1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
17 //===----------------------------------------------------------------------===//
19 #include "HexagonVLIWPacketizer.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
56 #define DEBUG_TYPE "packets"
58 static cl::opt
<bool> DisablePacketizer("disable-packetizer", cl::Hidden
,
59 cl::ZeroOrMore
, cl::init(false),
60 cl::desc("Disable Hexagon packetizer pass"));
62 static cl::opt
<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden
,
63 cl::ZeroOrMore
, cl::init(true),
64 cl::desc("Allow slot1 store and slot0 load"));
66 static cl::opt
<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
67 cl::ZeroOrMore
, cl::Hidden
, cl::init(true),
68 cl::desc("Allow non-solo packetization of volatile memory references"));
70 static cl::opt
<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
71 cl::Hidden
, cl::ZeroOrMore
, cl::desc("Generate all instruction with TC"));
73 static cl::opt
<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
74 cl::init(false), cl::Hidden
, cl::ZeroOrMore
,
75 cl::desc("Disable vector double new-value-stores"));
77 extern cl::opt
<bool> ScheduleInlineAsm
;
81 FunctionPass
*createHexagonPacketizer(bool Minimal
);
82 void initializeHexagonPacketizerPass(PassRegistry
&);
84 } // end namespace llvm
88 class HexagonPacketizer
: public MachineFunctionPass
{
92 HexagonPacketizer(bool Min
= false)
93 : MachineFunctionPass(ID
), Minimal(Min
) {}
95 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
97 AU
.addRequired
<AAResultsWrapperPass
>();
98 AU
.addRequired
<MachineBranchProbabilityInfo
>();
99 AU
.addRequired
<MachineDominatorTree
>();
100 AU
.addRequired
<MachineLoopInfo
>();
101 AU
.addPreserved
<MachineDominatorTree
>();
102 AU
.addPreserved
<MachineLoopInfo
>();
103 MachineFunctionPass::getAnalysisUsage(AU
);
106 StringRef
getPassName() const override
{ return "Hexagon Packetizer"; }
107 bool runOnMachineFunction(MachineFunction
&Fn
) override
;
109 MachineFunctionProperties
getRequiredProperties() const override
{
110 return MachineFunctionProperties().set(
111 MachineFunctionProperties::Property::NoVRegs
);
115 const HexagonInstrInfo
*HII
= nullptr;
116 const HexagonRegisterInfo
*HRI
= nullptr;
117 const bool Minimal
= false;
120 } // end anonymous namespace
122 char HexagonPacketizer::ID
= 0;
124 INITIALIZE_PASS_BEGIN(HexagonPacketizer
, "hexagon-packetizer",
125 "Hexagon Packetizer", false, false)
126 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
129 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
130 INITIALIZE_PASS_END(HexagonPacketizer
, "hexagon-packetizer",
131 "Hexagon Packetizer", false, false)
133 HexagonPacketizerList::HexagonPacketizerList(MachineFunction
&MF
,
134 MachineLoopInfo
&MLI
, AAResults
*AA
,
135 const MachineBranchProbabilityInfo
*MBPI
, bool Minimal
)
136 : VLIWPacketizerList(MF
, MLI
, AA
), MBPI(MBPI
), MLI(&MLI
),
138 HII
= MF
.getSubtarget
<HexagonSubtarget
>().getInstrInfo();
139 HRI
= MF
.getSubtarget
<HexagonSubtarget
>().getRegisterInfo();
141 addMutation(std::make_unique
<HexagonSubtarget::UsrOverflowMutation
>());
142 addMutation(std::make_unique
<HexagonSubtarget::HVXMemLatencyMutation
>());
143 addMutation(std::make_unique
<HexagonSubtarget::BankConflictMutation
>());
146 // Check if FirstI modifies a register that SecondI reads.
147 static bool hasWriteToReadDep(const MachineInstr
&FirstI
,
148 const MachineInstr
&SecondI
,
149 const TargetRegisterInfo
*TRI
) {
150 for (auto &MO
: FirstI
.operands()) {
151 if (!MO
.isReg() || !MO
.isDef())
153 Register R
= MO
.getReg();
154 if (SecondI
.readsRegister(R
, TRI
))
161 static MachineBasicBlock::iterator
moveInstrOut(MachineInstr
&MI
,
162 MachineBasicBlock::iterator BundleIt
, bool Before
) {
163 MachineBasicBlock::instr_iterator InsertPt
;
165 InsertPt
= BundleIt
.getInstrIterator();
167 InsertPt
= std::next(BundleIt
).getInstrIterator();
169 MachineBasicBlock
&B
= *MI
.getParent();
170 // The instruction should at least be bundled with the preceding instruction
171 // (there will always be one, i.e. BUNDLE, if nothing else).
172 assert(MI
.isBundledWithPred());
173 if (MI
.isBundledWithSucc()) {
174 MI
.clearFlag(MachineInstr::BundledSucc
);
175 MI
.clearFlag(MachineInstr::BundledPred
);
177 // If it's not bundled with the successor (i.e. it is the last one
178 // in the bundle), then we can simply unbundle it from the predecessor,
179 // which will take care of updating the predecessor's flag.
180 MI
.unbundleFromPred();
182 B
.splice(InsertPt
, &B
, MI
.getIterator());
184 // Get the size of the bundle without asserting.
185 MachineBasicBlock::const_instr_iterator I
= BundleIt
.getInstrIterator();
186 MachineBasicBlock::const_instr_iterator E
= B
.instr_end();
188 for (++I
; I
!= E
&& I
->isBundledWithPred(); ++I
)
191 // If there are still two or more instructions, then there is nothing
196 // Otherwise, extract the single instruction out and delete the bundle.
197 MachineBasicBlock::iterator NextIt
= std::next(BundleIt
);
198 MachineInstr
&SingleI
= *BundleIt
->getNextNode();
199 SingleI
.unbundleFromPred();
200 assert(!SingleI
.isBundledWithSucc());
201 BundleIt
->eraseFromParent();
205 bool HexagonPacketizer::runOnMachineFunction(MachineFunction
&MF
) {
206 // FIXME: This pass causes verification failures.
207 MF
.getProperties().set(
208 MachineFunctionProperties::Property::FailsVerification
);
210 auto &HST
= MF
.getSubtarget
<HexagonSubtarget
>();
211 HII
= HST
.getInstrInfo();
212 HRI
= HST
.getRegisterInfo();
213 auto &MLI
= getAnalysis
<MachineLoopInfo
>();
214 auto *AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
215 auto *MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
217 if (EnableGenAllInsnClass
)
218 HII
->genAllInsnTimingClasses(MF
);
220 // Instantiate the packetizer.
221 bool MinOnly
= Minimal
|| DisablePacketizer
|| !HST
.usePackets() ||
222 skipFunction(MF
.getFunction());
223 HexagonPacketizerList
Packetizer(MF
, MLI
, AA
, MBPI
, MinOnly
);
225 // DFA state table should not be empty.
226 assert(Packetizer
.getResourceTracker() && "Empty DFA table!");
228 // Loop over all basic blocks and remove KILL pseudo-instructions
229 // These instructions confuse the dependence analysis. Consider:
231 // R0 = KILL R0, D0 (Insn 1)
233 // Here, Insn 1 will result in the dependence graph not emitting an output
234 // dependence between Insn 0 and Insn 2. This can lead to incorrect
236 for (MachineBasicBlock
&MB
: MF
) {
237 for (MachineInstr
&MI
: llvm::make_early_inc_range(MB
))
242 // TinyCore with Duplexes: Translate to big-instructions.
243 if (HST
.isTinyCoreWithDuplex())
244 HII
->translateInstrsForDup(MF
, true);
246 // Loop over all of the basic blocks.
247 for (auto &MB
: MF
) {
248 auto Begin
= MB
.begin(), End
= MB
.end();
249 while (Begin
!= End
) {
250 // Find the first non-boundary starting from the end of the last
251 // scheduling region.
252 MachineBasicBlock::iterator RB
= Begin
;
253 while (RB
!= End
&& HII
->isSchedulingBoundary(*RB
, &MB
, MF
))
255 // Find the first boundary starting from the beginning of the new
257 MachineBasicBlock::iterator RE
= RB
;
258 while (RE
!= End
&& !HII
->isSchedulingBoundary(*RE
, &MB
, MF
))
260 // Add the scheduling boundary if it's not block end.
263 // If RB == End, then RE == End.
265 Packetizer
.PacketizeMIs(&MB
, RB
, RE
);
271 // TinyCore with Duplexes: Translate to tiny-instructions.
272 if (HST
.isTinyCoreWithDuplex())
273 HII
->translateInstrsForDup(MF
, false);
275 Packetizer
.unpacketizeSoloInstrs(MF
);
279 // Reserve resources for a constant extender. Trigger an assertion if the
280 // reservation fails.
