[SCEV] Ensure shift amount is in range before calling getZExtValue()
[llvm-project.git] / llvm / lib / Analysis / ScalarEvolution.cpp
blob623814c038a78fba96a52ecc76898710cfc75a80
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
37 //===----------------------------------------------------------------------===//
39 // There are several good references for the techniques used in this analysis.
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 // On computational properties of chains of recurrences
46 // Eugene V. Zima
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/TargetLibraryInfo.h"
83 #include "llvm/Analysis/ValueTracking.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/Constant.h"
89 #include "llvm/IR/ConstantRange.h"
90 #include "llvm/IR/Constants.h"
91 #include "llvm/IR/DataLayout.h"
92 #include "llvm/IR/DerivedTypes.h"
93 #include "llvm/IR/Dominators.h"
94 #include "llvm/IR/Function.h"
95 #include "llvm/IR/GlobalAlias.h"
96 #include "llvm/IR/GlobalValue.h"
97 #include "llvm/IR/InstIterator.h"
98 #include "llvm/IR/InstrTypes.h"
99 #include "llvm/IR/Instruction.h"
100 #include "llvm/IR/Instructions.h"
101 #include "llvm/IR/IntrinsicInst.h"
102 #include "llvm/IR/Intrinsics.h"
103 #include "llvm/IR/LLVMContext.h"
104 #include "llvm/IR/Operator.h"
105 #include "llvm/IR/PatternMatch.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/IR/Verifier.h"
111 #include "llvm/InitializePasses.h"
112 #include "llvm/Pass.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/Compiler.h"
116 #include "llvm/Support/Debug.h"
117 #include "llvm/Support/ErrorHandling.h"
118 #include "llvm/Support/KnownBits.h"
119 #include "llvm/Support/SaveAndRestore.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include <algorithm>
122 #include <cassert>
123 #include <climits>
124 #include <cstdint>
125 #include <cstdlib>
126 #include <map>
127 #include <memory>
128 #include <numeric>
129 #include <optional>
130 #include <tuple>
131 #include <utility>
132 #include <vector>
134 using namespace llvm;
135 using namespace PatternMatch;
137 #define DEBUG_TYPE "scalar-evolution"
139 STATISTIC(NumExitCountsComputed,
140 "Number of loop exits with predictable exit counts");
141 STATISTIC(NumExitCountsNotComputed,
142 "Number of loop exits without predictable exit counts");
143 STATISTIC(NumBruteForceTripCountsComputed,
144 "Number of loops with trip counts computed by force");
146 #ifdef EXPENSIVE_CHECKS
147 bool llvm::VerifySCEV = true;
148 #else
149 bool llvm::VerifySCEV = false;
150 #endif
152 static cl::opt<unsigned>
153 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
154 cl::desc("Maximum number of iterations SCEV will "
155 "symbolically execute a constant "
156 "derived loop"),
157 cl::init(100));
159 static cl::opt<bool, true> VerifySCEVOpt(
160 "verify-scev", cl::Hidden, cl::location(VerifySCEV),
161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163 "verify-scev-strict", cl::Hidden,
164 cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool> VerifyIR(
167 "scev-verify-ir", cl::Hidden,
168 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
169 cl::init(false));
171 static cl::opt<unsigned> MulOpsInlineThreshold(
172 "scev-mulops-inline-threshold", cl::Hidden,
173 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
174 cl::init(32));
176 static cl::opt<unsigned> AddOpsInlineThreshold(
177 "scev-addops-inline-threshold", cl::Hidden,
178 cl::desc("Threshold for inlining addition operands into a SCEV"),
179 cl::init(500));
181 static cl::opt<unsigned> MaxSCEVCompareDepth(
182 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
183 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
184 cl::init(32));
186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
187 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
188 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
189 cl::init(2));
191 static cl::opt<unsigned> MaxValueCompareDepth(
192 "scalar-evolution-max-value-compare-depth", cl::Hidden,
193 cl::desc("Maximum depth of recursive value complexity comparisons"),
194 cl::init(2));
196 static cl::opt<unsigned>
197 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
198 cl::desc("Maximum depth of recursive arithmetics"),
199 cl::init(32));
201 static cl::opt<unsigned> MaxConstantEvolvingDepth(
202 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
203 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
205 static cl::opt<unsigned>
206 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
207 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
208 cl::init(8));
210 static cl::opt<unsigned>
211 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
212 cl::desc("Max coefficients in AddRec during evolving"),
213 cl::init(8));
215 static cl::opt<unsigned>
216 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
217 cl::desc("Size of the expression which is considered huge"),
218 cl::init(4096));
220 static cl::opt<unsigned> RangeIterThreshold(
221 "scev-range-iter-threshold", cl::Hidden,
222 cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
223 cl::init(32));
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227 cl::Hidden, cl::init(true),
228 cl::desc("When printing analysis, include information on every instruction"));
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232 cl::init(false),
233 cl::desc("Use more powerful methods of sharpening expression ranges. May "
234 "be costly in terms of compile time"));
236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239 "Phi strongly connected components"),
240 cl::init(8));
242 static cl::opt<bool>
243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
244 cl::desc("Handle <= and >= in finite loops"),
245 cl::init(true));
247 static cl::opt<bool> UseContextForNoWrapFlagInference(
248 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
249 cl::desc("Infer nuw/nsw flags using context where suitable"),
250 cl::init(true));
252 //===----------------------------------------------------------------------===//
253 // SCEV class definitions
254 //===----------------------------------------------------------------------===//
256 //===----------------------------------------------------------------------===//
257 // Implementation of the SCEV class.
260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
261 LLVM_DUMP_METHOD void SCEV::dump() const {
262 print(dbgs());
263 dbgs() << '\n';
265 #endif
267 void SCEV::print(raw_ostream &OS) const {
268 switch (getSCEVType()) {
269 case scConstant:
270 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
271 return;
272 case scVScale:
273 OS << "vscale";
274 return;
275 case scPtrToInt: {
276 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
277 const SCEV *Op = PtrToInt->getOperand();
278 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
279 << *PtrToInt->getType() << ")";
280 return;
282 case scTruncate: {
283 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
284 const SCEV *Op = Trunc->getOperand();
285 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
286 << *Trunc->getType() << ")";
287 return;
289 case scZeroExtend: {
290 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
291 const SCEV *Op = ZExt->getOperand();
292 OS << "(zext " << *Op->getType() << " " << *Op << " to "
293 << *ZExt->getType() << ")";
294 return;
296 case scSignExtend: {
297 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
298 const SCEV *Op = SExt->getOperand();
299 OS << "(sext " << *Op->getType() << " " << *Op << " to "
300 << *SExt->getType() << ")";
301 return;
303 case scAddRecExpr: {
304 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
305 OS << "{" << *AR->getOperand(0);
306 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
307 OS << ",+," << *AR->getOperand(i);
308 OS << "}<";
309 if (AR->hasNoUnsignedWrap())
310 OS << "nuw><";
311 if (AR->hasNoSignedWrap())
312 OS << "nsw><";
313 if (AR->hasNoSelfWrap() &&
314 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
315 OS << "nw><";
316 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
317 OS << ">";
318 return;
320 case scAddExpr:
321 case scMulExpr:
322 case scUMaxExpr:
323 case scSMaxExpr:
324 case scUMinExpr:
325 case scSMinExpr:
326 case scSequentialUMinExpr: {
327 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
328 const char *OpStr = nullptr;
329 switch (NAry->getSCEVType()) {
330 case scAddExpr: OpStr = " + "; break;
331 case scMulExpr: OpStr = " * "; break;
332 case scUMaxExpr: OpStr = " umax "; break;
333 case scSMaxExpr: OpStr = " smax "; break;
334 case scUMinExpr:
335 OpStr = " umin ";
336 break;
337 case scSMinExpr:
338 OpStr = " smin ";
339 break;
340 case scSequentialUMinExpr:
341 OpStr = " umin_seq ";
342 break;
343 default:
344 llvm_unreachable("There are no other nary expression types.");
346 OS << "(";
347 ListSeparator LS(OpStr);
348 for (const SCEV *Op : NAry->operands())
349 OS << LS << *Op;
350 OS << ")";
351 switch (NAry->getSCEVType()) {
352 case scAddExpr:
353 case scMulExpr:
354 if (NAry->hasNoUnsignedWrap())
355 OS << "<nuw>";
356 if (NAry->hasNoSignedWrap())
357 OS << "<nsw>";
358 break;
359 default:
360 // Nothing to print for other nary expressions.
361 break;
363 return;
365 case scUDivExpr: {
366 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
367 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
368 return;
370 case scUnknown:
371 cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false);
372 return;
373 case scCouldNotCompute:
374 OS << "***COULDNOTCOMPUTE***";
375 return;
377 llvm_unreachable("Unknown SCEV kind!");
380 Type *SCEV::getType() const {
381 switch (getSCEVType()) {
382 case scConstant:
383 return cast<SCEVConstant>(this)->getType();
384 case scVScale:
385 return cast<SCEVVScale>(this)->getType();
386 case scPtrToInt:
387 case scTruncate:
388 case scZeroExtend:
389 case scSignExtend:
390 return cast<SCEVCastExpr>(this)->getType();
391 case scAddRecExpr:
392 return cast<SCEVAddRecExpr>(this)->getType();
393 case scMulExpr:
394 return cast<SCEVMulExpr>(this)->getType();
395 case scUMaxExpr:
396 case scSMaxExpr:
397 case scUMinExpr:
398 case scSMinExpr:
399 return cast<SCEVMinMaxExpr>(this)->getType();
400 case scSequentialUMinExpr:
401 return cast<SCEVSequentialMinMaxExpr>(this)->getType();
402 case scAddExpr:
403 return cast<SCEVAddExpr>(this)->getType();
404 case scUDivExpr:
405 return cast<SCEVUDivExpr>(this)->getType();
406 case scUnknown:
407 return cast<SCEVUnknown>(this)->getType();
408 case scCouldNotCompute:
409 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
411 llvm_unreachable("Unknown SCEV kind!");
414 ArrayRef<const SCEV *> SCEV::operands() const {
415 switch (getSCEVType()) {
416 case scConstant:
417 case scVScale:
418 case scUnknown:
419 return {};
420 case scPtrToInt:
421 case scTruncate:
422 case scZeroExtend:
423 case scSignExtend:
424 return cast<SCEVCastExpr>(this)->operands();
425 case scAddRecExpr:
426 case scAddExpr:
427 case scMulExpr:
428 case scUMaxExpr:
429 case scSMaxExpr:
430 case scUMinExpr:
431 case scSMinExpr:
432 case scSequentialUMinExpr:
433 return cast<SCEVNAryExpr>(this)->operands();
434 case scUDivExpr:
435 return cast<SCEVUDivExpr>(this)->operands();
436 case scCouldNotCompute:
437 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
439 llvm_unreachable("Unknown SCEV kind!");
442 bool SCEV::isZero() const {
443 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
444 return SC->getValue()->isZero();
445 return false;
448 bool SCEV::isOne() const {
449 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
450 return SC->getValue()->isOne();
451 return false;
454 bool SCEV::isAllOnesValue() const {
455 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
456 return SC->getValue()->isMinusOne();
457 return false;
460 bool SCEV::isNonConstantNegative() const {
461 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
462 if (!Mul) return false;
464 // If there is a constant factor, it will be first.
465 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
466 if (!SC) return false;
468 // Return true if the value is negative, this matches things like (-42 * V).
469 return SC->getAPInt().isNegative();
472 SCEVCouldNotCompute::SCEVCouldNotCompute() :
473 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
475 bool SCEVCouldNotCompute::classof(const SCEV *S) {
476 return S->getSCEVType() == scCouldNotCompute;
479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
480 FoldingSetNodeID ID;
481 ID.AddInteger(scConstant);
482 ID.AddPointer(V);
483 void *IP = nullptr;
484 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
485 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
486 UniqueSCEVs.InsertNode(S, IP);
487 return S;
490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
491 return getConstant(ConstantInt::get(getContext(), Val));
494 const SCEV *
495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
496 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
497 return getConstant(ConstantInt::get(ITy, V, isSigned));
500 const SCEV *ScalarEvolution::getVScale(Type *Ty) {
501 FoldingSetNodeID ID;
502 ID.AddInteger(scVScale);
503 ID.AddPointer(Ty);
504 void *IP = nullptr;
505 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
506 return S;
507 SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty);
508 UniqueSCEVs.InsertNode(S, IP);
509 return S;
512 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
513 const SCEV *op, Type *ty)
514 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
516 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
517 Type *ITy)
518 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
519 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
520 "Must be a non-bit-width-changing pointer-to-integer cast!");
523 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
524 SCEVTypes SCEVTy, const SCEV *op,
525 Type *ty)
526 : SCEVCastExpr(ID, SCEVTy, op, ty) {}
528 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
529 Type *ty)
530 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
531 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
532 "Cannot truncate non-integer value!");
535 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
536 const SCEV *op, Type *ty)
537 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
538 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
539 "Cannot zero extend non-integer value!");
542 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
543 const SCEV *op, Type *ty)
544 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
545 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
546 "Cannot sign extend non-integer value!");
549 void SCEVUnknown::deleted() {
550 // Clear this SCEVUnknown from various maps.
551 SE->forgetMemoizedResults(this);
553 // Remove this SCEVUnknown from the uniquing map.
554 SE->UniqueSCEVs.RemoveNode(this);
556 // Release the value.
557 setValPtr(nullptr);
560 void SCEVUnknown::allUsesReplacedWith(Value *New) {
561 // Clear this SCEVUnknown from various maps.
562 SE->forgetMemoizedResults(this);
564 // Remove this SCEVUnknown from the uniquing map.
565 SE->UniqueSCEVs.RemoveNode(this);
567 // Replace the value pointer in case someone is still using this SCEVUnknown.
568 setValPtr(New);
571 //===----------------------------------------------------------------------===//
572 // SCEV Utilities
573 //===----------------------------------------------------------------------===//
575 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
576 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
577 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
578 /// have been previously deemed to be "equally complex" by this routine. It is
579 /// intended to avoid exponential time complexity in cases like:
581 /// %a = f(%x, %y)
582 /// %b = f(%a, %a)
583 /// %c = f(%b, %b)
585 /// %d = f(%x, %y)
586 /// %e = f(%d, %d)
587 /// %f = f(%e, %e)
589 /// CompareValueComplexity(%f, %c)
591 /// Since we do not continue running this routine on expression trees once we
592 /// have seen unequal values, there is no need to track them in the cache.
593 static int
594 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
595 const LoopInfo *const LI, Value *LV, Value *RV,
596 unsigned Depth) {
597 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
598 return 0;
600 // Order pointer values after integer values. This helps SCEVExpander form
601 // GEPs.
602 bool LIsPointer = LV->getType()->isPointerTy(),
603 RIsPointer = RV->getType()->isPointerTy();
604 if (LIsPointer != RIsPointer)
605 return (int)LIsPointer - (int)RIsPointer;
607 // Compare getValueID values.
608 unsigned LID = LV->getValueID(), RID = RV->getValueID();
609 if (LID != RID)
610 return (int)LID - (int)RID;
612 // Sort arguments by their position.
613 if (const auto *LA = dyn_cast<Argument>(LV)) {
614 const auto *RA = cast<Argument>(RV);
615 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
616 return (int)LArgNo - (int)RArgNo;
619 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
620 const auto *RGV = cast<GlobalValue>(RV);
622 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
623 auto LT = GV->getLinkage();
624 return !(GlobalValue::isPrivateLinkage(LT) ||
625 GlobalValue::isInternalLinkage(LT));
628 // Use the names to distinguish the two values, but only if the
629 // names are semantically important.
630 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
631 return LGV->getName().compare(RGV->getName());
634 // For instructions, compare their loop depth, and their operand count. This
635 // is pretty loose.
636 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
637 const auto *RInst = cast<Instruction>(RV);
639 // Compare loop depths.
640 const BasicBlock *LParent = LInst->getParent(),
641 *RParent = RInst->getParent();
642 if (LParent != RParent) {
643 unsigned LDepth = LI->getLoopDepth(LParent),
644 RDepth = LI->getLoopDepth(RParent);
645 if (LDepth != RDepth)
646 return (int)LDepth - (int)RDepth;
649 // Compare the number of operands.
650 unsigned LNumOps = LInst->getNumOperands(),
651 RNumOps = RInst->getNumOperands();
652 if (LNumOps != RNumOps)
653 return (int)LNumOps - (int)RNumOps;
655 for (unsigned Idx : seq(LNumOps)) {
656 int Result =
657 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
658 RInst->getOperand(Idx), Depth + 1);
659 if (Result != 0)
660 return Result;
664 EqCacheValue.unionSets(LV, RV);
665 return 0;
668 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
669 // than RHS, respectively. A three-way result allows recursive comparisons to be
670 // more efficient.
671 // If the max analysis depth was reached, return std::nullopt, assuming we do
672 // not know if they are equivalent for sure.
673 static std::optional<int>
674 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
675 EquivalenceClasses<const Value *> &EqCacheValue,
676 const LoopInfo *const LI, const SCEV *LHS,
677 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
678 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
679 if (LHS == RHS)
680 return 0;
682 // Primarily, sort the SCEVs by their getSCEVType().
683 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
684 if (LType != RType)
685 return (int)LType - (int)RType;
687 if (EqCacheSCEV.isEquivalent(LHS, RHS))
688 return 0;
690 if (Depth > MaxSCEVCompareDepth)
691 return std::nullopt;
693 // Aside from the getSCEVType() ordering, the particular ordering
694 // isn't very important except that it's beneficial to be consistent,
695 // so that (a + b) and (b + a) don't end up as different expressions.
696 switch (LType) {
697 case scUnknown: {
698 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
699 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
701 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
702 RU->getValue(), Depth + 1);
703 if (X == 0)
704 EqCacheSCEV.unionSets(LHS, RHS);
705 return X;
708 case scConstant: {
709 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
710 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
712 // Compare constant values.
713 const APInt &LA = LC->getAPInt();
714 const APInt &RA = RC->getAPInt();
715 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
716 if (LBitWidth != RBitWidth)
717 return (int)LBitWidth - (int)RBitWidth;
718 return LA.ult(RA) ? -1 : 1;
721 case scVScale: {
722 const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType());
723 const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType());
724 return LTy->getBitWidth() - RTy->getBitWidth();
727 case scAddRecExpr: {
728 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
729 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
731 // There is always a dominance between two recs that are used by one SCEV,
732 // so we can safely sort recs by loop header dominance. We require such
733 // order in getAddExpr.
734 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
735 if (LLoop != RLoop) {
736 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
737 assert(LHead != RHead && "Two loops share the same header?");
738 if (DT.dominates(LHead, RHead))
739 return 1;
740 assert(DT.dominates(RHead, LHead) &&
741 "No dominance between recurrences used by one SCEV?");
742 return -1;
745 [[fallthrough]];
748 case scTruncate:
749 case scZeroExtend:
750 case scSignExtend:
751 case scPtrToInt:
752 case scAddExpr:
753 case scMulExpr:
754 case scUDivExpr:
755 case scSMaxExpr:
756 case scUMaxExpr:
757 case scSMinExpr:
758 case scUMinExpr:
759 case scSequentialUMinExpr: {
760 ArrayRef<const SCEV *> LOps = LHS->operands();
761 ArrayRef<const SCEV *> ROps = RHS->operands();
763 // Lexicographically compare n-ary-like expressions.
764 unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
765 if (LNumOps != RNumOps)
766 return (int)LNumOps - (int)RNumOps;
768 for (unsigned i = 0; i != LNumOps; ++i) {
769 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i],
770 ROps[i], DT, Depth + 1);
771 if (X != 0)
772 return X;
774 EqCacheSCEV.unionSets(LHS, RHS);
775 return 0;
778 case scCouldNotCompute:
779 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
781 llvm_unreachable("Unknown SCEV kind!");
784 /// Given a list of SCEV objects, order them by their complexity, and group
785 /// objects of the same complexity together by value. When this routine is
786 /// finished, we know that any duplicates in the vector are consecutive and that
787 /// complexity is monotonically increasing.
789 /// Note that we go take special precautions to ensure that we get deterministic
790 /// results from this routine. In other words, we don't want the results of
791 /// this to depend on where the addresses of various SCEV objects happened to
792 /// land in memory.
793 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
794 LoopInfo *LI, DominatorTree &DT) {
795 if (Ops.size() < 2) return; // Noop
797 EquivalenceClasses<const SCEV *> EqCacheSCEV;
798 EquivalenceClasses<const Value *> EqCacheValue;
800 // Whether LHS has provably less complexity than RHS.
801 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
802 auto Complexity =
803 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
804 return Complexity && *Complexity < 0;
806 if (Ops.size() == 2) {
807 // This is the common case, which also happens to be trivially simple.
808 // Special case it.
809 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
810 if (IsLessComplex(RHS, LHS))
811 std::swap(LHS, RHS);
812 return;
815 // Do the rough sort by complexity.
816 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
817 return IsLessComplex(LHS, RHS);
820 // Now that we are sorted by complexity, group elements of the same
821 // complexity. Note that this is, at worst, N^2, but the vector is likely to
822 // be extremely short in practice. Note that we take this approach because we
823 // do not want to depend on the addresses of the objects we are grouping.
824 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
825 const SCEV *S = Ops[i];
826 unsigned Complexity = S->getSCEVType();
828 // If there are any objects of the same complexity and same value as this
829 // one, group them.
830 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
831 if (Ops[j] == S) { // Found a duplicate.
832 // Move it to immediately after i'th element.
833 std::swap(Ops[i+1], Ops[j]);
834 ++i; // no need to rescan it.
835 if (i == e-2) return; // Done!
841 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
842 /// least HugeExprThreshold nodes).
843 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
844 return any_of(Ops, [](const SCEV *S) {
845 return S->getExpressionSize() >= HugeExprThreshold;
849 //===----------------------------------------------------------------------===//
850 // Simple SCEV method implementations
851 //===----------------------------------------------------------------------===//
853 /// Compute BC(It, K). The result has width W. Assume, K > 0.
854 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
855 ScalarEvolution &SE,
856 Type *ResultTy) {
857 // Handle the simplest case efficiently.
858 if (K == 1)
859 return SE.getTruncateOrZeroExtend(It, ResultTy);
861 // We are using the following formula for BC(It, K):
863 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
865 // Suppose, W is the bitwidth of the return value. We must be prepared for
866 // overflow. Hence, we must assure that the result of our computation is
867 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
868 // safe in modular arithmetic.
870 // However, this code doesn't use exactly that formula; the formula it uses
871 // is something like the following, where T is the number of factors of 2 in
872 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
873 // exponentiation:
875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
877 // This formula is trivially equivalent to the previous formula. However,
878 // this formula can be implemented much more efficiently. The trick is that
879 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
880 // arithmetic. To do exact division in modular arithmetic, all we have
881 // to do is multiply by the inverse. Therefore, this step can be done at
882 // width W.
884 // The next issue is how to safely do the division by 2^T. The way this
885 // is done is by doing the multiplication step at a width of at least W + T
886 // bits. This way, the bottom W+T bits of the product are accurate. Then,
887 // when we perform the division by 2^T (which is equivalent to a right shift
888 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
889 // truncated out after the division by 2^T.
891 // In comparison to just directly using the first formula, this technique
892 // is much more efficient; using the first formula requires W * K bits,
893 // but this formula less than W + K bits. Also, the first formula requires
894 // a division step, whereas this formula only requires multiplies and shifts.
896 // It doesn't matter whether the subtraction step is done in the calculation
897 // width or the input iteration count's width; if the subtraction overflows,
898 // the result must be zero anyway. We prefer here to do it in the width of
899 // the induction variable because it helps a lot for certain cases; CodeGen
900 // isn't smart enough to ignore the overflow, which leads to much less
901 // efficient code if the width of the subtraction is wider than the native
902 // register width.
904 // (It's possible to not widen at all by pulling out factors of 2 before
905 // the multiplication; for example, K=2 can be calculated as
906 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
907 // extra arithmetic, so it's not an obvious win, and it gets
908 // much more complicated for K > 3.)
910 // Protection from insane SCEVs; this bound is conservative,
911 // but it probably doesn't matter.
912 if (K > 1000)
913 return SE.getCouldNotCompute();
915 unsigned W = SE.getTypeSizeInBits(ResultTy);
917 // Calculate K! / 2^T and T; we divide out the factors of two before
918 // multiplying for calculating K! / 2^T to avoid overflow.
919 // Other overflow doesn't matter because we only care about the bottom
920 // W bits of the result.
921 APInt OddFactorial(W, 1);
922 unsigned T = 1;
923 for (unsigned i = 3; i <= K; ++i) {
924 APInt Mult(W, i);
925 unsigned TwoFactors = Mult.countr_zero();
926 T += TwoFactors;
927 Mult.lshrInPlace(TwoFactors);
928 OddFactorial *= Mult;
931 // We need at least W + T bits for the multiplication step
932 unsigned CalculationBits = W + T;
934 // Calculate 2^T, at width T+W.
935 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
937 // Calculate the multiplicative inverse of K! / 2^T;
938 // this multiplication factor will perform the exact division by
939 // K! / 2^T.
940 APInt Mod = APInt::getSignedMinValue(W+1);
941 APInt MultiplyFactor = OddFactorial.zext(W+1);
942 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
943 MultiplyFactor = MultiplyFactor.trunc(W);
945 // Calculate the product, at width T+W
946 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
947 CalculationBits);
948 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
949 for (unsigned i = 1; i != K; ++i) {
950 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
951 Dividend = SE.getMulExpr(Dividend,
952 SE.getTruncateOrZeroExtend(S, CalculationTy));
955 // Divide by 2^T
956 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
958 // Truncate the result, and divide by K! / 2^T.
960 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
961 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
964 /// Return the value of this chain of recurrences at the specified iteration
965 /// number. We can evaluate this recurrence by multiplying each element in the
966 /// chain by the binomial coefficient corresponding to it. In other words, we
967 /// can evaluate {A,+,B,+,C,+,D} as:
969 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
971 /// where BC(It, k) stands for binomial coefficient.
972 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
973 ScalarEvolution &SE) const {
974 return evaluateAtIteration(operands(), It, SE);
977 const SCEV *
978 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
979 const SCEV *It, ScalarEvolution &SE) {
980 assert(Operands.size() > 0);
981 const SCEV *Result = Operands[0];
982 for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
983 // The computation is correct in the face of overflow provided that the
984 // multiplication is performed _after_ the evaluation of the binomial
985 // coefficient.
986 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
987 if (isa<SCEVCouldNotCompute>(Coeff))
988 return Coeff;
990 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
992 return Result;
995 //===----------------------------------------------------------------------===//
996 // SCEV Expression folder implementations
997 //===----------------------------------------------------------------------===//
999 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1000 unsigned Depth) {
1001 assert(Depth <= 1 &&
1002 "getLosslessPtrToIntExpr() should self-recurse at most once.");
1004 // We could be called with an integer-typed operands during SCEV rewrites.
1005 // Since the operand is an integer already, just perform zext/trunc/self cast.
1006 if (!Op->getType()->isPointerTy())
1007 return Op;
1009 // What would be an ID for such a SCEV cast expression?
1010 FoldingSetNodeID ID;
1011 ID.AddInteger(scPtrToInt);
1012 ID.AddPointer(Op);
1014 void *IP = nullptr;
1016 // Is there already an expression for such a cast?
1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1018 return S;
1020 // It isn't legal for optimizations to construct new ptrtoint expressions
1021 // for non-integral pointers.
1022 if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1023 return getCouldNotCompute();
1025 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1027 // We can only trivially model ptrtoint if SCEV's effective (integer) type
1028 // is sufficiently wide to represent all possible pointer values.
1029 // We could theoretically teach SCEV to truncate wider pointers, but
1030 // that isn't implemented for now.
1031 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1032 getDataLayout().getTypeSizeInBits(IntPtrTy))
1033 return getCouldNotCompute();
1035 // If not, is this expression something we can't reduce any further?
1036 if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1037 // Perform some basic constant folding. If the operand of the ptr2int cast
1038 // is a null pointer, don't create a ptr2int SCEV expression (that will be
1039 // left as-is), but produce a zero constant.
1040 // NOTE: We could handle a more general case, but lack motivational cases.
1041 if (isa<ConstantPointerNull>(U->getValue()))
1042 return getZero(IntPtrTy);
1044 // Create an explicit cast node.
1045 // We can reuse the existing insert position since if we get here,
1046 // we won't have made any changes which would invalidate it.
1047 SCEV *S = new (SCEVAllocator)
1048 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1049 UniqueSCEVs.InsertNode(S, IP);
1050 registerUser(S, Op);
1051 return S;
1054 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1055 "non-SCEVUnknown's.");
1057 // Otherwise, we've got some expression that is more complex than just a
1058 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1059 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1060 // only, and the expressions must otherwise be integer-typed.
1061 // So sink the cast down to the SCEVUnknown's.
1063 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1064 /// which computes a pointer-typed value, and rewrites the whole expression
1065 /// tree so that *all* the computations are done on integers, and the only
1066 /// pointer-typed operands in the expression are SCEVUnknown.
1067 class SCEVPtrToIntSinkingRewriter
1068 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1069 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1071 public:
1072 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1074 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1075 SCEVPtrToIntSinkingRewriter Rewriter(SE);
1076 return Rewriter.visit(Scev);
1079 const SCEV *visit(const SCEV *S) {
1080 Type *STy = S->getType();
1081 // If the expression is not pointer-typed, just keep it as-is.
1082 if (!STy->isPointerTy())
1083 return S;
1084 // Else, recursively sink the cast down into it.
