1 //===-- interception_win.cpp ------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Windows-specific interception methods.
13 // This file is implementing several hooking techniques to intercept calls
14 // to functions. The hooks are dynamically installed by modifying the assembly
17 // The hooking techniques are making assumptions on the way the code is
18 // generated and are safe under these assumptions.
20 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
21 // arbitrary branching on the whole memory space, the notion of trampoline
22 // region is used. A trampoline region is a memory space withing 2G boundary
23 // where it is safe to add custom assembly code to build 64-bit jumps.
30 // The Detour hooking technique is assuming the presence of an header with
31 // padding and an overridable 2-bytes nop instruction (mov edi, edi). The
32 // nop instruction can safely be replaced by a 2-bytes jump without any need
33 // to save the instruction. A jump to the target is encoded in the function
34 // header and the nop instruction is replaced by a short jump to the header.
36 // head: 5 x nop head: jmp <hook>
37 // func: mov edi, edi --> func: jmp short <head>
40 // This technique is only implemented on 32-bit architecture.
41 // Most of the time, Windows API are hookable with the detour technique.
45 // The redirect jump is applicable when the first instruction is a direct
46 // jump. The instruction is replaced by jump to the hook.
48 // func: jmp <label> --> func: jmp <hook>
50 // On an 64-bit architecture, a trampoline is inserted.
52 // func: jmp <label> --> func: jmp <tramp>
56 // tramp: jmp QWORD [addr]
57 // addr: .bytes <hook>
59 // Note: <real> is equivalent to <label>.
63 // The HotPatch hooking is assuming the presence of an header with padding
64 // and a first instruction with at least 2-bytes.
66 // The reason to enforce the 2-bytes limitation is to provide the minimal
67 // space to encode a short jump. HotPatch technique is only rewriting one
68 // instruction to avoid breaking a sequence of instructions containing a
71 // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
72 // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
73 // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
75 // head: 5 x nop head: jmp <hook>
76 // func: <instr> --> func: jmp short <head>
83 // On an 64-bit architecture:
85 // head: 6 x nop head: jmp QWORD [addr1]
86 // func: <instr> --> func: jmp short <head>
90 // addr1: .bytes <hook>
93 // addr2: .bytes <body>
97 // The Trampoline hooking technique is the most aggressive one. It is
98 // assuming that there is a sequence of instructions that can be safely
99 // replaced by a jump (enough room and no incoming branches).
101 // Unfortunately, these assumptions can't be safely presumed and code may
102 // be broken after hooking.
104 // func: <instr> --> func: jmp <hook>
113 // On an 64-bit architecture:
115 // func: <instr> --> func: jmp QWORD [addr1]
120 // addr1: .bytes <hook>
124 // addr2: .bytes <body>
125 //===----------------------------------------------------------------------===//
127 #include "interception.h"
129 #if SANITIZER_WINDOWS
130 #include "sanitizer_common/sanitizer_platform.h"
131 #define WIN32_LEAN_AND_MEAN
134 namespace __interception
{
136 static const int kAddressLength
= FIRST_32_SECOND_64(4, 8);
137 static const int kJumpInstructionLength
= 5;
138 static const int kShortJumpInstructionLength
= 2;
139 UNUSED
static const int kIndirectJumpInstructionLength
= 6;
140 static const int kBranchLength
=
141 FIRST_32_SECOND_64(kJumpInstructionLength
, kIndirectJumpInstructionLength
);
142 static const int kDirectBranchLength
= kBranchLength
+ kAddressLength
;
144 # if defined(_MSC_VER)
145 # define INTERCEPTION_FORMAT(f, a)
147 # define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a)))
150 static void (*ErrorReportCallback
)(const char *format
, ...)
151 INTERCEPTION_FORMAT(1, 2);
153 void SetErrorReportCallback(void (*callback
)(const char *format
, ...)) {
154 ErrorReportCallback
= callback
;
157 # define ReportError(...) \
159 if (ErrorReportCallback) \
160 ErrorReportCallback(__VA_ARGS__); \
163 static void InterceptionFailed() {
164 ReportError("interception_win: failed due to an unrecoverable error.\n");
165 // This acts like an abort when no debugger is attached. According to an old
166 // comment, calling abort() leads to an infinite recursion in CheckFailed.
170 static bool DistanceIsWithin2Gig(uptr from
, uptr target
) {
171 #if SANITIZER_WINDOWS64
173 return target
- from
<= (uptr
)0x7FFFFFFFU
;
175 return from
- target
<= (uptr
)0x80000000U
;
177 // In a 32-bit address space, the address calculation will wrap, so this check
183 static uptr
GetMmapGranularity() {
186 return si
.dwAllocationGranularity
;
189 UNUSED
static uptr
RoundUpTo(uptr size
, uptr boundary
) {
190 return (size
+ boundary
- 1) & ~(boundary
- 1);
193 // FIXME: internal_str* and internal_mem* functions should be moved from the
194 // ASan sources into interception/.
