[Frontend] Remove unused includes (NFC) (#116927)
[llvm-project.git] / llvm / utils / TableGen / DAGISelMatcherGen.cpp
bloba3569bc1770b20ca16968a329f7d301df4c03553
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Basic/SDNodeProperties.h"
10 #include "Common/CodeGenDAGPatterns.h"
11 #include "Common/CodeGenInstruction.h"
12 #include "Common/CodeGenRegisters.h"
13 #include "Common/CodeGenTarget.h"
14 #include "Common/DAGISelMatcher.h"
15 #include "Common/InfoByHwMode.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
20 #include <utility>
21 using namespace llvm;
23 /// getRegisterValueType - Look up and return the ValueType of the specified
24 /// register. If the register is a member of multiple register classes, they
25 /// must all have the same type.
26 static MVT::SimpleValueType getRegisterValueType(const Record *R,
27 const CodeGenTarget &T) {
28 bool FoundRC = false;
29 MVT::SimpleValueType VT = MVT::Other;
30 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
32 for (const auto &RC : T.getRegBank().getRegClasses()) {
33 if (!RC.contains(Reg))
34 continue;
36 if (!FoundRC) {
37 FoundRC = true;
38 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
39 assert(VVT.isSimple());
40 VT = VVT.getSimple().SimpleTy;
41 continue;
44 #ifndef NDEBUG
45 // If this occurs in multiple register classes, they all have to agree.
46 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
47 assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT &&
48 "ValueType mismatch between register classes for this register");
49 #endif
51 return VT;
54 namespace {
55 class MatcherGen {
56 const PatternToMatch &Pattern;
57 const CodeGenDAGPatterns &CGP;
59 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
60 /// out with all of the types removed. This allows us to insert type checks
61 /// as we scan the tree.
62 TreePatternNodePtr PatWithNoTypes;
64 /// VariableMap - A map from variable names ('$dst') to the recorded operand
65 /// number that they were captured as. These are biased by 1 to make
66 /// insertion easier.
67 StringMap<unsigned> VariableMap;
69 /// This maintains the recorded operand number that OPC_CheckComplexPattern
70 /// drops each sub-operand into. We don't want to insert these into
71 /// VariableMap because that leads to identity checking if they are
72 /// encountered multiple times. Biased by 1 like VariableMap for
73 /// consistency.
74 StringMap<unsigned> NamedComplexPatternOperands;
76 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
77 /// the RecordedNodes array, this keeps track of which slot will be next to
78 /// record into.
79 unsigned NextRecordedOperandNo;
81 /// MatchedChainNodes - This maintains the position in the recorded nodes
82 /// array of all of the recorded input nodes that have chains.
83 SmallVector<unsigned, 2> MatchedChainNodes;
85 /// MatchedComplexPatterns - This maintains a list of all of the
86 /// ComplexPatterns that we need to check. The second element of each pair
87 /// is the recorded operand number of the input node.
88 SmallVector<std::pair<const TreePatternNode *, unsigned>, 2>
89 MatchedComplexPatterns;
91 /// PhysRegInputs - List list has an entry for each explicitly specified
92 /// physreg input to the pattern. The first elt is the Register node, the
93 /// second is the recorded slot number the input pattern match saved it in.
94 SmallVector<std::pair<const Record *, unsigned>, 2> PhysRegInputs;
96 /// Matcher - This is the top level of the generated matcher, the result.
97 Matcher *TheMatcher;
99 /// CurPredicate - As we emit matcher nodes, this points to the latest check
100 /// which should have future checks stuck into its Next position.
101 Matcher *CurPredicate;
103 public:
104 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
106 bool EmitMatcherCode(unsigned Variant);
107 void EmitResultCode();
109 Matcher *GetMatcher() const { return TheMatcher; }
111 private:
112 void AddMatcher(Matcher *NewNode);
113 void InferPossibleTypes();
115 // Matcher Generation.
116 void EmitMatchCode(const TreePatternNode &N, TreePatternNode &NodeNoTypes);
117 void EmitLeafMatchCode(const TreePatternNode &N);
118 void EmitOperatorMatchCode(const TreePatternNode &N,
119 TreePatternNode &NodeNoTypes);
121 /// If this is the first time a node with unique identifier Name has been
122 /// seen, record it. Otherwise, emit a check to make sure this is the same
123 /// node. Returns true if this is the first encounter.
124 bool recordUniqueNode(ArrayRef<std::string> Names);
126 // Result Code Generation.
