[AMDGPU] New gfx940 mfma instructions
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonVLIWPacketizer.cpp
blobe9b658d18175df60f013bb2006b0c6d46d065fdb
1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
17 //===----------------------------------------------------------------------===//
19 #include "HexagonVLIWPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
54 using namespace llvm;
56 #define DEBUG_TYPE "packets"
58 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
59 cl::ZeroOrMore, cl::init(false),
60 cl::desc("Disable Hexagon packetizer pass"));
62 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
63 cl::ZeroOrMore, cl::init(true),
64 cl::desc("Allow slot1 store and slot0 load"));
66 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
67 cl::ZeroOrMore, cl::Hidden, cl::init(true),
68 cl::desc("Allow non-solo packetization of volatile memory references"));
70 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
71 cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));
73 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
74 cl::init(false), cl::Hidden, cl::ZeroOrMore,
75 cl::desc("Disable vector double new-value-stores"));
77 extern cl::opt<bool> ScheduleInlineAsm;
79 namespace llvm {
81 FunctionPass *createHexagonPacketizer(bool Minimal);
82 void initializeHexagonPacketizerPass(PassRegistry&);
84 } // end namespace llvm
86 namespace {
88 class HexagonPacketizer : public MachineFunctionPass {
89 public:
90 static char ID;
92 HexagonPacketizer(bool Min = false)
93 : MachineFunctionPass(ID), Minimal(Min) {}
95 void getAnalysisUsage(AnalysisUsage &AU) const override {
96 AU.setPreservesCFG();
97 AU.addRequired<AAResultsWrapperPass>();
98 AU.addRequired<MachineBranchProbabilityInfo>();
99 AU.addRequired<MachineDominatorTree>();
100 AU.addRequired<MachineLoopInfo>();
101 AU.addPreserved<MachineDominatorTree>();
102 AU.addPreserved<MachineLoopInfo>();
103 MachineFunctionPass::getAnalysisUsage(AU);
106 StringRef getPassName() const override { return "Hexagon Packetizer"; }
107 bool runOnMachineFunction(MachineFunction &Fn) override;
109 MachineFunctionProperties getRequiredProperties() const override {
110 return MachineFunctionProperties().set(
111 MachineFunctionProperties::Property::NoVRegs);
114 private:
115 const HexagonInstrInfo *HII = nullptr;
116 const HexagonRegisterInfo *HRI = nullptr;
117 const bool Minimal = false;
120 } // end anonymous namespace
122 char HexagonPacketizer::ID = 0;
124 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
125 "Hexagon Packetizer", false, false)
126 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
129 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
130 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
131 "Hexagon Packetizer", false, false)
133 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
134 MachineLoopInfo &MLI, AAResults *AA,
135 const MachineBranchProbabilityInfo *MBPI, bool Minimal)
136 : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
137 Minimal(Minimal) {
138 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
139 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
141 addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
142 addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
143 addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
146 // Check if FirstI modifies a register that SecondI reads.
147 static bool hasWriteToReadDep(const MachineInstr &FirstI,
148 const MachineInstr &SecondI,
149 const TargetRegisterInfo *TRI) {
150 for (auto &MO : FirstI.operands()) {
151 if (!MO.isReg() || !MO.isDef())
152 continue;
153 Register R = MO.getReg();
154 if (SecondI.readsRegister(R, TRI))
155 return true;
157 return false;
161 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
162 MachineBasicBlock::iterator BundleIt, bool Before) {
163 MachineBasicBlock::instr_iterator InsertPt;
164 if (Before)
165 InsertPt = BundleIt.getInstrIterator();
166 else
167 InsertPt = std::next(BundleIt).getInstrIterator();
169 MachineBasicBlock &B = *MI.getParent();
170 // The instruction should at least be bundled with the preceding instruction
171 // (there will always be one, i.e. BUNDLE, if nothing else).
172 assert(MI.isBundledWithPred());
173 if (MI.isBundledWithSucc()) {
174 MI.clearFlag(MachineInstr::BundledSucc);
175 MI.clearFlag(MachineInstr::BundledPred);
176 } else {
177 // If it's not bundled with the successor (i.e. it is the last one
178 // in the bundle), then we can simply unbundle it from the predecessor,
179 // which will take care of updating the predecessor's flag.
180 MI.unbundleFromPred();
182 B.splice(InsertPt, &B, MI.getIterator());
184 // Get the size of the bundle without asserting.
185 MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
186 MachineBasicBlock::const_instr_iterator E = B.instr_end();
187 unsigned Size = 0;
188 for (++I; I != E && I->isBundledWithPred(); ++I)
189 ++Size;
191 // If there are still two or more instructions, then there is nothing
192 // else to be done.
193 if (Size > 1)
194 return BundleIt;
196 // Otherwise, extract the single instruction out and delete the bundle.
197 MachineBasicBlock::iterator NextIt = std::next(BundleIt);
198 MachineInstr &SingleI = *BundleIt->getNextNode();
199 SingleI.unbundleFromPred();
200 assert(!SingleI.isBundledWithSucc());
201 BundleIt->eraseFromParent();
202 return NextIt;
205 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
206 // FIXME: This pass causes verification failures.
207 MF.getProperties().set(
208 MachineFunctionProperties::Property::FailsVerification);
210 auto &HST = MF.getSubtarget<HexagonSubtarget>();
211 HII = HST.getInstrInfo();
212 HRI = HST.getRegisterInfo();
213 auto &MLI = getAnalysis<MachineLoopInfo>();
214 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
215 auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
217 if (EnableGenAllInsnClass)
218 HII->genAllInsnTimingClasses(MF);
220 // Instantiate the packetizer.
221 bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
222 skipFunction(MF.getFunction());
223 HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
225 // DFA state table should not be empty.
226 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
228 // Loop over all basic blocks and remove KILL pseudo-instructions
229 // These instructions confuse the dependence analysis. Consider:
230 // D0 = ... (Insn 0)
231 // R0 = KILL R0, D0 (Insn 1)
232 // R0 = ... (Insn 2)
233 // Here, Insn 1 will result in the dependence graph not emitting an output
234 // dependence between Insn 0 and Insn 2. This can lead to incorrect
235 // packetization
236 for (MachineBasicBlock &MB : MF) {
237 for (MachineInstr &MI : llvm::make_early_inc_range(MB))
238 if (MI.isKill())
239 MB.erase(&MI);
242 // TinyCore with Duplexes: Translate to big-instructions.
243 if (HST.isTinyCoreWithDuplex())
244 HII->translateInstrsForDup(MF, true);
246 // Loop over all of the basic blocks.
247 for (auto &MB : MF) {
248 auto Begin = MB.begin(), End = MB.end();
249 while (Begin != End) {
250 // Find the first non-boundary starting from the end of the last
251 // scheduling region.
252 MachineBasicBlock::iterator RB = Begin;
253 while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
254 ++RB;
255 // Find the first boundary starting from the beginning of the new
256 // region.
257 MachineBasicBlock::iterator RE = RB;
258 while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
259 ++RE;
260 // Add the scheduling boundary if it's not block end.
261 if (RE != End)
262 ++RE;
263 // If RB == End, then RE == End.
264 if (RB != End)
265 Packetizer.PacketizeMIs(&MB, RB, RE);
267 Begin = RE;
271 // TinyCore with Duplexes: Translate to tiny-instructions.
272 if (HST.isTinyCoreWithDuplex())
273 HII->translateInstrsForDup(MF, false);
275 Packetizer.unpacketizeSoloInstrs(MF);
276 return true;
279 // Reserve resources for a constant extender. Trigger an assertion if the
280 // reservation fails.
