[docs] Update HowToReleaseLLVM documentation.
[llvm-project.git] / compiler-rt / lib / memprof / memprof_allocator.cpp
blob1e0d05d47a6f8e511a4fee0d863a49234bcce68e
1 //===-- memprof_allocator.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemProfiler, a memory profiler.
11 // Implementation of MemProf's memory allocator, which uses the allocator
12 // from sanitizer_common.
14 //===----------------------------------------------------------------------===//
16 #include "memprof_allocator.h"
17 #include "memprof_mapping.h"
18 #include "memprof_mibmap.h"
19 #include "memprof_rawprofile.h"
20 #include "memprof_stack.h"
21 #include "memprof_thread.h"
22 #include "profile/MemProfData.inc"
23 #include "sanitizer_common/sanitizer_allocator_checks.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_allocator_report.h"
26 #include "sanitizer_common/sanitizer_common.h"
27 #include "sanitizer_common/sanitizer_errno.h"
28 #include "sanitizer_common/sanitizer_file.h"
29 #include "sanitizer_common/sanitizer_flags.h"
30 #include "sanitizer_common/sanitizer_internal_defs.h"
31 #include "sanitizer_common/sanitizer_stackdepot.h"
33 #include <sched.h>
34 #include <time.h>
36 namespace __memprof {
37 namespace {
38 using ::llvm::memprof::MemInfoBlock;
40 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) {
41 u64 p;
43 if (print_terse) {
44 p = M.TotalSize * 100 / M.AllocCount;
45 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100,
46 M.MinSize, M.MaxSize);
47 p = M.TotalAccessCount * 100 / M.AllocCount;
48 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount,
49 M.MaxAccessCount);
50 p = M.TotalLifetime * 100 / M.AllocCount;
51 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime,
52 M.MaxLifetime);
53 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps,
54 M.NumSameAllocCpu, M.NumSameDeallocCpu);
55 } else {
56 p = M.TotalSize * 100 / M.AllocCount;
57 Printf("Memory allocation stack id = %llu\n", id);
58 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n",
59 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize);
60 p = M.TotalAccessCount * 100 / M.AllocCount;
61 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100,
62 p % 100, M.MinAccessCount, M.MaxAccessCount);
63 p = M.TotalLifetime * 100 / M.AllocCount;
64 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100,
65 p % 100, M.MinLifetime, M.MaxLifetime);
66 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
67 "cpu: %u, num same dealloc_cpu: %u\n",
68 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu,
69 M.NumSameDeallocCpu);
72 } // namespace
74 static int GetCpuId(void) {
75 // _memprof_preinit is called via the preinit_array, which subsequently calls
76 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
77 // will seg fault as the address of __vdso_getcpu will be null.
78 if (!memprof_inited)
79 return -1;
80 return sched_getcpu();
83 // Compute the timestamp in ms.
84 static int GetTimestamp(void) {
85 // timespec_get will segfault if called from dl_init
86 if (!memprof_timestamp_inited) {
87 // By returning 0, this will be effectively treated as being
88 // timestamped at memprof init time (when memprof_init_timestamp_s
89 // is initialized).
90 return 0;
92 timespec ts;
93 clock_gettime(CLOCK_REALTIME, &ts);
94 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
97 static MemprofAllocator &get_allocator();
99 // The memory chunk allocated from the underlying allocator looks like this:
100 // H H U U U U U U
101 // H -- ChunkHeader (32 bytes)
102 // U -- user memory.
104 // If there is left padding before the ChunkHeader (due to use of memalign),
105 // we store a magic value in the first uptr word of the memory block and
106 // store the address of ChunkHeader in the next uptr.
107 // M B L L L L L L L L L H H U U U U U U
108 // | ^
109 // ---------------------|
110 // M -- magic value kAllocBegMagic
111 // B -- address of ChunkHeader pointing to the first 'H'
113 constexpr uptr kMaxAllowedMallocBits = 40;
115 // Should be no more than 32-bytes
116 struct ChunkHeader {
117 // 1-st 4 bytes.
118 u32 alloc_context_id;
119 // 2-nd 4 bytes
120 u32 cpu_id;
121 // 3-rd 4 bytes
122 u32 timestamp_ms;
123 // 4-th 4 bytes
124 // Note only 1 bit is needed for this flag if we need space in the future for
125 // more fields.
