1 //===- OutputSections.cpp -------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "OutputSections.h"
11 #include "InputFiles.h"
12 #include "LinkerScript.h"
14 #include "SyntheticSections.h"
16 #include "lld/Common/Arrays.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/LEB128.h"
22 #include "llvm/Support/Parallel.h"
23 #include "llvm/Support/Path.h"
24 #include "llvm/Support/TimeProfiler.h"
26 // Avoid introducing max as a macro from Windows headers.
35 using namespace llvm::dwarf
;
36 using namespace llvm::object
;
37 using namespace llvm::support::endian
;
38 using namespace llvm::ELF
;
40 using namespace lld::elf
;
42 uint32_t OutputSection::getPhdrFlags() const {
44 if (config
->emachine
!= EM_ARM
|| !(flags
& SHF_ARM_PURECODE
))
46 if (flags
& SHF_WRITE
)
48 if (flags
& SHF_EXECINSTR
)
54 void OutputSection::writeHeaderTo(typename
ELFT::Shdr
*shdr
) {
55 shdr
->sh_entsize
= entsize
;
56 shdr
->sh_addralign
= addralign
;
58 shdr
->sh_offset
= offset
;
59 shdr
->sh_flags
= flags
;
64 shdr
->sh_name
= shName
;
67 OutputSection::OutputSection(StringRef name
, uint32_t type
, uint64_t flags
)
68 : SectionBase(Output
, name
, flags
, /*Entsize*/ 0, /*Alignment*/ 1, type
,
69 /*Info*/ 0, /*Link*/ 0) {}
71 // We allow sections of types listed below to merged into a
72 // single progbits section. This is typically done by linker
73 // scripts. Merging nobits and progbits will force disk space
74 // to be allocated for nobits sections. Other ones don't require
75 // any special treatment on top of progbits, so there doesn't
76 // seem to be a harm in merging them.
78 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
79 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
80 static bool canMergeToProgbits(unsigned type
) {
81 return type
== SHT_NOBITS
|| type
== SHT_PROGBITS
|| type
== SHT_INIT_ARRAY
||
82 type
== SHT_PREINIT_ARRAY
|| type
== SHT_FINI_ARRAY
||
84 (type
== SHT_X86_64_UNWIND
&& config
->emachine
== EM_X86_64
);
87 // Record that isec will be placed in the OutputSection. isec does not become
88 // permanent until finalizeInputSections() is called. The function should not be
89 // used after finalizeInputSections() is called. If you need to add an
90 // InputSection post finalizeInputSections(), then you must do the following:
92 // 1. Find or create an InputSectionDescription to hold InputSection.
93 // 2. Add the InputSection to the InputSectionDescription::sections.
94 // 3. Call commitSection(isec).
95 void OutputSection::recordSection(InputSectionBase
*isec
) {
96 partition
= isec
->partition
;
98 if (commands
.empty() || !isa
<InputSectionDescription
>(commands
.back()))
99 commands
.push_back(make
<InputSectionDescription
>(""));
100 auto *isd
= cast
<InputSectionDescription
>(commands
.back());
101 isd
->sectionBases
.push_back(isec
);
104 // Update fields (type, flags, alignment, etc) according to the InputSection
105 // isec. Also check whether the InputSection flags and type are consistent with
106 // other InputSections.
107 void OutputSection::commitSection(InputSection
*isec
) {
108 if (LLVM_UNLIKELY(type
!= isec
->type
)) {
109 if (!hasInputSections
&& !typeIsSet
) {
111 } else if (isStaticRelSecType(type
) && isStaticRelSecType(isec
->type
) &&
112 (type
== SHT_CREL
) != (isec
->type
== SHT_CREL
)) {
113 // Combine mixed SHT_REL[A] and SHT_CREL to SHT_CREL.
115 if (type
== SHT_REL
) {
116 if (name
.consume_front(".rel"))
117 name
= saver().save(".crel" + name
);
118 } else if (name
.consume_front(".rela")) {
119 name
= saver().save(".crel" + name
);
122 if (typeIsSet
|| !canMergeToProgbits(type
) ||
123 !canMergeToProgbits(isec
->type
)) {
124 // The (NOLOAD) changes the section type to SHT_NOBITS, the intention is
125 // that the contents at that address is provided by some other means.
126 // Some projects (e.g.
127 // https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the
128 // behavior. Other types get an error.
129 if (type
!= SHT_NOBITS
) {
130 errorOrWarn("section type mismatch for " + isec
->name
+ "\n>>> " +
131 toString(isec
) + ": " +
132 getELFSectionTypeName(config
->emachine
, isec
->type
) +
133 "\n>>> output section " + name
+ ": " +
134 getELFSectionTypeName(config
->emachine
, type
));
141 if (!hasInputSections
) {
142 // If IS is the first section to be added to this section,
143 // initialize type, entsize and flags from isec.