281 void HexagonPacketizerList::reserveResourcesForConstExt() {
282 if (!tryAllocateResourcesForConstExt(true))
283 llvm_unreachable("Resources not available");
286 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
287 return tryAllocateResourcesForConstExt(false);
290 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
291 // return true, otherwise, return false.
292 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
293 auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
294 bool Avail = ResourceTracker->canReserveResources(*ExtMI);
295 if (Reserve && Avail)
296 ResourceTracker->reserveResources(*ExtMI);
297 MF.deleteMachineInstr(ExtMI);
298 return Avail;
301 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
302 SDep::Kind DepType, unsigned DepReg) {
303 // Check for LR dependence.
304 if (DepReg == HRI->getRARegister())
305 return true;
307 if (HII->isDeallocRet(MI))
308 if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
309 return true;
311 // Call-like instructions can be packetized with preceding instructions
312 // that define registers implicitly used or modified by the call. Explicit
313 // uses are still prohibited, as in the case of indirect calls:
314 // r0 = ...
315 // J2_jumpr r0
316 if (DepType == SDep::Data) {
317 for (const MachineOperand &MO : MI.operands())
318 if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
319 return true;
322 return false;
325 static bool isRegDependence(const SDep::Kind DepType) {
326 return DepType == SDep::Data || DepType == SDep::Anti ||
327 DepType == SDep::Output;
330 static bool isDirectJump(const MachineInstr &MI) {
331 return MI.getOpcode() == Hexagon::J2_jump;
334 static bool isSchedBarrier(const MachineInstr &MI) {
335 switch (MI.getOpcode()) {
336 case Hexagon::Y2_barrier:
337 return true;
339 return false;
342 static bool isControlFlow(const MachineInstr &MI) {
343 return MI.getDesc().isTerminator() || MI.getDesc().isCall();
346 /// Returns true if the instruction modifies a callee-saved register.
347 static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
348 const TargetRegisterInfo *TRI) {
349 const MachineFunction &MF = *MI.getParent()->getParent();
350 for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
351 if (MI.modifiesRegister(*CSR, TRI))
352 return true;
353 return false;
356 // Returns true if an instruction can be promoted to .new predicate or
357 // new-value store.
358 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
359 const TargetRegisterClass *NewRC) {
360 // Vector stores can be predicated, and can be new-value stores, but
361 // they cannot be predicated on a .new predicate value.
362 if (NewRC == &Hexagon::PredRegsRegClass) {
363 if (HII->isHVXVec(MI) && MI.mayStore())
364 return false;
365 return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
367 // If the class is not PredRegs, it could only apply to new-value stores.
368 return HII->mayBeNewStore(MI);
371 // Promote an instructiont to its .cur form.
372 // At this time, we have already made a call to canPromoteToDotCur and made
373 // sure that it can *indeed* be promoted.
374 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
375 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
376 const TargetRegisterClass* RC) {
377 assert(DepType == SDep::Data);
378 int CurOpcode = HII->getDotCurOp(MI);
379 MI.setDesc(HII->get(CurOpcode));
380 return true;
383 void HexagonPacketizerList::cleanUpDotCur() {
384 MachineInstr *MI = nullptr;
385 for (auto BI : CurrentPacketMIs) {
386 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
387 if (HII->isDotCurInst(*BI)) {
388 MI = BI;
389 continue;
391 if (MI) {
392 for (auto &MO : BI->operands())
393 if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
394 return;
397 if (!MI)
398 return;
399 // We did not find a use of the CUR, so de-cur it.
400 MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
401 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
404 // Check to see if an instruction can be dot cur.
405 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
406 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
407 const TargetRegisterClass *RC) {
408 if (!HII->isHVXVec(MI))
409 return false;
410 if (!HII->isHVXVec(*MII))
411 return false;
413 // Already a dot new instruction.
414 if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
415 return false;
417 if (!HII->mayBeCurLoad(MI))
418 return false;
420 // The "cur value" cannot come from inline asm.
421 if (PacketSU->getInstr()->isInlineAsm())
422 return false;
424 // Make sure candidate instruction uses cur.
425 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
426 dbgs() << "in packet\n";);
427 MachineInstr &MJ = *MII;
428 LLVM_DEBUG({
429 dbgs() << "Checking CUR against ";
430 MJ.dump();
432 Register DestReg = MI.getOperand(0).getReg();
433 bool FoundMatch = false;
434 for (auto &MO : MJ.operands())
435 if (MO.isReg() && MO.getReg() == DestReg)
436 FoundMatch = true;
437 if (!FoundMatch)
438 return false;
440 // Check for existing uses of a vector register within the packet which
441 // would be affected by converting a vector load into .cur formt.
442 for (auto BI : CurrentPacketMIs) {
443 LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
444 if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
445 return false;
448 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
449 // We can convert the opcode into a .cur.
450 return true;
453 // Promote an instruction to its .new form. At this time, we have already
454 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
455 // promoted.
456 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
457 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
458 const TargetRegisterClass* RC) {
459 assert(DepType == SDep::Data);
460 int NewOpcode;
461 if (RC == &Hexagon::PredRegsRegClass)
462 NewOpcode = HII->getDotNewPredOp(MI, MBPI);
463 else
464 NewOpcode = HII->getDotNewOp(MI);
465 MI.setDesc(HII->get(NewOpcode));
466 return true;
469 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
470 int NewOpcode = HII->getDotOldOp(MI);
471 MI.setDesc(HII->get(NewOpcode));
472 return true;
475 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
476 unsigned Opc = MI.getOpcode();
477 switch (Opc) {
478 case Hexagon::S2_storerd_io:
479 case Hexagon::S2_storeri_io:
480 case Hexagon::S2_storerh_io:
481 case Hexagon::S2_storerb_io:
482 break;
483 default:
484 llvm_unreachable("Unexpected instruction");
486 unsigned FrameSize = MF.getFrameInfo().getStackSize();
487 MachineOperand &Off = MI.getOperand(1);
488 int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
489 if (HII->isValidOffset(Opc, NewOff, HRI)) {
490 Off.setImm(NewOff);
491 return true;
493 return false;
496 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
497 unsigned Opc = MI.getOpcode();
498 switch (Opc) {
499 case Hexagon::S2_storerd_io:
500 case Hexagon::S2_storeri_io:
501 case Hexagon::S2_storerh_io:
502 case Hexagon::S2_storerb_io:
503 break;
504 default:
505 llvm_unreachable("Unexpected instruction");
507 unsigned FrameSize = MF.getFrameInfo().getStackSize();
508 MachineOperand &Off = MI.getOperand(1);
509 Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
512 /// Return true if we can update the offset in MI so that MI and MJ
513 /// can be packetized together.
514 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
515 assert(SUI->getInstr() && SUJ->getInstr());
516 MachineInstr &MI = *SUI->getInstr();
517 MachineInstr &MJ = *SUJ->getInstr();
519 unsigned BPI, OPI;
520 if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
521 return false;
522 unsigned BPJ, OPJ;
523 if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
524 return false;
525 Register Reg = MI.getOperand(BPI).getReg();
526 if (Reg != MJ.getOperand(BPJ).getReg())
527 return false;
528 // Make sure that the dependences do not restrict adding MI to the packet.
529 // That is, ignore anti dependences, and make sure the only data dependence
530 // involves the specific register.
531 for (const auto &PI : SUI->Preds)
532 if (PI.getKind() != SDep::Anti &&
533 (PI.getKind() != SDep::Data || PI.getReg() != Reg))
534 return false;
535 int Incr;
536 if (!HII->getIncrementValue(MJ, Incr))
537 return false;
539 int64_t Offset = MI.getOperand(OPI).getImm();
540 if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
541 return false;
543 MI.getOperand(OPI).setImm(Offset + Incr);
544 ChangedOffset = Offset;
545 return true;
548 /// Undo the changed offset. This is needed if the instruction cannot be
549 /// added to the current packet due to a different instruction.
