1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the LiveDebugVariables analysis.
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/CodeGen/LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/LiveInterval.h"
34 #include "llvm/CodeGen/LiveIntervals.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/VirtRegMap.h"
48 #include "llvm/Config/llvm-config.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
68 #define DEBUG_TYPE "livedebugvars"
71 EnableLDV("live-debug-variables", cl::init(true),
72 cl::desc("Enable the live debug variables pass"), cl::Hidden
);
74 STATISTIC(NumInsertedDebugValues
, "Number of DBG_VALUEs inserted");
75 STATISTIC(NumInsertedDebugLabels
, "Number of DBG_LABELs inserted");
77 char LiveDebugVariables::ID
= 0;
79 INITIALIZE_PASS_BEGIN(LiveDebugVariables
, DEBUG_TYPE
,
80 "Debug Variable Analysis", false, false)
81 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
82 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
83 INITIALIZE_PASS_END(LiveDebugVariables
, DEBUG_TYPE
,
84 "Debug Variable Analysis", false, false)
86 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage
&AU
) const {
87 AU
.addRequired
<MachineDominatorTree
>();
88 AU
.addRequiredTransitive
<LiveIntervals
>();
90 MachineFunctionPass::getAnalysisUsage(AU
);
93 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID
) {
94 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
97 enum : unsigned { UndefLocNo
= ~0U };
100 /// Describes a debug variable value by location number and expression along
101 /// with some flags about the original usage of the location.
102 class DbgVariableValue
{
104 DbgVariableValue(ArrayRef
<unsigned> NewLocs
, bool WasIndirect
, bool WasList
,
105 const DIExpression
&Expr
)
106 : WasIndirect(WasIndirect
), WasList(WasList
), Expression(&Expr
) {
107 assert(!(WasIndirect
&& WasList
) &&
108 "DBG_VALUE_LISTs should not be indirect.");
109 SmallVector
<unsigned> LocNoVec
;
110 for (unsigned LocNo
: NewLocs
) {
111 auto It
= find(LocNoVec
, LocNo
);
112 if (It
== LocNoVec
.end())
113 LocNoVec
.push_back(LocNo
);
115 // Loc duplicates an element in LocNos; replace references to Op
116 // with references to the duplicating element.
117 unsigned OpIdx
= LocNoVec
.size();
118 unsigned DuplicatingIdx
= std::distance(LocNoVec
.begin(), It
);
120 DIExpression::replaceArg(Expression
, OpIdx
, DuplicatingIdx
);
123 // FIXME: Debug values referencing 64+ unique machine locations are rare and
124 // currently unsupported for performance reasons. If we can verify that
125 // performance is acceptable for such debug values, we can increase the
126 // bit-width of LocNoCount to 14 to enable up to 16384 unique machine
127 // locations. We will also need to verify that this does not cause issues
128 // with LiveDebugVariables' use of IntervalMap.
129 if (LocNoVec
.size() < 64) {
130 LocNoCount
= LocNoVec
.size();
131 if (LocNoCount
> 0) {
132 LocNos
= std::make_unique
<unsigned[]>(LocNoCount
);
133 std::copy(LocNoVec
.begin(), LocNoVec
.end(), loc_nos_begin());
136 LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine "
137 "locations, dropping...\n");
139 // Turn this into an undef debug value list; right now, the simplest form
140 // of this is an expression with one arg, and an undef debug operand.
142 DIExpression::get(Expr
.getContext(), {dwarf::DW_OP_LLVM_arg
, 0});
143 if (auto FragmentInfoOpt
= Expr
.getFragmentInfo())
144 Expression
= *DIExpression::createFragmentExpression(
145 Expression
, FragmentInfoOpt
->OffsetInBits
,
146 FragmentInfoOpt
->SizeInBits
);
147 LocNos
= std::make_unique
<unsigned[]>(LocNoCount
);
148 LocNos
[0] = UndefLocNo
;
152 DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {}
153 DbgVariableValue(const DbgVariableValue
&Other
)
154 : LocNoCount(Other
.LocNoCount
), WasIndirect(Other
.getWasIndirect()),
155 WasList(Other
.getWasList()), Expression(Other
.getExpression()) {
156 if (Other
.getLocNoCount()) {
157 LocNos
.reset(new unsigned[Other
.getLocNoCount()]);
158 std::copy(Other
.loc_nos_begin(), Other
.loc_nos_end(), loc_nos_begin());
162 DbgVariableValue
&operator=(const DbgVariableValue
&Other
) {
165 if (Other
.getLocNoCount()) {
166 LocNos
.reset(new unsigned[Other
.getLocNoCount()]);
167 std::copy(Other
.loc_nos_begin(), Other
.loc_nos_end(), loc_nos_begin());
171 LocNoCount
= Other
.getLocNoCount();
172 WasIndirect
= Other
.getWasIndirect();
173 WasList
= Other
.getWasList();
174 Expression
= Other
.getExpression();
178 const DIExpression
*getExpression() const { return Expression
; }
179 uint8_t getLocNoCount() const { return LocNoCount
; }
180 bool containsLocNo(unsigned LocNo
) const {
181 return is_contained(loc_nos(), LocNo
);
183 bool getWasIndirect() const { return WasIndirect
; }
184 bool getWasList() const { return WasList
; }
185 bool isUndef() const { return LocNoCount
== 0 || containsLocNo(UndefLocNo
); }
187 DbgVariableValue
decrementLocNosAfterPivot(unsigned Pivot
) const {
188 SmallVector
<unsigned, 4> NewLocNos
;
189 for (unsigned LocNo
: loc_nos())
190 NewLocNos
.push_back(LocNo
!= UndefLocNo
&& LocNo
> Pivot
? LocNo
- 1
192 return DbgVariableValue(NewLocNos
, WasIndirect
, WasList
, *Expression
);
195 DbgVariableValue
remapLocNos(ArrayRef
<unsigned> LocNoMap
) const {
196 SmallVector
<unsigned> NewLocNos
;
197 for (unsigned LocNo
: loc_nos())
198 // Undef values don't exist in locations (and thus not in LocNoMap
199 // either) so skip over them. See getLocationNo().
200 NewLocNos
.push_back(LocNo
== UndefLocNo
? UndefLocNo
: LocNoMap
[LocNo
]);
201 return DbgVariableValue(NewLocNos
, WasIndirect
, WasList
, *Expression
);
204 DbgVariableValue
changeLocNo(unsigned OldLocNo
, unsigned NewLocNo
) const {
205 SmallVector
<unsigned> NewLocNos
;
206 NewLocNos
.assign(loc_nos_begin(), loc_nos_end());
207 auto OldLocIt
= find(NewLocNos
, OldLocNo
);
208 assert(OldLocIt
!= NewLocNos
.end() && "Old location must be present.");
209 *OldLocIt
= NewLocNo
;
210 return DbgVariableValue(NewLocNos
, WasIndirect
, WasList
, *Expression
);
213 bool hasLocNoGreaterThan(unsigned LocNo
) const {
214 return any_of(loc_nos(),
215 [LocNo
](unsigned ThisLocNo
) { return ThisLocNo
> LocNo
; });
218 void printLocNos(llvm::raw_ostream
&OS
) const {
219 for (const unsigned &Loc
: loc_nos())
220 OS
<< (&Loc
== loc_nos_begin() ? " " : ", ") << Loc
;
223 friend inline bool operator==(const DbgVariableValue
&LHS
,
224 const DbgVariableValue
&RHS
) {
225 if (std::tie(LHS
.LocNoCount
, LHS
.WasIndirect
, LHS
.WasList
,
227 std::tie(RHS
.LocNoCount
, RHS
.WasIndirect
, RHS
.WasList
, RHS
.Expression
))
229 return std::equal(LHS
.loc_nos_begin(), LHS
.loc_nos_end(),
230 RHS
.loc_nos_begin());
233 friend inline bool operator!=(const DbgVariableValue
&LHS
,
234 const DbgVariableValue
&RHS
) {
235 return !(LHS
== RHS
);
238 unsigned *loc_nos_begin() { return LocNos
.get(); }
239 const unsigned *loc_nos_begin() const { return LocNos
.get(); }
240 unsigned *loc_nos_end() { return LocNos
.get() + LocNoCount
; }
241 const unsigned *loc_nos_end() const { return LocNos
.get() + LocNoCount
; }
242 ArrayRef
<unsigned> loc_nos() const {
243 return ArrayRef
<unsigned>(LocNos
.get(), LocNoCount
);
247 // IntervalMap requires the value object to be very small, to the extent
248 // that we do not have enough room for an std::vector. Using a C-style array
249 // (with a unique_ptr wrapper for convenience) allows us to optimize for this
250 // specific case by packing the array size into only 6 bits (it is highly
251 // unlikely that any debug value will need 64+ locations).
252 std::unique_ptr
<unsigned[]> LocNos
;
253 uint8_t LocNoCount
: 6;
254 bool WasIndirect
: 1;
256 const DIExpression
*Expression
= nullptr;
260 /// Map of where a user value is live to that value.
261 using LocMap
= IntervalMap
<SlotIndex
, DbgVariableValue
, 4>;
263 /// Map of stack slot offsets for spilled locations.
264 /// Non-spilled locations are not added to the map.
265 using SpillOffsetMap
= DenseMap
<unsigned, unsigned>;
267 /// Cache to save the location where it can be used as the starting
268 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug.
269 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from
270 /// repeatedly searching the same set of PHIs/Labels/Debug instructions
271 /// if it is called many times for the same block.
272 using BlockSkipInstsMap
=
273 DenseMap
<MachineBasicBlock
*, MachineBasicBlock::iterator
>;
279 /// A user value is a part of a debug info user variable.
281 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
282 /// holds part of a user variable. The part is identified by a byte offset.
284 /// UserValues are grouped into equivalence classes for easier searching. Two
285 /// user values are related if they are held by the same virtual register. The
286 /// equivalence class is the transitive closure of that relation.
