weights
= createProfileWeights(TrueCount
, CurrentCount
- TrueCount
);
1979 Builder
.CreateCondBr(CondV
, TrueBlock
, FalseBlock
, Weights
, Unpredictable
);
1982 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1983 /// specified stmt yet.
1984 void CodeGenFunction::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
1985 CGM
.ErrorUnsupported(S
, Type
);
1988 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1989 /// variable-length array whose elements have a non-zero bit-pattern.
1991 /// \param baseType the inner-most element type of the array
1992 /// \param src - a char* pointing to the bit-pattern for a single
1993 /// base element of the array
1994 /// \param sizeInChars - the total size of the VLA, in chars
1995 static void emitNonZeroVLAInit(CodeGenFunction
&CGF
, QualType baseType
,
1996 Address dest
, Address src
,
1997 llvm::Value
*sizeInChars
) {
1998 CGBuilderTy
&Builder
= CGF
.Builder
;
2000 CharUnits baseSize
= CGF
.getContext().getTypeSizeInChars(baseType
);
2001 llvm::Value
*baseSizeInChars
2002 = llvm::ConstantInt::get(CGF
.IntPtrTy
, baseSize
.getQuantity());
2004 Address begin
= dest
.withElementType(CGF
.Int8Ty
);
2005 llvm::Value
*end
= Builder
.CreateInBoundsGEP(
2006 begin
.getElementType(), begin
.getPointer(), sizeInChars
, "vla.end");
2008 llvm::BasicBlock
*originBB
= CGF
.Builder
.GetInsertBlock();
2009 llvm::BasicBlock
*loopBB
= CGF
.createBasicBlock("vla-init.loop");
2010 llvm::BasicBlock
*contBB
= CGF
.createBasicBlock("vla-init.cont");
2012 // Make a loop over the VLA. C99 guarantees that the VLA element
2013 // count must be nonzero.
2014 CGF
.EmitBlock(loopBB
);
2016 llvm::PHINode
*cur
= Builder
.CreatePHI(begin
.getType(), 2, "vla.cur");
2017 cur
->addIncoming(begin
.getPointer(), originBB
);
2019 CharUnits curAlign
=
2020 dest
.getAlignment().alignmentOfArrayElement(baseSize
);
2022 // memcpy the individual element bit-pattern.
2023 Builder
.CreateMemCpy(Address(cur
, CGF
.Int8Ty
, curAlign
), src
, baseSizeInChars
,
2024 /*volatile*/ false);
2026 // Go to the next element.
2028 Builder
.CreateInBoundsGEP(CGF
.Int8Ty
, cur
, baseSizeInChars
, "vla.next");
2030 // Leave if that's the end of the VLA.
2031 llvm::Value
*done
= Builder
.CreateICmpEQ(next
, end
, "vla-init.isdone");
2032 Builder
.CreateCondBr(done
, contBB
, loopBB
);
2033 cur
->addIncoming(next
, loopBB
);
2035 CGF
.EmitBlock(contBB
);
2039 CodeGenFunction::EmitNullInitialization(Address DestPtr
, QualType Ty
) {
2040 // Ignore empty classes in C++.
2041 if (getLangOpts().CPlusPlus
) {
2042 if (const RecordType
*RT
= Ty
->getAs
<RecordType
>()) {
2043 if (cast
<CXXRecordDecl
>(RT
->getDecl())->isEmpty())
2048 if (DestPtr
.getElementType() != Int8Ty
)
2049 DestPtr
= DestPtr
.withElementType(Int8Ty
);
2051 // Get size and alignment info for this aggregate.
2052 CharUnits size
= getContext().getTypeSizeInChars(Ty
);
2054 llvm::Value
*SizeVal
;
2055 const VariableArrayType
*vla
;
2057 // Don't bother emitting a zero-byte memset.
2058 if (size
.isZero()) {
2059 // But note that getTypeInfo returns 0 for a VLA.
2060 if (const VariableArrayType
*vlaType
=
2061 dyn_cast_or_null
<VariableArrayType
>(
2062 getContext().getAsArrayType(Ty
))) {
2063 auto VlaSize
= getVLASize(vlaType
);
2064 SizeVal
= VlaSize
.NumElts
;
2065 CharUnits eltSize
= getContext().getTypeSizeInChars(VlaSize
.Type
);
2066 if (!eltSize
.isOne())
2067 SizeVal
= Builder
.CreateNUWMul(SizeVal
, CGM
.getSize(eltSize
));
2073 SizeVal
= CGM
.getSize(size
);
2077 // If the type contains a pointer to data member we can't memset it to zero.
2078 // Instead, create a null constant and copy it to the destination.
2079 // TODO: there are other patterns besides zero that we can usefully memset,
2080 // like -1, which happens to be the pattern used by member-pointers.
2081 if (!CGM
.getTypes().isZeroInitializable(Ty
)) {
2082 // For a VLA, emit a single element, then splat that over the VLA.
