[mlir][sparse] implement non-permutation MapRef encoding (#69406)
[llvm-project.git] / clang-tools-extra / clangd / InlayHints.cpp
blobe6e5e11b889bff8124650017db68cd690e57679b
1 //===--- InlayHints.cpp ------------------------------------------*- C++-*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "InlayHints.h"
9 #include "AST.h"
10 #include "Config.h"
11 #include "HeuristicResolver.h"
12 #include "ParsedAST.h"
13 #include "SourceCode.h"
14 #include "clang/AST/ASTDiagnostic.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclarationName.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Type.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/OperatorKinds.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/ScopeExit.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/SaveAndRestore.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <optional>
36 #include <string>
38 namespace clang {
39 namespace clangd {
40 namespace {
42 // For now, inlay hints are always anchored at the left or right of their range.
43 enum class HintSide { Left, Right };
45 // Helper class to iterate over the designator names of an aggregate type.
47 // For an array type, yields [0], [1], [2]...
48 // For aggregate classes, yields null for each base, then .field1, .field2, ...
49 class AggregateDesignatorNames {
50 public:
51 AggregateDesignatorNames(QualType T) {
52 if (!T.isNull()) {
53 T = T.getCanonicalType();
54 if (T->isArrayType()) {
55 IsArray = true;
56 Valid = true;
57 return;
59 if (const RecordDecl *RD = T->getAsRecordDecl()) {
60 Valid = true;
61 FieldsIt = RD->field_begin();
62 FieldsEnd = RD->field_end();
63 if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(RD)) {
64 BasesIt = CRD->bases_begin();
65 BasesEnd = CRD->bases_end();
66 Valid = CRD->isAggregate();
68 OneField = Valid && BasesIt == BasesEnd && FieldsIt != FieldsEnd &&
69 std::next(FieldsIt) == FieldsEnd;
73 // Returns false if the type was not an aggregate.
74 operator bool() { return Valid; }
75 // Advance to the next element in the aggregate.
76 void next() {
77 if (IsArray)
78 ++Index;
79 else if (BasesIt != BasesEnd)
80 ++BasesIt;
81 else if (FieldsIt != FieldsEnd)
82 ++FieldsIt;
84 // Print the designator to Out.
85 // Returns false if we could not produce a designator for this element.
86 bool append(std::string &Out, bool ForSubobject) {
87 if (IsArray) {
88 Out.push_back('[');
89 Out.append(std::to_string(Index));
90 Out.push_back(']');
91 return true;
93 if (BasesIt != BasesEnd)
94 return false; // Bases can't be designated. Should we make one up?
95 if (FieldsIt != FieldsEnd) {
96 llvm::StringRef FieldName;
97 if (const IdentifierInfo *II = FieldsIt->getIdentifier())
98 FieldName = II->getName();
100 // For certain objects, their subobjects may be named directly.
101 if (ForSubobject &&
102 (FieldsIt->isAnonymousStructOrUnion() ||
103 // std::array<int,3> x = {1,2,3}. Designators not strictly valid!
104 (OneField && isReservedName(FieldName))))
105 return true;
107 if (!FieldName.empty() && !isReservedName(FieldName)) {
108 Out.push_back('.');
109 Out.append(FieldName.begin(), FieldName.end());
110 return true;
112 return false;
114 return false;
117 private:
118 bool Valid = false;
119 bool IsArray = false;
120 bool OneField = false; // e.g. std::array { T __elements[N]; }
121 unsigned Index = 0;
122 CXXRecordDecl::base_class_const_iterator BasesIt;
123 CXXRecordDecl::base_class_const_iterator BasesEnd;
124 RecordDecl::field_iterator FieldsIt;
125 RecordDecl::field_iterator FieldsEnd;
128 // Collect designator labels describing the elements of an init list.
130 // This function contributes the designators of some (sub)object, which is
131 // represented by the semantic InitListExpr Sem.
132 // This includes any nested subobjects, but *only* if they are part of the same
133 // original syntactic init list (due to brace elision).
134 // In other words, it may descend into subobjects but not written init-lists.
136 // For example: struct Outer { Inner a,b; }; struct Inner { int x, y; }
137 // Outer o{{1, 2}, 3};
138 // This function will be called with Sem = { {1, 2}, {3, ImplicitValue} }
139 // It should generate designators '.a:' and '.b.x:'.
140 // '.a:' is produced directly without recursing into the written sublist.
141 // (The written sublist will have a separate collectDesignators() call later).
142 // Recursion with Prefix='.b' and Sem = {3, ImplicitValue} produces '.b.x:'.
143 void collectDesignators(const InitListExpr *Sem,
144 llvm::DenseMap<SourceLocation, std::string> &Out,
145 const llvm::DenseSet<SourceLocation> &NestedBraces,
146 std::string &Prefix) {
147 if (!Sem || Sem->isTransparent())
148 return;
149 assert(Sem->isSemanticForm());
151 // The elements of the semantic form all correspond to direct subobjects of
152 // the aggregate type. `Fields` iterates over these subobject names.
153 AggregateDesignatorNames Fields(Sem->getType());
154 if (!Fields)
155 return;
156 for (const Expr *Init : Sem->inits()) {
157 auto Next = llvm::make_scope_exit([&, Size(Prefix.size())] {
158 Fields.next(); // Always advance to the next subobject name.
159 Prefix.resize(Size); // Erase any designator we appended.
161 // Skip for a broken initializer or if it is a "hole" in a subobject that
162 // was not explicitly initialized.
163 if (!Init || llvm::isa<ImplicitValueInitExpr>(Init))
164 continue;
166 const auto *BraceElidedSubobject = llvm::dyn_cast<InitListExpr>(Init);
167 if (BraceElidedSubobject &&
168 NestedBraces.contains(BraceElidedSubobject->getLBraceLoc()))
169 BraceElidedSubobject = nullptr; // there were braces!
171 if (!Fields.append(Prefix, BraceElidedSubobject != nullptr))
172 continue; // no designator available for this subobject
173 if (BraceElidedSubobject) {
174 // If the braces were elided, this aggregate subobject is initialized
175 // inline in the same syntactic list.