288 const DILocalVariable
*Variable
; ///< The debug info variable we are part of.
289 /// The part of the variable we describe.
290 const std::optional
<DIExpression::FragmentInfo
> Fragment
;
291 DebugLoc dl
; ///< The debug location for the variable. This is
292 ///< used by dwarf writer to find lexical scope.
293 UserValue
*leader
; ///< Equivalence class leader.
294 UserValue
*next
= nullptr; ///< Next value in equivalence class, or null.
296 /// Numbered locations referenced by locmap.
297 SmallVector
<MachineOperand
, 4> locations
;
299 /// Map of slot indices where this value is live.
302 /// Set of interval start indexes that have been trimmed to the
304 SmallSet
<SlotIndex
, 2> trimmedDefs
;
306 /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
307 void insertDebugValue(MachineBasicBlock
*MBB
, SlotIndex StartIdx
,
308 SlotIndex StopIdx
, DbgVariableValue DbgValue
,
309 ArrayRef
<bool> LocSpills
,
310 ArrayRef
<unsigned> SpillOffsets
, LiveIntervals
&LIS
,
311 const TargetInstrInfo
&TII
,
312 const TargetRegisterInfo
&TRI
,
313 BlockSkipInstsMap
&BBSkipInstsMap
);
315 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
316 /// is live. Returns true if any changes were made.
317 bool splitLocation(unsigned OldLocNo
, ArrayRef
<Register
> NewRegs
,
321 /// Create a new UserValue.
322 UserValue(const DILocalVariable
*var
,
323 std::optional
<DIExpression::FragmentInfo
> Fragment
, DebugLoc L
,
324 LocMap::Allocator
&alloc
)
325 : Variable(var
), Fragment(Fragment
), dl(std::move(L
)), leader(this),
328 /// Get the leader of this value's equivalence class.
329 UserValue
*getLeader() {
330 UserValue
*l
= leader
;
331 while (l
!= l
->leader
)
336 /// Return the next UserValue in the equivalence class.
337 UserValue
*getNext() const { return next
; }
339 /// Merge equivalence classes.
340 static UserValue
*merge(UserValue
*L1
, UserValue
*L2
) {
341 L2
= L2
->getLeader();
344 L1
= L1
->getLeader();
347 // Splice L2 before L1's members.
354 End
->next
= L1
->next
;
359 /// Return the location number that matches Loc.
361 /// For undef values we always return location number UndefLocNo without
362 /// inserting anything in locations. Since locations is a vector and the
363 /// location number is the position in the vector and UndefLocNo is ~0,
364 /// we would need a very big vector to put the value at the right position.
365 unsigned getLocationNo(const MachineOperand
&LocMO
) {
367 if (LocMO
.getReg() == 0)
369 // For register locations we dont care about use/def and other flags.
370 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
)
371 if (locations
[i
].isReg() &&
372 locations
[i
].getReg() == LocMO
.getReg() &&
373 locations
[i
].getSubReg() == LocMO
.getSubReg())
376 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
)
377 if (LocMO
.isIdenticalTo(locations
[i
]))
379 locations
.push_back(LocMO
);
380 // We are storing a MachineOperand outside a MachineInstr.
381 locations
.back().clearParent();
382 // Don't store def operands.
383 if (locations
.back().isReg()) {
384 if (locations
.back().isDef())
385 locations
.back().setIsDead(false);
386 locations
.back().setIsUse();
388 return locations
.size() - 1;
391 /// Remove (recycle) a location number. If \p LocNo still is used by the
392 /// locInts nothing is done.
393 void removeLocationIfUnused(unsigned LocNo
) {
394 // Bail out if LocNo still is used.
395 for (LocMap::const_iterator I
= locInts
.begin(); I
.valid(); ++I
) {
396 const DbgVariableValue
&DbgValue
= I
.value();
397 if (DbgValue
.containsLocNo(LocNo
))
400 // Remove the entry in the locations vector, and adjust all references to
401 // location numbers above the removed entry.
402 locations
.erase(locations
.begin() + LocNo
);
403 for (LocMap::iterator I
= locInts
.begin(); I
.valid(); ++I
) {
404 const DbgVariableValue
&DbgValue
= I
.value();
405 if (DbgValue
.hasLocNoGreaterThan(LocNo
))
406 I
.setValueUnchecked(DbgValue
.decrementLocNosAfterPivot(LocNo
));
410 /// Ensure that all virtual register locations are mapped.
411 void mapVirtRegs(LDVImpl
*LDV
);
413 /// Add a definition point to this user value.
414 void addDef(SlotIndex Idx
, ArrayRef
<MachineOperand
> LocMOs
, bool IsIndirect
,
415 bool IsList
, const DIExpression
&Expr
) {
416 SmallVector
<unsigned> Locs
;
417 for (const MachineOperand
&Op
: LocMOs
)
418 Locs
.push_back(getLocationNo(Op
));
419 DbgVariableValue
DbgValue(Locs
, IsIndirect
, IsList
, Expr
);
420 // Add a singular (Idx,Idx) -> value mapping.
421 LocMap::iterator I
= locInts
.find(Idx
);
422 if (!I
.valid() || I
.start() != Idx
)
423 I
.insert(Idx
, Idx
.getNextSlot(), std::move(DbgValue
));
425 // A later DBG_VALUE at the same SlotIndex overrides the old location.
426 I
.setValue(std::move(DbgValue
));
429 /// Extend the current definition as far as possible down.
431 /// Stop when meeting an existing def or when leaving the live
432 /// range of VNI. End points where VNI is no longer live are added to Kills.
434 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
435 /// data-flow analysis to propagate them beyond basic block boundaries.
437 /// \param Idx Starting point for the definition.
438 /// \param DbgValue value to propagate.
439 /// \param LiveIntervalInfo For each location number key in this map,
440 /// restricts liveness to where the LiveRange has the value equal to the\
442 /// \param [out] Kills Append end points of VNI's live range to Kills.
443 /// \param LIS Live intervals analysis.
445 extendDef(SlotIndex Idx
, DbgVariableValue DbgValue
,
446 SmallDenseMap
<unsigned, std::pair
<LiveRange
*, const VNInfo
*>>
448 std::optional
<std::pair
<SlotIndex
, SmallVector
<unsigned>>> &Kills
,
451 /// The value in LI may be copies to other registers. Determine if
452 /// any of the copies are available at the kill points, and add defs if
455 /// \param DbgValue Location number of LI->reg, and DIExpression.
456 /// \param LocIntervals Scan for copies of the value for each location in the
457 /// corresponding LiveInterval->reg.
458 /// \param KilledAt The point where the range of DbgValue could be extended.
459 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
460 void addDefsFromCopies(
461 DbgVariableValue DbgValue
,
462 SmallVectorImpl
<std::pair
<unsigned, LiveInterval
*>> &LocIntervals
,
464 SmallVectorImpl
<std::pair
<SlotIndex
, DbgVariableValue
>> &NewDefs
,
465 MachineRegisterInfo
&MRI
, LiveIntervals
&LIS
);
467 /// Compute the live intervals of all locations after collecting all their
469 void computeIntervals(MachineRegisterInfo
&MRI
, const TargetRegisterInfo
&TRI
,
470 LiveIntervals
&LIS
, LexicalScopes
&LS
);
472 /// Replace OldReg ranges with NewRegs ranges where NewRegs is
473 /// live. Returns true if any changes were made.
474 bool splitRegister(Register OldReg
, ArrayRef
<Register
> NewRegs
,
477 /// Rewrite virtual register locations according to the provided virtual
478 /// register map. Record the stack slot offsets for the locations that
480 void rewriteLocations(VirtRegMap
&VRM
, const MachineFunction
&MF
,
481 const TargetInstrInfo
&TII
,
482 const TargetRegisterInfo
&TRI
,
483 SpillOffsetMap
&SpillOffsets
);
485 /// Recreate DBG_VALUE instruction from data structures.
486 void emitDebugValues(VirtRegMap
*VRM
, LiveIntervals
&LIS
,
487 const TargetInstrInfo
&TII
,
488 const TargetRegisterInfo
&TRI
,
489 const SpillOffsetMap
&SpillOffsets
,
490 BlockSkipInstsMap
&BBSkipInstsMap
);
492 /// Return DebugLoc of this UserValue.
493 const DebugLoc
&getDebugLoc() { return dl
; }
495 void print(raw_ostream
&, const TargetRegisterInfo
*);
498 /// A user label is a part of a debug info user label.
500 const DILabel
*Label
; ///< The debug info label we are part of.
501 DebugLoc dl
; ///< The debug location for the label. This is
502 ///< used by dwarf writer to find lexical scope.
503 SlotIndex loc
; ///< Slot used by the debug label.
505 /// Insert a DBG_LABEL into MBB at Idx.
506 void insertDebugLabel(MachineBasicBlock
*MBB
, SlotIndex Idx
,
507 LiveIntervals
&LIS
, const TargetInstrInfo
&TII
,
508 BlockSkipInstsMap
&BBSkipInstsMap
);
511 /// Create a new UserLabel.
512 UserLabel(const DILabel
*label
, DebugLoc L
, SlotIndex Idx
)
513 : Label(label
), dl(std::move(L
)), loc(Idx
) {}
515 /// Does this UserLabel match the parameters?
516 bool matches(const DILabel
*L
, const DILocation
*IA
,
517 const SlotIndex Index
) const {
518 return Label
== L
&& dl
->getInlinedAt() == IA
&& loc
== Index
;
521 /// Recreate DBG_LABEL instruction from data structures.
522 void emitDebugLabel(LiveIntervals
&LIS
, const TargetInstrInfo
&TII
,
523 BlockSkipInstsMap
&BBSkipInstsMap
);
525 /// Return DebugLoc of this UserLabel.
526 const DebugLoc
&getDebugLoc() { return dl
; }
528 void print(raw_ostream
&, const TargetRegisterInfo
*);
531 /// Implementation of the LiveDebugVariables pass.