1085 return Base::visit(S);
1088 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1089 SmallVector<const SCEV *, 2> Operands;
1090 bool Changed = false;
1091 for (const auto *Op : Expr->operands()) {
1092 Operands.push_back(visit(Op));
1093 Changed |= Op != Operands.back();
1095 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1098 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1099 SmallVector<const SCEV *, 2> Operands;
1100 bool Changed = false;
1101 for (const auto *Op : Expr->operands()) {
1102 Operands.push_back(visit(Op));
1103 Changed |= Op != Operands.back();
1105 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1108 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1109 assert(Expr->getType()->isPointerTy() &&
1110 "Should only reach pointer-typed SCEVUnknown's.");
1111 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1115 // And actually perform the cast sinking.
1116 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1117 assert(IntOp->getType()->isIntegerTy() &&
1118 "We must have succeeded in sinking the cast, "
1119 "and ending up with an integer-typed expression!");
1120 return IntOp;
1123 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1124 assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1126 const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1127 if (isa<SCEVCouldNotCompute>(IntOp))
1128 return IntOp;
1130 return getTruncateOrZeroExtend(IntOp, Ty);
1133 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1134 unsigned Depth) {
1135 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1136 "This is not a truncating conversion!");
1137 assert(isSCEVable(Ty) &&
1138 "This is not a conversion to a SCEVable type!");
1139 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1140 Ty = getEffectiveSCEVType(Ty);
1142 FoldingSetNodeID ID;
1143 ID.AddInteger(scTruncate);
1144 ID.AddPointer(Op);
1145 ID.AddPointer(Ty);
1146 void *IP = nullptr;
1147 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1149 // Fold if the operand is constant.
1150 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1151 return getConstant(
1152 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1154 // trunc(trunc(x)) --> trunc(x)
1155 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1156 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1158 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1159 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1160 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1162 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1163 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1164 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1166 if (Depth > MaxCastDepth) {
1167 SCEV *S =
1168 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1169 UniqueSCEVs.InsertNode(S, IP);
1170 registerUser(S, Op);
1171 return S;
1174 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1175 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1176 // if after transforming we have at most one truncate, not counting truncates
1177 // that replace other casts.
1178 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1179 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1180 SmallVector<const SCEV *, 4> Operands;
1181 unsigned numTruncs = 0;
1182 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1183 ++i) {
1184 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1185 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1186 isa<SCEVTruncateExpr>(S))
1187 numTruncs++;
1188 Operands.push_back(S);
1190 if (numTruncs < 2) {
1191 if (isa<SCEVAddExpr>(Op))
1192 return getAddExpr(Operands);
1193 if (isa<SCEVMulExpr>(Op))
1194 return getMulExpr(Operands);
1195 llvm_unreachable("Unexpected SCEV type for Op.");
1197 // Although we checked in the beginning that ID is not in the cache, it is
1198 // possible that during recursion and different modification ID was inserted
1199 // into the cache. So if we find it, just return it.
1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1201 return S;
1204 // If the input value is a chrec scev, truncate the chrec's operands.
1205 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1206 SmallVector<const SCEV *, 4> Operands;
1207 for (const SCEV *Op : AddRec->operands())
1208 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1209 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1212 // Return zero if truncating to known zeros.
1213 uint32_t MinTrailingZeros = getMinTrailingZeros(Op);
1214 if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1215 return getZero(Ty);
1217 // The cast wasn't folded; create an explicit cast node. We can reuse
1218 // the existing insert position since if we get here, we won't have
1219 // made any changes which would invalidate it.
1220 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1221 Op, Ty);
1222 UniqueSCEVs.InsertNode(S, IP);
1223 registerUser(S, Op);
1224 return S;
1227 // Get the limit of a recurrence such that incrementing by Step cannot cause
1228 // signed overflow as long as the value of the recurrence within the
1229 // loop does not exceed this limit before incrementing.
1230 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1231 ICmpInst::Predicate *Pred,
1232 ScalarEvolution *SE) {
1233 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1234 if (SE->isKnownPositive(Step)) {
1235 *Pred = ICmpInst::ICMP_SLT;
1236 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1237 SE->getSignedRangeMax(Step));
1239 if (SE->isKnownNegative(Step)) {
1240 *Pred = ICmpInst::ICMP_SGT;
1241 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1242 SE->getSignedRangeMin(Step));
1244 return nullptr;
1247 // Get the limit of a recurrence such that incrementing by Step cannot cause
1248 // unsigned overflow as long as the value of the recurrence within the loop does
1249 // not exceed this limit before incrementing.
1250 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1251 ICmpInst::Predicate *Pred,
1252 ScalarEvolution *SE) {
1253 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1254 *Pred = ICmpInst::ICMP_ULT;
1256 return SE->getConstant(APInt::getMinValue(BitWidth) -
1257 SE->getUnsignedRangeMax(Step));
1260 namespace {
1262 struct ExtendOpTraitsBase {
1263 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1264 unsigned);
1267 // Used to make code generic over signed and unsigned overflow.
1268 template <typename ExtendOp> struct ExtendOpTraits {
1269 // Members present:
1271 // static const SCEV::NoWrapFlags WrapType;
1273 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1275 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1276 // ICmpInst::Predicate *Pred,
1277 // ScalarEvolution *SE);
1280 template <>
1281 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1282 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1284 static const GetExtendExprTy GetExtendExpr;
1286 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1287 ICmpInst::Predicate *Pred,
1288 ScalarEvolution *SE) {
1289 return getSignedOverflowLimitForStep(Step, Pred, SE);
1293 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1294 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1296 template <>
1297 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1298 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1300 static const GetExtendExprTy GetExtendExpr;
1302 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1303 ICmpInst::Predicate *Pred,
1304 ScalarEvolution *SE) {
1305 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1309 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1310 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1312 } // end anonymous namespace
1314 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1315 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1316 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1317 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1318 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1319 // expression "Step + sext/zext(PreIncAR)" is congruent with
1320 // "sext/zext(PostIncAR)"
1321 template <typename ExtendOpTy>
1322 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1323 ScalarEvolution *SE, unsigned Depth) {
1324 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1325 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1327 const Loop *L = AR->getLoop();
1328 const SCEV *Start = AR->getStart();
1329 const SCEV *Step = AR->getStepRecurrence(*SE);
1331 // Check for a simple looking step prior to loop entry.
1332 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1333 if (!SA)
1334 return nullptr;
1336 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1337 // subtraction is expensive. For this purpose, perform a quick and dirty
1338 // difference, by checking for Step in the operand list. Note, that
1339 // SA might have repeated ops, like %a + %a + ..., so only remove one.
1340 SmallVector<const SCEV *, 4> DiffOps(SA->operands());
1341 for (auto It = DiffOps.begin(); It != DiffOps.end(); ++It)
1342 if (*It == Step) {
1343 DiffOps.erase(It);
1344 break;
1347 if (DiffOps.size() == SA->getNumOperands())
1348 return nullptr;
1350 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1351 // `Step`:
1353 // 1. NSW/NUW flags on the step increment.
1354 auto PreStartFlags =
1355 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1356 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1357 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1358 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1360 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1361 // "S+X does not sign/unsign-overflow".
1364 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1365 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1366 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1367 return PreStart;
1369 // 2. Direct overflow check on the step operation's expression.
1370 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1371 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1372 const SCEV *OperandExtendedStart =
1373 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1374 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1375 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1376 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1377 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1378 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1379 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1380 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1382 return PreStart;
1385 // 3. Loop precondition.
1386 ICmpInst::Predicate Pred;
1387 const SCEV *OverflowLimit =
1388 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1390 if (OverflowLimit &&
1391 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1392 return PreStart;
1394 return nullptr;
1397 // Get the normalized zero or sign extended expression for this AddRec's Start.
1398 template <typename ExtendOpTy>
1399 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1400 ScalarEvolution *SE,
1401 unsigned Depth) {
1402 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1404 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1405 if (!PreStart)
1406 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1408 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1409 Depth),
1410 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1413 // Try to prove away overflow by looking at "nearby" add recurrences. A
1414 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1415 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1417 // Formally:
1419 // {S,+,X} == {S-T,+,X} + T
1420 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1422 // If ({S-T,+,X} + T) does not overflow ... (1)
1424 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1426 // If {S-T,+,X} does not overflow ... (2)
1428 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1429 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1431 // If (S-T)+T does not overflow ... (3)
1433 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1434 // == {Ext(S),+,Ext(X)} == LHS
1436 // Thus, if (1), (2) and (3) are true for some T, then
1437 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1439 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1440 // does not overflow" restricted to the 0th iteration. Therefore we only need
1441 // to check for (1) and (2).
1443 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1444 // is `Delta` (defined below).
1445 template <typename ExtendOpTy>
1446 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1447 const SCEV *Step,
1448 const Loop *L) {
1449 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1451 // We restrict `Start` to a constant to prevent SCEV from spending too much
1452 // time here. It is correct (but more expensive) to continue with a
1453 // non-constant `Start` and do a general SCEV subtraction to compute
1454 // `PreStart` below.
1455 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1456 if (!StartC)
1457 return false;
1459 APInt StartAI = StartC->getAPInt();
1461 for (unsigned Delta : {-2, -1, 1, 2}) {
1462 const SCEV *PreStart = getConstant(StartAI - Delta);
1464 FoldingSetNodeID ID;
1465 ID.AddInteger(scAddRecExpr);
1466 ID.AddPointer(PreStart);
1467 ID.AddPointer(Step);
1468 ID.AddPointer(L);
1469 void *IP = nullptr;
1470 const auto *PreAR =
1471 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1473 // Give up if we don't already have the add recurrence we need because
1474 // actually constructing an add recurrence is relatively expensive.
1475 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1476 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1477 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1478 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1479 DeltaS, &Pred, this);
1480 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1481 return true;
1485 return false;
1488 // Finds an integer D for an expression (C + x + y + ...) such that the top
1489 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1490 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1491 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1492 // the (C + x + y + ...) expression is \p WholeAddExpr.
1493 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1494 const SCEVConstant *ConstantTerm,
1495 const SCEVAddExpr *WholeAddExpr) {
1496 const APInt &C = ConstantTerm->getAPInt();
1497 const unsigned BitWidth = C.getBitWidth();
1498 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1499 uint32_t TZ = BitWidth;
1500 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1501 TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I)));
1502 if (TZ) {
1503 // Set D to be as many least significant bits of C as possible while still
1504 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1505 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1507 return APInt(BitWidth, 0);
1510 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1511 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1512 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1513 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1514 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1515 const APInt &ConstantStart,
1516 const SCEV *Step) {
1517 const unsigned BitWidth = ConstantStart.getBitWidth();
1518 const uint32_t TZ = SE.getMinTrailingZeros(Step);
1519 if (TZ)
1520 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1521 : ConstantStart;
1522 return APInt(BitWidth, 0);
1525 static void insertFoldCacheEntry(
1526 const ScalarEvolution::FoldID &ID, const SCEV *S,
1527 DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1528 DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1529 &FoldCacheUser) {
1530 auto I = FoldCache.insert({ID, S});
1531 if (!I.second) {
1532 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1533 // entry.
1534 auto &UserIDs = FoldCacheUser[I.first->second];
1535 assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1536 for (unsigned I = 0; I != UserIDs.size(); ++I)
1537 if (UserIDs[I] == ID) {
1538 std::swap(UserIDs[I], UserIDs.back());
1539 break;
1541 UserIDs.pop_back();
1542 I.first->second = S;
1544 auto R = FoldCacheUser.insert({S, {}});
1545 R.first->second.push_back(ID);
1548 const SCEV *
1549 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1550 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1551 "This is not an extending conversion!");
1552 assert(isSCEVable(Ty) &&
1553 "This is not a conversion to a SCEVable type!");
1554 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1555 Ty = getEffectiveSCEVType(Ty);
1557 FoldID ID(scZeroExtend, Op, Ty);
1558 auto Iter = FoldCache.find(ID);
1559 if (Iter != FoldCache.end())
1560 return Iter->second;
1562 const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1563 if (!isa<SCEVZeroExtendExpr>(S))
1564 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1565 return S;
1568 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1569 unsigned Depth) {
1570 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1571 "This is not an extending conversion!");
1572 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1573 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1575 // Fold if the operand is constant.
1576 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1577 return getConstant(SC->getAPInt().zext(getTypeSizeInBits(Ty)));
1579 // zext(zext(x)) --> zext(x)
1580 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1581 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1583 // Before doing any expensive analysis, check to see if we've already
1584 // computed a SCEV for this Op and Ty.
1585 FoldingSetNodeID ID;
1586 ID.AddInteger(scZeroExtend);
1587 ID.AddPointer(Op);
1588 ID.AddPointer(Ty);
1589 void *IP = nullptr;
1590 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1591 if (Depth > MaxCastDepth) {
1592 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1593 Op, Ty);
1594 UniqueSCEVs.InsertNode(S, IP);
1595 registerUser(S, Op);
1596 return S;
1599 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1600 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1601 // It's possible the bits taken off by the truncate were all zero bits. If
1602 // so, we should be able to simplify this further.
1603 const SCEV *X = ST->getOperand();
1604 ConstantRange CR = getUnsignedRange(X);
1605 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1606 unsigned NewBits = getTypeSizeInBits(Ty);
1607 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1608 CR.zextOrTrunc(NewBits)))
1609 return getTruncateOrZeroExtend(X, Ty, Depth);
1612 // If the input value is a chrec scev, and we can prove that the value
1613 // did not overflow the old, smaller, value, we can zero extend all of the
1614 // operands (often constants). This allows analysis of something like
1615 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1616 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1617 if (AR->isAffine()) {
1618 const SCEV *Start = AR->getStart();
1619 const SCEV *Step = AR->getStepRecurrence(*this);
1620 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1621 const Loop *L = AR->getLoop();
1623 // If we have special knowledge that this addrec won't overflow,
1624 // we don't need to do any further analysis.
1625 if (AR->hasNoUnsignedWrap()) {
1626 Start =
1627 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1628 Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1629 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1632 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1633 // Note that this serves two purposes: It filters out loops that are
1634 // simply not analyzable, and it covers the case where this code is
1635 // being called from within backedge-taken count analysis, such that
1636 // attempting to ask for the backedge-taken count would likely result
1637 // in infinite recursion. In the later case, the analysis code will
1638 // cope with a conservative value, and it will take care to purge
1639 // that value once it has finished.
1640 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1641 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1642 // Manually compute the final value for AR, checking for overflow.
1644 // Check whether the backedge-taken count can be losslessly casted to
1645 // the addrec's type. The count is always unsigned.
1646 const SCEV *CastedMaxBECount =
1647 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1648 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1649 CastedMaxBECount, MaxBECount->getType(), Depth);
1650 if (MaxBECount == RecastedMaxBECount) {
1651 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1652 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1653 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1654 SCEV::FlagAnyWrap, Depth + 1);
1655 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1656 SCEV::FlagAnyWrap,
1657 Depth + 1),
1658 WideTy, Depth + 1);
1659 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1660 const SCEV *WideMaxBECount =
1661 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1662 const SCEV *OperandExtendedAdd =
1663 getAddExpr(WideStart,
1664 getMulExpr(WideMaxBECount,
1665 getZeroExtendExpr(Step, WideTy, Depth + 1),
1666 SCEV::FlagAnyWrap, Depth + 1),
1667 SCEV::FlagAnyWrap, Depth + 1);
1668 if (ZAdd == OperandExtendedAdd) {
1669 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1670 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1671 // Return the expression with the addrec on the outside.
1672 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1673 Depth + 1);
1674 Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1675 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1677 // Similar to above, only this time treat the step value as signed.
1678 // This covers loops that count down.
1679 OperandExtendedAdd =
1680 getAddExpr(WideStart,
1681 getMulExpr(WideMaxBECount,
1682 getSignExtendExpr(Step, WideTy, Depth + 1),
1683 SCEV::FlagAnyWrap, Depth + 1),
1684 SCEV::FlagAnyWrap, Depth + 1);
1685 if (ZAdd == OperandExtendedAdd) {
1686 // Cache knowledge of AR NW, which is propagated to this AddRec.
1687 // Negative step causes unsigned wrap, but it still can't self-wrap.
1688 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1689 // Return the expression with the addrec on the outside.
1690 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1691 Depth + 1);
1692 Step = getSignExtendExpr(Step, Ty, Depth + 1);
1693 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1698 // Normally, in the cases we can prove no-overflow via a
1699 // backedge guarding condition, we can also compute a backedge
1700 // taken count for the loop. The exceptions are assumptions and
1701 // guards present in the loop -- SCEV is not great at exploiting
1702 // these to compute max backedge taken counts, but can still use
1703 // these to prove lack of overflow. Use this fact to avoid
1704 // doing extra work that may not pay off.
1705 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1706 !AC.assumptions().empty()) {
1708 auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1709 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1710 if (AR->hasNoUnsignedWrap()) {
1711 // Same as nuw case above - duplicated here to avoid a compile time
1712 // issue. It's not clear that the order of checks does matter, but
1713 // it's one of two issue possible causes for a change which was
1714 // reverted. Be conservative for the moment.
1715 Start =
1716 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1717 Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1718 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1721 // For a negative step, we can extend the operands iff doing so only
1722 // traverses values in the range zext([0,UINT_MAX]).
1723 if (isKnownNegative(Step)) {
1724 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1725 getSignedRangeMin(Step));
1726 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1727 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1728 // Cache knowledge of AR NW, which is propagated to this
1729 // AddRec. Negative step causes unsigned wrap, but it
1730 // still can't self-wrap.
1731 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1732 // Return the expression with the addrec on the outside.
1733 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1734 Depth + 1);
1735 Step = getSignExtendExpr(Step, Ty, Depth + 1);
1736 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1741 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1742 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1743 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1744 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1745 const APInt &C = SC->getAPInt();
1746 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1747 if (D != 0) {
1748 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1749 const SCEV *SResidual =
1750 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1751 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1752 return getAddExpr(SZExtD, SZExtR,
1753 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1754 Depth + 1);
1758 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1759 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1760 Start =
1761 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1762 Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1763 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1767 // zext(A % B) --> zext(A) % zext(B)
1769 const SCEV *LHS;
1770 const SCEV *RHS;
1771 if (matchURem(Op, LHS, RHS))
1772 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1773 getZeroExtendExpr(RHS, Ty, Depth + 1));
1776 // zext(A / B) --> zext(A) / zext(B).
1777 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1778 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1779 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1781 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1782 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1783 if (SA->hasNoUnsignedWrap()) {
1784 // If the addition does not unsign overflow then we can, by definition,
1785 // commute the zero extension with the addition operation.
1786 SmallVector<const SCEV *, 4> Ops;
1787 for (const auto *Op : SA->operands())
1788 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1789 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1792 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1793 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1794 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1796 // Often address arithmetics contain expressions like
1797 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1798 // This transformation is useful while proving that such expressions are
1799 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1800 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1801 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1802 if (D != 0) {
1803 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1804 const SCEV *SResidual =
1805 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1806 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1807 return getAddExpr(SZExtD, SZExtR,
1808 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1809 Depth + 1);
1814 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1815 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1816 if (SM->hasNoUnsignedWrap()) {
1817 // If the multiply does not unsign overflow then we can, by definition,
1818 // commute the zero extension with the multiply operation.
1819 SmallVector<const SCEV *, 4> Ops;
1820 for (const auto *Op : SM->operands())
1821 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1822 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1825 // zext(2^K * (trunc X to iN)) to iM ->
1826 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1828 // Proof:
1830 // zext(2^K * (trunc X to iN)) to iM
1831 // = zext((trunc X to iN) << K) to iM
1832 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1833 // (because shl removes the top K bits)
1834 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1835 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1837 if (SM->getNumOperands() == 2)
1838 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1839 if (MulLHS->getAPInt().isPowerOf2())
1840 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1841 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1842 MulLHS->getAPInt().logBase2();
1843 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1844 return getMulExpr(
1845 getZeroExtendExpr(MulLHS, Ty),
1846 getZeroExtendExpr(
1847 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1848 SCEV::FlagNUW, Depth + 1);
1852 // zext(umin(x, y)) -> umin(zext(x), zext(y))
1853 // zext(umax(x, y)) -> umax(zext(x), zext(y))
1854 if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) {
1855 auto *MinMax = cast<SCEVMinMaxExpr>(Op);
1856 SmallVector<const SCEV *, 4> Operands;
1857 for (auto *Operand : MinMax->operands())
1858 Operands.push_back(getZeroExtendExpr(Operand, Ty));
1859 if (isa<SCEVUMinExpr>(MinMax))
1860 return getUMinExpr(Operands);
1861 return getUMaxExpr(Operands);
1864 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1865 if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) {
1866 assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!");
1867 SmallVector<const SCEV *, 4> Operands;
1868 for (auto *Operand : MinMax->operands())
1869 Operands.push_back(getZeroExtendExpr(Operand, Ty));
1870 return getUMinExpr(Operands, /*Sequential*/ true);
1873 // The cast wasn't folded; create an explicit cast node.
1874 // Recompute the insert position, as it may have been invalidated.
1875 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1876 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1877 Op, Ty);
1878 UniqueSCEVs.InsertNode(S, IP);
1879 registerUser(S, Op);
1880 return S;
1883 const SCEV *
1884 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1885 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1886 "This is not an extending conversion!");
1887 assert(isSCEVable(Ty) &&
1888 "This is not a conversion to a SCEVable type!");
1889 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1890 Ty = getEffectiveSCEVType(Ty);
1892 FoldID ID(scSignExtend, Op, Ty);
1893 auto Iter = FoldCache.find(ID);
1894 if (Iter != FoldCache.end())
1895 return Iter->second;
1897 const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1898 if (!isa<SCEVSignExtendExpr>(S))
1899 insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1900 return S;
1903 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1904 unsigned Depth) {
1905 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1906 "This is not an extending conversion!");
1907 assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1908 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1909 Ty = getEffectiveSCEVType(Ty);
1911 // Fold if the operand is constant.
1912 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1913 return getConstant(SC->getAPInt().sext(getTypeSizeInBits(Ty)));
1915 // sext(sext(x)) --> sext(x)
1916 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1917 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1919 // sext(zext(x)) --> zext(x)
1920 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1921 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1923 // Before doing any expensive analysis, check to see if we've already
1924 // computed a SCEV for this Op and Ty.
1925 FoldingSetNodeID ID;
1926 ID.AddInteger(scSignExtend);
1927 ID.AddPointer(Op);
1928 ID.AddPointer(Ty);
1929 void *IP = nullptr;
1930 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1931 // Limit recursion depth.
1932 if (Depth > MaxCastDepth) {
1933 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1934 Op, Ty);
1935 UniqueSCEVs.InsertNode(S, IP);
1936 registerUser(S, Op);
1937 return S;
1940 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1941 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1942 // It's possible the bits taken off by the truncate were all sign bits. If
1943 // so, we should be able to simplify this further.
1944 const SCEV *X = ST->getOperand();
1945 ConstantRange CR = getSignedRange(X);
1946 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1947 unsigned NewBits = getTypeSizeInBits(Ty);
1948 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1949 CR.sextOrTrunc(NewBits)))
1950 return getTruncateOrSignExtend(X, Ty, Depth);
1953 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1954 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1955 if (SA->hasNoSignedWrap()) {
1956 // If the addition does not sign overflow then we can, by definition,
1957 // commute the sign extension with the addition operation.
1958 SmallVector<const SCEV *, 4> Ops;
1959 for (const auto *Op : SA->operands())
1960 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1961 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1964 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1965 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1966 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1968 // For instance, this will bring two seemingly different expressions:
1969 // 1 + sext(5 + 20 * %x + 24 * %y) and
1970 // sext(6 + 20 * %x + 24 * %y)
1971 // to the same form:
1972 // 2 + sext(4 + 20 * %x + 24 * %y)
1973 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1974 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1975 if (D != 0) {
1976 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1977 const SCEV *SResidual =
1978 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1979 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1980 return getAddExpr(SSExtD, SSExtR,
1981 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1982 Depth + 1);
1986 // If the input value is a chrec scev, and we can prove that the value
1987 // did not overflow the old, smaller, value, we can sign extend all of the
1988 // operands (often constants). This allows analysis of something like
1989 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1990 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1991 if (AR->isAffine()) {
1992 const SCEV *Start = AR->getStart();
1993 const SCEV *Step = AR->getStepRecurrence(*this);
1994 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1995 const Loop *L = AR->getLoop();
1997 // If we have special knowledge that this addrec won't overflow,
1998 // we don't need to do any further analysis.
1999 if (AR->hasNoSignedWrap()) {
2000 Start =
2001 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2002 Step = getSignExtendExpr(Step, Ty, Depth + 1);
2003 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2006 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2007 // Note that this serves two purposes: It filters out loops that are
2008 // simply not analyzable, and it covers the case where this code is
2009 // being called from within backedge-taken count analysis, such that
2010 // attempting to ask for the backedge-taken count would likely result
2011 // in infinite recursion. In the later case, the analysis code will
2012 // cope with a conservative value, and it will take care to purge
2013 // that value once it has finished.
2014 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2015 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2016 // Manually compute the final value for AR, checking for
2017 // overflow.
2019 // Check whether the backedge-taken count can be losslessly casted to
2020 // the addrec's type. The count is always unsigned.
2021 const SCEV *CastedMaxBECount =
2022 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2023 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2024 CastedMaxBECount, MaxBECount->getType(), Depth);
2025 if (MaxBECount == RecastedMaxBECount) {
2026 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2027 // Check whether Start+Step*MaxBECount has no signed overflow.
2028 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2029 SCEV::FlagAnyWrap, Depth + 1);
2030 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2031 SCEV::FlagAnyWrap,
2032 Depth + 1),
2033 WideTy, Depth + 1);
2034 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2035 const SCEV *WideMaxBECount =
2036 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2037 const SCEV *OperandExtendedAdd =
2038 getAddExpr(WideStart,
2039 getMulExpr(WideMaxBECount,
2040 getSignExtendExpr(Step, WideTy, Depth + 1),
2041 SCEV::FlagAnyWrap, Depth + 1),
2042 SCEV::FlagAnyWrap, Depth + 1);
2043 if (SAdd == OperandExtendedAdd) {
2044 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2045 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2046 // Return the expression with the addrec on the outside.
2047 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2048 Depth + 1);
2049 Step = getSignExtendExpr(Step, Ty, Depth + 1);
2050 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2052 // Similar to above, only this time treat the step value as unsigned.
2053 // This covers loops that count up with an unsigned step.
2054 OperandExtendedAdd =
2055 getAddExpr(WideStart,
2056 getMulExpr(WideMaxBECount,
2057 getZeroExtendExpr(Step, WideTy, Depth + 1),
2058 SCEV::FlagAnyWrap, Depth + 1),
2059 SCEV::FlagAnyWrap, Depth + 1);
2060 if (SAdd == OperandExtendedAdd) {
2061 // If AR wraps around then
2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2064 // => SAdd != OperandExtendedAdd
2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2067 // (SAdd == OperandExtendedAdd => AR is NW)
2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2071 // Return the expression with the addrec on the outside.
2072 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2073 Depth + 1);
2074 Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2075 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2080 auto NewFlags = proveNoSignedWrapViaInduction(AR);
2081 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2082 if (AR->hasNoSignedWrap()) {
2083 // Same as nsw case above - duplicated here to avoid a compile time
2084 // issue. It's not clear that the order of checks does matter, but
2085 // it's one of two issue possible causes for a change which was
2086 // reverted. Be conservative for the moment.
2087 Start =
2088 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2089 Step = getSignExtendExpr(Step, Ty, Depth + 1);
2090 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2094 // if D + (C - D + Step * n) could be proven to not signed wrap
2095 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2096 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2097 const APInt &C = SC->getAPInt();
2098 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2099 if (D != 0) {
2100 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2101 const SCEV *SResidual =
2102 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2103 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2104 return getAddExpr(SSExtD, SSExtR,
2105 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2106 Depth + 1);
2110 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2111 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2112 Start =
2113 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2114 Step = getSignExtendExpr(Step, Ty, Depth + 1);
2115 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2119 // If the input value is provably positive and we could not simplify
2120 // away the sext build a zext instead.
2121 if (isKnownNonNegative(Op))
2122 return getZeroExtendExpr(Op, Ty, Depth + 1);
2124 // sext(smin(x, y)) -> smin(sext(x), sext(y))
2125 // sext(smax(x, y)) -> smax(sext(x), sext(y))
2126 if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) {
2127 auto *MinMax = cast<SCEVMinMaxExpr>(Op);
2128 SmallVector<const SCEV *, 4> Operands;
2129 for (auto *Operand : MinMax->operands())
2130 Operands.push_back(getSignExtendExpr(Operand, Ty));
2131 if (isa<SCEVSMinExpr>(MinMax))
2132 return getSMinExpr(Operands);
2133 return getSMaxExpr(Operands);
2136 // The cast wasn't folded; create an explicit cast node.
2137 // Recompute the insert position, as it may have been invalidated.
2138 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2139 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2140 Op, Ty);
2141 UniqueSCEVs.InsertNode(S, IP);
2142 registerUser(S, { Op });
2143 return S;
2146 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2147 Type *Ty) {
2148 switch (Kind) {
2149 case scTruncate:
2150 return getTruncateExpr(Op, Ty);
2151 case scZeroExtend:
2152 return getZeroExtendExpr(Op, Ty);
2153 case scSignExtend:
2154 return getSignExtendExpr(Op, Ty);
2155 case scPtrToInt:
2156 return getPtrToIntExpr(Op, Ty);
2157 default:
2158 llvm_unreachable("Not a SCEV cast expression!");
2162 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2163 /// unspecified bits out to the given type.
2164 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2165 Type *Ty) {
2166 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2167 "This is not an extending conversion!");
2168 assert(isSCEVable(Ty) &&
2169 "This is not a conversion to a SCEVable type!");
2170 Ty = getEffectiveSCEVType(Ty);
2172 // Sign-extend negative constants.
2173 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2174 if (SC->getAPInt().isNegative())
2175 return getSignExtendExpr(Op, Ty);
2177 // Peel off a truncate cast.
