[AMDGPU] New gfx940 mfma instructions
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64ExpandImm.cpp
blob4f324198f3dc403559f9ddeeb15c3789a9d0025e
1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64ExpandImm stuff.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64.h"
14 #include "AArch64ExpandImm.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
17 using namespace llvm;
18 using namespace llvm::AArch64_IMM;
20 /// Helper function which extracts the specified 16-bit chunk from a
21 /// 64-bit value.
22 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
23 assert(ChunkIdx < 4 && "Out of range chunk index specified!");
25 return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
28 /// Check whether the given 16-bit chunk replicated to full 64-bit width
29 /// can be materialized with an ORR instruction.
30 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
31 Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
33 return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
36 /// Check for identical 16-bit chunks within the constant and if so
37 /// materialize them with a single ORR instruction. The remaining one or two
38 /// 16-bit chunks will be materialized with MOVK instructions.
39 ///
40 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
41 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
42 /// an ORR instruction.
43 static bool tryToreplicateChunks(uint64_t UImm,
44 SmallVectorImpl<ImmInsnModel> &Insn) {
45 using CountMap = DenseMap<uint64_t, unsigned>;
47 CountMap Counts;
49 // Scan the constant and count how often every chunk occurs.
50 for (unsigned Idx = 0; Idx < 4; ++Idx)
51 ++Counts[getChunk(UImm, Idx)];
53 // Traverse the chunks to find one which occurs more than once.
54 for (const auto &Chunk : Counts) {
55 const uint64_t ChunkVal = Chunk.first;
56 const unsigned Count = Chunk.second;
58 uint64_t Encoding = 0;
60 // We are looking for chunks which have two or three instances and can be
61 // materialized with an ORR instruction.
62 if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
63 continue;
65 const bool CountThree = Count == 3;
67 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
69 unsigned ShiftAmt = 0;
70 uint64_t Imm16 = 0;
71 // Find the first chunk not materialized with the ORR instruction.
72 for (; ShiftAmt < 64; ShiftAmt += 16) {
73 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
75 if (Imm16 != ChunkVal)
76 break;
79 // Create the first MOVK instruction.
80 Insn.push_back({ AArch64::MOVKXi, Imm16,
81 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
83 // In case we have three instances the whole constant is now materialized
84 // and we can exit.
85 if (CountThree)
86 return true;
88 // Find the remaining chunk which needs to be materialized.
89 for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
90 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
92 if (Imm16 != ChunkVal)
93 break;
95 Insn.push_back({ AArch64::MOVKXi, Imm16,
96 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
97 return true;
100 return false;
103 /// Check whether this chunk matches the pattern '1...0...'. This pattern
104 /// starts a contiguous sequence of ones if we look at the bits from the LSB
105 /// towards the MSB.
106 static bool isStartChunk(uint64_t Chunk) {
107 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
108 return false;
110 return isMask_64(~Chunk);
113 /// Check whether this chunk matches the pattern '0...1...' This pattern
114 /// ends a contiguous sequence of ones if we look at the bits from the LSB
115 /// towards the MSB.
116 static bool isEndChunk(uint64_t Chunk) {
117 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
118 return false;
120 return isMask_64(Chunk);
123 /// Clear or set all bits in the chunk at the given index.
124 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
125 const uint64_t Mask = 0xFFFF;
127 if (Clear)
128 // Clear chunk in the immediate.
129 Imm &= ~(Mask << (Idx * 16));
130 else
131 // Set all bits in the immediate for the particular chunk.
132 Imm |= Mask << (Idx * 16);
134 return Imm;
137 /// Check whether the constant contains a sequence of contiguous ones,
138 /// which might be interrupted by one or two chunks. If so, materialize the
139 /// sequence of contiguous ones with an ORR instruction.
140 /// Materialize the chunks which are either interrupting the sequence or outside
141 /// of the sequence with a MOVK instruction.
143 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
144 /// which ends the sequence (0...1...). Then we are looking for constants which
145 /// contain at least one S and E chunk.
