[AMDGPU] New gfx940 mfma instructions
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64SIMDInstrOpt.cpp
blob2ef7bc83003ac658113ed8ff00253942d8b969f0
1 //
2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
3 // See https://llvm.org/LICENSE.txt for license information.
4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file contains a pass that performs optimization on SIMD instructions
9 // with high latency by splitting them into more efficient series of
10 // instructions.
12 // 1. Rewrite certain SIMD instructions with vector element due to their
13 // inefficiency on some targets.
15 // For example:
16 // fmla v0.4s, v1.4s, v2.s[1]
18 // Is rewritten into:
19 // dup v3.4s, v2.s[1]
20 // fmla v0.4s, v1.4s, v3.4s
22 // 2. Rewrite interleaved memory access instructions due to their
23 // inefficiency on some targets.
25 // For example:
26 // st2 {v0.4s, v1.4s}, addr
28 // Is rewritten into:
29 // zip1 v2.4s, v0.4s, v1.4s
30 // zip2 v3.4s, v0.4s, v1.4s
31 // stp q2, q3, addr
33 //===----------------------------------------------------------------------===//
35 #include "AArch64InstrInfo.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include <unordered_map>
54 using namespace llvm;
56 #define DEBUG_TYPE "aarch64-simdinstr-opt"
58 STATISTIC(NumModifiedInstr,
59 "Number of SIMD instructions modified");
61 #define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME \
62 "AArch64 SIMD instructions optimization pass"
64 namespace {
66 struct AArch64SIMDInstrOpt : public MachineFunctionPass {
67 static char ID;
69 const TargetInstrInfo *TII;
70 MachineRegisterInfo *MRI;
71 TargetSchedModel SchedModel;
73 // The two maps below are used to cache decisions instead of recomputing:
74 // This is used to cache instruction replacement decisions within function
75 // units and across function units.
76 std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
77 // This is used to cache the decision of whether to leave the interleaved
78 // store instructions replacement pass early or not for a particular target.
79 std::unordered_map<std::string, bool> InterlEarlyExit;
81 typedef enum {
82 VectorElem,
83 Interleave
84 } Subpass;
86 // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
87 struct InstReplInfo {
88 unsigned OrigOpc;
89 std::vector<unsigned> ReplOpc;
90 const TargetRegisterClass RC;
93 #define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
94 {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
95 #define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
96 OpcR7, OpcR8, OpcR9, RC) \
97 {OpcOrg, \
98 {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}
100 // The Instruction Replacement Table:
101 std::vector<InstReplInfo> IRT = {
102 // ST2 instructions
103 RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
104 AArch64::STPQi, AArch64::FPR128RegClass),
105 RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
106 AArch64::STPQi, AArch64::FPR128RegClass),
107 RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
108 AArch64::STPDi, AArch64::FPR64RegClass),
109 RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
110 AArch64::STPQi, AArch64::FPR128RegClass),
111 RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
112 AArch64::STPDi, AArch64::FPR64RegClass),
113 RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
114 AArch64::STPQi, AArch64::FPR128RegClass),
115 RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
116 AArch64::STPDi, AArch64::FPR64RegClass),
117 // ST4 instructions
118 RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
119 AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
120 AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
121 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
122 RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
123 AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
124 AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
125 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
126 RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
127 AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
128 AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
129 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
130 RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
131 AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
132 AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
133 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
134 RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
135 AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
136 AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
137 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
138 RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
139 AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
140 AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
141 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
142 RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
143 AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
144 AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
145 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
148 // A costly instruction is replaced in this work by N efficient instructions
149 // The maximum of N is curently 10 and it is for ST4 case.
150 static const unsigned MaxNumRepl = 10;
152 AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
153 initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
156 /// Based only on latency of instructions, determine if it is cost efficient
157 /// to replace the instruction InstDesc by the instructions stored in the
158 /// array InstDescRepl.
159 /// Return true if replacement is expected to be faster.