144 hasInputSections
= true;
145 entsize
= isec
->entsize
;
148 // Otherwise, check if new type or flags are compatible with existing ones.
149 if ((flags
^ isec
->flags
) & SHF_TLS
)
150 error("incompatible section flags for " + name
+ "\n>>> " +
151 toString(isec
) + ": 0x" + utohexstr(isec
->flags
) +
152 "\n>>> output section " + name
+ ": 0x" + utohexstr(flags
));
157 config
->emachine
== EM_ARM
? (uint64_t)SHF_ARM_PURECODE
: 0;
158 uint64_t orMask
= ~andMask
;
159 uint64_t andFlags
= (flags
& isec
->flags
) & andMask
;
160 uint64_t orFlags
= (flags
| isec
->flags
) & orMask
;
161 flags
= andFlags
| orFlags
;
163 flags
&= ~(uint64_t)SHF_ALLOC
;
165 addralign
= std::max(addralign
, isec
->addralign
);
167 // If this section contains a table of fixed-size entries, sh_entsize
168 // holds the element size. If it contains elements of different size we
169 // set sh_entsize to 0.
170 if (entsize
!= isec
->entsize
)
174 static MergeSyntheticSection
*createMergeSynthetic(StringRef name
,
177 uint32_t addralign
) {
178 if ((flags
& SHF_STRINGS
) && config
->optimize
>= 2)
179 return make
<MergeTailSection
>(name
, type
, flags
, addralign
);
180 return make
<MergeNoTailSection
>(name
, type
, flags
, addralign
);
183 // This function scans over the InputSectionBase list sectionBases to create
184 // InputSectionDescription::sections.
186 // It removes MergeInputSections from the input section array and adds
187 // new synthetic sections at the location of the first input section
188 // that it replaces. It then finalizes each synthetic section in order
189 // to compute an output offset for each piece of each input section.
190 void OutputSection::finalizeInputSections(LinkerScript
*script
) {
191 std::vector
<MergeSyntheticSection
*> mergeSections
;
192 for (SectionCommand
*cmd
: commands
) {
193 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
196 isd
->sections
.reserve(isd
->sectionBases
.size());
197 for (InputSectionBase
*s
: isd
->sectionBases
) {
198 MergeInputSection
*ms
= dyn_cast
<MergeInputSection
>(s
);
200 isd
->sections
.push_back(cast
<InputSection
>(s
));
204 // We do not want to handle sections that are not alive, so just remove
205 // them instead of trying to merge.
209 auto i
= llvm::find_if(mergeSections
, [=](MergeSyntheticSection
*sec
) {
210 // While we could create a single synthetic section for two different
211 // values of Entsize, it is better to take Entsize into consideration.
213 // With a single synthetic section no two pieces with different Entsize
214 // could be equal, so we may as well have two sections.
216 // Using Entsize in here also allows us to propagate it to the synthetic
219 // SHF_STRINGS section with different alignments should not be merged.
220 return sec
->flags
== ms
->flags
&& sec
->entsize
== ms
->entsize
&&
221 (sec
->addralign
== ms
->addralign
|| !(sec
->flags
& SHF_STRINGS
));
223 if (i
== mergeSections
.end()) {
224 MergeSyntheticSection
*syn
=
225 createMergeSynthetic(s
->name
, ms
->type
, ms
->flags
, ms
->addralign
);
226 mergeSections
.push_back(syn
);
227 i
= std::prev(mergeSections
.end());
228 syn
->entsize
= ms
->entsize
;
229 isd
->sections
.push_back(syn
);
230 // The merge synthetic section inherits the potential spill locations of
231 // its first contained section.
232 auto it
= script
->potentialSpillLists
.find(ms
);
233 if (it
!= script
->potentialSpillLists
.end())
234 script
->potentialSpillLists
.try_emplace(syn
, it
->second
);
236 (*i
)->addSection(ms
);
239 // sectionBases should not be used from this point onwards. Clear it to
241 isd
->sectionBases
.clear();
243 // Some input sections may be removed from the list after ICF.