2083 if (vla
) Ty
= getContext().getBaseElementType(vla
);
2085 llvm::Constant
*NullConstant
= CGM
.EmitNullConstant(Ty
);
2087 llvm::GlobalVariable
*NullVariable
=
2088 new llvm::GlobalVariable(CGM
.getModule(), NullConstant
->getType(),
2089 /*isConstant=*/true,
2090 llvm::GlobalVariable::PrivateLinkage
,
2091 NullConstant
, Twine());
2092 CharUnits NullAlign
= DestPtr
.getAlignment();
2093 NullVariable
->setAlignment(NullAlign
.getAsAlign());
2094 Address
SrcPtr(NullVariable
, Builder
.getInt8Ty(), NullAlign
);
2096 if (vla
) return emitNonZeroVLAInit(*this, Ty
, DestPtr
, SrcPtr
, SizeVal
);
2098 // Get and call the appropriate llvm.memcpy overload.
2099 Builder
.CreateMemCpy(DestPtr
, SrcPtr
, SizeVal
, false);
2103 // Otherwise, just memset the whole thing to zero. This is legal
2104 // because in LLVM, all default initializers (other than the ones we just
2105 // handled above) are guaranteed to have a bit pattern of all zeros.
2106 Builder
.CreateMemSet(DestPtr
, Builder
.getInt8(0), SizeVal
, false);
2109 llvm::BlockAddress
*CodeGenFunction::GetAddrOfLabel(const LabelDecl
*L
) {
2110 // Make sure that there is a block for the indirect goto.
2111 if (!IndirectBranch
)
2112 GetIndirectGotoBlock();
2114 llvm::BasicBlock
*BB
= getJumpDestForLabel(L
).getBlock();
2116 // Make sure the indirect branch includes all of the address-taken blocks.
2117 IndirectBranch
->addDestination(BB
);
2118 return llvm::BlockAddress::get(CurFn
, BB
);
2121 llvm::BasicBlock
*CodeGenFunction::GetIndirectGotoBlock() {
2122 // If we already made the indirect branch for indirect goto, return its block.
2123 if (IndirectBranch
) return IndirectBranch
->getParent();
2125 CGBuilderTy
TmpBuilder(*this, createBasicBlock("indirectgoto"));
2127 // Create the PHI node that indirect gotos will add entries to.
2128 llvm::Value
*DestVal
= TmpBuilder
.CreatePHI(Int8PtrTy
, 0,
2129 "indirect.goto.dest");
2131 // Create the indirect branch instruction.
2132 IndirectBranch
= TmpBuilder
.CreateIndirectBr(DestVal
);
2133 return IndirectBranch
->getParent();
2136 /// Computes the length of an array in elements, as well as the base
2137 /// element type and a properly-typed first element pointer.
2138 llvm::Value
*CodeGenFunction::emitArrayLength(const ArrayType
*origArrayType
,
2141 const ArrayType
*arrayType
= origArrayType
;
2143 // If it's a VLA, we have to load the stored size. Note that
2144 // this is the size of the VLA in bytes, not its size in elements.
2145 llvm::Value
*numVLAElements
= nullptr;
2146 if (isa
<VariableArrayType
>(arrayType
)) {
2147 numVLAElements
= getVLASize(cast
<VariableArrayType
>(arrayType
)).NumElts
;
2149 // Walk into all VLAs. This doesn't require changes to addr,
2150 // which has type T* where T is the first non-VLA element type.
2152 QualType elementType
= arrayType
->getElementType();
2153 arrayType
= getContext().getAsArrayType(elementType
);
2155 // If we only have VLA components, 'addr' requires no adjustment.
2157 baseType
= elementType
;
2158 return numVLAElements
;
2160 } while (isa
<VariableArrayType
>(arrayType
));
2162 // We get out here only if we find a constant array type
2166 // We have some number of constant-length arrays, so addr should
2167 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2168 // down to the first element of addr.
2169 SmallVector
<llvm::Value
*, 8> gepIndices
;
2171 // GEP down to the array type.
2172 llvm::ConstantInt
*zero
= Builder
.getInt32(0);
2173 gepIndices
.push_back(zero
);
2175 uint64_t countFromCLAs
= 1;
2178 llvm::ArrayType
*llvmArrayType
=
2179 dyn_cast
<llvm::ArrayType
>(addr
.getElementType());
2180 while (llvmArrayType
) {
2181 assert(isa
<ConstantArrayType
>(arrayType
));
2182 assert(cast
<ConstantArrayType
>(arrayType
)->getSize().getZExtValue()
2183 == llvmArrayType
->getNumElements());
2185 gepIndices
.push_back(zero
);
2186 countFromCLAs
*= llvmArrayType
->getNumElements();
2187 eltType
= arrayType
->getElementType();
2190 dyn_cast
<llvm::ArrayType
>(llvmArrayType
->getElementType());
2191 arrayType
= getContext().getAsArrayType(arrayType
->getElementType());
2192 assert((!llvmArrayType
|| arrayType
) &&
2193 "LLVM and Clang types are out-of-synch");
2197 // From this point onwards, the Clang array type has been emitted
2198 // as some other type (probably a packed struct). Compute the array
2199 // size, and just emit the 'begin' expression as a bitcast.
2202 cast
<ConstantArrayType
>(arrayType
)->getSize().getZExtValue();
2203 eltType
= arrayType
->getElementType();
2204 arrayType
= getContext().getAsArrayType(eltType
);
2207 llvm::Type
*baseType
= ConvertType(eltType
);
2208 addr
= addr
.withElementType(baseType
);
2210 // Create the actual GEP.
