1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "Basic/SDNodeProperties.h"
10 #include "Common/CodeGenDAGPatterns.h"
11 #include "Common/CodeGenInstruction.h"
12 #include "Common/CodeGenRegisters.h"
13 #include "Common/CodeGenTarget.h"
14 #include "Common/DAGISelMatcher.h"
15 #include "Common/InfoByHwMode.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
23 /// getRegisterValueType - Look up and return the ValueType of the specified
24 /// register. If the register is a member of multiple register classes, they
25 /// must all have the same type.
26 static MVT::SimpleValueType
getRegisterValueType(const Record
*R
,
27 const CodeGenTarget
&T
) {
29 MVT::SimpleValueType VT
= MVT::Other
;
30 const CodeGenRegister
*Reg
= T
.getRegBank().getReg(R
);
32 for (const auto &RC
: T
.getRegBank().getRegClasses()) {
33 if (!RC
.contains(Reg
))
38 const ValueTypeByHwMode
&VVT
= RC
.getValueTypeNum(0);
39 assert(VVT
.isSimple());
40 VT
= VVT
.getSimple().SimpleTy
;
45 // If this occurs in multiple register classes, they all have to agree.
46 const ValueTypeByHwMode
&VVT
= RC
.getValueTypeNum(0);
47 assert(VVT
.isSimple() && VVT
.getSimple().SimpleTy
== VT
&&
48 "ValueType mismatch between register classes for this register");
56 const PatternToMatch
&Pattern
;
57 const CodeGenDAGPatterns
&CGP
;
59 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
60 /// out with all of the types removed. This allows us to insert type checks
61 /// as we scan the tree.
62 TreePatternNodePtr PatWithNoTypes
;
64 /// VariableMap - A map from variable names ('$dst') to the recorded operand
65 /// number that they were captured as. These are biased by 1 to make
67 StringMap
<unsigned> VariableMap
;
69 /// This maintains the recorded operand number that OPC_CheckComplexPattern
70 /// drops each sub-operand into. We don't want to insert these into
71 /// VariableMap because that leads to identity checking if they are
72 /// encountered multiple times. Biased by 1 like VariableMap for
74 StringMap
<unsigned> NamedComplexPatternOperands
;
76 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
77 /// the RecordedNodes array, this keeps track of which slot will be next to
79 unsigned NextRecordedOperandNo
;
81 /// MatchedChainNodes - This maintains the position in the recorded nodes
82 /// array of all of the recorded input nodes that have chains.
83 SmallVector
<unsigned, 2> MatchedChainNodes
;
85 /// MatchedComplexPatterns - This maintains a list of all of the
86 /// ComplexPatterns that we need to check. The second element of each pair
87 /// is the recorded operand number of the input node.
88 SmallVector
<std::pair
<const TreePatternNode
*, unsigned>, 2>
89 MatchedComplexPatterns
;
91 /// PhysRegInputs - List list has an entry for each explicitly specified
92 /// physreg input to the pattern. The first elt is the Register node, the
93 /// second is the recorded slot number the input pattern match saved it in.
94 SmallVector
<std::pair
<const Record
*, unsigned>, 2> PhysRegInputs
;
96 /// Matcher - This is the top level of the generated matcher, the result.
99 /// CurPredicate - As we emit matcher nodes, this points to the latest check
100 /// which should have future checks stuck into its Next position.
101 Matcher
*CurPredicate
;
104 MatcherGen(const PatternToMatch
&pattern
, const CodeGenDAGPatterns
&cgp
);
106 bool EmitMatcherCode(unsigned Variant
);
107 void EmitResultCode();
109 Matcher
*GetMatcher() const { return TheMatcher
; }
112 void AddMatcher(Matcher
*NewNode
);
113 void InferPossibleTypes();
115 // Matcher Generation.
116 void EmitMatchCode(const TreePatternNode
&N
, TreePatternNode
&NodeNoTypes
);
117 void EmitLeafMatchCode(const TreePatternNode
&N
);
118 void EmitOperatorMatchCode(const TreePatternNode
&N
,
119 TreePatternNode
&NodeNoTypes
);
121 /// If this is the first time a node with unique identifier Name has been
122 /// seen, record it. Otherwise, emit a check to make sure this is the same
123 /// node. Returns true if this is the first encounter.
124 bool recordUniqueNode(ArrayRef
<std::string
> Names
);
126 // Result Code Generation.
127 unsigned getNamedArgumentSlot(StringRef Name
) {
128 unsigned VarMapEntry
= VariableMap
[Name
];
129 assert(VarMapEntry
!= 0 &&
130 "Variable referenced but not defined and not caught earlier!");
131 return VarMapEntry
- 1;
134 void EmitResultOperand(const TreePatternNode
&N
,
135 SmallVectorImpl
<unsigned> &ResultOps
);
136 void EmitResultOfNamedOperand(const TreePatternNode
&N
,
137 SmallVectorImpl
<unsigned> &ResultOps
);
138 void EmitResultLeafAsOperand(const TreePatternNode
&N
,
139 SmallVectorImpl
<unsigned> &ResultOps
);
140 void EmitResultInstructionAsOperand(const TreePatternNode
&N
,
141 SmallVectorImpl
<unsigned> &ResultOps
);
142 void EmitResultSDNodeXFormAsOperand(const TreePatternNode
&N
,
143 SmallVectorImpl
<unsigned> &ResultOps
);
146 } // end anonymous namespace
148 MatcherGen::MatcherGen(const PatternToMatch
&pattern
,
149 const CodeGenDAGPatterns
&cgp
)
150 : Pattern(pattern
), CGP(cgp
), NextRecordedOperandNo(0), TheMatcher(nullptr),
151 CurPredicate(nullptr) {
152 // We need to produce the matcher tree for the patterns source pattern. To
153 // do this we need to match the structure as well as the types. To do the
154 // type matching, we want to figure out the fewest number of type checks we
155 // need to emit. For example, if there is only one integer type supported
156 // by a target, there should be no type comparisons at all for integer
159 // To figure out the fewest number of type checks needed, clone the pattern,
160 // remove the types, then perform type inference on the pattern as a whole.