196 static size_t _strlen(const char *str
) {
198 while (*p
!= '\0') ++p
;
202 static char* _strchr(char* str
, char c
) {
211 static void _memset(void *p
, int value
, size_t sz
) {
212 for (size_t i
= 0; i
< sz
; ++i
)
213 ((char*)p
)[i
] = (char)value
;
216 static void _memcpy(void *dst
, void *src
, size_t sz
) {
217 char *dst_c
= (char*)dst
,
219 for (size_t i
= 0; i
< sz
; ++i
)
223 static bool ChangeMemoryProtection(
224 uptr address
, uptr size
, DWORD
*old_protection
) {
225 return ::VirtualProtect((void*)address
, size
,
226 PAGE_EXECUTE_READWRITE
,
227 old_protection
) != FALSE
;
230 static bool RestoreMemoryProtection(
231 uptr address
, uptr size
, DWORD old_protection
) {
233 return ::VirtualProtect((void*)address
, size
,
238 static bool IsMemoryPadding(uptr address
, uptr size
) {
239 u8
* function
= (u8
*)address
;
240 for (size_t i
= 0; i
< size
; ++i
)
241 if (function
[i
] != 0x90 && function
[i
] != 0xCC)
246 static const u8 kHintNop8Bytes
[] = {
247 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
251 static bool FunctionHasPrefix(uptr address
, const T
&pattern
) {
252 u8
* function
= (u8
*)address
- sizeof(pattern
);
253 for (size_t i
= 0; i
< sizeof(pattern
); ++i
)
254 if (function
[i
] != pattern
[i
])
259 static bool FunctionHasPadding(uptr address
, uptr size
) {
260 if (IsMemoryPadding(address
- size
, size
))
262 if (size
<= sizeof(kHintNop8Bytes
) &&
263 FunctionHasPrefix(address
, kHintNop8Bytes
))
268 static void WritePadding(uptr from
, uptr size
) {
269 _memset((void*)from
, 0xCC, (size_t)size
);
272 static void WriteJumpInstruction(uptr from
, uptr target
) {
273 if (!DistanceIsWithin2Gig(from
+ kJumpInstructionLength
, target
)) {
275 "interception_win: cannot write jmp further than 2GB away, from %p to "
277 (void *)from
, (void *)target
);
278 InterceptionFailed();
280 ptrdiff_t offset
= target
- from
- kJumpInstructionLength
;
282 *(u32
*)(from
+ 1) = offset
;
285 static void WriteShortJumpInstruction(uptr from
, uptr target
) {
286 sptr offset
= target
- from
- kShortJumpInstructionLength
;
287 if (offset
< -128 || offset
> 127)
288 InterceptionFailed();
290 *(u8
*)(from
+ 1) = (u8
)offset
;
293 #if SANITIZER_WINDOWS64
294 static void WriteIndirectJumpInstruction(uptr from
, uptr indirect_target
) {
295 // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
297 // The offset is the distance from then end of the jump instruction to the
298 // memory location containing the targeted address. The displacement is still
299 // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
300 int offset
= indirect_target
- from
- kIndirectJumpInstructionLength
;
301 if (!DistanceIsWithin2Gig(from
+ kIndirectJumpInstructionLength
,
304 "interception_win: cannot write indirect jmp with target further than "
305 "2GB away, from %p to %p.\n",
306 (void *)from
, (void *)indirect_target
);
307 InterceptionFailed();
309 *(u16
*)from
= 0x25FF;
310 *(u32
*)(from
+ 2) = offset
;
314 static void WriteBranch(
315 uptr from
, uptr indirect_target
, uptr target
) {
316 #if SANITIZER_WINDOWS64
317 WriteIndirectJumpInstruction(from
, indirect_target
);
318 *(u64
*)indirect_target
= target
;
320 (void)indirect_target
;
321 WriteJumpInstruction(from
, target
);
325 static void WriteDirectBranch(uptr from
, uptr target
) {
326 #if SANITIZER_WINDOWS64
327 // Emit an indirect jump through immediately following bytes:
328 // jmp [rip + kBranchLength]
330 WriteBranch(from
, from
+ kBranchLength
, target
);
332 WriteJumpInstruction(from
, target
);
336 struct TrampolineMemoryRegion
{
342 UNUSED
static const uptr kTrampolineScanLimitRange
= 1 << 31; // 2 gig
343 static const int kMaxTrampolineRegion
= 1024;
344 static TrampolineMemoryRegion TrampolineRegions
[kMaxTrampolineRegion
];
346 static void *AllocateTrampolineRegion(uptr image_address
, size_t granularity
) {
347 #if SANITIZER_WINDOWS64
348 uptr address
= image_address
;
350 while (scanned
< kTrampolineScanLimitRange
) {
351 MEMORY_BASIC_INFORMATION info
;
352 if (!::VirtualQuery((void*)address
, &info
, sizeof(info
)))
355 // Check whether a region can be allocated at |address|.