281 void HexagonPacketizerList::reserveResourcesForConstExt() {
282 if (!tryAllocateResourcesForConstExt(true))
283 llvm_unreachable("Resources not available");
286 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
287 return tryAllocateResourcesForConstExt(false);
290 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
291 // return true, otherwise, return false.
292 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve
) {
293 auto *ExtMI
= MF
.CreateMachineInstr(HII
->get(Hexagon::A4_ext
), DebugLoc());
294 bool Avail
= ResourceTracker
->canReserveResources(*ExtMI
);
295 if (Reserve
&& Avail
)
296 ResourceTracker
->reserveResources(*ExtMI
);
297 MF
.deleteMachineInstr(ExtMI
);
301 bool HexagonPacketizerList::isCallDependent(const MachineInstr
&MI
,
302 SDep::Kind DepType
, unsigned DepReg
) {
303 // Check for LR dependence.
304 if (DepReg
== HRI
->getRARegister())
307 if (HII
->isDeallocRet(MI
))
308 if (DepReg
== HRI
->getFrameRegister() || DepReg
== HRI
->getStackRegister())
311 // Call-like instructions can be packetized with preceding instructions
312 // that define registers implicitly used or modified by the call. Explicit
313 // uses are still prohibited, as in the case of indirect calls:
316 if (DepType
== SDep::Data
) {
317 for (const MachineOperand
&MO
: MI
.operands())
318 if (MO
.isReg() && MO
.getReg() == DepReg
&& !MO
.isImplicit())
325 static bool isRegDependence(const SDep::Kind DepType
) {
326 return DepType
== SDep::Data
|| DepType
== SDep::Anti
||
327 DepType
== SDep::Output
;
330 static bool isDirectJump(const MachineInstr
&MI
) {
331 return MI
.getOpcode() == Hexagon::J2_jump
;
334 static bool isSchedBarrier(const MachineInstr
&MI
) {
335 switch (MI
.getOpcode()) {
336 case Hexagon::Y2_barrier
:
342 static bool isControlFlow(const MachineInstr
&MI
) {
343 return MI
.getDesc().isTerminator() || MI
.getDesc().isCall();
346 /// Returns true if the instruction modifies a callee-saved register.
347 static bool doesModifyCalleeSavedReg(const MachineInstr
&MI
,
348 const TargetRegisterInfo
*TRI
) {
349 const MachineFunction
&MF
= *MI
.getParent()->getParent();
350 for (auto *CSR
= TRI
->getCalleeSavedRegs(&MF
); CSR
&& *CSR
; ++CSR
)
351 if (MI
.modifiesRegister(*CSR
, TRI
))
356 // Returns true if an instruction can be promoted to .new predicate or
358 bool HexagonPacketizerList::isNewifiable(const MachineInstr
&MI
,
359 const TargetRegisterClass
*NewRC
) {
360 // Vector stores can be predicated, and can be new-value stores, but
361 // they cannot be predicated on a .new predicate value.
362 if (NewRC
== &Hexagon::PredRegsRegClass
) {
363 if (HII
->isHVXVec(MI
) && MI
.mayStore())
365 return HII
->isPredicated(MI
) && HII
->getDotNewPredOp(MI
, nullptr) > 0;
367 // If the class is not PredRegs, it could only apply to new-value stores.
368 return HII
->mayBeNewStore(MI
);
371 // Promote an instructiont to its .cur form.
372 // At this time, we have already made a call to canPromoteToDotCur and made
373 // sure that it can *indeed* be promoted.
374 bool HexagonPacketizerList::promoteToDotCur(MachineInstr
&MI
,
375 SDep::Kind DepType
, MachineBasicBlock::iterator
&MII
,
376 const TargetRegisterClass
* RC
) {
377 assert(DepType
== SDep::Data
);
378 int CurOpcode
= HII
->getDotCurOp(MI
);
379 MI
.setDesc(HII
->get(CurOpcode
));
383 void HexagonPacketizerList::cleanUpDotCur() {
384 MachineInstr
*MI
= nullptr;
385 for (auto BI
: CurrentPacketMIs
) {
386 LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI
->dump(););
387 if (HII
->isDotCurInst(*BI
)) {
392 for (auto &MO
: BI
->operands())
393 if (MO
.isReg() && MO
.getReg() == MI
->getOperand(0).getReg())
399 // We did not find a use of the CUR, so de-cur it.
400 MI
->setDesc(HII
->get(HII
->getNonDotCurOp(*MI
)));
401 LLVM_DEBUG(dbgs() << "Demoted CUR "; MI
->dump(););
404 // Check to see if an instruction can be dot cur.
405 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr
&MI
,
406 const SUnit
*PacketSU
, unsigned DepReg
, MachineBasicBlock::iterator
&MII
,
407 const TargetRegisterClass
*RC
) {
408 if (!HII
->isHVXVec(MI
))
410 if (!HII
->isHVXVec(*MII
))
413 // Already a dot new instruction.
414 if (HII
->isDotCurInst(MI
) && !HII
->mayBeCurLoad(MI
))
417 if (!HII
->mayBeCurLoad(MI
))
420 // The "cur value" cannot come from inline asm.
421 if (PacketSU
->getInstr()->isInlineAsm())
424 // Make sure candidate instruction uses cur.
425 LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI
.dump();
426 dbgs() << "in packet\n";);
427 MachineInstr
&MJ
= *MII
;
429 dbgs() << "Checking CUR against ";
432 Register DestReg
= MI
.getOperand(0).getReg();
433 bool FoundMatch
= false;
434 for (auto &MO
: MJ
.operands())
435 if (MO
.isReg() && MO
.getReg() == DestReg
)
440 // Check for existing uses of a vector register within the packet which
441 // would be affected by converting a vector load into .cur formt.
442 for (auto BI
: CurrentPacketMIs
) {
443 LLVM_DEBUG(dbgs() << "packet has "; BI
->dump(););
444 if (BI
->readsRegister(DepReg
, MF
.getSubtarget().getRegisterInfo()))
448 LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI
.dump(););
449 // We can convert the opcode into a .cur.
453 // Promote an instruction to its .new form. At this time, we have already
454 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
456 bool HexagonPacketizerList::promoteToDotNew(MachineInstr
&MI
,
457 SDep::Kind DepType
, MachineBasicBlock::iterator
&MII
,
458 const TargetRegisterClass
* RC
) {
459 assert(DepType
== SDep::Data
);
461 if (RC
== &Hexagon::PredRegsRegClass
)
462 NewOpcode
= HII
->getDotNewPredOp(MI
, MBPI
);
464 NewOpcode
= HII
->getDotNewOp(MI
);
465 MI
.setDesc(HII
->get(NewOpcode
));
469 bool HexagonPacketizerList::demoteToDotOld(MachineInstr
&MI
) {
470 int NewOpcode
= HII
->getDotOldOp(MI
);
471 MI
.setDesc(HII
->get(NewOpcode
));
475 bool HexagonPacketizerList::useCallersSP(MachineInstr
&MI
) {
476 unsigned Opc
= MI
.getOpcode();
478 case Hexagon::S2_storerd_io
:
479 case Hexagon::S2_storeri_io
:
480 case Hexagon::S2_storerh_io
:
481 case Hexagon::S2_storerb_io
:
484 llvm_unreachable("Unexpected instruction");
486 unsigned FrameSize
= MF
.getFrameInfo().getStackSize();
487 MachineOperand
&Off
= MI
.getOperand(1);
488 int64_t NewOff
= Off
.getImm() - (FrameSize
+ HEXAGON_LRFP_SIZE
);
489 if (HII
->isValidOffset(Opc
, NewOff
, HRI
)) {
496 void HexagonPacketizerList::useCalleesSP(MachineInstr
&MI
) {
497 unsigned Opc
= MI
.getOpcode();
499 case Hexagon::S2_storerd_io
:
500 case Hexagon::S2_storeri_io
:
501 case Hexagon::S2_storerh_io
:
502 case Hexagon::S2_storerb_io
:
505 llvm_unreachable("Unexpected instruction");
507 unsigned FrameSize
= MF
.getFrameInfo().getStackSize();
508 MachineOperand
&Off
= MI
.getOperand(1);
509 Off
.setImm(Off
.getImm() + FrameSize
+ HEXAGON_LRFP_SIZE
);
512 /// Return true if we can update the offset in MI so that MI and MJ
513 /// can be packetized together.
514 bool HexagonPacketizerList::updateOffset(SUnit
*SUI
, SUnit
*SUJ
) {
515 assert(SUI
->getInstr() && SUJ
->getInstr());
516 MachineInstr
&MI
= *SUI
->getInstr();
517 MachineInstr
&MJ
= *SUJ
->getInstr();
520 if (!HII
->getBaseAndOffsetPosition(MI
, BPI
, OPI
))
523 if (!HII
->getBaseAndOffsetPosition(MJ
, BPJ
, OPJ
))
525 Register Reg
= MI
.getOperand(BPI
).getReg();
526 if (Reg
!= MJ
.getOperand(BPJ
).getReg())
528 // Make sure that the dependences do not restrict adding MI to the packet.
