1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AArch64ExpandImm stuff.
11 //===----------------------------------------------------------------------===//
14 #include "AArch64ExpandImm.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
18 using namespace llvm::AArch64_IMM
;
20 /// Helper function which extracts the specified 16-bit chunk from a
22 static uint64_t getChunk(uint64_t Imm
, unsigned ChunkIdx
) {
23 assert(ChunkIdx
< 4 && "Out of range chunk index specified!");
25 return (Imm
>> (ChunkIdx
* 16)) & 0xFFFF;
28 /// Check whether the given 16-bit chunk replicated to full 64-bit width
29 /// can be materialized with an ORR instruction.
30 static bool canUseOrr(uint64_t Chunk
, uint64_t &Encoding
) {
31 Chunk
= (Chunk
<< 48) | (Chunk
<< 32) | (Chunk
<< 16) | Chunk
;
33 return AArch64_AM::processLogicalImmediate(Chunk
, 64, Encoding
);
36 /// Check for identical 16-bit chunks within the constant and if so
37 /// materialize them with a single ORR instruction. The remaining one or two
38 /// 16-bit chunks will be materialized with MOVK instructions.
40 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
41 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
42 /// an ORR instruction.
43 static bool tryToreplicateChunks(uint64_t UImm
,
44 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
45 using CountMap
= DenseMap
<uint64_t, unsigned>;
49 // Scan the constant and count how often every chunk occurs.
50 for (unsigned Idx
= 0; Idx
< 4; ++Idx
)
51 ++Counts
[getChunk(UImm
, Idx
)];
53 // Traverse the chunks to find one which occurs more than once.
54 for (const auto &Chunk
: Counts
) {
55 const uint64_t ChunkVal
= Chunk
.first
;
56 const unsigned Count
= Chunk
.second
;
58 uint64_t Encoding
= 0;
60 // We are looking for chunks which have two or three instances and can be
61 // materialized with an ORR instruction.
62 if ((Count
!= 2 && Count
!= 3) || !canUseOrr(ChunkVal
, Encoding
))
65 const bool CountThree
= Count
== 3;
67 Insn
.push_back({ AArch64::ORRXri
, 0, Encoding
});
69 unsigned ShiftAmt
= 0;
71 // Find the first chunk not materialized with the ORR instruction.
72 for (; ShiftAmt
< 64; ShiftAmt
+= 16) {
73 Imm16
= (UImm
>> ShiftAmt
) & 0xFFFF;
75 if (Imm16
!= ChunkVal
)
79 // Create the first MOVK instruction.
80 Insn
.push_back({ AArch64::MOVKXi
, Imm16
,
81 AArch64_AM::getShifterImm(AArch64_AM::LSL
, ShiftAmt
) });
83 // In case we have three instances the whole constant is now materialized
88 // Find the remaining chunk which needs to be materialized.
89 for (ShiftAmt
+= 16; ShiftAmt
< 64; ShiftAmt
+= 16) {
90 Imm16
= (UImm
>> ShiftAmt
) & 0xFFFF;
92 if (Imm16
!= ChunkVal
)
95 Insn
.push_back({ AArch64::MOVKXi
, Imm16
,
96 AArch64_AM::getShifterImm(AArch64_AM::LSL
, ShiftAmt
) });
103 /// Check whether this chunk matches the pattern '1...0...'. This pattern
104 /// starts a contiguous sequence of ones if we look at the bits from the LSB
106 static bool isStartChunk(uint64_t Chunk
) {
107 if (Chunk
== 0 || Chunk
== std::numeric_limits
<uint64_t>::max())
110 return isMask_64(~Chunk
);
113 /// Check whether this chunk matches the pattern '0...1...' This pattern
114 /// ends a contiguous sequence of ones if we look at the bits from the LSB
116 static bool isEndChunk(uint64_t Chunk
) {
117 if (Chunk
== 0 || Chunk
== std::numeric_limits
<uint64_t>::max())
120 return isMask_64(Chunk
);
123 /// Clear or set all bits in the chunk at the given index.
124 static uint64_t updateImm(uint64_t Imm
, unsigned Idx
, bool Clear
) {
125 const uint64_t Mask
= 0xFFFF;
128 // Clear chunk in the immediate.
129 Imm
&= ~(Mask
<< (Idx
* 16));
131 // Set all bits in the immediate for the particular chunk.
132 Imm
|= Mask
<< (Idx
* 16);
137 /// Check whether the constant contains a sequence of contiguous ones,
138 /// which might be interrupted by one or two chunks. If so, materialize the
139 /// sequence of contiguous ones with an ORR instruction.
140 /// Materialize the chunks which are either interrupting the sequence or outside
141 /// of the sequence with a MOVK instruction.
143 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
144 /// which ends the sequence (0...1...). Then we are looking for constants which
145 /// contain at least one S and E chunk.
146 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
148 /// We are also looking for constants like |S|A|B|E| where the contiguous
149 /// sequence of ones wraps around the MSB into the LSB.