2211 addr
= Address(Builder
.CreateInBoundsGEP(
2212 addr
.getElementType(), addr
.getPointer(), gepIndices
, "array.begin"),
2213 ConvertTypeForMem(eltType
),
2214 addr
.getAlignment());
2219 llvm::Value
*numElements
2220 = llvm::ConstantInt::get(SizeTy
, countFromCLAs
);
2222 // If we had any VLA dimensions, factor them in.
2224 numElements
= Builder
.CreateNUWMul(numVLAElements
, numElements
);
2229 CodeGenFunction::VlaSizePair
CodeGenFunction::getVLASize(QualType type
) {
2230 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2231 assert(vla
&& "type was not a variable array type!");
2232 return getVLASize(vla
);
2235 CodeGenFunction::VlaSizePair
2236 CodeGenFunction::getVLASize(const VariableArrayType
*type
) {
2237 // The number of elements so far; always size_t.
2238 llvm::Value
*numElements
= nullptr;
2240 QualType elementType
;
2242 elementType
= type
->getElementType();
2243 llvm::Value
*vlaSize
= VLASizeMap
[type
->getSizeExpr()];
2244 assert(vlaSize
&& "no size for VLA!");
2245 assert(vlaSize
->getType() == SizeTy
);
2248 numElements
= vlaSize
;
2250 // It's undefined behavior if this wraps around, so mark it that way.
2251 // FIXME: Teach -fsanitize=undefined to trap this.
2252 numElements
= Builder
.CreateNUWMul(numElements
, vlaSize
);
2254 } while ((type
= getContext().getAsVariableArrayType(elementType
)));
2256 return { numElements
, elementType
};
2259 CodeGenFunction::VlaSizePair
2260 CodeGenFunction::getVLAElements1D(QualType type
) {
2261 const VariableArrayType
*vla
= getContext().getAsVariableArrayType(type
);
2262 assert(vla
&& "type was not a variable array type!");
2263 return getVLAElements1D(vla
);
2266 CodeGenFunction::VlaSizePair
2267 CodeGenFunction::getVLAElements1D(const VariableArrayType
*Vla
) {
2268 llvm::Value
*VlaSize
= VLASizeMap
[Vla
->getSizeExpr()];
2269 assert(VlaSize
&& "no size for VLA!");
2270 assert(VlaSize
->getType() == SizeTy
);
2271 return { VlaSize
, Vla
->getElementType() };
2274 void CodeGenFunction::EmitVariablyModifiedType(QualType type
) {
2275 assert(type
->isVariablyModifiedType() &&
2276 "Must pass variably modified type to EmitVLASizes!");
2278 EnsureInsertPoint();
2280 // We're going to walk down into the type and look for VLA
2283 assert(type
->isVariablyModifiedType());
2285 const Type
*ty
= type
.getTypePtr();
2286 switch (ty
->getTypeClass()) {
2288 #define TYPE(Class, Base)
2289 #define ABSTRACT_TYPE(Class, Base)
2290 #define NON_CANONICAL_TYPE(Class, Base)
2291 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2292 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2293 #include "clang/AST/TypeNodes.inc"
2294 llvm_unreachable("unexpected dependent type!");
2296 // These types are never variably-modified.
2300 case Type::ExtVector
:
2301 case Type::ConstantMatrix
:
2305 case Type::TemplateSpecialization
:
2306 case Type::ObjCTypeParam
:
2307 case Type::ObjCObject
:
2308 case Type::ObjCInterface
:
2309 case Type::ObjCObjectPointer
:
2311 llvm_unreachable("type class is never variably-modified!");
2313 case Type::Elaborated
:
2314 type
= cast
<ElaboratedType
>(ty
)->getNamedType();
2317 case Type::Adjusted
:
2318 type
= cast
<AdjustedType
>(ty
)->getAdjustedType();
2322 type
= cast
<DecayedType
>(ty
)->getPointeeType();
2326 type
= cast
<PointerType
>(ty
)->getPointeeType();
2329 case Type::BlockPointer
:
2330 type
= cast
<BlockPointerType
>(ty
)->getPointeeType();
2333 case Type::LValueReference
:
2334 case Type::RValueReference
:
2335 type
= cast
<ReferenceType
>(ty
)->getPointeeType();
2338 case Type::MemberPointer
:
2339 type
= cast
<MemberPointerType
>(ty
)->getPointeeType();
2342 case Type::ConstantArray
:
2343 case Type::IncompleteArray
:
2344 // Losing element qualification here is fine.
2345 type
= cast
<ArrayType
>(ty
)->getElementType();
2348 case Type::VariableArray
: {
2349 // Losing element qualification here is fine.
2350 const VariableArrayType
*vat
= cast
<VariableArrayType
>(ty
);
2352 // Unknown size indication requires no size computation.
2353 // Otherwise, evaluate and record it.
2354 if (const Expr
*sizeExpr
= vat
->getSizeExpr()) {
2355 // It's possible that we might have emitted this already,
2356 // e.g. with a typedef and a pointer to it.