529 // That is, ignore anti dependences, and make sure the only data dependence
530 // involves the specific register.
531 for (const auto &PI
: SUI
->Preds
)
532 if (PI
.getKind() != SDep::Anti
&&
533 (PI
.getKind() != SDep::Data
|| PI
.getReg() != Reg
))
536 if (!HII
->getIncrementValue(MJ
, Incr
))
539 int64_t Offset
= MI
.getOperand(OPI
).getImm();
540 if (!HII
->isValidOffset(MI
.getOpcode(), Offset
+Incr
, HRI
))
543 MI
.getOperand(OPI
).setImm(Offset
+ Incr
);
544 ChangedOffset
= Offset
;
548 /// Undo the changed offset. This is needed if the instruction cannot be
549 /// added to the current packet due to a different instruction.
550 void HexagonPacketizerList::undoChangedOffset(MachineInstr
&MI
) {
552 if (!HII
->getBaseAndOffsetPosition(MI
, BP
, OP
))
553 llvm_unreachable("Unable to find base and offset operands.");
554 MI
.getOperand(OP
).setImm(ChangedOffset
);
563 /// Returns true if an instruction is predicated on p0 and false if it's
564 /// predicated on !p0.
565 static PredicateKind
getPredicateSense(const MachineInstr
&MI
,
566 const HexagonInstrInfo
*HII
) {
567 if (!HII
->isPredicated(MI
))
569 if (HII
->isPredicatedTrue(MI
))
574 static const MachineOperand
&getPostIncrementOperand(const MachineInstr
&MI
,
575 const HexagonInstrInfo
*HII
) {
576 assert(HII
->isPostIncrement(MI
) && "Not a post increment operation.");
578 // Post Increment means duplicates. Use dense map to find duplicates in the
579 // list. Caution: Densemap initializes with the minimum of 64 buckets,
580 // whereas there are at most 5 operands in the post increment.
581 DenseSet
<unsigned> DefRegsSet
;
582 for (auto &MO
: MI
.operands())
583 if (MO
.isReg() && MO
.isDef())
584 DefRegsSet
.insert(MO
.getReg());
586 for (auto &MO
: MI
.operands())
587 if (MO
.isReg() && MO
.isUse() && DefRegsSet
.count(MO
.getReg()))
591 const MachineOperand
&Op1
= MI
.getOperand(1);
592 // The 2nd operand is always the post increment operand in load.
593 assert(Op1
.isReg() && "Post increment operand has be to a register.");
596 if (MI
.getDesc().mayStore()) {
597 const MachineOperand
&Op0
= MI
.getOperand(0);
598 // The 1st operand is always the post increment operand in store.
599 assert(Op0
.isReg() && "Post increment operand has be to a register.");
603 // we should never come here.
604 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
607 // Get the value being stored.
608 static const MachineOperand
& getStoreValueOperand(const MachineInstr
&MI
) {
609 // value being stored is always the last operand.
610 return MI
.getOperand(MI
.getNumOperands()-1);
613 static bool isLoadAbsSet(const MachineInstr
&MI
) {
614 unsigned Opc
= MI
.getOpcode();
616 case Hexagon::L4_loadrd_ap
:
617 case Hexagon::L4_loadrb_ap
:
618 case Hexagon::L4_loadrh_ap
:
619 case Hexagon::L4_loadrub_ap
:
620 case Hexagon::L4_loadruh_ap
:
621 case Hexagon::L4_loadri_ap
:
627 static const MachineOperand
&getAbsSetOperand(const MachineInstr
&MI
) {
628 assert(isLoadAbsSet(MI
));
629 return MI
.getOperand(1);
632 // Can be new value store?
633 // Following restrictions are to be respected in convert a store into
634 // a new value store.
635 // 1. If an instruction uses auto-increment, its address register cannot
636 // be a new-value register. Arch Spec 5.4.2.1
637 // 2. If an instruction uses absolute-set addressing mode, its address
638 // register cannot be a new-value register. Arch Spec 5.4.2.1.
639 // 3. If an instruction produces a 64-bit result, its registers cannot be used
640 // as new-value registers. Arch Spec 5.4.2.2.
641 // 4. If the instruction that sets the new-value register is conditional, then
642 // the instruction that uses the new-value register must also be conditional,
643 // and both must always have their predicates evaluate identically.
644 // Arch Spec 5.4.2.3.
645 // 5. There is an implied restriction that a packet cannot have another store,
646 // if there is a new value store in the packet. Corollary: if there is
647 // already a store in a packet, there can not be a new value store.
648 // Arch Spec: 3.4.4.2
649 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr
&MI
,
650 const MachineInstr
&PacketMI
, unsigned DepReg
) {
651 // Make sure we are looking at the store, that can be promoted.
652 if (!HII
->mayBeNewStore(MI
))
655 // Make sure there is dependency and can be new value'd.
656 const MachineOperand
&Val
= getStoreValueOperand(MI
);
657 if (Val
.isReg() && Val
.getReg() != DepReg
)
660 const MCInstrDesc
& MCID
= PacketMI
.getDesc();
662 // First operand is always the result.
663 const TargetRegisterClass
*PacketRC
= HII
->getRegClass(MCID
, 0, HRI
, MF
);
664 // Double regs can not feed into new value store: PRM section: 5.4.2.2.
665 if (PacketRC
== &Hexagon::DoubleRegsRegClass
)
668 // New-value stores are of class NV (slot 0), dual stores require class ST
669 // in slot 0 (PRM 5.5).
670 for (auto I
: CurrentPacketMIs
) {
671 SUnit
*PacketSU
= MIToSUnit
.find(I
)->second
;
672 if (PacketSU
->getInstr()->mayStore())
676 // Make sure it's NOT the post increment register that we are going to
678 if (HII
->isPostIncrement(MI
) &&
679 getPostIncrementOperand(MI
, HII
).getReg() == DepReg
) {
683 if (HII
->isPostIncrement(PacketMI
) && PacketMI
.mayLoad() &&
684 getPostIncrementOperand(PacketMI
, HII
).getReg() == DepReg
) {
685 // If source is post_inc, or absolute-set addressing, it can not feed
686 // into new value store
688 // memw(r30 + #-1404) = r2.new -> can not be new value store
689 // arch spec section: 5.4.2.1.
693 if (isLoadAbsSet(PacketMI
) && getAbsSetOperand(PacketMI
).getReg() == DepReg
)
696 // If the source that feeds the store is predicated, new value store must
697 // also be predicated.
698 if (HII
->isPredicated(PacketMI
)) {
699 if (!HII
->isPredicated(MI
))
702 // Check to make sure that they both will have their predicates
703 // evaluate identically.
704 unsigned predRegNumSrc
= 0;
705 unsigned predRegNumDst
= 0;
706 const TargetRegisterClass
* predRegClass
= nullptr;
708 // Get predicate register used in the source instruction.
709 for (auto &MO
: PacketMI
.operands()) {
712 predRegNumSrc
= MO
.getReg();
713 predRegClass
= HRI
->getMinimalPhysRegClass(predRegNumSrc
);
714 if (predRegClass
== &Hexagon::PredRegsRegClass
)
717 assert((predRegClass
== &Hexagon::PredRegsRegClass
) &&
718 "predicate register not found in a predicated PacketMI instruction");
720 // Get predicate register used in new-value store instruction.
721 for (auto &MO
: MI
.operands()) {
724 predRegNumDst
= MO
.getReg();
725 predRegClass
= HRI
->getMinimalPhysRegClass(predRegNumDst
);
726 if (predRegClass
== &Hexagon::PredRegsRegClass
)
729 assert((predRegClass
== &Hexagon::PredRegsRegClass
) &&
730 "predicate register not found in a predicated MI instruction");
732 // New-value register producer and user (store) need to satisfy these
734 // 1) Both instructions should be predicated on the same register.
735 // 2) If producer of the new-value register is .new predicated then store
736 // should also be .new predicated and if producer is not .new predicated
737 // then store should not be .new predicated.
738 // 3) Both new-value register producer and user should have same predicate
739 // sense, i.e, either both should be negated or both should be non-negated.
740 if (predRegNumDst
!= predRegNumSrc
||
741 HII
->isDotNewInst(PacketMI
) != HII
->isDotNewInst(MI
) ||
742 getPredicateSense(MI
, HII
) != getPredicateSense(PacketMI
, HII
))
746 // Make sure that other than the new-value register no other store instruction
747 // register has been modified in the same packet. Predicate registers can be
748 // modified by they should not be modified between the producer and the store
749 // instruction as it will make them both conditional on different values.
750 // We already know this to be true for all the instructions before and
751 // including PacketMI. Howerver, we need to perform the check for the
752 // remaining instructions in the packet.