176 // Descend into the semantic list describing the subobject.
177 // (NestedBraces are still correct, they're from the same syntactic list).
178 collectDesignators(BraceElidedSubobject, Out, NestedBraces, Prefix);
179 continue;
181 Out.try_emplace(Init->getBeginLoc(), Prefix);
185 // Get designators describing the elements of a (syntactic) init list.
186 // This does not produce designators for any explicitly-written nested lists.
187 llvm::DenseMap<SourceLocation, std::string>
188 getDesignators(const InitListExpr *Syn) {
189 assert(Syn->isSyntacticForm());
191 // collectDesignators needs to know which InitListExprs in the semantic tree
192 // were actually written, but InitListExpr::isExplicit() lies.
193 // Instead, record where braces of sub-init-lists occur in the syntactic form.
194 llvm::DenseSet<SourceLocation> NestedBraces;
195 for (const Expr *Init : Syn->inits())
196 if (auto *Nested = llvm::dyn_cast<InitListExpr>(Init))
197 NestedBraces.insert(Nested->getLBraceLoc());
199 // Traverse the semantic form to find the designators.
200 // We use their SourceLocation to correlate with the syntactic form later.
201 llvm::DenseMap<SourceLocation, std::string> Designators;
202 std::string EmptyPrefix;
203 collectDesignators(Syn->isSemanticForm() ? Syn : Syn->getSemanticForm(),
204 Designators, NestedBraces, EmptyPrefix);
205 return Designators;
208 void stripLeadingUnderscores(StringRef &Name) { Name = Name.ltrim('_'); }
210 // getDeclForType() returns the decl responsible for Type's spelling.
211 // This is the inverse of ASTContext::getTypeDeclType().
212 template <typename Ty, typename = decltype(((Ty *)nullptr)->getDecl())>
213 const NamedDecl *getDeclForTypeImpl(const Ty *T) {
214 return T->getDecl();
216 const NamedDecl *getDeclForTypeImpl(const void *T) { return nullptr; }
217 const NamedDecl *getDeclForType(const Type *T) {
218 switch (T->getTypeClass()) {
219 #define ABSTRACT_TYPE(TY, BASE)
220 #define TYPE(TY, BASE) \
221 case Type::TY: \
222 return getDeclForTypeImpl(llvm::cast<TY##Type>(T));
223 #include "clang/AST/TypeNodes.inc"
225 llvm_unreachable("Unknown TypeClass enum");
228 // getSimpleName() returns the plain identifier for an entity, if any.
229 llvm::StringRef getSimpleName(const DeclarationName &DN) {
230 if (IdentifierInfo *Ident = DN.getAsIdentifierInfo())
231 return Ident->getName();
232 return "";
234 llvm::StringRef getSimpleName(const NamedDecl &D) {
235 return getSimpleName(D.getDeclName());
237 llvm::StringRef getSimpleName(QualType T) {
238 if (const auto *ET = llvm::dyn_cast<ElaboratedType>(T))
239 return getSimpleName(ET->getNamedType());
240 if (const auto *BT = llvm::dyn_cast<BuiltinType>(T)) {
241 PrintingPolicy PP(LangOptions{});
242 PP.adjustForCPlusPlus();
243 return BT->getName(PP);
245 if (const auto *D = getDeclForType(T.getTypePtr()))
246 return getSimpleName(D->getDeclName());
247 return "";
250 // Returns a very abbreviated form of an expression, or "" if it's too complex.
251 // For example: `foo->bar()` would produce "bar".
252 // This is used to summarize e.g. the condition of a while loop.
253 std::string summarizeExpr(const Expr *E) {
254 struct Namer : ConstStmtVisitor<Namer, std::string> {
255 std::string Visit(const Expr *E) {
256 if (E == nullptr)
257 return "";
258 return ConstStmtVisitor::Visit(E->IgnoreImplicit());
261 // Any sort of decl reference, we just use the unqualified name.
262 std::string VisitMemberExpr(const MemberExpr *E) {
263 return getSimpleName(*E->getMemberDecl()).str();
265 std::string VisitDeclRefExpr(const DeclRefExpr *E) {
266 return getSimpleName(*E->getFoundDecl()).str();
268 std::string VisitCallExpr(const CallExpr *E) {
269 return Visit(E->getCallee());
271 std::string
272 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
273 return getSimpleName(E->getMember()).str();
275 std::string
276 VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
277 return getSimpleName(E->getDeclName()).str();
279 std::string VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *E) {
280 return getSimpleName(E->getType()).str();
282 std::string VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) {
283 return getSimpleName(E->getType()).str();
286 // Step through implicit nodes that clang doesn't classify as such.
287 std::string VisitCXXMemberCallExpr(const CXXMemberCallExpr *E) {
288 // Call to operator bool() inside if (X): dispatch to X.
289 if (E->getNumArgs() == 0 &&
290 E->getMethodDecl()->getDeclName().getNameKind() ==
291 DeclarationName::CXXConversionFunctionName &&
292 E->getSourceRange() ==
293 E->getImplicitObjectArgument()->getSourceRange())
294 return Visit(E->getImplicitObjectArgument());
295 return ConstStmtVisitor::VisitCXXMemberCallExpr(E);
297 std::string VisitCXXConstructExpr(const CXXConstructExpr *E) {
298 if (E->getNumArgs() == 1)
299 return Visit(E->getArg(0));
300 return "";
303 // Literals are just printed
304 std::string VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
305 return E->getValue() ? "true" : "false";
307 std::string VisitIntegerLiteral(const IntegerLiteral *E) {
308 return llvm::to_string(E->getValue());
310 std::string VisitFloatingLiteral(const FloatingLiteral *E) {
311 std::string Result;
312 llvm::raw_string_ostream OS(Result);
313 E->getValue().print(OS);
314 // Printer adds newlines?!
315 Result.resize(llvm::StringRef(Result).rtrim().size());
316 return Result;
318 std::string VisitStringLiteral(const StringLiteral *E) {
319 std::string Result = "\"";
320 if (E->containsNonAscii()) {
321 Result += "...";
322 } else if (E->getLength() > 10) {
323 Result += E->getString().take_front(7);
324 Result += "...";
325 } else {
326 llvm::raw_string_ostream OS(Result);
327 llvm::printEscapedString(E->getString(), OS);
329 Result.push_back('"');
330 return Result;
333 // Simple operators. Motivating cases are `!x` and `I < Length`.