2357 llvm::Value
*&entry
= VLASizeMap
[sizeExpr
];
2359 llvm::Value
*size
= EmitScalarExpr(sizeExpr
);
2362 // If the size is an expression that is not an integer constant
2363 // expression [...] each time it is evaluated it shall have a value
2364 // greater than zero.
2365 if (SanOpts
.has(SanitizerKind::VLABound
)) {
2366 SanitizerScope
SanScope(this);
2367 llvm::Value
*Zero
= llvm::Constant::getNullValue(size
->getType());
2368 clang::QualType SEType
= sizeExpr
->getType();
2369 llvm::Value
*CheckCondition
=
2370 SEType
->isSignedIntegerType()
2371 ? Builder
.CreateICmpSGT(size
, Zero
)
2372 : Builder
.CreateICmpUGT(size
, Zero
);
2373 llvm::Constant
*StaticArgs
[] = {
2374 EmitCheckSourceLocation(sizeExpr
->getBeginLoc()),
2375 EmitCheckTypeDescriptor(SEType
)};
2376 EmitCheck(std::make_pair(CheckCondition
, SanitizerKind::VLABound
),
2377 SanitizerHandler::VLABoundNotPositive
, StaticArgs
, size
);
2380 // Always zexting here would be wrong if it weren't
2381 // undefined behavior to have a negative bound.
2382 // FIXME: What about when size's type is larger than size_t?
2383 entry
= Builder
.CreateIntCast(size
, SizeTy
, /*signed*/ false);
2386 type
= vat
->getElementType();
2390 case Type::FunctionProto
:
2391 case Type::FunctionNoProto
:
2392 type
= cast
<FunctionType
>(ty
)->getReturnType();
2397 case Type::UnaryTransform
:
2398 case Type::Attributed
:
2399 case Type::BTFTagAttributed
:
2400 case Type::SubstTemplateTypeParm
:
2401 case Type::MacroQualified
:
2402 // Keep walking after single level desugaring.
2403 type
= type
.getSingleStepDesugaredType(getContext());
2407 case Type::Decltype
:
2409 case Type::DeducedTemplateSpecialization
:
2410 // Stop walking: nothing to do.
2413 case Type::TypeOfExpr
:
2414 // Stop walking: emit typeof expression.
2415 EmitIgnoredExpr(cast
<TypeOfExprType
>(ty
)->getUnderlyingExpr());
2419 type
= cast
<AtomicType
>(ty
)->getValueType();
2423 type
= cast
<PipeType
>(ty
)->getElementType();
2426 } while (type
->isVariablyModifiedType());
2429 Address
CodeGenFunction::EmitVAListRef(const Expr
* E
) {
2430 if (getContext().getBuiltinVaListType()->isArrayType())
2431 return EmitPointerWithAlignment(E
);
2432 return EmitLValue(E
).getAddress(*this);
2435 Address
CodeGenFunction::EmitMSVAListRef(const Expr
*E
) {
2436 return EmitLValue(E
).getAddress(*this);
2439 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr
*E
,
2440 const APValue
&Init
) {
2441 assert(Init
.hasValue() && "Invalid DeclRefExpr initializer!");
2442 if (CGDebugInfo
*Dbg
= getDebugInfo())
2443 if (CGM
.getCodeGenOpts().hasReducedDebugInfo())
2444 Dbg
->EmitGlobalVariable(E
->getDecl(), Init
);
2447 CodeGenFunction::PeepholeProtection
2448 CodeGenFunction::protectFromPeepholes(RValue rvalue
) {
2449 // At the moment, the only aggressive peephole we do in IR gen
2450 // is trunc(zext) folding, but if we add more, we can easily
2451 // extend this protection.
2453 if (!rvalue
.isScalar()) return PeepholeProtection();
2454 llvm::Value
*value
= rvalue
.getScalarVal();
2455 if (!isa
<llvm::ZExtInst
>(value
)) return PeepholeProtection();
2457 // Just make an extra bitcast.
2458 assert(HaveInsertPoint());
2459 llvm::Instruction
*inst
= new llvm::BitCastInst(value
, value
->getType(), "",
2460 Builder
.GetInsertBlock());
2462 PeepholeProtection protection
;
2463 protection
.Inst
= inst
;
2467 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection
) {
2468 if (!protection
.Inst
) return;
2470 // In theory, we could try to duplicate the peepholes now, but whatever.