244 for (InputSection
*s
: isd
->sections
)
247 for (auto *ms
: mergeSections
)
248 ms
->finalizeContents();
251 static void sortByOrder(MutableArrayRef
<InputSection
*> in
,
252 llvm::function_ref
<int(InputSectionBase
*s
)> order
) {
253 std::vector
<std::pair
<int, InputSection
*>> v
;
254 for (InputSection
*s
: in
)
255 v
.emplace_back(order(s
), s
);
256 llvm::stable_sort(v
, less_first());
258 for (size_t i
= 0; i
< v
.size(); ++i
)
262 uint64_t elf::getHeaderSize() {
263 if (config
->oFormatBinary
)
265 return ctx
.out
.elfHeader
->size
+ ctx
.out
.programHeaders
->size
;
268 void OutputSection::sort(llvm::function_ref
<int(InputSectionBase
*s
)> order
) {
270 for (SectionCommand
*b
: commands
)
271 if (auto *isd
= dyn_cast
<InputSectionDescription
>(b
))
272 sortByOrder(isd
->sections
, order
);
275 static void nopInstrFill(uint8_t *buf
, size_t size
) {
281 std::vector
<std::vector
<uint8_t>> nopFiller
= *ctx
.target
->nopInstrs
;
282 unsigned num
= size
/ nopFiller
.back().size();
283 for (unsigned c
= 0; c
< num
; ++c
) {
284 memcpy(buf
+ i
, nopFiller
.back().data(), nopFiller
.back().size());
285 i
+= nopFiller
.back().size();
287 unsigned remaining
= size
- i
;
290 assert(nopFiller
[remaining
- 1].size() == remaining
);
291 memcpy(buf
+ i
, nopFiller
[remaining
- 1].data(), remaining
);
294 // Fill [Buf, Buf + Size) with Filler.
295 // This is used for linker script "=fillexp" command.
296 static void fill(uint8_t *buf
, size_t size
,
297 const std::array
<uint8_t, 4> &filler
) {
299 for (; i
+ 4 < size
; i
+= 4)
300 memcpy(buf
+ i
, filler
.data(), 4);
301 memcpy(buf
+ i
, filler
.data(), size
- i
);
305 static SmallVector
<uint8_t, 0> deflateShard(ArrayRef
<uint8_t> in
, int level
,
307 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
308 // data with no zlib header or trailer.
310 auto res
= deflateInit2(&s
, level
, Z_DEFLATED
, -15, 8, Z_DEFAULT_STRATEGY
);
312 errorOrWarn("--compress-sections: deflateInit2 returned " + Twine(res
));
315 s
.next_in
= const_cast<uint8_t *>(in
.data());
316 s
.avail_in
= in
.size();
318 // Allocate a buffer of half of the input size, and grow it by 1.5x if
320 SmallVector
<uint8_t, 0> out
;
322 out
.resize_for_overwrite(std::max
<size_t>(in
.size() / 2, 64));
324 if (pos
== out
.size())
325 out
.resize_for_overwrite(out
.size() * 3 / 2);
326 s
.next_out
= out
.data() + pos
;
327 s
.avail_out
= out
.size() - pos
;
328 (void)deflate(&s
, flush
);
329 pos
= s
.next_out
- out
.data();
330 } while (s
.avail_out
== 0);
331 assert(s
.avail_in
== 0);
339 // Compress certain non-SHF_ALLOC sections:
341 // * (if --compress-debug-sections is specified) non-empty .debug_* sections
342 // * (if --compress-sections is specified) matched sections
343 template <class ELFT
> void OutputSection::maybeCompress() {
344 using Elf_Chdr
= typename
ELFT::Chdr
;
345 (void)sizeof(Elf_Chdr
);
347 DebugCompressionType ctype
= DebugCompressionType::None
;
348 size_t compressedSize
= sizeof(Elf_Chdr
);
349 unsigned level
= 0; // default compression level
350 if (!(flags
& SHF_ALLOC
) && config
->compressDebugSections
&&
351 name
.starts_with(".debug_"))
352 ctype
= *config
->compressDebugSections
;
353 for (auto &[glob
, t
, l
] : config
->compressSections
)
354 if (glob
.match(name
))
355 std::tie(ctype
, level
) = {t
, l
};
356 if (ctype
== DebugCompressionType::None
)
358 if (flags
& SHF_ALLOC
) {
359 errorOrWarn("--compress-sections: section '" + name
+
360 "' with the SHF_ALLOC flag cannot be compressed");
364 llvm::TimeTraceScope
timeScope("Compress sections");
365 auto buf
= std::make_unique
<uint8_t[]>(size
);
366 // Write uncompressed data to a temporary zero-initialized buffer.
368 parallel::TaskGroup tg
;
369 writeTo
<ELFT
>(buf
.get(), tg
);
371 // The generic ABI specifies "The sh_size and sh_addralign fields of the
372 // section header for a compressed section reflect the requirements of the
373 // compressed section." However, 1-byte alignment has been wildly accepted
374 // and utilized for a long time. Removing alignment padding is particularly
375 // useful when there are many compressed output sections.
378 // Split input into 1-MiB shards.