754 unsigned StartCheck
= 0;
756 for (auto I
: CurrentPacketMIs
) {
757 SUnit
*TempSU
= MIToSUnit
.find(I
)->second
;
758 MachineInstr
&TempMI
= *TempSU
->getInstr();
760 // Following condition is true for all the instructions until PacketMI is
761 // reached (StartCheck is set to 0 before the for loop).
762 // StartCheck flag is 1 for all the instructions after PacketMI.
763 if (&TempMI
!= &PacketMI
&& !StartCheck
) // Start processing only after
764 continue; // encountering PacketMI.
767 if (&TempMI
== &PacketMI
) // We don't want to check PacketMI for dependence.
770 for (auto &MO
: MI
.operands())
771 if (MO
.isReg() && TempSU
->getInstr()->modifiesRegister(MO
.getReg(), HRI
))
775 // Make sure that for non-POST_INC stores:
776 // 1. The only use of reg is DepReg and no other registers.
777 // This handles base+index registers.
778 // The following store can not be dot new.
779 // Eg. r0 = add(r0, #3)
780 // memw(r1+r0<<#2) = r0
781 if (!HII
->isPostIncrement(MI
)) {
782 for (unsigned opNum
= 0; opNum
< MI
.getNumOperands()-1; opNum
++) {
783 const MachineOperand
&MO
= MI
.getOperand(opNum
);
784 if (MO
.isReg() && MO
.getReg() == DepReg
)
789 // If data definition is because of implicit definition of the register,
790 // do not newify the store. Eg.
791 // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
792 // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
793 for (auto &MO
: PacketMI
.operands()) {
794 if (MO
.isRegMask() && MO
.clobbersPhysReg(DepReg
))
796 if (!MO
.isReg() || !MO
.isDef() || !MO
.isImplicit())
798 Register R
= MO
.getReg();
799 if (R
== DepReg
|| HRI
->isSuperRegister(DepReg
, R
))
803 // Handle imp-use of super reg case. There is a target independent side
804 // change that should prevent this situation but I am handling it for
805 // just-in-case. For example, we cannot newify R2 in the following case:
807 // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
808 for (auto &MO
: MI
.operands()) {
809 if (MO
.isReg() && MO
.isUse() && MO
.isImplicit() && MO
.getReg() == DepReg
)
813 // Can be dot new store.
817 // Can this MI to promoted to either new value store or new value jump.
818 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr
&MI
,
819 const SUnit
*PacketSU
, unsigned DepReg
,
820 MachineBasicBlock::iterator
&MII
) {
821 if (!HII
->mayBeNewStore(MI
))
824 // Check to see the store can be new value'ed.
825 MachineInstr
&PacketMI
= *PacketSU
->getInstr();
826 if (canPromoteToNewValueStore(MI
, PacketMI
, DepReg
))
829 // Check to see the compare/jump can be new value'ed.
830 // This is done as a pass on its own. Don't need to check it here.
834 static bool isImplicitDependency(const MachineInstr
&I
, bool CheckDef
,
836 for (auto &MO
: I
.operands()) {
837 if (CheckDef
&& MO
.isRegMask() && MO
.clobbersPhysReg(DepReg
))
839 if (!MO
.isReg() || MO
.getReg() != DepReg
|| !MO
.isImplicit())
841 if (CheckDef
== MO
.isDef())
847 // Check to see if an instruction can be dot new.
848 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr
&MI
,
849 const SUnit
*PacketSU
, unsigned DepReg
, MachineBasicBlock::iterator
&MII
,
850 const TargetRegisterClass
* RC
) {
851 // Already a dot new instruction.
852 if (HII
->isDotNewInst(MI
) && !HII
->mayBeNewStore(MI
))
855 if (!isNewifiable(MI
, RC
))
858 const MachineInstr
&PI
= *PacketSU
->getInstr();
860 // The "new value" cannot come from inline asm.
861 if (PI
.isInlineAsm())
864 // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
866 if (PI
.isImplicitDef())
869 // If dependency is trough an implicitly defined register, we should not
871 if (isImplicitDependency(PI
, true, DepReg
) ||
872 isImplicitDependency(MI
, false, DepReg
))
875 const MCInstrDesc
& MCID
= PI
.getDesc();
876 const TargetRegisterClass
*VecRC
= HII
->getRegClass(MCID
, 0, HRI
, MF
);
877 if (DisableVecDblNVStores
&& VecRC
== &Hexagon::HvxWRRegClass
)
881 if (RC
== &Hexagon::PredRegsRegClass
)
882 return HII
->predCanBeUsedAsDotNew(PI
, DepReg
);
884 if (RC
!= &Hexagon::PredRegsRegClass
&& !HII
->mayBeNewStore(MI
))
887 // Create a dot new machine instruction to see if resources can be
888 // allocated. If not, bail out now.
889 int NewOpcode
= (RC
!= &Hexagon::PredRegsRegClass
) ? HII
->getDotNewOp(MI
) :
890 HII
->getDotNewPredOp(MI
, MBPI
);
891 const MCInstrDesc
&D
= HII
->get(NewOpcode
);
892 MachineInstr
*NewMI
= MF
.CreateMachineInstr(D
, DebugLoc());
893 bool ResourcesAvailable
= ResourceTracker
->canReserveResources(*NewMI
);
894 MF
.deleteMachineInstr(NewMI
);
895 if (!ResourcesAvailable
)
898 // New Value Store only. New Value Jump generated as a separate pass.
899 if (!canPromoteToNewValue(MI
, PacketSU
, DepReg
, MII
))
905 // Go through the packet instructions and search for an anti dependency between
906 // them and DepReg from MI. Consider this case:
908 // a) %r1 = TFRI_cdNotPt %p3, 2
911 // b) %p0 = C2_or killed %p3, killed %p0
912 // c) %p3 = C2_tfrrp %r23
913 // d) %r1 = C2_cmovenewit %p3, 4
915 // The P3 from a) and d) will be complements after
916 // a)'s P3 is converted to .new form
917 // Anti-dep between c) and b) is irrelevant for this case
918 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr
&MI
,
920 SUnit
*PacketSUDep
= MIToSUnit
.find(&MI
)->second
;
922 for (auto I
: CurrentPacketMIs
) {
923 // We only care for dependencies to predicated instructions
924 if (!HII
->isPredicated(*I
))
927 // Scheduling Unit for current insn in the packet
928 SUnit
*PacketSU
= MIToSUnit
.find(I
)->second
;
930 // Look at dependencies between current members of the packet and
931 // predicate defining instruction MI. Make sure that dependency is
932 // on the exact register we care about.
933 if (PacketSU
->isSucc(PacketSUDep
)) {
934 for (unsigned i
= 0; i
< PacketSU
->Succs
.size(); ++i
) {
935 auto &Dep
= PacketSU
->Succs
[i
];
936 if (Dep
.getSUnit() == PacketSUDep
&& Dep
.getKind() == SDep::Anti
&&
937 Dep
.getReg() == DepReg
)
946 /// Gets the predicate register of a predicated instruction.
947 static unsigned getPredicatedRegister(MachineInstr
&MI
,
948 const HexagonInstrInfo
*QII
) {
949 /// We use the following rule: The first predicate register that is a use is
950 /// the predicate register of a predicated instruction.
951 assert(QII
->isPredicated(MI
) && "Must be predicated instruction");
953 for (auto &Op
: MI
.operands()) {
954 if (Op
.isReg() && Op
.getReg() && Op
.isUse() &&
955 Hexagon::PredRegsRegClass
.contains(Op
.getReg()))
959 llvm_unreachable("Unknown instruction operand layout");
963 // Given two predicated instructions, this function detects whether
964 // the predicates are complements.
965 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr
&MI1
,
967 // If we don't know the predicate sense of the instructions bail out early, we
969 if (getPredicateSense(MI1
, HII
) == PK_Unknown
||
970 getPredicateSense(MI2
, HII
) == PK_Unknown
)
973 // Scheduling unit for candidate.
974 SUnit
*SU
= MIToSUnit
[&MI1
];
976 // One corner case deals with the following scenario:
978 // a) %r24 = A2_tfrt %p0, %r25
981 // b) %r25 = A2_tfrf %p0, %r24
982 // c) %p0 = C2_cmpeqi %r26, 1
985 // On general check a) and b) are complements, but presence of c) will
986 // convert a) to .new form, and then it is not a complement.
987 // We attempt to detect it by analyzing existing dependencies in the packet.
989 // Analyze relationships between all existing members of the packet.
990 // Look for Anti dependecy on the same predicate reg as used in the
992 for (auto I
: CurrentPacketMIs
) {
993 // Scheduling Unit for current insn in the packet.
994 SUnit
*PacketSU
= MIToSUnit
.find(I
)->second
;
996 // If this instruction in the packet is succeeded by the candidate...