2471 protection
.Inst
->eraseFromParent();
2474 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2475 QualType Ty
, SourceLocation Loc
,
2476 SourceLocation AssumptionLoc
,
2477 llvm::Value
*Alignment
,
2478 llvm::Value
*OffsetValue
) {
2479 if (Alignment
->getType() != IntPtrTy
)
2481 Builder
.CreateIntCast(Alignment
, IntPtrTy
, false, "casted.align");
2482 if (OffsetValue
&& OffsetValue
->getType() != IntPtrTy
)
2484 Builder
.CreateIntCast(OffsetValue
, IntPtrTy
, true, "casted.offset");
2485 llvm::Value
*TheCheck
= nullptr;
2486 if (SanOpts
.has(SanitizerKind::Alignment
)) {
2487 llvm::Value
*PtrIntValue
=
2488 Builder
.CreatePtrToInt(PtrValue
, IntPtrTy
, "ptrint");
2491 bool IsOffsetZero
= false;
2492 if (const auto *CI
= dyn_cast
<llvm::ConstantInt
>(OffsetValue
))
2493 IsOffsetZero
= CI
->isZero();
2496 PtrIntValue
= Builder
.CreateSub(PtrIntValue
, OffsetValue
, "offsetptr");
2499 llvm::Value
*Zero
= llvm::ConstantInt::get(IntPtrTy
, 0);
2501 Builder
.CreateSub(Alignment
, llvm::ConstantInt::get(IntPtrTy
, 1));
2502 llvm::Value
*MaskedPtr
= Builder
.CreateAnd(PtrIntValue
, Mask
, "maskedptr");
2503 TheCheck
= Builder
.CreateICmpEQ(MaskedPtr
, Zero
, "maskcond");
2505 llvm::Instruction
*Assumption
= Builder
.CreateAlignmentAssumption(
2506 CGM
.getDataLayout(), PtrValue
, Alignment
, OffsetValue
);
2508 if (!SanOpts
.has(SanitizerKind::Alignment
))
2510 emitAlignmentAssumptionCheck(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2511 OffsetValue
, TheCheck
, Assumption
);
2514 void CodeGenFunction::emitAlignmentAssumption(llvm::Value
*PtrValue
,
2516 SourceLocation AssumptionLoc
,
2517 llvm::Value
*Alignment
,
2518 llvm::Value
*OffsetValue
) {
2519 QualType Ty
= E
->getType();
2520 SourceLocation Loc
= E
->getExprLoc();
2522 emitAlignmentAssumption(PtrValue
, Ty
, Loc
, AssumptionLoc
, Alignment
,
2526 llvm::Value
*CodeGenFunction::EmitAnnotationCall(llvm::Function
*AnnotationFn
,
2527 llvm::Value
*AnnotatedVal
,
2528 StringRef AnnotationStr
,
2529 SourceLocation Location
,
2530 const AnnotateAttr
*Attr
) {
2531 SmallVector
<llvm::Value
*, 5> Args
= {
2533 CGM
.EmitAnnotationString(AnnotationStr
),
2534 CGM
.EmitAnnotationUnit(Location
),
2535 CGM
.EmitAnnotationLineNo(Location
),
2538 Args
.push_back(CGM
.EmitAnnotationArgs(Attr
));
2539 return Builder
.CreateCall(AnnotationFn
, Args
);
2542 void CodeGenFunction::EmitVarAnnotations(const VarDecl
*D
, llvm::Value
*V
) {
2543 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2544 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
2545 EmitAnnotationCall(CGM
.getIntrinsic(llvm::Intrinsic::var_annotation
,
2546 {V
->getType(), CGM
.ConstGlobalsPtrTy
}),
2547 V
, I
->getAnnotation(), D
->getLocation(), I
);
2550 Address
CodeGenFunction::EmitFieldAnnotations(const FieldDecl
*D
,
2552 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2553 llvm::Value
*V
= Addr
.getPointer();
2554 llvm::Type
*VTy
= V
->getType();
2555 auto *PTy
= dyn_cast
<llvm::PointerType
>(VTy
);
2556 unsigned AS
= PTy
? PTy
->getAddressSpace() : 0;
2557 llvm::PointerType
*IntrinTy
=
2558 llvm::PointerType::get(CGM
.getLLVMContext(), AS
);
2559 llvm::Function
*F
= CGM
.getIntrinsic(llvm::Intrinsic::ptr_annotation
,
2560 {IntrinTy
, CGM
.ConstGlobalsPtrTy
});
2562 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>()) {
2563 // FIXME Always emit the cast inst so we can differentiate between
2564 // annotation on the first field of a struct and annotation on the struct
2566 if (VTy
!= IntrinTy
)
2567 V
= Builder
.CreateBitCast(V
, IntrinTy
);
2568 V
= EmitAnnotationCall(F
, V
, I
->getAnnotation(), D
->getLocation(), I
);
2569 V
= Builder
.CreateBitCast(V
, VTy
);
2572 return Address(V
, Addr
.getElementType(), Addr
.getAlignment());
2575 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2577 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction
*CGF
)
2579 assert(!CGF
->IsSanitizerScope
);
2580 CGF
->IsSanitizerScope
= true;
2583 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2584 CGF
->IsSanitizerScope
= false;
2587 void CodeGenFunction::InsertHelper(llvm::Instruction
*I
,
2588 const llvm::Twine
&Name
,
2589 llvm::BasicBlock
*BB
,
2590 llvm::BasicBlock::iterator InsertPt
) const {
2591 LoopStack
.InsertHelper(I
);
2592 if (IsSanitizerScope
)
2593 I
->setNoSanitizeMetadata();
2596 void CGBuilderInserter::InsertHelper(
2597 llvm::Instruction
*I
, const llvm::Twine
&Name
, llvm::BasicBlock
*BB
,
2598 llvm::BasicBlock::iterator InsertPt
) const {
2599 llvm::IRBuilderDefaultInserter::InsertHelper(I
, Name
, BB
, InsertPt
);
2601 CGF
->InsertHelper(I
, Name
, BB
, InsertPt
);
2604 // Emits an error if we don't have a valid set of target features for the
2606 void CodeGenFunction::checkTargetFeatures(const CallExpr
*E
,
2607 const FunctionDecl
*TargetDecl
) {
2608 return checkTargetFeatures(E
->getBeginLoc(), TargetDecl
);
2611 // Emits an error if we don't have a valid set of target features for the
2613 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc
,
2614 const FunctionDecl
*TargetDecl
) {
2615 // Early exit if this is an indirect call.