379 [[maybe_unused
]] constexpr size_t shardSize
= 1 << 20;
380 auto shardsIn
= split(ArrayRef
<uint8_t>(buf
.get(), size
), shardSize
);
381 const size_t numShards
= shardsIn
.size();
382 auto shardsOut
= std::make_unique
<SmallVector
<uint8_t, 0>[]>(numShards
);
385 // Use ZSTD's streaming compression API. See
386 // http://facebook.github.io/zstd/zstd_manual.html "Streaming compression -
388 if (ctype
== DebugCompressionType::Zstd
) {
389 parallelFor(0, numShards
, [&](size_t i
) {
390 SmallVector
<uint8_t, 0> out
;
391 ZSTD_CCtx
*cctx
= ZSTD_createCCtx();
392 ZSTD_CCtx_setParameter(cctx
, ZSTD_c_compressionLevel
, level
);
393 ZSTD_inBuffer zib
= {shardsIn
[i
].data(), shardsIn
[i
].size(), 0};
394 ZSTD_outBuffer zob
= {nullptr, 0, 0};
397 // Allocate a buffer of half of the input size, and grow it by 1.5x if
399 if (zob
.pos
== zob
.size
) {
400 out
.resize_for_overwrite(
401 zob
.size
? zob
.size
* 3 / 2 : std::max
<size_t>(zib
.size
/ 4, 64));
402 zob
= {out
.data(), out
.size(), zob
.pos
};
404 size
= ZSTD_compressStream2(cctx
, &zob
, &zib
, ZSTD_e_end
);
405 assert(!ZSTD_isError(size
));
407 out
.truncate(zob
.pos
);
409 shardsOut
[i
] = std::move(out
);
411 compressed
.type
= ELFCOMPRESS_ZSTD
;
412 for (size_t i
= 0; i
!= numShards
; ++i
)
413 compressedSize
+= shardsOut
[i
].size();
418 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is
419 // fast and provides decent compression ratios.
420 if (ctype
== DebugCompressionType::Zlib
) {
422 level
= Z_BEST_SPEED
;
424 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
425 // shards but the last to flush the output to a byte boundary to be
426 // concatenated with the next shard.
427 auto shardsAdler
= std::make_unique
<uint32_t[]>(numShards
);
428 parallelFor(0, numShards
, [&](size_t i
) {
429 shardsOut
[i
] = deflateShard(shardsIn
[i
], level
,
430 i
!= numShards
- 1 ? Z_SYNC_FLUSH
: Z_FINISH
);
431 shardsAdler
[i
] = adler32(1, shardsIn
[i
].data(), shardsIn
[i
].size());
434 // Update section size and combine Alder-32 checksums.
435 uint32_t checksum
= 1; // Initial Adler-32 value
436 compressedSize
+= 2; // Elf_Chdir and zlib header
437 for (size_t i
= 0; i
!= numShards
; ++i
) {
438 compressedSize
+= shardsOut
[i
].size();
439 checksum
= adler32_combine(checksum
, shardsAdler
[i
], shardsIn
[i
].size());
441 compressedSize
+= 4; // checksum
442 compressed
.type
= ELFCOMPRESS_ZLIB
;
443 compressed
.checksum
= checksum
;
447 if (compressedSize
>= size
)
449 compressed
.uncompressedSize
= size
;
450 compressed
.shards
= std::move(shardsOut
);
451 compressed
.numShards
= numShards
;
452 size
= compressedSize
;
453 flags
|= SHF_COMPRESSED
;
456 static void writeInt(uint8_t *buf
, uint64_t data
, uint64_t size
) {
466 llvm_unreachable("unsupported Size argument");
469 template <class ELFT
>
470 void OutputSection::writeTo(uint8_t *buf
, parallel::TaskGroup
&tg
) {
471 llvm::TimeTraceScope
timeScope("Write sections", name
);
472 if (type
== SHT_NOBITS
)
474 if (type
== SHT_CREL
&& !(flags
& SHF_ALLOC
)) {
475 buf
+= encodeULEB128(crelHeader
, buf
);
476 memcpy(buf
, crelBody
.data(), crelBody
.size());
480 // If the section is compressed due to
481 // --compress-debug-section/--compress-sections, the content is already known.
482 if (compressed
.shards
) {
483 auto *chdr
= reinterpret_cast<typename
ELFT::Chdr
*>(buf
);
484 chdr
->ch_type
= compressed
.type
;
485 chdr
->ch_size
= compressed
.uncompressedSize
;
486 chdr
->ch_addralign
= addralign
;
487 buf
+= sizeof(*chdr
);
489 auto offsets
= std::make_unique
<size_t[]>(compressed
.numShards
);
490 if (compressed
.type
== ELFCOMPRESS_ZLIB
) {
491 buf
[0] = 0x78; // CMF
492 buf
[1] = 0x01; // FLG: best speed
493 offsets
[0] = 2; // zlib header
494 write32be(buf
+ (size
- sizeof(*chdr
) - 4), compressed
.checksum
);
497 // Compute shard offsets.