550 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
551 unsigned BP, OP;
552 if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
553 llvm_unreachable("Unable to find base and offset operands.");
554 MI.getOperand(OP).setImm(ChangedOffset);
557 enum PredicateKind {
558 PK_False,
559 PK_True,
560 PK_Unknown
563 /// Returns true if an instruction is predicated on p0 and false if it's
564 /// predicated on !p0.
565 static PredicateKind getPredicateSense(const MachineInstr &MI,
566 const HexagonInstrInfo *HII) {
567 if (!HII->isPredicated(MI))
568 return PK_Unknown;
569 if (HII->isPredicatedTrue(MI))
570 return PK_True;
571 return PK_False;
574 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
575 const HexagonInstrInfo *HII) {
576 assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
577 #ifndef NDEBUG
578 // Post Increment means duplicates. Use dense map to find duplicates in the
579 // list. Caution: Densemap initializes with the minimum of 64 buckets,
580 // whereas there are at most 5 operands in the post increment.
581 DenseSet<unsigned> DefRegsSet;
582 for (auto &MO : MI.operands())
583 if (MO.isReg() && MO.isDef())
584 DefRegsSet.insert(MO.getReg());
586 for (auto &MO : MI.operands())
587 if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
588 return MO;
589 #else
590 if (MI.mayLoad()) {
591 const MachineOperand &Op1 = MI.getOperand(1);
592 // The 2nd operand is always the post increment operand in load.
593 assert(Op1.isReg() && "Post increment operand has be to a register.");
594 return Op1;
596 if (MI.getDesc().mayStore()) {
597 const MachineOperand &Op0 = MI.getOperand(0);
598 // The 1st operand is always the post increment operand in store.
599 assert(Op0.isReg() && "Post increment operand has be to a register.");
600 return Op0;
602 #endif
603 // we should never come here.
604 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
607 // Get the value being stored.
608 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
609 // value being stored is always the last operand.
610 return MI.getOperand(MI.getNumOperands()-1);
613 static bool isLoadAbsSet(const MachineInstr &MI) {
614 unsigned Opc = MI.getOpcode();
615 switch (Opc) {
616 case Hexagon::L4_loadrd_ap:
617 case Hexagon::L4_loadrb_ap:
618 case Hexagon::L4_loadrh_ap:
619 case Hexagon::L4_loadrub_ap:
620 case Hexagon::L4_loadruh_ap:
621 case Hexagon::L4_loadri_ap:
622 return true;
624 return false;
627 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
628 assert(isLoadAbsSet(MI));
629 return MI.getOperand(1);
632 // Can be new value store?
633 // Following restrictions are to be respected in convert a store into
634 // a new value store.
635 // 1. If an instruction uses auto-increment, its address register cannot
636 // be a new-value register. Arch Spec 5.4.2.1
637 // 2. If an instruction uses absolute-set addressing mode, its address
638 // register cannot be a new-value register. Arch Spec 5.4.2.1.
639 // 3. If an instruction produces a 64-bit result, its registers cannot be used
640 // as new-value registers. Arch Spec 5.4.2.2.
641 // 4. If the instruction that sets the new-value register is conditional, then
642 // the instruction that uses the new-value register must also be conditional,
643 // and both must always have their predicates evaluate identically.
644 // Arch Spec 5.4.2.3.
645 // 5. There is an implied restriction that a packet cannot have another store,
646 // if there is a new value store in the packet. Corollary: if there is
647 // already a store in a packet, there can not be a new value store.
648 // Arch Spec: 3.4.4.2
649 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
650 const MachineInstr &PacketMI, unsigned DepReg) {
651 // Make sure we are looking at the store, that can be promoted.
652 if (!HII->mayBeNewStore(MI))
653 return false;
655 // Make sure there is dependency and can be new value'd.
656 const MachineOperand &Val = getStoreValueOperand(MI);
657 if (Val.isReg() && Val.getReg() != DepReg)
658 return false;
660 const MCInstrDesc& MCID = PacketMI.getDesc();
662 // First operand is always the result.
663 const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
664 // Double regs can not feed into new value store: PRM section: 5.4.2.2.
665 if (PacketRC == &Hexagon::DoubleRegsRegClass)
666 return false;
668 // New-value stores are of class NV (slot 0), dual stores require class ST
669 // in slot 0 (PRM 5.5).
670 for (auto I : CurrentPacketMIs) {
671 SUnit *PacketSU = MIToSUnit.find(I)->second;
672 if (PacketSU->getInstr()->mayStore())
673 return false;
676 // Make sure it's NOT the post increment register that we are going to
677 // new value.
678 if (HII->isPostIncrement(MI) &&
679 getPostIncrementOperand(MI, HII).getReg() == DepReg) {
680 return false;
683 if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
684 getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
685 // If source is post_inc, or absolute-set addressing, it can not feed
686 // into new value store
687 // r3 = memw(r2++#4)
688 // memw(r30 + #-1404) = r2.new -> can not be new value store
689 // arch spec section: 5.4.2.1.
690 return false;
693 if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
694 return false;
696 // If the source that feeds the store is predicated, new value store must
697 // also be predicated.
698 if (HII->isPredicated(PacketMI)) {
699 if (!HII->isPredicated(MI))
700 return false;
702 // Check to make sure that they both will have their predicates
703 // evaluate identically.
704 unsigned predRegNumSrc = 0;
705 unsigned predRegNumDst = 0;
706 const TargetRegisterClass* predRegClass = nullptr;
708 // Get predicate register used in the source instruction.
709 for (auto &MO : PacketMI.operands()) {
710 if (!MO.isReg())
711 continue;
712 predRegNumSrc = MO.getReg();
713 predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
714 if (predRegClass == &Hexagon::PredRegsRegClass)
715 break;
717 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
718 "predicate register not found in a predicated PacketMI instruction");
720 // Get predicate register used in new-value store instruction.
721 for (auto &MO : MI.operands()) {
722 if (!MO.isReg())
723 continue;
724 predRegNumDst = MO.getReg();
725 predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
726 if (predRegClass == &Hexagon::PredRegsRegClass)
727 break;
729 assert((predRegClass == &Hexagon::PredRegsRegClass) &&
730 "predicate register not found in a predicated MI instruction");
732 // New-value register producer and user (store) need to satisfy these
733 // constraints:
734 // 1) Both instructions should be predicated on the same register.
735 // 2) If producer of the new-value register is .new predicated then store
736 // should also be .new predicated and if producer is not .new predicated
737 // then store should not be .new predicated.
738 // 3) Both new-value register producer and user should have same predicate
739 // sense, i.e, either both should be negated or both should be non-negated.
740 if (predRegNumDst != predRegNumSrc ||
741 HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
742 getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
743 return false;
746 // Make sure that other than the new-value register no other store instruction
747 // register has been modified in the same packet. Predicate registers can be
748 // modified by they should not be modified between the producer and the store
749 // instruction as it will make them both conditional on different values.
750 // We already know this to be true for all the instructions before and
751 // including PacketMI. Howerver, we need to perform the check for the
752 // remaining instructions in the packet.
754 unsigned StartCheck = 0;
756 for (auto I : CurrentPacketMIs) {
757 SUnit *TempSU = MIToSUnit.find(I)->second;
758 MachineInstr &TempMI = *TempSU->getInstr();
760 // Following condition is true for all the instructions until PacketMI is
761 // reached (StartCheck is set to 0 before the for loop).