2619 // Get the current enclosing function if it exists. If it doesn't
2620 // we can't check the target features anyhow.
2621 const FunctionDecl
*FD
= dyn_cast_or_null
<FunctionDecl
>(CurCodeDecl
);
2625 // Grab the required features for the call. For a builtin this is listed in
2626 // the td file with the default cpu, for an always_inline function this is any
2627 // listed cpu and any listed features.
2628 unsigned BuiltinID
= TargetDecl
->getBuiltinID();
2629 std::string MissingFeature
;
2630 llvm::StringMap
<bool> CallerFeatureMap
;
2631 CGM
.getContext().getFunctionFeatureMap(CallerFeatureMap
, FD
);
2632 // When compiling in HipStdPar mode we have to be conservative in rejecting
2633 // target specific features in the FE, and defer the possible error to the
2634 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2635 // referenced by an accelerator executable function, we emit an error.
2636 bool IsHipStdPar
= getLangOpts().HIPStdPar
&& getLangOpts().CUDAIsDevice
;
2638 StringRef
FeatureList(CGM
.getContext().BuiltinInfo
.getRequiredFeatures(BuiltinID
));
2639 if (!Builtin::evaluateRequiredTargetFeatures(
2640 FeatureList
, CallerFeatureMap
) && !IsHipStdPar
) {
2641 CGM
.getDiags().Report(Loc
, diag::err_builtin_needs_feature
)
2642 << TargetDecl
->getDeclName()
2645 } else if (!TargetDecl
->isMultiVersion() &&
2646 TargetDecl
->hasAttr
<TargetAttr
>()) {
2647 // Get the required features for the callee.
2649 const TargetAttr
*TD
= TargetDecl
->getAttr
<TargetAttr
>();
2650 ParsedTargetAttr ParsedAttr
=
2651 CGM
.getContext().filterFunctionTargetAttrs(TD
);
2653 SmallVector
<StringRef
, 1> ReqFeatures
;
2654 llvm::StringMap
<bool> CalleeFeatureMap
;
2655 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2657 for (const auto &F
: ParsedAttr
.Features
) {
2658 if (F
[0] == '+' && CalleeFeatureMap
.lookup(F
.substr(1)))
2659 ReqFeatures
.push_back(StringRef(F
).substr(1));
2662 for (const auto &F
: CalleeFeatureMap
) {
2663 // Only positive features are "required".
2665 ReqFeatures
.push_back(F
.getKey());
2667 if (!llvm::all_of(ReqFeatures
, [&](StringRef Feature
) {
2668 if (!CallerFeatureMap
.lookup(Feature
)) {
2669 MissingFeature
= Feature
.str();
2674 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2675 << FD
->getDeclName() << TargetDecl
->getDeclName() << MissingFeature
;
2676 } else if (!FD
->isMultiVersion() && FD
->hasAttr
<TargetAttr
>()) {
2677 llvm::StringMap
<bool> CalleeFeatureMap
;
2678 CGM
.getContext().getFunctionFeatureMap(CalleeFeatureMap
, TargetDecl
);
2680 for (const auto &F
: CalleeFeatureMap
) {
2681 if (F
.getValue() && (!CallerFeatureMap
.lookup(F
.getKey()) ||
2682 !CallerFeatureMap
.find(F
.getKey())->getValue()) &&
2684 CGM
.getDiags().Report(Loc
, diag::err_function_needs_feature
)
2685 << FD
->getDeclName() << TargetDecl
->getDeclName() << F
.getKey();
2690 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK
) {
2691 if (!CGM
.getCodeGenOpts().SanitizeStats
)
2694 llvm::IRBuilder
<> IRB(Builder
.GetInsertBlock(), Builder
.GetInsertPoint());
2695 IRB
.SetCurrentDebugLocation(Builder
.getCurrentDebugLocation());
2696 CGM
.getSanStats().create(IRB
, SSK
);
2699 void CodeGenFunction::EmitKCFIOperandBundle(
2700 const CGCallee
&Callee
, SmallVectorImpl
<llvm::OperandBundleDef
> &Bundles
) {
2701 const FunctionProtoType
*FP
=
2702 Callee
.getAbstractInfo().getCalleeFunctionProtoType();
2704 Bundles
.emplace_back("kcfi", CGM
.CreateKCFITypeId(FP
->desugar()));
2707 llvm::Value
*CodeGenFunction::FormAArch64ResolverCondition(
2708 const MultiVersionResolverOption
&RO
) {
2709 llvm::SmallVector
<StringRef
, 8> CondFeatures
;
2710 for (const StringRef
&Feature
: RO
.Conditions
.Features
) {
2711 // Form condition for features which are not yet enabled in target
2712 if (!getContext().getTargetInfo().hasFeature(Feature
))
2713 CondFeatures
.push_back(Feature
);
2715 if (!CondFeatures
.empty()) {
2716 return EmitAArch64CpuSupports(CondFeatures
);
2721 llvm::Value
*CodeGenFunction::FormX86ResolverCondition(
2722 const MultiVersionResolverOption
&RO
) {
2723 llvm::Value
*Condition
= nullptr;
2725 if (!RO
.Conditions
.Architecture
.empty()) {
2726 StringRef Arch
= RO
.Conditions
.Architecture
;