498 for (size_t i
= 1; i
!= compressed
.numShards
; ++i
)
499 offsets
[i
] = offsets
[i
- 1] + compressed
.shards
[i
- 1].size();
500 parallelFor(0, compressed
.numShards
, [&](size_t i
) {
501 memcpy(buf
+ offsets
[i
], compressed
.shards
[i
].data(),
502 compressed
.shards
[i
].size());
507 // Write leading padding.
508 ArrayRef
<InputSection
*> sections
= getInputSections(*this, storage
);
509 std::array
<uint8_t, 4> filler
= getFiller();
510 bool nonZeroFiller
= read32(filler
.data()) != 0;
512 fill(buf
, sections
.empty() ? size
: sections
[0]->outSecOff
, filler
);
514 if (type
== SHT_CREL
&& !(flags
& SHF_ALLOC
)) {
515 buf
+= encodeULEB128(crelHeader
, buf
);
516 memcpy(buf
, crelBody
.data(), crelBody
.size());
520 auto fn
= [=](size_t begin
, size_t end
) {
521 size_t numSections
= sections
.size();
522 for (size_t i
= begin
; i
!= end
; ++i
) {
523 InputSection
*isec
= sections
[i
];
524 if (auto *s
= dyn_cast
<SyntheticSection
>(isec
))
525 s
->writeTo(buf
+ isec
->outSecOff
);
527 isec
->writeTo
<ELFT
>(buf
+ isec
->outSecOff
);
529 // When in Arm BE8 mode, the linker has to convert the big-endian
530 // instructions to little-endian, leaving the data big-endian.
531 if (config
->emachine
== EM_ARM
&& !config
->isLE
&& config
->armBe8
&&
532 (flags
& SHF_EXECINSTR
))
533 convertArmInstructionstoBE8(isec
, buf
+ isec
->outSecOff
);
535 // Fill gaps between sections.
537 uint8_t *start
= buf
+ isec
->outSecOff
+ isec
->getSize();
539 if (i
+ 1 == numSections
)
542 end
= buf
+ sections
[i
+ 1]->outSecOff
;
543 if (isec
->nopFiller
) {
544 assert(ctx
.target
->nopInstrs
);
545 nopInstrFill(start
, end
- start
);
547 fill(start
, end
- start
, filler
);
552 // If there is any BYTE()-family command (rare), write the section content
553 // first then process BYTE to overwrite the filler content. The write is
554 // serial due to the limitation of llvm/Support/Parallel.h.
555 bool written
= false;
556 size_t numSections
= sections
.size();
557 for (SectionCommand
*cmd
: commands
)
558 if (auto *data
= dyn_cast
<ByteCommand
>(cmd
)) {
559 if (!std::exchange(written
, true))
561 writeInt(buf
+ data
->offset
, data
->expression().getValue(), data
->size
);
563 if (written
|| !numSections
)
566 // There is no data command. Write content asynchronously to overlap the write
567 // time with other output sections. Note, if a linker script specifies
568 // overlapping output sections (needs --noinhibit-exec or --no-check-sections
569 // to supress the error), the output may be non-deterministic.
570 const size_t taskSizeLimit
= 4 << 20;
571 for (size_t begin
= 0, i
= 0, taskSize
= 0;;) {
572 taskSize
+= sections
[i
]->getSize();
573 bool done
= ++i
== numSections
;
574 if (done
|| taskSize
>= taskSizeLimit
) {
575 tg
.spawn([=] { fn(begin
, i
); });
584 static void finalizeShtGroup(OutputSection
*os
, InputSection
*section
) {
585 // sh_link field for SHT_GROUP sections should contain the section index of
587 os
->link
= in
.symTab
->getParent()->sectionIndex
;
592 // sh_info then contain index of an entry in symbol table section which
593 // provides signature of the section group.
594 ArrayRef
<Symbol
*> symbols
= section
->file
->getSymbols();
595 os
->info
= in
.symTab
->getSymbolIndex(*symbols
[section
->info
]);
597 // Some group members may be combined or discarded, so we need to compute the
598 // new size. The content will be rewritten in InputSection::copyShtGroup.