762 // StartCheck flag is 1 for all the instructions after PacketMI.
763 if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
764 continue; // encountering PacketMI.
766 StartCheck = 1;
767 if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
768 continue;
770 for (auto &MO : MI.operands())
771 if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
772 return false;
775 // Make sure that for non-POST_INC stores:
776 // 1. The only use of reg is DepReg and no other registers.
777 // This handles base+index registers.
778 // The following store can not be dot new.
779 // Eg. r0 = add(r0, #3)
780 // memw(r1+r0<<#2) = r0
781 if (!HII->isPostIncrement(MI)) {
782 for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
783 const MachineOperand &MO = MI.getOperand(opNum);
784 if (MO.isReg() && MO.getReg() == DepReg)
785 return false;
789 // If data definition is because of implicit definition of the register,
790 // do not newify the store. Eg.
791 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
792 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
793 for (auto &MO : PacketMI.operands()) {
794 if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
795 return false;
796 if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
797 continue;
798 Register R = MO.getReg();
799 if (R == DepReg || HRI->isSuperRegister(DepReg, R))
800 return false;
803 // Handle imp-use of super reg case. There is a target independent side
804 // change that should prevent this situation but I am handling it for
805 // just-in-case. For example, we cannot newify R2 in the following case:
806 // %r3 = A2_tfrsi 0;
807 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
808 for (auto &MO : MI.operands()) {
809 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
810 return false;
813 // Can be dot new store.
814 return true;
817 // Can this MI to promoted to either new value store or new value jump.
818 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
819 const SUnit *PacketSU, unsigned DepReg,
820 MachineBasicBlock::iterator &MII) {
821 if (!HII->mayBeNewStore(MI))
822 return false;
824 // Check to see the store can be new value'ed.
825 MachineInstr &PacketMI = *PacketSU->getInstr();
826 if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
827 return true;
829 // Check to see the compare/jump can be new value'ed.
830 // This is done as a pass on its own. Don't need to check it here.
831 return false;
834 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
835 unsigned DepReg) {
836 for (auto &MO : I.operands()) {
837 if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
838 return true;
839 if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
840 continue;
841 if (CheckDef == MO.isDef())
842 return true;
844 return false;
847 // Check to see if an instruction can be dot new.
848 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
849 const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
850 const TargetRegisterClass* RC) {
851 // Already a dot new instruction.
852 if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
853 return false;
855 if (!isNewifiable(MI, RC))
856 return false;
858 const MachineInstr &PI = *PacketSU->getInstr();
860 // The "new value" cannot come from inline asm.
861 if (PI.isInlineAsm())
862 return false;
864 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
865 // sense.
866 if (PI.isImplicitDef())
867 return false;
869 // If dependency is trough an implicitly defined register, we should not
870 // newify the use.
871 if (isImplicitDependency(PI, true, DepReg) ||
872 isImplicitDependency(MI, false, DepReg))
873 return false;
875 const MCInstrDesc& MCID = PI.getDesc();
876 const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
877 if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
878 return false;
880 // predicate .new
881 if (RC == &Hexagon::PredRegsRegClass)
882 return HII->predCanBeUsedAsDotNew(PI, DepReg);
884 if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
885 return false;
887 // Create a dot new machine instruction to see if resources can be
888 // allocated. If not, bail out now.
889 int NewOpcode = (RC != &Hexagon::PredRegsRegClass) ? HII->getDotNewOp(MI) :
890 HII->getDotNewPredOp(MI, MBPI);
891 const MCInstrDesc &D = HII->get(NewOpcode);
892 MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
893 bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
894 MF.deleteMachineInstr(NewMI);
895 if (!ResourcesAvailable)
896 return false;
898 // New Value Store only. New Value Jump generated as a separate pass.
899 if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
900 return false;
902 return true;
905 // Go through the packet instructions and search for an anti dependency between
906 // them and DepReg from MI. Consider this case:
907 // Trying to add
908 // a) %r1 = TFRI_cdNotPt %p3, 2
909 // to this packet:
910 // {
911 // b) %p0 = C2_or killed %p3, killed %p0
912 // c) %p3 = C2_tfrrp %r23
913 // d) %r1 = C2_cmovenewit %p3, 4
914 // }
915 // The P3 from a) and d) will be complements after
916 // a)'s P3 is converted to .new form
917 // Anti-dep between c) and b) is irrelevant for this case
918 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
919 unsigned DepReg) {
920 SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
922 for (auto I : CurrentPacketMIs) {
923 // We only care for dependencies to predicated instructions
924 if (!HII->isPredicated(*I))
925 continue;
927 // Scheduling Unit for current insn in the packet
928 SUnit *PacketSU = MIToSUnit.find(I)->second;
930 // Look at dependencies between current members of the packet and
931 // predicate defining instruction MI. Make sure that dependency is
932 // on the exact register we care about.
933 if (PacketSU->isSucc(PacketSUDep)) {
934 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
935 auto &Dep = PacketSU->Succs[i];
936 if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
937 Dep.getReg() == DepReg)
938 return true;
943 return false;
946 /// Gets the predicate register of a predicated instruction.
947 static unsigned getPredicatedRegister(MachineInstr &MI,
948 const HexagonInstrInfo *QII) {
949 /// We use the following rule: The first predicate register that is a use is
950 /// the predicate register of a predicated instruction.
951 assert(QII->isPredicated(MI) && "Must be predicated instruction");
953 for (auto &Op : MI.operands()) {
954 if (Op.isReg() && Op.getReg() && Op.isUse() &&
955 Hexagon::PredRegsRegClass.contains(Op.getReg()))
956 return Op.getReg();
959 llvm_unreachable("Unknown instruction operand layout");
960 return 0;
963 // Given two predicated instructions, this function detects whether
964 // the predicates are complements.
965 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
966 MachineInstr &MI2) {
967 // If we don't know the predicate sense of the instructions bail out early, we
968 // need it later.
969 if (getPredicateSense(MI1, HII) == PK_Unknown ||
970 getPredicateSense(MI2, HII) == PK_Unknown)
971 return false;
973 // Scheduling unit for candidate.
974 SUnit *SU = MIToSUnit[&MI1];
976 // One corner case deals with the following scenario:
977 // Trying to add
978 // a) %r24 = A2_tfrt %p0, %r25
979 // to this packet:
980 // {
981 // b) %r25 = A2_tfrf %p0, %r24
982 // c) %p0 = C2_cmpeqi %r26, 1
983 // }
985 // On general check a) and b) are complements, but presence of c) will
986 // convert a) to .new form, and then it is not a complement.
987 // We attempt to detect it by analyzing existing dependencies in the packet.
989 // Analyze relationships between all existing members of the packet.
990 // Look for Anti dependecy on the same predicate reg as used in the
991 // candidate.
992 for (auto I : CurrentPacketMIs) {
993 // Scheduling Unit for current insn in the packet.
994 SUnit *PacketSU = MIToSUnit.find(I)->second;
996 // If this instruction in the packet is succeeded by the candidate...
997 if (PacketSU->isSucc(SU)) {
998 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
999 auto Dep = PacketSU->Succs[i];
1000 // The corner case exist when there is true data dependency between
1001 // candidate and one of current packet members, this dep is on
1002 // predicate reg, and there already exist anti dep on the same pred in
1003 // the packet.
1004 if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
1005 Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
1006 // Here I know that I is predicate setting instruction with true
1007 // data dep to candidate on the register we care about - c) in the
1008 // above example. Now I need to see if there is an anti dependency
1009 // from c) to any other instruction in the same packet on the pred
1010 // reg of interest.