150 static bool trySequenceOfOnes(uint64_t UImm
,
151 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
152 const int NotSet
= -1;
153 const uint64_t Mask
= 0xFFFF;
155 int StartIdx
= NotSet
;
157 // Try to find the chunks which start/end a contiguous sequence of ones.
158 for (int Idx
= 0; Idx
< 4; ++Idx
) {
159 int64_t Chunk
= getChunk(UImm
, Idx
);
160 // Sign extend the 16-bit chunk to 64-bit.
161 Chunk
= (Chunk
<< 48) >> 48;
163 if (isStartChunk(Chunk
))
165 else if (isEndChunk(Chunk
))
169 // Early exit in case we can't find a start/end chunk.
170 if (StartIdx
== NotSet
|| EndIdx
== NotSet
)
173 // Outside of the contiguous sequence of ones everything needs to be zero.
174 uint64_t Outside
= 0;
175 // Chunks between the start and end chunk need to have all their bits set.
176 uint64_t Inside
= Mask
;
178 // If our contiguous sequence of ones wraps around from the MSB into the LSB,
179 // just swap indices and pretend we are materializing a contiguous sequence
180 // of zeros surrounded by a contiguous sequence of ones.
181 if (StartIdx
> EndIdx
) {
182 std::swap(StartIdx
, EndIdx
);
183 std::swap(Outside
, Inside
);
186 uint64_t OrrImm
= UImm
;
187 int FirstMovkIdx
= NotSet
;
188 int SecondMovkIdx
= NotSet
;
190 // Find out which chunks we need to patch up to obtain a contiguous sequence
192 for (int Idx
= 0; Idx
< 4; ++Idx
) {
193 const uint64_t Chunk
= getChunk(UImm
, Idx
);
195 // Check whether we are looking at a chunk which is not part of the
196 // contiguous sequence of ones.
197 if ((Idx
< StartIdx
|| EndIdx
< Idx
) && Chunk
!= Outside
) {
198 OrrImm
= updateImm(OrrImm
, Idx
, Outside
== 0);
200 // Remember the index we need to patch.
201 if (FirstMovkIdx
== NotSet
)
206 // Check whether we are looking a chunk which is part of the contiguous
208 } else if (Idx
> StartIdx
&& Idx
< EndIdx
&& Chunk
!= Inside
) {
209 OrrImm
= updateImm(OrrImm
, Idx
, Inside
!= Mask
);
211 // Remember the index we need to patch.
212 if (FirstMovkIdx
== NotSet
)
218 assert(FirstMovkIdx
!= NotSet
&& "Constant materializable with single ORR!");
220 // Create the ORR-immediate instruction.
221 uint64_t Encoding
= 0;
222 AArch64_AM::processLogicalImmediate(OrrImm
, 64, Encoding
);
223 Insn
.push_back({ AArch64::ORRXri
, 0, Encoding
});
225 const bool SingleMovk
= SecondMovkIdx
== NotSet
;
226 Insn
.push_back({ AArch64::MOVKXi
, getChunk(UImm
, FirstMovkIdx
),
227 AArch64_AM::getShifterImm(AArch64_AM::LSL
,
228 FirstMovkIdx
* 16) });
230 // Early exit in case we only need to emit a single MOVK instruction.
234 // Create the second MOVK instruction.
235 Insn
.push_back({ AArch64::MOVKXi
, getChunk(UImm
, SecondMovkIdx
),
236 AArch64_AM::getShifterImm(AArch64_AM::LSL
,
237 SecondMovkIdx
* 16) });
242 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
243 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
244 static inline void expandMOVImmSimple(uint64_t Imm
, unsigned BitSize
,
245 unsigned OneChunks
, unsigned ZeroChunks
,
246 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
247 const unsigned Mask
= 0xFFFF;
249 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
250 // more MOVK instructions to insert additional 16-bit portions into the
254 // Use MOVN to materialize the high bits if we have more all one chunks
255 // than all zero chunks.
256 if (OneChunks
> ZeroChunks
) {
263 Imm
&= (1LL << 32) - 1;
264 FirstOpc
= (isNeg
? AArch64::MOVNWi
: AArch64::MOVZWi
);
266 FirstOpc
= (isNeg
? AArch64::MOVNXi
: AArch64::MOVZXi
);
268 unsigned Shift
= 0; // LSL amount for high bits with MOVZ/MOVN
269 unsigned LastShift
= 0; // LSL amount for last MOVK
271 unsigned LZ
= countLeadingZeros(Imm
);
272 unsigned TZ
= countTrailingZeros(Imm
);
273 Shift
= (TZ
/ 16) * 16;
274 LastShift
= ((63 - LZ
) / 16) * 16;
276 unsigned Imm16
= (Imm
>> Shift
) & Mask
;
278 Insn
.push_back({ FirstOpc
, Imm16
,
279 AArch64_AM::getShifterImm(AArch64_AM::LSL
, Shift
) });
281 if (Shift
== LastShift
)
284 // If a MOVN was used for the high bits of a negative value, flip the rest
285 // of the bits back for use with MOVK.