599 DenseSet
<uint32_t> seen
;
600 ArrayRef
<InputSectionBase
*> sections
= section
->file
->getSections();
601 for (const uint32_t &idx
: section
->getDataAs
<uint32_t>().slice(1))
602 if (OutputSection
*osec
= sections
[read32(&idx
)]->getOutputSection())
603 seen
.insert(osec
->sectionIndex
);
604 os
->size
= (1 + seen
.size()) * sizeof(uint32_t);
607 template <class uint
>
608 LLVM_ATTRIBUTE_ALWAYS_INLINE
static void
609 encodeOneCrel(raw_svector_ostream
&os
, Elf_Crel
<sizeof(uint
) == 8> &out
,
610 uint offset
, const Symbol
&sym
, uint32_t type
, uint addend
) {
611 const auto deltaOffset
= static_cast<uint64_t>(offset
- out
.r_offset
);
612 out
.r_offset
= offset
;
613 int64_t symidx
= in
.symTab
->getSymbolIndex(sym
);
614 if (sym
.type
== STT_SECTION
) {
615 auto *d
= dyn_cast
<Defined
>(&sym
);
617 SectionBase
*section
= d
->section
;
618 assert(section
->isLive());
619 addend
= sym
.getVA(addend
) - section
->getOutputSection()->addr
;
621 // Encode R_*_NONE(symidx=0).
622 symidx
= type
= addend
= 0;
626 // Similar to llvm::ELF::encodeCrel.
627 uint8_t b
= deltaOffset
* 8 + (out
.r_symidx
!= symidx
) +
628 (out
.r_type
!= type
? 2 : 0) +
629 (uint(out
.r_addend
) != addend
? 4 : 0);
630 if (deltaOffset
< 0x10) {
633 os
<< char(b
| 0x80);
634 encodeULEB128(deltaOffset
>> 4, os
);
637 encodeSLEB128(static_cast<int32_t>(symidx
- out
.r_symidx
), os
);
638 out
.r_symidx
= symidx
;
641 encodeSLEB128(static_cast<int32_t>(type
- out
.r_type
), os
);
645 encodeSLEB128(std::make_signed_t
<uint
>(addend
- out
.r_addend
), os
);
646 out
.r_addend
= addend
;
650 template <class ELFT
>
651 static size_t relToCrel(raw_svector_ostream
&os
, Elf_Crel
<ELFT::Is64Bits
> &out
,
652 InputSection
*relSec
, InputSectionBase
*sec
) {
653 const auto &file
= *cast
<ELFFileBase
>(relSec
->file
);
654 if (relSec
->type
== SHT_REL
) {
655 // REL conversion is complex and unsupported yet.
656 errorOrWarn(toString(relSec
) + ": REL cannot be converted to CREL");
659 auto rels
= relSec
->getDataAs
<typename
ELFT::Rela
>();
660 for (auto rel
: rels
) {
661 encodeOneCrel
<typename
ELFT::uint
>(
662 os
, out
, sec
->getVA(rel
.r_offset
), file
.getRelocTargetSym(rel
),
663 rel
.getType(config
->isMips64EL
), getAddend
<ELFT
>(rel
));
668 // Compute the content of a non-alloc CREL section due to -r or --emit-relocs.
669 // Input CREL sections are decoded while REL[A] need to be converted.
670 template <bool is64
> void OutputSection::finalizeNonAllocCrel() {
671 using uint
= typename Elf_Crel_Impl
<is64
>::uint
;
672 raw_svector_ostream
os(crelBody
);
673 uint64_t totalCount
= 0;
674 Elf_Crel
<is64
> out
{};
675 assert(commands
.size() == 1);
676 auto *isd
= cast
<InputSectionDescription
>(commands
[0]);
677 for (InputSection
*relSec
: isd
->sections
) {
678 const auto &file
= *cast
<ELFFileBase
>(relSec
->file
);
679 InputSectionBase
*sec
= relSec
->getRelocatedSection();
680 if (relSec
->type
== SHT_CREL
) {
681 RelocsCrel
<is64
> entries(relSec
->content_
);
682 totalCount
+= entries
.size();
683 for (Elf_Crel_Impl
<is64
> r
: entries
) {
684 encodeOneCrel
<uint
>(os
, out
, uint(sec
->getVA(r
.r_offset
)),
685 file
.getSymbol(r
.r_symidx
), r
.r_type
, r
.r_addend
);
690 // Convert REL[A] to CREL.