1011 if (restrictingDepExistInPacket(*I, Dep.getReg()))
1012 return false;
1018 // If the above case does not apply, check regular complement condition.
1019 // Check that the predicate register is the same and that the predicate
1020 // sense is different We also need to differentiate .old vs. .new: !p0
1021 // is not complementary to p0.new.
1022 unsigned PReg1 = getPredicatedRegister(MI1, HII);
1023 unsigned PReg2 = getPredicatedRegister(MI2, HII);
1024 return PReg1 == PReg2 &&
1025 Hexagon::PredRegsRegClass.contains(PReg1) &&
1026 Hexagon::PredRegsRegClass.contains(PReg2) &&
1027 getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1028 HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1031 // Initialize packetizer flags.
1032 void HexagonPacketizerList::initPacketizerState() {
1033 Dependence = false;
1034 PromotedToDotNew = false;
1035 GlueToNewValueJump = false;
1036 GlueAllocframeStore = false;
1037 FoundSequentialDependence = false;
1038 ChangedOffset = INT64_MAX;
1041 // Ignore bundling of pseudo instructions.
1042 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1043 const MachineBasicBlock *) {
1044 if (MI.isDebugInstr())
1045 return true;
1047 if (MI.isCFIInstruction())
1048 return false;
1050 // We must print out inline assembly.
1051 if (MI.isInlineAsm())
1052 return false;
1054 if (MI.isImplicitDef())
1055 return false;
1057 // We check if MI has any functional units mapped to it. If it doesn't,
1058 // we ignore the instruction.
1059 const MCInstrDesc& TID = MI.getDesc();
1060 auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1061 return !IS->getUnits();
1064 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1065 // Ensure any bundles created by gather packetize remain separate.
1066 if (MI.isBundle())
1067 return true;
1069 if (MI.isEHLabel() || MI.isCFIInstruction())
1070 return true;
1072 // Consider inline asm to not be a solo instruction by default.
1073 // Inline asm will be put in a packet temporarily, but then it will be
1074 // removed, and placed outside of the packet (before or after, depending
1075 // on dependencies). This is to reduce the impact of inline asm as a
1076 // "packet splitting" instruction.
1077 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1078 return true;
1080 if (isSchedBarrier(MI))
1081 return true;
1083 if (HII->isSolo(MI))
1084 return true;
1086 if (MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER ||
1087 MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT ||
1088 MI.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL)
1089 return true;
1091 if (MI.getOpcode() == Hexagon::A2_nop)
1092 return true;
1094 return false;
1097 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1098 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm",
1099 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1100 // For full test call this function twice:
1101 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1102 // Doing the test only one way saves the amount of code in this function,
1103 // since every test would need to be repeated with the MI and MJ reversed.
1104 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1105 const HexagonInstrInfo &HII) {
1106 const MachineFunction *MF = MI.getParent()->getParent();
1107 if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1108 HII.isHVXMemWithAIndirect(MI, MJ))
1109 return true;
1111 // Don't allow a store and an instruction that must be in slot0 and
1112 // doesn't allow a slot1 instruction.
1113 if (MI.mayStore() && HII.isRestrictNoSlot1Store(MJ) && HII.isPureSlot0(MJ))
1114 return true;
1116 // An inline asm cannot be together with a branch, because we may not be
1117 // able to remove the asm out after packetizing (i.e. if the asm must be
1118 // moved past the bundle). Similarly, two asms cannot be together to avoid
1119 // complications when determining their relative order outside of a bundle.
1120 if (MI.isInlineAsm())
1121 return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1122 MJ.isCall() || MJ.isTerminator();
1124 // New-value stores cannot coexist with any other stores.
1125 if (HII.isNewValueStore(MI) && MJ.mayStore())
1126 return true;
1128 switch (MI.getOpcode()) {
1129 case Hexagon::S2_storew_locked:
1130 case Hexagon::S4_stored_locked:
1131 case Hexagon::L2_loadw_locked:
1132 case Hexagon::L4_loadd_locked:
1133 case Hexagon::Y2_dccleana:
1134 case Hexagon::Y2_dccleaninva:
1135 case Hexagon::Y2_dcinva:
1136 case Hexagon::Y2_dczeroa:
1137 case Hexagon::Y4_l2fetch:
1138 case Hexagon::Y5_l2fetch: {
1139 // These instructions can only be grouped with ALU32 or non-floating-point
1140 // XTYPE instructions. Since there is no convenient way of identifying fp
1141 // XTYPE instructions, only allow grouping with ALU32 for now.
1142 unsigned TJ = HII.getType(MJ);
1143 if (TJ != HexagonII::TypeALU32_2op &&
1144 TJ != HexagonII::TypeALU32_3op &&
1145 TJ != HexagonII::TypeALU32_ADDI)
1146 return true;
1147 break;
1149 default:
1150 break;
1153 // "False" really means that the quick check failed to determine if
1154 // I and J cannot coexist.
1155 return false;
1158 // Full, symmetric check.
1159 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1160 const MachineInstr &MJ) {
1161 return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1164 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1165 for (auto &B : MF) {
1166 MachineBasicBlock::iterator BundleIt;
1167 for (MachineInstr &MI : llvm::make_early_inc_range(B.instrs())) {
1168 if (MI.isBundle())
1169 BundleIt = MI.getIterator();
1170 if (!MI.isInsideBundle())
1171 continue;
1173 // Decide on where to insert the instruction that we are pulling out.
1174 // Debug instructions always go before the bundle, but the placement of
1175 // INLINE_ASM depends on potential dependencies. By default, try to
1176 // put it before the bundle, but if the asm writes to a register that
1177 // other instructions in the bundle read, then we need to place it
1178 // after the bundle (to preserve the bundle semantics).
1179 bool InsertBeforeBundle;
1180 if (MI.isInlineAsm())
1181 InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1182 else if (MI.isDebugValue())
1183 InsertBeforeBundle = true;
1184 else
1185 continue;
1187 BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1192 // Check if a given instruction is of class "system".
1193 static bool isSystemInstr(const MachineInstr &MI) {
1194 unsigned Opc = MI.getOpcode();
1195 switch (Opc) {
1196 case Hexagon::Y2_barrier:
1197 case Hexagon::Y2_dcfetchbo:
1198 case Hexagon::Y4_l2fetch:
1199 case Hexagon::Y5_l2fetch:
1200 return true;
1202 return false;
1205 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1206 const MachineInstr &J) {
1207 // The dependence graph may not include edges between dead definitions,
1208 // so without extra checks, we could end up packetizing two instruction
1209 // defining the same (dead) register.
1210 if (I.isCall() || J.isCall())
1211 return false;
1212 if (HII->isPredicated(I) || HII->isPredicated(J))
1213 return false;
1215 BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1216 for (auto &MO : I.operands()) {
1217 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1218 continue;
1219 DeadDefs[MO.getReg()] = true;
1222 for (auto &MO : J.operands()) {
1223 if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1224 continue;
1225 Register R = MO.getReg();
1226 if (R != Hexagon::USR_OVF && DeadDefs[R])
1227 return true;
1229 return false;
1232 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1233 const MachineInstr &J) {
1234 // A save callee-save register function call can only be in a packet
1235 // with instructions that don't write to the callee-save registers.
1236 if ((HII->isSaveCalleeSavedRegsCall(I) &&
1237 doesModifyCalleeSavedReg(J, HRI)) ||
1238 (HII->isSaveCalleeSavedRegsCall(J) &&
1239 doesModifyCalleeSavedReg(I, HRI)))
1240 return true;
1242 // Two control flow instructions cannot go in the same packet.