161 // If there are unresolved types, emit an explicit check for those types,
162 // apply the type to the tree, then rerun type inference. Iterate until all
163 // types are resolved.
165 PatWithNoTypes
= Pattern
.getSrcPattern().clone();
166 PatWithNoTypes
->RemoveAllTypes();
168 // If there are types that are manifestly known, infer them.
169 InferPossibleTypes();
172 /// InferPossibleTypes - As we emit the pattern, we end up generating type
173 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
174 /// want to propagate implied types as far throughout the tree as possible so
175 /// that we avoid doing redundant type checks. This does the type propagation.
176 void MatcherGen::InferPossibleTypes() {
177 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
178 // diagnostics, which we know are impossible at this point.
179 TreePattern
&TP
= *CGP
.pf_begin()->second
;
181 bool MadeChange
= true;
183 MadeChange
= PatWithNoTypes
->ApplyTypeConstraints(
184 TP
, true /*Ignore reg constraints*/);
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher
*NewNode
) {
190 CurPredicate
->setNext(NewNode
);
192 TheMatcher
= NewNode
;
193 CurPredicate
= NewNode
;
196 //===----------------------------------------------------------------------===//
197 // Pattern Match Generation
198 //===----------------------------------------------------------------------===//
200 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
201 void MatcherGen::EmitLeafMatchCode(const TreePatternNode
&N
) {
202 assert(N
.isLeaf() && "Not a leaf?");
204 // Direct match against an integer constant.
205 if (const IntInit
*II
= dyn_cast
<IntInit
>(N
.getLeafValue())) {
206 // If this is the root of the dag we're matching, we emit a redundant opcode
207 // check to ensure that this gets folded into the normal top-level
209 if (&N
== &Pattern
.getSrcPattern()) {
210 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed("imm"));
211 AddMatcher(new CheckOpcodeMatcher(NI
));
214 return AddMatcher(new CheckIntegerMatcher(II
->getValue()));
217 // An UnsetInit represents a named node without any constraints.
218 if (isa
<UnsetInit
>(N
.getLeafValue())) {
219 assert(N
.hasName() && "Unnamed ? leaf");
223 const DefInit
*DI
= dyn_cast
<DefInit
>(N
.getLeafValue());
225 errs() << "Unknown leaf kind: " << N
<< "\n";
229 const Record
*LeafRec
= DI
->getDef();
231 // A ValueType leaf node can represent a register when named, or itself when
233 if (LeafRec
->isSubClassOf("ValueType")) {
234 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
237 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
238 return AddMatcher(new CheckValueTypeMatcher(llvm::getValueType(LeafRec
)));
241 if ( // Handle register references. Nothing to do here, they always match.
242 LeafRec
->isSubClassOf("RegisterClass") ||
243 LeafRec
->isSubClassOf("RegisterOperand") ||
244 LeafRec
->isSubClassOf("PointerLikeRegClass") ||
245 LeafRec
->isSubClassOf("SubRegIndex") ||
246 // Place holder for SRCVALUE nodes. Nothing to do here.
247 LeafRec
->getName() == "srcvalue")
250 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
251 // record the register
252 if (LeafRec
->isSubClassOf("Register")) {
253 AddMatcher(new RecordMatcher("physreg input " + LeafRec
->getName().str(),
254 NextRecordedOperandNo
));
255 PhysRegInputs
.push_back(std::pair(LeafRec
, NextRecordedOperandNo
++));
259 if (LeafRec
->isSubClassOf("CondCode"))
260 return AddMatcher(new CheckCondCodeMatcher(LeafRec
->getName()));
262 if (LeafRec
->isSubClassOf("ComplexPattern")) {
263 // We can't model ComplexPattern uses that don't have their name taken yet.
264 // The OPC_CheckComplexPattern operation implicitly records the results.
265 if (N
.getName().empty()) {
267 raw_string_ostream
OS(S
);
268 OS
<< "We expect complex pattern uses to have names: " << N
;
272 // Remember this ComplexPattern so that we can emit it after all the other
273 // structural matches are done.