334 std::string printUnary(llvm::StringRef Spelling, const Expr *Operand,
335 bool Prefix) {
336 std::string Sub = Visit(Operand);
337 if (Sub.empty())
338 return "";
339 if (Prefix)
340 return (Spelling + Sub).str();
341 Sub += Spelling;
342 return Sub;
344 bool InsideBinary = false; // No recursing into binary expressions.
345 std::string printBinary(llvm::StringRef Spelling, const Expr *LHSOp,
346 const Expr *RHSOp) {
347 if (InsideBinary)
348 return "";
349 llvm::SaveAndRestore InBinary(InsideBinary, true);
351 std::string LHS = Visit(LHSOp);
352 std::string RHS = Visit(RHSOp);
353 if (LHS.empty() && RHS.empty())
354 return "";
356 if (LHS.empty())
357 LHS = "...";
358 LHS.push_back(' ');
359 LHS += Spelling;
360 LHS.push_back(' ');
361 if (RHS.empty())
362 LHS += "...";
363 else
364 LHS += RHS;
365 return LHS;
367 std::string VisitUnaryOperator(const UnaryOperator *E) {
368 return printUnary(E->getOpcodeStr(E->getOpcode()), E->getSubExpr(),
369 !E->isPostfix());
371 std::string VisitBinaryOperator(const BinaryOperator *E) {
372 return printBinary(E->getOpcodeStr(E->getOpcode()), E->getLHS(),
373 E->getRHS());
375 std::string VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E) {
376 const char *Spelling = getOperatorSpelling(E->getOperator());
377 // Handle weird unary-that-look-like-binary postfix operators.
378 if ((E->getOperator() == OO_PlusPlus ||
379 E->getOperator() == OO_MinusMinus) &&
380 E->getNumArgs() == 2)
381 return printUnary(Spelling, E->getArg(0), false);
382 if (E->isInfixBinaryOp())
383 return printBinary(Spelling, E->getArg(0), E->getArg(1));
384 if (E->getNumArgs() == 1) {
385 switch (E->getOperator()) {
386 case OO_Plus:
387 case OO_Minus:
388 case OO_Star:
389 case OO_Amp:
390 case OO_Tilde:
391 case OO_Exclaim:
392 case OO_PlusPlus:
393 case OO_MinusMinus:
394 return printUnary(Spelling, E->getArg(0), true);
395 default:
396 break;
399 return "";
402 return Namer{}.Visit(E);
405 // Determines if any intermediate type in desugaring QualType QT is of
406 // substituted template parameter type. Ignore pointer or reference wrappers.
407 bool isSugaredTemplateParameter(QualType QT) {
408 static auto PeelWrapper = [](QualType QT) {
409 // Neither `PointerType` nor `ReferenceType` is considered as sugared
410 // type. Peel it.
411 QualType Peeled = QT->getPointeeType();
412 return Peeled.isNull() ? QT : Peeled;
415 // This is a bit tricky: we traverse the type structure and find whether or
416 // not a type in the desugaring process is of SubstTemplateTypeParmType.
417 // During the process, we may encounter pointer or reference types that are
418 // not marked as sugared; therefore, the desugar function won't apply. To
419 // move forward the traversal, we retrieve the pointees using
420 // QualType::getPointeeType().
422 // However, getPointeeType could leap over our interests: The QT::getAs<T>()
423 // invoked would implicitly desugar the type. Consequently, if the
424 // SubstTemplateTypeParmType is encompassed within a TypedefType, we may lose
425 // the chance to visit it.
426 // For example, given a QT that represents `std::vector<int *>::value_type`:
427 // `-ElaboratedType 'value_type' sugar
428 // `-TypedefType 'vector<int *>::value_type' sugar
429 // |-Typedef 'value_type'
430 // `-SubstTemplateTypeParmType 'int *' sugar class depth 0 index 0 T
431 // |-ClassTemplateSpecialization 'vector'
432 // `-PointerType 'int *'
433 // `-BuiltinType 'int'
434 // Applying `getPointeeType` to QT results in 'int', a child of our target
435 // node SubstTemplateTypeParmType.
437 // As such, we always prefer the desugared over the pointee for next type
438 // in the iteration. It could avoid the getPointeeType's implicit desugaring.
439 while (true) {
440 if (QT->getAs<SubstTemplateTypeParmType>())
441 return true;
442 QualType Desugared = QT->getLocallyUnqualifiedSingleStepDesugaredType();
443 if (Desugared != QT)
444 QT = Desugared;
445 else if (auto Peeled = PeelWrapper(Desugared); Peeled != QT)
446 QT = Peeled;
447 else
448 break;
450 return false;
453 // A simple wrapper for `clang::desugarForDiagnostic` that provides optional
454 // semantic.
455 std::optional<QualType> desugar(ASTContext &AST, QualType QT) {
456 bool ShouldAKA = false;
457 auto Desugared = clang::desugarForDiagnostic(AST, QT, ShouldAKA);
458 if (!ShouldAKA)
459 return std::nullopt;
460 return Desugared;
463 // Apply a series of heuristic methods to determine whether or not a QualType QT
464 // is suitable for desugaring (e.g. getting the real name behind the using-alias
465 // name). If so, return the desugared type. Otherwise, return the unchanged
466 // parameter QT.
468 // This could be refined further. See
469 // https://github.com/clangd/clangd/issues/1298.
470 QualType maybeDesugar(ASTContext &AST, QualType QT) {
471 // Prefer desugared type for name that aliases the template parameters.
472 // This can prevent things like printing opaque `: type` when accessing std
473 // containers.
474 if (isSugaredTemplateParameter(QT))
475 return desugar(AST, QT).value_or(QT);
477 // Prefer desugared type for `decltype(expr)` specifiers.
