[Clang][SME2] Enable multi-vector loads & stores for SME2 (#75821)
[llvm-project.git] / compiler-rt / lib / lsan / lsan_allocator.cpp
blob12d579a9385b17f8ffc8a642ac015d849e50fb21
1 //=-- lsan_allocator.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // See lsan_allocator.h for details.
12 //===----------------------------------------------------------------------===//
14 #include "lsan_allocator.h"
16 #include "sanitizer_common/sanitizer_allocator.h"
17 #include "sanitizer_common/sanitizer_allocator_checks.h"
18 #include "sanitizer_common/sanitizer_allocator_interface.h"
19 #include "sanitizer_common/sanitizer_allocator_report.h"
20 #include "sanitizer_common/sanitizer_errno.h"
21 #include "sanitizer_common/sanitizer_internal_defs.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "lsan_common.h"
26 extern "C" void *memset(void *ptr, int value, uptr num);
28 namespace __lsan {
29 #if defined(__i386__) || defined(__arm__)
30 static const uptr kMaxAllowedMallocSize = 1ULL << 30;
31 #elif defined(__mips64) || defined(__aarch64__)
32 static const uptr kMaxAllowedMallocSize = 4ULL << 30;
33 #else
34 static const uptr kMaxAllowedMallocSize = 8ULL << 30;
35 #endif
37 static Allocator allocator;
39 static uptr max_malloc_size;
41 void InitializeAllocator() {
42 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
43 allocator.InitLinkerInitialized(
44 common_flags()->allocator_release_to_os_interval_ms);
45 if (common_flags()->max_allocation_size_mb)
46 max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
47 kMaxAllowedMallocSize);
48 else
49 max_malloc_size = kMaxAllowedMallocSize;
52 void AllocatorThreadStart() { allocator.InitCache(GetAllocatorCache()); }
54 void AllocatorThreadFinish() {
55 allocator.SwallowCache(GetAllocatorCache());
56 allocator.DestroyCache(GetAllocatorCache());
59 static ChunkMetadata *Metadata(const void *p) {
60 return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
63 static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
64 if (!p) return;
65 ChunkMetadata *m = Metadata(p);
66 CHECK(m);
67 m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
68 m->stack_trace_id = StackDepotPut(stack);
69 m->requested_size = size;
70 atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
71 RunMallocHooks(p, size);
74 static void RegisterDeallocation(void *p) {
75 if (!p) return;
76 ChunkMetadata *m = Metadata(p);
77 CHECK(m);
78 RunFreeHooks(p);
79 atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
82 static void *ReportAllocationSizeTooBig(uptr size, const StackTrace &stack) {
83 if (AllocatorMayReturnNull()) {
84 Report("WARNING: LeakSanitizer failed to allocate 0x%zx bytes\n", size);
85 return nullptr;
87 ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
90 void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
91 bool cleared) {
92 if (size == 0)
93 size = 1;
94 if (size > max_malloc_size)
95 return ReportAllocationSizeTooBig(size, stack);
96 if (UNLIKELY(IsRssLimitExceeded())) {
97 if (AllocatorMayReturnNull())
98 return nullptr;
99 ReportRssLimitExceeded(&stack);
101 void *p = allocator.Allocate(GetAllocatorCache(), size, alignment);
102 if (UNLIKELY(!p)) {
103 SetAllocatorOutOfMemory();
104 if (AllocatorMayReturnNull())
105 return nullptr;
106 ReportOutOfMemory(size, &stack);
108 // Do not rely on the allocator to clear the memory (it's slow).