274 unsigned InputOperand
= VariableMap
[N
.getName()] - 1;
275 MatchedComplexPatterns
.push_back(std::pair(&N
, InputOperand
));
279 if (LeafRec
->getName() == "immAllOnesV" ||
280 LeafRec
->getName() == "immAllZerosV") {
281 // If this is the root of the dag we're matching, we emit a redundant opcode
282 // check to ensure that this gets folded into the normal top-level
284 if (&N
== &Pattern
.getSrcPattern()) {
285 MVT VT
= N
.getSimpleType(0);
286 StringRef Name
= VT
.isScalableVector() ? "splat_vector" : "build_vector";
287 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed(Name
));
288 AddMatcher(new CheckOpcodeMatcher(NI
));
290 if (LeafRec
->getName() == "immAllOnesV")
291 AddMatcher(new CheckImmAllOnesVMatcher());
293 AddMatcher(new CheckImmAllZerosVMatcher());
297 errs() << "Unknown leaf kind: " << N
<< "\n";
301 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode
&N
,
302 TreePatternNode
&NodeNoTypes
) {
303 assert(!N
.isLeaf() && "Not an operator?");
305 if (N
.getOperator()->isSubClassOf("ComplexPattern")) {
306 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
307 // "MY_PAT:op1:op2". We should already have validated that the uses are
309 std::string PatternName
= std::string(N
.getOperator()->getName());
310 for (unsigned i
= 0; i
< N
.getNumChildren(); ++i
) {
312 PatternName
+= N
.getChild(i
).getName();
315 if (recordUniqueNode(PatternName
)) {
316 auto NodeAndOpNum
= std::pair(&N
, NextRecordedOperandNo
- 1);
317 MatchedComplexPatterns
.push_back(NodeAndOpNum
);
323 const SDNodeInfo
&CInfo
= CGP
.getSDNodeInfo(N
.getOperator());
325 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
326 // a constant without a predicate fn that has more than one bit set, handle
327 // this as a special case. This is usually for targets that have special
328 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
329 // handling stuff). Using these instructions is often far more efficient
330 // than materializing the constant. Unfortunately, both the instcombiner
331 // and the dag combiner can often infer that bits are dead, and thus drop
332 // them from the mask in the dag. For example, it might turn 'AND X, 255'
333 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
335 if ((N
.getOperator()->getName() == "and" ||
336 N
.getOperator()->getName() == "or") &&
337 N
.getChild(1).isLeaf() && N
.getChild(1).getPredicateCalls().empty() &&
338 N
.getPredicateCalls().empty()) {
339 if (const IntInit
*II
= dyn_cast
<IntInit
>(N
.getChild(1).getLeafValue())) {
340 if (!llvm::has_single_bit
<uint32_t>(
341 II
->getValue())) { // Don't bother with single bits.
342 // If this is at the root of the pattern, we emit a redundant
343 // CheckOpcode so that the following checks get factored properly under
344 // a single opcode check.
345 if (&N
== &Pattern
.getSrcPattern())
346 AddMatcher(new CheckOpcodeMatcher(CInfo
));
348 // Emit the CheckAndImm/CheckOrImm node.
349 if (N
.getOperator()->getName() == "and")
350 AddMatcher(new CheckAndImmMatcher(II
->getValue()));
352 AddMatcher(new CheckOrImmMatcher(II
->getValue()));
354 // Match the LHS of the AND as appropriate.
355 AddMatcher(new MoveChildMatcher(0));
356 EmitMatchCode(N
.getChild(0), NodeNoTypes
.getChild(0));
357 AddMatcher(new MoveParentMatcher());
363 // Check that the current opcode lines up.
364 AddMatcher(new CheckOpcodeMatcher(CInfo
));
366 // If this node has memory references (i.e. is a load or store), tell the
367 // interpreter to capture them in the memref array.
368 if (N
.NodeHasProperty(SDNPMemOperand
, CGP
))
369 AddMatcher(new RecordMemRefMatcher());
371 // If this node has a chain, then the chain is operand #0 is the SDNode, and
372 // the child numbers of the node are all offset by one.
374 if (N
.NodeHasProperty(SDNPHasChain
, CGP
)) {
375 // Record the node and remember it in our chained nodes list.
376 AddMatcher(new RecordMatcher("'" + N
.getOperator()->getName().str() +
378 NextRecordedOperandNo
));
379 // Remember all of the input chains our pattern will match.
380 MatchedChainNodes
.push_back(NextRecordedOperandNo
++);
382 // Don't look at the input chain when matching the tree pattern to the
386 // If this node is not the root and the subtree underneath it produces a
387 // chain, then the result of matching the node is also produce a chain.
388 // Beyond that, this means that we're also folding (at least) the root node
389 // into the node that produce the chain (for example, matching
390 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
391 // problematic, if the 'reg' node also uses the load (say, its chain).
396 // | \ DAG's like cheese.
402 // It would be invalid to fold XX and LD. In this case, folding the two
403 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
404 // To prevent this, we emit a dynamic check for legality before allowing
405 // this to be folded.
407 const TreePatternNode
&Root
= Pattern
.getSrcPattern();
408 if (&N
!= &Root
) { // Not the root of the pattern.
409 // If there is a node between the root and this node, then we definitely
410 // need to emit the check.
411 bool NeedCheck
= !Root
.hasChild(&N
);
413 // If it *is* an immediate child of the root, we can still need a check if
414 // the root SDNode has multiple inputs. For us, this means that it is an
415 // intrinsic, has multiple operands, or has other inputs like chain or
418 const SDNodeInfo
&PInfo
= CGP
.getSDNodeInfo(Root
.getOperator());
420 Root
.getOperator() == CGP
.get_intrinsic_void_sdnode() ||
421 Root
.getOperator() == CGP
.get_intrinsic_w_chain_sdnode() ||
422 Root
.getOperator() == CGP
.get_intrinsic_wo_chain_sdnode() ||
423 PInfo
.getNumOperands() > 1 || PInfo
.hasProperty(SDNPHasChain
) ||
424 PInfo
.hasProperty(SDNPInGlue
) || PInfo
.hasProperty(SDNPOptInGlue
);
428 AddMatcher(new CheckFoldableChainNodeMatcher());
432 // If this node has an output glue and isn't the root, remember it.
433 if (N
.NodeHasProperty(SDNPOutGlue
, CGP
) && &N
!= &Pattern
.getSrcPattern()) {
434 // TODO: This redundantly records nodes with both glues and chains.
436 // Record the node and remember it in our chained nodes list.
437 AddMatcher(new RecordMatcher("'" + N
.getOperator()->getName().str() +
438 "' glue output node",
439 NextRecordedOperandNo
));
442 // If this node is known to have an input glue or if it *might* have an input
443 // glue, capture it as the glue input of the pattern.