478 if (QT->isDecltypeType())
479 return QT.getCanonicalType();
480 if (const AutoType *AT = QT->getContainedAutoType())
481 if (!AT->getDeducedType().isNull() &&
482 AT->getDeducedType()->isDecltypeType())
483 return QT.getCanonicalType();
485 return QT;
488 // Given a callee expression `Fn`, if the call is through a function pointer,
489 // try to find the declaration of the corresponding function pointer type,
490 // so that we can recover argument names from it.
491 // FIXME: This function is mostly duplicated in SemaCodeComplete.cpp; unify.
492 static FunctionProtoTypeLoc getPrototypeLoc(Expr *Fn) {
493 TypeLoc Target;
494 Expr *NakedFn = Fn->IgnoreParenCasts();
495 if (const auto *T = NakedFn->getType().getTypePtr()->getAs<TypedefType>()) {
496 Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc();
497 } else if (const auto *DR = dyn_cast<DeclRefExpr>(NakedFn)) {
498 const auto *D = DR->getDecl();
499 if (const auto *const VD = dyn_cast<VarDecl>(D)) {
500 Target = VD->getTypeSourceInfo()->getTypeLoc();
504 if (!Target)
505 return {};
507 // Unwrap types that may be wrapping the function type
508 while (true) {
509 if (auto P = Target.getAs<PointerTypeLoc>()) {
510 Target = P.getPointeeLoc();
511 continue;
513 if (auto A = Target.getAs<AttributedTypeLoc>()) {
514 Target = A.getModifiedLoc();
515 continue;
517 if (auto P = Target.getAs<ParenTypeLoc>()) {
518 Target = P.getInnerLoc();
519 continue;
521 break;
524 if (auto F = Target.getAs<FunctionProtoTypeLoc>()) {
525 return F;
528 return {};
531 struct Callee {
532 // Only one of Decl or Loc is set.
533 // Loc is for calls through function pointers.
534 const FunctionDecl *Decl = nullptr;
535 FunctionProtoTypeLoc Loc;
538 class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> {
539 public:
540 InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST,
541 const Config &Cfg, std::optional<Range> RestrictRange)
542 : Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()),
543 Cfg(Cfg), RestrictRange(std::move(RestrictRange)),
544 MainFileID(AST.getSourceManager().getMainFileID()),
545 Resolver(AST.getHeuristicResolver()),
546 TypeHintPolicy(this->AST.getPrintingPolicy()) {
547 bool Invalid = false;
548 llvm::StringRef Buf =
549 AST.getSourceManager().getBufferData(MainFileID, &Invalid);
550 MainFileBuf = Invalid ? StringRef{} : Buf;
552 TypeHintPolicy.SuppressScope = true; // keep type names short
553 TypeHintPolicy.AnonymousTagLocations =
554 false; // do not print lambda locations
556 // Not setting PrintCanonicalTypes for "auto" allows
557 // SuppressDefaultTemplateArgs (set by default) to have an effect.
560 bool VisitTypeLoc(TypeLoc TL) {
561 if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType()))
562 if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType())
563 addTypeHint(TL.getSourceRange(), UT, ": ");
564 return true;
567 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
568 // Weed out constructor calls that don't look like a function call with
569 // an argument list, by checking the validity of getParenOrBraceRange().
570 // Also weed out std::initializer_list constructors as there are no names
571 // for the individual arguments.
572 if (!E->getParenOrBraceRange().isValid() ||
573 E->isStdInitListInitialization()) {
574 return true;
577 Callee Callee;
578 Callee.Decl = E->getConstructor();
579 if (!Callee.Decl)
580 return true;
581 processCall(Callee, {E->getArgs(), E->getNumArgs()});
582 return true;
585 bool VisitCallExpr(CallExpr *E) {
586 if (!Cfg.InlayHints.Parameters)
587 return true;
589 bool IsFunctor = isFunctionObjectCallExpr(E);
590 // Do not show parameter hints for user-defined literals or
591 // operator calls except for operator(). (Among other reasons, the resulting
592 // hints can look awkward, e.g. the expression can itself be a function
593 // argument and then we'd get two hints side by side).
594 if ((isa<CXXOperatorCallExpr>(E) && !IsFunctor) ||
595 isa<UserDefinedLiteral>(E))
596 return true;
598 auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E);
599 if (CalleeDecls.size() != 1)
600 return true;
602 Callee Callee;
603 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0]))
604 Callee.Decl = FD;
605 else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0]))
606 Callee.Decl = FTD->getTemplatedDecl();
607 else if (FunctionProtoTypeLoc Loc = getPrototypeLoc(E->getCallee()))
608 Callee.Loc = Loc;
609 else
610 return true;
612 // N4868 [over.call.object]p3 says,
613 // The argument list submitted to overload resolution consists of the
614 // argument expressions present in the function call syntax preceded by the
615 // implied object argument (E).
617 // However, we don't have the implied object argument for static
618 // operator() per clang::Sema::BuildCallToObjectOfClassType.
619 llvm::ArrayRef<const Expr *> Args = {E->getArgs(), E->getNumArgs()};
620 if (IsFunctor)
621 // We don't have the implied object argument through
622 // a function pointer either.
623 if (const CXXMethodDecl *Method =
624 dyn_cast_or_null<CXXMethodDecl>(Callee.Decl);
625 Method && Method->isInstance())
626 Args = Args.drop_front(1);
627 processCall(Callee, Args);
628 return true;
631 bool VisitFunctionDecl(FunctionDecl *D) {
632 if (auto *FPT =
633 llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) {
634 if (!FPT->hasTrailingReturn()) {
635 if (auto FTL = D->getFunctionTypeLoc())
636 addReturnTypeHint(D, FTL.getRParenLoc());
639 if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
640 // We use `printName` here to properly print name of ctor/dtor/operator
641 // overload.
642 if (const Stmt *Body = D->getBody())
643 addBlockEndHint(Body->getSourceRange(), "", printName(AST, *D), "");
645 return true;
648 bool VisitForStmt(ForStmt *S) {
649 if (Cfg.InlayHints.BlockEnd) {
650 std::string Name;
651 // Common case: for (int I = 0; I < N; I++). Use "I" as the name.