1243 if (isControlFlow(I) && isControlFlow(J))
1244 return true;
1246 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1247 // contain a speculative indirect jump,
1248 // a new-value compare jump or a dealloc_return.
1249 auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1250 if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1251 return true;
1252 if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1253 return true;
1254 return false;
1257 if (HII->isLoopN(I) && isBadForLoopN(J))
1258 return true;
1259 if (HII->isLoopN(J) && isBadForLoopN(I))
1260 return true;
1262 // dealloc_return cannot appear in the same packet as a conditional or
1263 // unconditional jump.
1264 return HII->isDeallocRet(I) &&
1265 (J.isBranch() || J.isCall() || J.isBarrier());
1268 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1269 const MachineInstr &J) {
1270 // Adding I to a packet that has J.
1272 // Regmasks are not reflected in the scheduling dependency graph, so
1273 // we need to check them manually. This code assumes that regmasks only
1274 // occur on calls, and the problematic case is when we add an instruction
1275 // defining a register R to a packet that has a call that clobbers R via
1276 // a regmask. Those cannot be packetized together, because the call will
1277 // be executed last. That's also a reson why it is ok to add a call
1278 // clobbering R to a packet that defines R.
1280 // Look for regmasks in J.
1281 for (const MachineOperand &OpJ : J.operands()) {
1282 if (!OpJ.isRegMask())
1283 continue;
1284 assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1285 for (const MachineOperand &OpI : I.operands()) {
1286 if (OpI.isReg()) {
1287 if (OpJ.clobbersPhysReg(OpI.getReg()))
1288 return true;
1289 } else if (OpI.isRegMask()) {
1290 // Both are regmasks. Assume that they intersect.
1291 return true;
1295 return false;
1298 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1299 const MachineInstr &J) {
1300 bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1301 bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1302 if ((SysI && StoreJ) || (SysJ && StoreI))
1303 return true;
1305 if (StoreI && StoreJ) {
1306 if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1307 return true;
1308 } else {
1309 // A memop cannot be in the same packet with another memop or a store.
1310 // Two stores can be together, but here I and J cannot both be stores.
1311 bool MopStI = HII->isMemOp(I) || StoreI;
1312 bool MopStJ = HII->isMemOp(J) || StoreJ;
1313 if (MopStI && MopStJ)
1314 return true;
1317 return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1320 // SUI is the current instruction that is out side of the current packet.
1321 // SUJ is the current instruction inside the current packet against which that
1322 // SUI will be packetized.
1323 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1324 assert(SUI->getInstr() && SUJ->getInstr());
1325 MachineInstr &I = *SUI->getInstr();
1326 MachineInstr &J = *SUJ->getInstr();
1328 // Clear IgnoreDepMIs when Packet starts.
1329 if (CurrentPacketMIs.size() == 1)
1330 IgnoreDepMIs.clear();
1332 MachineBasicBlock::iterator II = I.getIterator();
1334 // Solo instructions cannot go in the packet.
1335 assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1337 if (cannotCoexist(I, J))
1338 return false;
1340 Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1341 if (Dependence)
1342 return false;
1344 // Regmasks are not accounted for in the scheduling graph, so we need
1345 // to explicitly check for dependencies caused by them. They should only
1346 // appear on calls, so it's not too pessimistic to reject all regmask
1347 // dependencies.
1348 Dependence = hasRegMaskDependence(I, J);
1349 if (Dependence)
1350 return false;
1352 // Dual-store does not allow second store, if the first store is not
1353 // in SLOT0. New value store, new value jump, dealloc_return and memop
1354 // always take SLOT0. Arch spec 3.4.4.2.
1355 Dependence = hasDualStoreDependence(I, J);
1356 if (Dependence)
1357 return false;
1359 // If an instruction feeds new value jump, glue it.
1360 MachineBasicBlock::iterator NextMII = I.getIterator();
1361 ++NextMII;
1362 if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1363 MachineInstr &NextMI = *NextMII;
1365 bool secondRegMatch = false;
1366 const MachineOperand &NOp0 = NextMI.getOperand(0);
1367 const MachineOperand &NOp1 = NextMI.getOperand(1);
1369 if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1370 secondRegMatch = true;
1372 for (MachineInstr *PI : CurrentPacketMIs) {
1373 // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1374 if (PI->isCall()) {
1375 Dependence = true;
1376 break;
1378 // Validate:
1379 // 1. Packet does not have a store in it.
1380 // 2. If the first operand of the nvj is newified, and the second
1381 // operand is also a reg, it (second reg) is not defined in
1382 // the same packet.
1383 // 3. If the second operand of the nvj is newified, (which means
1384 // first operand is also a reg), first reg is not defined in
1385 // the same packet.
1386 if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1387 HII->isLoopN(*PI)) {
1388 Dependence = true;
1389 break;
1391 // Check #2/#3.
1392 const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1393 if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1394 Dependence = true;
1395 break;
1399 GlueToNewValueJump = true;
1400 if (Dependence)
1401 return false;
1404 // There no dependency between a prolog instruction and its successor.
1405 if (!SUJ->isSucc(SUI))
1406 return true;
1408 for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1409 if (FoundSequentialDependence)
1410 break;
1412 if (SUJ->Succs[i].getSUnit() != SUI)
1413 continue;
1415 SDep::Kind DepType = SUJ->Succs[i].getKind();
1416 // For direct calls:
1417 // Ignore register dependences for call instructions for packetization
1418 // purposes except for those due to r31 and predicate registers.
1420 // For indirect calls:
1421 // Same as direct calls + check for true dependences to the register
1422 // used in the indirect call.
1424 // We completely ignore Order dependences for call instructions.
1426 // For returns:
1427 // Ignore register dependences for return instructions like jumpr,
1428 // dealloc return unless we have dependencies on the explicit uses
1429 // of the registers used by jumpr (like r31) or dealloc return
1430 // (like r29 or r30).
1431 unsigned DepReg = 0;
1432 const TargetRegisterClass *RC = nullptr;
1433 if (DepType == SDep::Data) {
1434 DepReg = SUJ->Succs[i].getReg();
1435 RC = HRI->getMinimalPhysRegClass(DepReg);
1438 if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1439 if (!isRegDependence(DepType))
1440 continue;
1441 if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1442 continue;
1445 if (DepType == SDep::Data) {
1446 if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1447 if (promoteToDotCur(J, DepType, II, RC))
1448 continue;
1451 // Data dpendence ok if we have load.cur.
1452 if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1453 if (HII->isHVXVec(I))
1454 continue;
1457 // For instructions that can be promoted to dot-new, try to promote.
1458 if (DepType == SDep::Data) {
1459 if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1460 if (promoteToDotNew(I, DepType, II, RC)) {
1461 PromotedToDotNew = true;
1462 if (cannotCoexist(I, J))
1463 FoundSequentialDependence = true;
1464 continue;
1467 if (HII->isNewValueJump(I))
1468 continue;
1471 // For predicated instructions, if the predicates are complements then
1472 // there can be no dependence.
1473 if (HII->isPredicated(I) && HII->isPredicated(J) &&
1474 arePredicatesComplements(I, J)) {
1475 // Not always safe to do this translation.
1476 // DAG Builder attempts to reduce dependence edges using transitive
1477 // nature of dependencies. Here is an example:
1479 // r0 = tfr_pt ... (1)
1480 // r0 = tfr_pf ... (2)
1481 // r0 = tfr_pt ... (3)
1483 // There will be an output dependence between (1)->(2) and (2)->(3).
1484 // However, there is no dependence edge between (1)->(3). This results
1485 // in all 3 instructions going in the same packet. We ignore dependce
1486 // only once to avoid this situation.