533 LiveDebugVariables
&pass
;
534 LocMap::Allocator allocator
;
535 MachineFunction
*MF
= nullptr;
537 const TargetRegisterInfo
*TRI
;
539 /// Position and VReg of a PHI instruction during register allocation.
541 SlotIndex SI
; /// Slot where this PHI occurs.
542 Register Reg
; /// VReg this PHI occurs in.
543 unsigned SubReg
; /// Qualifiying subregister for Reg.
546 /// Map from debug instruction number to PHI position during allocation.
547 std::map
<unsigned, PHIValPos
> PHIValToPos
;
548 /// Index of, for each VReg, which debug instruction numbers and corresponding
549 /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs,
550 /// at different positions.
551 DenseMap
<Register
, std::vector
<unsigned>> RegToPHIIdx
;
553 /// Record for any debug instructions unlinked from their blocks during
554 /// regalloc. Stores the instr and it's location, so that they can be
555 /// re-inserted after regalloc is over.
557 MachineInstr
*MI
; ///< Debug instruction, unlinked from it's block.
558 SlotIndex Idx
; ///< Slot position where MI should be re-inserted.
559 MachineBasicBlock
*MBB
; ///< Block that MI was in.
562 /// Collection of stored debug instructions, preserved until after regalloc.
563 SmallVector
<InstrPos
, 32> StashedDebugInstrs
;
565 /// Whether emitDebugValues is called.
566 bool EmitDone
= false;
568 /// Whether the machine function is modified during the pass.
569 bool ModifiedMF
= false;
571 /// All allocated UserValue instances.
572 SmallVector
<std::unique_ptr
<UserValue
>, 8> userValues
;
574 /// All allocated UserLabel instances.
575 SmallVector
<std::unique_ptr
<UserLabel
>, 2> userLabels
;
577 /// Map virtual register to eq class leader.
578 using VRMap
= DenseMap
<unsigned, UserValue
*>;
579 VRMap virtRegToEqClass
;
581 /// Map to find existing UserValue instances.
582 using UVMap
= DenseMap
<DebugVariable
, UserValue
*>;
585 /// Find or create a UserValue.
586 UserValue
*getUserValue(const DILocalVariable
*Var
,
587 std::optional
<DIExpression::FragmentInfo
> Fragment
,
590 /// Find the EC leader for VirtReg or null.
591 UserValue
*lookupVirtReg(Register VirtReg
);
593 /// Add DBG_VALUE instruction to our maps.
595 /// \param MI DBG_VALUE instruction
596 /// \param Idx Last valid SLotIndex before instruction.
598 /// \returns True if the DBG_VALUE instruction should be deleted.
599 bool handleDebugValue(MachineInstr
&MI
, SlotIndex Idx
);
601 /// Track variable location debug instructions while using the instruction
602 /// referencing implementation. Such debug instructions do not need to be
603 /// updated during regalloc because they identify instructions rather than
604 /// register locations. However, they needs to be removed from the
605 /// MachineFunction during regalloc, then re-inserted later, to avoid
606 /// disrupting the allocator.
608 /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction
609 /// \param Idx Last valid SlotIndex before instruction
611 /// \returns Iterator to continue processing from after unlinking.
612 MachineBasicBlock::iterator
handleDebugInstr(MachineInstr
&MI
, SlotIndex Idx
);
614 /// Add DBG_LABEL instruction to UserLabel.
616 /// \param MI DBG_LABEL instruction
617 /// \param Idx Last valid SlotIndex before instruction.
619 /// \returns True if the DBG_LABEL instruction should be deleted.
620 bool handleDebugLabel(MachineInstr
&MI
, SlotIndex Idx
);
622 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
623 /// for each instruction.
625 /// \param mf MachineFunction to be scanned.
626 /// \param InstrRef Whether to operate in instruction referencing mode. If
627 /// true, most of LiveDebugVariables doesn't run.
629 /// \returns True if any debug values were found.
630 bool collectDebugValues(MachineFunction
&mf
, bool InstrRef
);
632 /// Compute the live intervals of all user values after collecting all
633 /// their def points.
634 void computeIntervals();
637 LDVImpl(LiveDebugVariables
*ps
) : pass(*ps
) {}
639 bool runOnMachineFunction(MachineFunction
&mf
, bool InstrRef
);
641 /// Release all memory.
646 StashedDebugInstrs
.clear();
649 virtRegToEqClass
.clear();
651 // Make sure we call emitDebugValues if the machine function was modified.
652 assert((!ModifiedMF
|| EmitDone
) &&
653 "Dbg values are not emitted in LDV");
658 /// Map virtual register to an equivalence class.
659 void mapVirtReg(Register VirtReg
, UserValue
*EC
);
661 /// Replace any PHI referring to OldReg with its corresponding NewReg, if
663 void splitPHIRegister(Register OldReg
, ArrayRef
<Register
> NewRegs
);
665 /// Replace all references to OldReg with NewRegs.
666 void splitRegister(Register OldReg
, ArrayRef
<Register
> NewRegs
);
668 /// Recreate DBG_VALUE instruction from data structures.
669 void emitDebugValues(VirtRegMap
*VRM
);
671 void print(raw_ostream
&);
674 } // end anonymous namespace
676 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
677 static void printDebugLoc(const DebugLoc
&DL
, raw_ostream
&CommentOS
,
678 const LLVMContext
&Ctx
) {
682 auto *Scope
= cast
<DIScope
>(DL
.getScope());
683 // Omit the directory, because it's likely to be long and uninteresting.
684 CommentOS
<< Scope
->getFilename();
685 CommentOS
<< ':' << DL
.getLine();
686 if (DL
.getCol() != 0)
687 CommentOS
<< ':' << DL
.getCol();
689 DebugLoc InlinedAtDL
= DL
.getInlinedAt();
694 printDebugLoc(InlinedAtDL
, CommentOS
, Ctx
);
698 static void printExtendedName(raw_ostream
&OS
, const DINode
*Node
,
699 const DILocation
*DL
) {
700 const LLVMContext
&Ctx
= Node
->getContext();
703 if (const auto *V
= dyn_cast
<const DILocalVariable
>(Node
)) {
706 } else if (const auto *L
= dyn_cast
<const DILabel
>(Node
)) {
712 OS
<< Res
<< "," << Line
;
713 auto *InlinedAt
= DL
? DL
->getInlinedAt() : nullptr;
715 if (DebugLoc InlinedAtDL
= InlinedAt
) {
717 printDebugLoc(InlinedAtDL
, OS
, Ctx
);
723 void UserValue::print(raw_ostream
&OS
, const TargetRegisterInfo
*TRI
) {
725 printExtendedName(OS
, Variable
, dl
);
728 for (LocMap::const_iterator I
= locInts
.begin(); I
.valid(); ++I
) {
729 OS
<< " [" << I
.start() << ';' << I
.stop() << "):";
730 if (I
.value().isUndef())
733 I
.value().printLocNos(OS
);
734 if (I
.value().getWasIndirect())
736 else if (I
.value().getWasList())
740 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
) {
741 OS
<< " Loc" << i
<< '=';
742 locations
[i
].print(OS
, TRI
);
747 void UserLabel::print(raw_ostream
&OS
, const TargetRegisterInfo
*TRI
) {
749 printExtendedName(OS
, Label
, dl
);
756 void LDVImpl::print(raw_ostream
&OS
) {
757 OS
<< "********** DEBUG VARIABLES **********\n";
758 for (auto &userValue
: userValues
)
759 userValue
->print(OS
, TRI
);
760 OS
<< "********** DEBUG LABELS **********\n";
761 for (auto &userLabel
: userLabels
)
762 userLabel
->print(OS
, TRI
);
766 void UserValue::mapVirtRegs(LDVImpl
*LDV
) {
767 for (unsigned i
= 0, e
= locations
.size(); i
!= e
; ++i
)
768 if (locations
[i
].isReg() && locations
[i
].getReg().isVirtual())
769 LDV
->mapVirtReg(locations
[i
].getReg(), this);
773 LDVImpl::getUserValue(const DILocalVariable
*Var
,
774 std::optional
<DIExpression::FragmentInfo
> Fragment
,
775 const DebugLoc
&DL
) {
776 // FIXME: Handle partially overlapping fragments. See
777 // https://reviews.llvm.org/D70121#1849741.
778 DebugVariable
ID(Var
, Fragment
, DL
->getInlinedAt());
779 UserValue
*&UV
= userVarMap
[ID
];
781 userValues
.push_back(
782 std::make_unique
<UserValue
>(Var
, Fragment
, DL
, allocator
));
783 UV
= userValues
.back().get();
788 void LDVImpl::mapVirtReg(Register VirtReg
, UserValue
*EC
) {
789 assert(VirtReg
.isVirtual() && "Only map VirtRegs");
790 UserValue
*&Leader
= virtRegToEqClass
[VirtReg
];
791 Leader
= UserValue::merge(Leader
, EC
);
794 UserValue
*LDVImpl::lookupVirtReg(Register VirtReg
) {
795 if (UserValue
*UV
= virtRegToEqClass
.lookup(VirtReg
))
796 return UV
->getLeader();
800 bool LDVImpl::handleDebugValue(MachineInstr
&MI
, SlotIndex Idx
) {
801 // DBG_VALUE loc, offset, variable, expr
802 // DBG_VALUE_LIST variable, expr, locs...
803 if (!MI
.isDebugValue()) {
804 LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI
);
807 if (!MI
.getDebugVariableOp().isMetadata()) {
808 LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: "
812 if (MI
.isNonListDebugValue() &&
813 (MI
.getNumOperands() != 4 ||
814 !(MI
.getDebugOffset().isImm() || MI
.getDebugOffset().isReg()))) {
815 LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI
);
819 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
820 // register that hasn't been defined yet. If we do not remove those here, then
821 // the re-insertion of the DBG_VALUE instruction after register allocation
822 // will be incorrect.