160 bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
161 SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
163 /// Determine if we need to exit the instruction replacement optimization
164 /// passes early. This makes sure that no compile time is spent in this pass
165 /// for targets with no need for any of these optimizations.
166 /// Return true if early exit of the pass is recommended.
167 bool shouldExitEarly(MachineFunction *MF, Subpass SP);
169 /// Check whether an equivalent DUP instruction has already been
170 /// created or not.
171 /// Return true when the DUP instruction already exists. In this case,
172 /// DestReg will point to the destination of the already created DUP.
173 bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
174 unsigned LaneNumber, unsigned *DestReg) const;
176 /// Certain SIMD instructions with vector element operand are not efficient.
177 /// Rewrite them into SIMD instructions with vector operands. This rewrite
178 /// is driven by the latency of the instructions.
179 /// Return true if the SIMD instruction is modified.
180 bool optimizeVectElement(MachineInstr &MI);
182 /// Process The REG_SEQUENCE instruction, and extract the source
183 /// operands of the ST2/4 instruction from it.
184 /// Example of such instructions.
185 /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
186 /// Return true when the instruction is processed successfully.
187 bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
188 unsigned* StRegKill, unsigned NumArg) const;
190 /// Load/Store Interleaving instructions are not always beneficial.
191 /// Replace them by ZIP instructionand classical load/store.
192 /// Return true if the SIMD instruction is modified.
193 bool optimizeLdStInterleave(MachineInstr &MI);
195 /// Return the number of useful source registers for this
196 /// instruction (2 for ST2 and 4 for ST4).
197 unsigned determineSrcReg(MachineInstr &MI) const;
199 bool runOnMachineFunction(MachineFunction &Fn) override;
201 StringRef getPassName() const override {
202 return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
206 char AArch64SIMDInstrOpt::ID = 0;
208 } // end anonymous namespace
210 INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
211 AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
213 /// Based only on latency of instructions, determine if it is cost efficient
214 /// to replace the instruction InstDesc by the instructions stored in the
215 /// array InstDescRepl.
216 /// Return true if replacement is expected to be faster.
217 bool AArch64SIMDInstrOpt::
218 shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
219 SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
220 // Check if replacement decision is already available in the cached table.
221 // if so, return it.
222 std::string Subtarget = std::string(SchedModel.getSubtargetInfo()->getCPU());
223 auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
224 auto It = SIMDInstrTable.find(InstID);
225 if (It != SIMDInstrTable.end())
226 return It->second;
228 unsigned SCIdx = InstDesc->getSchedClass();
229 const MCSchedClassDesc *SCDesc =
230 SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
232 // If a target does not define resources for the instructions
233 // of interest, then return false for no replacement.
234 const MCSchedClassDesc *SCDescRepl;
235 if (!SCDesc->isValid() || SCDesc->isVariant())
237 SIMDInstrTable[InstID] = false;
238 return false;
240 for (auto IDesc : InstDescRepl)
242 SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
243 IDesc->getSchedClass());
244 if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
246 SIMDInstrTable[InstID] = false;
247 return false;
251 // Replacement cost.
252 unsigned ReplCost = 0;
253 for (auto IDesc :InstDescRepl)
254 ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
256 if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
258 SIMDInstrTable[InstID] = true;
259 return true;
261 else
263 SIMDInstrTable[InstID] = false;
264 return false;
268 /// Determine if we need to exit this pass for a kind of instruction replacement
269 /// early. This makes sure that no compile time is spent in this pass for
270 /// targets with no need for any of these optimizations beyond performing this
271 /// check.
272 /// Return true if early exit of this pass for a kind of instruction
273 /// replacement is recommended for a target.
274 bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
275 const MCInstrDesc* OriginalMCID;
276 SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
278 switch (SP) {
279 // For this optimization, check by comparing the latency of a representative
280 // instruction to that of the replacement instructions.
281 // TODO: check for all concerned instructions.
282 case VectorElem:
283 OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
284 ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
285 ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
286 if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
287 return false;
288 break;
290 // For this optimization, check for all concerned instructions.