2178 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2179 const SCEV *NewOp = T->getOperand();
2180 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2181 return getAnyExtendExpr(NewOp, Ty);
2182 return getTruncateOrNoop(NewOp, Ty);
2185 // Next try a zext cast. If the cast is folded, use it.
2186 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2187 if (!isa<SCEVZeroExtendExpr>(ZExt))
2188 return ZExt;
2190 // Next try a sext cast. If the cast is folded, use it.
2191 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2192 if (!isa<SCEVSignExtendExpr>(SExt))
2193 return SExt;
2195 // Force the cast to be folded into the operands of an addrec.
2196 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2197 SmallVector<const SCEV *, 4> Ops;
2198 for (const SCEV *Op : AR->operands())
2199 Ops.push_back(getAnyExtendExpr(Op, Ty));
2200 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2203 // If the expression is obviously signed, use the sext cast value.
2204 if (isa<SCEVSMaxExpr>(Op))
2205 return SExt;
2207 // Absent any other information, use the zext cast value.
2208 return ZExt;
2211 /// Process the given Ops list, which is a list of operands to be added under
2212 /// the given scale, update the given map. This is a helper function for
2213 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2214 /// that would form an add expression like this:
2216 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2218 /// where A and B are constants, update the map with these values:
2220 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2222 /// and add 13 + A*B*29 to AccumulatedConstant.
2223 /// This will allow getAddRecExpr to produce this:
2225 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2227 /// This form often exposes folding opportunities that are hidden in
2228 /// the original operand list.
2230 /// Return true iff it appears that any interesting folding opportunities
2231 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2232 /// the common case where no interesting opportunities are present, and
2233 /// is also used as a check to avoid infinite recursion.
2234 static bool
2235 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2236 SmallVectorImpl<const SCEV *> &NewOps,
2237 APInt &AccumulatedConstant,
2238 ArrayRef<const SCEV *> Ops, const APInt &Scale,
2239 ScalarEvolution &SE) {
2240 bool Interesting = false;
2242 // Iterate over the add operands. They are sorted, with constants first.
2243 unsigned i = 0;
2244 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2245 ++i;
2246 // Pull a buried constant out to the outside.
2247 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2248 Interesting = true;
2249 AccumulatedConstant += Scale * C->getAPInt();
2252 // Next comes everything else. We're especially interested in multiplies
2253 // here, but they're in the middle, so just visit the rest with one loop.
2254 for (; i != Ops.size(); ++i) {
2255 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2256 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2257 APInt NewScale =
2258 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2259 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2260 // A multiplication of a constant with another add; recurse.
2261 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2262 Interesting |=
2263 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2264 Add->operands(), NewScale, SE);
2265 } else {
2266 // A multiplication of a constant with some other value. Update
2267 // the map.
2268 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2269 const SCEV *Key = SE.getMulExpr(MulOps);
2270 auto Pair = M.insert({Key, NewScale});
2271 if (Pair.second) {
2272 NewOps.push_back(Pair.first->first);
2273 } else {
2274 Pair.first->second += NewScale;
2275 // The map already had an entry for this value, which may indicate
2276 // a folding opportunity.
2277 Interesting = true;
2280 } else {
2281 // An ordinary operand. Update the map.
2282 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2283 M.insert({Ops[i], Scale});
2284 if (Pair.second) {
2285 NewOps.push_back(Pair.first->first);
2286 } else {
2287 Pair.first->second += Scale;
2288 // The map already had an entry for this value, which may indicate
2289 // a folding opportunity.
2290 Interesting = true;
2295 return Interesting;
2298 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2299 const SCEV *LHS, const SCEV *RHS,
2300 const Instruction *CtxI) {
2301 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2302 SCEV::NoWrapFlags, unsigned);
2303 switch (BinOp) {
2304 default:
2305 llvm_unreachable("Unsupported binary op");
2306 case Instruction::Add:
2307 Operation = &ScalarEvolution::getAddExpr;
2308 break;
2309 case Instruction::Sub:
2310 Operation = &ScalarEvolution::getMinusSCEV;
2311 break;
2312 case Instruction::Mul:
2313 Operation = &ScalarEvolution::getMulExpr;
2314 break;
2317 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2318 Signed ? &ScalarEvolution::getSignExtendExpr
2319 : &ScalarEvolution::getZeroExtendExpr;
2321 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2322 auto *NarrowTy = cast<IntegerType>(LHS->getType());
2323 auto *WideTy =
2324 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2326 const SCEV *A = (this->*Extension)(
2327 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2328 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2329 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2330 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2331 if (A == B)
2332 return true;
2333 // Can we use context to prove the fact we need?
2334 if (!CtxI)
2335 return false;
2336 // TODO: Support mul.
2337 if (BinOp == Instruction::Mul)
2338 return false;
2339 auto *RHSC = dyn_cast<SCEVConstant>(RHS);
2340 // TODO: Lift this limitation.
2341 if (!RHSC)
2342 return false;
2343 APInt C = RHSC->getAPInt();
2344 unsigned NumBits = C.getBitWidth();
2345 bool IsSub = (BinOp == Instruction::Sub);
2346 bool IsNegativeConst = (Signed && C.isNegative());
2347 // Compute the direction and magnitude by which we need to check overflow.
2348 bool OverflowDown = IsSub ^ IsNegativeConst;
2349 APInt Magnitude = C;
2350 if (IsNegativeConst) {
2351 if (C == APInt::getSignedMinValue(NumBits))
2352 // TODO: SINT_MIN on inversion gives the same negative value, we don't
2353 // want to deal with that.
2354 return false;
2355 Magnitude = -C;
2358 ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2359 if (OverflowDown) {
2360 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2361 APInt Min = Signed ? APInt::getSignedMinValue(NumBits)
2362 : APInt::getMinValue(NumBits);
2363 APInt Limit = Min + Magnitude;
2364 return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI);
2365 } else {
2366 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2367 APInt Max = Signed ? APInt::getSignedMaxValue(NumBits)
2368 : APInt::getMaxValue(NumBits);
2369 APInt Limit = Max - Magnitude;
2370 return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);
2374 std::optional<SCEV::NoWrapFlags>
2375 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2376 const OverflowingBinaryOperator *OBO) {
2377 // It cannot be done any better.
2378 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2379 return std::nullopt;
2381 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2383 if (OBO->hasNoUnsignedWrap())
2384 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2385 if (OBO->hasNoSignedWrap())
2386 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2388 bool Deduced = false;
2390 if (OBO->getOpcode() != Instruction::Add &&
2391 OBO->getOpcode() != Instruction::Sub &&
2392 OBO->getOpcode() != Instruction::Mul)
2393 return std::nullopt;
2395 const SCEV *LHS = getSCEV(OBO->getOperand(0));
2396 const SCEV *RHS = getSCEV(OBO->getOperand(1));
2398 const Instruction *CtxI =
2399 UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
2400 if (!OBO->hasNoUnsignedWrap() &&
2401 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2402 /* Signed */ false, LHS, RHS, CtxI)) {
2403 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2404 Deduced = true;
2407 if (!OBO->hasNoSignedWrap() &&
2408 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2409 /* Signed */ true, LHS, RHS, CtxI)) {
2410 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2411 Deduced = true;
2414 if (Deduced)
2415 return Flags;
2416 return std::nullopt;
2419 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2420 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2421 // can't-overflow flags for the operation if possible.
2422 static SCEV::NoWrapFlags
2423 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2424 const ArrayRef<const SCEV *> Ops,
2425 SCEV::NoWrapFlags Flags) {
2426 using namespace std::placeholders;
2428 using OBO = OverflowingBinaryOperator;
2430 bool CanAnalyze =
2431 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2432 (void)CanAnalyze;
2433 assert(CanAnalyze && "don't call from other places!");
2435 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2436 SCEV::NoWrapFlags SignOrUnsignWrap =
2437 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2439 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2440 auto IsKnownNonNegative = [&](const SCEV *S) {
2441 return SE->isKnownNonNegative(S);
2444 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2445 Flags =
2446 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2448 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2450 if (SignOrUnsignWrap != SignOrUnsignMask &&
2451 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2452 isa<SCEVConstant>(Ops[0])) {
2454 auto Opcode = [&] {
2455 switch (Type) {
2456 case scAddExpr:
2457 return Instruction::Add;
2458 case scMulExpr:
2459 return Instruction::Mul;
2460 default:
2461 llvm_unreachable("Unexpected SCEV op.");
2463 }();
2465 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2467 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2468 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2469 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2470 Opcode, C, OBO::NoSignedWrap);
2471 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2472 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2475 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2476 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2477 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2478 Opcode, C, OBO::NoUnsignedWrap);
2479 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2480 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2484 // <0,+,nonnegative><nw> is also nuw
2485 // TODO: Add corresponding nsw case
2486 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2487 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2488 Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2489 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2491 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2492 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2493 Ops.size() == 2) {
2494 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2495 if (UDiv->getOperand(1) == Ops[1])
2496 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2497 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2498 if (UDiv->getOperand(1) == Ops[0])
2499 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2502 return Flags;
2505 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2506 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2509 /// Get a canonical add expression, or something simpler if possible.
2510 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2511 SCEV::NoWrapFlags OrigFlags,
2512 unsigned Depth) {
2513 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2514 "only nuw or nsw allowed");
2515 assert(!Ops.empty() && "Cannot get empty add!");
2516 if (Ops.size() == 1) return Ops[0];
2517 #ifndef NDEBUG
2518 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2519 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2520 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2521 "SCEVAddExpr operand types don't match!");
2522 unsigned NumPtrs = count_if(
2523 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2524 assert(NumPtrs <= 1 && "add has at most one pointer operand");
2525 #endif
2527 // Sort by complexity, this groups all similar expression types together.
2528 GroupByComplexity(Ops, &LI, DT);
2530 // If there are any constants, fold them together.
2531 unsigned Idx = 0;
2532 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2533 ++Idx;
2534 assert(Idx < Ops.size());
2535 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2536 // We found two constants, fold them together!
2537 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2538 if (Ops.size() == 2) return Ops[0];
2539 Ops.erase(Ops.begin()+1); // Erase the folded element
2540 LHSC = cast<SCEVConstant>(Ops[0]);
2543 // If we are left with a constant zero being added, strip it off.
2544 if (LHSC->getValue()->isZero()) {
2545 Ops.erase(Ops.begin());
2546 --Idx;
2549 if (Ops.size() == 1) return Ops[0];
2552 // Delay expensive flag strengthening until necessary.
2553 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2554 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2557 // Limit recursion calls depth.
2558 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2559 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2561 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2562 // Don't strengthen flags if we have no new information.
2563 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2564 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2565 Add->setNoWrapFlags(ComputeFlags(Ops));
2566 return S;
2569 // Okay, check to see if the same value occurs in the operand list more than
2570 // once. If so, merge them together into an multiply expression. Since we
2571 // sorted the list, these values are required to be adjacent.
2572 Type *Ty = Ops[0]->getType();
2573 bool FoundMatch = false;
2574 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2575 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2576 // Scan ahead to count how many equal operands there are.
2577 unsigned Count = 2;
2578 while (i+Count != e && Ops[i+Count] == Ops[i])
2579 ++Count;
2580 // Merge the values into a multiply.
2581 const SCEV *Scale = getConstant(Ty, Count);
2582 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2583 if (Ops.size() == Count)
2584 return Mul;
2585 Ops[i] = Mul;
2586 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2587 --i; e -= Count - 1;
2588 FoundMatch = true;
2590 if (FoundMatch)
2591 return getAddExpr(Ops, OrigFlags, Depth + 1);
2593 // Check for truncates. If all the operands are truncated from the same
2594 // type, see if factoring out the truncate would permit the result to be
2595 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2596 // if the contents of the resulting outer trunc fold to something simple.
2597 auto FindTruncSrcType = [&]() -> Type * {
2598 // We're ultimately looking to fold an addrec of truncs and muls of only
2599 // constants and truncs, so if we find any other types of SCEV
2600 // as operands of the addrec then we bail and return nullptr here.
2601 // Otherwise, we return the type of the operand of a trunc that we find.
2602 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2603 return T->getOperand()->getType();
2604 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2605 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2606 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2607 return T->getOperand()->getType();
2609 return nullptr;
2611 if (auto *SrcType = FindTruncSrcType()) {
2612 SmallVector<const SCEV *, 8> LargeOps;
2613 bool Ok = true;
2614 // Check all the operands to see if they can be represented in the
2615 // source type of the truncate.
2616 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2617 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2618 if (T->getOperand()->getType() != SrcType) {
2619 Ok = false;
2620 break;
2622 LargeOps.push_back(T->getOperand());
2623 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2624 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2625 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2626 SmallVector<const SCEV *, 8> LargeMulOps;
2627 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2628 if (const SCEVTruncateExpr *T =
2629 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2630 if (T->getOperand()->getType() != SrcType) {
2631 Ok = false;
2632 break;
2634 LargeMulOps.push_back(T->getOperand());
2635 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2636 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2637 } else {
2638 Ok = false;
2639 break;
2642 if (Ok)
2643 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2644 } else {
2645 Ok = false;
2646 break;
2649 if (Ok) {
2650 // Evaluate the expression in the larger type.
2651 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2652 // If it folds to something simple, use it. Otherwise, don't.
2653 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2654 return getTruncateExpr(Fold, Ty);
2658 if (Ops.size() == 2) {
2659 // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2660 // C2 can be folded in a way that allows retaining wrapping flags of (X +
2661 // C1).
2662 const SCEV *A = Ops[0];
2663 const SCEV *B = Ops[1];
2664 auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2665 auto *C = dyn_cast<SCEVConstant>(A);
2666 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2667 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2668 auto C2 = C->getAPInt();
2669 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2671 APInt ConstAdd = C1 + C2;
2672 auto AddFlags = AddExpr->getNoWrapFlags();
2673 // Adding a smaller constant is NUW if the original AddExpr was NUW.
2674 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2675 ConstAdd.ule(C1)) {
2676 PreservedFlags =
2677 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2680 // Adding a constant with the same sign and small magnitude is NSW, if the
2681 // original AddExpr was NSW.
2682 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2683 C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2684 ConstAdd.abs().ule(C1.abs())) {
2685 PreservedFlags =
2686 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2689 if (PreservedFlags != SCEV::FlagAnyWrap) {
2690 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2691 NewOps[0] = getConstant(ConstAdd);
2692 return getAddExpr(NewOps, PreservedFlags);
2697 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2698 if (Ops.size() == 2) {
2699 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2700 if (Mul && Mul->getNumOperands() == 2 &&
2701 Mul->getOperand(0)->isAllOnesValue()) {
2702 const SCEV *X;
2703 const SCEV *Y;
2704 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2705 return getMulExpr(Y, getUDivExpr(X, Y));
2710 // Skip past any other cast SCEVs.
2711 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2712 ++Idx;
2714 // If there are add operands they would be next.
2715 if (Idx < Ops.size()) {
2716 bool DeletedAdd = false;
2717 // If the original flags and all inlined SCEVAddExprs are NUW, use the
2718 // common NUW flag for expression after inlining. Other flags cannot be
2719 // preserved, because they may depend on the original order of operations.
2720 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2721 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2722 if (Ops.size() > AddOpsInlineThreshold ||
2723 Add->getNumOperands() > AddOpsInlineThreshold)
2724 break;
2725 // If we have an add, expand the add operands onto the end of the operands
2726 // list.
2727 Ops.erase(Ops.begin()+Idx);
2728 append_range(Ops, Add->operands());
2729 DeletedAdd = true;
2730 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2733 // If we deleted at least one add, we added operands to the end of the list,
2734 // and they are not necessarily sorted. Recurse to resort and resimplify
2735 // any operands we just acquired.
2736 if (DeletedAdd)
2737 return getAddExpr(Ops, CommonFlags, Depth + 1);
2740 // Skip over the add expression until we get to a multiply.
2741 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2742 ++Idx;
2744 // Check to see if there are any folding opportunities present with
2745 // operands multiplied by constant values.
2746 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2747 uint64_t BitWidth = getTypeSizeInBits(Ty);
2748 DenseMap<const SCEV *, APInt> M;
2749 SmallVector<const SCEV *, 8> NewOps;
2750 APInt AccumulatedConstant(BitWidth, 0);
2751 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2752 Ops, APInt(BitWidth, 1), *this)) {
2753 struct APIntCompare {
2754 bool operator()(const APInt &LHS, const APInt &RHS) const {
2755 return LHS.ult(RHS);
2759 // Some interesting folding opportunity is present, so its worthwhile to
2760 // re-generate the operands list. Group the operands by constant scale,
2761 // to avoid multiplying by the same constant scale multiple times.
2762 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2763 for (const SCEV *NewOp : NewOps)
2764 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2765 // Re-generate the operands list.
2766 Ops.clear();
2767 if (AccumulatedConstant != 0)
2768 Ops.push_back(getConstant(AccumulatedConstant));
2769 for (auto &MulOp : MulOpLists) {
2770 if (MulOp.first == 1) {
2771 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2772 } else if (MulOp.first != 0) {
2773 Ops.push_back(getMulExpr(
2774 getConstant(MulOp.first),
2775 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2776 SCEV::FlagAnyWrap, Depth + 1));
2779 if (Ops.empty())
2780 return getZero(Ty);
2781 if (Ops.size() == 1)
2782 return Ops[0];
2783 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2787 // If we are adding something to a multiply expression, make sure the
2788 // something is not already an operand of the multiply. If so, merge it into
2789 // the multiply.
2790 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2791 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2792 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2793 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2794 if (isa<SCEVConstant>(MulOpSCEV))
2795 continue;
2796 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2797 if (MulOpSCEV == Ops[AddOp]) {
2798 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2799 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2800 if (Mul->getNumOperands() != 2) {
2801 // If the multiply has more than two operands, we must get the
2802 // Y*Z term.
2803 SmallVector<const SCEV *, 4> MulOps(
2804 Mul->operands().take_front(MulOp));
2805 append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
2806 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2808 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2809 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2810 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2811 SCEV::FlagAnyWrap, Depth + 1);
2812 if (Ops.size() == 2) return OuterMul;
2813 if (AddOp < Idx) {
2814 Ops.erase(Ops.begin()+AddOp);
2815 Ops.erase(Ops.begin()+Idx-1);
2816 } else {
2817 Ops.erase(Ops.begin()+Idx);
2818 Ops.erase(Ops.begin()+AddOp-1);
2820 Ops.push_back(OuterMul);
2821 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2824 // Check this multiply against other multiplies being added together.
2825 for (unsigned OtherMulIdx = Idx+1;
2826 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2827 ++OtherMulIdx) {
2828 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2829 // If MulOp occurs in OtherMul, we can fold the two multiplies
2830 // together.
2831 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2832 OMulOp != e; ++OMulOp)
2833 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2834 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2835 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2836 if (Mul->getNumOperands() != 2) {
2837 SmallVector<const SCEV *, 4> MulOps(
2838 Mul->operands().take_front(MulOp));
2839 append_range(MulOps, Mul->operands().drop_front(MulOp+1));
2840 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2842 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2843 if (OtherMul->getNumOperands() != 2) {
2844 SmallVector<const SCEV *, 4> MulOps(
2845 OtherMul->operands().take_front(OMulOp));
2846 append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
2847 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2849 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2850 const SCEV *InnerMulSum =
2851 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2852 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2853 SCEV::FlagAnyWrap, Depth + 1);
2854 if (Ops.size() == 2) return OuterMul;
2855 Ops.erase(Ops.begin()+Idx);
2856 Ops.erase(Ops.begin()+OtherMulIdx-1);
2857 Ops.push_back(OuterMul);
2858 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2864 // If there are any add recurrences in the operands list, see if any other
2865 // added values are loop invariant. If so, we can fold them into the
2866 // recurrence.
2867 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2868 ++Idx;
2870 // Scan over all recurrences, trying to fold loop invariants into them.
2871 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2872 // Scan all of the other operands to this add and add them to the vector if
2873 // they are loop invariant w.r.t. the recurrence.
2874 SmallVector<const SCEV *, 8> LIOps;
2875 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2876 const Loop *AddRecLoop = AddRec->getLoop();
2877 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2878 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2879 LIOps.push_back(Ops[i]);
2880 Ops.erase(Ops.begin()+i);
2881 --i; --e;
2884 // If we found some loop invariants, fold them into the recurrence.
2885 if (!LIOps.empty()) {
2886 // Compute nowrap flags for the addition of the loop-invariant ops and
2887 // the addrec. Temporarily push it as an operand for that purpose. These
2888 // flags are valid in the scope of the addrec only.
2889 LIOps.push_back(AddRec);
2890 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2891 LIOps.pop_back();
2893 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2894 LIOps.push_back(AddRec->getStart());
2896 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2898 // It is not in general safe to propagate flags valid on an add within
2899 // the addrec scope to one outside it. We must prove that the inner
2900 // scope is guaranteed to execute if the outer one does to be able to
2901 // safely propagate. We know the program is undefined if poison is
2902 // produced on the inner scoped addrec. We also know that *for this use*
2903 // the outer scoped add can't overflow (because of the flags we just
2904 // computed for the inner scoped add) without the program being undefined.
2905 // Proving that entry to the outer scope neccesitates entry to the inner
2906 // scope, thus proves the program undefined if the flags would be violated
2907 // in the outer scope.
2908 SCEV::NoWrapFlags AddFlags = Flags;
2909 if (AddFlags != SCEV::FlagAnyWrap) {
2910 auto *DefI = getDefiningScopeBound(LIOps);
2911 auto *ReachI = &*AddRecLoop->getHeader()->begin();
2912 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2913 AddFlags = SCEV::FlagAnyWrap;
2915 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2917 // Build the new addrec. Propagate the NUW and NSW flags if both the
2918 // outer add and the inner addrec are guaranteed to have no overflow.
2919 // Always propagate NW.
2920 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2921 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2923 // If all of the other operands were loop invariant, we are done.
2924 if (Ops.size() == 1) return NewRec;
2926 // Otherwise, add the folded AddRec by the non-invariant parts.
2927 for (unsigned i = 0;; ++i)
2928 if (Ops[i] == AddRec) {
2929 Ops[i] = NewRec;
2930 break;
2932 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2935 // Okay, if there weren't any loop invariants to be folded, check to see if
2936 // there are multiple AddRec's with the same loop induction variable being
2937 // added together. If so, we can fold them.
2938 for (unsigned OtherIdx = Idx+1;
2939 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2940 ++OtherIdx) {
2941 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2942 // so that the 1st found AddRecExpr is dominated by all others.
2943 assert(DT.dominates(
2944 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2945 AddRec->getLoop()->getHeader()) &&
2946 "AddRecExprs are not sorted in reverse dominance order?");
2947 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2948 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2949 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2950 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2951 ++OtherIdx) {
2952 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2953 if (OtherAddRec->getLoop() == AddRecLoop) {
2954 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2955 i != e; ++i) {
2956 if (i >= AddRecOps.size()) {
2957 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2958 break;
2960 SmallVector<const SCEV *, 2> TwoOps = {
2961 AddRecOps[i], OtherAddRec->getOperand(i)};
2962 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2964 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2967 // Step size has changed, so we cannot guarantee no self-wraparound.
2968 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2969 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2973 // Otherwise couldn't fold anything into this recurrence. Move onto the
2974 // next one.
2977 // Okay, it looks like we really DO need an add expr. Check to see if we
2978 // already have one, otherwise create a new one.
2979 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2982 const SCEV *
2983 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2984 SCEV::NoWrapFlags Flags) {
2985 FoldingSetNodeID ID;
2986 ID.AddInteger(scAddExpr);
2987 for (const SCEV *Op : Ops)
2988 ID.AddPointer(Op);
2989 void *IP = nullptr;
2990 SCEVAddExpr *S =
2991 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2992 if (!S) {
2993 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2994 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2995 S = new (SCEVAllocator)
2996 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2997 UniqueSCEVs.InsertNode(S, IP);
2998 registerUser(S, Ops);
3000 S->setNoWrapFlags(Flags);
3001 return S;
3004 const SCEV *
3005 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3006 const Loop *L, SCEV::NoWrapFlags Flags) {
3007 FoldingSetNodeID ID;
3008 ID.AddInteger(scAddRecExpr);
3009 for (const SCEV *Op : Ops)
3010 ID.AddPointer(Op);
3011 ID.AddPointer(L);
3012 void *IP = nullptr;
3013 SCEVAddRecExpr *S =
3014 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3015 if (!S) {
3016 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3017 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3018 S = new (SCEVAllocator)
3019 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
3020 UniqueSCEVs.InsertNode(S, IP);
3021 LoopUsers[L].push_back(S);
3022 registerUser(S, Ops);
3024 setNoWrapFlags(S, Flags);
3025 return S;
3028 const SCEV *
3029 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3030 SCEV::NoWrapFlags Flags) {
3031 FoldingSetNodeID ID;
3032 ID.AddInteger(scMulExpr);
3033 for (const SCEV *Op : Ops)
3034 ID.AddPointer(Op);
3035 void *IP = nullptr;
3036 SCEVMulExpr *S =
3037 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3038 if (!S) {
3039 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3040 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3041 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
3042 O, Ops.size());
3043 UniqueSCEVs.InsertNode(S, IP);
3044 registerUser(S, Ops);
3046 S->setNoWrapFlags(Flags);
3047 return S;
3050 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3051 uint64_t k = i*j;
3052 if (j > 1 && k / j != i) Overflow = true;
3053 return k;
3056 /// Compute the result of "n choose k", the binomial coefficient. If an
3057 /// intermediate computation overflows, Overflow will be set and the return will
3058 /// be garbage. Overflow is not cleared on absence of overflow.
3059 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3060 // We use the multiplicative formula:
3061 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3062 // At each iteration, we take the n-th term of the numeral and divide by the
3063 // (k-n)th term of the denominator. This division will always produce an
3064 // integral result, and helps reduce the chance of overflow in the
3065 // intermediate computations. However, we can still overflow even when the
3066 // final result would fit.
3068 if (n == 0 || n == k) return 1;
3069 if (k > n) return 0;
3071 if (k > n/2)
3072 k = n-k;
3074 uint64_t r = 1;
3075 for (uint64_t i = 1; i <= k; ++i) {
3076 r = umul_ov(r, n-(i-1), Overflow);
3077 r /= i;
3079 return r;
3082 /// Determine if any of the operands in this SCEV are a constant or if
3083 /// any of the add or multiply expressions in this SCEV contain a constant.
3084 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3085 struct FindConstantInAddMulChain {
3086 bool FoundConstant = false;
3088 bool follow(const SCEV *S) {
3089 FoundConstant |= isa<SCEVConstant>(S);
3090 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3093 bool isDone() const {
3094 return FoundConstant;
3098 FindConstantInAddMulChain F;
3099 SCEVTraversal<FindConstantInAddMulChain> ST(F);
3100 ST.visitAll(StartExpr);
3101 return F.FoundConstant;
3104 /// Get a canonical multiply expression, or something simpler if possible.
3105 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3106 SCEV::NoWrapFlags OrigFlags,
3107 unsigned Depth) {
3108 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3109 "only nuw or nsw allowed");
3110 assert(!Ops.empty() && "Cannot get empty mul!");
3111 if (Ops.size() == 1) return Ops[0];
3112 #ifndef NDEBUG
3113 Type *ETy = Ops[0]->getType();
3114 assert(!ETy->isPointerTy());
3115 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3116 assert(Ops[i]->getType() == ETy &&
3117 "SCEVMulExpr operand types don't match!");
3118 #endif
3120 // Sort by complexity, this groups all similar expression types together.
3121 GroupByComplexity(Ops, &LI, DT);
3123 // If there are any constants, fold them together.
3124 unsigned Idx = 0;
3125 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3126 ++Idx;
3127 assert(Idx < Ops.size());
3128 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3129 // We found two constants, fold them together!
3130 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3131 if (Ops.size() == 2) return Ops[0];
3132 Ops.erase(Ops.begin()+1); // Erase the folded element
3133 LHSC = cast<SCEVConstant>(Ops[0]);
3136 // If we have a multiply of zero, it will always be zero.
3137 if (LHSC->getValue()->isZero())
3138 return LHSC;
3140 // If we are left with a constant one being multiplied, strip it off.
3141 if (LHSC->getValue()->isOne()) {
3142 Ops.erase(Ops.begin());
3143 --Idx;
3146 if (Ops.size() == 1)
3147 return Ops[0];
3150 // Delay expensive flag strengthening until necessary.
3151 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3152 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3155 // Limit recursion calls depth.
3156 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3157 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3159 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3160 // Don't strengthen flags if we have no new information.
3161 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3162 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3163 Mul->setNoWrapFlags(ComputeFlags(Ops));
3164 return S;
3167 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3168 if (Ops.size() == 2) {
3169 // C1*(C2+V) -> C1*C2 + C1*V
3170 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3171 // If any of Add's ops are Adds or Muls with a constant, apply this
3172 // transformation as well.
3174 // TODO: There are some cases where this transformation is not
3175 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
3176 // this transformation should be narrowed down.
3177 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3178 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3179 SCEV::FlagAnyWrap, Depth + 1);
3180 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3181 SCEV::FlagAnyWrap, Depth + 1);
3182 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3185 if (Ops[0]->isAllOnesValue()) {
3186 // If we have a mul by -1 of an add, try distributing the -1 among the
3187 // add operands.
3188 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3189 SmallVector<const SCEV *, 4> NewOps;
3190 bool AnyFolded = false;
3191 for (const SCEV *AddOp : Add->operands()) {
3192 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3193 Depth + 1);
3194 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3195 NewOps.push_back(Mul);
3197 if (AnyFolded)
3198 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3199 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3200 // Negation preserves a recurrence's no self-wrap property.
3201 SmallVector<const SCEV *, 4> Operands;
3202 for (const SCEV *AddRecOp : AddRec->operands())
3203 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3204 Depth + 1));
3205 // Let M be the minimum representable signed value. AddRec with nsw
3206 // multiplied by -1 can have signed overflow if and only if it takes a
3207 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3208 // maximum signed value. In all other cases signed overflow is
3209 // impossible.