444 if (N
.NodeHasProperty(SDNPOptInGlue
, CGP
) ||
445 N
.NodeHasProperty(SDNPInGlue
, CGP
))
446 AddMatcher(new CaptureGlueInputMatcher());
448 for (unsigned i
= 0, e
= N
.getNumChildren(); i
!= e
; ++i
, ++OpNo
) {
449 // Get the code suitable for matching this child. Move to the child, check
450 // it then move back to the parent.
451 AddMatcher(new MoveChildMatcher(OpNo
));
452 EmitMatchCode(N
.getChild(i
), NodeNoTypes
.getChild(i
));
453 AddMatcher(new MoveParentMatcher());
457 bool MatcherGen::recordUniqueNode(ArrayRef
<std::string
> Names
) {
459 for (const std::string
&Name
: Names
) {
460 unsigned &VarMapEntry
= VariableMap
[Name
];
463 assert(Entry
== VarMapEntry
);
466 bool NewRecord
= false;
468 // If it is a named node, we must emit a 'Record' opcode.
470 for (const std::string
&Name
: Names
) {
471 if (!WhatFor
.empty())
473 WhatFor
+= "$" + Name
;
475 AddMatcher(new RecordMatcher(WhatFor
, NextRecordedOperandNo
));
476 Entry
= ++NextRecordedOperandNo
;
479 // If we get here, this is a second reference to a specific name. Since
480 // we already have checked that the first reference is valid, we don't
481 // have to recursively match it, just check that it's the same as the
482 // previously named thing.
483 AddMatcher(new CheckSameMatcher(Entry
- 1));
486 for (const std::string
&Name
: Names
)
487 VariableMap
[Name
] = Entry
;
492 void MatcherGen::EmitMatchCode(const TreePatternNode
&N
,
493 TreePatternNode
&NodeNoTypes
) {
494 // If N and NodeNoTypes don't agree on a type, then this is a case where we
495 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
496 // reinfer any correlated types.
497 SmallVector
<unsigned, 2> ResultsToTypeCheck
;
499 for (unsigned i
= 0, e
= NodeNoTypes
.getNumTypes(); i
!= e
; ++i
) {
500 if (NodeNoTypes
.getExtType(i
) == N
.getExtType(i
))
502 NodeNoTypes
.setType(i
, N
.getExtType(i
));
503 InferPossibleTypes();
504 ResultsToTypeCheck
.push_back(i
);
507 // If this node has a name associated with it, capture it in VariableMap. If
508 // we already saw this in the pattern, emit code to verify dagness.
509 SmallVector
<std::string
, 4> Names
;
510 if (!N
.getName().empty())
511 Names
.push_back(N
.getName());
513 for (const ScopedName
&Name
: N
.getNamesAsPredicateArg()) {
515 ("pred:" + Twine(Name
.getScope()) + ":" + Name
.getIdentifier()).str());
518 if (!Names
.empty()) {
519 if (!recordUniqueNode(Names
))
524 EmitLeafMatchCode(N
);
526 EmitOperatorMatchCode(N
, NodeNoTypes
);
528 // If there are node predicates for this node, generate their checks.
529 for (unsigned i
= 0, e
= N
.getPredicateCalls().size(); i
!= e
; ++i
) {
530 const TreePredicateCall
&Pred
= N
.getPredicateCalls()[i
];
531 SmallVector
<unsigned, 4> Operands
;
532 if (Pred
.Fn
.usesOperands()) {
533 TreePattern
*TP
= Pred
.Fn
.getOrigPatFragRecord();
534 for (unsigned i
= 0; i
< TP
->getNumArgs(); ++i
) {
536 ("pred:" + Twine(Pred
.Scope
) + ":" + TP
->getArgName(i
)).str();
537 Operands
.push_back(getNamedArgumentSlot(Name
));
540 AddMatcher(new CheckPredicateMatcher(Pred
.Fn
, Operands
));
543 for (unsigned i
= 0, e
= ResultsToTypeCheck
.size(); i
!= e
; ++i
)
544 AddMatcher(new CheckTypeMatcher(N
.getSimpleType(ResultsToTypeCheck
[i
]),
545 ResultsToTypeCheck
[i
]));
548 /// EmitMatcherCode - Generate the code that matches the predicate of this
549 /// pattern for the specified Variant. If the variant is invalid this returns
550 /// true and does not generate code, if it is valid, it returns false.
551 bool MatcherGen::EmitMatcherCode(unsigned Variant
) {
552 // If the root of the pattern is a ComplexPattern and if it is specified to
553 // match some number of root opcodes, these are considered to be our variants.
554 // Depending on which variant we're generating code for, emit the root opcode
556 if (const ComplexPattern
*CP
=
557 Pattern
.getSrcPattern().getComplexPatternInfo(CGP
)) {
558 ArrayRef
<const Record
*> OpNodes
= CP
->getRootNodes();
559 assert(!OpNodes
.empty() &&
560 "Complex Pattern must specify what it can match");
561 if (Variant
>= OpNodes
.size())
564 AddMatcher(new CheckOpcodeMatcher(CGP
.getSDNodeInfo(OpNodes
[Variant
])));
570 // Emit the matcher for the pattern structure and types.
571 EmitMatchCode(Pattern
.getSrcPattern(), *PatWithNoTypes
);
573 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
574 // feature is around, do the check).