291 case Interleave:
292 std::string Subtarget =
293 std::string(SchedModel.getSubtargetInfo()->getCPU());
294 auto It = InterlEarlyExit.find(Subtarget);
295 if (It != InterlEarlyExit.end())
296 return It->second;
298 for (auto &I : IRT) {
299 OriginalMCID = &TII->get(I.OrigOpc);
300 for (auto &Repl : I.ReplOpc)
301 ReplInstrMCID.push_back(&TII->get(Repl));
302 if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
303 InterlEarlyExit[Subtarget] = false;
304 return false;
306 ReplInstrMCID.clear();
308 InterlEarlyExit[Subtarget] = true;
309 break;
312 return true;
315 /// Check whether an equivalent DUP instruction has already been
316 /// created or not.
317 /// Return true when the DUP instruction already exists. In this case,
318 /// DestReg will point to the destination of the already created DUP.
319 bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
320 unsigned SrcReg, unsigned LaneNumber,
321 unsigned *DestReg) const {
322 for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
323 MII != MIE;) {
324 MII--;
325 MachineInstr *CurrentMI = &*MII;
327 if (CurrentMI->getOpcode() == DupOpcode &&
328 CurrentMI->getNumOperands() == 3 &&
329 CurrentMI->getOperand(1).getReg() == SrcReg &&
330 CurrentMI->getOperand(2).getImm() == LaneNumber) {
331 *DestReg = CurrentMI->getOperand(0).getReg();
332 return true;
336 return false;
339 /// Certain SIMD instructions with vector element operand are not efficient.
340 /// Rewrite them into SIMD instructions with vector operands. This rewrite
341 /// is driven by the latency of the instructions.
342 /// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
343 /// and FMULX and hence they are hardcoded.
345 /// For example:
346 /// fmla v0.4s, v1.4s, v2.s[1]
348 /// Is rewritten into
349 /// dup v3.4s, v2.s[1] // DUP not necessary if redundant
350 /// fmla v0.4s, v1.4s, v3.4s
352 /// Return true if the SIMD instruction is modified.
353 bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
354 const MCInstrDesc *MulMCID, *DupMCID;
355 const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
357 switch (MI.getOpcode()) {
358 default:
359 return false;
361 // 4X32 instructions
362 case AArch64::FMLAv4i32_indexed:
363 DupMCID = &TII->get(AArch64::DUPv4i32lane);
364 MulMCID = &TII->get(AArch64::FMLAv4f32);
365 break;
366 case AArch64::FMLSv4i32_indexed:
367 DupMCID = &TII->get(AArch64::DUPv4i32lane);
368 MulMCID = &TII->get(AArch64::FMLSv4f32);
369 break;
370 case AArch64::FMULXv4i32_indexed:
371 DupMCID = &TII->get(AArch64::DUPv4i32lane);
372 MulMCID = &TII->get(AArch64::FMULXv4f32);
373 break;
374 case AArch64::FMULv4i32_indexed:
375 DupMCID = &TII->get(AArch64::DUPv4i32lane);
376 MulMCID = &TII->get(AArch64::FMULv4f32);
377 break;
379 // 2X64 instructions
380 case AArch64::FMLAv2i64_indexed:
381 DupMCID = &TII->get(AArch64::DUPv2i64lane);
382 MulMCID = &TII->get(AArch64::FMLAv2f64);
383 break;
384 case AArch64::FMLSv2i64_indexed:
385 DupMCID = &TII->get(AArch64::DUPv2i64lane);
386 MulMCID = &TII->get(AArch64::FMLSv2f64);
387 break;
388 case AArch64::FMULXv2i64_indexed:
389 DupMCID = &TII->get(AArch64::DUPv2i64lane);
390 MulMCID = &TII->get(AArch64::FMULXv2f64);
391 break;
392 case AArch64::FMULv2i64_indexed:
393 DupMCID = &TII->get(AArch64::DUPv2i64lane);
394 MulMCID = &TII->get(AArch64::FMULv2f64);
395 break;
397 // 2X32 instructions
398 case AArch64::FMLAv2i32_indexed:
399 RC = &AArch64::FPR64RegClass;
400 DupMCID = &TII->get(AArch64::DUPv2i32lane);