3210 auto FlagsMask = SCEV::FlagNW;
3211 if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) {
3212 auto MinInt =
3213 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType()));
3214 if (getSignedRangeMin(AddRec) != MinInt)
3215 FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW);
3217 return getAddRecExpr(Operands, AddRec->getLoop(),
3218 AddRec->getNoWrapFlags(FlagsMask));
3224 // Skip over the add expression until we get to a multiply.
3225 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3226 ++Idx;
3228 // If there are mul operands inline them all into this expression.
3229 if (Idx < Ops.size()) {
3230 bool DeletedMul = false;
3231 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3232 if (Ops.size() > MulOpsInlineThreshold)
3233 break;
3234 // If we have an mul, expand the mul operands onto the end of the
3235 // operands list.
3236 Ops.erase(Ops.begin()+Idx);
3237 append_range(Ops, Mul->operands());
3238 DeletedMul = true;
3241 // If we deleted at least one mul, we added operands to the end of the
3242 // list, and they are not necessarily sorted. Recurse to resort and
3243 // resimplify any operands we just acquired.
3244 if (DeletedMul)
3245 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3248 // If there are any add recurrences in the operands list, see if any other
3249 // added values are loop invariant. If so, we can fold them into the
3250 // recurrence.
3251 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3252 ++Idx;
3254 // Scan over all recurrences, trying to fold loop invariants into them.
3255 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3256 // Scan all of the other operands to this mul and add them to the vector
3257 // if they are loop invariant w.r.t. the recurrence.
3258 SmallVector<const SCEV *, 8> LIOps;
3259 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3260 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3261 if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) {
3262 LIOps.push_back(Ops[i]);
3263 Ops.erase(Ops.begin()+i);
3264 --i; --e;
3267 // If we found some loop invariants, fold them into the recurrence.
3268 if (!LIOps.empty()) {
3269 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3270 SmallVector<const SCEV *, 4> NewOps;
3271 NewOps.reserve(AddRec->getNumOperands());
3272 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3274 // If both the mul and addrec are nuw, we can preserve nuw.
3275 // If both the mul and addrec are nsw, we can only preserve nsw if either
3276 // a) they are also nuw, or
3277 // b) all multiplications of addrec operands with scale are nsw.
3278 SCEV::NoWrapFlags Flags =
3279 AddRec->getNoWrapFlags(ComputeFlags({Scale, AddRec}));
3281 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3282 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3283 SCEV::FlagAnyWrap, Depth + 1));
3285 if (hasFlags(Flags, SCEV::FlagNSW) && !hasFlags(Flags, SCEV::FlagNUW)) {
3286 ConstantRange NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3287 Instruction::Mul, getSignedRange(Scale),
3288 OverflowingBinaryOperator::NoSignedWrap);
3289 if (!NSWRegion.contains(getSignedRange(AddRec->getOperand(i))))
3290 Flags = clearFlags(Flags, SCEV::FlagNSW);
3294 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), Flags);
3296 // If all of the other operands were loop invariant, we are done.
3297 if (Ops.size() == 1) return NewRec;
3299 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3300 for (unsigned i = 0;; ++i)
3301 if (Ops[i] == AddRec) {
3302 Ops[i] = NewRec;
3303 break;
3305 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3308 // Okay, if there weren't any loop invariants to be folded, check to see
3309 // if there are multiple AddRec's with the same loop induction variable
3310 // being multiplied together. If so, we can fold them.
3312 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3313 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3314 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3315 // ]]],+,...up to x=2n}.
3316 // Note that the arguments to choose() are always integers with values
3317 // known at compile time, never SCEV objects.
3319 // The implementation avoids pointless extra computations when the two
3320 // addrec's are of different length (mathematically, it's equivalent to
3321 // an infinite stream of zeros on the right).
3322 bool OpsModified = false;
3323 for (unsigned OtherIdx = Idx+1;
3324 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3325 ++OtherIdx) {
3326 const SCEVAddRecExpr *OtherAddRec =
3327 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3328 if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop())
3329 continue;
3331 // Limit max number of arguments to avoid creation of unreasonably big
3332 // SCEVAddRecs with very complex operands.
3333 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3334 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3335 continue;
3337 bool Overflow = false;
3338 Type *Ty = AddRec->getType();
3339 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3340 SmallVector<const SCEV*, 7> AddRecOps;
3341 for (int x = 0, xe = AddRec->getNumOperands() +
3342 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3343 SmallVector <const SCEV *, 7> SumOps;
3344 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3345 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3346 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3347 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3348 z < ze && !Overflow; ++z) {
3349 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3350 uint64_t Coeff;
3351 if (LargerThan64Bits)
3352 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3353 else
3354 Coeff = Coeff1*Coeff2;
3355 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3356 const SCEV *Term1 = AddRec->getOperand(y-z);
3357 const SCEV *Term2 = OtherAddRec->getOperand(z);
3358 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3359 SCEV::FlagAnyWrap, Depth + 1));
3362 if (SumOps.empty())
3363 SumOps.push_back(getZero(Ty));
3364 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3366 if (!Overflow) {
3367 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3368 SCEV::FlagAnyWrap);
3369 if (Ops.size() == 2) return NewAddRec;
3370 Ops[Idx] = NewAddRec;
3371 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3372 OpsModified = true;
3373 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3374 if (!AddRec)
3375 break;
3378 if (OpsModified)
3379 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3381 // Otherwise couldn't fold anything into this recurrence. Move onto the
3382 // next one.
3385 // Okay, it looks like we really DO need an mul expr. Check to see if we
3386 // already have one, otherwise create a new one.
3387 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3390 /// Represents an unsigned remainder expression based on unsigned division.
3391 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3392 const SCEV *RHS) {
3393 assert(getEffectiveSCEVType(LHS->getType()) ==
3394 getEffectiveSCEVType(RHS->getType()) &&
3395 "SCEVURemExpr operand types don't match!");
3397 // Short-circuit easy cases
3398 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3399 // If constant is one, the result is trivial
3400 if (RHSC->getValue()->isOne())
3401 return getZero(LHS->getType()); // X urem 1 --> 0
3403 // If constant is a power of two, fold into a zext(trunc(LHS)).
3404 if (RHSC->getAPInt().isPowerOf2()) {
3405 Type *FullTy = LHS->getType();
3406 Type *TruncTy =
3407 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3408 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3412 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3413 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3414 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3415 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3418 /// Get a canonical unsigned division expression, or something simpler if
3419 /// possible.
3420 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3421 const SCEV *RHS) {
3422 assert(!LHS->getType()->isPointerTy() &&
3423 "SCEVUDivExpr operand can't be pointer!");
3424 assert(LHS->getType() == RHS->getType() &&
3425 "SCEVUDivExpr operand types don't match!");
3427 FoldingSetNodeID ID;
3428 ID.AddInteger(scUDivExpr);
3429 ID.AddPointer(LHS);
3430 ID.AddPointer(RHS);
3431 void *IP = nullptr;
3432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3433 return S;
3435 // 0 udiv Y == 0
3436 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3437 if (LHSC->getValue()->isZero())
3438 return LHS;
3440 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3441 if (RHSC->getValue()->isOne())
3442 return LHS; // X udiv 1 --> x
3443 // If the denominator is zero, the result of the udiv is undefined. Don't
3444 // try to analyze it, because the resolution chosen here may differ from
3445 // the resolution chosen in other parts of the compiler.
3446 if (!RHSC->getValue()->isZero()) {
3447 // Determine if the division can be folded into the operands of
3448 // its operands.
3449 // TODO: Generalize this to non-constants by using known-bits information.
3450 Type *Ty = LHS->getType();
3451 unsigned LZ = RHSC->getAPInt().countl_zero();
3452 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3453 // For non-power-of-two values, effectively round the value up to the
3454 // nearest power of two.
3455 if (!RHSC->getAPInt().isPowerOf2())
3456 ++MaxShiftAmt;
3457 IntegerType *ExtTy =
3458 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3459 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3460 if (const SCEVConstant *Step =
3461 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3462 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3463 const APInt &StepInt = Step->getAPInt();
3464 const APInt &DivInt = RHSC->getAPInt();
3465 if (!StepInt.urem(DivInt) &&
3466 getZeroExtendExpr(AR, ExtTy) ==
3467 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3468 getZeroExtendExpr(Step, ExtTy),
3469 AR->getLoop(), SCEV::FlagAnyWrap)) {
3470 SmallVector<const SCEV *, 4> Operands;
3471 for (const SCEV *Op : AR->operands())
3472 Operands.push_back(getUDivExpr(Op, RHS));
3473 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3475 /// Get a canonical UDivExpr for a recurrence.
3476 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3477 // We can currently only fold X%N if X is constant.
3478 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3479 if (StartC && !DivInt.urem(StepInt) &&
3480 getZeroExtendExpr(AR, ExtTy) ==
3481 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3482 getZeroExtendExpr(Step, ExtTy),
3483 AR->getLoop(), SCEV::FlagAnyWrap)) {
3484 const APInt &StartInt = StartC->getAPInt();
3485 const APInt &StartRem = StartInt.urem(StepInt);
3486 if (StartRem != 0) {
3487 const SCEV *NewLHS =
3488 getAddRecExpr(getConstant(StartInt - StartRem), Step,
3489 AR->getLoop(), SCEV::FlagNW);
3490 if (LHS != NewLHS) {
3491 LHS = NewLHS;
3493 // Reset the ID to include the new LHS, and check if it is
3494 // already cached.
3495 ID.clear();
3496 ID.AddInteger(scUDivExpr);
3497 ID.AddPointer(LHS);
3498 ID.AddPointer(RHS);
3499 IP = nullptr;
3500 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3501 return S;
3506 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3507 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3508 SmallVector<const SCEV *, 4> Operands;
3509 for (const SCEV *Op : M->operands())
3510 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3511 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3512 // Find an operand that's safely divisible.
3513 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3514 const SCEV *Op = M->getOperand(i);
3515 const SCEV *Div = getUDivExpr(Op, RHSC);
3516 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3517 Operands = SmallVector<const SCEV *, 4>(M->operands());
3518 Operands[i] = Div;
3519 return getMulExpr(Operands);
3524 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3525 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3526 if (auto *DivisorConstant =
3527 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3528 bool Overflow = false;
3529 APInt NewRHS =
3530 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3531 if (Overflow) {
3532 return getConstant(RHSC->getType(), 0, false);
3534 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3538 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3539 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3540 SmallVector<const SCEV *, 4> Operands;
3541 for (const SCEV *Op : A->operands())
3542 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3543 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3544 Operands.clear();
3545 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3546 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3547 if (isa<SCEVUDivExpr>(Op) ||
3548 getMulExpr(Op, RHS) != A->getOperand(i))
3549 break;
3550 Operands.push_back(Op);
3552 if (Operands.size() == A->getNumOperands())
3553 return getAddExpr(Operands);
3557 // Fold if both operands are constant.
3558 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3559 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3563 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3564 // changes). Make sure we get a new one.
3565 IP = nullptr;
3566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3567 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3568 LHS, RHS);
3569 UniqueSCEVs.InsertNode(S, IP);
3570 registerUser(S, {LHS, RHS});
3571 return S;
3574 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3575 APInt A = C1->getAPInt().abs();
3576 APInt B = C2->getAPInt().abs();
3577 uint32_t ABW = A.getBitWidth();
3578 uint32_t BBW = B.getBitWidth();
3580 if (ABW > BBW)
3581 B = B.zext(ABW);
3582 else if (ABW < BBW)
3583 A = A.zext(BBW);
3585 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3588 /// Get a canonical unsigned division expression, or something simpler if
3589 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3590 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3591 /// it's not exact because the udiv may be clearing bits.
3592 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3593 const SCEV *RHS) {
3594 // TODO: we could try to find factors in all sorts of things, but for now we
3595 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3596 // end of this file for inspiration.
3598 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3599 if (!Mul || !Mul->hasNoUnsignedWrap())
3600 return getUDivExpr(LHS, RHS);
3602 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3603 // If the mulexpr multiplies by a constant, then that constant must be the
3604 // first element of the mulexpr.
3605 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3606 if (LHSCst == RHSCst) {
3607 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3608 return getMulExpr(Operands);
3611 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3612 // that there's a factor provided by one of the other terms. We need to
3613 // check.
3614 APInt Factor = gcd(LHSCst, RHSCst);
3615 if (!Factor.isIntN(1)) {
3616 LHSCst =
3617 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3618 RHSCst =
3619 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3620 SmallVector<const SCEV *, 2> Operands;
3621 Operands.push_back(LHSCst);
3622 append_range(Operands, Mul->operands().drop_front());
3623 LHS = getMulExpr(Operands);
3624 RHS = RHSCst;
3625 Mul = dyn_cast<SCEVMulExpr>(LHS);
3626 if (!Mul)
3627 return getUDivExactExpr(LHS, RHS);
3632 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3633 if (Mul->getOperand(i) == RHS) {
3634 SmallVector<const SCEV *, 2> Operands;
3635 append_range(Operands, Mul->operands().take_front(i));
3636 append_range(Operands, Mul->operands().drop_front(i + 1));
3637 return getMulExpr(Operands);
3641 return getUDivExpr(LHS, RHS);
3644 /// Get an add recurrence expression for the specified loop. Simplify the
3645 /// expression as much as possible.
3646 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3647 const Loop *L,
3648 SCEV::NoWrapFlags Flags) {
3649 SmallVector<const SCEV *, 4> Operands;
3650 Operands.push_back(Start);
3651 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3652 if (StepChrec->getLoop() == L) {
3653 append_range(Operands, StepChrec->operands());
3654 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3657 Operands.push_back(Step);
3658 return getAddRecExpr(Operands, L, Flags);
3661 /// Get an add recurrence expression for the specified loop. Simplify the
3662 /// expression as much as possible.
3663 const SCEV *
3664 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3665 const Loop *L, SCEV::NoWrapFlags Flags) {
3666 if (Operands.size() == 1) return Operands[0];
3667 #ifndef NDEBUG
3668 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3669 for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3670 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3671 "SCEVAddRecExpr operand types don't match!");
3672 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3674 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3675 assert(isAvailableAtLoopEntry(Operands[i], L) &&
3676 "SCEVAddRecExpr operand is not available at loop entry!");
3677 #endif
3679 if (Operands.back()->isZero()) {
3680 Operands.pop_back();
3681 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3684 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3685 // use that information to infer NUW and NSW flags. However, computing a
3686 // BE count requires calling getAddRecExpr, so we may not yet have a
3687 // meaningful BE count at this point (and if we don't, we'd be stuck
3688 // with a SCEVCouldNotCompute as the cached BE count).
3690 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3692 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3693 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3694 const Loop *NestedLoop = NestedAR->getLoop();
3695 if (L->contains(NestedLoop)
3696 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3697 : (!NestedLoop->contains(L) &&
3698 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3699 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3700 Operands[0] = NestedAR->getStart();
3701 // AddRecs require their operands be loop-invariant with respect to their
3702 // loops. Don't perform this transformation if it would break this
3703 // requirement.
3704 bool AllInvariant = all_of(
3705 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3707 if (AllInvariant) {
3708 // Create a recurrence for the outer loop with the same step size.
3710 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3711 // inner recurrence has the same property.
3712 SCEV::NoWrapFlags OuterFlags =
3713 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3715 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3716 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3717 return isLoopInvariant(Op, NestedLoop);
3720 if (AllInvariant) {
3721 // Ok, both add recurrences are valid after the transformation.
3723 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3724 // the outer recurrence has the same property.
3725 SCEV::NoWrapFlags InnerFlags =
3726 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3727 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3730 // Reset Operands to its original state.
3731 Operands[0] = NestedAR;
3735 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3736 // already have one, otherwise create a new one.
3737 return getOrCreateAddRecExpr(Operands, L, Flags);
3740 const SCEV *
3741 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3742 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3743 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3744 // getSCEV(Base)->getType() has the same address space as Base->getType()
3745 // because SCEV::getType() preserves the address space.
3746 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3747 const bool AssumeInBoundsFlags = [&]() {
3748 if (!GEP->isInBounds())
3749 return false;
3751 // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3752 // but to do that, we have to ensure that said flag is valid in the entire
3753 // defined scope of the SCEV.
3754 auto *GEPI = dyn_cast<Instruction>(GEP);
3755 // TODO: non-instructions have global scope. We might be able to prove
3756 // some global scope cases
3757 return GEPI && isSCEVExprNeverPoison(GEPI);
3758 }();
3760 SCEV::NoWrapFlags OffsetWrap =
3761 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3763 Type *CurTy = GEP->getType();
3764 bool FirstIter = true;
3765 SmallVector<const SCEV *, 4> Offsets;
3766 for (const SCEV *IndexExpr : IndexExprs) {
3767 // Compute the (potentially symbolic) offset in bytes for this index.
3768 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3769 // For a struct, add the member offset.
3770 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3771 unsigned FieldNo = Index->getZExtValue();
3772 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3773 Offsets.push_back(FieldOffset);
3775 // Update CurTy to the type of the field at Index.
3776 CurTy = STy->getTypeAtIndex(Index);
3777 } else {
3778 // Update CurTy to its element type.
3779 if (FirstIter) {
3780 assert(isa<PointerType>(CurTy) &&
3781 "The first index of a GEP indexes a pointer");
3782 CurTy = GEP->getSourceElementType();
3783 FirstIter = false;
3784 } else {
3785 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3787 // For an array, add the element offset, explicitly scaled.
3788 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3789 // Getelementptr indices are signed.
3790 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3792 // Multiply the index by the element size to compute the element offset.
3793 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3794 Offsets.push_back(LocalOffset);
3798 // Handle degenerate case of GEP without offsets.
3799 if (Offsets.empty())
3800 return BaseExpr;
3802 // Add the offsets together, assuming nsw if inbounds.
3803 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3804 // Add the base address and the offset. We cannot use the nsw flag, as the
3805 // base address is unsigned. However, if we know that the offset is
3806 // non-negative, we can use nuw.
3807 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3808 ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3809 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3810 assert(BaseExpr->getType() == GEPExpr->getType() &&
3811 "GEP should not change type mid-flight.");
3812 return GEPExpr;
3815 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3816 ArrayRef<const SCEV *> Ops) {
3817 FoldingSetNodeID ID;
3818 ID.AddInteger(SCEVType);
3819 for (const SCEV *Op : Ops)
3820 ID.AddPointer(Op);
3821 void *IP = nullptr;
3822 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3825 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3826 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3827 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3830 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3831 SmallVectorImpl<const SCEV *> &Ops) {
3832 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3833 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3834 if (Ops.size() == 1) return Ops[0];
3835 #ifndef NDEBUG
3836 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3837 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3838 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3839 "Operand types don't match!");
3840 assert(Ops[0]->getType()->isPointerTy() ==
3841 Ops[i]->getType()->isPointerTy() &&
3842 "min/max should be consistently pointerish");
3844 #endif
3846 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3847 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3849 // Sort by complexity, this groups all similar expression types together.
3850 GroupByComplexity(Ops, &LI, DT);
3852 // Check if we have created the same expression before.
3853 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3854 return S;
3857 // If there are any constants, fold them together.
3858 unsigned Idx = 0;
3859 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3860 ++Idx;
3861 assert(Idx < Ops.size());
3862 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3863 switch (Kind) {
3864 case scSMaxExpr:
3865 return APIntOps::smax(LHS, RHS);
3866 case scSMinExpr:
3867 return APIntOps::smin(LHS, RHS);
3868 case scUMaxExpr:
3869 return APIntOps::umax(LHS, RHS);
3870 case scUMinExpr:
3871 return APIntOps::umin(LHS, RHS);
3872 default:
3873 llvm_unreachable("Unknown SCEV min/max opcode");
3877 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3878 // We found two constants, fold them together!
3879 ConstantInt *Fold = ConstantInt::get(
3880 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3881 Ops[0] = getConstant(Fold);
3882 Ops.erase(Ops.begin()+1); // Erase the folded element
3883 if (Ops.size() == 1) return Ops[0];
3884 LHSC = cast<SCEVConstant>(Ops[0]);
3887 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3888 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3890 if (IsMax ? IsMinV : IsMaxV) {
3891 // If we are left with a constant minimum(/maximum)-int, strip it off.
3892 Ops.erase(Ops.begin());
3893 --Idx;
3894 } else if (IsMax ? IsMaxV : IsMinV) {
3895 // If we have a max(/min) with a constant maximum(/minimum)-int,
3896 // it will always be the extremum.
3897 return LHSC;
3900 if (Ops.size() == 1) return Ops[0];
3903 // Find the first operation of the same kind
3904 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3905 ++Idx;
3907 // Check to see if one of the operands is of the same kind. If so, expand its
3908 // operands onto our operand list, and recurse to simplify.
3909 if (Idx < Ops.size()) {
3910 bool DeletedAny = false;
3911 while (Ops[Idx]->getSCEVType() == Kind) {
3912 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3913 Ops.erase(Ops.begin()+Idx);
3914 append_range(Ops, SMME->operands());
3915 DeletedAny = true;
3918 if (DeletedAny)
3919 return getMinMaxExpr(Kind, Ops);
3922 // Okay, check to see if the same value occurs in the operand list twice. If
3923 // so, delete one. Since we sorted the list, these values are required to
3924 // be adjacent.
3925 llvm::CmpInst::Predicate GEPred =
3926 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3927 llvm::CmpInst::Predicate LEPred =
3928 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3929 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3930 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3931 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3932 if (Ops[i] == Ops[i + 1] ||
3933 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3934 // X op Y op Y --> X op Y
3935 // X op Y --> X, if we know X, Y are ordered appropriately
3936 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3937 --i;
3938 --e;
3939 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3940 Ops[i + 1])) {
3941 // X op Y --> Y, if we know X, Y are ordered appropriately
3942 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3943 --i;
3944 --e;
3948 if (Ops.size() == 1) return Ops[0];
3950 assert(!Ops.empty() && "Reduced smax down to nothing!");
3952 // Okay, it looks like we really DO need an expr. Check to see if we
3953 // already have one, otherwise create a new one.
3954 FoldingSetNodeID ID;
3955 ID.AddInteger(Kind);
3956 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3957 ID.AddPointer(Ops[i]);
3958 void *IP = nullptr;
3959 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3960 if (ExistingSCEV)
3961 return ExistingSCEV;
3962 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3963 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3964 SCEV *S = new (SCEVAllocator)
3965 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3967 UniqueSCEVs.InsertNode(S, IP);
3968 registerUser(S, Ops);
3969 return S;
3972 namespace {
3974 class SCEVSequentialMinMaxDeduplicatingVisitor final
3975 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3976 std::optional<const SCEV *>> {
3977 using RetVal = std::optional<const SCEV *>;
3978 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3980 ScalarEvolution &SE;
3981 const SCEVTypes RootKind; // Must be a sequential min/max expression.
3982 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3983 SmallPtrSet<const SCEV *, 16> SeenOps;
3985 bool canRecurseInto(SCEVTypes Kind) const {
3986 // We can only recurse into the SCEV expression of the same effective type
3987 // as the type of our root SCEV expression.
3988 return RootKind == Kind || NonSequentialRootKind == Kind;
3991 RetVal visitAnyMinMaxExpr(const SCEV *S) {
3992 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3993 "Only for min/max expressions.");
3994 SCEVTypes Kind = S->getSCEVType();
3996 if (!canRecurseInto(Kind))
3997 return S;
3999 auto *NAry = cast<SCEVNAryExpr>(S);
4000 SmallVector<const SCEV *> NewOps;
4001 bool Changed = visit(Kind, NAry->operands(), NewOps);
4003 if (!Changed)
4004 return S;
4005 if (NewOps.empty())
4006 return std::nullopt;
4008 return isa<SCEVSequentialMinMaxExpr>(S)
4009 ? SE.getSequentialMinMaxExpr(Kind, NewOps)
4010 : SE.getMinMaxExpr(Kind, NewOps);
4013 RetVal visit(const SCEV *S) {
4014 // Has the whole operand been seen already?
4015 if (!SeenOps.insert(S).second)
4016 return std::nullopt;
4017 return Base::visit(S);
4020 public:
4021 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4022 SCEVTypes RootKind)
4023 : SE(SE), RootKind(RootKind),
4024 NonSequentialRootKind(
4025 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4026 RootKind)) {}
4028 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4029 SmallVectorImpl<const SCEV *> &NewOps) {
4030 bool Changed = false;
4031 SmallVector<const SCEV *> Ops;
4032 Ops.reserve(OrigOps.size());
4034 for (const SCEV *Op : OrigOps) {
4035 RetVal NewOp = visit(Op);
4036 if (NewOp != Op)
4037 Changed = true;
4038 if (NewOp)
4039 Ops.emplace_back(*NewOp);
4042 if (Changed)
4043 NewOps = std::move(Ops);
4044 return Changed;
4047 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4049 RetVal visitVScale(const SCEVVScale *VScale) { return VScale; }
4051 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4053 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4055 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4057 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4059 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4061 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4063 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4065 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4067 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4068 return visitAnyMinMaxExpr(Expr);
4071 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4072 return visitAnyMinMaxExpr(Expr);
4075 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4076 return visitAnyMinMaxExpr(Expr);
4079 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4080 return visitAnyMinMaxExpr(Expr);
4083 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4084 return visitAnyMinMaxExpr(Expr);
4087 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4089 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4092 } // namespace
4094 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4095 switch (Kind) {
4096 case scConstant:
4097 case scVScale:
4098 case scTruncate:
4099 case scZeroExtend:
4100 case scSignExtend:
4101 case scPtrToInt:
4102 case scAddExpr:
4103 case scMulExpr:
4104 case scUDivExpr:
4105 case scAddRecExpr:
4106 case scUMaxExpr:
4107 case scSMaxExpr:
4108 case scUMinExpr:
4109 case scSMinExpr:
4110 case scUnknown:
4111 // If any operand is poison, the whole expression is poison.
4112 return true;
4113 case scSequentialUMinExpr:
4114 // FIXME: if the *first* operand is poison, the whole expression is poison.
4115 return false; // Pessimistically, say that it does not propagate poison.
4116 case scCouldNotCompute:
4117 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4119 llvm_unreachable("Unknown SCEV kind!");
4122 namespace {
4123 // The only way poison may be introduced in a SCEV expression is from a
4124 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4125 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4126 // introduce poison -- they encode guaranteed, non-speculated knowledge.
4128 // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4129 // with the notable exception of umin_seq, where only poison from the first
4130 // operand is (unconditionally) propagated.
4131 struct SCEVPoisonCollector {
4132 bool LookThroughMaybePoisonBlocking;
4133 SmallPtrSet<const SCEVUnknown *, 4> MaybePoison;
4134 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking)
4135 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4137 bool follow(const SCEV *S) {
4138 if (!LookThroughMaybePoisonBlocking &&
4139 !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType()))
4140 return false;
4142 if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4143 if (!isGuaranteedNotToBePoison(SU->getValue()))
4144 MaybePoison.insert(SU);
4146 return true;
4148 bool isDone() const { return false; }
4150 } // namespace
4152 /// Return true if V is poison given that AssumedPoison is already poison.
4153 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4154 // First collect all SCEVs that might result in AssumedPoison to be poison.
4155 // We need to look through potentially poison-blocking operations here,
4156 // because we want to find all SCEVs that *might* result in poison, not only
4157 // those that are *required* to.
4158 SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true);
4159 visitAll(AssumedPoison, PC1);
4161 // AssumedPoison is never poison. As the assumption is false, the implication
4162 // is true. Don't bother walking the other SCEV in this case.
4163 if (PC1.MaybePoison.empty())
4164 return true;
4166 // Collect all SCEVs in S that, if poison, *will* result in S being poison
4167 // as well. We cannot look through potentially poison-blocking operations
4168 // here, as their arguments only *may* make the result poison.
4169 SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false);
4170 visitAll(S, PC2);
4172 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4173 // it will also make S poison by being part of PC2.MaybePoison.
4174 return all_of(PC1.MaybePoison, [&](const SCEVUnknown *S) {
4175 return PC2.MaybePoison.contains(S);
4179 void ScalarEvolution::getPoisonGeneratingValues(
4180 SmallPtrSetImpl<const Value *> &Result, const SCEV *S) {
4181 SCEVPoisonCollector PC(/* LookThroughMaybePoisonBlocking */ false);
4182 visitAll(S, PC);
4183 for (const SCEVUnknown *SU : PC.MaybePoison)
4184 Result.insert(SU->getValue());
4187 const SCEV *
4188 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4189 SmallVectorImpl<const SCEV *> &Ops) {
4190 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4191 "Not a SCEVSequentialMinMaxExpr!");
4192 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4193 if (Ops.size() == 1)
4194 return Ops[0];
4195 #ifndef NDEBUG
4196 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4197 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4198 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4199 "Operand types don't match!");
4200 assert(Ops[0]->getType()->isPointerTy() ==
4201 Ops[i]->getType()->isPointerTy() &&
4202 "min/max should be consistently pointerish");
4204 #endif
4206 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4207 // so we can *NOT* do any kind of sorting of the expressions!
4209 // Check if we have created the same expression before.
4210 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4211 return S;
4213 // FIXME: there are *some* simplifications that we can do here.
4215 // Keep only the first instance of an operand.
4217 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4218 bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4219 if (Changed)
4220 return getSequentialMinMaxExpr(Kind, Ops);
4223 // Check to see if one of the operands is of the same kind. If so, expand its
4224 // operands onto our operand list, and recurse to simplify.