997 if (PacketSU
->isSucc(SU
)) {
998 for (unsigned i
= 0; i
< PacketSU
->Succs
.size(); ++i
) {
999 auto Dep
= PacketSU
->Succs
[i
];
1000 // The corner case exist when there is true data dependency between
1001 // candidate and one of current packet members, this dep is on
1002 // predicate reg, and there already exist anti dep on the same pred in
1004 if (Dep
.getSUnit() == SU
&& Dep
.getKind() == SDep::Data
&&
1005 Hexagon::PredRegsRegClass
.contains(Dep
.getReg())) {
1006 // Here I know that I is predicate setting instruction with true
1007 // data dep to candidate on the register we care about - c) in the
1008 // above example. Now I need to see if there is an anti dependency
1009 // from c) to any other instruction in the same packet on the pred
1011 if (restrictingDepExistInPacket(*I
, Dep
.getReg()))
1018 // If the above case does not apply, check regular complement condition.
1019 // Check that the predicate register is the same and that the predicate
1020 // sense is different We also need to differentiate .old vs. .new: !p0
1021 // is not complementary to p0.new.
1022 unsigned PReg1
= getPredicatedRegister(MI1
, HII
);
1023 unsigned PReg2
= getPredicatedRegister(MI2
, HII
);
1024 return PReg1
== PReg2
&&
1025 Hexagon::PredRegsRegClass
.contains(PReg1
) &&
1026 Hexagon::PredRegsRegClass
.contains(PReg2
) &&
1027 getPredicateSense(MI1
, HII
) != getPredicateSense(MI2
, HII
) &&
1028 HII
->isDotNewInst(MI1
) == HII
->isDotNewInst(MI2
);
1031 // Initialize packetizer flags.
1032 void HexagonPacketizerList::initPacketizerState() {
1034 PromotedToDotNew
= false;
1035 GlueToNewValueJump
= false;
1036 GlueAllocframeStore
= false;
1037 FoundSequentialDependence
= false;
1038 ChangedOffset
= INT64_MAX
;
1041 // Ignore bundling of pseudo instructions.
1042 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr
&MI
,
1043 const MachineBasicBlock
*) {
1044 if (MI
.isDebugInstr())
1047 if (MI
.isCFIInstruction())
1050 // We must print out inline assembly.
1051 if (MI
.isInlineAsm())
1054 if (MI
.isImplicitDef())
1057 // We check if MI has any functional units mapped to it. If it doesn't,
1058 // we ignore the instruction.
1059 const MCInstrDesc
& TID
= MI
.getDesc();
1060 auto *IS
= ResourceTracker
->getInstrItins()->beginStage(TID
.getSchedClass());
1061 return !IS
->getUnits();
1064 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr
&MI
) {
1065 // Ensure any bundles created by gather packetize remain separate.
1069 if (MI
.isEHLabel() || MI
.isCFIInstruction())
1072 // Consider inline asm to not be a solo instruction by default.
1073 // Inline asm will be put in a packet temporarily, but then it will be
1074 // removed, and placed outside of the packet (before or after, depending
1075 // on dependencies). This is to reduce the impact of inline asm as a
1076 // "packet splitting" instruction.
1077 if (MI
.isInlineAsm() && !ScheduleInlineAsm
)
1080 if (isSchedBarrier(MI
))
1083 if (HII
->isSolo(MI
))
1086 if (MI
.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER
||
1087 MI
.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT
||
1088 MI
.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL
)
1091 if (MI
.getOpcode() == Hexagon::A2_nop
)
1097 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1098 // Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm",
1099 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1100 // For full test call this function twice:
1101 // cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1102 // Doing the test only one way saves the amount of code in this function,
1103 // since every test would need to be repeated with the MI and MJ reversed.
1104 static bool cannotCoexistAsymm(const MachineInstr
&MI
, const MachineInstr
&MJ
,
1105 const HexagonInstrInfo
&HII
) {
1106 const MachineFunction
*MF
= MI
.getParent()->getParent();
1107 if (MF
->getSubtarget
<HexagonSubtarget
>().hasV60OpsOnly() &&
1108 HII
.isHVXMemWithAIndirect(MI
, MJ
))
1111 // Don't allow a store and an instruction that must be in slot0 and
1112 // doesn't allow a slot1 instruction.
1113 if (MI
.mayStore() && HII
.isRestrictNoSlot1Store(MJ
) && HII
.isPureSlot0(MJ
))
1116 // An inline asm cannot be together with a branch, because we may not be
1117 // able to remove the asm out after packetizing (i.e. if the asm must be
1118 // moved past the bundle). Similarly, two asms cannot be together to avoid
1119 // complications when determining their relative order outside of a bundle.
1120 if (MI
.isInlineAsm())
1121 return MJ
.isInlineAsm() || MJ
.isBranch() || MJ
.isBarrier() ||
1122 MJ
.isCall() || MJ
.isTerminator();
1124 // New-value stores cannot coexist with any other stores.
1125 if (HII
.isNewValueStore(MI
) && MJ
.mayStore())
1128 switch (MI
.getOpcode()) {
1129 case Hexagon::S2_storew_locked
:
1130 case Hexagon::S4_stored_locked
:
1131 case Hexagon::L2_loadw_locked
:
1132 case Hexagon::L4_loadd_locked
:
1133 case Hexagon::Y2_dccleana
:
1134 case Hexagon::Y2_dccleaninva
:
1135 case Hexagon::Y2_dcinva
:
1136 case Hexagon::Y2_dczeroa
:
1137 case Hexagon::Y4_l2fetch
:
1138 case Hexagon::Y5_l2fetch
: {
1139 // These instructions can only be grouped with ALU32 or non-floating-point
1140 // XTYPE instructions. Since there is no convenient way of identifying fp
1141 // XTYPE instructions, only allow grouping with ALU32 for now.
1142 unsigned TJ
= HII
.getType(MJ
);
1143 if (TJ
!= HexagonII::TypeALU32_2op
&&
1144 TJ
!= HexagonII::TypeALU32_3op
&&
1145 TJ
!= HexagonII::TypeALU32_ADDI
)
1153 // "False" really means that the quick check failed to determine if
1154 // I and J cannot coexist.
1158 // Full, symmetric check.
1159 bool HexagonPacketizerList::cannotCoexist(const MachineInstr
&MI
,
1160 const MachineInstr
&MJ
) {
1161 return cannotCoexistAsymm(MI
, MJ
, *HII
) || cannotCoexistAsymm(MJ
, MI
, *HII
);
1164 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction
&MF
) {
1165 for (auto &B
: MF
) {
1166 MachineBasicBlock::iterator BundleIt
;
1167 for (MachineInstr
&MI
: llvm::make_early_inc_range(B
.instrs())) {
1169 BundleIt
= MI
.getIterator();
1170 if (!MI
.isInsideBundle())
1173 // Decide on where to insert the instruction that we are pulling out.
1174 // Debug instructions always go before the bundle, but the placement of
1175 // INLINE_ASM depends on potential dependencies. By default, try to
1176 // put it before the bundle, but if the asm writes to a register that
1177 // other instructions in the bundle read, then we need to place it
1178 // after the bundle (to preserve the bundle semantics).
1179 bool InsertBeforeBundle
;
1180 if (MI
.isInlineAsm())
1181 InsertBeforeBundle
= !hasWriteToReadDep(MI
, *BundleIt
, HRI
);
1182 else if (MI
.isDebugValue())
1183 InsertBeforeBundle
= true;
1187 BundleIt
= moveInstrOut(MI
, BundleIt
, InsertBeforeBundle
);
1192 // Check if a given instruction is of class "system".
1193 static bool isSystemInstr(const MachineInstr
&MI
) {
1194 unsigned Opc
= MI
.getOpcode();
1196 case Hexagon::Y2_barrier
:
1197 case Hexagon::Y2_dcfetchbo
:
1198 case Hexagon::Y4_l2fetch
:
1199 case Hexagon::Y5_l2fetch
:
1205 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr
&I
,
1206 const MachineInstr
&J
) {
1207 // The dependence graph may not include edges between dead definitions,
1208 // so without extra checks, we could end up packetizing two instruction
1209 // defining the same (dead) register.
1210 if (I
.isCall() || J
.isCall())
1212 if (HII
->isPredicated(I
) || HII
->isPredicated(J
))
1215 BitVector
DeadDefs(Hexagon::NUM_TARGET_REGS
);
1216 for (auto &MO
: I
.operands()) {
1217 if (!MO
.isReg() || !MO
.isDef() || !MO
.isDead())
1219 DeadDefs
[MO
.getReg()] = true;
1222 for (auto &MO
: J
.operands()) {
1223 if (!MO
.isReg() || !MO
.isDef() || !MO
.isDead())
1225 Register R
= MO
.getReg();
1226 if (R
!= Hexagon::USR_OVF
&& DeadDefs
[R
])
1232 bool HexagonPacketizerList::hasControlDependence(const MachineInstr
&I
,
1233 const MachineInstr
&J
) {
1234 // A save callee-save register function call can only be in a packet
1235 // with instructions that don't write to the callee-save registers.