2727 // If arch= specifies an x86-64 micro-architecture level, test the feature
2728 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2729 if (Arch
.starts_with("x86-64"))
2730 Condition
= EmitX86CpuSupports({Arch
});
2732 Condition
= EmitX86CpuIs(Arch
);
2735 if (!RO
.Conditions
.Features
.empty()) {
2736 llvm::Value
*FeatureCond
= EmitX86CpuSupports(RO
.Conditions
.Features
);
2738 Condition
? Builder
.CreateAnd(Condition
, FeatureCond
) : FeatureCond
;
2743 static void CreateMultiVersionResolverReturn(CodeGenModule
&CGM
,
2744 llvm::Function
*Resolver
,
2745 CGBuilderTy
&Builder
,
2746 llvm::Function
*FuncToReturn
,
2747 bool SupportsIFunc
) {
2748 if (SupportsIFunc
) {
2749 Builder
.CreateRet(FuncToReturn
);
2753 llvm::SmallVector
<llvm::Value
*, 10> Args(
2754 llvm::make_pointer_range(Resolver
->args()));
2756 llvm::CallInst
*Result
= Builder
.CreateCall(FuncToReturn
, Args
);
2757 Result
->setTailCallKind(llvm::CallInst::TCK_MustTail
);
2759 if (Resolver
->getReturnType()->isVoidTy())
2760 Builder
.CreateRetVoid();
2762 Builder
.CreateRet(Result
);
2765 void CodeGenFunction::EmitMultiVersionResolver(
2766 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2768 llvm::Triple::ArchType ArchType
=
2769 getContext().getTargetInfo().getTriple().getArch();
2772 case llvm::Triple::x86
:
2773 case llvm::Triple::x86_64
:
2774 EmitX86MultiVersionResolver(Resolver
, Options
);
2776 case llvm::Triple::aarch64
:
2777 EmitAArch64MultiVersionResolver(Resolver
, Options
);
2781 assert(false && "Only implemented for x86 and AArch64 targets");
2785 void CodeGenFunction::EmitAArch64MultiVersionResolver(
2786 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2787 assert(!Options
.empty() && "No multiversion resolver options found");
2788 assert(Options
.back().Conditions
.Features
.size() == 0 &&
2789 "Default case must be last");
2790 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
2791 assert(SupportsIFunc
&&
2792 "Multiversion resolver requires target IFUNC support");
2793 bool AArch64CpuInitialized
= false;
2794 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
2796 for (const MultiVersionResolverOption
&RO
: Options
) {
2797 Builder
.SetInsertPoint(CurBlock
);
2798 llvm::Value
*Condition
= FormAArch64ResolverCondition(RO
);
2800 // The 'default' or 'all features enabled' case.
2802 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
2807 if (!AArch64CpuInitialized
) {
2808 Builder
.SetInsertPoint(CurBlock
, CurBlock
->begin());
2809 EmitAArch64CpuInit();
2810 AArch64CpuInitialized
= true;
2811 Builder
.SetInsertPoint(CurBlock
);
2814 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
2815 CGBuilderTy
RetBuilder(*this, RetBlock
);
2816 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
2818 CurBlock
= createBasicBlock("resolver_else", Resolver
);
2819 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
2822 // If no default, emit an unreachable.
2823 Builder
.SetInsertPoint(CurBlock
);
2824 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
2825 TrapCall
->setDoesNotReturn();
2826 TrapCall
->setDoesNotThrow();
2827 Builder
.CreateUnreachable();
2828 Builder
.ClearInsertionPoint();
2831 void CodeGenFunction::EmitX86MultiVersionResolver(
2832 llvm::Function
*Resolver
, ArrayRef
<MultiVersionResolverOption
> Options
) {
2834 bool SupportsIFunc
= getContext().getTargetInfo().supportsIFunc();
2836 // Main function's basic block.
2837 llvm::BasicBlock
*CurBlock
= createBasicBlock("resolver_entry", Resolver
);
2838 Builder
.SetInsertPoint(CurBlock
);
2841 for (const MultiVersionResolverOption
&RO
: Options
) {
2842 Builder
.SetInsertPoint(CurBlock
);
2843 llvm::Value
*Condition
= FormX86ResolverCondition(RO
);
2845 // The 'default' or 'generic' case.
2847 assert(&RO
== Options
.end() - 1 &&
2848 "Default or Generic case must be last");
2849 CreateMultiVersionResolverReturn(CGM
, Resolver
, Builder
, RO
.Function
,
2854 llvm::BasicBlock
*RetBlock
= createBasicBlock("resolver_return", Resolver
);
2855 CGBuilderTy
RetBuilder(*this, RetBlock
);
2856 CreateMultiVersionResolverReturn(CGM
, Resolver
, RetBuilder
, RO
.Function
,
2858 CurBlock
= createBasicBlock("resolver_else", Resolver
);
2859 Builder
.CreateCondBr(Condition
, RetBlock
, CurBlock
);
2862 // If no generic/default, emit an unreachable.