126 u32 from_memalign;
127 // 5-th and 6-th 4 bytes
128 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
129 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for
130 // more fields.
131 atomic_uint64_t user_requested_size;
132 // 23 bits available
133 // 7-th and 8-th 4 bytes
134 u64 data_type_id; // TODO: hash of type name
137 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
138 COMPILER_CHECK(kChunkHeaderSize == 32);
140 struct MemprofChunk : ChunkHeader {
141 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
142 uptr UsedSize() {
143 return atomic_load(&user_requested_size, memory_order_relaxed);
145 void *AllocBeg() {
146 if (from_memalign)
147 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
148 return reinterpret_cast<void *>(this);
152 class LargeChunkHeader {
153 static constexpr uptr kAllocBegMagic =
154 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
155 atomic_uintptr_t magic;
156 MemprofChunk *chunk_header;
158 public:
159 MemprofChunk *Get() const {
160 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
161 ? chunk_header
162 : nullptr;
165 void Set(MemprofChunk *p) {
166 if (p) {
167 chunk_header = p;
168 atomic_store(&magic, kAllocBegMagic, memory_order_release);
169 return;
172 uptr old = kAllocBegMagic;
173 if (!atomic_compare_exchange_strong(&magic, &old, 0,
174 memory_order_release)) {
175 CHECK_EQ(old, kAllocBegMagic);
180 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
181 // Since memprof's mapping is compacting, the shadow chunk may be
182 // not page-aligned, so we only flush the page-aligned portion.
183 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
186 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
187 // Statistics.
188 MemprofStats &thread_stats = GetCurrentThreadStats();
189 thread_stats.mmaps++;
190 thread_stats.mmaped += size;
192 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
193 // We are about to unmap a chunk of user memory.
194 // Mark the corresponding shadow memory as not needed.
195 FlushUnneededMemProfShadowMemory(p, size);
196 // Statistics.
197 MemprofStats &thread_stats = GetCurrentThreadStats();
198 thread_stats.munmaps++;
199 thread_stats.munmaped += size;
202 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
203 CHECK(ms);
204 return &ms->allocator_cache;
207 // Accumulates the access count from the shadow for the given pointer and size.
208 u64 GetShadowCount(uptr p, u32 size) {
209 u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
210 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
211 u64 count = 0;
212 for (; shadow <= shadow_end; shadow++)
213 count += *shadow;
214 return count;
217 // Clears the shadow counters (when memory is allocated).
218 void ClearShadow(uptr addr, uptr size) {
219 CHECK(AddrIsAlignedByGranularity(addr));
220 CHECK(AddrIsInMem(addr));
221 CHECK(AddrIsAlignedByGranularity(addr + size));
222 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
223 CHECK(REAL(memset));
224 uptr shadow_beg = MEM_TO_SHADOW(addr);
225 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
226 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
227 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
228 } else {
229 uptr page_size = GetPageSizeCached();
230 uptr page_beg = RoundUpTo(shadow_beg, page_size);
231 uptr page_end = RoundDownTo(shadow_end, page_size);
233 if (page_beg >= page_end) {
234 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
235 } else {
236 if (page_beg != shadow_beg) {
237 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
239 if (page_end != shadow_end) {
240 REAL(memset)((void *)page_end, 0, shadow_end - page_end);
242 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
247 struct Allocator {
248 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
250 MemprofAllocator allocator;
251 StaticSpinMutex fallback_mutex;
252 AllocatorCache fallback_allocator_cache;
254 uptr max_user_defined_malloc_size;
256 // Holds the mapping of stack ids to MemInfoBlocks.
257 MIBMapTy MIBMap;
259 atomic_uint8_t destructing;
260 atomic_uint8_t constructed;
261 bool print_text;
263 // ------------------- Initialization ------------------------
264 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) {
265 atomic_store_relaxed(&destructing, 0);
266 atomic_store_relaxed(&constructed, 1);
269 ~Allocator() {
270 atomic_store_relaxed(&destructing, 1);
271 FinishAndWrite();
274 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value,
275 void *Arg) {
276 SpinMutexLock l(&Value->mutex);
277 Print(Value->mib, Key, bool(Arg));
280 void FinishAndWrite() {
281 if (print_text && common_flags()->print_module_map)
282 DumpProcessMap();
284 allocator.ForceLock();
286 InsertLiveBlocks();
287 if (print_text) {
288 if (!flags()->print_terse)
289 Printf("Recorded MIBs (incl. live on exit):\n");
290 MIBMap.ForEach(PrintCallback,
291 reinterpret_cast<void *>(flags()->print_terse));
292 StackDepotPrintAll();
293 } else {
294 // Serialize the contents to a raw profile. Format documented in
295 // memprof_rawprofile.h.