127 unsigned getNamedArgumentSlot(StringRef Name) {
128 unsigned VarMapEntry = VariableMap[Name];
129 assert(VarMapEntry != 0 &&
130 "Variable referenced but not defined and not caught earlier!");
131 return VarMapEntry - 1;
134 void EmitResultOperand(const TreePatternNode &N,
135 SmallVectorImpl<unsigned> &ResultOps);
136 void EmitResultOfNamedOperand(const TreePatternNode &N,
137 SmallVectorImpl<unsigned> &ResultOps);
138 void EmitResultLeafAsOperand(const TreePatternNode &N,
139 SmallVectorImpl<unsigned> &ResultOps);
140 void EmitResultInstructionAsOperand(const TreePatternNode &N,
141 SmallVectorImpl<unsigned> &ResultOps);
142 void EmitResultSDNodeXFormAsOperand(const TreePatternNode &N,
143 SmallVectorImpl<unsigned> &ResultOps);
146 } // end anonymous namespace
148 MatcherGen::MatcherGen(const PatternToMatch &pattern,
149 const CodeGenDAGPatterns &cgp)
150 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), TheMatcher(nullptr),
151 CurPredicate(nullptr) {
152 // We need to produce the matcher tree for the patterns source pattern. To
153 // do this we need to match the structure as well as the types. To do the
154 // type matching, we want to figure out the fewest number of type checks we
155 // need to emit. For example, if there is only one integer type supported
156 // by a target, there should be no type comparisons at all for integer
157 // patterns!
159 // To figure out the fewest number of type checks needed, clone the pattern,
160 // remove the types, then perform type inference on the pattern as a whole.
161 // If there are unresolved types, emit an explicit check for those types,
162 // apply the type to the tree, then rerun type inference. Iterate until all
163 // types are resolved.
165 PatWithNoTypes = Pattern.getSrcPattern().clone();
166 PatWithNoTypes->RemoveAllTypes();
168 // If there are types that are manifestly known, infer them.
169 InferPossibleTypes();
172 /// InferPossibleTypes - As we emit the pattern, we end up generating type
173 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
174 /// want to propagate implied types as far throughout the tree as possible so
175 /// that we avoid doing redundant type checks. This does the type propagation.
176 void MatcherGen::InferPossibleTypes() {
177 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
178 // diagnostics, which we know are impossible at this point.
179 TreePattern &TP = *CGP.pf_begin()->second;
181 bool MadeChange = true;
182 while (MadeChange)
183 MadeChange = PatWithNoTypes->ApplyTypeConstraints(
184 TP, true /*Ignore reg constraints*/);
187 /// AddMatcher - Add a matcher node to the current graph we're building.
188 void MatcherGen::AddMatcher(Matcher *NewNode) {
189 if (CurPredicate)
190 CurPredicate->setNext(NewNode);
191 else
192 TheMatcher = NewNode;
193 CurPredicate = NewNode;
196 //===----------------------------------------------------------------------===//
197 // Pattern Match Generation
198 //===----------------------------------------------------------------------===//
200 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
201 void MatcherGen::EmitLeafMatchCode(const TreePatternNode &N) {
202 assert(N.isLeaf() && "Not a leaf?");
204 // Direct match against an integer constant.
205 if (const IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) {
206 // If this is the root of the dag we're matching, we emit a redundant opcode
207 // check to ensure that this gets folded into the normal top-level
208 // OpcodeSwitch.
209 if (&N == &Pattern.getSrcPattern()) {
210 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
211 AddMatcher(new CheckOpcodeMatcher(NI));
214 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
217 // An UnsetInit represents a named node without any constraints.
218 if (isa<UnsetInit>(N.getLeafValue())) {
219 assert(N.hasName() && "Unnamed ? leaf");
220 return;
223 const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue());
224 if (!DI) {
225 errs() << "Unknown leaf kind: " << N << "\n";
226 abort();
229 const Record *LeafRec = DI->getDef();
231 // A ValueType leaf node can represent a register when named, or itself when
232 // unnamed.
233 if (LeafRec->isSubClassOf("ValueType")) {
234 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
235 if (N.hasName())
236 return;
237 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
238 return AddMatcher(new CheckValueTypeMatcher(llvm::getValueType(LeafRec)));
241 if ( // Handle register references. Nothing to do here, they always match.
242 LeafRec->isSubClassOf("RegisterClass") ||
243 LeafRec->isSubClassOf("RegisterOperand") ||
244 LeafRec->isSubClassOf("PointerLikeRegClass") ||
245 LeafRec->isSubClassOf("SubRegIndex") ||
246 // Place holder for SRCVALUE nodes. Nothing to do here.
247 LeafRec->getName() == "srcvalue")
248 return;
250 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
251 // record the register
252 if (LeafRec->isSubClassOf("Register")) {
253 AddMatcher(new RecordMatcher("physreg input " + LeafRec->getName().str(),
254 NextRecordedOperandNo));
255 PhysRegInputs.push_back(std::pair(LeafRec, NextRecordedOperandNo++));
256 return;
259 if (LeafRec->isSubClassOf("CondCode"))
260 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
262 if (LeafRec->isSubClassOf("ComplexPattern")) {
263 // We can't model ComplexPattern uses that don't have their name taken yet.
264 // The OPC_CheckComplexPattern operation implicitly records the results.
265 if (N.getName().empty()) {
266 std::string S;
267 raw_string_ostream OS(S);
268 OS << "We expect complex pattern uses to have names: " << N;
269 PrintFatalError(S);
272 // Remember this ComplexPattern so that we can emit it after all the other
273 // structural matches are done.