401 MulMCID = &TII->get(AArch64::FMLAv2f32);
402 break;
403 case AArch64::FMLSv2i32_indexed:
404 RC = &AArch64::FPR64RegClass;
405 DupMCID = &TII->get(AArch64::DUPv2i32lane);
406 MulMCID = &TII->get(AArch64::FMLSv2f32);
407 break;
408 case AArch64::FMULXv2i32_indexed:
409 RC = &AArch64::FPR64RegClass;
410 DupMCID = &TII->get(AArch64::DUPv2i32lane);
411 MulMCID = &TII->get(AArch64::FMULXv2f32);
412 break;
413 case AArch64::FMULv2i32_indexed:
414 RC = &AArch64::FPR64RegClass;
415 DupMCID = &TII->get(AArch64::DUPv2i32lane);
416 MulMCID = &TII->get(AArch64::FMULv2f32);
417 break;
420 SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
421 ReplInstrMCID.push_back(DupMCID);
422 ReplInstrMCID.push_back(MulMCID);
423 if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
424 ReplInstrMCID))
425 return false;
427 const DebugLoc &DL = MI.getDebugLoc();
428 MachineBasicBlock &MBB = *MI.getParent();
429 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
431 // Get the operands of the current SIMD arithmetic instruction.
432 Register MulDest = MI.getOperand(0).getReg();
433 Register SrcReg0 = MI.getOperand(1).getReg();
434 unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
435 Register SrcReg1 = MI.getOperand(2).getReg();
436 unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
437 unsigned DupDest;
439 // Instructions of interest have either 4 or 5 operands.
440 if (MI.getNumOperands() == 5) {
441 Register SrcReg2 = MI.getOperand(3).getReg();
442 unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
443 unsigned LaneNumber = MI.getOperand(4).getImm();
444 // Create a new DUP instruction. Note that if an equivalent DUP instruction
445 // has already been created before, then use that one instead of creating
446 // a new one.
447 if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
448 DupDest = MRI.createVirtualRegister(RC);
449 BuildMI(MBB, MI, DL, *DupMCID, DupDest)
450 .addReg(SrcReg2, Src2IsKill)
451 .addImm(LaneNumber);
453 BuildMI(MBB, MI, DL, *MulMCID, MulDest)
454 .addReg(SrcReg0, Src0IsKill)
455 .addReg(SrcReg1, Src1IsKill)
456 .addReg(DupDest, Src2IsKill);
457 } else if (MI.getNumOperands() == 4) {
458 unsigned LaneNumber = MI.getOperand(3).getImm();
459 if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
460 DupDest = MRI.createVirtualRegister(RC);
461 BuildMI(MBB, MI, DL, *DupMCID, DupDest)
462 .addReg(SrcReg1, Src1IsKill)
463 .addImm(LaneNumber);
465 BuildMI(MBB, MI, DL, *MulMCID, MulDest)
466 .addReg(SrcReg0, Src0IsKill)
467 .addReg(DupDest, Src1IsKill);
468 } else {
469 return false;
472 ++NumModifiedInstr;
473 return true;
476 /// Load/Store Interleaving instructions are not always beneficial.
477 /// Replace them by ZIP instructions and classical load/store.
479 /// For example:
480 /// st2 {v0.4s, v1.4s}, addr
482 /// Is rewritten into:
483 /// zip1 v2.4s, v0.4s, v1.4s
484 /// zip2 v3.4s, v0.4s, v1.4s
485 /// stp q2, q3, addr
487 /// For example:
488 /// st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
490 /// Is rewritten into:
491 /// zip1 v4.4s, v0.4s, v2.4s
492 /// zip2 v5.4s, v0.4s, v2.4s
493 /// zip1 v6.4s, v1.4s, v3.4s
494 /// zip2 v7.4s, v1.4s, v3.4s
495 /// zip1 v8.4s, v4.4s, v6.4s
496 /// zip2 v9.4s, v4.4s, v6.4s
497 /// zip1 v10.4s, v5.4s, v7.4s
498 /// zip2 v11.4s, v5.4s, v7.4s
499 /// stp q8, q9, addr
500 /// stp q10, q11, addr+32
502 /// Currently only instructions related to ST2 and ST4 are considered.