109 if (cleared && allocator.FromPrimary(p))
110 memset(p, 0, size);
111 RegisterAllocation(stack, p, size);
112 return p;
115 static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) {
116 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
117 if (AllocatorMayReturnNull())
118 return nullptr;
119 ReportCallocOverflow(nmemb, size, &stack);
121 size *= nmemb;
122 return Allocate(stack, size, 1, true);
125 void Deallocate(void *p) {
126 RegisterDeallocation(p);
127 allocator.Deallocate(GetAllocatorCache(), p);
130 void *Reallocate(const StackTrace &stack, void *p, uptr new_size,
131 uptr alignment) {
132 if (new_size > max_malloc_size) {
133 ReportAllocationSizeTooBig(new_size, stack);
134 return nullptr;
136 RegisterDeallocation(p);
137 void *new_p =
138 allocator.Reallocate(GetAllocatorCache(), p, new_size, alignment);
139 if (new_p)
140 RegisterAllocation(stack, new_p, new_size);
141 else if (new_size != 0)
142 RegisterAllocation(stack, p, new_size);
143 return new_p;
146 void GetAllocatorCacheRange(uptr *begin, uptr *end) {
147 *begin = (uptr)GetAllocatorCache();
148 *end = *begin + sizeof(AllocatorCache);
151 static const void *GetMallocBegin(const void *p) {
152 if (!p)
153 return nullptr;
154 void *beg = allocator.GetBlockBegin(p);
155 if (!beg)
156 return nullptr;
157 ChunkMetadata *m = Metadata(beg);
158 if (!m)
159 return nullptr;
160 if (!m->allocated)
161 return nullptr;
162 if (m->requested_size == 0)
163 return nullptr;
164 return (const void *)beg;
167 uptr GetMallocUsableSize(const void *p) {
168 if (!p)
169 return 0;
170 ChunkMetadata *m = Metadata(p);
171 if (!m) return 0;
172 return m->requested_size;
175 uptr GetMallocUsableSizeFast(const void *p) {
176 return Metadata(p)->requested_size;
179 int lsan_posix_memalign(void **memptr, uptr alignment, uptr size,
180 const StackTrace &stack) {
181 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
182 if (AllocatorMayReturnNull())
183 return errno_EINVAL;
184 ReportInvalidPosixMemalignAlignment(alignment, &stack);
186 void *ptr = Allocate(stack, size, alignment, kAlwaysClearMemory);
187 if (UNLIKELY(!ptr))
188 // OOM error is already taken care of by Allocate.
189 return errno_ENOMEM;
190 CHECK(IsAligned((uptr)ptr, alignment));
191 *memptr = ptr;
192 return 0;
195 void *lsan_aligned_alloc(uptr alignment, uptr size, const StackTrace &stack) {
196 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
197 errno = errno_EINVAL;
198 if (AllocatorMayReturnNull())
199 return nullptr;
200 ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
202 return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
205 void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) {
206 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
207 errno = errno_EINVAL;
208 if (AllocatorMayReturnNull())
209 return nullptr;
210 ReportInvalidAllocationAlignment(alignment, &stack);
212 return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
215 void *lsan_malloc(uptr size, const StackTrace &stack) {
216 return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory));
219 void lsan_free(void *p) {
220 Deallocate(p);
223 void *lsan_realloc(void *p, uptr size, const StackTrace &stack) {
224 return SetErrnoOnNull(Reallocate(stack, p, size, 1));
227 void *lsan_reallocarray(void *ptr, uptr nmemb, uptr size,
228 const StackTrace &stack) {
229 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
230 errno = errno_ENOMEM;
231 if (AllocatorMayReturnNull())
232 return nullptr;
233 ReportReallocArrayOverflow(nmemb, size, &stack);
235 return lsan_realloc(ptr, nmemb * size, stack);
238 void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) {
239 return SetErrnoOnNull(Calloc(nmemb, size, stack));
242 void *lsan_valloc(uptr size, const StackTrace &stack) {
243 return SetErrnoOnNull(
244 Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory));
247 void *lsan_pvalloc(uptr size, const StackTrace &stack) {
248 uptr PageSize = GetPageSizeCached();
249 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
250 errno = errno_ENOMEM;
251 if (AllocatorMayReturnNull())
252 return nullptr;
253 ReportPvallocOverflow(size, &stack);
255 // pvalloc(0) should allocate one page.