356 if (info
.State
== MEM_FREE
&& info
.RegionSize
>= granularity
) {
357 void *page
= ::VirtualAlloc((void*)RoundUpTo(address
, granularity
),
359 MEM_RESERVE
| MEM_COMMIT
,
360 PAGE_EXECUTE_READWRITE
);
364 // Move to the next region.
365 address
= (uptr
)info
.BaseAddress
+ info
.RegionSize
;
366 scanned
+= info
.RegionSize
;
370 return ::VirtualAlloc(nullptr,
372 MEM_RESERVE
| MEM_COMMIT
,
373 PAGE_EXECUTE_READWRITE
);
377 // Used by unittests to release mapped memory space.
378 void TestOnlyReleaseTrampolineRegions() {
379 for (size_t bucket
= 0; bucket
< kMaxTrampolineRegion
; ++bucket
) {
380 TrampolineMemoryRegion
*current
= &TrampolineRegions
[bucket
];
381 if (current
->content
== 0)
383 ::VirtualFree((void*)current
->content
, 0, MEM_RELEASE
);
384 current
->content
= 0;
388 static uptr
AllocateMemoryForTrampoline(uptr image_address
, size_t size
) {
389 // Find a region within 2G with enough space to allocate |size| bytes.
390 TrampolineMemoryRegion
*region
= nullptr;
391 for (size_t bucket
= 0; bucket
< kMaxTrampolineRegion
; ++bucket
) {
392 TrampolineMemoryRegion
* current
= &TrampolineRegions
[bucket
];
393 if (current
->content
== 0) {
394 // No valid region found, allocate a new region.
395 size_t bucket_size
= GetMmapGranularity();
396 void *content
= AllocateTrampolineRegion(image_address
, bucket_size
);
397 if (content
== nullptr)
400 current
->content
= (uptr
)content
;
401 current
->allocated_size
= 0;
402 current
->max_size
= bucket_size
;
405 } else if (current
->max_size
- current
->allocated_size
> size
) {
406 #if SANITIZER_WINDOWS64
407 // In 64-bits, the memory space must be allocated within 2G boundary.
408 uptr next_address
= current
->content
+ current
->allocated_size
;
409 if (next_address
< image_address
||
410 next_address
- image_address
>= 0x7FFF0000)
413 // The space can be allocated in the current region.
419 // Failed to find a region.
420 if (region
== nullptr)
423 // Allocate the space in the current region.
424 uptr allocated_space
= region
->content
+ region
->allocated_size
;
425 region
->allocated_size
+= size
;
426 WritePadding(allocated_space
, size
);
428 return allocated_space
;
431 // The following prologues cannot be patched because of the short jump
432 // jumping to the patching region.
434 // Short jump patterns below are only for x86_64.
435 # if SANITIZER_WINDOWS_x64
436 // ntdll!wcslen in Win11
437 // 488bc1 mov rax,rcx
438 // 0fb710 movzx edx,word ptr [rax]
439 // 4883c002 add rax,2
442 static const u8 kPrologueWithShortJump1
[] = {
443 0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83,
444 0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4,
447 // ntdll!strrchr in Win11
449 // 8a01 mov al,byte ptr [rcx]
453 static const u8 kPrologueWithShortJump2
[] = {
454 0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1,
455 0x84, 0xc0, 0x75, 0xf7,
459 // Returns 0 on error.
460 static size_t GetInstructionSize(uptr address
, size_t* rel_offset
= nullptr) {
462 // An ARM64 instruction is 4 bytes long.
466 # if SANITIZER_WINDOWS_x64
467 if (memcmp((u8
*)address
, kPrologueWithShortJump1
,
468 sizeof(kPrologueWithShortJump1
)) == 0 ||
469 memcmp((u8
*)address
, kPrologueWithShortJump2
,
470 sizeof(kPrologueWithShortJump2
)) == 0) {
475 switch (*(u64
*)address
) {
476 case 0x90909090909006EB: // stub: jmp over 6 x nop.