1236 if ((HII
->isSaveCalleeSavedRegsCall(I
) &&
1237 doesModifyCalleeSavedReg(J
, HRI
)) ||
1238 (HII
->isSaveCalleeSavedRegsCall(J
) &&
1239 doesModifyCalleeSavedReg(I
, HRI
)))
1242 // Two control flow instructions cannot go in the same packet.
1243 if (isControlFlow(I
) && isControlFlow(J
))
1246 // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1247 // contain a speculative indirect jump,
1248 // a new-value compare jump or a dealloc_return.
1249 auto isBadForLoopN
= [this] (const MachineInstr
&MI
) -> bool {
1250 if (MI
.isCall() || HII
->isDeallocRet(MI
) || HII
->isNewValueJump(MI
))
1252 if (HII
->isPredicated(MI
) && HII
->isPredicatedNew(MI
) && HII
->isJumpR(MI
))
1257 if (HII
->isLoopN(I
) && isBadForLoopN(J
))
1259 if (HII
->isLoopN(J
) && isBadForLoopN(I
))
1262 // dealloc_return cannot appear in the same packet as a conditional or
1263 // unconditional jump.
1264 return HII
->isDeallocRet(I
) &&
1265 (J
.isBranch() || J
.isCall() || J
.isBarrier());
1268 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr
&I
,
1269 const MachineInstr
&J
) {
1270 // Adding I to a packet that has J.
1272 // Regmasks are not reflected in the scheduling dependency graph, so
1273 // we need to check them manually. This code assumes that regmasks only
1274 // occur on calls, and the problematic case is when we add an instruction
1275 // defining a register R to a packet that has a call that clobbers R via
1276 // a regmask. Those cannot be packetized together, because the call will
1277 // be executed last. That's also a reson why it is ok to add a call
1278 // clobbering R to a packet that defines R.
1280 // Look for regmasks in J.
1281 for (const MachineOperand
&OpJ
: J
.operands()) {
1282 if (!OpJ
.isRegMask())
1284 assert((J
.isCall() || HII
->isTailCall(J
)) && "Regmask on a non-call");
1285 for (const MachineOperand
&OpI
: I
.operands()) {
1287 if (OpJ
.clobbersPhysReg(OpI
.getReg()))
1289 } else if (OpI
.isRegMask()) {
1290 // Both are regmasks. Assume that they intersect.
1298 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr
&I
,
1299 const MachineInstr
&J
) {
1300 bool SysI
= isSystemInstr(I
), SysJ
= isSystemInstr(J
);
1301 bool StoreI
= I
.mayStore(), StoreJ
= J
.mayStore();
1302 if ((SysI
&& StoreJ
) || (SysJ
&& StoreI
))
1305 if (StoreI
&& StoreJ
) {
1306 if (HII
->isNewValueInst(J
) || HII
->isMemOp(J
) || HII
->isMemOp(I
))
1309 // A memop cannot be in the same packet with another memop or a store.
1310 // Two stores can be together, but here I and J cannot both be stores.
1311 bool MopStI
= HII
->isMemOp(I
) || StoreI
;
1312 bool MopStJ
= HII
->isMemOp(J
) || StoreJ
;
1313 if (MopStI
&& MopStJ
)
1317 return (StoreJ
&& HII
->isDeallocRet(I
)) || (StoreI
&& HII
->isDeallocRet(J
));
1320 // SUI is the current instruction that is out side of the current packet.
1321 // SUJ is the current instruction inside the current packet against which that
1322 // SUI will be packetized.
1323 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit
*SUI
, SUnit
*SUJ
) {
1324 assert(SUI
->getInstr() && SUJ
->getInstr());
1325 MachineInstr
&I
= *SUI
->getInstr();
1326 MachineInstr
&J
= *SUJ
->getInstr();
1328 // Clear IgnoreDepMIs when Packet starts.
1329 if (CurrentPacketMIs
.size() == 1)
1330 IgnoreDepMIs
.clear();
1332 MachineBasicBlock::iterator II
= I
.getIterator();
1334 // Solo instructions cannot go in the packet.
1335 assert(!isSoloInstruction(I
) && "Unexpected solo instr!");
1337 if (cannotCoexist(I
, J
))
1340 Dependence
= hasDeadDependence(I
, J
) || hasControlDependence(I
, J
);
1344 // Regmasks are not accounted for in the scheduling graph, so we need
1345 // to explicitly check for dependencies caused by them. They should only
1346 // appear on calls, so it's not too pessimistic to reject all regmask
1348 Dependence
= hasRegMaskDependence(I
, J
);
1352 // Dual-store does not allow second store, if the first store is not
1353 // in SLOT0. New value store, new value jump, dealloc_return and memop
1354 // always take SLOT0. Arch spec 3.4.4.2.
1355 Dependence
= hasDualStoreDependence(I
, J
);
1359 // If an instruction feeds new value jump, glue it.
1360 MachineBasicBlock::iterator NextMII
= I
.getIterator();
1362 if (NextMII
!= I
.getParent()->end() && HII
->isNewValueJump(*NextMII
)) {
1363 MachineInstr
&NextMI
= *NextMII
;
1365 bool secondRegMatch
= false;
1366 const MachineOperand
&NOp0
= NextMI
.getOperand(0);
1367 const MachineOperand
&NOp1
= NextMI
.getOperand(1);
1369 if (NOp1
.isReg() && I
.getOperand(0).getReg() == NOp1
.getReg())
1370 secondRegMatch
= true;
1372 for (MachineInstr
*PI
: CurrentPacketMIs
) {
1373 // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1379 // 1. Packet does not have a store in it.
1380 // 2. If the first operand of the nvj is newified, and the second
1381 // operand is also a reg, it (second reg) is not defined in
1383 // 3. If the second operand of the nvj is newified, (which means
1384 // first operand is also a reg), first reg is not defined in
1386 if (PI
->getOpcode() == Hexagon::S2_allocframe
|| PI
->mayStore() ||
1387 HII
->isLoopN(*PI
)) {
1392 const MachineOperand
&OpR
= secondRegMatch
? NOp0
: NOp1
;
1393 if (OpR
.isReg() && PI
->modifiesRegister(OpR
.getReg(), HRI
)) {
1399 GlueToNewValueJump
= true;
1404 // There no dependency between a prolog instruction and its successor.
1405 if (!SUJ
->isSucc(SUI
))
1408 for (unsigned i
= 0; i
< SUJ
->Succs
.size(); ++i
) {
1409 if (FoundSequentialDependence
)
1412 if (SUJ
->Succs
[i
].getSUnit() != SUI
)
1415 SDep::Kind DepType
= SUJ
->Succs
[i
].getKind();
1416 // For direct calls:
1417 // Ignore register dependences for call instructions for packetization
1418 // purposes except for those due to r31 and predicate registers.
1420 // For indirect calls:
1421 // Same as direct calls + check for true dependences to the register
1422 // used in the indirect call.
1424 // We completely ignore Order dependences for call instructions.
1427 // Ignore register dependences for return instructions like jumpr,
1428 // dealloc return unless we have dependencies on the explicit uses
1429 // of the registers used by jumpr (like r31) or dealloc return
1430 // (like r29 or r30).
1431 unsigned DepReg
= 0;
1432 const TargetRegisterClass
*RC
= nullptr;
1433 if (DepType
== SDep::Data
) {
1434 DepReg
= SUJ
->Succs
[i
].getReg();
1435 RC
= HRI
->getMinimalPhysRegClass(DepReg
);
1438 if (I
.isCall() || HII
->isJumpR(I
) || I
.isReturn() || HII
->isTailCall(I
)) {
1439 if (!isRegDependence(DepType
))
1441 if (!isCallDependent(I
, DepType
, SUJ
->Succs
[i
].getReg()))
1445 if (DepType
== SDep::Data
) {
1446 if (canPromoteToDotCur(J
, SUJ
, DepReg
, II
, RC
))
1447 if (promoteToDotCur(J
, DepType
, II
, RC
))
1451 // Data dpendence ok if we have load.cur.
1452 if (DepType
== SDep::Data
&& HII
->isDotCurInst(J
)) {
1453 if (HII
->isHVXVec(I
))
1457 // For instructions that can be promoted to dot-new, try to promote.
1458 if (DepType
== SDep::Data
) {
1459 if (canPromoteToDotNew(I
, SUJ
, DepReg
, II
, RC
)) {
1460 if (promoteToDotNew(I
, DepType
, II
, RC
)) {
1461 PromotedToDotNew
= true;
1462 if (cannotCoexist(I
, J
))
1463 FoundSequentialDependence
= true;
1467 if (HII
->isNewValueJump(I
))
1471 // For predicated instructions, if the predicates are complements then
1472 // there can be no dependence.