652 if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S->getInit());
653 DS && DS->isSingleDecl())
654 Name = getSimpleName(llvm::cast<NamedDecl>(*DS->getSingleDecl()));
655 else
656 Name = summarizeExpr(S->getCond());
657 markBlockEnd(S->getBody(), "for", Name);
659 return true;
662 bool VisitCXXForRangeStmt(CXXForRangeStmt *S) {
663 if (Cfg.InlayHints.BlockEnd)
664 markBlockEnd(S->getBody(), "for", getSimpleName(*S->getLoopVariable()));
665 return true;
668 bool VisitWhileStmt(WhileStmt *S) {
669 if (Cfg.InlayHints.BlockEnd)
670 markBlockEnd(S->getBody(), "while", summarizeExpr(S->getCond()));
671 return true;
674 bool VisitSwitchStmt(SwitchStmt *S) {
675 if (Cfg.InlayHints.BlockEnd)
676 markBlockEnd(S->getBody(), "switch", summarizeExpr(S->getCond()));
677 return true;
680 // If/else chains are tricky.
681 // if (cond1) {
682 // } else if (cond2) {
683 // } // mark as "cond1" or "cond2"?
684 // For now, the answer is neither, just mark as "if".
685 // The ElseIf is a different IfStmt that doesn't know about the outer one.
686 llvm::DenseSet<const IfStmt *> ElseIfs; // not eligible for names
687 bool VisitIfStmt(IfStmt *S) {
688 if (Cfg.InlayHints.BlockEnd) {
689 if (const auto *ElseIf = llvm::dyn_cast_or_null<IfStmt>(S->getElse()))
690 ElseIfs.insert(ElseIf);
691 // Don't use markBlockEnd: the relevant range is [then.begin, else.end].
692 if (const auto *EndCS = llvm::dyn_cast<CompoundStmt>(
693 S->getElse() ? S->getElse() : S->getThen())) {
694 addBlockEndHint(
695 {S->getThen()->getBeginLoc(), EndCS->getRBracLoc()}, "if",
696 ElseIfs.contains(S) ? "" : summarizeExpr(S->getCond()), "");
699 return true;
702 void markBlockEnd(const Stmt *Body, llvm::StringRef Label,
703 llvm::StringRef Name = "") {
704 if (const auto *CS = llvm::dyn_cast_or_null<CompoundStmt>(Body))
705 addBlockEndHint(CS->getSourceRange(), Label, Name, "");
708 bool VisitTagDecl(TagDecl *D) {
709 if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
710 std::string DeclPrefix = D->getKindName().str();
711 if (const auto *ED = dyn_cast<EnumDecl>(D)) {
712 if (ED->isScoped())
713 DeclPrefix += ED->isScopedUsingClassTag() ? " class" : " struct";
715 addBlockEndHint(D->getBraceRange(), DeclPrefix, getSimpleName(*D), ";");
717 return true;
720 bool VisitNamespaceDecl(NamespaceDecl *D) {
721 if (Cfg.InlayHints.BlockEnd) {
722 // For namespace, the range actually starts at the namespace keyword. But
723 // it should be fine since it's usually very short.
724 addBlockEndHint(D->getSourceRange(), "namespace", getSimpleName(*D), "");
726 return true;
729 bool VisitLambdaExpr(LambdaExpr *E) {
730 FunctionDecl *D = E->getCallOperator();
731 if (!E->hasExplicitResultType())
732 addReturnTypeHint(D, E->hasExplicitParameters()
733 ? D->getFunctionTypeLoc().getRParenLoc()
734 : E->getIntroducerRange().getEnd());
735 return true;
738 void addReturnTypeHint(FunctionDecl *D, SourceRange Range) {
739 auto *AT = D->getReturnType()->getContainedAutoType();
740 if (!AT || AT->getDeducedType().isNull())
741 return;
742 addTypeHint(Range, D->getReturnType(), /*Prefix=*/"-> ");
745 bool VisitVarDecl(VarDecl *D) {
746 // Do not show hints for the aggregate in a structured binding,
747 // but show hints for the individual bindings.
748 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
749 for (auto *Binding : DD->bindings()) {
750 // For structured bindings, print canonical types. This is important
751 // because for bindings that use the tuple_element protocol, the
752 // non-canonical types would be "tuple_element<I, A>::type".
753 if (auto Type = Binding->getType();
754 !Type.isNull() && !Type->isDependentType())
755 addTypeHint(Binding->getLocation(), Type.getCanonicalType(),
756 /*Prefix=*/": ");
758 return true;
761 if (auto *AT = D->getType()->getContainedAutoType()) {
762 if (AT->isDeduced() && !D->getType()->isDependentType()) {
763 // Our current approach is to place the hint on the variable
764 // and accordingly print the full type
765 // (e.g. for `const auto& x = 42`, print `const int&`).
766 // Alternatively, we could place the hint on the `auto`
767 // (and then just print the type deduced for the `auto`).
768 addTypeHint(D->getLocation(), D->getType(), /*Prefix=*/": ");
772 // Handle templates like `int foo(auto x)` with exactly one instantiation.
773 if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) {
774 if (D->getIdentifier() && PVD->getType()->isDependentType() &&
775 !getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc())
776 .isNull()) {
777 if (auto *IPVD = getOnlyParamInstantiation(PVD))
778 addTypeHint(D->getLocation(), IPVD->getType(), /*Prefix=*/": ");
782 return true;
785 ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) {
786 auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext());
787 if (!TemplateFunction)
788 return nullptr;
789 auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>(
790 getOnlyInstantiation(TemplateFunction));
791 if (!InstantiatedFunction)
792 return nullptr;
794 unsigned ParamIdx = 0;
795 for (auto *Param : TemplateFunction->parameters()) {
796 // Can't reason about param indexes in the presence of preceding packs.
797 // And if this param is a pack, it may expand to multiple params.
798 if (Param->isParameterPack())
799 return nullptr;
800 if (Param == D)
801 break;
802 ++ParamIdx;
804 assert(ParamIdx < TemplateFunction->getNumParams() &&
805 "Couldn't find param in list?");
806 assert(ParamIdx < InstantiatedFunction->getNumParams() &&
807 "Instantiated function has fewer (non-pack) parameters?");
808 return InstantiatedFunction->getParamDecl(ParamIdx);
811 bool VisitInitListExpr(InitListExpr *Syn) {
812 // We receive the syntactic form here (shouldVisitImplicitCode() is false).