503 /// Other may be added later.
504 /// Return true if the SIMD instruction is modified.
505 bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
507 unsigned SeqReg, AddrReg;
508 unsigned StReg[4], StRegKill[4];
509 MachineInstr *DefiningMI;
510 const DebugLoc &DL = MI.getDebugLoc();
511 MachineBasicBlock &MBB = *MI.getParent();
512 SmallVector<unsigned, MaxNumRepl> ZipDest;
513 SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
515 // If current instruction matches any of the rewriting rules, then
516 // gather information about parameters of the new instructions.
517 bool Match = false;
518 for (auto &I : IRT) {
519 if (MI.getOpcode() == I.OrigOpc) {
520 SeqReg = MI.getOperand(0).getReg();
521 AddrReg = MI.getOperand(1).getReg();
522 DefiningMI = MRI->getUniqueVRegDef(SeqReg);
523 unsigned NumReg = determineSrcReg(MI);
524 if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
525 return false;
527 for (auto &Repl : I.ReplOpc) {
528 ReplInstrMCID.push_back(&TII->get(Repl));
529 // Generate destination registers but only for non-store instruction.
530 if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
531 ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
533 Match = true;
534 break;
538 if (!Match)
539 return false;
541 // Determine if it is profitable to replace MI by the series of instructions
542 // represented in ReplInstrMCID.
543 if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
544 ReplInstrMCID))
545 return false;
547 // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
548 // this point, the code generation is hardcoded and does not rely on the IRT
549 // table used above given that code generation for ST2 replacement is somewhat
550 // different than for ST4 replacement. We could have added more info into the
551 // table related to how we build new instructions but we may be adding more
552 // complexity with that).
553 switch (MI.getOpcode()) {
554 default:
555 return false;
557 case AArch64::ST2Twov16b:
558 case AArch64::ST2Twov8b:
559 case AArch64::ST2Twov8h:
560 case AArch64::ST2Twov4h:
561 case AArch64::ST2Twov4s:
562 case AArch64::ST2Twov2s:
563 case AArch64::ST2Twov2d:
564 // ZIP instructions
565 BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
566 .addReg(StReg[0])
567 .addReg(StReg[1]);
568 BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
569 .addReg(StReg[0], StRegKill[0])
570 .addReg(StReg[1], StRegKill[1]);
571 // STP instructions
572 BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
573 .addReg(ZipDest[0])
574 .addReg(ZipDest[1])
575 .addReg(AddrReg)
576 .addImm(0);
577 break;
579 case AArch64::ST4Fourv16b:
580 case AArch64::ST4Fourv8b:
581 case AArch64::ST4Fourv8h:
582 case AArch64::ST4Fourv4h:
583 case AArch64::ST4Fourv4s:
584 case AArch64::ST4Fourv2s:
585 case AArch64::ST4Fourv2d:
586 // ZIP instructions
587 BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
588 .addReg(StReg[0])
589 .addReg(StReg[2]);
590 BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
591 .addReg(StReg[0], StRegKill[0])
592 .addReg(StReg[2], StRegKill[2]);
593 BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
594 .addReg(StReg[1])
595 .addReg(StReg[3]);
596 BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
597 .addReg(StReg[1], StRegKill[1])
598 .addReg(StReg[3], StRegKill[3]);
599 BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
600 .addReg(ZipDest[0])
601 .addReg(ZipDest[2]);
602 BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
603 .addReg(ZipDest[0])
604 .addReg(ZipDest[2]);
605 BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
606 .addReg(ZipDest[1])
607 .addReg(ZipDest[3]);
608 BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
609 .addReg(ZipDest[1])
610 .addReg(ZipDest[3]);
611 // stp instructions
612 BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
613 .addReg(ZipDest[4])
614 .addReg(ZipDest[5])
615 .addReg(AddrReg)
616 .addImm(0);
617 BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
618 .addReg(ZipDest[6])
619 .addReg(ZipDest[7])
620 .addReg(AddrReg)
621 .addImm(2);
622 break;
625 ++NumModifiedInstr;
626 return true;
629 /// Process The REG_SEQUENCE instruction, and extract the source
630 /// operands of the ST2/4 instruction from it.