480 switch (*(u8
*)address
) {
481 case 0x90: // 90 : nop
484 case 0x50: // push eax / rax
485 case 0x51: // push ecx / rcx
486 case 0x52: // push edx / rdx
487 case 0x53: // push ebx / rbx
488 case 0x54: // push esp / rsp
489 case 0x55: // push ebp / rbp
490 case 0x56: // push esi / rsi
491 case 0x57: // push edi / rdi
492 case 0x5D: // pop ebp / rbp
495 case 0x6A: // 6A XX = push XX
498 case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX
499 case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX
502 // Cannot overwrite control-instruction. Return 0 to indicate failure.
503 case 0xE9: // E9 XX XX XX XX : jmp <label>
504 case 0xE8: // E8 XX XX XX XX : call <func>
505 case 0xC3: // C3 : ret
506 case 0xEB: // EB XX : jmp XX (short jump)
507 case 0x70: // 7Y YY : jy XX (short conditional jump)
526 switch (*(u16
*)(address
)) {
527 case 0x018A: // 8A 01 : mov al, byte ptr [ecx]
528 case 0xFF8B: // 8B FF : mov edi, edi
529 case 0xEC8B: // 8B EC : mov ebp, esp
530 case 0xc889: // 89 C8 : mov eax, ecx
531 case 0xE589: // 89 E5 : mov ebp, esp
532 case 0xC18B: // 8B C1 : mov eax, ecx
533 case 0xC033: // 33 C0 : xor eax, eax
534 case 0xC933: // 33 C9 : xor ecx, ecx
535 case 0xD233: // 33 D2 : xor edx, edx
538 // Cannot overwrite control-instruction. Return 0 to indicate failure.
539 case 0x25FF: // FF 25 XX XX XX XX : jmp [XXXXXXXX]
543 switch (0x00FFFFFF & *(u32
*)address
) {
544 case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
548 # if SANITIZER_WINDOWS_x64
549 switch (*(u8
*)address
) {
550 case 0xA1: // A1 XX XX XX XX XX XX XX XX :
551 // movabs eax, dword ptr ds:[XXXXXXXX]
555 const u8 next_byte
= *(u8
*)(address
+ 1);
556 const u8 mod
= next_byte
>> 6;
557 const u8 rm
= next_byte
& 7;
558 if (mod
== 1 && rm
== 4)
559 return 5; // 83 ModR/M SIB Disp8 Imm8
560 // add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8
563 switch (*(u16
*)address
) {
564 case 0x5040: // push rax
565 case 0x5140: // push rcx
566 case 0x5240: // push rdx
567 case 0x5340: // push rbx
568 case 0x5440: // push rsp
569 case 0x5540: // push rbp
570 case 0x5640: // push rsi
571 case 0x5740: // push rdi
572 case 0x5441: // push r12
573 case 0x5541: // push r13
574 case 0x5641: // push r14
575 case 0x5741: // push r15
576 case 0x9066: // Two-byte NOP
577 case 0xc084: // test al, al
578 case 0x018a: // mov al, byte ptr [rcx]
581 case 0x058A: // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX]
582 case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
588 switch (0x00FFFFFF & *(u32
*)address
) {
589 case 0xe58948: // 48 8b c4 : mov rbp, rsp
590 case 0xc18b48: // 48 8b c1 : mov rax, rcx
591 case 0xc48b48: // 48 8b c4 : mov rax, rsp
592 case 0xd9f748: // 48 f7 d9 : neg rcx
593 case 0xd12b48: // 48 2b d1 : sub rdx, rcx
594 case 0x07c1f6: // f6 c1 07 : test cl, 0x7
595 case 0xc98548: // 48 85 C9 : test rcx, rcx
596 case 0xd28548: // 48 85 d2 : test rdx, rdx
597 case 0xc0854d: // 4d 85 c0 : test r8, r8
598 case 0xc2b60f: // 0f b6 c2 : movzx eax, dl
599 case 0xc03345: // 45 33 c0 : xor r8d, r8d
600 case 0xc93345: // 45 33 c9 : xor r9d, r9d
601 case 0xdb3345: // 45 33 DB : xor r11d, r11d
602 case 0xd98b4c: // 4c 8b d9 : mov r11, rcx
603 case 0xd28b4c: // 4c 8b d2 : mov r10, rdx
604 case 0xc98b4c: // 4C 8B C9 : mov r9, rcx
605 case 0xc18b4c: // 4C 8B C1 : mov r8, rcx
606 case 0xd2b60f: // 0f b6 d2 : movzx edx, dl
607 case 0xca2b48: // 48 2b ca : sub rcx, rdx
608 case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax]
609 case 0xc00b4d: // 3d 0b c0 : or r8, r8
610 case 0xc08b41: // 41 8b c0 : mov eax, r8d
611 case 0xd18b48: // 48 8b d1 : mov rdx, rcx
612 case 0xdc8b4c: // 4c 8b dc : mov r11, rsp
613 case 0xd18b4c: // 4c 8b d1 : mov r10, rcx
614 case 0xE0E483: // 83 E4 E0 : and esp, 0xFFFFFFE0
617 case 0xec8348: // 48 83 ec XX : sub rsp, XX
618 case 0xf88349: // 49 83 f8 XX : cmp r8, XX
619 case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
622 case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
625 case 0x058b48: // 48 8b 05 XX XX XX XX :
626 // mov rax, QWORD PTR [rip + XXXXXXXX]
627 case 0x25ff48: // 48 ff 25 XX XX XX XX :
628 // rex.W jmp QWORD PTR [rip + XXXXXXXX]
629 case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX]
630 // Instructions having offset relative to 'rip' need offset adjustment.