4226 unsigned Idx = 0;
4227 bool DeletedAny = false;
4228 while (Idx < Ops.size()) {
4229 if (Ops[Idx]->getSCEVType() != Kind) {
4230 ++Idx;
4231 continue;
4233 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4234 Ops.erase(Ops.begin() + Idx);
4235 Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
4236 SMME->operands().end());
4237 DeletedAny = true;
4240 if (DeletedAny)
4241 return getSequentialMinMaxExpr(Kind, Ops);
4244 const SCEV *SaturationPoint;
4245 ICmpInst::Predicate Pred;
4246 switch (Kind) {
4247 case scSequentialUMinExpr:
4248 SaturationPoint = getZero(Ops[0]->getType());
4249 Pred = ICmpInst::ICMP_ULE;
4250 break;
4251 default:
4252 llvm_unreachable("Not a sequential min/max type.");
4255 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4256 // We can replace %x umin_seq %y with %x umin %y if either:
4257 // * %y being poison implies %x is also poison.
4258 // * %x cannot be the saturating value (e.g. zero for umin).
4259 if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4260 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4261 SaturationPoint)) {
4262 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4263 Ops[i - 1] = getMinMaxExpr(
4264 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4265 SeqOps);
4266 Ops.erase(Ops.begin() + i);
4267 return getSequentialMinMaxExpr(Kind, Ops);
4269 // Fold %x umin_seq %y to %x if %x ule %y.
4270 // TODO: We might be able to prove the predicate for a later operand.
4271 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4272 Ops.erase(Ops.begin() + i);
4273 return getSequentialMinMaxExpr(Kind, Ops);
4277 // Okay, it looks like we really DO need an expr. Check to see if we
4278 // already have one, otherwise create a new one.
4279 FoldingSetNodeID ID;
4280 ID.AddInteger(Kind);
4281 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4282 ID.AddPointer(Ops[i]);
4283 void *IP = nullptr;
4284 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4285 if (ExistingSCEV)
4286 return ExistingSCEV;
4288 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4289 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4290 SCEV *S = new (SCEVAllocator)
4291 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4293 UniqueSCEVs.InsertNode(S, IP);
4294 registerUser(S, Ops);
4295 return S;
4298 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4299 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4300 return getSMaxExpr(Ops);
4303 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4304 return getMinMaxExpr(scSMaxExpr, Ops);
4307 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4308 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4309 return getUMaxExpr(Ops);
4312 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4313 return getMinMaxExpr(scUMaxExpr, Ops);
4316 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4317 const SCEV *RHS) {
4318 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4319 return getSMinExpr(Ops);
4322 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4323 return getMinMaxExpr(scSMinExpr, Ops);
4326 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4327 bool Sequential) {
4328 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4329 return getUMinExpr(Ops, Sequential);
4332 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4333 bool Sequential) {
4334 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4335 : getMinMaxExpr(scUMinExpr, Ops);
4338 const SCEV *
4339 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) {
4340 const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue());
4341 if (Size.isScalable())
4342 Res = getMulExpr(Res, getVScale(IntTy));
4343 return Res;
4346 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4347 return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4350 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4351 return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4354 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4355 StructType *STy,
4356 unsigned FieldNo) {
4357 // We can bypass creating a target-independent constant expression and then
4358 // folding it back into a ConstantInt. This is just a compile-time
4359 // optimization.
4360 const StructLayout *SL = getDataLayout().getStructLayout(STy);
4361 assert(!SL->getSizeInBits().isScalable() &&
4362 "Cannot get offset for structure containing scalable vector types");
4363 return getConstant(IntTy, SL->getElementOffset(FieldNo));
4366 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4367 // Don't attempt to do anything other than create a SCEVUnknown object
4368 // here. createSCEV only calls getUnknown after checking for all other
4369 // interesting possibilities, and any other code that calls getUnknown
4370 // is doing so in order to hide a value from SCEV canonicalization.
4372 FoldingSetNodeID ID;
4373 ID.AddInteger(scUnknown);
4374 ID.AddPointer(V);
4375 void *IP = nullptr;
4376 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4377 assert(cast<SCEVUnknown>(S)->getValue() == V &&
4378 "Stale SCEVUnknown in uniquing map!");
4379 return S;
4381 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4382 FirstUnknown);
4383 FirstUnknown = cast<SCEVUnknown>(S);
4384 UniqueSCEVs.InsertNode(S, IP);
4385 return S;
4388 //===----------------------------------------------------------------------===//
4389 // Basic SCEV Analysis and PHI Idiom Recognition Code
4392 /// Test if values of the given type are analyzable within the SCEV
4393 /// framework. This primarily includes integer types, and it can optionally
4394 /// include pointer types if the ScalarEvolution class has access to
4395 /// target-specific information.
4396 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4397 // Integers and pointers are always SCEVable.
4398 return Ty->isIntOrPtrTy();
4401 /// Return the size in bits of the specified type, for which isSCEVable must
4402 /// return true.
4403 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4404 assert(isSCEVable(Ty) && "Type is not SCEVable!");
4405 if (Ty->isPointerTy())
4406 return getDataLayout().getIndexTypeSizeInBits(Ty);
4407 return getDataLayout().getTypeSizeInBits(Ty);
4410 /// Return a type with the same bitwidth as the given type and which represents
4411 /// how SCEV will treat the given type, for which isSCEVable must return
4412 /// true. For pointer types, this is the pointer index sized integer type.
4413 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4414 assert(isSCEVable(Ty) && "Type is not SCEVable!");
4416 if (Ty->isIntegerTy())
4417 return Ty;
4419 // The only other support type is pointer.
4420 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4421 return getDataLayout().getIndexType(Ty);
4424 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4425 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4428 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV *A,
4429 const SCEV *B) {
4430 /// For a valid use point to exist, the defining scope of one operand
4431 /// must dominate the other.
4432 bool PreciseA, PreciseB;
4433 auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4434 auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4435 if (!PreciseA || !PreciseB)
4436 // Can't tell.
4437 return false;
4438 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4439 DT.dominates(ScopeB, ScopeA);
4442 const SCEV *ScalarEvolution::getCouldNotCompute() {
4443 return CouldNotCompute.get();
4446 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4447 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4448 auto *SU = dyn_cast<SCEVUnknown>(S);
4449 return SU && SU->getValue() == nullptr;
4452 return !ContainsNulls;
4455 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4456 HasRecMapType::iterator I = HasRecMap.find(S);
4457 if (I != HasRecMap.end())
4458 return I->second;
4460 bool FoundAddRec =
4461 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4462 HasRecMap.insert({S, FoundAddRec});
4463 return FoundAddRec;
4466 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4467 /// by the value and offset from any ValueOffsetPair in the set.
4468 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4469 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4470 if (SI == ExprValueMap.end())
4471 return std::nullopt;
4472 return SI->second.getArrayRef();
4475 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4476 /// cannot be used separately. eraseValueFromMap should be used to remove
4477 /// V from ValueExprMap and ExprValueMap at the same time.
4478 void ScalarEvolution::eraseValueFromMap(Value *V) {
4479 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4480 if (I != ValueExprMap.end()) {
4481 auto EVIt = ExprValueMap.find(I->second);
4482 bool Removed = EVIt->second.remove(V);
4483 (void) Removed;
4484 assert(Removed && "Value not in ExprValueMap?");
4485 ValueExprMap.erase(I);
4489 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4490 // A recursive query may have already computed the SCEV. It should be
4491 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4492 // inferred nowrap flags.
4493 auto It = ValueExprMap.find_as(V);
4494 if (It == ValueExprMap.end()) {
4495 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4496 ExprValueMap[S].insert(V);
4500 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4501 /// create a new one.
4502 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4503 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4505 if (const SCEV *S = getExistingSCEV(V))
4506 return S;
4507 return createSCEVIter(V);
4510 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4511 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4513 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4514 if (I != ValueExprMap.end()) {
4515 const SCEV *S = I->second;
4516 assert(checkValidity(S) &&
4517 "existing SCEV has not been properly invalidated");
4518 return S;
4520 return nullptr;
4523 /// Return a SCEV corresponding to -V = -1*V
4524 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4525 SCEV::NoWrapFlags Flags) {
4526 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4527 return getConstant(
4528 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4530 Type *Ty = V->getType();
4531 Ty = getEffectiveSCEVType(Ty);
4532 return getMulExpr(V, getMinusOne(Ty), Flags);
4535 /// If Expr computes ~A, return A else return nullptr
4536 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4537 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4538 if (!Add || Add->getNumOperands() != 2 ||
4539 !Add->getOperand(0)->isAllOnesValue())
4540 return nullptr;
4542 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4543 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4544 !AddRHS->getOperand(0)->isAllOnesValue())
4545 return nullptr;
4547 return AddRHS->getOperand(1);
4550 /// Return a SCEV corresponding to ~V = -1-V
4551 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4552 assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4554 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4555 return getConstant(
4556 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4558 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4559 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4560 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4561 SmallVector<const SCEV *, 2> MatchedOperands;
4562 for (const SCEV *Operand : MME->operands()) {
4563 const SCEV *Matched = MatchNotExpr(Operand);
4564 if (!Matched)
4565 return (const SCEV *)nullptr;
4566 MatchedOperands.push_back(Matched);
4568 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4569 MatchedOperands);
4571 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4572 return Replaced;
4575 Type *Ty = V->getType();
4576 Ty = getEffectiveSCEVType(Ty);
4577 return getMinusSCEV(getMinusOne(Ty), V);
4580 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4581 assert(P->getType()->isPointerTy());
4583 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4584 // The base of an AddRec is the first operand.
4585 SmallVector<const SCEV *> Ops{AddRec->operands()};
4586 Ops[0] = removePointerBase(Ops[0]);
4587 // Don't try to transfer nowrap flags for now. We could in some cases
4588 // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4589 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4591 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4592 // The base of an Add is the pointer operand.
4593 SmallVector<const SCEV *> Ops{Add->operands()};
4594 const SCEV **PtrOp = nullptr;
4595 for (const SCEV *&AddOp : Ops) {
4596 if (AddOp->getType()->isPointerTy()) {
4597 assert(!PtrOp && "Cannot have multiple pointer ops");
4598 PtrOp = &AddOp;
4601 *PtrOp = removePointerBase(*PtrOp);
4602 // Don't try to transfer nowrap flags for now. We could in some cases
4603 // (for example, if the pointer operand of the Add is a SCEVUnknown).
4604 return getAddExpr(Ops);
4606 // Any other expression must be a pointer base.
4607 return getZero(P->getType());
4610 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4611 SCEV::NoWrapFlags Flags,
4612 unsigned Depth) {
4613 // Fast path: X - X --> 0.
4614 if (LHS == RHS)
4615 return getZero(LHS->getType());
4617 // If we subtract two pointers with different pointer bases, bail.
4618 // Eventually, we're going to add an assertion to getMulExpr that we
4619 // can't multiply by a pointer.
4620 if (RHS->getType()->isPointerTy()) {
4621 if (!LHS->getType()->isPointerTy() ||
4622 getPointerBase(LHS) != getPointerBase(RHS))
4623 return getCouldNotCompute();
4624 LHS = removePointerBase(LHS);
4625 RHS = removePointerBase(RHS);
4628 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4629 // makes it so that we cannot make much use of NUW.
4630 auto AddFlags = SCEV::FlagAnyWrap;
4631 const bool RHSIsNotMinSigned =
4632 !getSignedRangeMin(RHS).isMinSignedValue();
4633 if (hasFlags(Flags, SCEV::FlagNSW)) {
4634 // Let M be the minimum representable signed value. Then (-1)*RHS
4635 // signed-wraps if and only if RHS is M. That can happen even for
4636 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4637 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4638 // (-1)*RHS, we need to prove that RHS != M.
4640 // If LHS is non-negative and we know that LHS - RHS does not
4641 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4642 // either by proving that RHS > M or that LHS >= 0.
4643 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4644 AddFlags = SCEV::FlagNSW;
4648 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4649 // RHS is NSW and LHS >= 0.
4651 // The difficulty here is that the NSW flag may have been proven
4652 // relative to a loop that is to be found in a recurrence in LHS and
4653 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4654 // larger scope than intended.
4655 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4657 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4660 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4661 unsigned Depth) {
4662 Type *SrcTy = V->getType();
4663 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4664 "Cannot truncate or zero extend with non-integer arguments!");
4665 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4666 return V; // No conversion
4667 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4668 return getTruncateExpr(V, Ty, Depth);
4669 return getZeroExtendExpr(V, Ty, Depth);
4672 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4673 unsigned Depth) {
4674 Type *SrcTy = V->getType();
4675 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4676 "Cannot truncate or zero extend with non-integer arguments!");
4677 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4678 return V; // No conversion
4679 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4680 return getTruncateExpr(V, Ty, Depth);
4681 return getSignExtendExpr(V, Ty, Depth);
4684 const SCEV *
4685 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4686 Type *SrcTy = V->getType();
4687 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4688 "Cannot noop or zero extend with non-integer arguments!");
4689 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4690 "getNoopOrZeroExtend cannot truncate!");
4691 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4692 return V; // No conversion
4693 return getZeroExtendExpr(V, Ty);
4696 const SCEV *
4697 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4698 Type *SrcTy = V->getType();
4699 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4700 "Cannot noop or sign extend with non-integer arguments!");
4701 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4702 "getNoopOrSignExtend cannot truncate!");
4703 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4704 return V; // No conversion
4705 return getSignExtendExpr(V, Ty);
4708 const SCEV *
4709 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4710 Type *SrcTy = V->getType();
4711 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4712 "Cannot noop or any extend with non-integer arguments!");
4713 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4714 "getNoopOrAnyExtend cannot truncate!");
4715 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4716 return V; // No conversion
4717 return getAnyExtendExpr(V, Ty);
4720 const SCEV *
4721 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4722 Type *SrcTy = V->getType();
4723 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4724 "Cannot truncate or noop with non-integer arguments!");
4725 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4726 "getTruncateOrNoop cannot extend!");
4727 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4728 return V; // No conversion
4729 return getTruncateExpr(V, Ty);
4732 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4733 const SCEV *RHS) {
4734 const SCEV *PromotedLHS = LHS;
4735 const SCEV *PromotedRHS = RHS;
4737 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4738 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4739 else
4740 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4742 return getUMaxExpr(PromotedLHS, PromotedRHS);
4745 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4746 const SCEV *RHS,
4747 bool Sequential) {
4748 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4749 return getUMinFromMismatchedTypes(Ops, Sequential);
4752 const SCEV *
4753 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4754 bool Sequential) {
4755 assert(!Ops.empty() && "At least one operand must be!");
4756 // Trivial case.
4757 if (Ops.size() == 1)
4758 return Ops[0];
4760 // Find the max type first.
4761 Type *MaxType = nullptr;
4762 for (const auto *S : Ops)
4763 if (MaxType)
4764 MaxType = getWiderType(MaxType, S->getType());
4765 else
4766 MaxType = S->getType();
4767 assert(MaxType && "Failed to find maximum type!");
4769 // Extend all ops to max type.
4770 SmallVector<const SCEV *, 2> PromotedOps;
4771 for (const auto *S : Ops)
4772 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4774 // Generate umin.
4775 return getUMinExpr(PromotedOps, Sequential);
4778 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4779 // A pointer operand may evaluate to a nonpointer expression, such as null.
4780 if (!V->getType()->isPointerTy())
4781 return V;
4783 while (true) {
4784 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4785 V = AddRec->getStart();
4786 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4787 const SCEV *PtrOp = nullptr;
4788 for (const SCEV *AddOp : Add->operands()) {
4789 if (AddOp->getType()->isPointerTy()) {
4790 assert(!PtrOp && "Cannot have multiple pointer ops");
4791 PtrOp = AddOp;
4794 assert(PtrOp && "Must have pointer op");
4795 V = PtrOp;
4796 } else // Not something we can look further into.
4797 return V;
4801 /// Push users of the given Instruction onto the given Worklist.
4802 static void PushDefUseChildren(Instruction *I,
4803 SmallVectorImpl<Instruction *> &Worklist,
4804 SmallPtrSetImpl<Instruction *> &Visited) {
4805 // Push the def-use children onto the Worklist stack.
4806 for (User *U : I->users()) {
4807 auto *UserInsn = cast<Instruction>(U);
4808 if (Visited.insert(UserInsn).second)
4809 Worklist.push_back(UserInsn);
4813 namespace {
4815 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4816 /// expression in case its Loop is L. If it is not L then
4817 /// if IgnoreOtherLoops is true then use AddRec itself
4818 /// otherwise rewrite cannot be done.
4819 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4820 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4821 public:
4822 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4823 bool IgnoreOtherLoops = true) {
4824 SCEVInitRewriter Rewriter(L, SE);
4825 const SCEV *Result = Rewriter.visit(S);
4826 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4827 return SE.getCouldNotCompute();
4828 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4829 ? SE.getCouldNotCompute()
4830 : Result;
4833 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4834 if (!SE.isLoopInvariant(Expr, L))
4835 SeenLoopVariantSCEVUnknown = true;
4836 return Expr;
4839 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4840 // Only re-write AddRecExprs for this loop.
4841 if (Expr->getLoop() == L)
4842 return Expr->getStart();
4843 SeenOtherLoops = true;
4844 return Expr;
4847 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4849 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4851 private:
4852 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4853 : SCEVRewriteVisitor(SE), L(L) {}
4855 const Loop *L;
4856 bool SeenLoopVariantSCEVUnknown = false;
4857 bool SeenOtherLoops = false;
4860 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4861 /// increment expression in case its Loop is L. If it is not L then
4862 /// use AddRec itself.
4863 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4864 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4865 public:
4866 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4867 SCEVPostIncRewriter Rewriter(L, SE);
4868 const SCEV *Result = Rewriter.visit(S);
4869 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4870 ? SE.getCouldNotCompute()
4871 : Result;
4874 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4875 if (!SE.isLoopInvariant(Expr, L))
4876 SeenLoopVariantSCEVUnknown = true;
4877 return Expr;
4880 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4881 // Only re-write AddRecExprs for this loop.
4882 if (Expr->getLoop() == L)
4883 return Expr->getPostIncExpr(SE);
4884 SeenOtherLoops = true;
4885 return Expr;
4888 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4890 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4892 private:
4893 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4894 : SCEVRewriteVisitor(SE), L(L) {}
4896 const Loop *L;
4897 bool SeenLoopVariantSCEVUnknown = false;
4898 bool SeenOtherLoops = false;
4901 /// This class evaluates the compare condition by matching it against the
4902 /// condition of loop latch. If there is a match we assume a true value
4903 /// for the condition while building SCEV nodes.
4904 class SCEVBackedgeConditionFolder
4905 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4906 public:
4907 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4908 ScalarEvolution &SE) {
4909 bool IsPosBECond = false;
4910 Value *BECond = nullptr;
4911 if (BasicBlock *Latch = L->getLoopLatch()) {
4912 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4913 if (BI && BI->isConditional()) {
4914 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4915 "Both outgoing branches should not target same header!");
4916 BECond = BI->getCondition();
4917 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4918 } else {
4919 return S;
4922 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4923 return Rewriter.visit(S);
4926 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4927 const SCEV *Result = Expr;
4928 bool InvariantF = SE.isLoopInvariant(Expr, L);
4930 if (!InvariantF) {
4931 Instruction *I = cast<Instruction>(Expr->getValue());
4932 switch (I->getOpcode()) {
4933 case Instruction::Select: {
4934 SelectInst *SI = cast<SelectInst>(I);
4935 std::optional<const SCEV *> Res =
4936 compareWithBackedgeCondition(SI->getCondition());
4937 if (Res) {
4938 bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
4939 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4941 break;
4943 default: {
4944 std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4945 if (Res)
4946 Result = *Res;
4947 break;
4951 return Result;
4954 private:
4955 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4956 bool IsPosBECond, ScalarEvolution &SE)
4957 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4958 IsPositiveBECond(IsPosBECond) {}
4960 std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4962 const Loop *L;
4963 /// Loop back condition.
4964 Value *BackedgeCond = nullptr;
4965 /// Set to true if loop back is on positive branch condition.
4966 bool IsPositiveBECond;
4969 std::optional<const SCEV *>
4970 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4972 // If value matches the backedge condition for loop latch,
4973 // then return a constant evolution node based on loopback
4974 // branch taken.
4975 if (BackedgeCond == IC)
4976 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4977 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4978 return std::nullopt;
4981 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4982 public:
4983 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4984 ScalarEvolution &SE) {
4985 SCEVShiftRewriter Rewriter(L, SE);
4986 const SCEV *Result = Rewriter.visit(S);
4987 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4990 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4991 // Only allow AddRecExprs for this loop.
4992 if (!SE.isLoopInvariant(Expr, L))
4993 Valid = false;
4994 return Expr;
4997 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4998 if (Expr->getLoop() == L && Expr->isAffine())
4999 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
5000 Valid = false;
5001 return Expr;
5004 bool isValid() { return Valid; }
5006 private:
5007 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5008 : SCEVRewriteVisitor(SE), L(L) {}
5010 const Loop *L;
5011 bool Valid = true;
5014 } // end anonymous namespace
5016 SCEV::NoWrapFlags
5017 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5018 if (!AR->isAffine())
5019 return SCEV::FlagAnyWrap;
5021 using OBO = OverflowingBinaryOperator;
5023 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5025 if (!AR->hasNoSelfWrap()) {
5026 const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop());
5027 if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) {
5028 ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this));
5029 const APInt &BECountAP = BECountMax->getAPInt();
5030 unsigned NoOverflowBitWidth =
5031 BECountAP.getActiveBits() + StepCR.getMinSignedBits();
5032 if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType()))
5033 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW);
5037 if (!AR->hasNoSignedWrap()) {
5038 ConstantRange AddRecRange = getSignedRange(AR);
5039 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
5041 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5042 Instruction::Add, IncRange, OBO::NoSignedWrap);
5043 if (NSWRegion.contains(AddRecRange))
5044 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
5047 if (!AR->hasNoUnsignedWrap()) {
5048 ConstantRange AddRecRange = getUnsignedRange(AR);
5049 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
5051 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5052 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5053 if (NUWRegion.contains(AddRecRange))
5054 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
5057 return Result;
5060 SCEV::NoWrapFlags
5061 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5062 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5064 if (AR->hasNoSignedWrap())
5065 return Result;
5067 if (!AR->isAffine())
5068 return Result;
5070 // This function can be expensive, only try to prove NSW once per AddRec.
5071 if (!SignedWrapViaInductionTried.insert(AR).second)
5072 return Result;
5074 const SCEV *Step = AR->getStepRecurrence(*this);
5075 const Loop *L = AR->getLoop();
5077 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5078 // Note that this serves two purposes: It filters out loops that are
5079 // simply not analyzable, and it covers the case where this code is
5080 // being called from within backedge-taken count analysis, such that
5081 // attempting to ask for the backedge-taken count would likely result
5082 // in infinite recursion. In the later case, the analysis code will
5083 // cope with a conservative value, and it will take care to purge
5084 // that value once it has finished.
5085 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5087 // Normally, in the cases we can prove no-overflow via a
5088 // backedge guarding condition, we can also compute a backedge
5089 // taken count for the loop. The exceptions are assumptions and
5090 // guards present in the loop -- SCEV is not great at exploiting
5091 // these to compute max backedge taken counts, but can still use
5092 // these to prove lack of overflow. Use this fact to avoid
5093 // doing extra work that may not pay off.
5095 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5096 AC.assumptions().empty())
5097 return Result;
5099 // If the backedge is guarded by a comparison with the pre-inc value the
5100 // addrec is safe. Also, if the entry is guarded by a comparison with the
5101 // start value and the backedge is guarded by a comparison with the post-inc
5102 // value, the addrec is safe.
5103 ICmpInst::Predicate Pred;
5104 const SCEV *OverflowLimit =
5105 getSignedOverflowLimitForStep(Step, &Pred, this);
5106 if (OverflowLimit &&
5107 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5108 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5109 Result = setFlags(Result, SCEV::FlagNSW);
5111 return Result;
5113 SCEV::NoWrapFlags
5114 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5115 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5117 if (AR->hasNoUnsignedWrap())
5118 return Result;
5120 if (!AR->isAffine())
5121 return Result;
5123 // This function can be expensive, only try to prove NUW once per AddRec.
5124 if (!UnsignedWrapViaInductionTried.insert(AR).second)
5125 return Result;
5127 const SCEV *Step = AR->getStepRecurrence(*this);
5128 unsigned BitWidth = getTypeSizeInBits(AR->getType());
5129 const Loop *L = AR->getLoop();
5131 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5132 // Note that this serves two purposes: It filters out loops that are
5133 // simply not analyzable, and it covers the case where this code is
5134 // being called from within backedge-taken count analysis, such that
5135 // attempting to ask for the backedge-taken count would likely result
5136 // in infinite recursion. In the later case, the analysis code will
5137 // cope with a conservative value, and it will take care to purge
5138 // that value once it has finished.
5139 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5141 // Normally, in the cases we can prove no-overflow via a
5142 // backedge guarding condition, we can also compute a backedge
5143 // taken count for the loop. The exceptions are assumptions and
5144 // guards present in the loop -- SCEV is not great at exploiting
5145 // these to compute max backedge taken counts, but can still use
5146 // these to prove lack of overflow. Use this fact to avoid
5147 // doing extra work that may not pay off.
5149 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5150 AC.assumptions().empty())
5151 return Result;
5153 // If the backedge is guarded by a comparison with the pre-inc value the
5154 // addrec is safe. Also, if the entry is guarded by a comparison with the
5155 // start value and the backedge is guarded by a comparison with the post-inc
5156 // value, the addrec is safe.
5157 if (isKnownPositive(Step)) {
5158 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5159 getUnsignedRangeMax(Step));
5160 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5161 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5162 Result = setFlags(Result, SCEV::FlagNUW);
5166 return Result;
5169 namespace {
5171 /// Represents an abstract binary operation. This may exist as a
5172 /// normal instruction or constant expression, or may have been
5173 /// derived from an expression tree.
5174 struct BinaryOp {
5175 unsigned Opcode;
5176 Value *LHS;
5177 Value *RHS;
5178 bool IsNSW = false;
5179 bool IsNUW = false;
5181 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5182 /// constant expression.
5183 Operator *Op = nullptr;
5185 explicit BinaryOp(Operator *Op)
5186 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5187 Op(Op) {
5188 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5189 IsNSW = OBO->hasNoSignedWrap();
5190 IsNUW = OBO->hasNoUnsignedWrap();
5194 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5195 bool IsNUW = false)
5196 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5199 } // end anonymous namespace
5201 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5202 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5203 AssumptionCache &AC,
5204 const DominatorTree &DT,
5205 const Instruction *CxtI) {
5206 auto *Op = dyn_cast<Operator>(V);
5207 if (!Op)
5208 return std::nullopt;
5210 // Implementation detail: all the cleverness here should happen without
5211 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5212 // SCEV expressions when possible, and we should not break that.
5214 switch (Op->getOpcode()) {
5215 case Instruction::Add:
5216 case Instruction::Sub:
5217 case Instruction::Mul:
5218 case Instruction::UDiv:
5219 case Instruction::URem:
5220 case Instruction::And:
5221 case Instruction::AShr:
5222 case Instruction::Shl:
5223 return BinaryOp(Op);
5225 case Instruction::Or: {
5226 // Convert or disjoint into add nuw nsw.
5227 if (cast<PossiblyDisjointInst>(Op)->isDisjoint())
5228 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
5229 /*IsNSW=*/true, /*IsNUW=*/true);
5230 return BinaryOp(Op);
5233 case Instruction::Xor:
5234 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5235 // If the RHS of the xor is a signmask, then this is just an add.
5236 // Instcombine turns add of signmask into xor as a strength reduction step.
5237 if (RHSC->getValue().isSignMask())
5238 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5239 // Binary `xor` is a bit-wise `add`.
5240 if (V->getType()->isIntegerTy(1))
5241 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5242 return BinaryOp(Op);
5244 case Instruction::LShr:
5245 // Turn logical shift right of a constant into a unsigned divide.
5246 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5247 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5249 // If the shift count is not less than the bitwidth, the result of
5250 // the shift is undefined. Don't try to analyze it, because the
5251 // resolution chosen here may differ from the resolution chosen in
5252 // other parts of the compiler.
5253 if (SA->getValue().ult(BitWidth)) {
5254 Constant *X =
5255 ConstantInt::get(SA->getContext(),
5256 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5257 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5260 return BinaryOp(Op);
5262 case Instruction::ExtractValue: {
5263 auto *EVI = cast<ExtractValueInst>(Op);
5264 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5265 break;
5267 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5268 if (!WO)
5269 break;
5271 Instruction::BinaryOps BinOp = WO->getBinaryOp();
5272 bool Signed = WO->isSigned();
5273 // TODO: Should add nuw/nsw flags for mul as well.
5274 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5275 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5277 // Now that we know that all uses of the arithmetic-result component of
5278 // CI are guarded by the overflow check, we can go ahead and pretend
5279 // that the arithmetic is non-overflowing.
5280 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5281 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5284 default:
5285 break;
5288 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5289 // semantics as a Sub, return a binary sub expression.
5290 if (auto *II = dyn_cast<IntrinsicInst>(V))
5291 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5292 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5294 return std::nullopt;
5297 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5298 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5299 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5300 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5301 /// follows one of the following patterns:
5302 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5303 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5304 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5305 /// we return the type of the truncation operation, and indicate whether the
5306 /// truncated type should be treated as signed/unsigned by setting
5307 /// \p Signed to true/false, respectively.
5308 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5309 bool &Signed, ScalarEvolution &SE) {
5310 // The case where Op == SymbolicPHI (that is, with no type conversions on
5311 // the way) is handled by the regular add recurrence creating logic and
5312 // would have already been triggered in createAddRecForPHI. Reaching it here
5313 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5314 // because one of the other operands of the SCEVAddExpr updating this PHI is
5315 // not invariant).
5317 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5318 // this case predicates that allow us to prove that Op == SymbolicPHI will
5319 // be added.