813 // This is the one we will ultimately attach designators to.
814 // It may have subobject initializers inlined without braces. The *semantic*
815 // form of the init-list has nested init-lists for these.
816 // getDesignators will look at the semantic form to determine the labels.
817 assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!");
818 if (!Cfg.InlayHints.Designators)
819 return true;
820 if (Syn->isIdiomaticZeroInitializer(AST.getLangOpts()))
821 return true;
822 llvm::DenseMap<SourceLocation, std::string> Designators =
823 getDesignators(Syn);
824 for (const Expr *Init : Syn->inits()) {
825 if (llvm::isa<DesignatedInitExpr>(Init))
826 continue;
827 auto It = Designators.find(Init->getBeginLoc());
828 if (It != Designators.end() &&
829 !isPrecededByParamNameComment(Init, It->second))
830 addDesignatorHint(Init->getSourceRange(), It->second);
832 return true;
835 // FIXME: Handle RecoveryExpr to try to hint some invalid calls.
837 private:
838 using NameVec = SmallVector<StringRef, 8>;
840 void processCall(Callee Callee, llvm::ArrayRef<const Expr *> Args) {
841 assert(Callee.Decl || Callee.Loc);
843 if (!Cfg.InlayHints.Parameters || Args.size() == 0)
844 return;
846 // The parameter name of a move or copy constructor is not very interesting.
847 if (Callee.Decl)
848 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee.Decl))
849 if (Ctor->isCopyOrMoveConstructor())
850 return;
852 auto Params =
853 Callee.Decl ? Callee.Decl->parameters() : Callee.Loc.getParams();
855 // Resolve parameter packs to their forwarded parameter
856 SmallVector<const ParmVarDecl *> ForwardedParams;
857 if (Callee.Decl)
858 ForwardedParams = resolveForwardingParameters(Callee.Decl);
859 else
860 ForwardedParams = {Params.begin(), Params.end()};
862 NameVec ParameterNames = chooseParameterNames(ForwardedParams);
864 // Exclude setters (i.e. functions with one argument whose name begins with
865 // "set"), and builtins like std::move/forward/... as their parameter name
866 // is also not likely to be interesting.
867 if (Callee.Decl &&
868 (isSetter(Callee.Decl, ParameterNames) || isSimpleBuiltin(Callee.Decl)))
869 return;
871 for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
872 // Pack expansion expressions cause the 1:1 mapping between arguments and
873 // parameters to break down, so we don't add further inlay hints if we
874 // encounter one.
875 if (isa<PackExpansionExpr>(Args[I])) {
876 break;
879 StringRef Name = ParameterNames[I];
880 bool NameHint = shouldHintName(Args[I], Name);
881 bool ReferenceHint = shouldHintReference(Params[I], ForwardedParams[I]);
883 if (NameHint || ReferenceHint) {
884 addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
885 InlayHintKind::Parameter, ReferenceHint ? "&" : "",
886 NameHint ? Name : "", ": ");
891 static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) {
892 if (ParamNames.size() != 1)
893 return false;
895 StringRef Name = getSimpleName(*Callee);
896 if (!Name.starts_with_insensitive("set"))
897 return false;
899 // In addition to checking that the function has one parameter and its
900 // name starts with "set", also check that the part after "set" matches
901 // the name of the parameter (ignoring case). The idea here is that if
902 // the parameter name differs, it may contain extra information that
903 // may be useful to show in a hint, as in:
904 // void setTimeout(int timeoutMillis);
905 // This currently doesn't handle cases where params use snake_case
906 // and functions don't, e.g.
907 // void setExceptionHandler(EHFunc exception_handler);
908 // We could improve this by replacing `equals_insensitive` with some
909 // `sloppy_equals` which ignores case and also skips underscores.
910 StringRef WhatItIsSetting = Name.substr(3).ltrim("_");
911 return WhatItIsSetting.equals_insensitive(ParamNames[0]);
914 // Checks if the callee is one of the builtins
915 // addressof, as_const, forward, move(_if_noexcept)
916 static bool isSimpleBuiltin(const FunctionDecl *Callee) {
917 switch (Callee->getBuiltinID()) {
918 case Builtin::BIaddressof:
919 case Builtin::BIas_const:
920 case Builtin::BIforward:
921 case Builtin::BImove:
922 case Builtin::BImove_if_noexcept:
923 return true;
924 default:
925 return false;
929 bool shouldHintName(const Expr *Arg, StringRef ParamName) {
930 if (ParamName.empty())
931 return false;
933 // If the argument expression is a single name and it matches the
934 // parameter name exactly, omit the name hint.
935 if (ParamName == getSpelledIdentifier(Arg))
936 return false;
938 // Exclude argument expressions preceded by a /*paramName*/.
939 if (isPrecededByParamNameComment(Arg, ParamName))
940 return false;
942 return true;
945 bool shouldHintReference(const ParmVarDecl *Param,
946 const ParmVarDecl *ForwardedParam) {
947 // We add a & hint only when the argument is passed as mutable reference.
948 // For parameters that are not part of an expanded pack, this is
949 // straightforward. For expanded pack parameters, it's likely that they will
950 // be forwarded to another function. In this situation, we only want to add
951 // the reference hint if the argument is actually being used via mutable
952 // reference. This means we need to check
953 // 1. whether the value category of the argument is preserved, i.e. each
954 // pack expansion uses std::forward correctly.
955 // 2. whether the argument is ever copied/cast instead of passed
956 // by-reference
957 // Instead of checking this explicitly, we use the following proxy:
958 // 1. the value category can only change from rvalue to lvalue during
959 // forwarding, so checking whether both the parameter of the forwarding
960 // function and the forwarded function are lvalue references detects such
961 // a conversion.
962 // 2. if the argument is copied/cast somewhere in the chain of forwarding
963 // calls, it can only be passed on to an rvalue reference or const lvalue
964 // reference parameter. Thus if the forwarded parameter is a mutable
965 // lvalue reference, it cannot have been copied/cast to on the way.