2863 Builder
.SetInsertPoint(CurBlock
);
2864 llvm::CallInst
*TrapCall
= EmitTrapCall(llvm::Intrinsic::trap
);
2865 TrapCall
->setDoesNotReturn();
2866 TrapCall
->setDoesNotThrow();
2867 Builder
.CreateUnreachable();
2868 Builder
.ClearInsertionPoint();
2871 // Loc - where the diagnostic will point, where in the source code this
2872 // alignment has failed.
2873 // SecondaryLoc - if present (will be present if sufficiently different from
2874 // Loc), the diagnostic will additionally point a "Note:" to this location.
2875 // It should be the location where the __attribute__((assume_aligned))
2877 void CodeGenFunction::emitAlignmentAssumptionCheck(
2878 llvm::Value
*Ptr
, QualType Ty
, SourceLocation Loc
,
2879 SourceLocation SecondaryLoc
, llvm::Value
*Alignment
,
2880 llvm::Value
*OffsetValue
, llvm::Value
*TheCheck
,
2881 llvm::Instruction
*Assumption
) {
2882 assert(Assumption
&& isa
<llvm::CallInst
>(Assumption
) &&
2883 cast
<llvm::CallInst
>(Assumption
)->getCalledOperand() ==
2884 llvm::Intrinsic::getDeclaration(
2885 Builder
.GetInsertBlock()->getParent()->getParent(),
2886 llvm::Intrinsic::assume
) &&
2887 "Assumption should be a call to llvm.assume().");
2888 assert(&(Builder
.GetInsertBlock()->back()) == Assumption
&&
2889 "Assumption should be the last instruction of the basic block, "
2890 "since the basic block is still being generated.");
2892 if (!SanOpts
.has(SanitizerKind::Alignment
))
2895 // Don't check pointers to volatile data. The behavior here is implementation-
2897 if (Ty
->getPointeeType().isVolatileQualified())
2900 // We need to temorairly remove the assumption so we can insert the
2901 // sanitizer check before it, else the check will be dropped by optimizations.
2902 Assumption
->removeFromParent();
2905 SanitizerScope
SanScope(this);
2908 OffsetValue
= Builder
.getInt1(false); // no offset.
2910 llvm::Constant
*StaticData
[] = {EmitCheckSourceLocation(Loc
),
2911 EmitCheckSourceLocation(SecondaryLoc
),
2912 EmitCheckTypeDescriptor(Ty
)};
2913 llvm::Value
*DynamicData
[] = {EmitCheckValue(Ptr
),
2914 EmitCheckValue(Alignment
),
2915 EmitCheckValue(OffsetValue
)};
2916 EmitCheck({std::make_pair(TheCheck
, SanitizerKind::Alignment
)},
2917 SanitizerHandler::AlignmentAssumption
, StaticData
, DynamicData
);
2920 // We are now in the (new, empty) "cont" basic block.
2921 // Reintroduce the assumption.
2922 Builder
.Insert(Assumption
);
2923 // FIXME: Assumption still has it's original basic block as it's Parent.
2926 llvm::DebugLoc
CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location
) {
2927 if (CGDebugInfo
*DI
= getDebugInfo())
2928 return DI
->SourceLocToDebugLoc(Location
);
2930 return llvm::DebugLoc();
2934 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value
*Cond
,
2935 Stmt::Likelihood LH
) {
2939 case Stmt::LH_Likely
:
2940 case Stmt::LH_Unlikely
:
2941 // Don't generate llvm.expect on -O0 as the backend won't use it for
2943 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0)
2945 llvm::Type
*CondTy
= Cond
->getType();
2946 assert(CondTy
->isIntegerTy(1) && "expecting condition to be a boolean");
2947 llvm::Function
*FnExpect
=
2948 CGM
.getIntrinsic(llvm::Intrinsic::expect
, CondTy
);
2949 llvm::Value
*ExpectedValueOfCond
=
2950 llvm::ConstantInt::getBool(CondTy
, LH
== Stmt::LH_Likely
);
2951 return Builder
.CreateCall(FnExpect
, {Cond
, ExpectedValueOfCond
},
2952 Cond
->getName() + ".expval");
2954 llvm_unreachable("Unknown Likelihood");
2957 llvm::Value
*CodeGenFunction::emitBoolVecConversion(llvm::Value
*SrcVec
,
2958 unsigned NumElementsDst
,
2959 const llvm::Twine
&Name
) {
2960 auto *SrcTy
= cast
<llvm::FixedVectorType
>(SrcVec
->getType());
2961 unsigned NumElementsSrc
= SrcTy
->getNumElements();
2962 if (NumElementsSrc
== NumElementsDst
)
2965 std::vector
<int> ShuffleMask(NumElementsDst
, -1);
2966 for (unsigned MaskIdx
= 0;
2967 MaskIdx
< std::min
<>(NumElementsDst
, NumElementsSrc
); ++MaskIdx
)
2968 ShuffleMask
[MaskIdx
] = MaskIdx
;
2970 return Builder
.CreateShuffleVector(SrcVec
, ShuffleMask
, Name
);