575 std::string PredicateCheck
= Pattern
.getPredicateCheck();
576 if (!PredicateCheck
.empty())
577 AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck
));
579 // Now that we've completed the structural type match, emit any ComplexPattern
580 // checks (e.g. addrmode matches). We emit this after the structural match
581 // because they are generally more expensive to evaluate and more difficult to
583 for (unsigned i
= 0, e
= MatchedComplexPatterns
.size(); i
!= e
; ++i
) {
584 auto &N
= *MatchedComplexPatterns
[i
].first
;
586 // Remember where the results of this match get stuck.
588 NamedComplexPatternOperands
[N
.getName()] = NextRecordedOperandNo
+ 1;
590 unsigned CurOp
= NextRecordedOperandNo
;
591 for (unsigned i
= 0; i
< N
.getNumChildren(); ++i
) {
592 NamedComplexPatternOperands
[N
.getChild(i
).getName()] = CurOp
+ 1;
593 CurOp
+= N
.getChild(i
).getNumMIResults(CGP
);
597 // Get the slot we recorded the value in from the name on the node.
598 unsigned RecNodeEntry
= MatchedComplexPatterns
[i
].second
;
600 const ComplexPattern
*CP
= N
.getComplexPatternInfo(CGP
);
601 assert(CP
&& "Not a valid ComplexPattern!");
603 // Emit a CheckComplexPat operation, which does the match (aborting if it
604 // fails) and pushes the matched operands onto the recorded nodes list.
605 AddMatcher(new CheckComplexPatMatcher(*CP
, RecNodeEntry
, N
.getName(),
606 NextRecordedOperandNo
));
608 // Record the right number of operands.
609 NextRecordedOperandNo
+= CP
->getNumOperands();
610 if (CP
->hasProperty(SDNPHasChain
)) {
611 // If the complex pattern has a chain, then we need to keep track of the
612 // fact that we just recorded a chain input. The chain input will be
613 // matched as the last operand of the predicate if it was successful.
614 ++NextRecordedOperandNo
; // Chained node operand.
616 // It is the last operand recorded.
617 assert(NextRecordedOperandNo
> 1 &&
618 "Should have recorded input/result chains at least!");
619 MatchedChainNodes
.push_back(NextRecordedOperandNo
- 1);
622 // TODO: Complex patterns can't have output glues, if they did, we'd want
629 //===----------------------------------------------------------------------===//
630 // Node Result Generation
631 //===----------------------------------------------------------------------===//
633 void MatcherGen::EmitResultOfNamedOperand(
634 const TreePatternNode
&N
, SmallVectorImpl
<unsigned> &ResultOps
) {
635 assert(!N
.getName().empty() && "Operand not named!");
637 if (unsigned SlotNo
= NamedComplexPatternOperands
[N
.getName()]) {
638 // Complex operands have already been completely selected, just find the
639 // right slot ant add the arguments directly.
640 for (unsigned i
= 0; i
< N
.getNumMIResults(CGP
); ++i
)
641 ResultOps
.push_back(SlotNo
- 1 + i
);
646 unsigned SlotNo
= getNamedArgumentSlot(N
.getName());
648 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
649 // version of the immediate so that it doesn't get selected due to some other
652 StringRef OperatorName
= N
.getOperator()->getName();
653 if (OperatorName
== "imm" || OperatorName
== "fpimm") {
654 AddMatcher(new EmitConvertToTargetMatcher(SlotNo
, NextRecordedOperandNo
));
655 ResultOps
.push_back(NextRecordedOperandNo
++);
660 for (unsigned i
= 0; i
< N
.getNumMIResults(CGP
); ++i
)
661 ResultOps
.push_back(SlotNo
+ i
);
664 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode
&N
,
665 SmallVectorImpl
<unsigned> &ResultOps
) {
666 assert(N
.isLeaf() && "Must be a leaf");
668 if (const IntInit
*II
= dyn_cast
<IntInit
>(N
.getLeafValue())) {
669 AddMatcher(new EmitIntegerMatcher(II
->getValue(), N
.getSimpleType(0),
670 NextRecordedOperandNo
));
671 ResultOps
.push_back(NextRecordedOperandNo
++);
675 // If this is an explicit register reference, handle it.
676 if (const DefInit
*DI
= dyn_cast
<DefInit
>(N
.getLeafValue())) {
677 const Record
*Def
= DI
->getDef();
678 if (Def
->isSubClassOf("Register")) {
679 const CodeGenRegister
*Reg
= CGP
.getTargetInfo().getRegBank().getReg(Def
);
680 AddMatcher(new EmitRegisterMatcher(Reg
, N
.getSimpleType(0),
681 NextRecordedOperandNo
));
682 ResultOps
.push_back(NextRecordedOperandNo
++);
686 if (Def
->getName() == "zero_reg") {
687 AddMatcher(new EmitRegisterMatcher(nullptr, N
.getSimpleType(0),
688 NextRecordedOperandNo
));
689 ResultOps
.push_back(NextRecordedOperandNo
++);
693 if (Def
->getName() == "undef_tied_input") {
694 MVT::SimpleValueType ResultVT
= N
.getSimpleType(0);
695 auto IDOperandNo
= NextRecordedOperandNo
++;
696 const Record
*ImpDef
= Def
->getRecords().getDef("IMPLICIT_DEF");
697 CodeGenInstruction
&II
= CGP
.getTargetInfo().getInstruction(ImpDef
);
698 AddMatcher(new EmitNodeMatcher(II
, ResultVT
, {}, false, false, false,
699 false, -1, IDOperandNo
));
700 ResultOps
.push_back(IDOperandNo
);
704 // Handle a reference to a register class. This is used
705 // in COPY_TO_SUBREG instructions.