5320 if (Op == SymbolicPHI)
5321 return nullptr;
5323 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5324 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5325 if (SourceBits != NewBits)
5326 return nullptr;
5328 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5329 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5330 if (!SExt && !ZExt)
5331 return nullptr;
5332 const SCEVTruncateExpr *Trunc =
5333 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5334 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5335 if (!Trunc)
5336 return nullptr;
5337 const SCEV *X = Trunc->getOperand();
5338 if (X != SymbolicPHI)
5339 return nullptr;
5340 Signed = SExt != nullptr;
5341 return Trunc->getType();
5344 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5345 if (!PN->getType()->isIntegerTy())
5346 return nullptr;
5347 const Loop *L = LI.getLoopFor(PN->getParent());
5348 if (!L || L->getHeader() != PN->getParent())
5349 return nullptr;
5350 return L;
5353 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5354 // computation that updates the phi follows the following pattern:
5355 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5356 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5357 // If so, try to see if it can be rewritten as an AddRecExpr under some
5358 // Predicates. If successful, return them as a pair. Also cache the results
5359 // of the analysis.
5361 // Example usage scenario:
5362 // Say the Rewriter is called for the following SCEV:
5363 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5364 // where:
5365 // %X = phi i64 (%Start, %BEValue)
5366 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5367 // and call this function with %SymbolicPHI = %X.
5369 // The analysis will find that the value coming around the backedge has
5370 // the following SCEV:
5371 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5372 // Upon concluding that this matches the desired pattern, the function
5373 // will return the pair {NewAddRec, SmallPredsVec} where:
5374 // NewAddRec = {%Start,+,%Step}
5375 // SmallPredsVec = {P1, P2, P3} as follows:
5376 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5377 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5378 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5379 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5380 // under the predicates {P1,P2,P3}.
5381 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
5382 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5384 // TODO's:
5386 // 1) Extend the Induction descriptor to also support inductions that involve
5387 // casts: When needed (namely, when we are called in the context of the
5388 // vectorizer induction analysis), a Set of cast instructions will be
5389 // populated by this method, and provided back to isInductionPHI. This is
5390 // needed to allow the vectorizer to properly record them to be ignored by
5391 // the cost model and to avoid vectorizing them (otherwise these casts,
5392 // which are redundant under the runtime overflow checks, will be
5393 // vectorized, which can be costly).
5395 // 2) Support additional induction/PHISCEV patterns: We also want to support
5396 // inductions where the sext-trunc / zext-trunc operations (partly) occur
5397 // after the induction update operation (the induction increment):
5399 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5400 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
5402 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5403 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
5405 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5406 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5407 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5408 SmallVector<const SCEVPredicate *, 3> Predicates;
5410 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5411 // return an AddRec expression under some predicate.
5413 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5414 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5415 assert(L && "Expecting an integer loop header phi");
5417 // The loop may have multiple entrances or multiple exits; we can analyze
5418 // this phi as an addrec if it has a unique entry value and a unique
5419 // backedge value.
5420 Value *BEValueV = nullptr, *StartValueV = nullptr;
5421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5422 Value *V = PN->getIncomingValue(i);
5423 if (L->contains(PN->getIncomingBlock(i))) {
5424 if (!BEValueV) {
5425 BEValueV = V;
5426 } else if (BEValueV != V) {
5427 BEValueV = nullptr;
5428 break;
5430 } else if (!StartValueV) {
5431 StartValueV = V;
5432 } else if (StartValueV != V) {
5433 StartValueV = nullptr;
5434 break;
5437 if (!BEValueV || !StartValueV)
5438 return std::nullopt;
5440 const SCEV *BEValue = getSCEV(BEValueV);
5442 // If the value coming around the backedge is an add with the symbolic
5443 // value we just inserted, possibly with casts that we can ignore under
5444 // an appropriate runtime guard, then we found a simple induction variable!
5445 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5446 if (!Add)
5447 return std::nullopt;
5449 // If there is a single occurrence of the symbolic value, possibly
5450 // casted, replace it with a recurrence.
5451 unsigned FoundIndex = Add->getNumOperands();
5452 Type *TruncTy = nullptr;
5453 bool Signed;
5454 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5455 if ((TruncTy =
5456 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5457 if (FoundIndex == e) {
5458 FoundIndex = i;
5459 break;
5462 if (FoundIndex == Add->getNumOperands())
5463 return std::nullopt;
5465 // Create an add with everything but the specified operand.
5466 SmallVector<const SCEV *, 8> Ops;
5467 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5468 if (i != FoundIndex)
5469 Ops.push_back(Add->getOperand(i));
5470 const SCEV *Accum = getAddExpr(Ops);
5472 // The runtime checks will not be valid if the step amount is
5473 // varying inside the loop.
5474 if (!isLoopInvariant(Accum, L))
5475 return std::nullopt;
5477 // *** Part2: Create the predicates
5479 // Analysis was successful: we have a phi-with-cast pattern for which we
5480 // can return an AddRec expression under the following predicates:
5482 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5483 // fits within the truncated type (does not overflow) for i = 0 to n-1.
5484 // P2: An Equal predicate that guarantees that
5485 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5486 // P3: An Equal predicate that guarantees that
5487 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5489 // As we next prove, the above predicates guarantee that:
5490 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5493 // More formally, we want to prove that:
5494 // Expr(i+1) = Start + (i+1) * Accum
5495 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5497 // Given that:
5498 // 1) Expr(0) = Start
5499 // 2) Expr(1) = Start + Accum
5500 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5501 // 3) Induction hypothesis (step i):
5502 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5504 // Proof:
5505 // Expr(i+1) =
5506 // = Start + (i+1)*Accum
5507 // = (Start + i*Accum) + Accum
5508 // = Expr(i) + Accum
5509 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5510 // :: from step i
5512 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5514 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5515 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
5516 // + Accum :: from P3
5518 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5519 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5521 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5522 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5524 // By induction, the same applies to all iterations 1<=i<n:
5527 // Create a truncated addrec for which we will add a no overflow check (P1).
5528 const SCEV *StartVal = getSCEV(StartValueV);
5529 const SCEV *PHISCEV =
5530 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5531 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5533 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5534 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5535 // will be constant.
5537 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5538 // add P1.
5539 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5540 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5541 Signed ? SCEVWrapPredicate::IncrementNSSW
5542 : SCEVWrapPredicate::IncrementNUSW;
5543 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5544 Predicates.push_back(AddRecPred);
5547 // Create the Equal Predicates P2,P3:
5549 // It is possible that the predicates P2 and/or P3 are computable at
5550 // compile time due to StartVal and/or Accum being constants.
5551 // If either one is, then we can check that now and escape if either P2
5552 // or P3 is false.
5554 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5555 // for each of StartVal and Accum
5556 auto getExtendedExpr = [&](const SCEV *Expr,
5557 bool CreateSignExtend) -> const SCEV * {
5558 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5559 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5560 const SCEV *ExtendedExpr =
5561 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5562 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5563 return ExtendedExpr;
5566 // Given:
5567 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5568 // = getExtendedExpr(Expr)
5569 // Determine whether the predicate P: Expr == ExtendedExpr
5570 // is known to be false at compile time
5571 auto PredIsKnownFalse = [&](const SCEV *Expr,
5572 const SCEV *ExtendedExpr) -> bool {
5573 return Expr != ExtendedExpr &&
5574 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5577 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5578 if (PredIsKnownFalse(StartVal, StartExtended)) {
5579 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5580 return std::nullopt;
5583 // The Step is always Signed (because the overflow checks are either
5584 // NSSW or NUSW)
5585 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5586 if (PredIsKnownFalse(Accum, AccumExtended)) {
5587 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5588 return std::nullopt;
5591 auto AppendPredicate = [&](const SCEV *Expr,
5592 const SCEV *ExtendedExpr) -> void {
5593 if (Expr != ExtendedExpr &&
5594 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5595 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5596 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5597 Predicates.push_back(Pred);
5601 AppendPredicate(StartVal, StartExtended);
5602 AppendPredicate(Accum, AccumExtended);
5604 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5605 // which the casts had been folded away. The caller can rewrite SymbolicPHI
5606 // into NewAR if it will also add the runtime overflow checks specified in
5607 // Predicates.
5608 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5610 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5611 std::make_pair(NewAR, Predicates);
5612 // Remember the result of the analysis for this SCEV at this locayyytion.
5613 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5614 return PredRewrite;
5617 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5618 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5619 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5620 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5621 if (!L)
5622 return std::nullopt;
5624 // Check to see if we already analyzed this PHI.
5625 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5626 if (I != PredicatedSCEVRewrites.end()) {
5627 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5628 I->second;
5629 // Analysis was done before and failed to create an AddRec:
5630 if (Rewrite.first == SymbolicPHI)
5631 return std::nullopt;
5632 // Analysis was done before and succeeded to create an AddRec under
5633 // a predicate:
5634 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5635 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5636 return Rewrite;
5639 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5640 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5642 // Record in the cache that the analysis failed
5643 if (!Rewrite) {
5644 SmallVector<const SCEVPredicate *, 3> Predicates;
5645 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5646 return std::nullopt;
5649 return Rewrite;
5652 // FIXME: This utility is currently required because the Rewriter currently
5653 // does not rewrite this expression:
5654 // {0, +, (sext ix (trunc iy to ix) to iy)}
5655 // into {0, +, %step},
5656 // even when the following Equal predicate exists:
5657 // "%step == (sext ix (trunc iy to ix) to iy)".
5658 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5659 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5660 if (AR1 == AR2)
5661 return true;
5663 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5664 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5665 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5666 return false;
5667 return true;
5670 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5671 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5672 return false;
5673 return true;
5676 /// A helper function for createAddRecFromPHI to handle simple cases.
5678 /// This function tries to find an AddRec expression for the simplest (yet most
5679 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5680 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5681 /// technique for finding the AddRec expression.
5682 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5683 Value *BEValueV,
5684 Value *StartValueV) {
5685 const Loop *L = LI.getLoopFor(PN->getParent());
5686 assert(L && L->getHeader() == PN->getParent());
5687 assert(BEValueV && StartValueV);
5689 auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
5690 if (!BO)
5691 return nullptr;
5693 if (BO->Opcode != Instruction::Add)
5694 return nullptr;
5696 const SCEV *Accum = nullptr;
5697 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5698 Accum = getSCEV(BO->RHS);
5699 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5700 Accum = getSCEV(BO->LHS);
5702 if (!Accum)
5703 return nullptr;
5705 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5706 if (BO->IsNUW)
5707 Flags = setFlags(Flags, SCEV::FlagNUW);
5708 if (BO->IsNSW)
5709 Flags = setFlags(Flags, SCEV::FlagNSW);
5711 const SCEV *StartVal = getSCEV(StartValueV);
5712 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5713 insertValueToMap(PN, PHISCEV);
5715 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5716 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5717 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5718 proveNoWrapViaConstantRanges(AR)));
5721 // We can add Flags to the post-inc expression only if we
5722 // know that it is *undefined behavior* for BEValueV to
5723 // overflow.
5724 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5725 assert(isLoopInvariant(Accum, L) &&
5726 "Accum is defined outside L, but is not invariant?");
5727 if (isAddRecNeverPoison(BEInst, L))
5728 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5731 return PHISCEV;
5734 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5735 const Loop *L = LI.getLoopFor(PN->getParent());
5736 if (!L || L->getHeader() != PN->getParent())
5737 return nullptr;
5739 // The loop may have multiple entrances or multiple exits; we can analyze
5740 // this phi as an addrec if it has a unique entry value and a unique
5741 // backedge value.
5742 Value *BEValueV = nullptr, *StartValueV = nullptr;
5743 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5744 Value *V = PN->getIncomingValue(i);
5745 if (L->contains(PN->getIncomingBlock(i))) {
5746 if (!BEValueV) {
5747 BEValueV = V;
5748 } else if (BEValueV != V) {
5749 BEValueV = nullptr;
5750 break;
5752 } else if (!StartValueV) {
5753 StartValueV = V;
5754 } else if (StartValueV != V) {
5755 StartValueV = nullptr;
5756 break;
5759 if (!BEValueV || !StartValueV)
5760 return nullptr;
5762 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5763 "PHI node already processed?");
5765 // First, try to find AddRec expression without creating a fictituos symbolic
5766 // value for PN.
5767 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5768 return S;
5770 // Handle PHI node value symbolically.
5771 const SCEV *SymbolicName = getUnknown(PN);
5772 insertValueToMap(PN, SymbolicName);
5774 // Using this symbolic name for the PHI, analyze the value coming around
5775 // the back-edge.
5776 const SCEV *BEValue = getSCEV(BEValueV);
5778 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5779 // has a special value for the first iteration of the loop.
5781 // If the value coming around the backedge is an add with the symbolic
5782 // value we just inserted, then we found a simple induction variable!
5783 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5784 // If there is a single occurrence of the symbolic value, replace it
5785 // with a recurrence.
5786 unsigned FoundIndex = Add->getNumOperands();
5787 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5788 if (Add->getOperand(i) == SymbolicName)
5789 if (FoundIndex == e) {
5790 FoundIndex = i;
5791 break;
5794 if (FoundIndex != Add->getNumOperands()) {
5795 // Create an add with everything but the specified operand.
5796 SmallVector<const SCEV *, 8> Ops;
5797 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5798 if (i != FoundIndex)
5799 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5800 L, *this));
5801 const SCEV *Accum = getAddExpr(Ops);
5803 // This is not a valid addrec if the step amount is varying each
5804 // loop iteration, but is not itself an addrec in this loop.
5805 if (isLoopInvariant(Accum, L) ||
5806 (isa<SCEVAddRecExpr>(Accum) &&
5807 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5808 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5810 if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
5811 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5812 if (BO->IsNUW)
5813 Flags = setFlags(Flags, SCEV::FlagNUW);
5814 if (BO->IsNSW)
5815 Flags = setFlags(Flags, SCEV::FlagNSW);
5817 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5818 // If the increment is an inbounds GEP, then we know the address
5819 // space cannot be wrapped around. We cannot make any guarantee
5820 // about signed or unsigned overflow because pointers are
5821 // unsigned but we may have a negative index from the base
5822 // pointer. We can guarantee that no unsigned wrap occurs if the
5823 // indices form a positive value.
5824 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5825 Flags = setFlags(Flags, SCEV::FlagNW);
5826 if (isKnownPositive(Accum))
5827 Flags = setFlags(Flags, SCEV::FlagNUW);
5830 // We cannot transfer nuw and nsw flags from subtraction
5831 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5832 // for instance.
5835 const SCEV *StartVal = getSCEV(StartValueV);
5836 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5838 // Okay, for the entire analysis of this edge we assumed the PHI
5839 // to be symbolic. We now need to go back and purge all of the
5840 // entries for the scalars that use the symbolic expression.
5841 forgetMemoizedResults(SymbolicName);
5842 insertValueToMap(PN, PHISCEV);
5844 if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5845 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5846 (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5847 proveNoWrapViaConstantRanges(AR)));
5850 // We can add Flags to the post-inc expression only if we
5851 // know that it is *undefined behavior* for BEValueV to
5852 // overflow.
5853 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5854 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5855 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5857 return PHISCEV;
5860 } else {
5861 // Otherwise, this could be a loop like this:
5862 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5863 // In this case, j = {1,+,1} and BEValue is j.
5864 // Because the other in-value of i (0) fits the evolution of BEValue
5865 // i really is an addrec evolution.
5867 // We can generalize this saying that i is the shifted value of BEValue
5868 // by one iteration:
5869 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5870 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5871 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5872 if (Shifted != getCouldNotCompute() &&
5873 Start != getCouldNotCompute()) {
5874 const SCEV *StartVal = getSCEV(StartValueV);
5875 if (Start == StartVal) {
5876 // Okay, for the entire analysis of this edge we assumed the PHI
5877 // to be symbolic. We now need to go back and purge all of the
5878 // entries for the scalars that use the symbolic expression.
5879 forgetMemoizedResults(SymbolicName);
5880 insertValueToMap(PN, Shifted);
5881 return Shifted;
5886 // Remove the temporary PHI node SCEV that has been inserted while intending
5887 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5888 // as it will prevent later (possibly simpler) SCEV expressions to be added
5889 // to the ValueExprMap.
5890 eraseValueFromMap(PN);
5892 return nullptr;
5895 // Try to match a control flow sequence that branches out at BI and merges back
5896 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5897 // match.
5898 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5899 Value *&C, Value *&LHS, Value *&RHS) {
5900 C = BI->getCondition();
5902 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5903 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5905 if (!LeftEdge.isSingleEdge())
5906 return false;
5908 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5910 Use &LeftUse = Merge->getOperandUse(0);
5911 Use &RightUse = Merge->getOperandUse(1);
5913 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5914 LHS = LeftUse;
5915 RHS = RightUse;
5916 return true;
5919 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5920 LHS = RightUse;
5921 RHS = LeftUse;
5922 return true;
5925 return false;
5928 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5929 auto IsReachable =
5930 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5931 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5932 // Try to match
5934 // br %cond, label %left, label %right
5935 // left:
5936 // br label %merge
5937 // right:
5938 // br label %merge
5939 // merge:
5940 // V = phi [ %x, %left ], [ %y, %right ]
5942 // as "select %cond, %x, %y"
5944 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5945 assert(IDom && "At least the entry block should dominate PN");
5947 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5948 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5950 if (BI && BI->isConditional() &&
5951 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5952 properlyDominates(getSCEV(LHS), PN->getParent()) &&
5953 properlyDominates(getSCEV(RHS), PN->getParent()))
5954 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5957 return nullptr;
5960 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5961 if (const SCEV *S = createAddRecFromPHI(PN))
5962 return S;
5964 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5965 return getSCEV(V);
5967 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5968 return S;
5970 // If it's not a loop phi, we can't handle it yet.
5971 return getUnknown(PN);
5974 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
5975 SCEVTypes RootKind) {
5976 struct FindClosure {
5977 const SCEV *OperandToFind;
5978 const SCEVTypes RootKind; // Must be a sequential min/max expression.
5979 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
5981 bool Found = false;
5983 bool canRecurseInto(SCEVTypes Kind) const {
5984 // We can only recurse into the SCEV expression of the same effective type
5985 // as the type of our root SCEV expression, and into zero-extensions.
5986 return RootKind == Kind || NonSequentialRootKind == Kind ||
5987 scZeroExtend == Kind;
5990 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
5991 : OperandToFind(OperandToFind), RootKind(RootKind),
5992 NonSequentialRootKind(
5993 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
5994 RootKind)) {}
5996 bool follow(const SCEV *S) {
5997 Found = S == OperandToFind;
5999 return !isDone() && canRecurseInto(S->getSCEVType());
6002 bool isDone() const { return Found; }
6005 FindClosure FC(OperandToFind, RootKind);
6006 visitAll(Root, FC);
6007 return FC.Found;
6010 std::optional<const SCEV *>
6011 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6012 ICmpInst *Cond,
6013 Value *TrueVal,
6014 Value *FalseVal) {
6015 // Try to match some simple smax or umax patterns.
6016 auto *ICI = Cond;
6018 Value *LHS = ICI->getOperand(0);
6019 Value *RHS = ICI->getOperand(1);
6021 switch (ICI->getPredicate()) {
6022 case ICmpInst::ICMP_SLT:
6023 case ICmpInst::ICMP_SLE:
6024 case ICmpInst::ICMP_ULT:
6025 case ICmpInst::ICMP_ULE:
6026 std::swap(LHS, RHS);
6027 [[fallthrough]];
6028 case ICmpInst::ICMP_SGT:
6029 case ICmpInst::ICMP_SGE:
6030 case ICmpInst::ICMP_UGT:
6031 case ICmpInst::ICMP_UGE:
6032 // a > b ? a+x : b+x -> max(a, b)+x
6033 // a > b ? b+x : a+x -> min(a, b)+x
6034 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) {
6035 bool Signed = ICI->isSigned();
6036 const SCEV *LA = getSCEV(TrueVal);
6037 const SCEV *RA = getSCEV(FalseVal);
6038 const SCEV *LS = getSCEV(LHS);
6039 const SCEV *RS = getSCEV(RHS);
6040 if (LA->getType()->isPointerTy()) {
6041 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6042 // Need to make sure we can't produce weird expressions involving
6043 // negated pointers.
6044 if (LA == LS && RA == RS)
6045 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6046 if (LA == RS && RA == LS)
6047 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6049 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6050 if (Op->getType()->isPointerTy()) {
6051 Op = getLosslessPtrToIntExpr(Op);
6052 if (isa<SCEVCouldNotCompute>(Op))
6053 return Op;
6055 if (Signed)
6056 Op = getNoopOrSignExtend(Op, Ty);
6057 else
6058 Op = getNoopOrZeroExtend(Op, Ty);
6059 return Op;
6061 LS = CoerceOperand(LS);
6062 RS = CoerceOperand(RS);
6063 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6064 break;
6065 const SCEV *LDiff = getMinusSCEV(LA, LS);
6066 const SCEV *RDiff = getMinusSCEV(RA, RS);
6067 if (LDiff == RDiff)
6068 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6069 LDiff);
6070 LDiff = getMinusSCEV(LA, RS);
6071 RDiff = getMinusSCEV(RA, LS);
6072 if (LDiff == RDiff)
6073 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6074 LDiff);
6076 break;
6077 case ICmpInst::ICMP_NE:
6078 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y
6079 std::swap(TrueVal, FalseVal);
6080 [[fallthrough]];
6081 case ICmpInst::ICMP_EQ:
6082 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1
6083 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) &&
6084 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6085 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty);
6086 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y
6087 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y
6088 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6089 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y
6090 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6091 return getAddExpr(getUMaxExpr(X, C), Y);
6093 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...))
6094 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...))
6095 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...)
6096 // -> umin_seq(x, umin (..., umin_seq(...), ...))
6097 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6098 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6099 const SCEV *X = getSCEV(LHS);
6100 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6101 X = ZExt->getOperand();
6102 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) {
6103 const SCEV *FalseValExpr = getSCEV(FalseVal);
6104 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6105 return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr,
6106 /*Sequential=*/true);
6109 break;
6110 default:
6111 break;
6114 return std::nullopt;
6117 static std::optional<const SCEV *>
6118 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6119 const SCEV *TrueExpr, const SCEV *FalseExpr) {
6120 assert(CondExpr->getType()->isIntegerTy(1) &&
6121 TrueExpr->getType() == FalseExpr->getType() &&
6122 TrueExpr->getType()->isIntegerTy(1) &&
6123 "Unexpected operands of a select.");
6125 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0)
6126 // --> C + (umin_seq cond, x - C)
6128 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C))
6129 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6130 // --> C + (umin_seq ~cond, x - C)
6132 // FIXME: while we can't legally model the case where both of the hands
6133 // are fully variable, we only require that the *difference* is constant.
6134 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6135 return std::nullopt;
6137 const SCEV *X, *C;
6138 if (isa<SCEVConstant>(TrueExpr)) {
6139 CondExpr = SE->getNotSCEV(CondExpr);
6140 X = FalseExpr;
6141 C = TrueExpr;
6142 } else {
6143 X = TrueExpr;
6144 C = FalseExpr;
6146 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6147 /*Sequential=*/true));
6150 static std::optional<const SCEV *>
6151 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6152 Value *FalseVal) {
6153 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6154 return std::nullopt;
6156 const auto *SECond = SE->getSCEV(Cond);
6157 const auto *SETrue = SE->getSCEV(TrueVal);
6158 const auto *SEFalse = SE->getSCEV(FalseVal);
6159 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6162 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6163 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6164 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6165 assert(TrueVal->getType() == FalseVal->getType() &&
6166 V->getType() == TrueVal->getType() &&
6167 "Types of select hands and of the result must match.");
6169 // For now, only deal with i1-typed `select`s.
6170 if (!V->getType()->isIntegerTy(1))
6171 return getUnknown(V);
6173 if (std::optional<const SCEV *> S =
6174 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6175 return *S;
6177 return getUnknown(V);
6180 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6181 Value *TrueVal,
6182 Value *FalseVal) {
6183 // Handle "constant" branch or select. This can occur for instance when a
6184 // loop pass transforms an inner loop and moves on to process the outer loop.
6185 if (auto *CI = dyn_cast<ConstantInt>(Cond))
6186 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6188 if (auto *I = dyn_cast<Instruction>(V)) {
6189 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6190 if (std::optional<const SCEV *> S =
6191 createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI,
6192 TrueVal, FalseVal))
6193 return *S;
6197 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6200 /// Expand GEP instructions into add and multiply operations. This allows them
6201 /// to be analyzed by regular SCEV code.
6202 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6203 assert(GEP->getSourceElementType()->isSized() &&
6204 "GEP source element type must be sized");
6206 SmallVector<const SCEV *, 4> IndexExprs;
6207 for (Value *Index : GEP->indices())
6208 IndexExprs.push_back(getSCEV(Index));
6209 return getGEPExpr(GEP, IndexExprs);
6212 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) {
6213 uint64_t BitWidth = getTypeSizeInBits(S->getType());
6214 auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) {
6215 return TrailingZeros >= BitWidth
6216 ? APInt::getZero(BitWidth)
6217 : APInt::getOneBitSet(BitWidth, TrailingZeros);
6219 auto GetGCDMultiple = [this](const SCEVNAryExpr *N) {
6220 // The result is GCD of all operands results.
6221 APInt Res = getConstantMultiple(N->getOperand(0));
6222 for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I)
6223 Res = APIntOps::GreatestCommonDivisor(
6224 Res, getConstantMultiple(N->getOperand(I)));
6225 return Res;
6228 switch (S->getSCEVType()) {
6229 case scConstant:
6230 return cast<SCEVConstant>(S)->getAPInt();
6231 case scPtrToInt:
6232 return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand());
6233 case scUDivExpr:
6234 case scVScale:
6235 return APInt(BitWidth, 1);
6236 case scTruncate: {
6237 // Only multiples that are a power of 2 will hold after truncation.
6238 const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S);
6239 uint32_t TZ = getMinTrailingZeros(T->getOperand());
6240 return GetShiftedByZeros(TZ);
6242 case scZeroExtend: {
6243 const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S);
6244 return getConstantMultiple(Z->getOperand()).zext(BitWidth);
6246 case scSignExtend: {
6247 const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S);
6248 return getConstantMultiple(E->getOperand()).sext(BitWidth);
6250 case scMulExpr: {
6251 const SCEVMulExpr *M = cast<SCEVMulExpr>(S);
6252 if (M->hasNoUnsignedWrap()) {
6253 // The result is the product of all operand results.
6254 APInt Res = getConstantMultiple(M->getOperand(0));
6255 for (const SCEV *Operand : M->operands().drop_front())
6256 Res = Res * getConstantMultiple(Operand);
6257 return Res;
6260 // If there are no wrap guarentees, find the trailing zeros, which is the
6261 // sum of trailing zeros for all its operands.
6262 uint32_t TZ = 0;
6263 for (const SCEV *Operand : M->operands())
6264 TZ += getMinTrailingZeros(Operand);
6265 return GetShiftedByZeros(TZ);
6267 case scAddExpr:
6268 case scAddRecExpr: {
6269 const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S);
6270 if (N->hasNoUnsignedWrap())
6271 return GetGCDMultiple(N);
6272 // Find the trailing bits, which is the minimum of its operands.
6273 uint32_t TZ = getMinTrailingZeros(N->getOperand(0));
6274 for (const SCEV *Operand : N->operands().drop_front())
6275 TZ = std::min(TZ, getMinTrailingZeros(Operand));
6276 return GetShiftedByZeros(TZ);
6278 case scUMaxExpr:
6279 case scSMaxExpr:
6280 case scUMinExpr:
6281 case scSMinExpr:
6282 case scSequentialUMinExpr:
6283 return GetGCDMultiple(cast<SCEVNAryExpr>(S));
6284 case scUnknown: {
6285 // ask ValueTracking for known bits
6286 const SCEVUnknown *U = cast<SCEVUnknown>(S);
6287 unsigned Known =
6288 computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT)
6289 .countMinTrailingZeros();
6290 return GetShiftedByZeros(Known);
6292 case scCouldNotCompute:
6293 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6295 llvm_unreachable("Unknown SCEV kind!");
6298 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) {
6299 auto I = ConstantMultipleCache.find(S);
6300 if (I != ConstantMultipleCache.end())
6301 return I->second;
6303 APInt Result = getConstantMultipleImpl(S);
6304 auto InsertPair = ConstantMultipleCache.insert({S, Result});
6305 assert(InsertPair.second && "Should insert a new key");
6306 return InsertPair.first->second;
6309 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) {
6310 APInt Multiple = getConstantMultiple(S);
6311 return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple;
6314 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) {
6315 return std::min(getConstantMultiple(S).countTrailingZeros(),
6316 (unsigned)getTypeSizeInBits(S->getType()));
6319 /// Helper method to assign a range to V from metadata present in the IR.
6320 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6321 if (Instruction *I = dyn_cast<Instruction>(V))
6322 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6323 return getConstantRangeFromMetadata(*MD);
6325 return std::nullopt;
6328 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6329 SCEV::NoWrapFlags Flags) {
6330 if (AddRec->getNoWrapFlags(Flags) != Flags) {
6331 AddRec->setNoWrapFlags(Flags);
6332 UnsignedRanges.erase(AddRec);
6333 SignedRanges.erase(AddRec);
6334 ConstantMultipleCache.erase(AddRec);
6338 ConstantRange ScalarEvolution::
6339 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6340 const DataLayout &DL = getDataLayout();
6342 unsigned BitWidth = getTypeSizeInBits(U->getType());
6343 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6345 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6346 // use information about the trip count to improve our available range. Note
6347 // that the trip count independent cases are already handled by known bits.
6348 // WARNING: The definition of recurrence used here is subtly different than
6349 // the one used by AddRec (and thus most of this file). Step is allowed to
6350 // be arbitrarily loop varying here, where AddRec allows only loop invariant
6351 // and other addrecs in the same loop (for non-affine addrecs). The code
6352 // below intentionally handles the case where step is not loop invariant.