296 char *Buffer = nullptr;
298 __sanitizer::ListOfModules List;
299 List.init();
300 ArrayRef<LoadedModule> Modules(List.begin(), List.end());
301 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer);
302 CHECK(Buffer && BytesSerialized && "could not serialize to buffer");
303 report_file.Write(Buffer, BytesSerialized);
306 allocator.ForceUnlock();
309 // Inserts any blocks which have been allocated but not yet deallocated.
310 void InsertLiveBlocks() {
311 allocator.ForEachChunk(
312 [](uptr chunk, void *alloc) {
313 u64 user_requested_size;
314 Allocator *A = (Allocator *)alloc;
315 MemprofChunk *m =
316 A->GetMemprofChunk((void *)chunk, user_requested_size);
317 if (!m)
318 return;
319 uptr user_beg = ((uptr)m) + kChunkHeaderSize;
320 u64 c = GetShadowCount(user_beg, user_requested_size);
321 long curtime = GetTimestamp();
322 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
323 m->cpu_id, GetCpuId());
324 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap);
326 this);
329 void InitLinkerInitialized() {
330 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
331 allocator.InitLinkerInitialized(
332 common_flags()->allocator_release_to_os_interval_ms);
333 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
334 ? common_flags()->max_allocation_size_mb
335 << 20
336 : kMaxAllowedMallocSize;
339 // -------------------- Allocation/Deallocation routines ---------------
340 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
341 AllocType alloc_type) {
342 if (UNLIKELY(!memprof_inited))
343 MemprofInitFromRtl();
344 if (UNLIKELY(IsRssLimitExceeded())) {
345 if (AllocatorMayReturnNull())
346 return nullptr;
347 ReportRssLimitExceeded(stack);
349 CHECK(stack);
350 const uptr min_alignment = MEMPROF_ALIGNMENT;
351 if (alignment < min_alignment)
352 alignment = min_alignment;
353 if (size == 0) {
354 // We'd be happy to avoid allocating memory for zero-size requests, but
355 // some programs/tests depend on this behavior and assume that malloc
356 // would not return NULL even for zero-size allocations. Moreover, it
357 // looks like operator new should never return NULL, and results of
358 // consecutive "new" calls must be different even if the allocated size
359 // is zero.
360 size = 1;
362 CHECK(IsPowerOfTwo(alignment));
363 uptr rounded_size = RoundUpTo(size, alignment);
364 uptr needed_size = rounded_size + kChunkHeaderSize;
365 if (alignment > min_alignment)
366 needed_size += alignment;
367 CHECK(IsAligned(needed_size, min_alignment));
368 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
369 size > max_user_defined_malloc_size) {
370 if (AllocatorMayReturnNull()) {
371 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size);
372 return nullptr;
374 uptr malloc_limit =
375 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
376 ReportAllocationSizeTooBig(size, malloc_limit, stack);
379 MemprofThread *t = GetCurrentThread();
380 void *allocated;
381 if (t) {
382 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
383 allocated = allocator.Allocate(cache, needed_size, 8);
384 } else {
385 SpinMutexLock l(&fallback_mutex);
386 AllocatorCache *cache = &fallback_allocator_cache;
387 allocated = allocator.Allocate(cache, needed_size, 8);
389 if (UNLIKELY(!allocated)) {
390 SetAllocatorOutOfMemory();
391 if (AllocatorMayReturnNull())
392 return nullptr;
393 ReportOutOfMemory(size, stack);
396 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
397 uptr alloc_end = alloc_beg + needed_size;
398 uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
399 uptr user_beg = beg_plus_header;
400 if (!IsAligned(user_beg, alignment))
401 user_beg = RoundUpTo(user_beg, alignment);
402 uptr user_end = user_beg + size;
403 CHECK_LE(user_end, alloc_end);
404 uptr chunk_beg = user_beg - kChunkHeaderSize;
405 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
406 m->from_memalign = alloc_beg != chunk_beg;
407 CHECK(size);
409 m->cpu_id = GetCpuId();
410 m->timestamp_ms = GetTimestamp();
411 m->alloc_context_id = StackDepotPut(*stack);
413 uptr size_rounded_down_to_granularity =