706 if (Def
->isSubClassOf("RegisterOperand"))
707 Def
= Def
->getValueAsDef("RegClass");
708 if (Def
->isSubClassOf("RegisterClass")) {
709 // If the register class has an enum integer value greater than 127, the
710 // encoding overflows the limit of 7 bits, which precludes the use of
711 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
712 const CodeGenRegisterClass
&RC
=
713 CGP
.getTargetInfo().getRegisterClass(Def
);
714 if (RC
.EnumValue
<= 127) {
715 std::string Value
= RC
.getQualifiedIdName();
716 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
,
717 NextRecordedOperandNo
));
719 AddMatcher(new EmitIntegerMatcher(RC
.EnumValue
, MVT::i32
,
720 NextRecordedOperandNo
));
722 ResultOps
.push_back(NextRecordedOperandNo
++);
726 // Handle a subregister index. This is used for INSERT_SUBREG etc.
727 if (Def
->isSubClassOf("SubRegIndex")) {
728 const CodeGenRegBank
&RB
= CGP
.getTargetInfo().getRegBank();
729 // If we have more than 127 subreg indices the encoding can overflow
730 // 7 bit and we cannot use StringInteger.
731 if (RB
.getSubRegIndices().size() > 127) {
732 const CodeGenSubRegIndex
*I
= RB
.findSubRegIdx(Def
);
733 assert(I
&& "Cannot find subreg index by name!");
734 if (I
->EnumValue
> 127) {
735 AddMatcher(new EmitIntegerMatcher(I
->EnumValue
, MVT::i32
,
736 NextRecordedOperandNo
));
737 ResultOps
.push_back(NextRecordedOperandNo
++);
741 std::string Value
= getQualifiedName(Def
);
743 new EmitStringIntegerMatcher(Value
, MVT::i32
, NextRecordedOperandNo
));
744 ResultOps
.push_back(NextRecordedOperandNo
++);
749 errs() << "unhandled leaf node:\n";
753 static bool mayInstNodeLoadOrStore(const TreePatternNode
&N
,
754 const CodeGenDAGPatterns
&CGP
) {
755 const Record
*Op
= N
.getOperator();
756 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
757 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
758 return II
.mayLoad
|| II
.mayStore
;
761 static unsigned numNodesThatMayLoadOrStore(const TreePatternNode
&N
,
762 const CodeGenDAGPatterns
&CGP
) {
766 const Record
*OpRec
= N
.getOperator();
767 if (!OpRec
->isSubClassOf("Instruction"))
771 if (mayInstNodeLoadOrStore(N
, CGP
))
774 for (unsigned i
= 0, e
= N
.getNumChildren(); i
!= e
; ++i
)
775 Count
+= numNodesThatMayLoadOrStore(N
.getChild(i
), CGP
);
780 void MatcherGen::EmitResultInstructionAsOperand(
781 const TreePatternNode
&N
, SmallVectorImpl
<unsigned> &OutputOps
) {
782 const Record
*Op
= N
.getOperator();
783 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
784 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
785 const DAGInstruction
&Inst
= CGP
.getInstruction(Op
);
787 bool isRoot
= &N
== &Pattern
.getDstPattern();
789 // TreeHasOutGlue - True if this tree has glue.
790 bool TreeHasInGlue
= false, TreeHasOutGlue
= false;
792 const TreePatternNode
&SrcPat
= Pattern
.getSrcPattern();
793 TreeHasInGlue
= SrcPat
.TreeHasProperty(SDNPOptInGlue
, CGP
) ||
794 SrcPat
.TreeHasProperty(SDNPInGlue
, CGP
);
796 // FIXME2: this is checking the entire pattern, not just the node in
797 // question, doing this just for the root seems like a total hack.
798 TreeHasOutGlue
= SrcPat
.TreeHasProperty(SDNPOutGlue
, CGP
);
801 // NumResults - This is the number of results produced by the instruction in
803 unsigned NumResults
= Inst
.getNumResults();
805 // Number of operands we know the output instruction must have. If it is
806 // variadic, we could have more operands.
807 unsigned NumFixedOperands
= II
.Operands
.size();
809 SmallVector
<unsigned, 8> InstOps
;
811 // Loop over all of the fixed operands of the instruction pattern, emitting
812 // code to fill them all in. The node 'N' usually has number children equal to
813 // the number of input operands of the instruction. However, in cases where
814 // there are predicate operands for an instruction, we need to fill in the
815 // 'execute always' values. Match up the node operands to the instruction
816 // operands to do this.
817 unsigned ChildNo
= 0;
819 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
820 // number of operands at the end of the list which have default values.
821 // Those can come from the pattern if it provides enough arguments, or be
822 // filled in with the default if the pattern hasn't provided them. But any
823 // operand with a default value _before_ the last mandatory one will be
824 // filled in with their defaults unconditionally.
825 unsigned NonOverridableOperands
= NumFixedOperands
;
826 while (NonOverridableOperands
> NumResults
&&
827 CGP
.operandHasDefault(II
.Operands
[NonOverridableOperands
- 1].Rec
))
828 --NonOverridableOperands
;
830 for (unsigned InstOpNo
= NumResults
, e
= NumFixedOperands
; InstOpNo
!= e
;
832 // Determine what to emit for this operand.
833 const Record
*OperandNode
= II
.Operands
[InstOpNo
].Rec
;
834 if (CGP
.operandHasDefault(OperandNode
) &&
835 (InstOpNo
< NonOverridableOperands
|| ChildNo
>= N
.getNumChildren())) {
836 // This is a predicate or optional def operand which the pattern has not
837 // overridden, or which we aren't letting it override; emit the 'default
839 const DAGDefaultOperand
&DefaultOp
= CGP
.getDefaultOperand(OperandNode
);
840 for (unsigned i
= 0, e
= DefaultOp
.DefaultOps
.size(); i
!= e
; ++i
)
841 EmitResultOperand(*DefaultOp
.DefaultOps
[i
], InstOps
);
845 // Otherwise this is a normal operand or a predicate operand without
846 // 'execute always'; emit it.