274 unsigned InputOperand = VariableMap[N.getName()] - 1;
275 MatchedComplexPatterns.push_back(std::pair(&N, InputOperand));
276 return;
279 if (LeafRec->getName() == "immAllOnesV" ||
280 LeafRec->getName() == "immAllZerosV") {
281 // If this is the root of the dag we're matching, we emit a redundant opcode
282 // check to ensure that this gets folded into the normal top-level
283 // OpcodeSwitch.
284 if (&N == &Pattern.getSrcPattern()) {
285 MVT VT = N.getSimpleType(0);
286 StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
287 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
288 AddMatcher(new CheckOpcodeMatcher(NI));
290 if (LeafRec->getName() == "immAllOnesV")
291 AddMatcher(new CheckImmAllOnesVMatcher());
292 else
293 AddMatcher(new CheckImmAllZerosVMatcher());
294 return;
297 errs() << "Unknown leaf kind: " << N << "\n";
298 abort();
301 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode &N,
302 TreePatternNode &NodeNoTypes) {
303 assert(!N.isLeaf() && "Not an operator?");
305 if (N.getOperator()->isSubClassOf("ComplexPattern")) {
306 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
307 // "MY_PAT:op1:op2". We should already have validated that the uses are
308 // consistent.
309 std::string PatternName = std::string(N.getOperator()->getName());
310 for (unsigned i = 0; i < N.getNumChildren(); ++i) {
311 PatternName += ":";
312 PatternName += N.getChild(i).getName();
315 if (recordUniqueNode(PatternName)) {
316 auto NodeAndOpNum = std::pair(&N, NextRecordedOperandNo - 1);
317 MatchedComplexPatterns.push_back(NodeAndOpNum);
320 return;
323 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N.getOperator());
325 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
326 // a constant without a predicate fn that has more than one bit set, handle
327 // this as a special case. This is usually for targets that have special
328 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
329 // handling stuff). Using these instructions is often far more efficient
330 // than materializing the constant. Unfortunately, both the instcombiner
331 // and the dag combiner can often infer that bits are dead, and thus drop
332 // them from the mask in the dag. For example, it might turn 'AND X, 255'
333 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
334 // to handle this.
335 if ((N.getOperator()->getName() == "and" ||
336 N.getOperator()->getName() == "or") &&
337 N.getChild(1).isLeaf() && N.getChild(1).getPredicateCalls().empty() &&
338 N.getPredicateCalls().empty()) {
339 if (const IntInit *II = dyn_cast<IntInit>(N.getChild(1).getLeafValue())) {
340 if (!llvm::has_single_bit<uint32_t>(
341 II->getValue())) { // Don't bother with single bits.
342 // If this is at the root of the pattern, we emit a redundant
343 // CheckOpcode so that the following checks get factored properly under
344 // a single opcode check.
345 if (&N == &Pattern.getSrcPattern())
346 AddMatcher(new CheckOpcodeMatcher(CInfo));
348 // Emit the CheckAndImm/CheckOrImm node.
349 if (N.getOperator()->getName() == "and")
350 AddMatcher(new CheckAndImmMatcher(II->getValue()));
351 else
352 AddMatcher(new CheckOrImmMatcher(II->getValue()));
354 // Match the LHS of the AND as appropriate.
355 AddMatcher(new MoveChildMatcher(0));
356 EmitMatchCode(N.getChild(0), NodeNoTypes.getChild(0));
357 AddMatcher(new MoveParentMatcher());
358 return;
363 // Check that the current opcode lines up.
364 AddMatcher(new CheckOpcodeMatcher(CInfo));
366 // If this node has memory references (i.e. is a load or store), tell the
367 // interpreter to capture them in the memref array.
368 if (N.NodeHasProperty(SDNPMemOperand, CGP))
369 AddMatcher(new RecordMemRefMatcher());
371 // If this node has a chain, then the chain is operand #0 is the SDNode, and
372 // the child numbers of the node are all offset by one.
373 unsigned OpNo = 0;
374 if (N.NodeHasProperty(SDNPHasChain, CGP)) {
375 // Record the node and remember it in our chained nodes list.
376 AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() +
377 "' chained node",
378 NextRecordedOperandNo));
379 // Remember all of the input chains our pattern will match.
380 MatchedChainNodes.push_back(NextRecordedOperandNo++);
382 // Don't look at the input chain when matching the tree pattern to the
383 // SDNode.
384 OpNo = 1;
386 // If this node is not the root and the subtree underneath it produces a
387 // chain, then the result of matching the node is also produce a chain.
388 // Beyond that, this means that we're also folding (at least) the root node
389 // into the node that produce the chain (for example, matching
390 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
391 // problematic, if the 'reg' node also uses the load (say, its chain).
392 // Graphically:
394 // [LD]
395 // ^ ^
396 // | \ DAG's like cheese.
397 // / |
398 // / [YY]
399 // | ^
400 // [XX]--/
402 // It would be invalid to fold XX and LD. In this case, folding the two
403 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
404 // To prevent this, we emit a dynamic check for legality before allowing
405 // this to be folded.
407 const TreePatternNode &Root = Pattern.getSrcPattern();
408 if (&N != &Root) { // Not the root of the pattern.
409 // If there is a node between the root and this node, then we definitely
410 // need to emit the check.