691 if constexpr (is64
) {
692 totalCount
+= config
->isLE
? relToCrel
<ELF64LE
>(os
, out
, relSec
, sec
)
693 : relToCrel
<ELF64BE
>(os
, out
, relSec
, sec
);
695 totalCount
+= config
->isLE
? relToCrel
<ELF32LE
>(os
, out
, relSec
, sec
)
696 : relToCrel
<ELF32BE
>(os
, out
, relSec
, sec
);
700 crelHeader
= totalCount
* 8 + 4;
701 size
= getULEB128Size(crelHeader
) + crelBody
.size();
704 void OutputSection::finalize() {
705 InputSection
*first
= getFirstInputSection(this);
707 if (flags
& SHF_LINK_ORDER
) {
708 // We must preserve the link order dependency of sections with the
709 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
710 // need to translate the InputSection sh_link to the OutputSection sh_link,
711 // all InputSections in the OutputSection have the same dependency.
712 if (auto *ex
= dyn_cast
<ARMExidxSyntheticSection
>(first
))
713 link
= ex
->getLinkOrderDep()->getParent()->sectionIndex
;
714 else if (first
->flags
& SHF_LINK_ORDER
)
715 if (auto *d
= first
->getLinkOrderDep())
716 link
= d
->getParent()->sectionIndex
;
719 if (type
== SHT_GROUP
) {
720 finalizeShtGroup(this, first
);
724 if (!config
->copyRelocs
|| !isStaticRelSecType(type
))
727 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
728 // Normally 'type' was changed by 'first' so 'first' should be non-null.
729 // However, if the output section is .rela.dyn, 'type' can be set by the empty
730 // synthetic .rela.plt and first can be null.
731 if (!first
|| isa
<SyntheticSection
>(first
))
734 link
= in
.symTab
->getParent()->sectionIndex
;
735 // sh_info for SHT_REL[A] sections should contain the section header index of
736 // the section to which the relocation applies.
737 InputSectionBase
*s
= first
->getRelocatedSection();
738 info
= s
->getOutputSection()->sectionIndex
;
739 flags
|= SHF_INFO_LINK
;
740 // Finalize the content of non-alloc CREL.
741 if (type
== SHT_CREL
) {
743 finalizeNonAllocCrel
<true>();
745 finalizeNonAllocCrel
<false>();
749 // Returns true if S is in one of the many forms the compiler driver may pass
752 // Gcc uses any of crtbegin[<empty>|S|T].o.
753 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.
755 static bool isCrt(StringRef s
, StringRef beginEnd
) {
756 s
= sys::path::filename(s
);
757 if (!s
.consume_back(".o"))
759 if (s
.consume_front("clang_rt."))
760 return s
.consume_front(beginEnd
);
761 return s
.consume_front(beginEnd
) && s
.size() <= 1;
764 // .ctors and .dtors are sorted by this order:
766 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
767 // 2. The section is named ".ctors" or ".dtors" (priority: 65536).
768 // 3. The section has an optional priority value in the form of ".ctors.N" or
769 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
770 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
772 // For 2 and 3, the sections are sorted by priority from high to low, e.g.
773 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's
774 // internal linker scripts, the sorting is by string comparison which can
775 // achieve the same goal given the optional priority values are of the same
778 // In an ideal world, we don't need this function because .init_array and
779 // .ctors are duplicate features (and .init_array is newer.) However, there
780 // are too many real-world use cases of .ctors, so we had no choice to
781 // support that with this rather ad-hoc semantics.
782 static bool compCtors(const InputSection
*a
, const InputSection
*b
) {
783 bool beginA
= isCrt(a
->file
->getName(), "crtbegin");
784 bool beginB
= isCrt(b
->file
->getName(), "crtbegin");
785 if (beginA
!= beginB
)
787 bool endA
= isCrt(a
->file
->getName(), "crtend");
788 bool endB
= isCrt(b
->file
->getName(), "crtend");
791 return getPriority(a
->name
) > getPriority(b
->name
);
794 // Sorts input sections by the special rules for .ctors and .dtors.
795 // Unfortunately, the rules are different from the one for .{init,fini}_array.
796 // Read the comment above.
797 void OutputSection::sortCtorsDtors() {
798 assert(commands
.size() == 1);
799 auto *isd
= cast
<InputSectionDescription
>(commands
[0]);
800 llvm::stable_sort(isd
->sections
, compCtors
);
803 // If an input string is in the form of "foo.N" where N is a number, return N
804 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
805 // greater than the lowest priority.