848 // For operands with multiple sub-operands we may need to emit
849 // multiple child patterns to cover them all. However, ComplexPattern
850 // children may themselves emit multiple MI operands.
851 unsigned NumSubOps
= 1;
852 if (OperandNode
->isSubClassOf("Operand")) {
853 const DagInit
*MIOpInfo
= OperandNode
->getValueAsDag("MIOperandInfo");
854 if (unsigned NumArgs
= MIOpInfo
->getNumArgs())
858 unsigned FinalNumOps
= InstOps
.size() + NumSubOps
;
859 while (InstOps
.size() < FinalNumOps
) {
860 const TreePatternNode
&Child
= N
.getChild(ChildNo
);
861 unsigned BeforeAddingNumOps
= InstOps
.size();
862 EmitResultOperand(Child
, InstOps
);
863 assert(InstOps
.size() > BeforeAddingNumOps
&& "Didn't add any operands");
865 // If the operand is an instruction and it produced multiple results, just
866 // take the first one.
867 if (!Child
.isLeaf() && Child
.getOperator()->isSubClassOf("Instruction"))
868 InstOps
.resize(BeforeAddingNumOps
+ 1);
874 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
875 // expand suboperands, use default operands, or other features determined from
876 // the CodeGenInstruction after the fixed operands, which were handled
877 // above. Emit the remaining instructions implicitly added by the use for
879 if (II
.Operands
.isVariadic
) {
880 for (unsigned I
= ChildNo
, E
= N
.getNumChildren(); I
< E
; ++I
)
881 EmitResultOperand(N
.getChild(I
), InstOps
);
884 // If this node has input glue or explicitly specified input physregs, we
885 // need to add chained and glued copyfromreg nodes and materialize the glue
887 if (isRoot
&& !PhysRegInputs
.empty()) {
888 // Emit all of the CopyToReg nodes for the input physical registers. These
889 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
890 for (unsigned i
= 0, e
= PhysRegInputs
.size(); i
!= e
; ++i
) {
891 const CodeGenRegister
*Reg
=
892 CGP
.getTargetInfo().getRegBank().getReg(PhysRegInputs
[i
].first
);
893 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs
[i
].second
, Reg
));
896 // Even if the node has no other glue inputs, the resultant node must be
897 // glued to the CopyFromReg nodes we just generated.
898 TreeHasInGlue
= true;
901 // Result order: node results, chain, glue
903 // Determine the result types.
904 SmallVector
<MVT::SimpleValueType
, 4> ResultVTs
;
905 for (unsigned i
= 0, e
= N
.getNumTypes(); i
!= e
; ++i
)
906 ResultVTs
.push_back(N
.getSimpleType(i
));
908 // If this is the root instruction of a pattern that has physical registers in
909 // its result pattern, add output VTs for them. For example, X86 has:
910 // (set AL, (mul ...))
911 if (isRoot
&& !Pattern
.getDstRegs().empty()) {
912 // If the root came from an implicit def in the instruction handling stuff,
914 const Record
*HandledReg
= nullptr;
915 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
916 HandledReg
= II
.ImplicitDefs
[0];
918 for (const Record
*Reg
: Pattern
.getDstRegs()) {
919 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
)
921 ResultVTs
.push_back(getRegisterValueType(Reg
, CGT
));
925 // If this is the root of the pattern and the pattern we're matching includes
926 // a node that is variadic, mark the generated node as variadic so that it
927 // gets the excess operands from the input DAG.
928 int NumFixedArityOperands
= -1;
929 if (isRoot
&& Pattern
.getSrcPattern().NodeHasProperty(SDNPVariadic
, CGP
))
930 NumFixedArityOperands
= Pattern
.getSrcPattern().getNumChildren();
932 // If this is the root node and multiple matched nodes in the input pattern
933 // have MemRefs in them, have the interpreter collect them and plop them onto
934 // this node. If there is just one node with MemRefs, leave them on that node
935 // even if it is not the root.
937 // FIXME3: This is actively incorrect for result patterns with multiple
938 // memory-referencing instructions.
939 bool PatternHasMemOperands
=
940 Pattern
.getSrcPattern().TreeHasProperty(SDNPMemOperand
, CGP
);
942 bool NodeHasMemRefs
= false;
943 if (PatternHasMemOperands
) {
944 unsigned NumNodesThatLoadOrStore
=
945 numNodesThatMayLoadOrStore(Pattern
.getDstPattern(), CGP
);
946 bool NodeIsUniqueLoadOrStore
=
947 mayInstNodeLoadOrStore(N
, CGP
) && NumNodesThatLoadOrStore
== 1;
949 NodeIsUniqueLoadOrStore
|| (isRoot
&& (mayInstNodeLoadOrStore(N
, CGP
) ||
950 NumNodesThatLoadOrStore
!= 1));
953 // Determine whether we need to attach a chain to this node.
954 bool NodeHasChain
= false;
955 if (Pattern
.getSrcPattern().TreeHasProperty(SDNPHasChain
, CGP
)) {
956 // For some instructions, we were able to infer from the pattern whether
957 // they should have a chain. Otherwise, attach the chain to the root.
959 // FIXME2: This is extremely dubious for several reasons, not the least of
960 // which it gives special status to instructions with patterns that Pat<>
961 // nodes can't duplicate.
962 if (II
.hasChain_Inferred
)
963 NodeHasChain
= II
.hasChain
;
965 NodeHasChain
= isRoot
;
966 // Instructions which load and store from memory should have a chain,
967 // regardless of whether they happen to have a pattern saying so.