966 // Additionally, we should not add a reference hint if the forwarded
967 // parameter was only partially resolved, i.e. points to an expanded pack
968 // parameter, since we do not know how it will be used eventually.
969 auto Type = Param->getType();
970 auto ForwardedType = ForwardedParam->getType();
971 return Type->isLValueReferenceType() &&
972 ForwardedType->isLValueReferenceType() &&
973 !ForwardedType.getNonReferenceType().isConstQualified() &&
974 !isExpandedFromParameterPack(ForwardedParam);
977 // Checks if "E" is spelled in the main file and preceded by a C-style comment
978 // whose contents match ParamName (allowing for whitespace and an optional "="
979 // at the end.
980 bool isPrecededByParamNameComment(const Expr *E, StringRef ParamName) {
981 auto &SM = AST.getSourceManager();
982 auto FileLoc = SM.getFileLoc(E->getBeginLoc());
983 auto Decomposed = SM.getDecomposedLoc(FileLoc);
984 if (Decomposed.first != MainFileID)
985 return false;
987 StringRef SourcePrefix = MainFileBuf.substr(0, Decomposed.second);
988 // Allow whitespace between comment and expression.
989 SourcePrefix = SourcePrefix.rtrim();
990 // Check for comment ending.
991 if (!SourcePrefix.consume_back("*/"))
992 return false;
993 // Ignore some punctuation and whitespace around comment.
994 // In particular this allows designators to match nicely.
995 llvm::StringLiteral IgnoreChars = " =.";
996 SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
997 ParamName = ParamName.trim(IgnoreChars);
998 // Other than that, the comment must contain exactly ParamName.
999 if (!SourcePrefix.consume_back(ParamName))
1000 return false;
1001 SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
1002 return SourcePrefix.endswith("/*");
1005 // If "E" spells a single unqualified identifier, return that name.
1006 // Otherwise, return an empty string.
1007 static StringRef getSpelledIdentifier(const Expr *E) {
1008 E = E->IgnoreUnlessSpelledInSource();
1010 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
1011 if (!DRE->getQualifier())
1012 return getSimpleName(*DRE->getDecl());
1014 if (auto *ME = dyn_cast<MemberExpr>(E))
1015 if (!ME->getQualifier() && ME->isImplicitAccess())
1016 return getSimpleName(*ME->getMemberDecl());
1018 return {};
1021 NameVec chooseParameterNames(SmallVector<const ParmVarDecl *> Parameters) {
1022 NameVec ParameterNames;
1023 for (const auto *P : Parameters) {
1024 if (isExpandedFromParameterPack(P)) {
1025 // If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
1026 // non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
1027 // unlikely to be useful.
1028 ParameterNames.emplace_back();
1029 } else {
1030 auto SimpleName = getSimpleName(*P);
1031 // If the parameter is unnamed in the declaration:
1032 // attempt to get its name from the definition
1033 if (SimpleName.empty()) {
1034 if (const auto *PD = getParamDefinition(P)) {
1035 SimpleName = getSimpleName(*PD);
1038 ParameterNames.emplace_back(SimpleName);
1042 // Standard library functions often have parameter names that start
1043 // with underscores, which makes the hints noisy, so strip them out.
1044 for (auto &Name : ParameterNames)
1045 stripLeadingUnderscores(Name);
1047 return ParameterNames;
1050 // for a ParmVarDecl from a function declaration, returns the corresponding
1051 // ParmVarDecl from the definition if possible, nullptr otherwise.
1052 static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
1053 if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
1054 if (auto *Def = Callee->getDefinition()) {
1055 auto I = std::distance(Callee->param_begin(),
1056 llvm::find(Callee->parameters(), P));
1057 if (I < Callee->getNumParams()) {
1058 return Def->getParamDecl(I);
1062 return nullptr;
1065 // We pass HintSide rather than SourceLocation because we want to ensure
1066 // it is in the same file as the common file range.
1067 void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,
1068 llvm::StringRef Prefix, llvm::StringRef Label,
1069 llvm::StringRef Suffix) {
1070 auto LSPRange = getHintRange(R);
1071 if (!LSPRange)
1072 return;
1074 addInlayHint(*LSPRange, Side, Kind, Prefix, Label, Suffix);
1077 void addInlayHint(Range LSPRange, HintSide Side, InlayHintKind Kind,
1078 llvm::StringRef Prefix, llvm::StringRef Label,
1079 llvm::StringRef Suffix) {
1080 // We shouldn't get as far as adding a hint if the category is disabled.
1081 // We'd like to disable as much of the analysis as possible above instead.
1082 // Assert in debug mode but add a dynamic check in production.
1083 assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!");
1084 switch (Kind) {
1085 #define CHECK_KIND(Enumerator, ConfigProperty) \
1086 case InlayHintKind::Enumerator: \
1087 assert(Cfg.InlayHints.ConfigProperty && \
1088 "Shouldn't get here if kind is disabled!"); \
1089 if (!Cfg.InlayHints.ConfigProperty) \
1090 return; \
1091 break
1092 CHECK_KIND(Parameter, Parameters);
1093 CHECK_KIND(Type, DeducedTypes);
1094 CHECK_KIND(Designator, Designators);
1095 CHECK_KIND(BlockEnd, BlockEnd);
1096 #undef CHECK_KIND
1099 Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end;
1100 if (RestrictRange &&
1101 (LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end)))
1102 return;
1103 bool PadLeft = Prefix.consume_front(" ");
1104 bool PadRight = Suffix.consume_back(" ");
1105 Results.push_back(InlayHint{LSPPos, (Prefix + Label + Suffix).str(), Kind,
1106 PadLeft, PadRight, LSPRange});
1109 // Get the range of the main file that *exactly* corresponds to R.
1110 std::optional<Range> getHintRange(SourceRange R) {
1111 const auto &SM = AST.getSourceManager();
1112 auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R));
1113 // TokenBuffer will return null if e.g. R corresponds to only part of a
1114 // macro expansion.
1115 if (!Spelled || Spelled->empty())
1116 return std::nullopt;
1117 // Hint must be within the main file, not e.g. a non-preamble include.