806 int elf::getPriority(StringRef s
) {
807 size_t pos
= s
.rfind('.');
808 if (pos
== StringRef::npos
)
811 if (to_integer(s
.substr(pos
+ 1), v
, 10) &&
812 (pos
== 6 && (s
.starts_with(".ctors") || s
.starts_with(".dtors"))))
817 InputSection
*elf::getFirstInputSection(const OutputSection
*os
) {
818 for (SectionCommand
*cmd
: os
->commands
)
819 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
))
820 if (!isd
->sections
.empty())
821 return isd
->sections
[0];
825 ArrayRef
<InputSection
*>
826 elf::getInputSections(const OutputSection
&os
,
827 SmallVector
<InputSection
*, 0> &storage
) {
828 ArrayRef
<InputSection
*> ret
;
830 for (SectionCommand
*cmd
: os
.commands
) {
831 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
838 storage
.assign(ret
.begin(), ret
.end());
839 storage
.insert(storage
.end(), isd
->sections
.begin(), isd
->sections
.end());
842 return storage
.empty() ? ret
: ArrayRef(storage
);
845 // Sorts input sections by section name suffixes, so that .foo.N comes
846 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
847 // We want to keep the original order if the priorities are the same
848 // because the compiler keeps the original initialization order in a
849 // translation unit and we need to respect that.
850 // For more detail, read the section of the GCC's manual about init_priority.
851 void OutputSection::sortInitFini() {
852 // Sort sections by priority.
853 sort([](InputSectionBase
*s
) { return getPriority(s
->name
); });
856 std::array
<uint8_t, 4> OutputSection::getFiller() {
859 if (flags
& SHF_EXECINSTR
)
860 return ctx
.target
->trapInstr
;
864 void OutputSection::checkDynRelAddends(const uint8_t *bufStart
) {
865 assert(config
->writeAddends
&& config
->checkDynamicRelocs
);
866 assert(isStaticRelSecType(type
));
867 SmallVector
<InputSection
*, 0> storage
;
868 ArrayRef
<InputSection
*> sections
= getInputSections(*this, storage
);
869 parallelFor(0, sections
.size(), [&](size_t i
) {
870 // When linking with -r or --emit-relocs we might also call this function
871 // for input .rel[a].<sec> sections which we simply pass through to the
872 // output. We skip over those and only look at the synthetic relocation
873 // sections created during linking.
874 const auto *sec
= dyn_cast
<RelocationBaseSection
>(sections
[i
]);
877 for (const DynamicReloc
&rel
: sec
->relocs
) {
878 int64_t addend
= rel
.addend
;
879 const OutputSection
*relOsec
= rel
.inputSec
->getOutputSection();
880 assert(relOsec
!= nullptr && "missing output section for relocation");
881 // Some targets have NOBITS synthetic sections with dynamic relocations
882 // with non-zero addends. Skip such sections.
883 if (is_contained({EM_PPC
, EM_PPC64
}, config
->emachine
) &&
884 (rel
.inputSec
== in
.ppc64LongBranchTarget
.get() ||
885 rel
.inputSec
== in
.igotPlt
.get()))
887 const uint8_t *relocTarget
=
888 bufStart
+ relOsec
->offset
+ rel
.inputSec
->getOffset(rel
.offsetInSec
);
889 // For SHT_NOBITS the written addend is always zero.
890 int64_t writtenAddend
=
891 relOsec
->type
== SHT_NOBITS
893 : ctx
.target
->getImplicitAddend(relocTarget
, rel
.type
);
894 if (addend
!= writtenAddend
)
896 getErrorLocation(relocTarget
),
897 "wrote incorrect addend value 0x" + utohexstr(writtenAddend
) +
898 " instead of 0x" + utohexstr(addend
) +
899 " for dynamic relocation " + toString(rel
.type
) +
900 " at offset 0x" + utohexstr(rel
.getOffset()) +
901 (rel
.sym
? " against symbol " + toString(*rel
.sym
) : ""));
906 template void OutputSection::writeHeaderTo
<ELF32LE
>(ELF32LE::Shdr
*Shdr
);
907 template void OutputSection::writeHeaderTo
<ELF32BE
>(ELF32BE::Shdr
*Shdr
);
908 template void OutputSection::writeHeaderTo
<ELF64LE
>(ELF64LE::Shdr
*Shdr
);
909 template void OutputSection::writeHeaderTo
<ELF64BE
>(ELF64BE::Shdr
*Shdr
);
911 template void OutputSection::writeTo
<ELF32LE
>(uint8_t *,
912 llvm::parallel::TaskGroup
&);
913 template void OutputSection::writeTo
<ELF32BE
>(uint8_t *,
914 llvm::parallel::TaskGroup
&);
915 template void OutputSection::writeTo
<ELF64LE
>(uint8_t *,
916 llvm::parallel::TaskGroup
&);
917 template void OutputSection::writeTo
<ELF64BE
>(uint8_t *,
918 llvm::parallel::TaskGroup
&);
920 template void OutputSection::maybeCompress
<ELF32LE
>();
921 template void OutputSection::maybeCompress
<ELF32BE
>();
922 template void OutputSection::maybeCompress
<ELF64LE
>();
923 template void OutputSection::maybeCompress
<ELF64BE
>();