414 RoundDownTo(size, SHADOW_GRANULARITY);
415 if (size_rounded_down_to_granularity)
416 ClearShadow(user_beg, size_rounded_down_to_granularity);
418 MemprofStats &thread_stats = GetCurrentThreadStats();
419 thread_stats.mallocs++;
420 thread_stats.malloced += size;
421 thread_stats.malloced_overhead += needed_size - size;
422 if (needed_size > SizeClassMap::kMaxSize)
423 thread_stats.malloc_large++;
424 else
425 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
427 void *res = reinterpret_cast<void *>(user_beg);
428 atomic_store(&m->user_requested_size, size, memory_order_release);
429 if (alloc_beg != chunk_beg) {
430 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
431 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
433 RunMallocHooks(res, size);
434 return res;
437 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
438 BufferedStackTrace *stack, AllocType alloc_type) {
439 uptr p = reinterpret_cast<uptr>(ptr);
440 if (p == 0)
441 return;
443 RunFreeHooks(ptr);
445 uptr chunk_beg = p - kChunkHeaderSize;
446 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
448 u64 user_requested_size =
449 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
450 if (memprof_inited && atomic_load_relaxed(&constructed) &&
451 !atomic_load_relaxed(&destructing)) {
452 u64 c = GetShadowCount(p, user_requested_size);
453 long curtime = GetTimestamp();
455 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
456 m->cpu_id, GetCpuId());
457 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap);
460 MemprofStats &thread_stats = GetCurrentThreadStats();
461 thread_stats.frees++;
462 thread_stats.freed += user_requested_size;
464 void *alloc_beg = m->AllocBeg();
465 if (alloc_beg != m) {
466 // Clear the magic value, as allocator internals may overwrite the
467 // contents of deallocated chunk, confusing GetMemprofChunk lookup.
468 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
471 MemprofThread *t = GetCurrentThread();
472 if (t) {
473 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
474 allocator.Deallocate(cache, alloc_beg);
475 } else {
476 SpinMutexLock l(&fallback_mutex);
477 AllocatorCache *cache = &fallback_allocator_cache;
478 allocator.Deallocate(cache, alloc_beg);
482 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
483 CHECK(old_ptr && new_size);
484 uptr p = reinterpret_cast<uptr>(old_ptr);
485 uptr chunk_beg = p - kChunkHeaderSize;
486 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
488 MemprofStats &thread_stats = GetCurrentThreadStats();
489 thread_stats.reallocs++;
490 thread_stats.realloced += new_size;
492 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
493 if (new_ptr) {
494 CHECK_NE(REAL(memcpy), nullptr);
495 uptr memcpy_size = Min(new_size, m->UsedSize());
496 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
497 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
499 return new_ptr;
502 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
503 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
504 if (AllocatorMayReturnNull())
505 return nullptr;
506 ReportCallocOverflow(nmemb, size, stack);
508 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
509 // If the memory comes from the secondary allocator no need to clear it
510 // as it comes directly from mmap.
511 if (ptr && allocator.FromPrimary(ptr))
512 REAL(memset)(ptr, 0, nmemb * size);
513 return ptr;
516 void CommitBack(MemprofThreadLocalMallocStorage *ms,
517 BufferedStackTrace *stack) {
518 AllocatorCache *ac = GetAllocatorCache(ms);
519 allocator.SwallowCache(ac);
522 // -------------------------- Chunk lookup ----------------------
524 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
525 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
526 if (!alloc_beg)
527 return nullptr;
528 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
529 if (!p) {
530 if (!allocator.FromPrimary(alloc_beg))
531 return nullptr;
532 p = reinterpret_cast<MemprofChunk *>(alloc_beg);
534 // The size is reset to 0 on deallocation (and a min of 1 on
535 // allocation).