256 size = size ? RoundUpTo(size, PageSize) : PageSize;
257 return SetErrnoOnNull(Allocate(stack, size, PageSize, kAlwaysClearMemory));
260 uptr lsan_mz_size(const void *p) {
261 return GetMallocUsableSize(p);
264 ///// Interface to the common LSan module. /////
266 void LockAllocator() {
267 allocator.ForceLock();
270 void UnlockAllocator() {
271 allocator.ForceUnlock();
274 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
275 *begin = (uptr)&allocator;
276 *end = *begin + sizeof(allocator);
279 uptr PointsIntoChunk(void* p) {
280 uptr addr = reinterpret_cast<uptr>(p);
281 uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
282 if (!chunk) return 0;
283 // LargeMmapAllocator considers pointers to the meta-region of a chunk to be
284 // valid, but we don't want that.
285 if (addr < chunk) return 0;
286 ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
287 CHECK(m);
288 if (!m->allocated)
289 return 0;
290 if (addr < chunk + m->requested_size)
291 return chunk;
292 if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr))
293 return chunk;
294 return 0;
297 uptr GetUserBegin(uptr chunk) {
298 return chunk;
301 uptr GetUserAddr(uptr chunk) {
302 return chunk;
305 LsanMetadata::LsanMetadata(uptr chunk) {
306 metadata_ = Metadata(reinterpret_cast<void *>(chunk));
307 CHECK(metadata_);
310 bool LsanMetadata::allocated() const {
311 return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated;
314 ChunkTag LsanMetadata::tag() const {
315 return reinterpret_cast<ChunkMetadata *>(metadata_)->tag;
318 void LsanMetadata::set_tag(ChunkTag value) {
319 reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value;
322 uptr LsanMetadata::requested_size() const {
323 return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size;
326 u32 LsanMetadata::stack_trace_id() const {
327 return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
330 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
331 allocator.ForEachChunk(callback, arg);
334 IgnoreObjectResult IgnoreObject(const void *p) {
335 void *chunk = allocator.GetBlockBegin(p);
336 if (!chunk || p < chunk) return kIgnoreObjectInvalid;
337 ChunkMetadata *m = Metadata(chunk);
338 CHECK(m);
339 if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) {
340 if (m->tag == kIgnored)
341 return kIgnoreObjectAlreadyIgnored;
342 m->tag = kIgnored;
343 return kIgnoreObjectSuccess;
344 } else {
345 return kIgnoreObjectInvalid;
349 } // namespace __lsan
351 using namespace __lsan;
353 extern "C" {
354 SANITIZER_INTERFACE_ATTRIBUTE
355 uptr __sanitizer_get_current_allocated_bytes() {
356 uptr stats[AllocatorStatCount];
357 allocator.GetStats(stats);
358 return stats[AllocatorStatAllocated];
361 SANITIZER_INTERFACE_ATTRIBUTE
362 uptr __sanitizer_get_heap_size() {
363 uptr stats[AllocatorStatCount];
364 allocator.GetStats(stats);
365 return stats[AllocatorStatMapped];
368 SANITIZER_INTERFACE_ATTRIBUTE
369 uptr __sanitizer_get_free_bytes() { return 1; }
371 SANITIZER_INTERFACE_ATTRIBUTE
372 uptr __sanitizer_get_unmapped_bytes() { return 0; }
374 SANITIZER_INTERFACE_ATTRIBUTE
375 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
377 SANITIZER_INTERFACE_ATTRIBUTE
378 int __sanitizer_get_ownership(const void *p) {
379 return GetMallocBegin(p) != nullptr;
382 SANITIZER_INTERFACE_ATTRIBUTE
383 const void * __sanitizer_get_allocated_begin(const void *p) {
384 return GetMallocBegin(p);
387 SANITIZER_INTERFACE_ATTRIBUTE
388 uptr __sanitizer_get_allocated_size(const void *p) {
389 return GetMallocUsableSize(p);
392 SANITIZER_INTERFACE_ATTRIBUTE
393 uptr __sanitizer_get_allocated_size_fast(const void *p) {
394 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
395 uptr ret = GetMallocUsableSizeFast(p);
396 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
397 return ret;
400 SANITIZER_INTERFACE_ATTRIBUTE
401 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
403 } // extern "C"