1118 if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() ||
1119 SM.getFileID(Spelled->back().location()) != SM.getMainFileID())
1120 return std::nullopt;
1121 return Range{sourceLocToPosition(SM, Spelled->front().location()),
1122 sourceLocToPosition(SM, Spelled->back().endLocation())};
1125 void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) {
1126 if (!Cfg.InlayHints.DeducedTypes || T.isNull())
1127 return;
1129 // The sugared type is more useful in some cases, and the canonical
1130 // type in other cases.
1131 auto Desugared = maybeDesugar(AST, T);
1132 std::string TypeName = Desugared.getAsString(TypeHintPolicy);
1133 if (T != Desugared && !shouldPrintTypeHint(TypeName)) {
1134 // If the desugared type is too long to display, fallback to the sugared
1135 // type.
1136 TypeName = T.getAsString(TypeHintPolicy);
1138 if (shouldPrintTypeHint(TypeName))
1139 addInlayHint(R, HintSide::Right, InlayHintKind::Type, Prefix, TypeName,
1140 /*Suffix=*/"");
1143 void addDesignatorHint(SourceRange R, llvm::StringRef Text) {
1144 addInlayHint(R, HintSide::Left, InlayHintKind::Designator,
1145 /*Prefix=*/"", Text, /*Suffix=*/"=");
1148 bool shouldPrintTypeHint(llvm::StringRef TypeName) const noexcept {
1149 return Cfg.InlayHints.TypeNameLimit == 0 ||
1150 TypeName.size() < Cfg.InlayHints.TypeNameLimit;
1153 void addBlockEndHint(SourceRange BraceRange, StringRef DeclPrefix,
1154 StringRef Name, StringRef OptionalPunctuation) {
1155 auto HintRange = computeBlockEndHintRange(BraceRange, OptionalPunctuation);
1156 if (!HintRange)
1157 return;
1159 std::string Label = DeclPrefix.str();
1160 if (!Label.empty() && !Name.empty())
1161 Label += ' ';
1162 Label += Name;
1164 constexpr unsigned HintMaxLengthLimit = 60;
1165 if (Label.length() > HintMaxLengthLimit)
1166 return;
1168 addInlayHint(*HintRange, HintSide::Right, InlayHintKind::BlockEnd, " // ",
1169 Label, "");
1172 // Compute the LSP range to attach the block end hint to, if any allowed.
1173 // 1. "}" is the last non-whitespace character on the line. The range of "}"
1174 // is returned.
1175 // 2. After "}", if the trimmed trailing text is exactly
1176 // `OptionalPunctuation`, say ";". The range of "} ... ;" is returned.
1177 // Otherwise, the hint shouldn't be shown.
1178 std::optional<Range> computeBlockEndHintRange(SourceRange BraceRange,
1179 StringRef OptionalPunctuation) {
1180 constexpr unsigned HintMinLineLimit = 2;
1182 auto &SM = AST.getSourceManager();
1183 auto [BlockBeginFileId, BlockBeginOffset] =
1184 SM.getDecomposedLoc(SM.getFileLoc(BraceRange.getBegin()));
1185 auto RBraceLoc = SM.getFileLoc(BraceRange.getEnd());
1186 auto [RBraceFileId, RBraceOffset] = SM.getDecomposedLoc(RBraceLoc);
1188 // Because we need to check the block satisfies the minimum line limit, we
1189 // require both source location to be in the main file. This prevents hint
1190 // to be shown in weird cases like '{' is actually in a "#include", but it's
1191 // rare anyway.
1192 if (BlockBeginFileId != MainFileID || RBraceFileId != MainFileID)
1193 return std::nullopt;
1195 StringRef RestOfLine = MainFileBuf.substr(RBraceOffset).split('\n').first;
1196 if (!RestOfLine.starts_with("}"))
1197 return std::nullopt;
1199 StringRef TrimmedTrailingText = RestOfLine.drop_front().trim();
1200 if (!TrimmedTrailingText.empty() &&
1201 TrimmedTrailingText != OptionalPunctuation)
1202 return std::nullopt;
1204 auto BlockBeginLine = SM.getLineNumber(BlockBeginFileId, BlockBeginOffset);
1205 auto RBraceLine = SM.getLineNumber(RBraceFileId, RBraceOffset);
1207 // Don't show hint on trivial blocks like `class X {};`
1208 if (BlockBeginLine + HintMinLineLimit - 1 > RBraceLine)
1209 return std::nullopt;
1211 // This is what we attach the hint to, usually "}" or "};".
1212 StringRef HintRangeText = RestOfLine.take_front(
1213 TrimmedTrailingText.empty()
1215 : TrimmedTrailingText.bytes_end() - RestOfLine.bytes_begin());
1217 Position HintStart = sourceLocToPosition(SM, RBraceLoc);
1218 Position HintEnd = sourceLocToPosition(
1219 SM, RBraceLoc.getLocWithOffset(HintRangeText.size()));
1220 return Range{HintStart, HintEnd};
1223 static bool isFunctionObjectCallExpr(CallExpr *E) noexcept {
1224 if (auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(E))
1225 return CallExpr->getOperator() == OverloadedOperatorKind::OO_Call;
1226 return false;
1229 std::vector<InlayHint> &Results;
1230 ASTContext &AST;
1231 const syntax::TokenBuffer &Tokens;
1232 const Config &Cfg;
1233 std::optional<Range> RestrictRange;
1234 FileID MainFileID;
1235 StringRef MainFileBuf;
1236 const HeuristicResolver *Resolver;
1237 PrintingPolicy TypeHintPolicy;
1240 } // namespace
1242 std::vector<InlayHint> inlayHints(ParsedAST &AST,
1243 std::optional<Range> RestrictRange) {
1244 std::vector<InlayHint> Results;
1245 const auto &Cfg = Config::current();
1246 if (!Cfg.InlayHints.Enabled)
1247 return Results;
1248 InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange));
1249 Visitor.TraverseAST(AST.getASTContext());
1251 // De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit
1252 // template instantiations.
1253 llvm::sort(Results);
1254 Results.erase(std::unique(Results.begin(), Results.end()), Results.end());
1256 return Results;
1259 } // namespace clangd
1260 } // namespace clang