631 /// Example of such instruction.
632 /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
633 /// Return true when the instruction is processed successfully.
634 bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
635 unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
636 assert(DefiningMI != nullptr);
637 if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
638 return false;
640 for (unsigned i=0; i<NumArg; i++) {
641 StReg[i] = DefiningMI->getOperand(2*i+1).getReg();
642 StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
644 // Validation check for the other arguments.
645 if (DefiningMI->getOperand(2*i+2).isImm()) {
646 switch (DefiningMI->getOperand(2*i+2).getImm()) {
647 default:
648 return false;
650 case AArch64::dsub0:
651 case AArch64::dsub1:
652 case AArch64::dsub2:
653 case AArch64::dsub3:
654 case AArch64::qsub0:
655 case AArch64::qsub1:
656 case AArch64::qsub2:
657 case AArch64::qsub3:
658 break;
661 else
662 return false;
664 return true;
667 /// Return the number of useful source registers for this instruction
668 /// (2 for ST2 and 4 for ST4).
669 unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
670 switch (MI.getOpcode()) {
671 default:
672 llvm_unreachable("Unsupported instruction for this pass");
674 case AArch64::ST2Twov16b:
675 case AArch64::ST2Twov8b:
676 case AArch64::ST2Twov8h:
677 case AArch64::ST2Twov4h:
678 case AArch64::ST2Twov4s:
679 case AArch64::ST2Twov2s:
680 case AArch64::ST2Twov2d:
681 return 2;
683 case AArch64::ST4Fourv16b:
684 case AArch64::ST4Fourv8b:
685 case AArch64::ST4Fourv8h:
686 case AArch64::ST4Fourv4h:
687 case AArch64::ST4Fourv4s:
688 case AArch64::ST4Fourv2s:
689 case AArch64::ST4Fourv2d:
690 return 4;
694 bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
695 if (skipFunction(MF.getFunction()))
696 return false;
698 TII = MF.getSubtarget().getInstrInfo();
699 MRI = &MF.getRegInfo();
700 const TargetSubtargetInfo &ST = MF.getSubtarget();
701 const AArch64InstrInfo *AAII =
702 static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
703 if (!AAII)
704 return false;
705 SchedModel.init(&ST);
706 if (!SchedModel.hasInstrSchedModel())
707 return false;
709 bool Changed = false;
710 for (auto OptimizationKind : {VectorElem, Interleave}) {
711 if (!shouldExitEarly(&MF, OptimizationKind)) {
712 SmallVector<MachineInstr *, 8> RemoveMIs;
713 for (MachineBasicBlock &MBB : MF) {
714 for (MachineInstr &MI : MBB) {
715 bool InstRewrite;
716 if (OptimizationKind == VectorElem)
717 InstRewrite = optimizeVectElement(MI) ;
718 else
719 InstRewrite = optimizeLdStInterleave(MI);
720 if (InstRewrite) {
721 // Add MI to the list of instructions to be removed given that it
722 // has been replaced.
723 RemoveMIs.push_back(&MI);
724 Changed = true;
728 for (MachineInstr *MI : RemoveMIs)
729 MI->eraseFromParent();
733 return Changed;
736 /// Returns an instance of the high cost ASIMD instruction replacement
737 /// optimization pass.
738 FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
739 return new AArch64SIMDInstrOpt();