635 case 0x2444c7: // C7 44 24 XX YY YY YY YY
636 // mov dword ptr [rsp + XX], YYYYYYYY
640 switch (*(u32
*)(address
)) {
641 case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
642 case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
643 case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
644 case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
645 case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi
646 case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
647 case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
648 case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
649 case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
651 case 0x24648348: // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
657 switch (*(u8
*)address
) {
658 case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX]
661 switch (*(u16
*)address
) {
662 case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX]
663 case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
664 case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX]
665 case 0xEC83: // 83 EC XX : sub esp, XX
666 case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX]
668 case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
669 case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
671 case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
673 case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
677 switch (0x00FFFFFF & *(u32
*)address
) {
678 case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
679 case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
680 case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
681 case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
682 case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX]
683 case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX]
684 case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
685 case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
689 switch (*(u32
*)address
) {
690 case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
695 // Unknown instruction! This might happen when we add a new interceptor, use
696 // a new compiler version, or if Windows changed how some functions are
697 // compiled. In either case, we print the address and 8 bytes of instructions
698 // to notify the user about the error and to help identify the unknown
699 // instruction. Don't treat this as a fatal error, though we can break the
700 // debugger if one has been attached.
701 u8
*bytes
= (u8
*)address
;
703 "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x "
705 (void *)address
, bytes
[0], bytes
[1], bytes
[2], bytes
[3], bytes
[4],
706 bytes
[5], bytes
[6], bytes
[7]);
707 if (::IsDebuggerPresent())
712 // Returns 0 on error.
713 static size_t RoundUpToInstrBoundary(size_t size
, uptr address
) {
715 while (cursor
< size
) {
716 size_t instruction_size
= GetInstructionSize(address
+ cursor
);
717 if (!instruction_size
)
719 cursor
+= instruction_size
;
724 static bool CopyInstructions(uptr to
, uptr from
, size_t size
) {
726 while (cursor
!= size
) {
727 size_t rel_offset
= 0;
728 size_t instruction_size
= GetInstructionSize(from
+ cursor
, &rel_offset
);
729 if (!instruction_size
)
731 _memcpy((void *)(to
+ cursor
), (void *)(from
+ cursor
),
732 (size_t)instruction_size
);
734 # if SANITIZER_WINDOWS64
735 // we want to make sure that the new relative offset still fits in 32-bits
736 // this will be untrue if relocated_offset \notin [-2**31, 2**31)
737 s64 delta
= to
- from
;
738 s64 relocated_offset
= *(s32
*)(to
+ cursor
+ rel_offset
) - delta
;
739 if (-0x8000'0000ll
> relocated_offset
|| relocated_offset
> 0x7FFF'FFFFll
)
742 // on 32-bit, the relative offset will always be correct
743 s32 delta
= to
- from
;
744 s32 relocated_offset
= *(s32
*)(to
+ cursor
+ rel_offset
) - delta
;
746 *(s32
*)(to
+ cursor
+ rel_offset
) = relocated_offset
;
748 cursor
+= instruction_size
;
754 #if !SANITIZER_WINDOWS64
755 bool OverrideFunctionWithDetour(
756 uptr old_func
, uptr new_func
, uptr
*orig_old_func
) {
757 const int kDetourHeaderLen
= 5;
758 const u16 kDetourInstruction
= 0xFF8B;
760 uptr header
= (uptr
)old_func
- kDetourHeaderLen
;
761 uptr patch_length
= kDetourHeaderLen
+ kShortJumpInstructionLength
;
763 // Validate that the function is hookable.
764 if (*(u16
*)old_func
!= kDetourInstruction
||
765 !IsMemoryPadding(header
, kDetourHeaderLen
))
768 // Change memory protection to writable.
769 DWORD protection
= 0;
770 if (!ChangeMemoryProtection(header
, patch_length
, &protection
))
773 // Write a relative jump to the redirected function.