6353 auto *P = dyn_cast<PHINode>(U->getValue());
6354 if (!P)
6355 return FullSet;
6357 // Make sure that no Phi input comes from an unreachable block. Otherwise,
6358 // even the values that are not available in these blocks may come from them,
6359 // and this leads to false-positive recurrence test.
6360 for (auto *Pred : predecessors(P->getParent()))
6361 if (!DT.isReachableFromEntry(Pred))
6362 return FullSet;
6364 BinaryOperator *BO;
6365 Value *Start, *Step;
6366 if (!matchSimpleRecurrence(P, BO, Start, Step))
6367 return FullSet;
6369 // If we found a recurrence in reachable code, we must be in a loop. Note
6370 // that BO might be in some subloop of L, and that's completely okay.
6371 auto *L = LI.getLoopFor(P->getParent());
6372 assert(L && L->getHeader() == P->getParent());
6373 if (!L->contains(BO->getParent()))
6374 // NOTE: This bailout should be an assert instead. However, asserting
6375 // the condition here exposes a case where LoopFusion is querying SCEV
6376 // with malformed loop information during the midst of the transform.
6377 // There doesn't appear to be an obvious fix, so for the moment bailout
6378 // until the caller issue can be fixed. PR49566 tracks the bug.
6379 return FullSet;
6381 // TODO: Extend to other opcodes such as mul, and div
6382 switch (BO->getOpcode()) {
6383 default:
6384 return FullSet;
6385 case Instruction::AShr:
6386 case Instruction::LShr:
6387 case Instruction::Shl:
6388 break;
6391 if (BO->getOperand(0) != P)
6392 // TODO: Handle the power function forms some day.
6393 return FullSet;
6395 unsigned TC = getSmallConstantMaxTripCount(L);
6396 if (!TC || TC >= BitWidth)
6397 return FullSet;
6399 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6400 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6401 assert(KnownStart.getBitWidth() == BitWidth &&
6402 KnownStep.getBitWidth() == BitWidth);
6404 // Compute total shift amount, being careful of overflow and bitwidths.
6405 auto MaxShiftAmt = KnownStep.getMaxValue();
6406 APInt TCAP(BitWidth, TC-1);
6407 bool Overflow = false;
6408 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6409 if (Overflow)
6410 return FullSet;
6412 switch (BO->getOpcode()) {
6413 default:
6414 llvm_unreachable("filtered out above");
6415 case Instruction::AShr: {
6416 // For each ashr, three cases:
6417 // shift = 0 => unchanged value
6418 // saturation => 0 or -1
6419 // other => a value closer to zero (of the same sign)
6420 // Thus, the end value is closer to zero than the start.
6421 auto KnownEnd = KnownBits::ashr(KnownStart,
6422 KnownBits::makeConstant(TotalShift));
6423 if (KnownStart.isNonNegative())
6424 // Analogous to lshr (simply not yet canonicalized)
6425 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6426 KnownStart.getMaxValue() + 1);
6427 if (KnownStart.isNegative())
6428 // End >=u Start && End <=s Start
6429 return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6430 KnownEnd.getMaxValue() + 1);
6431 break;
6433 case Instruction::LShr: {
6434 // For each lshr, three cases:
6435 // shift = 0 => unchanged value
6436 // saturation => 0
6437 // other => a smaller positive number
6438 // Thus, the low end of the unsigned range is the last value produced.
6439 auto KnownEnd = KnownBits::lshr(KnownStart,
6440 KnownBits::makeConstant(TotalShift));
6441 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6442 KnownStart.getMaxValue() + 1);
6444 case Instruction::Shl: {
6445 // Iff no bits are shifted out, value increases on every shift.
6446 auto KnownEnd = KnownBits::shl(KnownStart,
6447 KnownBits::makeConstant(TotalShift));
6448 if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6449 return ConstantRange(KnownStart.getMinValue(),
6450 KnownEnd.getMaxValue() + 1);
6451 break;
6454 return FullSet;
6457 const ConstantRange &
6458 ScalarEvolution::getRangeRefIter(const SCEV *S,
6459 ScalarEvolution::RangeSignHint SignHint) {
6460 DenseMap<const SCEV *, ConstantRange> &Cache =
6461 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6462 : SignedRanges;
6463 SmallVector<const SCEV *> WorkList;
6464 SmallPtrSet<const SCEV *, 8> Seen;
6466 // Add Expr to the worklist, if Expr is either an N-ary expression or a
6467 // SCEVUnknown PHI node.
6468 auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6469 if (!Seen.insert(Expr).second)
6470 return;
6471 if (Cache.contains(Expr))
6472 return;
6473 switch (Expr->getSCEVType()) {
6474 case scUnknown:
6475 if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue()))
6476 break;
6477 [[fallthrough]];
6478 case scConstant:
6479 case scVScale:
6480 case scTruncate:
6481 case scZeroExtend:
6482 case scSignExtend:
6483 case scPtrToInt:
6484 case scAddExpr:
6485 case scMulExpr:
6486 case scUDivExpr:
6487 case scAddRecExpr:
6488 case scUMaxExpr:
6489 case scSMaxExpr:
6490 case scUMinExpr:
6491 case scSMinExpr:
6492 case scSequentialUMinExpr:
6493 WorkList.push_back(Expr);
6494 break;
6495 case scCouldNotCompute:
6496 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6499 AddToWorklist(S);
6501 // Build worklist by queuing operands of N-ary expressions and phi nodes.
6502 for (unsigned I = 0; I != WorkList.size(); ++I) {
6503 const SCEV *P = WorkList[I];
6504 auto *UnknownS = dyn_cast<SCEVUnknown>(P);
6505 // If it is not a `SCEVUnknown`, just recurse into operands.
6506 if (!UnknownS) {
6507 for (const SCEV *Op : P->operands())
6508 AddToWorklist(Op);
6509 continue;
6511 // `SCEVUnknown`'s require special treatment.
6512 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
6513 if (!PendingPhiRangesIter.insert(P).second)
6514 continue;
6515 for (auto &Op : reverse(P->operands()))
6516 AddToWorklist(getSCEV(Op));
6520 if (!WorkList.empty()) {
6521 // Use getRangeRef to compute ranges for items in the worklist in reverse
6522 // order. This will force ranges for earlier operands to be computed before
6523 // their users in most cases.
6524 for (const SCEV *P : reverse(drop_begin(WorkList))) {
6525 getRangeRef(P, SignHint);
6527 if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
6528 if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
6529 PendingPhiRangesIter.erase(P);
6533 return getRangeRef(S, SignHint, 0);
6536 /// Determine the range for a particular SCEV. If SignHint is
6537 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6538 /// with a "cleaner" unsigned (resp. signed) representation.
6539 const ConstantRange &ScalarEvolution::getRangeRef(
6540 const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6541 DenseMap<const SCEV *, ConstantRange> &Cache =
6542 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6543 : SignedRanges;
6544 ConstantRange::PreferredRangeType RangeType =
6545 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6546 : ConstantRange::Signed;
6548 // See if we've computed this range already.
6549 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6550 if (I != Cache.end())
6551 return I->second;
6553 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6554 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6556 // Switch to iteratively computing the range for S, if it is part of a deeply
6557 // nested expression.
6558 if (Depth > RangeIterThreshold)
6559 return getRangeRefIter(S, SignHint);
6561 unsigned BitWidth = getTypeSizeInBits(S->getType());
6562 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6563 using OBO = OverflowingBinaryOperator;
6565 // If the value has known zeros, the maximum value will have those known zeros
6566 // as well.
6567 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6568 APInt Multiple = getNonZeroConstantMultiple(S);
6569 APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple);
6570 if (!Remainder.isZero())
6571 ConservativeResult =
6572 ConstantRange(APInt::getMinValue(BitWidth),
6573 APInt::getMaxValue(BitWidth) - Remainder + 1);
6575 else {
6576 uint32_t TZ = getMinTrailingZeros(S);
6577 if (TZ != 0) {
6578 ConservativeResult = ConstantRange(
6579 APInt::getSignedMinValue(BitWidth),
6580 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6584 switch (S->getSCEVType()) {
6585 case scConstant:
6586 llvm_unreachable("Already handled above.");
6587 case scVScale:
6588 return setRange(S, SignHint, getVScaleRange(&F, BitWidth));
6589 case scTruncate: {
6590 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S);
6591 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
6592 return setRange(
6593 Trunc, SignHint,
6594 ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType));
6596 case scZeroExtend: {
6597 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S);
6598 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
6599 return setRange(
6600 ZExt, SignHint,
6601 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType));
6603 case scSignExtend: {
6604 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S);
6605 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
6606 return setRange(
6607 SExt, SignHint,
6608 ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType));
6610 case scPtrToInt: {
6611 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S);
6612 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
6613 return setRange(PtrToInt, SignHint, X);
6615 case scAddExpr: {
6616 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
6617 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
6618 unsigned WrapType = OBO::AnyWrap;
6619 if (Add->hasNoSignedWrap())
6620 WrapType |= OBO::NoSignedWrap;
6621 if (Add->hasNoUnsignedWrap())
6622 WrapType |= OBO::NoUnsignedWrap;
6623 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6624 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1),
6625 WrapType, RangeType);
6626 return setRange(Add, SignHint,
6627 ConservativeResult.intersectWith(X, RangeType));
6629 case scMulExpr: {
6630 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S);
6631 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
6632 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6633 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1));
6634 return setRange(Mul, SignHint,
6635 ConservativeResult.intersectWith(X, RangeType));
6637 case scUDivExpr: {
6638 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6639 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
6640 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
6641 return setRange(UDiv, SignHint,
6642 ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6644 case scAddRecExpr: {
6645 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S);
6646 // If there's no unsigned wrap, the value will never be less than its
6647 // initial value.
6648 if (AddRec->hasNoUnsignedWrap()) {
6649 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6650 if (!UnsignedMinValue.isZero())
6651 ConservativeResult = ConservativeResult.intersectWith(
6652 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6655 // If there's no signed wrap, and all the operands except initial value have
6656 // the same sign or zero, the value won't ever be:
6657 // 1: smaller than initial value if operands are non negative,
6658 // 2: bigger than initial value if operands are non positive.
6659 // For both cases, value can not cross signed min/max boundary.
6660 if (AddRec->hasNoSignedWrap()) {
6661 bool AllNonNeg = true;
6662 bool AllNonPos = true;
6663 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6664 if (!isKnownNonNegative(AddRec->getOperand(i)))
6665 AllNonNeg = false;
6666 if (!isKnownNonPositive(AddRec->getOperand(i)))
6667 AllNonPos = false;
6669 if (AllNonNeg)
6670 ConservativeResult = ConservativeResult.intersectWith(
6671 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6672 APInt::getSignedMinValue(BitWidth)),
6673 RangeType);
6674 else if (AllNonPos)
6675 ConservativeResult = ConservativeResult.intersectWith(
6676 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
6677 getSignedRangeMax(AddRec->getStart()) +
6679 RangeType);
6682 // TODO: non-affine addrec
6683 if (AddRec->isAffine()) {
6684 const SCEV *MaxBEScev =
6685 getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6686 if (!isa<SCEVCouldNotCompute>(MaxBEScev)) {
6687 APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt();
6689 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6690 // MaxBECount's active bits are all <= AddRec's bit width.
6691 if (MaxBECount.getBitWidth() > BitWidth &&
6692 MaxBECount.getActiveBits() <= BitWidth)
6693 MaxBECount = MaxBECount.trunc(BitWidth);
6694 else if (MaxBECount.getBitWidth() < BitWidth)
6695 MaxBECount = MaxBECount.zext(BitWidth);
6697 if (MaxBECount.getBitWidth() == BitWidth) {
6698 auto RangeFromAffine = getRangeForAffineAR(
6699 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6700 ConservativeResult =
6701 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6703 auto RangeFromFactoring = getRangeViaFactoring(
6704 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6705 ConservativeResult =
6706 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6710 // Now try symbolic BE count and more powerful methods.
6711 if (UseExpensiveRangeSharpening) {
6712 const SCEV *SymbolicMaxBECount =
6713 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6714 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6715 getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth &&
6716 AddRec->hasNoSelfWrap()) {
6717 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6718 AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6719 ConservativeResult =
6720 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6725 return setRange(AddRec, SignHint, std::move(ConservativeResult));
6727 case scUMaxExpr:
6728 case scSMaxExpr:
6729 case scUMinExpr:
6730 case scSMinExpr:
6731 case scSequentialUMinExpr: {
6732 Intrinsic::ID ID;
6733 switch (S->getSCEVType()) {
6734 case scUMaxExpr:
6735 ID = Intrinsic::umax;
6736 break;
6737 case scSMaxExpr:
6738 ID = Intrinsic::smax;
6739 break;
6740 case scUMinExpr:
6741 case scSequentialUMinExpr:
6742 ID = Intrinsic::umin;
6743 break;
6744 case scSMinExpr:
6745 ID = Intrinsic::smin;
6746 break;
6747 default:
6748 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6751 const auto *NAry = cast<SCEVNAryExpr>(S);
6752 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
6753 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6754 X = X.intrinsic(
6755 ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
6756 return setRange(S, SignHint,
6757 ConservativeResult.intersectWith(X, RangeType));
6759 case scUnknown: {
6760 const SCEVUnknown *U = cast<SCEVUnknown>(S);
6761 Value *V = U->getValue();
6763 // Check if the IR explicitly contains !range metadata.
6764 std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V);
6765 if (MDRange)
6766 ConservativeResult =
6767 ConservativeResult.intersectWith(*MDRange, RangeType);
6769 // Use facts about recurrences in the underlying IR. Note that add
6770 // recurrences are AddRecExprs and thus don't hit this path. This
6771 // primarily handles shift recurrences.
6772 auto CR = getRangeForUnknownRecurrence(U);
6773 ConservativeResult = ConservativeResult.intersectWith(CR);
6775 // See if ValueTracking can give us a useful range.
6776 const DataLayout &DL = getDataLayout();
6777 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT);
6778 if (Known.getBitWidth() != BitWidth)
6779 Known = Known.zextOrTrunc(BitWidth);
6781 // ValueTracking may be able to compute a tighter result for the number of
6782 // sign bits than for the value of those sign bits.
6783 unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT);
6784 if (U->getType()->isPointerTy()) {
6785 // If the pointer size is larger than the index size type, this can cause
6786 // NS to be larger than BitWidth. So compensate for this.
6787 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6788 int ptrIdxDiff = ptrSize - BitWidth;
6789 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6790 NS -= ptrIdxDiff;
6793 if (NS > 1) {
6794 // If we know any of the sign bits, we know all of the sign bits.
6795 if (!Known.Zero.getHiBits(NS).isZero())
6796 Known.Zero.setHighBits(NS);
6797 if (!Known.One.getHiBits(NS).isZero())
6798 Known.One.setHighBits(NS);
6801 if (Known.getMinValue() != Known.getMaxValue() + 1)
6802 ConservativeResult = ConservativeResult.intersectWith(
6803 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6804 RangeType);
6805 if (NS > 1)
6806 ConservativeResult = ConservativeResult.intersectWith(
6807 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6808 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6809 RangeType);
6811 if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6812 // Strengthen the range if the underlying IR value is a
6813 // global/alloca/heap allocation using the size of the object.
6814 ObjectSizeOpts Opts;
6815 Opts.RoundToAlign = false;
6816 Opts.NullIsUnknownSize = true;
6817 uint64_t ObjSize;
6818 if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) ||
6819 isAllocationFn(V, &TLI)) &&
6820 getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) {
6821 // The highest address the object can start is ObjSize bytes before the
6822 // end (unsigned max value). If this value is not a multiple of the
6823 // alignment, the last possible start value is the next lowest multiple
6824 // of the alignment. Note: The computations below cannot overflow,
6825 // because if they would there's no possible start address for the
6826 // object.
6827 APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize);
6828 uint64_t Align = U->getValue()->getPointerAlignment(DL).value();
6829 uint64_t Rem = MaxVal.urem(Align);
6830 MaxVal -= APInt(BitWidth, Rem);
6831 APInt MinVal = APInt::getZero(BitWidth);
6832 if (llvm::isKnownNonZero(V, DL))
6833 MinVal = Align;
6834 ConservativeResult = ConservativeResult.intersectWith(
6835 ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType);
6839 // A range of Phi is a subset of union of all ranges of its input.
6840 if (PHINode *Phi = dyn_cast<PHINode>(V)) {
6841 // Make sure that we do not run over cycled Phis.
6842 if (PendingPhiRanges.insert(Phi).second) {
6843 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6845 for (const auto &Op : Phi->operands()) {
6846 auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
6847 RangeFromOps = RangeFromOps.unionWith(OpRange);
6848 // No point to continue if we already have a full set.
6849 if (RangeFromOps.isFullSet())
6850 break;
6852 ConservativeResult =
6853 ConservativeResult.intersectWith(RangeFromOps, RangeType);
6854 bool Erased = PendingPhiRanges.erase(Phi);
6855 assert(Erased && "Failed to erase Phi properly?");
6856 (void)Erased;
6860 // vscale can't be equal to zero
6861 if (const auto *II = dyn_cast<IntrinsicInst>(V))
6862 if (II->getIntrinsicID() == Intrinsic::vscale) {
6863 ConstantRange Disallowed = APInt::getZero(BitWidth);
6864 ConservativeResult = ConservativeResult.difference(Disallowed);
6867 return setRange(U, SignHint, std::move(ConservativeResult));
6869 case scCouldNotCompute:
6870 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6873 return setRange(S, SignHint, std::move(ConservativeResult));
6876 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6877 // values that the expression can take. Initially, the expression has a value
6878 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6879 // argument defines if we treat Step as signed or unsigned.
6880 static ConstantRange getRangeForAffineARHelper(APInt Step,
6881 const ConstantRange &StartRange,
6882 const APInt &MaxBECount,
6883 bool Signed) {
6884 unsigned BitWidth = Step.getBitWidth();
6885 assert(BitWidth == StartRange.getBitWidth() &&
6886 BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths");
6887 // If either Step or MaxBECount is 0, then the expression won't change, and we
6888 // just need to return the initial range.
6889 if (Step == 0 || MaxBECount == 0)
6890 return StartRange;
6892 // If we don't know anything about the initial value (i.e. StartRange is
6893 // FullRange), then we don't know anything about the final range either.
6894 // Return FullRange.
6895 if (StartRange.isFullSet())
6896 return ConstantRange::getFull(BitWidth);
6898 // If Step is signed and negative, then we use its absolute value, but we also
6899 // note that we're moving in the opposite direction.
6900 bool Descending = Signed && Step.isNegative();
6902 if (Signed)
6903 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6904 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6905 // This equations hold true due to the well-defined wrap-around behavior of
6906 // APInt.
6907 Step = Step.abs();
6909 // Check if Offset is more than full span of BitWidth. If it is, the
6910 // expression is guaranteed to overflow.
6911 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6912 return ConstantRange::getFull(BitWidth);
6914 // Offset is by how much the expression can change. Checks above guarantee no
6915 // overflow here.
6916 APInt Offset = Step * MaxBECount;
6918 // Minimum value of the final range will match the minimal value of StartRange
6919 // if the expression is increasing and will be decreased by Offset otherwise.
6920 // Maximum value of the final range will match the maximal value of StartRange
6921 // if the expression is decreasing and will be increased by Offset otherwise.
6922 APInt StartLower = StartRange.getLower();
6923 APInt StartUpper = StartRange.getUpper() - 1;
6924 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6925 : (StartUpper + std::move(Offset));
6927 // It's possible that the new minimum/maximum value will fall into the initial
6928 // range (due to wrap around). This means that the expression can take any
6929 // value in this bitwidth, and we have to return full range.
6930 if (StartRange.contains(MovedBoundary))
6931 return ConstantRange::getFull(BitWidth);
6933 APInt NewLower =
6934 Descending ? std::move(MovedBoundary) : std::move(StartLower);
6935 APInt NewUpper =
6936 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6937 NewUpper += 1;
6939 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6940 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6943 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6944 const SCEV *Step,
6945 const APInt &MaxBECount) {
6946 assert(getTypeSizeInBits(Start->getType()) ==
6947 getTypeSizeInBits(Step->getType()) &&
6948 getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() &&
6949 "mismatched bit widths");
6951 // First, consider step signed.
6952 ConstantRange StartSRange = getSignedRange(Start);
6953 ConstantRange StepSRange = getSignedRange(Step);
6955 // If Step can be both positive and negative, we need to find ranges for the
6956 // maximum absolute step values in both directions and union them.
6957 ConstantRange SR = getRangeForAffineARHelper(
6958 StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true);
6959 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6960 StartSRange, MaxBECount,
6961 /* Signed = */ true));
6963 // Next, consider step unsigned.
6964 ConstantRange UR = getRangeForAffineARHelper(
6965 getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount,
6966 /* Signed = */ false);
6968 // Finally, intersect signed and unsigned ranges.
6969 return SR.intersectWith(UR, ConstantRange::Smallest);
6972 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6973 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6974 ScalarEvolution::RangeSignHint SignHint) {
6975 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6976 assert(AddRec->hasNoSelfWrap() &&
6977 "This only works for non-self-wrapping AddRecs!");
6978 const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6979 const SCEV *Step = AddRec->getStepRecurrence(*this);
6980 // Only deal with constant step to save compile time.
6981 if (!isa<SCEVConstant>(Step))
6982 return ConstantRange::getFull(BitWidth);
6983 // Let's make sure that we can prove that we do not self-wrap during
6984 // MaxBECount iterations. We need this because MaxBECount is a maximum
6985 // iteration count estimate, and we might infer nw from some exit for which we
6986 // do not know max exit count (or any other side reasoning).
6987 // TODO: Turn into assert at some point.
6988 if (getTypeSizeInBits(MaxBECount->getType()) >
6989 getTypeSizeInBits(AddRec->getType()))
6990 return ConstantRange::getFull(BitWidth);
6991 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6992 const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6993 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6994 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6995 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6996 MaxItersWithoutWrap))
6997 return ConstantRange::getFull(BitWidth);
6999 ICmpInst::Predicate LEPred =
7000 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7001 ICmpInst::Predicate GEPred =
7002 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7003 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
7005 // We know that there is no self-wrap. Let's take Start and End values and
7006 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7007 // the iteration. They either lie inside the range [Min(Start, End),
7008 // Max(Start, End)] or outside it:
7010 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
7011 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
7013 // No self wrap flag guarantees that the intermediate values cannot be BOTH
7014 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7015 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7016 // Start <= End and step is positive, or Start >= End and step is negative.
7017 const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop());
7018 ConstantRange StartRange = getRangeRef(Start, SignHint);
7019 ConstantRange EndRange = getRangeRef(End, SignHint);
7020 ConstantRange RangeBetween = StartRange.unionWith(EndRange);
7021 // If they already cover full iteration space, we will know nothing useful
7022 // even if we prove what we want to prove.
7023 if (RangeBetween.isFullSet())
7024 return RangeBetween;
7025 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7026 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7027 : RangeBetween.isWrappedSet();
7028 if (IsWrappedSet)
7029 return ConstantRange::getFull(BitWidth);
7031 if (isKnownPositive(Step) &&
7032 isKnownPredicateViaConstantRanges(LEPred, Start, End))
7033 return RangeBetween;
7034 if (isKnownNegative(Step) &&
7035 isKnownPredicateViaConstantRanges(GEPred, Start, End))
7036 return RangeBetween;
7037 return ConstantRange::getFull(BitWidth);
7040 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7041 const SCEV *Step,
7042 const APInt &MaxBECount) {
7043 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7044 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7046 unsigned BitWidth = MaxBECount.getBitWidth();
7047 assert(getTypeSizeInBits(Start->getType()) == BitWidth &&
7048 getTypeSizeInBits(Step->getType()) == BitWidth &&
7049 "mismatched bit widths");
7051 struct SelectPattern {
7052 Value *Condition = nullptr;
7053 APInt TrueValue;
7054 APInt FalseValue;
7056 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7057 const SCEV *S) {
7058 std::optional<unsigned> CastOp;
7059 APInt Offset(BitWidth, 0);
7061 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7062 "Should be!");
7064 // Peel off a constant offset:
7065 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
7066 // In the future we could consider being smarter here and handle
7067 // {Start+Step,+,Step} too.
7068 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
7069 return;
7071 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
7072 S = SA->getOperand(1);
7075 // Peel off a cast operation
7076 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
7077 CastOp = SCast->getSCEVType();
7078 S = SCast->getOperand();
7081 using namespace llvm::PatternMatch;
7083 auto *SU = dyn_cast<SCEVUnknown>(S);
7084 const APInt *TrueVal, *FalseVal;
7085 if (!SU ||
7086 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
7087 m_APInt(FalseVal)))) {
7088 Condition = nullptr;
7089 return;
7092 TrueValue = *TrueVal;
7093 FalseValue = *FalseVal;
7095 // Re-apply the cast we peeled off earlier
7096 if (CastOp)
7097 switch (*CastOp) {
7098 default:
7099 llvm_unreachable("Unknown SCEV cast type!");
7101 case scTruncate:
7102 TrueValue = TrueValue.trunc(BitWidth);
7103 FalseValue = FalseValue.trunc(BitWidth);
7104 break;
7105 case scZeroExtend:
7106 TrueValue = TrueValue.zext(BitWidth);
7107 FalseValue = FalseValue.zext(BitWidth);
7108 break;
7109 case scSignExtend:
7110 TrueValue = TrueValue.sext(BitWidth);
7111 FalseValue = FalseValue.sext(BitWidth);
7112 break;
7115 // Re-apply the constant offset we peeled off earlier
7116 TrueValue += Offset;
7117 FalseValue += Offset;
7120 bool isRecognized() { return Condition != nullptr; }
7123 SelectPattern StartPattern(*this, BitWidth, Start);
7124 if (!StartPattern.isRecognized())
7125 return ConstantRange::getFull(BitWidth);
7127 SelectPattern StepPattern(*this, BitWidth, Step);
7128 if (!StepPattern.isRecognized())
7129 return ConstantRange::getFull(BitWidth);
7131 if (StartPattern.Condition != StepPattern.Condition) {
7132 // We don't handle this case today; but we could, by considering four
7133 // possibilities below instead of two. I'm not sure if there are cases where
7134 // that will help over what getRange already does, though.
7135 return ConstantRange::getFull(BitWidth);
7138 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7139 // construct arbitrary general SCEV expressions here. This function is called
7140 // from deep in the call stack, and calling getSCEV (on a sext instruction,
7141 // say) can end up caching a suboptimal value.
7143 // FIXME: without the explicit `this` receiver below, MSVC errors out with
7144 // C2352 and C2512 (otherwise it isn't needed).
7146 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
7147 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
7148 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
7149 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
7151 ConstantRange TrueRange =
7152 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount);
7153 ConstantRange FalseRange =
7154 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount);
7156 return TrueRange.unionWith(FalseRange);
7159 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7160 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
7161 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
7163 // Return early if there are no flags to propagate to the SCEV.
7164 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7165 if (BinOp->hasNoUnsignedWrap())
7166 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
7167 if (BinOp->hasNoSignedWrap())
7168 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
7169 if (Flags == SCEV::FlagAnyWrap)
7170 return SCEV::FlagAnyWrap;
7172 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
7175 const Instruction *
7176 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7177 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7178 return &*AddRec->getLoop()->getHeader()->begin();
7179 if (auto *U = dyn_cast<SCEVUnknown>(S))
7180 if (auto *I = dyn_cast<Instruction>(U->getValue()))
7181 return I;
7182 return nullptr;
7185 const Instruction *
7186 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7187 bool &Precise) {
7188 Precise = true;
7189 // Do a bounded search of the def relation of the requested SCEVs.
7190 SmallSet<const SCEV *, 16> Visited;
7191 SmallVector<const SCEV *> Worklist;
7192 auto pushOp = [&](const SCEV *S) {
7193 if (!Visited.insert(S).second)
7194 return;
7195 // Threshold of 30 here is arbitrary.
7196 if (Visited.size() > 30) {
7197 Precise = false;
7198 return;
7200 Worklist.push_back(S);
7203 for (const auto *S : Ops)
7204 pushOp(S);
7206 const Instruction *Bound = nullptr;
7207 while (!Worklist.empty()) {
7208 auto *S = Worklist.pop_back_val();
7209 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7210 if (!Bound || DT.dominates(Bound, DefI))
7211 Bound = DefI;
7212 } else {
7213 for (const auto *Op : S->operands())
7214 pushOp(Op);
7217 return Bound ? Bound : &*F.getEntryBlock().begin();
7220 const Instruction *
7221 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7222 bool Discard;
7223 return getDefiningScopeBound(Ops, Discard);
7226 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7227 const Instruction *B) {
7228 if (A->getParent() == B->getParent() &&
7229 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7230 B->getIterator()))
7231 return true;
7233 auto *BLoop = LI.getLoopFor(B->getParent());
7234 if (BLoop && BLoop->getHeader() == B->getParent() &&
7235 BLoop->getLoopPreheader() == A->getParent() &&
7236 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7237 A->getParent()->end()) &&
7238 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7239 B->getIterator()))
7240 return true;
7241 return false;
7245 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7246 // Only proceed if we can prove that I does not yield poison.
7247 if (!programUndefinedIfPoison(I))
7248 return false;
7250 // At this point we know that if I is executed, then it does not wrap
7251 // according to at least one of NSW or NUW. If I is not executed, then we do
7252 // not know if the calculation that I represents would wrap. Multiple
7253 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7254 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7255 // derived from other instructions that map to the same SCEV. We cannot make
7256 // that guarantee for cases where I is not executed. So we need to find a
7257 // upper bound on the defining scope for the SCEV, and prove that I is
7258 // executed every time we enter that scope. When the bounding scope is a
7259 // loop (the common case), this is equivalent to proving I executes on every
7260 // iteration of that loop.
7261 SmallVector<const SCEV *> SCEVOps;
7262 for (const Use &Op : I->operands()) {
7263 // I could be an extractvalue from a call to an overflow intrinsic.
7264 // TODO: We can do better here in some cases.