411 bool NeedCheck = !Root.hasChild(&N);
413 // If it *is* an immediate child of the root, we can still need a check if
414 // the root SDNode has multiple inputs. For us, this means that it is an
415 // intrinsic, has multiple operands, or has other inputs like chain or
416 // glue).
417 if (!NeedCheck) {
418 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root.getOperator());
419 NeedCheck =
420 Root.getOperator() == CGP.get_intrinsic_void_sdnode() ||
421 Root.getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
422 Root.getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
423 PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) ||
424 PInfo.hasProperty(SDNPInGlue) || PInfo.hasProperty(SDNPOptInGlue);
427 if (NeedCheck)
428 AddMatcher(new CheckFoldableChainNodeMatcher());
432 // If this node has an output glue and isn't the root, remember it.
433 if (N.NodeHasProperty(SDNPOutGlue, CGP) && &N != &Pattern.getSrcPattern()) {
434 // TODO: This redundantly records nodes with both glues and chains.
436 // Record the node and remember it in our chained nodes list.
437 AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() +
438 "' glue output node",
439 NextRecordedOperandNo));
442 // If this node is known to have an input glue or if it *might* have an input
443 // glue, capture it as the glue input of the pattern.
444 if (N.NodeHasProperty(SDNPOptInGlue, CGP) ||
445 N.NodeHasProperty(SDNPInGlue, CGP))
446 AddMatcher(new CaptureGlueInputMatcher());
448 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i, ++OpNo) {
449 // Get the code suitable for matching this child. Move to the child, check
450 // it then move back to the parent.
451 AddMatcher(new MoveChildMatcher(OpNo));
452 EmitMatchCode(N.getChild(i), NodeNoTypes.getChild(i));
453 AddMatcher(new MoveParentMatcher());
457 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
458 unsigned Entry = 0;
459 for (const std::string &Name : Names) {
460 unsigned &VarMapEntry = VariableMap[Name];
461 if (!Entry)
462 Entry = VarMapEntry;
463 assert(Entry == VarMapEntry);
466 bool NewRecord = false;
467 if (Entry == 0) {
468 // If it is a named node, we must emit a 'Record' opcode.
469 std::string WhatFor;
470 for (const std::string &Name : Names) {
471 if (!WhatFor.empty())
472 WhatFor += ',';
473 WhatFor += "$" + Name;
475 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
476 Entry = ++NextRecordedOperandNo;
477 NewRecord = true;
478 } else {
479 // If we get here, this is a second reference to a specific name. Since
480 // we already have checked that the first reference is valid, we don't
481 // have to recursively match it, just check that it's the same as the
482 // previously named thing.
483 AddMatcher(new CheckSameMatcher(Entry - 1));
486 for (const std::string &Name : Names)
487 VariableMap[Name] = Entry;
489 return NewRecord;
492 void MatcherGen::EmitMatchCode(const TreePatternNode &N,
493 TreePatternNode &NodeNoTypes) {
494 // If N and NodeNoTypes don't agree on a type, then this is a case where we
495 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
496 // reinfer any correlated types.
497 SmallVector<unsigned, 2> ResultsToTypeCheck;
499 for (unsigned i = 0, e = NodeNoTypes.getNumTypes(); i != e; ++i) {
500 if (NodeNoTypes.getExtType(i) == N.getExtType(i))
501 continue;
502 NodeNoTypes.setType(i, N.getExtType(i));
503 InferPossibleTypes();
504 ResultsToTypeCheck.push_back(i);
507 // If this node has a name associated with it, capture it in VariableMap. If
508 // we already saw this in the pattern, emit code to verify dagness.
509 SmallVector<std::string, 4> Names;
510 if (!N.getName().empty())
511 Names.push_back(N.getName());
513 for (const ScopedName &Name : N.getNamesAsPredicateArg()) {
514 Names.push_back(
515 ("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
518 if (!Names.empty()) {
519 if (!recordUniqueNode(Names))
520 return;
523 if (N.isLeaf())
524 EmitLeafMatchCode(N);
525 else
526 EmitOperatorMatchCode(N, NodeNoTypes);
528 // If there are node predicates for this node, generate their checks.
529 for (unsigned i = 0, e = N.getPredicateCalls().size(); i != e; ++i) {
530 const TreePredicateCall &Pred = N.getPredicateCalls()[i];
531 SmallVector<unsigned, 4> Operands;
532 if (Pred.Fn.usesOperands()) {
533 TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
534 for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
535 std::string Name =
536 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
537 Operands.push_back(getNamedArgumentSlot(Name));
540 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
543 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
544 AddMatcher(new CheckTypeMatcher(N.getSimpleType(ResultsToTypeCheck[i]),
545 ResultsToTypeCheck[i]));
548 /// EmitMatcherCode - Generate the code that matches the predicate of this
549 /// pattern for the specified Variant. If the variant is invalid this returns
550 /// true and does not generate code, if it is valid, it returns false.
551 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
552 // If the root of the pattern is a ComplexPattern and if it is specified to
553 // match some number of root opcodes, these are considered to be our variants.
554 // Depending on which variant we're generating code for, emit the root opcode
555 // check.