774 WriteJumpInstruction(header
, new_func
);
776 // Write the short jump to the function prefix.
777 WriteShortJumpInstruction(old_func
, header
);
779 // Restore previous memory protection.
780 if (!RestoreMemoryProtection(header
, patch_length
, protection
))
784 *orig_old_func
= old_func
+ kShortJumpInstructionLength
;
790 bool OverrideFunctionWithRedirectJump(
791 uptr old_func
, uptr new_func
, uptr
*orig_old_func
) {
792 // Check whether the first instruction is a relative jump.
793 if (*(u8
*)old_func
!= 0xE9)
797 sptr relative_offset
= *(s32
*)(old_func
+ 1);
798 uptr absolute_target
= old_func
+ relative_offset
+ kJumpInstructionLength
;
799 *orig_old_func
= absolute_target
;
802 #if SANITIZER_WINDOWS64
803 // If needed, get memory space for a trampoline jump.
804 uptr trampoline
= AllocateMemoryForTrampoline(old_func
, kDirectBranchLength
);
807 WriteDirectBranch(trampoline
, new_func
);
810 // Change memory protection to writable.
811 DWORD protection
= 0;
812 if (!ChangeMemoryProtection(old_func
, kJumpInstructionLength
, &protection
))
815 // Write a relative jump to the redirected function.
816 WriteJumpInstruction(old_func
, FIRST_32_SECOND_64(new_func
, trampoline
));
818 // Restore previous memory protection.
819 if (!RestoreMemoryProtection(old_func
, kJumpInstructionLength
, protection
))
825 bool OverrideFunctionWithHotPatch(
826 uptr old_func
, uptr new_func
, uptr
*orig_old_func
) {
827 const int kHotPatchHeaderLen
= kBranchLength
;
829 uptr header
= (uptr
)old_func
- kHotPatchHeaderLen
;
830 uptr patch_length
= kHotPatchHeaderLen
+ kShortJumpInstructionLength
;
832 // Validate that the function is hot patchable.
833 size_t instruction_size
= GetInstructionSize(old_func
);
834 if (instruction_size
< kShortJumpInstructionLength
||
835 !FunctionHasPadding(old_func
, kHotPatchHeaderLen
))
839 // Put the needed instructions into the trampoline bytes.
840 uptr trampoline_length
= instruction_size
+ kDirectBranchLength
;
841 uptr trampoline
= AllocateMemoryForTrampoline(old_func
, trampoline_length
);
844 if (!CopyInstructions(trampoline
, old_func
, instruction_size
))
846 WriteDirectBranch(trampoline
+ instruction_size
,
847 old_func
+ instruction_size
);
848 *orig_old_func
= trampoline
;
851 // If needed, get memory space for indirect address.
852 uptr indirect_address
= 0;
853 #if SANITIZER_WINDOWS64
854 indirect_address
= AllocateMemoryForTrampoline(old_func
, kAddressLength
);
855 if (!indirect_address
)
859 // Change memory protection to writable.
860 DWORD protection
= 0;
861 if (!ChangeMemoryProtection(header
, patch_length
, &protection
))
864 // Write jumps to the redirected function.
865 WriteBranch(header
, indirect_address
, new_func
);
866 WriteShortJumpInstruction(old_func
, header
);
868 // Restore previous memory protection.
869 if (!RestoreMemoryProtection(header
, patch_length
, protection
))
875 bool OverrideFunctionWithTrampoline(
876 uptr old_func
, uptr new_func
, uptr
*orig_old_func
) {
878 size_t instructions_length
= kBranchLength
;
879 size_t padding_length
= 0;
880 uptr indirect_address
= 0;
883 // Find out the number of bytes of the instructions we need to copy
884 // to the trampoline.
885 instructions_length
= RoundUpToInstrBoundary(kBranchLength
, old_func
);
886 if (!instructions_length
)
889 // Put the needed instructions into the trampoline bytes.
890 uptr trampoline_length
= instructions_length
+ kDirectBranchLength
;
891 uptr trampoline
= AllocateMemoryForTrampoline(old_func
, trampoline_length
);
894 if (!CopyInstructions(trampoline
, old_func
, instructions_length
))
896 WriteDirectBranch(trampoline
+ instructions_length
,
897 old_func
+ instructions_length
);
898 *orig_old_func
= trampoline
;
901 #if SANITIZER_WINDOWS64
902 // Check if the targeted address can be encoded in the function padding.
903 // Otherwise, allocate it in the trampoline region.
904 if (IsMemoryPadding(old_func
- kAddressLength
, kAddressLength
)) {
905 indirect_address
= old_func
- kAddressLength
;
906 padding_length
= kAddressLength
;
908 indirect_address
= AllocateMemoryForTrampoline(old_func
, kAddressLength
);
909 if (!indirect_address
)
914 // Change memory protection to writable.