1487 auto Itr = find(IgnoreDepMIs, &J);
1488 if (Itr != IgnoreDepMIs.end()) {
1489 Dependence = true;
1490 return false;
1492 IgnoreDepMIs.push_back(&I);
1493 continue;
1496 // Ignore Order dependences between unconditional direct branches
1497 // and non-control-flow instructions.
1498 if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1499 DepType == SDep::Order)
1500 continue;
1502 // Ignore all dependences for jumps except for true and output
1503 // dependences.
1504 if (I.isConditionalBranch() && DepType != SDep::Data &&
1505 DepType != SDep::Output)
1506 continue;
1508 if (DepType == SDep::Output) {
1509 FoundSequentialDependence = true;
1510 break;
1513 // For Order dependences:
1514 // 1. Volatile loads/stores can be packetized together, unless other
1515 // rules prevent is.
1516 // 2. Store followed by a load is not allowed.
1517 // 3. Store followed by a store is valid.
1518 // 4. Load followed by any memory operation is allowed.
1519 if (DepType == SDep::Order) {
1520 if (!PacketizeVolatiles) {
1521 bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1522 if (OrdRefs) {
1523 FoundSequentialDependence = true;
1524 break;
1527 // J is first, I is second.
1528 bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1529 bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1530 bool NVStoreJ = HII->isNewValueStore(J);
1531 bool NVStoreI = HII->isNewValueStore(I);
1532 bool IsVecJ = HII->isHVXVec(J);
1533 bool IsVecI = HII->isHVXVec(I);
1535 // Don't reorder the loads if there is an order dependence. This would
1536 // occur if the first instruction must go in slot0.
1537 if (LoadJ && LoadI && HII->isPureSlot0(J)) {
1538 FoundSequentialDependence = true;
1539 break;
1542 if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1543 ((LoadJ && StoreI && !NVStoreI) ||
1544 (StoreJ && LoadI && !NVStoreJ)) &&
1545 (J.getOpcode() != Hexagon::S2_allocframe &&
1546 I.getOpcode() != Hexagon::S2_allocframe) &&
1547 (J.getOpcode() != Hexagon::L2_deallocframe &&
1548 I.getOpcode() != Hexagon::L2_deallocframe) &&
1549 (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1550 setmemShufDisabled(true);
1551 else
1552 if (StoreJ && LoadI && alias(J, I)) {
1553 FoundSequentialDependence = true;
1554 break;
1557 if (!StoreJ)
1558 if (!LoadJ || (!LoadI && !StoreI)) {
1559 // If J is neither load nor store, assume a dependency.
1560 // If J is a load, but I is neither, also assume a dependency.
1561 FoundSequentialDependence = true;
1562 break;
1564 // Store followed by store: not OK on V2.
1565 // Store followed by load: not OK on all.
1566 // Load followed by store: OK on all.
1567 // Load followed by load: OK on all.
1568 continue;
1571 // Special case for ALLOCFRAME: even though there is dependency
1572 // between ALLOCFRAME and subsequent store, allow it to be packetized
1573 // in a same packet. This implies that the store is using the caller's
1574 // SP. Hence, offset needs to be updated accordingly.
1575 if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1576 unsigned Opc = I.getOpcode();
1577 switch (Opc) {
1578 case Hexagon::S2_storerd_io:
1579 case Hexagon::S2_storeri_io:
1580 case Hexagon::S2_storerh_io:
1581 case Hexagon::S2_storerb_io:
1582 if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1583 // Since this store is to be glued with allocframe in the same
1584 // packet, it will use SP of the previous stack frame, i.e.
1585 // caller's SP. Therefore, we need to recalculate offset
1586 // according to this change.
1587 GlueAllocframeStore = useCallersSP(I);
1588 if (GlueAllocframeStore)
1589 continue;
1591 break;
1592 default:
1593 break;
1597 // There are certain anti-dependencies that cannot be ignored.
1598 // Specifically:
1599 // J2_call ... implicit-def %r0 ; SUJ
1600 // R0 = ... ; SUI
1601 // Those cannot be packetized together, since the call will observe
1602 // the effect of the assignment to R0.
1603 if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1604 // Check if I defines any volatile register. We should also check
1605 // registers that the call may read, but these happen to be a
1606 // subset of the volatile register set.
1607 for (const MachineOperand &Op : I.operands()) {
1608 if (Op.isReg() && Op.isDef()) {
1609 Register R = Op.getReg();
1610 if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1611 continue;
1612 } else if (!Op.isRegMask()) {
1613 // If I has a regmask assume dependency.
1614 continue;
1616 FoundSequentialDependence = true;
1617 break;
1621 // Skip over remaining anti-dependences. Two instructions that are
1622 // anti-dependent can share a packet, since in most such cases all
1623 // operands are read before any modifications take place.
1624 // The exceptions are branch and call instructions, since they are
1625 // executed after all other instructions have completed (at least
1626 // conceptually).
1627 if (DepType != SDep::Anti) {
1628 FoundSequentialDependence = true;
1629 break;
1633 if (FoundSequentialDependence) {
1634 Dependence = true;
1635 return false;
1638 return true;
1641 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1642 assert(SUI->getInstr() && SUJ->getInstr());
1643 MachineInstr &I = *SUI->getInstr();
1644 MachineInstr &J = *SUJ->getInstr();
1646 bool Coexist = !cannotCoexist(I, J);
1648 if (Coexist && !Dependence)
1649 return true;
1651 // Check if the instruction was promoted to a dot-new. If so, demote it
1652 // back into a dot-old.
1653 if (PromotedToDotNew)
1654 demoteToDotOld(I);
1656 cleanUpDotCur();
1657 // Check if the instruction (must be a store) was glued with an allocframe
1658 // instruction. If so, restore its offset to its original value, i.e. use
1659 // current SP instead of caller's SP.
1660 if (GlueAllocframeStore) {
1661 useCalleesSP(I);
1662 GlueAllocframeStore = false;
1665 if (ChangedOffset != INT64_MAX)
1666 undoChangedOffset(I);
1668 if (GlueToNewValueJump) {
1669 // Putting I and J together would prevent the new-value jump from being
1670 // packetized with the producer. In that case I and J must be separated.
1671 GlueToNewValueJump = false;
1672 return false;
1675 if (!Coexist)
1676 return false;
1678 if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1679 FoundSequentialDependence = false;
1680 Dependence = false;
1681 return true;
1684 return false;
1688 bool HexagonPacketizerList::foundLSInPacket() {
1689 bool FoundLoad = false;
1690 bool FoundStore = false;
1692 for (auto MJ : CurrentPacketMIs) {
1693 unsigned Opc = MJ->getOpcode();
1694 if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1695 continue;
1696 if (HII->isMemOp(*MJ))
1697 continue;
1698 if (MJ->mayLoad())
1699 FoundLoad = true;
1700 if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1701 FoundStore = true;
1703 return FoundLoad && FoundStore;
1707 MachineBasicBlock::iterator
1708 HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1709 MachineBasicBlock::iterator MII = MI.getIterator();
1710 MachineBasicBlock *MBB = MI.getParent();
1712 if (CurrentPacketMIs.empty()) {
1713 PacketStalls = false;
1714 PacketStallCycles = 0;
1716 PacketStalls |= producesStall(MI);
1717 PacketStallCycles = std::max(PacketStallCycles, calcStall(MI));
1719 if (MI.isImplicitDef()) {
1720 // Add to the packet to allow subsequent instructions to be checked
1721 // properly.