556 if (const ComplexPattern *CP =
557 Pattern.getSrcPattern().getComplexPatternInfo(CGP)) {
558 ArrayRef<const Record *> OpNodes = CP->getRootNodes();
559 assert(!OpNodes.empty() &&
560 "Complex Pattern must specify what it can match");
561 if (Variant >= OpNodes.size())
562 return true;
564 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
565 } else {
566 if (Variant != 0)
567 return true;
570 // Emit the matcher for the pattern structure and types.
571 EmitMatchCode(Pattern.getSrcPattern(), *PatWithNoTypes);
573 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
574 // feature is around, do the check).
575 std::string PredicateCheck = Pattern.getPredicateCheck();
576 if (!PredicateCheck.empty())
577 AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck));
579 // Now that we've completed the structural type match, emit any ComplexPattern
580 // checks (e.g. addrmode matches). We emit this after the structural match
581 // because they are generally more expensive to evaluate and more difficult to
582 // factor.
583 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
584 auto &N = *MatchedComplexPatterns[i].first;
586 // Remember where the results of this match get stuck.
587 if (N.isLeaf()) {
588 NamedComplexPatternOperands[N.getName()] = NextRecordedOperandNo + 1;
589 } else {
590 unsigned CurOp = NextRecordedOperandNo;
591 for (unsigned i = 0; i < N.getNumChildren(); ++i) {
592 NamedComplexPatternOperands[N.getChild(i).getName()] = CurOp + 1;
593 CurOp += N.getChild(i).getNumMIResults(CGP);
597 // Get the slot we recorded the value in from the name on the node.
598 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
600 const ComplexPattern *CP = N.getComplexPatternInfo(CGP);
601 assert(CP && "Not a valid ComplexPattern!");
603 // Emit a CheckComplexPat operation, which does the match (aborting if it
604 // fails) and pushes the matched operands onto the recorded nodes list.
605 AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N.getName(),
606 NextRecordedOperandNo));
608 // Record the right number of operands.
609 NextRecordedOperandNo += CP->getNumOperands();
610 if (CP->hasProperty(SDNPHasChain)) {
611 // If the complex pattern has a chain, then we need to keep track of the
612 // fact that we just recorded a chain input. The chain input will be
613 // matched as the last operand of the predicate if it was successful.
614 ++NextRecordedOperandNo; // Chained node operand.
616 // It is the last operand recorded.
617 assert(NextRecordedOperandNo > 1 &&
618 "Should have recorded input/result chains at least!");
619 MatchedChainNodes.push_back(NextRecordedOperandNo - 1);
622 // TODO: Complex patterns can't have output glues, if they did, we'd want
623 // to record them.
626 return false;
629 //===----------------------------------------------------------------------===//
630 // Node Result Generation
631 //===----------------------------------------------------------------------===//
633 void MatcherGen::EmitResultOfNamedOperand(
634 const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) {
635 assert(!N.getName().empty() && "Operand not named!");
637 if (unsigned SlotNo = NamedComplexPatternOperands[N.getName()]) {
638 // Complex operands have already been completely selected, just find the
639 // right slot ant add the arguments directly.
640 for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i)
641 ResultOps.push_back(SlotNo - 1 + i);
643 return;
646 unsigned SlotNo = getNamedArgumentSlot(N.getName());
648 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
649 // version of the immediate so that it doesn't get selected due to some other
650 // node use.
651 if (!N.isLeaf()) {
652 StringRef OperatorName = N.getOperator()->getName();
653 if (OperatorName == "imm" || OperatorName == "fpimm") {
654 AddMatcher(new EmitConvertToTargetMatcher(SlotNo, NextRecordedOperandNo));
655 ResultOps.push_back(NextRecordedOperandNo++);
656 return;
660 for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i)
661 ResultOps.push_back(SlotNo + i);
664 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode &N,
665 SmallVectorImpl<unsigned> &ResultOps) {
666 assert(N.isLeaf() && "Must be a leaf");
668 if (const IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) {
669 AddMatcher(new EmitIntegerMatcher(II->getValue(), N.getSimpleType(0),
670 NextRecordedOperandNo));
671 ResultOps.push_back(NextRecordedOperandNo++);
672 return;
675 // If this is an explicit register reference, handle it.
676 if (const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) {
677 const Record *Def = DI->getDef();
678 if (Def->isSubClassOf("Register")) {
679 const CodeGenRegister *Reg = CGP.getTargetInfo().getRegBank().getReg(Def);
680 AddMatcher(new EmitRegisterMatcher(Reg, N.getSimpleType(0),
681 NextRecordedOperandNo));
682 ResultOps.push_back(NextRecordedOperandNo++);
683 return;
686 if (Def->getName() == "zero_reg") {
687 AddMatcher(new EmitRegisterMatcher(nullptr, N.getSimpleType(0),
688 NextRecordedOperandNo));
689 ResultOps.push_back(NextRecordedOperandNo++);
690 return;
693 if (Def->getName() == "undef_tied_input") {
694 MVT::SimpleValueType ResultVT = N.getSimpleType(0);
695 auto IDOperandNo = NextRecordedOperandNo++;
696 const Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF");
697 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef);
698 AddMatcher(new EmitNodeMatcher(II, ResultVT, {}, false, false, false,
699 false, -1, IDOperandNo));
700 ResultOps.push_back(IDOperandNo);
701 return;
704 // Handle a reference to a register class. This is used
705 // in COPY_TO_SUBREG instructions.