915 uptr patch_address
= old_func
- padding_length
;
916 uptr patch_length
= instructions_length
+ padding_length
;
917 DWORD protection
= 0;
918 if (!ChangeMemoryProtection(patch_address
, patch_length
, &protection
))
921 // Patch the original function.
922 WriteBranch(old_func
, indirect_address
, new_func
);
924 // Restore previous memory protection.
925 if (!RestoreMemoryProtection(patch_address
, patch_length
, protection
))
931 bool OverrideFunction(
932 uptr old_func
, uptr new_func
, uptr
*orig_old_func
) {
933 #if !SANITIZER_WINDOWS64
934 if (OverrideFunctionWithDetour(old_func
, new_func
, orig_old_func
))
937 if (OverrideFunctionWithRedirectJump(old_func
, new_func
, orig_old_func
))
939 if (OverrideFunctionWithHotPatch(old_func
, new_func
, orig_old_func
))
941 if (OverrideFunctionWithTrampoline(old_func
, new_func
, orig_old_func
))
946 static void **InterestingDLLsAvailable() {
947 static const char *InterestingDLLs
[] = {
949 "msvcr100.dll", // VS2010
950 "msvcr110.dll", // VS2012
951 "msvcr120.dll", // VS2013
952 "vcruntime140.dll", // VS2015
953 "ucrtbase.dll", // Universal CRT
954 #if (defined(__MINGW32__) && defined(__i386__))
955 "libc++.dll", // libc++
956 "libunwind.dll", // libunwind
958 // NTDLL should go last as it exports some functions that we should
959 // override in the CRT [presumably only used internally].
961 static void *result
[ARRAY_SIZE(InterestingDLLs
)] = { 0 };
963 for (size_t i
= 0, j
= 0; InterestingDLLs
[i
]; ++i
) {
964 if (HMODULE h
= GetModuleHandleA(InterestingDLLs
[i
]))
965 result
[j
++] = (void *)h
;
972 // Utility for reading loaded PE images.
973 template <typename T
> class RVAPtr
{
975 RVAPtr(void *module
, uptr rva
)
976 : ptr_(reinterpret_cast<T
*>(reinterpret_cast<char *>(module
) + rva
)) {}
977 operator T
*() { return ptr_
; }
978 T
*operator->() { return ptr_
; }
979 T
*operator++() { return ++ptr_
; }
986 // Internal implementation of GetProcAddress. At least since Windows 8,
987 // GetProcAddress appears to initialize DLLs before returning function pointers
988 // into them. This is problematic for the sanitizers, because they typically
989 // want to intercept malloc *before* MSVCRT initializes. Our internal
990 // implementation walks the export list manually without doing initialization.
991 uptr
InternalGetProcAddress(void *module
, const char *func_name
) {
992 // Check that the module header is full and present.
993 RVAPtr
<IMAGE_DOS_HEADER
> dos_stub(module
, 0);
994 RVAPtr
<IMAGE_NT_HEADERS
> headers(module
, dos_stub
->e_lfanew
);
995 if (!module
|| dos_stub
->e_magic
!= IMAGE_DOS_SIGNATURE
|| // "MZ"
996 headers
->Signature
!= IMAGE_NT_SIGNATURE
|| // "PE\0\0"
997 headers
->FileHeader
.SizeOfOptionalHeader
<
998 sizeof(IMAGE_OPTIONAL_HEADER
)) {
1002 IMAGE_DATA_DIRECTORY
*export_directory
=
1003 &headers
->OptionalHeader
.DataDirectory
[IMAGE_DIRECTORY_ENTRY_EXPORT
];
1004 if (export_directory
->Size
== 0)
1006 RVAPtr
<IMAGE_EXPORT_DIRECTORY
> exports(module
,
1007 export_directory
->VirtualAddress
);
1008 RVAPtr
<DWORD
> functions(module
, exports
->AddressOfFunctions
);
1009 RVAPtr
<DWORD
> names(module
, exports
->AddressOfNames
);
1010 RVAPtr
<WORD
> ordinals(module
, exports
->AddressOfNameOrdinals
);
1012 for (DWORD i
= 0; i
< exports
->NumberOfNames
; i
++) {
1013 RVAPtr
<char> name(module
, names
[i
]);
1014 if (!strcmp(func_name
, name
)) {
1015 DWORD index
= ordinals
[i
];
1016 RVAPtr
<char> func(module
, functions
[index
]);
1018 // Handle forwarded functions.