1473 if (HII
->isPredicated(I
) && HII
->isPredicated(J
) &&
1474 arePredicatesComplements(I
, J
)) {
1475 // Not always safe to do this translation.
1476 // DAG Builder attempts to reduce dependence edges using transitive
1477 // nature of dependencies. Here is an example:
1479 // r0 = tfr_pt ... (1)
1480 // r0 = tfr_pf ... (2)
1481 // r0 = tfr_pt ... (3)
1483 // There will be an output dependence between (1)->(2) and (2)->(3).
1484 // However, there is no dependence edge between (1)->(3). This results
1485 // in all 3 instructions going in the same packet. We ignore dependce
1486 // only once to avoid this situation.
1487 auto Itr
= find(IgnoreDepMIs
, &J
);
1488 if (Itr
!= IgnoreDepMIs
.end()) {
1492 IgnoreDepMIs
.push_back(&I
);
1496 // Ignore Order dependences between unconditional direct branches
1497 // and non-control-flow instructions.
1498 if (isDirectJump(I
) && !J
.isBranch() && !J
.isCall() &&
1499 DepType
== SDep::Order
)
1502 // Ignore all dependences for jumps except for true and output
1504 if (I
.isConditionalBranch() && DepType
!= SDep::Data
&&
1505 DepType
!= SDep::Output
)
1508 if (DepType
== SDep::Output
) {
1509 FoundSequentialDependence
= true;
1513 // For Order dependences:
1514 // 1. Volatile loads/stores can be packetized together, unless other
1515 // rules prevent is.
1516 // 2. Store followed by a load is not allowed.
1517 // 3. Store followed by a store is valid.
1518 // 4. Load followed by any memory operation is allowed.
1519 if (DepType
== SDep::Order
) {
1520 if (!PacketizeVolatiles
) {
1521 bool OrdRefs
= I
.hasOrderedMemoryRef() || J
.hasOrderedMemoryRef();
1523 FoundSequentialDependence
= true;
1527 // J is first, I is second.
1528 bool LoadJ
= J
.mayLoad(), StoreJ
= J
.mayStore();
1529 bool LoadI
= I
.mayLoad(), StoreI
= I
.mayStore();
1530 bool NVStoreJ
= HII
->isNewValueStore(J
);
1531 bool NVStoreI
= HII
->isNewValueStore(I
);
1532 bool IsVecJ
= HII
->isHVXVec(J
);
1533 bool IsVecI
= HII
->isHVXVec(I
);
1535 // Don't reorder the loads if there is an order dependence. This would
1536 // occur if the first instruction must go in slot0.
1537 if (LoadJ
&& LoadI
&& HII
->isPureSlot0(J
)) {
1538 FoundSequentialDependence
= true;
1542 if (Slot1Store
&& MF
.getSubtarget
<HexagonSubtarget
>().hasV65Ops() &&
1543 ((LoadJ
&& StoreI
&& !NVStoreI
) ||
1544 (StoreJ
&& LoadI
&& !NVStoreJ
)) &&
1545 (J
.getOpcode() != Hexagon::S2_allocframe
&&
1546 I
.getOpcode() != Hexagon::S2_allocframe
) &&
1547 (J
.getOpcode() != Hexagon::L2_deallocframe
&&
1548 I
.getOpcode() != Hexagon::L2_deallocframe
) &&
1549 (!HII
->isMemOp(J
) && !HII
->isMemOp(I
)) && (!IsVecJ
&& !IsVecI
))
1550 setmemShufDisabled(true);
1552 if (StoreJ
&& LoadI
&& alias(J
, I
)) {
1553 FoundSequentialDependence
= true;
1558 if (!LoadJ
|| (!LoadI
&& !StoreI
)) {
1559 // If J is neither load nor store, assume a dependency.
1560 // If J is a load, but I is neither, also assume a dependency.
1561 FoundSequentialDependence
= true;
1564 // Store followed by store: not OK on V2.
1565 // Store followed by load: not OK on all.
1566 // Load followed by store: OK on all.
1567 // Load followed by load: OK on all.
1571 // Special case for ALLOCFRAME: even though there is dependency
1572 // between ALLOCFRAME and subsequent store, allow it to be packetized
1573 // in a same packet. This implies that the store is using the caller's
1574 // SP. Hence, offset needs to be updated accordingly.
1575 if (DepType
== SDep::Data
&& J
.getOpcode() == Hexagon::S2_allocframe
) {
1576 unsigned Opc
= I
.getOpcode();
1578 case Hexagon::S2_storerd_io
:
1579 case Hexagon::S2_storeri_io
:
1580 case Hexagon::S2_storerh_io
:
1581 case Hexagon::S2_storerb_io
:
1582 if (I
.getOperand(0).getReg() == HRI
->getStackRegister()) {
1583 // Since this store is to be glued with allocframe in the same
1584 // packet, it will use SP of the previous stack frame, i.e.
1585 // caller's SP. Therefore, we need to recalculate offset
1586 // according to this change.
1587 GlueAllocframeStore
= useCallersSP(I
);
1588 if (GlueAllocframeStore
)
1597 // There are certain anti-dependencies that cannot be ignored.
1599 // J2_call ... implicit-def %r0 ; SUJ
1601 // Those cannot be packetized together, since the call will observe
1602 // the effect of the assignment to R0.
1603 if ((DepType
== SDep::Anti
|| DepType
== SDep::Output
) && J
.isCall()) {
1604 // Check if I defines any volatile register. We should also check
1605 // registers that the call may read, but these happen to be a
1606 // subset of the volatile register set.
1607 for (const MachineOperand
&Op
: I
.operands()) {
1608 if (Op
.isReg() && Op
.isDef()) {
1609 Register R
= Op
.getReg();
1610 if (!J
.readsRegister(R
, HRI
) && !J
.modifiesRegister(R
, HRI
))
1612 } else if (!Op
.isRegMask()) {
1613 // If I has a regmask assume dependency.
1616 FoundSequentialDependence
= true;
1621 // Skip over remaining anti-dependences. Two instructions that are
1622 // anti-dependent can share a packet, since in most such cases all
1623 // operands are read before any modifications take place.
1624 // The exceptions are branch and call instructions, since they are
1625 // executed after all other instructions have completed (at least
1627 if (DepType
!= SDep::Anti
) {
1628 FoundSequentialDependence
= true;
1633 if (FoundSequentialDependence
) {
1641 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit
*SUI
, SUnit
*SUJ
) {
1642 assert(SUI
->getInstr() && SUJ
->getInstr());
1643 MachineInstr
&I
= *SUI
->getInstr();
1644 MachineInstr
&J
= *SUJ
->getInstr();
1646 bool Coexist
= !cannotCoexist(I
, J
);
1648 if (Coexist
&& !Dependence
)
1651 // Check if the instruction was promoted to a dot-new. If so, demote it
1652 // back into a dot-old.
1653 if (PromotedToDotNew
)
1657 // Check if the instruction (must be a store) was glued with an allocframe
1658 // instruction. If so, restore its offset to its original value, i.e. use
1659 // current SP instead of caller's SP.
1660 if (GlueAllocframeStore
) {
1662 GlueAllocframeStore
= false;
1665 if (ChangedOffset
!= INT64_MAX
)
1666 undoChangedOffset(I
);
1668 if (GlueToNewValueJump
) {
1669 // Putting I and J together would prevent the new-value jump from being
1670 // packetized with the producer. In that case I and J must be separated.
1671 GlueToNewValueJump
= false;
1678 if (ChangedOffset
== INT64_MAX
&& updateOffset(SUI
, SUJ
)) {
1679 FoundSequentialDependence
= false;
1688 bool HexagonPacketizerList::foundLSInPacket() {
1689 bool FoundLoad
= false;
1690 bool FoundStore
= false;
1692 for (auto MJ
: CurrentPacketMIs
) {
1693 unsigned Opc
= MJ
->getOpcode();
1694 if (Opc
== Hexagon::S2_allocframe
|| Opc
== Hexagon::L2_deallocframe
)
1696 if (HII
->isMemOp(*MJ
))
1700 if (MJ
->mayStore() && !HII
->isNewValueStore(*MJ
))
1703 return FoundLoad
&& FoundStore
;
1707 MachineBasicBlock::iterator
1708 HexagonPacketizerList::addToPacket(MachineInstr
&MI
) {
1709 MachineBasicBlock::iterator MII
= MI
.getIterator();
1710 MachineBasicBlock
*MBB
= MI
.getParent();
1712 if (CurrentPacketMIs
.empty()) {
1713 PacketStalls
= false;
1714 PacketStallCycles
= 0;
1716 PacketStalls
|= producesStall(MI
);
1717 PacketStallCycles
= std::max(PacketStallCycles
, calcStall(MI
));
1719 if (MI
.isImplicitDef()) {
1720 // Add to the packet to allow subsequent instructions to be checked
1722 CurrentPacketMIs
.push_back(&MI
);
1725 assert(ResourceTracker
->canReserveResources(MI
));
1727 bool ExtMI
= HII
->isExtended(MI
) || HII
->isConstExtended(MI
);
1730 if (GlueToNewValueJump
) {
1731 MachineInstr
&NvjMI
= *++MII
;
1732 // We need to put both instructions in the same packet: MI and NvjMI.