146 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
148 /// We are also looking for constants like |S|A|B|E| where the contiguous
149 /// sequence of ones wraps around the MSB into the LSB.
150 static bool trySequenceOfOnes(uint64_t UImm,
151 SmallVectorImpl<ImmInsnModel> &Insn) {
152 const int NotSet = -1;
153 const uint64_t Mask = 0xFFFF;
155 int StartIdx = NotSet;
156 int EndIdx = NotSet;
157 // Try to find the chunks which start/end a contiguous sequence of ones.
158 for (int Idx = 0; Idx < 4; ++Idx) {
159 int64_t Chunk = getChunk(UImm, Idx);
160 // Sign extend the 16-bit chunk to 64-bit.
161 Chunk = (Chunk << 48) >> 48;
163 if (isStartChunk(Chunk))
164 StartIdx = Idx;
165 else if (isEndChunk(Chunk))
166 EndIdx = Idx;
169 // Early exit in case we can't find a start/end chunk.
170 if (StartIdx == NotSet || EndIdx == NotSet)
171 return false;
173 // Outside of the contiguous sequence of ones everything needs to be zero.
174 uint64_t Outside = 0;
175 // Chunks between the start and end chunk need to have all their bits set.
176 uint64_t Inside = Mask;
178 // If our contiguous sequence of ones wraps around from the MSB into the LSB,
179 // just swap indices and pretend we are materializing a contiguous sequence
180 // of zeros surrounded by a contiguous sequence of ones.
181 if (StartIdx > EndIdx) {
182 std::swap(StartIdx, EndIdx);
183 std::swap(Outside, Inside);
186 uint64_t OrrImm = UImm;
187 int FirstMovkIdx = NotSet;
188 int SecondMovkIdx = NotSet;
190 // Find out which chunks we need to patch up to obtain a contiguous sequence
191 // of ones.
192 for (int Idx = 0; Idx < 4; ++Idx) {
193 const uint64_t Chunk = getChunk(UImm, Idx);
195 // Check whether we are looking at a chunk which is not part of the
196 // contiguous sequence of ones.
197 if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
198 OrrImm = updateImm(OrrImm, Idx, Outside == 0);
200 // Remember the index we need to patch.
201 if (FirstMovkIdx == NotSet)
202 FirstMovkIdx = Idx;
203 else
204 SecondMovkIdx = Idx;
206 // Check whether we are looking a chunk which is part of the contiguous
207 // sequence of ones.
208 } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
209 OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
211 // Remember the index we need to patch.
212 if (FirstMovkIdx == NotSet)
213 FirstMovkIdx = Idx;
214 else
215 SecondMovkIdx = Idx;
218 assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
220 // Create the ORR-immediate instruction.
221 uint64_t Encoding = 0;
222 AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
223 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
225 const bool SingleMovk = SecondMovkIdx == NotSet;
226 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
227 AArch64_AM::getShifterImm(AArch64_AM::LSL,
228 FirstMovkIdx * 16) });
230 // Early exit in case we only need to emit a single MOVK instruction.
231 if (SingleMovk)
232 return true;
234 // Create the second MOVK instruction.
235 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
236 AArch64_AM::getShifterImm(AArch64_AM::LSL,
237 SecondMovkIdx * 16) });
239 return true;
242 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
243 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
244 static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
245 unsigned OneChunks, unsigned ZeroChunks,
246 SmallVectorImpl<ImmInsnModel> &Insn) {
247 const unsigned Mask = 0xFFFF;
249 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
250 // more MOVK instructions to insert additional 16-bit portions into the
251 // lower bits.
252 bool isNeg = false;
254 // Use MOVN to materialize the high bits if we have more all one chunks
255 // than all zero chunks.