968 if (II
.hasCtrlDep
|| II
.mayLoad
|| II
.mayStore
|| II
.canFoldAsLoad
||
973 assert((!ResultVTs
.empty() || TreeHasOutGlue
|| NodeHasChain
) &&
974 "Node has no result");
976 AddMatcher(new EmitNodeMatcher(II
, ResultVTs
, InstOps
, NodeHasChain
,
977 TreeHasInGlue
, TreeHasOutGlue
, NodeHasMemRefs
,
978 NumFixedArityOperands
, NextRecordedOperandNo
));
980 // The non-chain and non-glue results of the newly emitted node get recorded.
981 for (unsigned i
= 0, e
= ResultVTs
.size(); i
!= e
; ++i
) {
982 if (ResultVTs
[i
] == MVT::Other
|| ResultVTs
[i
] == MVT::Glue
)
984 OutputOps
.push_back(NextRecordedOperandNo
++);
988 void MatcherGen::EmitResultSDNodeXFormAsOperand(
989 const TreePatternNode
&N
, SmallVectorImpl
<unsigned> &ResultOps
) {
990 assert(N
.getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
993 SmallVector
<unsigned, 8> InputOps
;
995 // FIXME2: Could easily generalize this to support multiple inputs and outputs
996 // to the SDNodeXForm. For now we just support one input and one output like
997 // the old instruction selector.
998 assert(N
.getNumChildren() == 1);
999 EmitResultOperand(N
.getChild(0), InputOps
);
1001 // The input currently must have produced exactly one result.
1002 assert(InputOps
.size() == 1 && "Unexpected input to SDNodeXForm");
1004 AddMatcher(new EmitNodeXFormMatcher(InputOps
[0], N
.getOperator(),
1005 NextRecordedOperandNo
));
1006 ResultOps
.push_back(NextRecordedOperandNo
++);
1009 void MatcherGen::EmitResultOperand(const TreePatternNode
&N
,
1010 SmallVectorImpl
<unsigned> &ResultOps
) {
1011 // This is something selected from the pattern we matched.
1012 if (!N
.getName().empty())
1013 return EmitResultOfNamedOperand(N
, ResultOps
);
1016 return EmitResultLeafAsOperand(N
, ResultOps
);
1018 const Record
*OpRec
= N
.getOperator();
1019 if (OpRec
->isSubClassOf("Instruction"))
1020 return EmitResultInstructionAsOperand(N
, ResultOps
);
1021 if (OpRec
->isSubClassOf("SDNodeXForm"))
1022 return EmitResultSDNodeXFormAsOperand(N
, ResultOps
);
1023 errs() << "Unknown result node to emit code for: " << N
<< '\n';
1024 PrintFatalError("Unknown node in result pattern!");
1027 void MatcherGen::EmitResultCode() {
1028 // Patterns that match nodes with (potentially multiple) chain inputs have to
1029 // merge them together into a token factor. This informs the generated code
1030 // what all the chained nodes are.
1031 if (!MatchedChainNodes
.empty())
1032 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes
));
1034 // Codegen the root of the result pattern, capturing the resulting values.
1035 SmallVector
<unsigned, 8> Ops
;
1036 EmitResultOperand(Pattern
.getDstPattern(), Ops
);
1038 // At this point, we have however many values the result pattern produces.
1039 // However, the input pattern might not need all of these. If there are
1040 // excess values at the end (such as implicit defs of condition codes etc)
1041 // just lop them off. This doesn't need to worry about glue or chains, just
1042 // explicit results.
1044 unsigned NumSrcResults
= Pattern
.getSrcPattern().getNumTypes();
1046 // If the pattern also has implicit results, count them as well.
1047 if (!Pattern
.getDstRegs().empty()) {
1048 // If the root came from an implicit def in the instruction handling stuff,
1050 const Record
*HandledReg
= nullptr;
1051 const TreePatternNode
&DstPat
= Pattern
.getDstPattern();
1052 if (!DstPat
.isLeaf() && DstPat
.getOperator()->isSubClassOf("Instruction")) {
1053 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
1054 CodeGenInstruction
&II
= CGT
.getInstruction(DstPat
.getOperator());
1056 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
1057 HandledReg
= II
.ImplicitDefs
[0];
1060 for (const Record
*Reg
: Pattern
.getDstRegs()) {
1061 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
)
1067 SmallVector
<unsigned, 8> Results(Ops
);
1069 // Apply result permutation.
1070 for (unsigned ResNo
= 0; ResNo
< Pattern
.getDstPattern().getNumResults();
1072 Results
[ResNo
] = Ops
[Pattern
.getDstPattern().getResultIndex(ResNo
)];
1075 Results
.resize(NumSrcResults
);
1076 AddMatcher(new CompleteMatchMatcher(Results
, Pattern
));
1079 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1080 /// the specified variant. If the variant number is invalid, this returns null.
1081 Matcher
*llvm::ConvertPatternToMatcher(const PatternToMatch
&Pattern
,
1083 const CodeGenDAGPatterns
&CGP
) {
1084 MatcherGen
Gen(Pattern
, CGP
);
1086 // Generate the code for the matcher.
1087 if (Gen
.EmitMatcherCode(Variant
))
1090 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1091 // FIXME2: Split result code out to another table, and make the matcher end
1092 // with an "Emit <index>" command. This allows result generation stuff to be
1093 // shared and factored?
1095 // If the match succeeds, then we generate Pattern.
1096 Gen
.EmitResultCode();
1098 // Unconditional match.
1099 return Gen
.GetMatcher();