1733 // Either of them can require a constant extender. Try to add both to
1734 // the current packet, and if that fails, end the packet and start a
1736 ResourceTracker
->reserveResources(MI
);
1738 Good
= tryAllocateResourcesForConstExt(true);
1740 bool ExtNvjMI
= HII
->isExtended(NvjMI
) || HII
->isConstExtended(NvjMI
);
1742 if (ResourceTracker
->canReserveResources(NvjMI
))
1743 ResourceTracker
->reserveResources(NvjMI
);
1747 if (Good
&& ExtNvjMI
)
1748 Good
= tryAllocateResourcesForConstExt(true);
1752 assert(ResourceTracker
->canReserveResources(MI
));
1753 ResourceTracker
->reserveResources(MI
);
1755 assert(canReserveResourcesForConstExt());
1756 tryAllocateResourcesForConstExt(true);
1758 assert(ResourceTracker
->canReserveResources(NvjMI
));
1759 ResourceTracker
->reserveResources(NvjMI
);
1761 assert(canReserveResourcesForConstExt());
1762 reserveResourcesForConstExt();
1765 CurrentPacketMIs
.push_back(&MI
);
1766 CurrentPacketMIs
.push_back(&NvjMI
);
1770 ResourceTracker
->reserveResources(MI
);
1771 if (ExtMI
&& !tryAllocateResourcesForConstExt(true)) {
1773 if (PromotedToDotNew
)
1775 if (GlueAllocframeStore
) {
1777 GlueAllocframeStore
= false;
1779 ResourceTracker
->reserveResources(MI
);
1780 reserveResourcesForConstExt();
1783 CurrentPacketMIs
.push_back(&MI
);
1787 void HexagonPacketizerList::endPacket(MachineBasicBlock
*MBB
,
1788 MachineBasicBlock::iterator EndMI
) {
1789 // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1791 if (!CurrentPacketMIs
.empty()) {
1792 dbgs() << "Finalizing packet:\n";
1794 for (MachineInstr
*MI
: CurrentPacketMIs
) {
1795 unsigned R
= ResourceTracker
->getUsedResources(Idx
++);
1796 dbgs() << " * [res:0x" << utohexstr(R
) << "] " << *MI
;
1801 bool memShufDisabled
= getmemShufDisabled();
1802 if (memShufDisabled
&& !foundLSInPacket()) {
1803 setmemShufDisabled(false);
1804 LLVM_DEBUG(dbgs() << " Not added to NoShufPacket\n");
1806 memShufDisabled
= getmemShufDisabled();
1808 OldPacketMIs
.clear();
1809 for (MachineInstr
*MI
: CurrentPacketMIs
) {
1810 MachineBasicBlock::instr_iterator NextMI
= std::next(MI
->getIterator());
1811 for (auto &I
: make_range(HII
->expandVGatherPseudo(*MI
), NextMI
))
1812 OldPacketMIs
.push_back(&I
);
1814 CurrentPacketMIs
.clear();
1816 if (OldPacketMIs
.size() > 1) {
1817 MachineBasicBlock::instr_iterator
FirstMI(OldPacketMIs
.front());
1818 MachineBasicBlock::instr_iterator
LastMI(EndMI
.getInstrIterator());
1819 finalizeBundle(*MBB
, FirstMI
, LastMI
);
1820 auto BundleMII
= std::prev(FirstMI
);
1821 if (memShufDisabled
)
1822 HII
->setBundleNoShuf(BundleMII
);
1824 setmemShufDisabled(false);
1827 PacketHasDuplex
= false;
1828 PacketHasSLOT0OnlyInsn
= false;
1829 ResourceTracker
->clearResources();
1830 LLVM_DEBUG(dbgs() << "End packet\n");
1833 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr
&MI
) {
1837 if (producesStall(MI
))
1840 // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
1841 // with any other instruction in the existing packet.
1842 auto &HST
= MI
.getParent()->getParent()->getSubtarget
<HexagonSubtarget
>();
1843 // Constraint 1: Only one duplex allowed per packet.
1844 // Constraint 2: Consider duplex checks only if there is atleast one
1845 // instruction in a packet.
1846 // Constraint 3: If one of the existing instructions in the packet has a
1847 // SLOT0 only instruction that can not be duplexed, do not attempt to form
1848 // duplexes. (TODO: This will invalidate the L4_return* instructions to form a
1850 if (HST
.isTinyCoreWithDuplex() && CurrentPacketMIs
.size() > 0 &&
1852 // Check for SLOT0 only non-duplexable instruction in packet.
1853 for (auto &MJ
: CurrentPacketMIs
)
1854 PacketHasSLOT0OnlyInsn
|= HII
->isPureSlot0(*MJ
);
1855 // Get the Big Core Opcode (dup_*).
1856 int Opcode
= HII
->getDuplexOpcode(MI
, false);
1858 // We now have an instruction that can be duplexed.
1859 for (auto &MJ
: CurrentPacketMIs
) {
1860 if (HII
->isDuplexPair(MI
, *MJ
) && !PacketHasSLOT0OnlyInsn
) {
1861 PacketHasDuplex
= true;
1865 // If it can not be duplexed, check if there is a valid transition in DFA
1866 // with the original opcode.
1867 MachineInstr
&MIRef
= const_cast<MachineInstr
&>(MI
);
1868 MIRef
.setDesc(HII
->get(Opcode
));
1869 return ResourceTracker
->canReserveResources(MIRef
);
1876 // V60 forward scheduling.
1877 unsigned int HexagonPacketizerList::calcStall(const MachineInstr
&I
) {
1878 // Check whether the previous packet is in a different loop. If this is the
1879 // case, there is little point in trying to avoid a stall because that would
1880 // favor the rare case (loop entry) over the common case (loop iteration).
1882 // TODO: We should really be able to check all the incoming edges if this is
1883 // the first packet in a basic block, so we can avoid stalls from the loop
1885 if (!OldPacketMIs
.empty()) {
1886 auto *OldBB
= OldPacketMIs
.front()->getParent();
1887 auto *ThisBB
= I
.getParent();
1888 if (MLI
->getLoopFor(OldBB
) != MLI
->getLoopFor(ThisBB
))
1892 SUnit
*SUI
= MIToSUnit
[const_cast<MachineInstr
*>(&I
)];
1896 // If the latency is 0 and there is a data dependence between this
1897 // instruction and any instruction in the current packet, we disregard any
1898 // potential stalls due to the instructions in the previous packet. Most of
1899 // the instruction pairs that can go together in the same packet have 0
1900 // latency between them. The exceptions are
1901 // 1. NewValueJumps as they're generated much later and the latencies can't
1902 // be changed at that point.
1903 // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1904 // .new). In this case, the latency between .cur and the consumer stays
1905 // non-zero even though we can have both .cur and .new in the same packet.
1906 // Changing the latency to 0 is not an option as it causes software pipeliner
1907 // to not pipeline in some cases.
1911 // I1: v6.cur = vmem(r0++#1)
1912 // I2: v7 = valign(v6,v4,r2)
1913 // I3: vmem(r5++#1) = v7.new
1915 // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1917 for (auto J
: CurrentPacketMIs
) {
1918 SUnit
*SUJ
= MIToSUnit
[J
];
1919 for (auto &Pred
: SUI
->Preds
)
1920 if (Pred
.getSUnit() == SUJ
)
1921 if ((Pred
.getLatency() == 0 && Pred
.isAssignedRegDep()) ||
1922 HII
->isNewValueJump(I
) || HII
->isToBeScheduledASAP(*J
, I
))
1926 // Check if the latency is greater than one between this instruction and any
1927 // instruction in the previous packet.
1928 for (auto J
: OldPacketMIs
) {
1929 SUnit
*SUJ
= MIToSUnit
[J
];
1930 for (auto &Pred
: SUI
->Preds
)
1931 if (Pred
.getSUnit() == SUJ
&& Pred
.getLatency() > 1)
1932 return Pred
.getLatency();
1938 bool HexagonPacketizerList::producesStall(const MachineInstr
&I
) {
1939 unsigned int Latency
= calcStall(I
);
1942 // Ignore stall unless it stalls more than previous instruction in packet
1944 return Latency
> PacketStallCycles
;
1948 //===----------------------------------------------------------------------===//
1949 // Public Constructor Functions
1950 //===----------------------------------------------------------------------===//
1952 FunctionPass
*llvm::createHexagonPacketizer(bool Minimal
) {
1953 return new HexagonPacketizer(Minimal
);