823 bool Discard
= false;
824 for (const MachineOperand
&Op
: MI
.debug_operands()) {
825 if (Op
.isReg() && Op
.getReg().isVirtual()) {
826 const Register Reg
= Op
.getReg();
827 if (!LIS
->hasInterval(Reg
)) {
828 // The DBG_VALUE is described by a virtual register that does not have a
829 // live interval. Discard the DBG_VALUE.
831 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
834 // The DBG_VALUE is only valid if either Reg is live out from Idx, or
835 // Reg is defined dead at Idx (where Idx is the slot index for the
836 // instruction preceding the DBG_VALUE).
837 const LiveInterval
&LI
= LIS
->getInterval(Reg
);
838 LiveQueryResult LRQ
= LI
.Query(Idx
);
839 if (!LRQ
.valueOutOrDead()) {
840 // We have found a DBG_VALUE with the value in a virtual register that
841 // is not live. Discard the DBG_VALUE.
843 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
850 // Get or create the UserValue for (variable,offset) here.
851 bool IsIndirect
= MI
.isDebugOffsetImm();
853 assert(MI
.getDebugOffset().getImm() == 0 &&
854 "DBG_VALUE with nonzero offset");
855 bool IsList
= MI
.isDebugValueList();
856 const DILocalVariable
*Var
= MI
.getDebugVariable();
857 const DIExpression
*Expr
= MI
.getDebugExpression();
858 UserValue
*UV
= getUserValue(Var
, Expr
->getFragmentInfo(), MI
.getDebugLoc());
861 ArrayRef
<MachineOperand
>(MI
.debug_operands().begin(),
862 MI
.debug_operands().end()),
863 IsIndirect
, IsList
, *Expr
);
865 MachineOperand MO
= MachineOperand::CreateReg(0U, false);
867 // We should still pass a list the same size as MI.debug_operands() even if
868 // all MOs are undef, so that DbgVariableValue can correctly adjust the
869 // expression while removing the duplicated undefs.
870 SmallVector
<MachineOperand
, 4> UndefMOs(MI
.getNumDebugOperands(), MO
);
871 UV
->addDef(Idx
, UndefMOs
, false, IsList
, *Expr
);
876 MachineBasicBlock::iterator
LDVImpl::handleDebugInstr(MachineInstr
&MI
,
878 assert(MI
.isDebugValueLike() || MI
.isDebugPHI());
880 // In instruction referencing mode, there should be no DBG_VALUE instructions
881 // that refer to virtual registers. They might still refer to constants.
882 if (MI
.isDebugValueLike())
883 assert(none_of(MI
.debug_operands(),
884 [](const MachineOperand
&MO
) {
885 return MO
.isReg() && MO
.getReg().isVirtual();
887 "MIs should not refer to Virtual Registers in InstrRef mode.");
889 // Unlink the instruction, store it in the debug instructions collection.
890 auto NextInst
= std::next(MI
.getIterator());
891 auto *MBB
= MI
.getParent();
892 MI
.removeFromParent();
893 StashedDebugInstrs
.push_back({&MI
, Idx
, MBB
});
897 bool LDVImpl::handleDebugLabel(MachineInstr
&MI
, SlotIndex Idx
) {
899 if (MI
.getNumOperands() != 1 || !MI
.getOperand(0).isMetadata()) {
900 LLVM_DEBUG(dbgs() << "Can't handle " << MI
);
904 // Get or create the UserLabel for label here.
905 const DILabel
*Label
= MI
.getDebugLabel();
906 const DebugLoc
&DL
= MI
.getDebugLoc();
908 for (auto const &L
: userLabels
) {
909 if (L
->matches(Label
, DL
->getInlinedAt(), Idx
)) {
915 userLabels
.push_back(std::make_unique
<UserLabel
>(Label
, DL
, Idx
));
920 bool LDVImpl::collectDebugValues(MachineFunction
&mf
, bool InstrRef
) {
921 bool Changed
= false;
922 for (MachineBasicBlock
&MBB
: mf
) {
923 for (MachineBasicBlock::iterator MBBI
= MBB
.begin(), MBBE
= MBB
.end();
925 // Use the first debug instruction in the sequence to get a SlotIndex
926 // for following consecutive debug instructions.
927 if (!MBBI
->isDebugOrPseudoInstr()) {
931 // Debug instructions has no slot index. Use the previous
932 // non-debug instruction's SlotIndex as its SlotIndex.
935 ? LIS
->getMBBStartIdx(&MBB
)
936 : LIS
->getInstructionIndex(*std::prev(MBBI
)).getRegSlot();
937 // Handle consecutive debug instructions with the same slot index.
939 // In instruction referencing mode, pass each instr to handleDebugInstr
940 // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and
941 // need to go through the normal live interval splitting process.
942 if (InstrRef
&& (MBBI
->isNonListDebugValue() || MBBI
->isDebugPHI() ||
943 MBBI
->isDebugRef())) {
944 MBBI
= handleDebugInstr(*MBBI
, Idx
);
946 // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler
947 // to track things through register allocation, and erase the instr.
948 } else if ((MBBI
->isDebugValue() && handleDebugValue(*MBBI
, Idx
)) ||
949 (MBBI
->isDebugLabel() && handleDebugLabel(*MBBI
, Idx
))) {
950 MBBI
= MBB
.erase(MBBI
);
954 } while (MBBI
!= MBBE
&& MBBI
->isDebugOrPseudoInstr());
960 void UserValue::extendDef(
961 SlotIndex Idx
, DbgVariableValue DbgValue
,
962 SmallDenseMap
<unsigned, std::pair
<LiveRange
*, const VNInfo
*>>
964 std::optional
<std::pair
<SlotIndex
, SmallVector
<unsigned>>> &Kills
,
965 LiveIntervals
&LIS
) {
966 SlotIndex Start
= Idx
;
967 MachineBasicBlock
*MBB
= LIS
.getMBBFromIndex(Start
);
968 SlotIndex Stop
= LIS
.getMBBEndIdx(MBB
);
969 LocMap::iterator I
= locInts
.find(Start
);
971 // Limit to the intersection of the VNIs' live ranges.
972 for (auto &LII
: LiveIntervalInfo
) {
973 LiveRange
*LR
= LII
.second
.first
;
974 assert(LR
&& LII
.second
.second
&& "Missing range info for Idx.");
975 LiveInterval::Segment
*Segment
= LR
->getSegmentContaining(Start
);
976 assert(Segment
&& Segment
->valno
== LII
.second
.second
&&
977 "Invalid VNInfo for Idx given?");
978 if (Segment
->end
< Stop
) {
980 Kills
= {Stop
, {LII
.first
}};
981 } else if (Segment
->end
== Stop
&& Kills
) {
982 // If multiple locations end at the same place, track all of them in
984 Kills
->second
.push_back(LII
.first
);
988 // There could already be a short def at Start.
989 if (I
.valid() && I
.start() <= Start
) {
990 // Stop when meeting a different location or an already extended interval.
991 Start
= Start
.getNextSlot();
992 if (I
.value() != DbgValue
|| I
.stop() != Start
) {
993 // Clear `Kills`, as we have a new def available.
994 Kills
= std::nullopt
;
997 // This is a one-slot placeholder. Just skip it.
1001 // Limited by the next def.
1002 if (I
.valid() && I
.start() < Stop
) {
1004 // Clear `Kills`, as we have a new def available.
1005 Kills
= std::nullopt
;
1009 DbgVariableValue
ExtDbgValue(DbgValue
);
1010 I
.insert(Start
, Stop
, std::move(ExtDbgValue
));
1014 void UserValue::addDefsFromCopies(
1015 DbgVariableValue DbgValue
,
1016 SmallVectorImpl
<std::pair
<unsigned, LiveInterval
*>> &LocIntervals
,
1018 SmallVectorImpl
<std::pair
<SlotIndex
, DbgVariableValue
>> &NewDefs
,
1019 MachineRegisterInfo
&MRI
, LiveIntervals
&LIS
) {
1020 // Don't track copies from physregs, there are too many uses.
1021 if (any_of(LocIntervals
,
1022 [](auto LocI
) { return !LocI
.second
->reg().isVirtual(); }))
1025 // Collect all the (vreg, valno) pairs that are copies of LI.
1026 SmallDenseMap
<unsigned,
1027 SmallVector
<std::pair
<LiveInterval
*, const VNInfo
*>, 4>>
1029 for (auto &LocInterval
: LocIntervals
) {
1030 unsigned LocNo
= LocInterval
.first
;
1031 LiveInterval
*LI
= LocInterval
.second
;
1032 for (MachineOperand
&MO
: MRI
.use_nodbg_operands(LI
->reg())) {
1033 MachineInstr
*MI
= MO
.getParent();
1034 // Copies of the full value.
1035 if (MO
.getSubReg() || !MI
->isCopy())
1037 Register DstReg
= MI
->getOperand(0).getReg();
1039 // Don't follow copies to physregs. These are usually setting up call
1040 // arguments, and the argument registers are always call clobbered. We are
1041 // better off in the source register which could be a callee-saved
1042 // register, or it could be spilled.
1043 if (!DstReg
.isVirtual())
1046 // Is the value extended to reach this copy? If not, another def may be
1047 // blocking it, or we are looking at a wrong value of LI.
1048 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
);
1049 LocMap::iterator I
= locInts
.find(Idx
.getRegSlot(true));
1050 if (!I
.valid() || I
.value() != DbgValue
)
1053 if (!LIS
.hasInterval(DstReg
))
1055 LiveInterval
*DstLI
= &LIS
.getInterval(DstReg
);
1056 const VNInfo
*DstVNI
= DstLI
->getVNInfoAt(Idx
.getRegSlot());
1057 assert(DstVNI
&& DstVNI
->def
== Idx
.getRegSlot() && "Bad copy value");
1058 CopyValues
[LocNo
].push_back(std::make_pair(DstLI
, DstVNI
));
1062 if (CopyValues
.empty())
1065 #if !defined(NDEBUG)
1066 for (auto &LocInterval
: LocIntervals
)
1067 LLVM_DEBUG(dbgs() << "Got " << CopyValues
[LocInterval
.first
].size()
1068 << " copies of " << *LocInterval
.second
<< '\n');
1071 // Try to add defs of the copied values for the kill point. Check that there
1072 // isn't already a def at Idx.