706 if (Def->isSubClassOf("RegisterOperand"))
707 Def = Def->getValueAsDef("RegClass");
708 if (Def->isSubClassOf("RegisterClass")) {
709 // If the register class has an enum integer value greater than 127, the
710 // encoding overflows the limit of 7 bits, which precludes the use of
711 // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
712 const CodeGenRegisterClass &RC =
713 CGP.getTargetInfo().getRegisterClass(Def);
714 if (RC.EnumValue <= 127) {
715 std::string Value = RC.getQualifiedIdName();
716 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32,
717 NextRecordedOperandNo));
718 } else {
719 AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32,
720 NextRecordedOperandNo));
722 ResultOps.push_back(NextRecordedOperandNo++);
723 return;
726 // Handle a subregister index. This is used for INSERT_SUBREG etc.
727 if (Def->isSubClassOf("SubRegIndex")) {
728 const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
729 // If we have more than 127 subreg indices the encoding can overflow
730 // 7 bit and we cannot use StringInteger.
731 if (RB.getSubRegIndices().size() > 127) {
732 const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
733 assert(I && "Cannot find subreg index by name!");
734 if (I->EnumValue > 127) {
735 AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32,
736 NextRecordedOperandNo));
737 ResultOps.push_back(NextRecordedOperandNo++);
738 return;
741 std::string Value = getQualifiedName(Def);
742 AddMatcher(
743 new EmitStringIntegerMatcher(Value, MVT::i32, NextRecordedOperandNo));
744 ResultOps.push_back(NextRecordedOperandNo++);
745 return;
749 errs() << "unhandled leaf node:\n";
750 N.dump();
753 static bool mayInstNodeLoadOrStore(const TreePatternNode &N,
754 const CodeGenDAGPatterns &CGP) {
755 const Record *Op = N.getOperator();
756 const CodeGenTarget &CGT = CGP.getTargetInfo();
757 CodeGenInstruction &II = CGT.getInstruction(Op);
758 return II.mayLoad || II.mayStore;
761 static unsigned numNodesThatMayLoadOrStore(const TreePatternNode &N,
762 const CodeGenDAGPatterns &CGP) {
763 if (N.isLeaf())
764 return 0;
766 const Record *OpRec = N.getOperator();
767 if (!OpRec->isSubClassOf("Instruction"))
768 return 0;
770 unsigned Count = 0;
771 if (mayInstNodeLoadOrStore(N, CGP))
772 ++Count;
774 for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i)
775 Count += numNodesThatMayLoadOrStore(N.getChild(i), CGP);
777 return Count;
780 void MatcherGen::EmitResultInstructionAsOperand(
781 const TreePatternNode &N, SmallVectorImpl<unsigned> &OutputOps) {
782 const Record *Op = N.getOperator();
783 const CodeGenTarget &CGT = CGP.getTargetInfo();
784 CodeGenInstruction &II = CGT.getInstruction(Op);
785 const DAGInstruction &Inst = CGP.getInstruction(Op);
787 bool isRoot = &N == &Pattern.getDstPattern();
789 // TreeHasOutGlue - True if this tree has glue.
790 bool TreeHasInGlue = false, TreeHasOutGlue = false;
791 if (isRoot) {
792 const TreePatternNode &SrcPat = Pattern.getSrcPattern();
793 TreeHasInGlue = SrcPat.TreeHasProperty(SDNPOptInGlue, CGP) ||
794 SrcPat.TreeHasProperty(SDNPInGlue, CGP);
796 // FIXME2: this is checking the entire pattern, not just the node in
797 // question, doing this just for the root seems like a total hack.
798 TreeHasOutGlue = SrcPat.TreeHasProperty(SDNPOutGlue, CGP);
801 // NumResults - This is the number of results produced by the instruction in
802 // the "outs" list.
803 unsigned NumResults = Inst.getNumResults();
805 // Number of operands we know the output instruction must have. If it is
806 // variadic, we could have more operands.
807 unsigned NumFixedOperands = II.Operands.size();
809 SmallVector<unsigned, 8> InstOps;
811 // Loop over all of the fixed operands of the instruction pattern, emitting
812 // code to fill them all in. The node 'N' usually has number children equal to
813 // the number of input operands of the instruction. However, in cases where
814 // there are predicate operands for an instruction, we need to fill in the
815 // 'execute always' values. Match up the node operands to the instruction
816 // operands to do this.
817 unsigned ChildNo = 0;
819 // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
820 // number of operands at the end of the list which have default values.
821 // Those can come from the pattern if it provides enough arguments, or be
822 // filled in with the default if the pattern hasn't provided them. But any
823 // operand with a default value _before_ the last mandatory one will be
824 // filled in with their defaults unconditionally.