536 user_requested_size =
537 atomic_load(&p->user_requested_size, memory_order_acquire);
538 if (user_requested_size)
539 return p;
540 return nullptr;
543 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
544 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
545 return GetMemprofChunk(alloc_beg, user_requested_size);
548 uptr AllocationSize(uptr p) {
549 u64 user_requested_size;
550 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
551 if (!m)
552 return 0;
553 if (m->Beg() != p)
554 return 0;
555 return user_requested_size;
558 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); }
560 void PrintStats() { allocator.PrintStats(); }
562 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
563 allocator.ForceLock();
564 fallback_mutex.Lock();
567 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
568 fallback_mutex.Unlock();
569 allocator.ForceUnlock();
573 static Allocator instance(LINKER_INITIALIZED);
575 static MemprofAllocator &get_allocator() { return instance.allocator; }
577 void InitializeAllocator() { instance.InitLinkerInitialized(); }
579 void MemprofThreadLocalMallocStorage::CommitBack() {
580 GET_STACK_TRACE_MALLOC;
581 instance.CommitBack(this, &stack);
584 void PrintInternalAllocatorStats() { instance.PrintStats(); }
586 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
587 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
590 void memprof_delete(void *ptr, uptr size, uptr alignment,
591 BufferedStackTrace *stack, AllocType alloc_type) {
592 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
595 void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
596 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
599 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
600 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
603 void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
604 BufferedStackTrace *stack) {
605 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
606 errno = errno_ENOMEM;
607 if (AllocatorMayReturnNull())
608 return nullptr;
609 ReportReallocArrayOverflow(nmemb, size, stack);
611 return memprof_realloc(p, nmemb * size, stack);
614 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
615 if (!p)
616 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
617 if (size == 0) {
618 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
619 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
620 return nullptr;
622 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
623 size = 1;
625 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
628 void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
629 return SetErrnoOnNull(
630 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
633 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
634 uptr PageSize = GetPageSizeCached();
635 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
636 errno = errno_ENOMEM;
637 if (AllocatorMayReturnNull())
638 return nullptr;
639 ReportPvallocOverflow(size, stack);
641 // pvalloc(0) should allocate one page.
642 size = size ? RoundUpTo(size, PageSize) : PageSize;
643 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
646 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
647 AllocType alloc_type) {
648 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
649 errno = errno_EINVAL;
650 if (AllocatorMayReturnNull())
651 return nullptr;
652 ReportInvalidAllocationAlignment(alignment, stack);
654 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
657 void *memprof_aligned_alloc(uptr alignment, uptr size,
658 BufferedStackTrace *stack) {
659 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
660 errno = errno_EINVAL;
661 if (AllocatorMayReturnNull())
662 return nullptr;
663 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
665 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
668 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
669 BufferedStackTrace *stack) {
670 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
671 if (AllocatorMayReturnNull())
672 return errno_EINVAL;
673 ReportInvalidPosixMemalignAlignment(alignment, stack);
675 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
676 if (UNLIKELY(!ptr))
677 // OOM error is already taken care of by Allocate.
678 return errno_ENOMEM;
679 CHECK(IsAligned((uptr)ptr, alignment));
680 *memptr = ptr;
681 return 0;
684 static const void *memprof_malloc_begin(const void *p) {
685 u64 user_requested_size;
686 MemprofChunk *m =
687 instance.GetMemprofChunkByAddr((uptr)p, user_requested_size);
688 if (!m)
689 return nullptr;
690 if (user_requested_size == 0)
691 return nullptr;
693 return (const void *)m->Beg();
696 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
697 if (!ptr)
698 return 0;
699 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
700 return usable_size;
703 } // namespace __memprof
705 // ---------------------- Interface ---------------- {{{1
706 using namespace __memprof;
708 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
710 int __sanitizer_get_ownership(const void *p) {
711 return memprof_malloc_usable_size(p, 0, 0) != 0;
714 const void *__sanitizer_get_allocated_begin(const void *p) {
715 return memprof_malloc_begin(p);
718 uptr __sanitizer_get_allocated_size(const void *p) {
719 return memprof_malloc_usable_size(p, 0, 0);
722 int __memprof_profile_dump() {
723 instance.FinishAndWrite();
724 // In the future we may want to return non-zero if there are any errors
725 // detected during the dumping process.
726 return 0;