1073 LocMap::iterator I
= locInts
.find(KilledAt
);
1074 if (I
.valid() && I
.start() <= KilledAt
)
1076 DbgVariableValue
NewValue(DbgValue
);
1077 for (auto &LocInterval
: LocIntervals
) {
1078 unsigned LocNo
= LocInterval
.first
;
1079 bool FoundCopy
= false;
1080 for (auto &LIAndVNI
: CopyValues
[LocNo
]) {
1081 LiveInterval
*DstLI
= LIAndVNI
.first
;
1082 const VNInfo
*DstVNI
= LIAndVNI
.second
;
1083 if (DstLI
->getVNInfoAt(KilledAt
) != DstVNI
)
1085 LLVM_DEBUG(dbgs() << "Kill at " << KilledAt
<< " covered by valno #"
1086 << DstVNI
->id
<< " in " << *DstLI
<< '\n');
1087 MachineInstr
*CopyMI
= LIS
.getInstructionFromIndex(DstVNI
->def
);
1088 assert(CopyMI
&& CopyMI
->isCopy() && "Bad copy value");
1089 unsigned NewLocNo
= getLocationNo(CopyMI
->getOperand(0));
1090 NewValue
= NewValue
.changeLocNo(LocNo
, NewLocNo
);
1094 // If there are any killed locations we can't find a copy for, we can't
1095 // extend the variable value.
1099 I
.insert(KilledAt
, KilledAt
.getNextSlot(), NewValue
);
1100 NewDefs
.push_back(std::make_pair(KilledAt
, NewValue
));
1103 void UserValue::computeIntervals(MachineRegisterInfo
&MRI
,
1104 const TargetRegisterInfo
&TRI
,
1105 LiveIntervals
&LIS
, LexicalScopes
&LS
) {
1106 SmallVector
<std::pair
<SlotIndex
, DbgVariableValue
>, 16> Defs
;
1108 // Collect all defs to be extended (Skipping undefs).
1109 for (LocMap::const_iterator I
= locInts
.begin(); I
.valid(); ++I
)
1110 if (!I
.value().isUndef())
1111 Defs
.push_back(std::make_pair(I
.start(), I
.value()));
1113 // Extend all defs, and possibly add new ones along the way.
1114 for (unsigned i
= 0; i
!= Defs
.size(); ++i
) {
1115 SlotIndex Idx
= Defs
[i
].first
;
1116 DbgVariableValue DbgValue
= Defs
[i
].second
;
1117 SmallDenseMap
<unsigned, std::pair
<LiveRange
*, const VNInfo
*>> LIs
;
1118 SmallVector
<const VNInfo
*, 4> VNIs
;
1119 bool ShouldExtendDef
= false;
1120 for (unsigned LocNo
: DbgValue
.loc_nos()) {
1121 const MachineOperand
&LocMO
= locations
[LocNo
];
1122 if (!LocMO
.isReg() || !LocMO
.getReg().isVirtual()) {
1123 ShouldExtendDef
|= !LocMO
.isReg();
1126 ShouldExtendDef
= true;
1127 LiveInterval
*LI
= nullptr;
1128 const VNInfo
*VNI
= nullptr;
1129 if (LIS
.hasInterval(LocMO
.getReg())) {
1130 LI
= &LIS
.getInterval(LocMO
.getReg());
1131 VNI
= LI
->getVNInfoAt(Idx
);
1134 LIs
[LocNo
] = {LI
, VNI
};
1136 if (ShouldExtendDef
) {
1137 std::optional
<std::pair
<SlotIndex
, SmallVector
<unsigned>>> Kills
;
1138 extendDef(Idx
, DbgValue
, LIs
, Kills
, LIS
);
1141 SmallVector
<std::pair
<unsigned, LiveInterval
*>, 2> KilledLocIntervals
;
1142 bool AnySubreg
= false;
1143 for (unsigned LocNo
: Kills
->second
) {
1144 const MachineOperand
&LocMO
= this->locations
[LocNo
];
1145 if (LocMO
.getSubReg()) {
1149 LiveInterval
*LI
= &LIS
.getInterval(LocMO
.getReg());
1150 KilledLocIntervals
.push_back({LocNo
, LI
});
1153 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
1154 // if the original location for example is %vreg0:sub_hi, and we find a
1155 // full register copy in addDefsFromCopies (at the moment it only
1156 // handles full register copies), then we must add the sub1 sub-register
1157 // index to the new location. However, that is only possible if the new
1158 // virtual register is of the same regclass (or if there is an
1159 // equivalent sub-register in that regclass). For now, simply skip
1160 // handling copies if a sub-register is involved.
1162 addDefsFromCopies(DbgValue
, KilledLocIntervals
, Kills
->first
, Defs
,
1167 // For physregs, we only mark the start slot idx. DwarfDebug will see it
1168 // as if the DBG_VALUE is valid up until the end of the basic block, or
1169 // the next def of the physical register. So we do not need to extend the
1170 // range. It might actually happen that the DBG_VALUE is the last use of
1171 // the physical register (e.g. if this is an unused input argument to a
1175 // The computed intervals may extend beyond the range of the debug
1176 // location's lexical scope. In this case, splitting of an interval
1177 // can result in an interval outside of the scope being created,
1178 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
1179 // this, trim the intervals to the lexical scope in the case of inlined
1180 // variables, since heavy inlining may cause production of dramatically big
1181 // number of DBG_VALUEs to be generated.
1182 if (!dl
.getInlinedAt())
1185 LexicalScope
*Scope
= LS
.findLexicalScope(dl
);
1190 LocMap::iterator I
= locInts
.begin();
1192 // Iterate over the lexical scope ranges. Each time round the loop
1193 // we check the intervals for overlap with the end of the previous
1194 // range and the start of the next. The first range is handled as
1195 // a special case where there is no PrevEnd.
1196 for (const InsnRange
&Range
: Scope
->getRanges()) {
1197 SlotIndex RStart
= LIS
.getInstructionIndex(*Range
.first
);
1198 SlotIndex REnd
= LIS
.getInstructionIndex(*Range
.second
);
1200 // Variable locations at the first instruction of a block should be
1201 // based on the block's SlotIndex, not the first instruction's index.
1202 if (Range
.first
== Range
.first
->getParent()->begin())
1203 RStart
= LIS
.getSlotIndexes()->getIndexBefore(*Range
.first
);
1205 // At the start of each iteration I has been advanced so that
1206 // I.stop() >= PrevEnd. Check for overlap.
1207 if (PrevEnd
&& I
.start() < PrevEnd
) {
1208 SlotIndex IStop
= I
.stop();
1209 DbgVariableValue DbgValue
= I
.value();
1211 // Stop overlaps previous end - trim the end of the interval to
1213 I
.setStopUnchecked(PrevEnd
);
1216 // If the interval also overlaps the start of the "next" (i.e.
1217 // current) range create a new interval for the remainder (which
1218 // may be further trimmed).
1220 I
.insert(RStart
, IStop
, DbgValue
);
1223 // Advance I so that I.stop() >= RStart, and check for overlap.
1224 I
.advanceTo(RStart
);
1228 if (I
.start() < RStart
) {
1229 // Interval start overlaps range - trim to the scope range.
1230 I
.setStartUnchecked(RStart
);
1231 // Remember that this interval was trimmed.
1232 trimmedDefs
.insert(RStart
);
1235 // The end of a lexical scope range is the last instruction in the
1236 // range. To convert to an interval we need the index of the
1237 // instruction after it.
1238 REnd
= REnd
.getNextIndex();
1240 // Advance I to first interval outside current range.
1248 // Check for overlap with end of final range.
1249 if (PrevEnd
&& I
.start() < PrevEnd
)
1250 I
.setStopUnchecked(PrevEnd
);
1253 void LDVImpl::computeIntervals() {
1257 for (unsigned i
= 0, e
= userValues
.size(); i
!= e
; ++i
) {
1258 userValues
[i
]->computeIntervals(MF
->getRegInfo(), *TRI
, *LIS
, LS
);
1259 userValues
[i
]->mapVirtRegs(this);
1263 bool LDVImpl::runOnMachineFunction(MachineFunction
&mf
, bool InstrRef
) {
1266 LIS
= &pass
.getAnalysis
<LiveIntervals
>();
1267 TRI
= mf
.getSubtarget().getRegisterInfo();
1268 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
1269 << mf
.getName() << " **********\n");
1271 bool Changed
= collectDebugValues(mf
, InstrRef
);
1273 LLVM_DEBUG(print(dbgs()));
1275 // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive
1276 // VRegs too, for when we're notified of a range split.