289 unsigned Opc
= (BitSize
== 32 ? AArch64::MOVKWi
: AArch64::MOVKXi
);
290 while (Shift
< LastShift
) {
292 Imm16
= (Imm
>> Shift
) & Mask
;
293 if (Imm16
== (isNeg
? Mask
: 0))
294 continue; // This 16-bit portion is already set correctly.
296 Insn
.push_back({ Opc
, Imm16
,
297 AArch64_AM::getShifterImm(AArch64_AM::LSL
, Shift
) });
301 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
302 /// real move-immediate instructions to synthesize the immediate.
303 void AArch64_IMM::expandMOVImm(uint64_t Imm
, unsigned BitSize
,
304 SmallVectorImpl
<ImmInsnModel
> &Insn
) {
305 const unsigned Mask
= 0xFFFF;
307 // Scan the immediate and count the number of 16-bit chunks which are either
308 // all ones or all zeros.
309 unsigned OneChunks
= 0;
310 unsigned ZeroChunks
= 0;
311 for (unsigned Shift
= 0; Shift
< BitSize
; Shift
+= 16) {
312 const unsigned Chunk
= (Imm
>> Shift
) & Mask
;
319 // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
320 if ((BitSize
/ 16) - OneChunks
<= 1 || (BitSize
/ 16) - ZeroChunks
<= 1) {
321 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);
326 uint64_t UImm
= Imm
<< (64 - BitSize
) >> (64 - BitSize
);
328 if (AArch64_AM::processLogicalImmediate(UImm
, BitSize
, Encoding
)) {
329 unsigned Opc
= (BitSize
== 32 ? AArch64::ORRWri
: AArch64::ORRXri
);
330 Insn
.push_back({ Opc
, 0, Encoding
});
334 // One to up three instruction sequences.
336 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
337 // fastest sequence with fast literal generation.
338 if (OneChunks
>= (BitSize
/ 16) - 2 || ZeroChunks
>= (BitSize
/ 16) - 2) {
339 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);
343 assert(BitSize
== 64 && "All 32-bit immediates can be expanded with a"
346 // Try other two-instruction sequences.
348 // 64-bit ORR followed by MOVK.
349 // We try to construct the ORR immediate in three different ways: either we
350 // zero out the chunk which will be replaced, we fill the chunk which will
351 // be replaced with ones, or we take the bit pattern from the other half of
352 // the 64-bit immediate. This is comprehensive because of the way ORR
353 // immediates are constructed.
354 for (unsigned Shift
= 0; Shift
< BitSize
; Shift
+= 16) {
355 uint64_t ShiftedMask
= (0xFFFFULL
<< Shift
);
356 uint64_t ZeroChunk
= UImm
& ~ShiftedMask
;
357 uint64_t OneChunk
= UImm
| ShiftedMask
;
358 uint64_t RotatedImm
= (UImm
<< 32) | (UImm
>> 32);
359 uint64_t ReplicateChunk
= ZeroChunk
| (RotatedImm
& ShiftedMask
);
360 if (AArch64_AM::processLogicalImmediate(ZeroChunk
, BitSize
, Encoding
) ||
361 AArch64_AM::processLogicalImmediate(OneChunk
, BitSize
, Encoding
) ||
362 AArch64_AM::processLogicalImmediate(ReplicateChunk
, BitSize
,
364 // Create the ORR-immediate instruction.
365 Insn
.push_back({ AArch64::ORRXri
, 0, Encoding
});
367 // Create the MOVK instruction.
368 const unsigned Imm16
= getChunk(UImm
, Shift
/ 16);
369 Insn
.push_back({ AArch64::MOVKXi
, Imm16
,
370 AArch64_AM::getShifterImm(AArch64_AM::LSL
, Shift
) });
375 // FIXME: Add more two-instruction sequences.
377 // Three instruction sequences.
379 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
380 // the fastest sequence with fast literal generation. (If neither MOVK is
381 // part of a fast literal generation pair, it could be slower than the
382 // four-instruction sequence, but we won't worry about that for now.)
383 if (OneChunks
|| ZeroChunks
) {
384 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);
388 // Check for identical 16-bit chunks within the constant and if so materialize
389 // them with a single ORR instruction. The remaining one or two 16-bit chunks
390 // will be materialized with MOVK instructions.
391 if (BitSize
== 64 && tryToreplicateChunks(UImm
, Insn
))
394 // Check whether the constant contains a sequence of contiguous ones, which
395 // might be interrupted by one or two chunks. If so, materialize the sequence
396 // of contiguous ones with an ORR instruction. Materialize the chunks which
397 // are either interrupting the sequence or outside of the sequence with a
399 if (BitSize
== 64 && trySequenceOfOnes(UImm
, Insn
))
402 // We found no possible two or three instruction sequence; use the general
403 // four-instruction sequence.
404 expandMOVImmSimple(Imm
, BitSize
, OneChunks
, ZeroChunks
, Insn
);