1019 DWORD offset
= functions
[index
];
1020 if (offset
>= export_directory
->VirtualAddress
&&
1021 offset
< export_directory
->VirtualAddress
+ export_directory
->Size
) {
1022 // An entry for a forwarded function is a string with the following
1023 // format: "<module> . <function_name>" that is stored into the
1024 // exported directory.
1025 char function_name
[256];
1026 size_t funtion_name_length
= _strlen(func
);
1027 if (funtion_name_length
>= sizeof(function_name
) - 1)
1028 InterceptionFailed();
1030 _memcpy(function_name
, func
, funtion_name_length
);
1031 function_name
[funtion_name_length
] = '\0';
1032 char* separator
= _strchr(function_name
, '.');
1034 InterceptionFailed();
1037 void* redirected_module
= GetModuleHandleA(function_name
);
1038 if (!redirected_module
)
1039 InterceptionFailed();
1040 return InternalGetProcAddress(redirected_module
, separator
+ 1);
1043 return (uptr
)(char *)func
;
1050 bool OverrideFunction(
1051 const char *func_name
, uptr new_func
, uptr
*orig_old_func
) {
1052 bool hooked
= false;
1053 void **DLLs
= InterestingDLLsAvailable();
1054 for (size_t i
= 0; DLLs
[i
]; ++i
) {
1055 uptr func_addr
= InternalGetProcAddress(DLLs
[i
], func_name
);
1057 OverrideFunction(func_addr
, new_func
, orig_old_func
)) {
1064 bool OverrideImportedFunction(const char *module_to_patch
,
1065 const char *imported_module
,
1066 const char *function_name
, uptr new_function
,
1067 uptr
*orig_old_func
) {
1068 HMODULE module
= GetModuleHandleA(module_to_patch
);
1072 // Check that the module header is full and present.
1073 RVAPtr
<IMAGE_DOS_HEADER
> dos_stub(module
, 0);
1074 RVAPtr
<IMAGE_NT_HEADERS
> headers(module
, dos_stub
->e_lfanew
);
1075 if (!module
|| dos_stub
->e_magic
!= IMAGE_DOS_SIGNATURE
|| // "MZ"
1076 headers
->Signature
!= IMAGE_NT_SIGNATURE
|| // "PE\0\0"
1077 headers
->FileHeader
.SizeOfOptionalHeader
<
1078 sizeof(IMAGE_OPTIONAL_HEADER
)) {
1082 IMAGE_DATA_DIRECTORY
*import_directory
=
1083 &headers
->OptionalHeader
.DataDirectory
[IMAGE_DIRECTORY_ENTRY_IMPORT
];
1085 // Iterate the list of imported DLLs. FirstThunk will be null for the last
1087 RVAPtr
<IMAGE_IMPORT_DESCRIPTOR
> imports(module
,
1088 import_directory
->VirtualAddress
);
1089 for (; imports
->FirstThunk
!= 0; ++imports
) {
1090 RVAPtr
<const char> modname(module
, imports
->Name
);
1091 if (_stricmp(&*modname
, imported_module
) == 0)
1094 if (imports
->FirstThunk
== 0)
1097 // We have two parallel arrays: the import address table (IAT) and the table
1098 // of names. They start out containing the same data, but the loader rewrites
1099 // the IAT to hold imported addresses and leaves the name table in
1100 // OriginalFirstThunk alone.
1101 RVAPtr
<IMAGE_THUNK_DATA
> name_table(module
, imports
->OriginalFirstThunk
);
1102 RVAPtr
<IMAGE_THUNK_DATA
> iat(module
, imports
->FirstThunk
);
1103 for (; name_table
->u1
.Ordinal
!= 0; ++name_table
, ++iat
) {
1104 if (!IMAGE_SNAP_BY_ORDINAL(name_table
->u1
.Ordinal
)) {
1105 RVAPtr
<IMAGE_IMPORT_BY_NAME
> import_by_name(
1106 module
, name_table
->u1
.ForwarderString
);
1107 const char *funcname
= &import_by_name
->Name
[0];
1108 if (strcmp(funcname
, function_name
) == 0)
1112 if (name_table
->u1
.Ordinal
== 0)
1115 // Now we have the correct IAT entry. Do the swap. We have to make the page
1116 // read/write first.
1118 *orig_old_func
= iat
->u1
.AddressOfData
;
1119 DWORD old_prot
, unused_prot
;
1120 if (!VirtualProtect(&iat
->u1
.AddressOfData
, 4, PAGE_EXECUTE_READWRITE
,
1123 iat
->u1
.AddressOfData
= new_function
;
1124 if (!VirtualProtect(&iat
->u1
.AddressOfData
, 4, old_prot
, &unused_prot
))
1125 return false; // Not clear if this failure bothers us.
1129 } // namespace __interception
1131 #endif // SANITIZER_APPLE