825 unsigned NonOverridableOperands = NumFixedOperands;
826 while (NonOverridableOperands > NumResults &&
827 CGP.operandHasDefault(II.Operands[NonOverridableOperands - 1].Rec))
828 --NonOverridableOperands;
830 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; InstOpNo != e;
831 ++InstOpNo) {
832 // Determine what to emit for this operand.
833 const Record *OperandNode = II.Operands[InstOpNo].Rec;
834 if (CGP.operandHasDefault(OperandNode) &&
835 (InstOpNo < NonOverridableOperands || ChildNo >= N.getNumChildren())) {
836 // This is a predicate or optional def operand which the pattern has not
837 // overridden, or which we aren't letting it override; emit the 'default
838 // ops' operands.
839 const DAGDefaultOperand &DefaultOp = CGP.getDefaultOperand(OperandNode);
840 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
841 EmitResultOperand(*DefaultOp.DefaultOps[i], InstOps);
842 continue;
845 // Otherwise this is a normal operand or a predicate operand without
846 // 'execute always'; emit it.
848 // For operands with multiple sub-operands we may need to emit
849 // multiple child patterns to cover them all. However, ComplexPattern
850 // children may themselves emit multiple MI operands.
851 unsigned NumSubOps = 1;
852 if (OperandNode->isSubClassOf("Operand")) {
853 const DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
854 if (unsigned NumArgs = MIOpInfo->getNumArgs())
855 NumSubOps = NumArgs;
858 unsigned FinalNumOps = InstOps.size() + NumSubOps;
859 while (InstOps.size() < FinalNumOps) {
860 const TreePatternNode &Child = N.getChild(ChildNo);
861 unsigned BeforeAddingNumOps = InstOps.size();
862 EmitResultOperand(Child, InstOps);
863 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
865 // If the operand is an instruction and it produced multiple results, just
866 // take the first one.
867 if (!Child.isLeaf() && Child.getOperator()->isSubClassOf("Instruction"))
868 InstOps.resize(BeforeAddingNumOps + 1);
870 ++ChildNo;
874 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
875 // expand suboperands, use default operands, or other features determined from
876 // the CodeGenInstruction after the fixed operands, which were handled
877 // above. Emit the remaining instructions implicitly added by the use for
878 // variable_ops.
879 if (II.Operands.isVariadic) {
880 for (unsigned I = ChildNo, E = N.getNumChildren(); I < E; ++I)
881 EmitResultOperand(N.getChild(I), InstOps);
884 // If this node has input glue or explicitly specified input physregs, we
885 // need to add chained and glued copyfromreg nodes and materialize the glue
886 // input.
887 if (isRoot && !PhysRegInputs.empty()) {
888 // Emit all of the CopyToReg nodes for the input physical registers. These
889 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
890 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
891 const CodeGenRegister *Reg =
892 CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
893 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, Reg));
896 // Even if the node has no other glue inputs, the resultant node must be
897 // glued to the CopyFromReg nodes we just generated.
898 TreeHasInGlue = true;
901 // Result order: node results, chain, glue
903 // Determine the result types.
904 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
905 for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i)
906 ResultVTs.push_back(N.getSimpleType(i));
908 // If this is the root instruction of a pattern that has physical registers in
909 // its result pattern, add output VTs for them. For example, X86 has:
910 // (set AL, (mul ...))
911 if (isRoot && !Pattern.getDstRegs().empty()) {
912 // If the root came from an implicit def in the instruction handling stuff,
913 // don't re-add it.
914 const Record *HandledReg = nullptr;
915 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
916 HandledReg = II.ImplicitDefs[0];
918 for (const Record *Reg : Pattern.getDstRegs()) {
919 if (!Reg->isSubClassOf("Register") || Reg == HandledReg)
920 continue;
921 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
925 // If this is the root of the pattern and the pattern we're matching includes
926 // a node that is variadic, mark the generated node as variadic so that it
927 // gets the excess operands from the input DAG.
928 int NumFixedArityOperands = -1;
929 if (isRoot && Pattern.getSrcPattern().NodeHasProperty(SDNPVariadic, CGP))
930 NumFixedArityOperands = Pattern.getSrcPattern().getNumChildren();
932 // If this is the root node and multiple matched nodes in the input pattern
933 // have MemRefs in them, have the interpreter collect them and plop them onto
934 // this node. If there is just one node with MemRefs, leave them on that node
935 // even if it is not the root.
937 // FIXME3: This is actively incorrect for result patterns with multiple
938 // memory-referencing instructions.
939 bool PatternHasMemOperands =
940 Pattern.getSrcPattern().TreeHasProperty(SDNPMemOperand, CGP);
942 bool NodeHasMemRefs = false;
943 if (PatternHasMemOperands) {
944 unsigned NumNodesThatLoadOrStore =
945 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
946 bool NodeIsUniqueLoadOrStore =
947 mayInstNodeLoadOrStore(N, CGP) && NumNodesThatLoadOrStore == 1;
948 NodeHasMemRefs =
949 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
950 NumNodesThatLoadOrStore != 1));
953 // Determine whether we need to attach a chain to this node.
954 bool NodeHasChain = false;
955 if (Pattern.getSrcPattern().TreeHasProperty(SDNPHasChain, CGP)) {
956 // For some instructions, we were able to infer from the pattern whether
957 // they should have a chain. Otherwise, attach the chain to the root.