1277 SlotIndexes
*Slots
= LIS
->getSlotIndexes();
1278 for (const auto &PHIIt
: MF
->DebugPHIPositions
) {
1279 const MachineFunction::DebugPHIRegallocPos
&Position
= PHIIt
.second
;
1280 MachineBasicBlock
*MBB
= Position
.MBB
;
1281 Register Reg
= Position
.Reg
;
1282 unsigned SubReg
= Position
.SubReg
;
1283 SlotIndex SI
= Slots
->getMBBStartIdx(MBB
);
1284 PHIValPos VP
= {SI
, Reg
, SubReg
};
1285 PHIValToPos
.insert(std::make_pair(PHIIt
.first
, VP
));
1286 RegToPHIIdx
[Reg
].push_back(PHIIt
.first
);
1289 ModifiedMF
= Changed
;
1293 static void removeDebugInstrs(MachineFunction
&mf
) {
1294 for (MachineBasicBlock
&MBB
: mf
) {
1295 for (MachineInstr
&MI
: llvm::make_early_inc_range(MBB
))
1296 if (MI
.isDebugInstr())
1301 bool LiveDebugVariables::runOnMachineFunction(MachineFunction
&mf
) {
1304 if (!mf
.getFunction().getSubprogram()) {
1305 removeDebugInstrs(mf
);
1309 // Have we been asked to track variable locations using instruction
1311 bool InstrRef
= mf
.useDebugInstrRef();
1314 pImpl
= new LDVImpl(this);
1315 return static_cast<LDVImpl
*>(pImpl
)->runOnMachineFunction(mf
, InstrRef
);
1318 void LiveDebugVariables::releaseMemory() {
1320 static_cast<LDVImpl
*>(pImpl
)->clear();
1323 LiveDebugVariables::~LiveDebugVariables() {
1325 delete static_cast<LDVImpl
*>(pImpl
);
1328 //===----------------------------------------------------------------------===//
1329 // Live Range Splitting
1330 //===----------------------------------------------------------------------===//
1333 UserValue::splitLocation(unsigned OldLocNo
, ArrayRef
<Register
> NewRegs
,
1334 LiveIntervals
& LIS
) {
1336 dbgs() << "Splitting Loc" << OldLocNo
<< '\t';
1337 print(dbgs(), nullptr);
1339 bool DidChange
= false;
1340 LocMap::iterator LocMapI
;
1341 LocMapI
.setMap(locInts
);
1342 for (Register NewReg
: NewRegs
) {
1343 LiveInterval
*LI
= &LIS
.getInterval(NewReg
);
1347 // Don't allocate the new LocNo until it is needed.
1348 unsigned NewLocNo
= UndefLocNo
;
1350 // Iterate over the overlaps between locInts and LI.
1351 LocMapI
.find(LI
->beginIndex());
1352 if (!LocMapI
.valid())
1354 LiveInterval::iterator LII
= LI
->advanceTo(LI
->begin(), LocMapI
.start());
1355 LiveInterval::iterator LIE
= LI
->end();
1356 while (LocMapI
.valid() && LII
!= LIE
) {
1357 // At this point, we know that LocMapI.stop() > LII->start.
1358 LII
= LI
->advanceTo(LII
, LocMapI
.start());
1362 // Now LII->end > LocMapI.start(). Do we have an overlap?
1363 if (LocMapI
.value().containsLocNo(OldLocNo
) &&
1364 LII
->start
< LocMapI
.stop()) {
1365 // Overlapping correct location. Allocate NewLocNo now.
1366 if (NewLocNo
== UndefLocNo
) {
1367 MachineOperand MO
= MachineOperand::CreateReg(LI
->reg(), false);
1368 MO
.setSubReg(locations
[OldLocNo
].getSubReg());
1369 NewLocNo
= getLocationNo(MO
);
1373 SlotIndex LStart
= LocMapI
.start();
1374 SlotIndex LStop
= LocMapI
.stop();
1375 DbgVariableValue OldDbgValue
= LocMapI
.value();
1377 // Trim LocMapI down to the LII overlap.
1378 if (LStart
< LII
->start
)
1379 LocMapI
.setStartUnchecked(LII
->start
);
1380 if (LStop
> LII
->end
)
1381 LocMapI
.setStopUnchecked(LII
->end
);
1383 // Change the value in the overlap. This may trigger coalescing.
1384 LocMapI
.setValue(OldDbgValue
.changeLocNo(OldLocNo
, NewLocNo
));
1386 // Re-insert any removed OldDbgValue ranges.
1387 if (LStart
< LocMapI
.start()) {
1388 LocMapI
.insert(LStart
, LocMapI
.start(), OldDbgValue
);
1390 assert(LocMapI
.valid() && "Unexpected coalescing");
1392 if (LStop
> LocMapI
.stop()) {
1394 LocMapI
.insert(LII
->end
, LStop
, OldDbgValue
);
1399 // Advance to the next overlap.
1400 if (LII
->end
< LocMapI
.stop()) {
1403 LocMapI
.advanceTo(LII
->start
);
1406 if (!LocMapI
.valid())
1408 LII
= LI
->advanceTo(LII
, LocMapI
.start());
1413 // Finally, remove OldLocNo unless it is still used by some interval in the
1414 // locInts map. One case when OldLocNo still is in use is when the register
1415 // has been spilled. In such situations the spilled register is kept as a
1416 // location until rewriteLocations is called (VirtRegMap is mapping the old
1417 // register to the spill slot). So for a while we can have locations that map
1418 // to virtual registers that have been removed from both the MachineFunction
1419 // and from LiveIntervals.
1421 // We may also just be using the location for a value with a different
1423 removeLocationIfUnused(OldLocNo
);
1426 dbgs() << "Split result: \t";
1427 print(dbgs(), nullptr);
1433 UserValue::splitRegister(Register OldReg
, ArrayRef
<Register
> NewRegs
,
1434 LiveIntervals
&LIS
) {
1435 bool DidChange
= false;
1436 // Split locations referring to OldReg. Iterate backwards so splitLocation can
1437 // safely erase unused locations.
1438 for (unsigned i
= locations
.size(); i
; --i
) {
1439 unsigned LocNo
= i
-1;
1440 const MachineOperand
*Loc
= &locations
[LocNo
];
1441 if (!Loc
->isReg() || Loc
->getReg() != OldReg
)
1443 DidChange
|= splitLocation(LocNo
, NewRegs
, LIS
);
1448 void LDVImpl::splitPHIRegister(Register OldReg
, ArrayRef
<Register
> NewRegs
) {
1449 auto RegIt
= RegToPHIIdx
.find(OldReg
);
1450 if (RegIt
== RegToPHIIdx
.end())
1453 std::vector
<std::pair
<Register
, unsigned>> NewRegIdxes
;
1454 // Iterate over all the debug instruction numbers affected by this split.
1455 for (unsigned InstrID
: RegIt
->second
) {
1456 auto PHIIt
= PHIValToPos
.find(InstrID
);
1457 assert(PHIIt
!= PHIValToPos
.end());
1458 const SlotIndex
&Slot
= PHIIt
->second
.SI
;
1459 assert(OldReg
== PHIIt
->second
.Reg
);
1461 // Find the new register that covers this position.
1462 for (auto NewReg
: NewRegs
) {
1463 const LiveInterval
&LI
= LIS
->getInterval(NewReg
);
1464 auto LII
= LI
.find(Slot
);
1465 if (LII
!= LI
.end() && LII
->start
<= Slot
) {
1466 // This new register covers this PHI position, record this for indexing.
1467 NewRegIdxes
.push_back(std::make_pair(NewReg
, InstrID
));
1468 // Record that this value lives in a different VReg now.
1469 PHIIt
->second
.Reg
= NewReg
;
1474 // If we do not find a new register covering this PHI, then register
1475 // allocation has dropped its location, for example because it's not live.
1476 // The old VReg will not be mapped to a physreg, and the instruction
1477 // number will have been optimized out.
1480 // Re-create register index using the new register numbers.
1481 RegToPHIIdx
.erase(RegIt
);
1482 for (auto &RegAndInstr
: NewRegIdxes
)
1483 RegToPHIIdx
[RegAndInstr
.first
].push_back(RegAndInstr
.second
);
1486 void LDVImpl::splitRegister(Register OldReg
, ArrayRef
<Register
> NewRegs
) {
1487 // Consider whether this split range affects any PHI locations.
1488 splitPHIRegister(OldReg
, NewRegs
);
1490 // Check whether any intervals mapped by a DBG_VALUE were split and need
1492 bool DidChange
= false;
1493 for (UserValue
*UV
= lookupVirtReg(OldReg
); UV
; UV
= UV
->getNext())
1494 DidChange
|= UV
->splitRegister(OldReg
, NewRegs
, *LIS
);
1499 // Map all of the new virtual registers.
1500 UserValue
*UV
= lookupVirtReg(OldReg
);
1501 for (Register NewReg
: NewRegs
)
1502 mapVirtReg(NewReg
, UV
);
1505 void LiveDebugVariables::
1506 splitRegister(Register OldReg
, ArrayRef
<Register
> NewRegs
, LiveIntervals
&LIS
) {
1508 static_cast<LDVImpl
*>(pImpl
)->splitRegister(OldReg
, NewRegs
);
1511 void UserValue::rewriteLocations(VirtRegMap
&VRM
, const MachineFunction
&MF
,
1512 const TargetInstrInfo
&TII
,
1513 const TargetRegisterInfo
&TRI
,
1514 SpillOffsetMap
&SpillOffsets
) {
1515 // Build a set of new locations with new numbers so we can coalesce our
1516 // IntervalMap if two vreg intervals collapse to the same physical location.
1517 // Use MapVector instead of SetVector because MapVector::insert returns the
1518 // position of the previously or newly inserted element. The boolean value
1519 // tracks if the location was produced by a spill.
1520 // FIXME: This will be problematic if we ever support direct and indirect
1521 // frame index locations, i.e. expressing both variables in memory and
1522 // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1523 MapVector
<MachineOperand
, std::pair
<bool, unsigned>> NewLocations
;
1524 SmallVector
<unsigned, 4> LocNoMap(locations
.size());
1525 for (unsigned I
= 0, E
= locations
.size(); I
!= E
; ++I
) {
1526 bool Spilled
= false;
1527 unsigned SpillOffset
= 0;
1528 MachineOperand Loc
= locations
[I
];
1529 // Only virtual registers are rewritten.
1530 if (Loc
.isReg() && Loc
.getReg() && Loc
.getReg().isVirtual()) {
1531 Register VirtReg
= Loc
.getReg();
1532 if (VRM
.isAssignedReg(VirtReg
) &&
1533 Register::isPhysicalRegister(VRM
.getPhys(VirtReg
))) {
1534 // This can create a %noreg operand in rare cases when the sub-register
1535 // index is no longer available. That means the user value is in a
1536 // non-existent sub-register, and %noreg is exactly what we want.