256 if (OneChunks > ZeroChunks) {
257 isNeg = true;
258 Imm = ~Imm;
261 unsigned FirstOpc;
262 if (BitSize == 32) {
263 Imm &= (1LL << 32) - 1;
264 FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
265 } else {
266 FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
268 unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
269 unsigned LastShift = 0; // LSL amount for last MOVK
270 if (Imm != 0) {
271 unsigned LZ = countLeadingZeros(Imm);
272 unsigned TZ = countTrailingZeros(Imm);
273 Shift = (TZ / 16) * 16;
274 LastShift = ((63 - LZ) / 16) * 16;
276 unsigned Imm16 = (Imm >> Shift) & Mask;
278 Insn.push_back({ FirstOpc, Imm16,
279 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
281 if (Shift == LastShift)
282 return;
284 // If a MOVN was used for the high bits of a negative value, flip the rest
285 // of the bits back for use with MOVK.
286 if (isNeg)
287 Imm = ~Imm;
289 unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
290 while (Shift < LastShift) {
291 Shift += 16;
292 Imm16 = (Imm >> Shift) & Mask;
293 if (Imm16 == (isNeg ? Mask : 0))
294 continue; // This 16-bit portion is already set correctly.
296 Insn.push_back({ Opc, Imm16,
297 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
301 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
302 /// real move-immediate instructions to synthesize the immediate.
303 void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize,
304 SmallVectorImpl<ImmInsnModel> &Insn) {
305 const unsigned Mask = 0xFFFF;
307 // Scan the immediate and count the number of 16-bit chunks which are either
308 // all ones or all zeros.
309 unsigned OneChunks = 0;
310 unsigned ZeroChunks = 0;
311 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
312 const unsigned Chunk = (Imm >> Shift) & Mask;
313 if (Chunk == Mask)
314 OneChunks++;
315 else if (Chunk == 0)
316 ZeroChunks++;
319 // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
320 if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
321 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
322 return;
325 // Try a single ORR.
326 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
327 uint64_t Encoding;
328 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
329 unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
330 Insn.push_back({ Opc, 0, Encoding });
331 return;
334 // One to up three instruction sequences.
336 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
337 // fastest sequence with fast literal generation.
338 if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
339 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
340 return;
343 assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
344 "MOVZ/MOVK pair");
346 // Try other two-instruction sequences.
348 // 64-bit ORR followed by MOVK.
349 // We try to construct the ORR immediate in three different ways: either we
350 // zero out the chunk which will be replaced, we fill the chunk which will
351 // be replaced with ones, or we take the bit pattern from the other half of
352 // the 64-bit immediate. This is comprehensive because of the way ORR
353 // immediates are constructed.
354 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
355 uint64_t ShiftedMask = (0xFFFFULL << Shift);
356 uint64_t ZeroChunk = UImm & ~ShiftedMask;
357 uint64_t OneChunk = UImm | ShiftedMask;
358 uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
359 uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
360 if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
361 AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
362 AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
363 Encoding)) {
364 // Create the ORR-immediate instruction.
365 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
367 // Create the MOVK instruction.
368 const unsigned Imm16 = getChunk(UImm, Shift / 16);
369 Insn.push_back({ AArch64::MOVKXi, Imm16,
370 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
371 return;
375 // FIXME: Add more two-instruction sequences.
377 // Three instruction sequences.
379 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
380 // the fastest sequence with fast literal generation. (If neither MOVK is
381 // part of a fast literal generation pair, it could be slower than the
382 // four-instruction sequence, but we won't worry about that for now.)
383 if (OneChunks || ZeroChunks) {
384 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
385 return;
388 // Check for identical 16-bit chunks within the constant and if so materialize
389 // them with a single ORR instruction. The remaining one or two 16-bit chunks
390 // will be materialized with MOVK instructions.
391 if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
392 return;
394 // Check whether the constant contains a sequence of contiguous ones, which
395 // might be interrupted by one or two chunks. If so, materialize the sequence
396 // of contiguous ones with an ORR instruction. Materialize the chunks which
397 // are either interrupting the sequence or outside of the sequence with a
398 // MOVK instruction.
399 if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
400 return;
402 // We found no possible two or three instruction sequence; use the general
403 // four-instruction sequence.
404 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);