959 // FIXME2: This is extremely dubious for several reasons, not the least of
960 // which it gives special status to instructions with patterns that Pat<>
961 // nodes can't duplicate.
962 if (II.hasChain_Inferred)
963 NodeHasChain = II.hasChain;
964 else
965 NodeHasChain = isRoot;
966 // Instructions which load and store from memory should have a chain,
967 // regardless of whether they happen to have a pattern saying so.
968 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
969 II.hasSideEffects)
970 NodeHasChain = true;
973 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
974 "Node has no result");
976 AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain,
977 TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs,
978 NumFixedArityOperands, NextRecordedOperandNo));
980 // The non-chain and non-glue results of the newly emitted node get recorded.
981 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
982 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue)
983 break;
984 OutputOps.push_back(NextRecordedOperandNo++);
988 void MatcherGen::EmitResultSDNodeXFormAsOperand(
989 const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) {
990 assert(N.getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
992 // Emit the operand.
993 SmallVector<unsigned, 8> InputOps;
995 // FIXME2: Could easily generalize this to support multiple inputs and outputs
996 // to the SDNodeXForm. For now we just support one input and one output like
997 // the old instruction selector.
998 assert(N.getNumChildren() == 1);
999 EmitResultOperand(N.getChild(0), InputOps);
1001 // The input currently must have produced exactly one result.
1002 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
1004 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N.getOperator(),
1005 NextRecordedOperandNo));
1006 ResultOps.push_back(NextRecordedOperandNo++);
1009 void MatcherGen::EmitResultOperand(const TreePatternNode &N,
1010 SmallVectorImpl<unsigned> &ResultOps) {
1011 // This is something selected from the pattern we matched.
1012 if (!N.getName().empty())
1013 return EmitResultOfNamedOperand(N, ResultOps);
1015 if (N.isLeaf())
1016 return EmitResultLeafAsOperand(N, ResultOps);
1018 const Record *OpRec = N.getOperator();
1019 if (OpRec->isSubClassOf("Instruction"))
1020 return EmitResultInstructionAsOperand(N, ResultOps);
1021 if (OpRec->isSubClassOf("SDNodeXForm"))
1022 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
1023 errs() << "Unknown result node to emit code for: " << N << '\n';
1024 PrintFatalError("Unknown node in result pattern!");
1027 void MatcherGen::EmitResultCode() {
1028 // Patterns that match nodes with (potentially multiple) chain inputs have to
1029 // merge them together into a token factor. This informs the generated code
1030 // what all the chained nodes are.
1031 if (!MatchedChainNodes.empty())
1032 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
1034 // Codegen the root of the result pattern, capturing the resulting values.
1035 SmallVector<unsigned, 8> Ops;
1036 EmitResultOperand(Pattern.getDstPattern(), Ops);
1038 // At this point, we have however many values the result pattern produces.
1039 // However, the input pattern might not need all of these. If there are
1040 // excess values at the end (such as implicit defs of condition codes etc)
1041 // just lop them off. This doesn't need to worry about glue or chains, just
1042 // explicit results.
1044 unsigned NumSrcResults = Pattern.getSrcPattern().getNumTypes();
1046 // If the pattern also has implicit results, count them as well.
1047 if (!Pattern.getDstRegs().empty()) {
1048 // If the root came from an implicit def in the instruction handling stuff,
1049 // don't re-add it.
1050 const Record *HandledReg = nullptr;
1051 const TreePatternNode &DstPat = Pattern.getDstPattern();
1052 if (!DstPat.isLeaf() && DstPat.getOperator()->isSubClassOf("Instruction")) {
1053 const CodeGenTarget &CGT = CGP.getTargetInfo();
1054 CodeGenInstruction &II = CGT.getInstruction(DstPat.getOperator());
1056 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
1057 HandledReg = II.ImplicitDefs[0];
1060 for (const Record *Reg : Pattern.getDstRegs()) {
1061 if (!Reg->isSubClassOf("Register") || Reg == HandledReg)
1062 continue;
1063 ++NumSrcResults;
1067 SmallVector<unsigned, 8> Results(Ops);
1069 // Apply result permutation.
1070 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern().getNumResults();
1071 ++ResNo) {
1072 Results[ResNo] = Ops[Pattern.getDstPattern().getResultIndex(ResNo)];
1075 Results.resize(NumSrcResults);
1076 AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1079 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1080 /// the specified variant. If the variant number is invalid, this returns null.
1081 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1082 unsigned Variant,
1083 const CodeGenDAGPatterns &CGP) {
1084 MatcherGen Gen(Pattern, CGP);
1086 // Generate the code for the matcher.
1087 if (Gen.EmitMatcherCode(Variant))
1088 return nullptr;
1090 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1091 // FIXME2: Split result code out to another table, and make the matcher end
1092 // with an "Emit <index>" command. This allows result generation stuff to be
1093 // shared and factored?
1095 // If the match succeeds, then we generate Pattern.
1096 Gen.EmitResultCode();
1098 // Unconditional match.
1099 return Gen.GetMatcher();