1537 Loc
.substPhysReg(VRM
.getPhys(VirtReg
), TRI
);
1538 } else if (VRM
.getStackSlot(VirtReg
) != VirtRegMap::NO_STACK_SLOT
) {
1539 // Retrieve the stack slot offset.
1541 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1542 const TargetRegisterClass
*TRC
= MRI
.getRegClass(VirtReg
);
1543 bool Success
= TII
.getStackSlotRange(TRC
, Loc
.getSubReg(), SpillSize
,
1546 // FIXME: Invalidate the location if the offset couldn't be calculated.
1549 Loc
= MachineOperand::CreateFI(VRM
.getStackSlot(VirtReg
));
1557 // Insert this location if it doesn't already exist and record a mapping
1558 // from the old number to the new number.
1559 auto InsertResult
= NewLocations
.insert({Loc
, {Spilled
, SpillOffset
}});
1560 unsigned NewLocNo
= std::distance(NewLocations
.begin(), InsertResult
.first
);
1561 LocNoMap
[I
] = NewLocNo
;
1564 // Rewrite the locations and record the stack slot offsets for spills.
1566 SpillOffsets
.clear();
1567 for (auto &Pair
: NewLocations
) {
1569 unsigned SpillOffset
;
1570 std::tie(Spilled
, SpillOffset
) = Pair
.second
;
1571 locations
.push_back(Pair
.first
);
1573 unsigned NewLocNo
= std::distance(&*NewLocations
.begin(), &Pair
);
1574 SpillOffsets
[NewLocNo
] = SpillOffset
;
1578 // Update the interval map, but only coalesce left, since intervals to the
1579 // right use the old location numbers. This should merge two contiguous
1580 // DBG_VALUE intervals with different vregs that were allocated to the same
1581 // physical register.
1582 for (LocMap::iterator I
= locInts
.begin(); I
.valid(); ++I
) {
1583 I
.setValueUnchecked(I
.value().remapLocNos(LocNoMap
));
1584 I
.setStart(I
.start());
1588 /// Find an iterator for inserting a DBG_VALUE instruction.
1589 static MachineBasicBlock::iterator
1590 findInsertLocation(MachineBasicBlock
*MBB
, SlotIndex Idx
, LiveIntervals
&LIS
,
1591 BlockSkipInstsMap
&BBSkipInstsMap
) {
1592 SlotIndex Start
= LIS
.getMBBStartIdx(MBB
);
1593 Idx
= Idx
.getBaseIndex();
1595 // Try to find an insert location by going backwards from Idx.
1597 while (!(MI
= LIS
.getInstructionFromIndex(Idx
))) {
1598 // We've reached the beginning of MBB.
1600 // Retrieve the last PHI/Label/Debug location found when calling
1601 // SkipPHIsLabelsAndDebug last time. Start searching from there.
1603 // Note the iterator kept in BBSkipInstsMap is one step back based
1604 // on the iterator returned by SkipPHIsLabelsAndDebug last time.
1605 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(),
1606 // BBSkipInstsMap won't save it. This is to consider the case that
1607 // new instructions may be inserted at the beginning of MBB after
1608 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in
1609 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions
1610 // are inserted at the beginning of the MBB, the iterator in
1611 // BBSkipInstsMap won't point to the beginning of the MBB anymore.
1612 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those
1613 // newly added instructions and that is unwanted.
1614 MachineBasicBlock::iterator BeginIt
;
1615 auto MapIt
= BBSkipInstsMap
.find(MBB
);
1616 if (MapIt
== BBSkipInstsMap
.end())
1617 BeginIt
= MBB
->begin();
1619 BeginIt
= std::next(MapIt
->second
);
1620 auto I
= MBB
->SkipPHIsLabelsAndDebug(BeginIt
);
1622 BBSkipInstsMap
[MBB
] = std::prev(I
);
1625 Idx
= Idx
.getPrevIndex();
1628 // Don't insert anything after the first terminator, though.
1629 return MI
->isTerminator() ? MBB
->getFirstTerminator() :
1630 std::next(MachineBasicBlock::iterator(MI
));
1633 /// Find an iterator for inserting the next DBG_VALUE instruction
1634 /// (or end if no more insert locations found).
1635 static MachineBasicBlock::iterator
1636 findNextInsertLocation(MachineBasicBlock
*MBB
, MachineBasicBlock::iterator I
,
1637 SlotIndex StopIdx
, ArrayRef
<MachineOperand
> LocMOs
,
1638 LiveIntervals
&LIS
, const TargetRegisterInfo
&TRI
) {
1639 SmallVector
<Register
, 4> Regs
;
1640 for (const MachineOperand
&LocMO
: LocMOs
)
1642 Regs
.push_back(LocMO
.getReg());
1644 return MBB
->instr_end();
1646 // Find the next instruction in the MBB that define the register Reg.
1647 while (I
!= MBB
->end() && !I
->isTerminator()) {
1648 if (!LIS
.isNotInMIMap(*I
) &&
1649 SlotIndex::isEarlierEqualInstr(StopIdx
, LIS
.getInstructionIndex(*I
)))
1651 if (any_of(Regs
, [&I
, &TRI
](Register
&Reg
) {
1652 return I
->definesRegister(Reg
, &TRI
);
1654 // The insert location is directly after the instruction/bundle.
1655 return std::next(I
);
1661 void UserValue::insertDebugValue(MachineBasicBlock
*MBB
, SlotIndex StartIdx
,
1662 SlotIndex StopIdx
, DbgVariableValue DbgValue
,
1663 ArrayRef
<bool> LocSpills
,
1664 ArrayRef
<unsigned> SpillOffsets
,
1665 LiveIntervals
&LIS
, const TargetInstrInfo
&TII
,
1666 const TargetRegisterInfo
&TRI
,
1667 BlockSkipInstsMap
&BBSkipInstsMap
) {
1668 SlotIndex MBBEndIdx
= LIS
.getMBBEndIdx(&*MBB
);
1669 // Only search within the current MBB.
1670 StopIdx
= (MBBEndIdx
< StopIdx
) ? MBBEndIdx
: StopIdx
;
1671 MachineBasicBlock::iterator I
=
1672 findInsertLocation(MBB
, StartIdx
, LIS
, BBSkipInstsMap
);
1673 // Undef values don't exist in locations so create new "noreg" register MOs
1674 // for them. See getLocationNo().
1675 SmallVector
<MachineOperand
, 8> MOs
;
1676 if (DbgValue
.isUndef()) {
1677 MOs
.assign(DbgValue
.loc_nos().size(),
1678 MachineOperand::CreateReg(
1679 /* Reg */ 0, /* isDef */ false, /* isImp */ false,
1680 /* isKill */ false, /* isDead */ false,
1681 /* isUndef */ false, /* isEarlyClobber */ false,
1682 /* SubReg */ 0, /* isDebug */ true));
1684 for (unsigned LocNo
: DbgValue
.loc_nos())
1685 MOs
.push_back(locations
[LocNo
]);
1688 ++NumInsertedDebugValues
;
1690 assert(cast
<DILocalVariable
>(Variable
)
1691 ->isValidLocationForIntrinsic(getDebugLoc()) &&
1692 "Expected inlined-at fields to agree");
1694 // If the location was spilled, the new DBG_VALUE will be indirect. If the
1695 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1696 // that the original virtual register was a pointer. Also, add the stack slot
1697 // offset for the spilled register to the expression.
1698 const DIExpression
*Expr
= DbgValue
.getExpression();
1699 bool IsIndirect
= DbgValue
.getWasIndirect();
1700 bool IsList
= DbgValue
.getWasList();
1701 for (unsigned I
= 0, E
= LocSpills
.size(); I
!= E
; ++I
) {
1704 uint8_t DIExprFlags
= DIExpression::ApplyOffset
;
1706 DIExprFlags
|= DIExpression::DerefAfter
;
1707 Expr
= DIExpression::prepend(Expr
, DIExprFlags
, SpillOffsets
[I
]);
1710 SmallVector
<uint64_t, 4> Ops
;
1711 DIExpression::appendOffset(Ops
, SpillOffsets
[I
]);
1712 Ops
.push_back(dwarf::DW_OP_deref
);
1713 Expr
= DIExpression::appendOpsToArg(Expr
, Ops
, I
);
1717 assert((!LocSpills
[I
] || MOs
[I
].isFI()) &&
1718 "a spilled location must be a frame index");
1721 unsigned DbgValueOpcode
=
1722 IsList
? TargetOpcode::DBG_VALUE_LIST
: TargetOpcode::DBG_VALUE
;
1724 BuildMI(*MBB
, I
, getDebugLoc(), TII
.get(DbgValueOpcode
), IsIndirect
, MOs
,
1727 // Continue and insert DBG_VALUES after every redefinition of a register
1728 // associated with the debug value within the range
1729 I
= findNextInsertLocation(MBB
, I
, StopIdx
, MOs
, LIS
, TRI
);
1730 } while (I
!= MBB
->end());
1733 void UserLabel::insertDebugLabel(MachineBasicBlock
*MBB
, SlotIndex Idx
,
1734 LiveIntervals
&LIS
, const TargetInstrInfo
&TII
,
1735 BlockSkipInstsMap
&BBSkipInstsMap
) {
1736 MachineBasicBlock::iterator I
=
1737 findInsertLocation(MBB
, Idx
, LIS
, BBSkipInstsMap
);
1738 ++NumInsertedDebugLabels
;
1739 BuildMI(*MBB
, I
, getDebugLoc(), TII
.get(TargetOpcode::DBG_LABEL
))
1740 .addMetadata(Label
);
1743 void UserValue::emitDebugValues(VirtRegMap
*VRM
, LiveIntervals
&LIS
,
1744 const TargetInstrInfo
&TII
,
1745 const TargetRegisterInfo
&TRI
,
1746 const SpillOffsetMap
&SpillOffsets
,
1747 BlockSkipInstsMap
&BBSkipInstsMap
) {
1748 MachineFunction::iterator MFEnd
= VRM
->getMachineFunction().end();
1750 for (LocMap::const_iterator I
= locInts
.begin(); I
.valid();) {
1751 SlotIndex Start
= I
.start();
1752 SlotIndex Stop
= I
.stop();
1753 DbgVariableValue DbgValue
= I
.value();
1755 SmallVector
<bool> SpilledLocs
;
1756 SmallVector
<unsigned> LocSpillOffsets
;
1757 for (unsigned LocNo
: DbgValue
.loc_nos()) {
1759 !DbgValue
.isUndef() ? SpillOffsets
.find(LocNo
) : SpillOffsets
.end();
1760 bool Spilled
= SpillIt
!= SpillOffsets
.end();
1761 SpilledLocs
.push_back(Spilled
);
1762 LocSpillOffsets
.push_back(Spilled
? SpillIt
->second
: 0);
1765 // If the interval start was trimmed to the lexical scope insert the
1766 // DBG_VALUE at the previous index (otherwise it appears after the
1767 // first instruction in the range).