1722 CurrentPacketMIs.push_back(&MI);
1723 return MII;
1725 assert(ResourceTracker->canReserveResources(MI));
1727 bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1728 bool Good = true;
1730 if (GlueToNewValueJump) {
1731 MachineInstr &NvjMI = *++MII;
1732 // We need to put both instructions in the same packet: MI and NvjMI.
1733 // Either of them can require a constant extender. Try to add both to
1734 // the current packet, and if that fails, end the packet and start a
1735 // new one.
1736 ResourceTracker->reserveResources(MI);
1737 if (ExtMI)
1738 Good = tryAllocateResourcesForConstExt(true);
1740 bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1741 if (Good) {
1742 if (ResourceTracker->canReserveResources(NvjMI))
1743 ResourceTracker->reserveResources(NvjMI);
1744 else
1745 Good = false;
1747 if (Good && ExtNvjMI)
1748 Good = tryAllocateResourcesForConstExt(true);
1750 if (!Good) {
1751 endPacket(MBB, MI);
1752 assert(ResourceTracker->canReserveResources(MI));
1753 ResourceTracker->reserveResources(MI);
1754 if (ExtMI) {
1755 assert(canReserveResourcesForConstExt());
1756 tryAllocateResourcesForConstExt(true);
1758 assert(ResourceTracker->canReserveResources(NvjMI));
1759 ResourceTracker->reserveResources(NvjMI);
1760 if (ExtNvjMI) {
1761 assert(canReserveResourcesForConstExt());
1762 reserveResourcesForConstExt();
1765 CurrentPacketMIs.push_back(&MI);
1766 CurrentPacketMIs.push_back(&NvjMI);
1767 return MII;
1770 ResourceTracker->reserveResources(MI);
1771 if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1772 endPacket(MBB, MI);
1773 if (PromotedToDotNew)
1774 demoteToDotOld(MI);
1775 if (GlueAllocframeStore) {
1776 useCalleesSP(MI);
1777 GlueAllocframeStore = false;
1779 ResourceTracker->reserveResources(MI);
1780 reserveResourcesForConstExt();
1783 CurrentPacketMIs.push_back(&MI);
1784 return MII;
1787 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1788 MachineBasicBlock::iterator EndMI) {
1789 // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1790 LLVM_DEBUG({
1791 if (!CurrentPacketMIs.empty()) {
1792 dbgs() << "Finalizing packet:\n";
1793 unsigned Idx = 0;
1794 for (MachineInstr *MI : CurrentPacketMIs) {
1795 unsigned R = ResourceTracker->getUsedResources(Idx++);
1796 dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
1801 bool memShufDisabled = getmemShufDisabled();
1802 if (memShufDisabled && !foundLSInPacket()) {
1803 setmemShufDisabled(false);
1804 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n");
1806 memShufDisabled = getmemShufDisabled();
1808 OldPacketMIs.clear();
1809 for (MachineInstr *MI : CurrentPacketMIs) {
1810 MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1811 for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1812 OldPacketMIs.push_back(&I);
1814 CurrentPacketMIs.clear();
1816 if (OldPacketMIs.size() > 1) {
1817 MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1818 MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1819 finalizeBundle(*MBB, FirstMI, LastMI);
1820 auto BundleMII = std::prev(FirstMI);
1821 if (memShufDisabled)
1822 HII->setBundleNoShuf(BundleMII);
1824 setmemShufDisabled(false);
1827 PacketHasDuplex = false;
1828 PacketHasSLOT0OnlyInsn = false;
1829 ResourceTracker->clearResources();
1830 LLVM_DEBUG(dbgs() << "End packet\n");
1833 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1834 if (Minimal)
1835 return false;
1837 if (producesStall(MI))
1838 return false;
1840 // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
1841 // with any other instruction in the existing packet.
1842 auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>();
1843 // Constraint 1: Only one duplex allowed per packet.
1844 // Constraint 2: Consider duplex checks only if there is atleast one
1845 // instruction in a packet.
1846 // Constraint 3: If one of the existing instructions in the packet has a
1847 // SLOT0 only instruction that can not be duplexed, do not attempt to form
1848 // duplexes. (TODO: This will invalidate the L4_return* instructions to form a
1849 // duplex)
1850 if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 &&
1851 !PacketHasDuplex) {
1852 // Check for SLOT0 only non-duplexable instruction in packet.
1853 for (auto &MJ : CurrentPacketMIs)
1854 PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ);
1855 // Get the Big Core Opcode (dup_*).
1856 int Opcode = HII->getDuplexOpcode(MI, false);
1857 if (Opcode >= 0) {
1858 // We now have an instruction that can be duplexed.
1859 for (auto &MJ : CurrentPacketMIs) {
1860 if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) {
1861 PacketHasDuplex = true;
1862 return true;
1865 // If it can not be duplexed, check if there is a valid transition in DFA
1866 // with the original opcode.
1867 MachineInstr &MIRef = const_cast<MachineInstr &>(MI);
1868 MIRef.setDesc(HII->get(Opcode));
1869 return ResourceTracker->canReserveResources(MIRef);
1873 return true;
1876 // V60 forward scheduling.
1877 unsigned int HexagonPacketizerList::calcStall(const MachineInstr &I) {
1878 // Check whether the previous packet is in a different loop. If this is the
1879 // case, there is little point in trying to avoid a stall because that would
1880 // favor the rare case (loop entry) over the common case (loop iteration).
1882 // TODO: We should really be able to check all the incoming edges if this is
1883 // the first packet in a basic block, so we can avoid stalls from the loop
1884 // backedge.
1885 if (!OldPacketMIs.empty()) {
1886 auto *OldBB = OldPacketMIs.front()->getParent();
1887 auto *ThisBB = I.getParent();
1888 if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1889 return 0;
1892 SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1893 if (!SUI)
1894 return 0;
1896 // If the latency is 0 and there is a data dependence between this
1897 // instruction and any instruction in the current packet, we disregard any
1898 // potential stalls due to the instructions in the previous packet. Most of
1899 // the instruction pairs that can go together in the same packet have 0
1900 // latency between them. The exceptions are
1901 // 1. NewValueJumps as they're generated much later and the latencies can't
1902 // be changed at that point.
1903 // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1904 // .new). In this case, the latency between .cur and the consumer stays
1905 // non-zero even though we can have both .cur and .new in the same packet.
1906 // Changing the latency to 0 is not an option as it causes software pipeliner
1907 // to not pipeline in some cases.
1909 // For Example:
1910 // {
1911 // I1: v6.cur = vmem(r0++#1)
1912 // I2: v7 = valign(v6,v4,r2)
1913 // I3: vmem(r5++#1) = v7.new
1914 // }
1915 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1917 for (auto J : CurrentPacketMIs) {
1918 SUnit *SUJ = MIToSUnit[J];
1919 for (auto &Pred : SUI->Preds)
1920 if (Pred.getSUnit() == SUJ)
1921 if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1922 HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1923 return 0;
1926 // Check if the latency is greater than one between this instruction and any
1927 // instruction in the previous packet.
1928 for (auto J : OldPacketMIs) {
1929 SUnit *SUJ = MIToSUnit[J];
1930 for (auto &Pred : SUI->Preds)
1931 if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1932 return Pred.getLatency();
1935 return 0;
1938 bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1939 unsigned int Latency = calcStall(I);
1940 if (Latency == 0)
1941 return false;
1942 // Ignore stall unless it stalls more than previous instruction in packet
1943 if (PacketStalls)
1944 return Latency > PacketStallCycles;
1945 return true;
1948 //===----------------------------------------------------------------------===//
1949 // Public Constructor Functions
1950 //===----------------------------------------------------------------------===//
1952 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1953 return new HexagonPacketizer(Minimal);