1768 if (trimmedDefs
.count(Start
))
1769 Start
= Start
.getPrevIndex();
1771 LLVM_DEBUG(auto &dbg
= dbgs(); dbg
<< "\t[" << Start
<< ';' << Stop
<< "):";
1772 DbgValue
.printLocNos(dbg
));
1773 MachineFunction::iterator MBB
= LIS
.getMBBFromIndex(Start
)->getIterator();
1774 SlotIndex MBBEnd
= LIS
.getMBBEndIdx(&*MBB
);
1776 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB
) << '-' << MBBEnd
);
1777 insertDebugValue(&*MBB
, Start
, Stop
, DbgValue
, SpilledLocs
, LocSpillOffsets
,
1778 LIS
, TII
, TRI
, BBSkipInstsMap
);
1779 // This interval may span multiple basic blocks.
1780 // Insert a DBG_VALUE into each one.
1781 while (Stop
> MBBEnd
) {
1782 // Move to the next block.
1786 MBBEnd
= LIS
.getMBBEndIdx(&*MBB
);
1787 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB
) << '-' << MBBEnd
);
1788 insertDebugValue(&*MBB
, Start
, Stop
, DbgValue
, SpilledLocs
,
1789 LocSpillOffsets
, LIS
, TII
, TRI
, BBSkipInstsMap
);
1791 LLVM_DEBUG(dbgs() << '\n');
1799 void UserLabel::emitDebugLabel(LiveIntervals
&LIS
, const TargetInstrInfo
&TII
,
1800 BlockSkipInstsMap
&BBSkipInstsMap
) {
1801 LLVM_DEBUG(dbgs() << "\t" << loc
);
1802 MachineFunction::iterator MBB
= LIS
.getMBBFromIndex(loc
)->getIterator();
1804 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB
));
1805 insertDebugLabel(&*MBB
, loc
, LIS
, TII
, BBSkipInstsMap
);
1807 LLVM_DEBUG(dbgs() << '\n');
1810 void LDVImpl::emitDebugValues(VirtRegMap
*VRM
) {
1811 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1815 BlockSkipInstsMap BBSkipInstsMap
;
1816 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1817 SpillOffsetMap SpillOffsets
;
1818 for (auto &userValue
: userValues
) {
1819 LLVM_DEBUG(userValue
->print(dbgs(), TRI
));
1820 userValue
->rewriteLocations(*VRM
, *MF
, *TII
, *TRI
, SpillOffsets
);
1821 userValue
->emitDebugValues(VRM
, *LIS
, *TII
, *TRI
, SpillOffsets
,
1824 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1825 for (auto &userLabel
: userLabels
) {
1826 LLVM_DEBUG(userLabel
->print(dbgs(), TRI
));
1827 userLabel
->emitDebugLabel(*LIS
, *TII
, BBSkipInstsMap
);
1830 LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n");
1832 auto Slots
= LIS
->getSlotIndexes();
1833 for (auto &It
: PHIValToPos
) {
1834 // For each ex-PHI, identify its physreg location or stack slot, and emit
1835 // a DBG_PHI for it.
1836 unsigned InstNum
= It
.first
;
1837 auto Slot
= It
.second
.SI
;
1838 Register Reg
= It
.second
.Reg
;
1839 unsigned SubReg
= It
.second
.SubReg
;
1841 MachineBasicBlock
*OrigMBB
= Slots
->getMBBFromIndex(Slot
);
1842 if (VRM
->isAssignedReg(Reg
) &&
1843 Register::isPhysicalRegister(VRM
->getPhys(Reg
))) {
1844 unsigned PhysReg
= VRM
->getPhys(Reg
);
1846 PhysReg
= TRI
->getSubReg(PhysReg
, SubReg
);
1848 auto Builder
= BuildMI(*OrigMBB
, OrigMBB
->begin(), DebugLoc(),
1849 TII
->get(TargetOpcode::DBG_PHI
));
1850 Builder
.addReg(PhysReg
);
1851 Builder
.addImm(InstNum
);
1852 } else if (VRM
->getStackSlot(Reg
) != VirtRegMap::NO_STACK_SLOT
) {
1853 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1854 const TargetRegisterClass
*TRC
= MRI
.getRegClass(Reg
);
1855 unsigned SpillSize
, SpillOffset
;
1857 unsigned regSizeInBits
= TRI
->getRegSizeInBits(*TRC
);
1859 regSizeInBits
= TRI
->getSubRegIdxSize(SubReg
);
1861 // Test whether this location is legal with the given subreg. If the
1862 // subregister has a nonzero offset, drop this location, it's too complex
1863 // to describe. (TODO: future work).
1865 TII
->getStackSlotRange(TRC
, SubReg
, SpillSize
, SpillOffset
, *MF
);
1867 if (Success
&& SpillOffset
== 0) {
1868 auto Builder
= BuildMI(*OrigMBB
, OrigMBB
->begin(), DebugLoc(),
1869 TII
->get(TargetOpcode::DBG_PHI
));
1870 Builder
.addFrameIndex(VRM
->getStackSlot(Reg
));
1871 Builder
.addImm(InstNum
);
1872 // Record how large the original value is. The stack slot might be
1873 // merged and altered during optimisation, but we will want to know how
1874 // large the value is, at this DBG_PHI.
1875 Builder
.addImm(regSizeInBits
);
1879 if (SpillOffset
!= 0) {
1880 dbgs() << "DBG_PHI for Vreg " << Reg
<< " subreg " << SubReg
<<
1881 " has nonzero offset\n";
1885 // If there was no mapping for a value ID, it's optimized out. Create no
1886 // DBG_PHI, and any variables using this value will become optimized out.
1888 MF
->DebugPHIPositions
.clear();
1890 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n");
1892 // Re-insert any debug instrs back in the position they were. We must
1893 // re-insert in the same order to ensure that debug instructions don't swap,
1894 // which could re-order assignments. Do so in a batch -- once we find the
1895 // insert position, insert all instructions at the same SlotIdx. They are
1896 // guaranteed to appear in-sequence in StashedDebugInstrs because we insert
1898 for (auto *StashIt
= StashedDebugInstrs
.begin();
1899 StashIt
!= StashedDebugInstrs
.end(); ++StashIt
) {
1900 SlotIndex Idx
= StashIt
->Idx
;
1901 MachineBasicBlock
*MBB
= StashIt
->MBB
;
1902 MachineInstr
*MI
= StashIt
->MI
;
1904 auto EmitInstsHere
= [this, &StashIt
, MBB
, Idx
,
1905 MI
](MachineBasicBlock::iterator InsertPos
) {
1906 // Insert this debug instruction.
1907 MBB
->insert(InsertPos
, MI
);
1909 // Look at subsequent stashed debug instructions: if they're at the same
1910 // index, insert those too.
1911 auto NextItem
= std::next(StashIt
);
1912 while (NextItem
!= StashedDebugInstrs
.end() && NextItem
->Idx
== Idx
) {
1913 assert(NextItem
->MBB
== MBB
&& "Instrs with same slot index should be"
1914 "in the same block");
1915 MBB
->insert(InsertPos
, NextItem
->MI
);
1917 NextItem
= std::next(StashIt
);
1921 // Start block index: find the first non-debug instr in the block, and
1922 // insert before it.
1923 if (Idx
== Slots
->getMBBStartIdx(MBB
)) {
1924 MachineBasicBlock::iterator InsertPos
=
1925 findInsertLocation(MBB
, Idx
, *LIS
, BBSkipInstsMap
);
1926 EmitInstsHere(InsertPos
);
1930 if (MachineInstr
*Pos
= Slots
->getInstructionFromIndex(Idx
)) {
1931 // Insert at the end of any debug instructions.
1932 auto PostDebug
= std::next(Pos
->getIterator());
1933 PostDebug
= skipDebugInstructionsForward(PostDebug
, MBB
->instr_end());
1934 EmitInstsHere(PostDebug
);
1936 // Insert position disappeared; walk forwards through slots until we
1938 SlotIndex End
= Slots
->getMBBEndIdx(MBB
);
1939 for (; Idx
< End
; Idx
= Slots
->getNextNonNullIndex(Idx
)) {
1940 Pos
= Slots
->getInstructionFromIndex(Idx
);
1942 EmitInstsHere(Pos
->getIterator());
1947 // We have reached the end of the block and didn't find anywhere to
1948 // insert! It's not safe to discard any debug instructions; place them
1949 // in front of the first terminator, or in front of end().
1951 auto TermIt
= MBB
->getFirstTerminator();
1952 EmitInstsHere(TermIt
);
1958 BBSkipInstsMap
.clear();
1961 void LiveDebugVariables::emitDebugValues(VirtRegMap
*VRM
) {
1963 static_cast<LDVImpl
*>(pImpl
)->emitDebugValues(VRM
);
1966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1967 LLVM_DUMP_METHOD
void LiveDebugVariables::dump() const {
1969 static_cast<LDVImpl
*>(pImpl
)->print(dbgs());