7265 if (isSCEVable(Op->getType()))
7266 SCEVOps.push_back(getSCEV(Op));
7268 auto *DefI = getDefiningScopeBound(SCEVOps);
7269 return isGuaranteedToTransferExecutionTo(DefI, I);
7272 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7273 // If we know that \c I can never be poison period, then that's enough.
7274 if (isSCEVExprNeverPoison(I))
7275 return true;
7277 // If the loop only has one exit, then we know that, if the loop is entered,
7278 // any instruction dominating that exit will be executed. If any such
7279 // instruction would result in UB, the addrec cannot be poison.
7281 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7282 // also handles uses outside the loop header (they just need to dominate the
7283 // single exit).
7285 auto *ExitingBB = L->getExitingBlock();
7286 if (!ExitingBB || !loopHasNoAbnormalExits(L))
7287 return false;
7289 SmallPtrSet<const Value *, 16> KnownPoison;
7290 SmallVector<const Instruction *, 8> Worklist;
7292 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
7293 // things that are known to be poison under that assumption go on the
7294 // Worklist.
7295 KnownPoison.insert(I);
7296 Worklist.push_back(I);
7298 while (!Worklist.empty()) {
7299 const Instruction *Poison = Worklist.pop_back_val();
7301 for (const Use &U : Poison->uses()) {
7302 const Instruction *PoisonUser = cast<Instruction>(U.getUser());
7303 if (mustTriggerUB(PoisonUser, KnownPoison) &&
7304 DT.dominates(PoisonUser->getParent(), ExitingBB))
7305 return true;
7307 if (propagatesPoison(U) && L->contains(PoisonUser))
7308 if (KnownPoison.insert(PoisonUser).second)
7309 Worklist.push_back(PoisonUser);
7313 return false;
7316 ScalarEvolution::LoopProperties
7317 ScalarEvolution::getLoopProperties(const Loop *L) {
7318 using LoopProperties = ScalarEvolution::LoopProperties;
7320 auto Itr = LoopPropertiesCache.find(L);
7321 if (Itr == LoopPropertiesCache.end()) {
7322 auto HasSideEffects = [](Instruction *I) {
7323 if (auto *SI = dyn_cast<StoreInst>(I))
7324 return !SI->isSimple();
7326 return I->mayThrow() || I->mayWriteToMemory();
7329 LoopProperties LP = {/* HasNoAbnormalExits */ true,
7330 /*HasNoSideEffects*/ true};
7332 for (auto *BB : L->getBlocks())
7333 for (auto &I : *BB) {
7334 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7335 LP.HasNoAbnormalExits = false;
7336 if (HasSideEffects(&I))
7337 LP.HasNoSideEffects = false;
7338 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7339 break; // We're already as pessimistic as we can get.
7342 auto InsertPair = LoopPropertiesCache.insert({L, LP});
7343 assert(InsertPair.second && "We just checked!");
7344 Itr = InsertPair.first;
7347 return Itr->second;
7350 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7351 // A mustprogress loop without side effects must be finite.
7352 // TODO: The check used here is very conservative. It's only *specific*
7353 // side effects which are well defined in infinite loops.
7354 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7357 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7358 // Worklist item with a Value and a bool indicating whether all operands have
7359 // been visited already.
7360 using PointerTy = PointerIntPair<Value *, 1, bool>;
7361 SmallVector<PointerTy> Stack;
7363 Stack.emplace_back(V, true);
7364 Stack.emplace_back(V, false);
7365 while (!Stack.empty()) {
7366 auto E = Stack.pop_back_val();
7367 Value *CurV = E.getPointer();
7369 if (getExistingSCEV(CurV))
7370 continue;
7372 SmallVector<Value *> Ops;
7373 const SCEV *CreatedSCEV = nullptr;
7374 // If all operands have been visited already, create the SCEV.
7375 if (E.getInt()) {
7376 CreatedSCEV = createSCEV(CurV);
7377 } else {
7378 // Otherwise get the operands we need to create SCEV's for before creating
7379 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7380 // just use it.
7381 CreatedSCEV = getOperandsToCreate(CurV, Ops);
7384 if (CreatedSCEV) {
7385 insertValueToMap(CurV, CreatedSCEV);
7386 } else {
7387 // Queue CurV for SCEV creation, followed by its's operands which need to
7388 // be constructed first.
7389 Stack.emplace_back(CurV, true);
7390 for (Value *Op : Ops)
7391 Stack.emplace_back(Op, false);
7395 return getExistingSCEV(V);
7398 const SCEV *
7399 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7400 if (!isSCEVable(V->getType()))
7401 return getUnknown(V);
7403 if (Instruction *I = dyn_cast<Instruction>(V)) {
7404 // Don't attempt to analyze instructions in blocks that aren't
7405 // reachable. Such instructions don't matter, and they aren't required
7406 // to obey basic rules for definitions dominating uses which this
7407 // analysis depends on.
7408 if (!DT.isReachableFromEntry(I->getParent()))
7409 return getUnknown(PoisonValue::get(V->getType()));
7410 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7411 return getConstant(CI);
7412 else if (isa<GlobalAlias>(V))
7413 return getUnknown(V);
7414 else if (!isa<ConstantExpr>(V))
7415 return getUnknown(V);
7417 Operator *U = cast<Operator>(V);
7418 if (auto BO =
7419 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7420 bool IsConstArg = isa<ConstantInt>(BO->RHS);
7421 switch (BO->Opcode) {
7422 case Instruction::Add:
7423 case Instruction::Mul: {
7424 // For additions and multiplications, traverse add/mul chains for which we
7425 // can potentially create a single SCEV, to reduce the number of
7426 // get{Add,Mul}Expr calls.
7427 do {
7428 if (BO->Op) {
7429 if (BO->Op != V && getExistingSCEV(BO->Op)) {
7430 Ops.push_back(BO->Op);
7431 break;
7434 Ops.push_back(BO->RHS);
7435 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7436 dyn_cast<Instruction>(V));
7437 if (!NewBO ||
7438 (BO->Opcode == Instruction::Add &&
7439 (NewBO->Opcode != Instruction::Add &&
7440 NewBO->Opcode != Instruction::Sub)) ||
7441 (BO->Opcode == Instruction::Mul &&
7442 NewBO->Opcode != Instruction::Mul)) {
7443 Ops.push_back(BO->LHS);
7444 break;
7446 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7447 // requires a SCEV for the LHS.
7448 if (BO->Op && (BO->IsNSW || BO->IsNUW)) {
7449 auto *I = dyn_cast<Instruction>(BO->Op);
7450 if (I && programUndefinedIfPoison(I)) {
7451 Ops.push_back(BO->LHS);
7452 break;
7455 BO = NewBO;
7456 } while (true);
7457 return nullptr;
7459 case Instruction::Sub:
7460 case Instruction::UDiv:
7461 case Instruction::URem:
7462 break;
7463 case Instruction::AShr:
7464 case Instruction::Shl:
7465 case Instruction::Xor:
7466 if (!IsConstArg)
7467 return nullptr;
7468 break;
7469 case Instruction::And:
7470 case Instruction::Or:
7471 if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1))
7472 return nullptr;
7473 break;
7474 case Instruction::LShr:
7475 return getUnknown(V);
7476 default:
7477 llvm_unreachable("Unhandled binop");
7478 break;
7481 Ops.push_back(BO->LHS);
7482 Ops.push_back(BO->RHS);
7483 return nullptr;
7486 switch (U->getOpcode()) {
7487 case Instruction::Trunc:
7488 case Instruction::ZExt:
7489 case Instruction::SExt:
7490 case Instruction::PtrToInt:
7491 Ops.push_back(U->getOperand(0));
7492 return nullptr;
7494 case Instruction::BitCast:
7495 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7496 Ops.push_back(U->getOperand(0));
7497 return nullptr;
7499 return getUnknown(V);
7501 case Instruction::SDiv:
7502 case Instruction::SRem:
7503 Ops.push_back(U->getOperand(0));
7504 Ops.push_back(U->getOperand(1));
7505 return nullptr;
7507 case Instruction::GetElementPtr:
7508 assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7509 "GEP source element type must be sized");
7510 for (Value *Index : U->operands())
7511 Ops.push_back(Index);
7512 return nullptr;
7514 case Instruction::IntToPtr:
7515 return getUnknown(V);
7517 case Instruction::PHI:
7518 // Keep constructing SCEVs' for phis recursively for now.
7519 return nullptr;
7521 case Instruction::Select: {
7522 // Check if U is a select that can be simplified to a SCEVUnknown.
7523 auto CanSimplifyToUnknown = [this, U]() {
7524 if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7525 return false;
7527 auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7528 if (!ICI)
7529 return false;
7530 Value *LHS = ICI->getOperand(0);
7531 Value *RHS = ICI->getOperand(1);
7532 if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7533 ICI->getPredicate() == CmpInst::ICMP_NE) {
7534 if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7535 return true;
7536 } else if (getTypeSizeInBits(LHS->getType()) >
7537 getTypeSizeInBits(U->getType()))
7538 return true;
7539 return false;
7541 if (CanSimplifyToUnknown())
7542 return getUnknown(U);
7544 for (Value *Inc : U->operands())
7545 Ops.push_back(Inc);
7546 return nullptr;
7547 break;
7549 case Instruction::Call:
7550 case Instruction::Invoke:
7551 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7552 Ops.push_back(RV);
7553 return nullptr;
7556 if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7557 switch (II->getIntrinsicID()) {
7558 case Intrinsic::abs:
7559 Ops.push_back(II->getArgOperand(0));
7560 return nullptr;
7561 case Intrinsic::umax:
7562 case Intrinsic::umin:
7563 case Intrinsic::smax:
7564 case Intrinsic::smin:
7565 case Intrinsic::usub_sat:
7566 case Intrinsic::uadd_sat:
7567 Ops.push_back(II->getArgOperand(0));
7568 Ops.push_back(II->getArgOperand(1));
7569 return nullptr;
7570 case Intrinsic::start_loop_iterations:
7571 case Intrinsic::annotation:
7572 case Intrinsic::ptr_annotation:
7573 Ops.push_back(II->getArgOperand(0));
7574 return nullptr;
7575 default:
7576 break;
7579 break;
7582 return nullptr;
7585 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7586 if (!isSCEVable(V->getType()))
7587 return getUnknown(V);
7589 if (Instruction *I = dyn_cast<Instruction>(V)) {
7590 // Don't attempt to analyze instructions in blocks that aren't
7591 // reachable. Such instructions don't matter, and they aren't required
7592 // to obey basic rules for definitions dominating uses which this
7593 // analysis depends on.
7594 if (!DT.isReachableFromEntry(I->getParent()))
7595 return getUnknown(PoisonValue::get(V->getType()));
7596 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7597 return getConstant(CI);
7598 else if (isa<GlobalAlias>(V))
7599 return getUnknown(V);
7600 else if (!isa<ConstantExpr>(V))
7601 return getUnknown(V);
7603 const SCEV *LHS;
7604 const SCEV *RHS;
7606 Operator *U = cast<Operator>(V);
7607 if (auto BO =
7608 MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7609 switch (BO->Opcode) {
7610 case Instruction::Add: {
7611 // The simple thing to do would be to just call getSCEV on both operands
7612 // and call getAddExpr with the result. However if we're looking at a
7613 // bunch of things all added together, this can be quite inefficient,
7614 // because it leads to N-1 getAddExpr calls for N ultimate operands.
7615 // Instead, gather up all the operands and make a single getAddExpr call.
7616 // LLVM IR canonical form means we need only traverse the left operands.
7617 SmallVector<const SCEV *, 4> AddOps;
7618 do {
7619 if (BO->Op) {
7620 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7621 AddOps.push_back(OpSCEV);
7622 break;
7625 // If a NUW or NSW flag can be applied to the SCEV for this
7626 // addition, then compute the SCEV for this addition by itself
7627 // with a separate call to getAddExpr. We need to do that
7628 // instead of pushing the operands of the addition onto AddOps,
7629 // since the flags are only known to apply to this particular
7630 // addition - they may not apply to other additions that can be
7631 // formed with operands from AddOps.
7632 const SCEV *RHS = getSCEV(BO->RHS);
7633 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7634 if (Flags != SCEV::FlagAnyWrap) {
7635 const SCEV *LHS = getSCEV(BO->LHS);
7636 if (BO->Opcode == Instruction::Sub)
7637 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7638 else
7639 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7640 break;
7644 if (BO->Opcode == Instruction::Sub)
7645 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7646 else
7647 AddOps.push_back(getSCEV(BO->RHS));
7649 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7650 dyn_cast<Instruction>(V));
7651 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7652 NewBO->Opcode != Instruction::Sub)) {
7653 AddOps.push_back(getSCEV(BO->LHS));
7654 break;
7656 BO = NewBO;
7657 } while (true);
7659 return getAddExpr(AddOps);
7662 case Instruction::Mul: {
7663 SmallVector<const SCEV *, 4> MulOps;
7664 do {
7665 if (BO->Op) {
7666 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7667 MulOps.push_back(OpSCEV);
7668 break;
7671 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7672 if (Flags != SCEV::FlagAnyWrap) {
7673 LHS = getSCEV(BO->LHS);
7674 RHS = getSCEV(BO->RHS);
7675 MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7676 break;
7680 MulOps.push_back(getSCEV(BO->RHS));
7681 auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7682 dyn_cast<Instruction>(V));
7683 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7684 MulOps.push_back(getSCEV(BO->LHS));
7685 break;
7687 BO = NewBO;
7688 } while (true);
7690 return getMulExpr(MulOps);
7692 case Instruction::UDiv:
7693 LHS = getSCEV(BO->LHS);
7694 RHS = getSCEV(BO->RHS);
7695 return getUDivExpr(LHS, RHS);
7696 case Instruction::URem:
7697 LHS = getSCEV(BO->LHS);
7698 RHS = getSCEV(BO->RHS);
7699 return getURemExpr(LHS, RHS);
7700 case Instruction::Sub: {
7701 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7702 if (BO->Op)
7703 Flags = getNoWrapFlagsFromUB(BO->Op);
7704 LHS = getSCEV(BO->LHS);
7705 RHS = getSCEV(BO->RHS);
7706 return getMinusSCEV(LHS, RHS, Flags);
7708 case Instruction::And:
7709 // For an expression like x&255 that merely masks off the high bits,
7710 // use zext(trunc(x)) as the SCEV expression.
7711 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7712 if (CI->isZero())
7713 return getSCEV(BO->RHS);
7714 if (CI->isMinusOne())
7715 return getSCEV(BO->LHS);
7716 const APInt &A = CI->getValue();
7718 // Instcombine's ShrinkDemandedConstant may strip bits out of
7719 // constants, obscuring what would otherwise be a low-bits mask.
7720 // Use computeKnownBits to compute what ShrinkDemandedConstant
7721 // knew about to reconstruct a low-bits mask value.
7722 unsigned LZ = A.countl_zero();
7723 unsigned TZ = A.countr_zero();
7724 unsigned BitWidth = A.getBitWidth();
7725 KnownBits Known(BitWidth);
7726 computeKnownBits(BO->LHS, Known, getDataLayout(),
7727 0, &AC, nullptr, &DT);
7729 APInt EffectiveMask =
7730 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7731 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7732 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7733 const SCEV *LHS = getSCEV(BO->LHS);
7734 const SCEV *ShiftedLHS = nullptr;
7735 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7736 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7737 // For an expression like (x * 8) & 8, simplify the multiply.
7738 unsigned MulZeros = OpC->getAPInt().countr_zero();
7739 unsigned GCD = std::min(MulZeros, TZ);
7740 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7741 SmallVector<const SCEV*, 4> MulOps;
7742 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7743 append_range(MulOps, LHSMul->operands().drop_front());
7744 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7745 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7748 if (!ShiftedLHS)
7749 ShiftedLHS = getUDivExpr(LHS, MulCount);
7750 return getMulExpr(
7751 getZeroExtendExpr(
7752 getTruncateExpr(ShiftedLHS,
7753 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7754 BO->LHS->getType()),
7755 MulCount);
7758 // Binary `and` is a bit-wise `umin`.
7759 if (BO->LHS->getType()->isIntegerTy(1)) {
7760 LHS = getSCEV(BO->LHS);
7761 RHS = getSCEV(BO->RHS);
7762 return getUMinExpr(LHS, RHS);
7764 break;
7766 case Instruction::Or:
7767 // Binary `or` is a bit-wise `umax`.
7768 if (BO->LHS->getType()->isIntegerTy(1)) {
7769 LHS = getSCEV(BO->LHS);
7770 RHS = getSCEV(BO->RHS);
7771 return getUMaxExpr(LHS, RHS);
7773 break;
7775 case Instruction::Xor:
7776 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7777 // If the RHS of xor is -1, then this is a not operation.
7778 if (CI->isMinusOne())
7779 return getNotSCEV(getSCEV(BO->LHS));
7781 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7782 // This is a variant of the check for xor with -1, and it handles
7783 // the case where instcombine has trimmed non-demanded bits out
7784 // of an xor with -1.
7785 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7786 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7787 if (LBO->getOpcode() == Instruction::And &&
7788 LCI->getValue() == CI->getValue())
7789 if (const SCEVZeroExtendExpr *Z =
7790 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7791 Type *UTy = BO->LHS->getType();
7792 const SCEV *Z0 = Z->getOperand();
7793 Type *Z0Ty = Z0->getType();
7794 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7796 // If C is a low-bits mask, the zero extend is serving to
7797 // mask off the high bits. Complement the operand and
7798 // re-apply the zext.
7799 if (CI->getValue().isMask(Z0TySize))
7800 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7802 // If C is a single bit, it may be in the sign-bit position
7803 // before the zero-extend. In this case, represent the xor
7804 // using an add, which is equivalent, and re-apply the zext.
7805 APInt Trunc = CI->getValue().trunc(Z0TySize);
7806 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7807 Trunc.isSignMask())
7808 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7809 UTy);
7812 break;
7814 case Instruction::Shl:
7815 // Turn shift left of a constant amount into a multiply.
7816 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7817 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7819 // If the shift count is not less than the bitwidth, the result of
7820 // the shift is undefined. Don't try to analyze it, because the
7821 // resolution chosen here may differ from the resolution chosen in
7822 // other parts of the compiler.
7823 if (SA->getValue().uge(BitWidth))
7824 break;
7826 // We can safely preserve the nuw flag in all cases. It's also safe to
7827 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7828 // requires special handling. It can be preserved as long as we're not
7829 // left shifting by bitwidth - 1.
7830 auto Flags = SCEV::FlagAnyWrap;
7831 if (BO->Op) {
7832 auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7833 if ((MulFlags & SCEV::FlagNSW) &&
7834 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7835 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7836 if (MulFlags & SCEV::FlagNUW)
7837 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7840 ConstantInt *X = ConstantInt::get(
7841 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7842 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7844 break;
7846 case Instruction::AShr:
7847 // AShr X, C, where C is a constant.
7848 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7849 if (!CI)
7850 break;
7852 Type *OuterTy = BO->LHS->getType();
7853 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7854 // If the shift count is not less than the bitwidth, the result of
7855 // the shift is undefined. Don't try to analyze it, because the
7856 // resolution chosen here may differ from the resolution chosen in
7857 // other parts of the compiler.
7858 if (CI->getValue().uge(BitWidth))
7859 break;
7861 if (CI->isZero())
7862 return getSCEV(BO->LHS); // shift by zero --> noop
7864 uint64_t AShrAmt = CI->getZExtValue();
7865 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7867 Operator *L = dyn_cast<Operator>(BO->LHS);
7868 const SCEV *AddTruncateExpr = nullptr;
7869 ConstantInt *ShlAmtCI = nullptr;
7870 const SCEV *AddConstant = nullptr;
7872 if (L && L->getOpcode() == Instruction::Add) {
7873 // X = Shl A, n
7874 // Y = Add X, c
7875 // Z = AShr Y, m
7876 // n, c and m are constants.
7878 Operator *LShift = dyn_cast<Operator>(L->getOperand(0));
7879 ConstantInt *AddOperandCI = dyn_cast<ConstantInt>(L->getOperand(1));
7880 if (LShift && LShift->getOpcode() == Instruction::Shl) {
7881 if (AddOperandCI) {
7882 const SCEV *ShlOp0SCEV = getSCEV(LShift->getOperand(0));
7883 ShlAmtCI = dyn_cast<ConstantInt>(LShift->getOperand(1));
7884 // since we truncate to TruncTy, the AddConstant should be of the
7885 // same type, so create a new Constant with type same as TruncTy.
7886 // Also, the Add constant should be shifted right by AShr amount.
7887 APInt AddOperand = AddOperandCI->getValue().ashr(AShrAmt);
7888 AddConstant = getConstant(AddOperand.trunc(BitWidth - AShrAmt));
7889 // we model the expression as sext(add(trunc(A), c << n)), since the
7890 // sext(trunc) part is already handled below, we create a
7891 // AddExpr(TruncExp) which will be used later.
7892 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7895 } else if (L && L->getOpcode() == Instruction::Shl) {
7896 // X = Shl A, n
7897 // Y = AShr X, m
7898 // Both n and m are constant.
7900 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7901 ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7902 AddTruncateExpr = getTruncateExpr(ShlOp0SCEV, TruncTy);
7905 if (AddTruncateExpr && ShlAmtCI) {
7906 // We can merge the two given cases into a single SCEV statement,
7907 // incase n = m, the mul expression will be 2^0, so it gets resolved to
7908 // a simpler case. The following code handles the two cases:
7910 // 1) For a two-shift sext-inreg, i.e. n = m,
7911 // use sext(trunc(x)) as the SCEV expression.
7913 // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7914 // expression. We already checked that ShlAmt < BitWidth, so
7915 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7916 // ShlAmt - AShrAmt < Amt.
7917 const APInt &ShlAmt = ShlAmtCI->getValue();
7918 if (ShlAmt.ult(BitWidth) && ShlAmt.uge(AShrAmt)) {
7919 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7920 ShlAmtCI->getZExtValue() - AShrAmt);
7921 const SCEV *CompositeExpr =
7922 getMulExpr(AddTruncateExpr, getConstant(Mul));
7923 if (L->getOpcode() != Instruction::Shl)
7924 CompositeExpr = getAddExpr(CompositeExpr, AddConstant);
7926 return getSignExtendExpr(CompositeExpr, OuterTy);
7929 break;
7933 switch (U->getOpcode()) {
7934 case Instruction::Trunc:
7935 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7937 case Instruction::ZExt:
7938 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7940 case Instruction::SExt:
7941 if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
7942 dyn_cast<Instruction>(V))) {
7943 // The NSW flag of a subtract does not always survive the conversion to
7944 // A + (-1)*B. By pushing sign extension onto its operands we are much
7945 // more likely to preserve NSW and allow later AddRec optimisations.
7947 // NOTE: This is effectively duplicating this logic from getSignExtend:
7948 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7949 // but by that point the NSW information has potentially been lost.
7950 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7951 Type *Ty = U->getType();
7952 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7953 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7954 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7957 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7959 case Instruction::BitCast:
7960 // BitCasts are no-op casts so we just eliminate the cast.
7961 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7962 return getSCEV(U->getOperand(0));
7963 break;
7965 case Instruction::PtrToInt: {
7966 // Pointer to integer cast is straight-forward, so do model it.
7967 const SCEV *Op = getSCEV(U->getOperand(0));
7968 Type *DstIntTy = U->getType();
7969 // But only if effective SCEV (integer) type is wide enough to represent
7970 // all possible pointer values.
7971 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7972 if (isa<SCEVCouldNotCompute>(IntOp))
7973 return getUnknown(V);
7974 return IntOp;
7976 case Instruction::IntToPtr:
7977 // Just don't deal with inttoptr casts.
7978 return getUnknown(V);
7980 case Instruction::SDiv:
7981 // If both operands are non-negative, this is just an udiv.
7982 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7983 isKnownNonNegative(getSCEV(U->getOperand(1))))
7984 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7985 break;
7987 case Instruction::SRem:
7988 // If both operands are non-negative, this is just an urem.
7989 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7990 isKnownNonNegative(getSCEV(U->getOperand(1))))
7991 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7992 break;
7994 case Instruction::GetElementPtr:
7995 return createNodeForGEP(cast<GEPOperator>(U));
7997 case Instruction::PHI:
7998 return createNodeForPHI(cast<PHINode>(U));
8000 case Instruction::Select:
8001 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
8002 U->getOperand(2));
8004 case Instruction::Call:
8005 case Instruction::Invoke:
8006 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
8007 return getSCEV(RV);
8009 if (auto *II = dyn_cast<IntrinsicInst>(U)) {
8010 switch (II->getIntrinsicID()) {
8011 case Intrinsic::abs:
8012 return getAbsExpr(
8013 getSCEV(II->getArgOperand(0)),
8014 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
8015 case Intrinsic::umax:
8016 LHS = getSCEV(II->getArgOperand(0));
8017 RHS = getSCEV(II->getArgOperand(1));
8018 return getUMaxExpr(LHS, RHS);
8019 case Intrinsic::umin:
8020 LHS = getSCEV(II->getArgOperand(0));
8021 RHS = getSCEV(II->getArgOperand(1));
8022 return getUMinExpr(LHS, RHS);
8023 case Intrinsic::smax:
8024 LHS = getSCEV(II->getArgOperand(0));
8025 RHS = getSCEV(II->getArgOperand(1));
8026 return getSMaxExpr(LHS, RHS);
8027 case Intrinsic::smin:
8028 LHS = getSCEV(II->getArgOperand(0));
8029 RHS = getSCEV(II->getArgOperand(1));
8030 return getSMinExpr(LHS, RHS);
8031 case Intrinsic::usub_sat: {
8032 const SCEV *X = getSCEV(II->getArgOperand(0));
8033 const SCEV *Y = getSCEV(II->getArgOperand(1));
8034 const SCEV *ClampedY = getUMinExpr(X, Y);
8035 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
8037 case Intrinsic::uadd_sat: {
8038 const SCEV *X = getSCEV(II->getArgOperand(0));
8039 const SCEV *Y = getSCEV(II->getArgOperand(1));
8040 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
8041 return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
8043 case Intrinsic::start_loop_iterations:
8044 case Intrinsic::annotation:
8045 case Intrinsic::ptr_annotation:
8046 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8047 // just eqivalent to the first operand for SCEV purposes.
8048 return getSCEV(II->getArgOperand(0));
8049 case Intrinsic::vscale:
8050 return getVScale(II->getType());
8051 default:
8052 break;
8055 break;
8058 return getUnknown(V);
8061 //===----------------------------------------------------------------------===//
8062 // Iteration Count Computation Code
8065 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
8066 if (isa<SCEVCouldNotCompute>(ExitCount))
8067 return getCouldNotCompute();
8069 auto *ExitCountType = ExitCount->getType();
8070 assert(ExitCountType->isIntegerTy());
8071 auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(),
8072 1 + ExitCountType->getScalarSizeInBits());
8073 return getTripCountFromExitCount(ExitCount, EvalTy, nullptr);
8076 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8077 Type *EvalTy,
8078 const Loop *L) {
8079 if (isa<SCEVCouldNotCompute>(ExitCount))
8080 return getCouldNotCompute();
8082 unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType());
8083 unsigned EvalSize = EvalTy->getPrimitiveSizeInBits();
8085 auto CanAddOneWithoutOverflow = [&]() {
8086 ConstantRange ExitCountRange =
8087 getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED);
8088 if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize)))
8089 return true;
8091 return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount,
8092 getMinusOne(ExitCount->getType()));
8095 // If we need to zero extend the backedge count, check if we can add one to
8096 // it prior to zero extending without overflow. Provided this is safe, it
8097 // allows better simplification of the +1.
8098 if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8099 return getZeroExtendExpr(
8100 getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy);
8102 // Get the total trip count from the count by adding 1. This may wrap.
8103 return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy));
8106 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8107 if (!ExitCount)
8108 return 0;
8110 ConstantInt *ExitConst = ExitCount->getValue();
8112 // Guard against huge trip counts.
8113 if (ExitConst->getValue().getActiveBits() > 32)
8114 return 0;
8116 // In case of integer overflow, this returns 0, which is correct.
8117 return ((unsigned)ExitConst->getZExtValue()) + 1;
8120 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8121 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
8122 return getConstantTripCount(ExitCount);
8125 unsigned
8126 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8127 const BasicBlock *ExitingBlock) {
8128 assert(ExitingBlock && "Must pass a non-null exiting block!");
8129 assert(L->isLoopExiting(ExitingBlock) &&
8130 "Exiting block must actually branch out of the loop!");
8131 const SCEVConstant *ExitCount =
8132 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
8133 return getConstantTripCount(ExitCount);
8136 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
8137 const auto *MaxExitCount =
8138 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
8139 return getConstantTripCount(MaxExitCount);
8142 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8143 SmallVector<BasicBlock *, 8> ExitingBlocks;
8144 L->getExitingBlocks(ExitingBlocks);
8146 std::optional<unsigned> Res;
8147 for (auto *ExitingBB : ExitingBlocks) {
8148 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8149 if (!Res)
8150 Res = Multiple;
8151 Res = (unsigned)std::gcd(*Res, Multiple);
8153 return Res.value_or(1);
8156 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8157 const SCEV *ExitCount) {
8158 if (ExitCount == getCouldNotCompute())
8159 return 1;
8161 // Get the trip count
8162 const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L));
8164 APInt Multiple = getNonZeroConstantMultiple(TCExpr);
8165 // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8166 // the greatest power of 2 divisor less than 2^32.
8167 return Multiple.getActiveBits() > 32
8168 ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros())
8169 : (unsigned)Multiple.zextOrTrunc(32).getZExtValue();
8172 /// Returns the largest constant divisor of the trip count of this loop as a
8173 /// normal unsigned value, if possible. This means that the actual trip count is
8174 /// always a multiple of the returned value (don't forget the trip count could
8175 /// very well be zero as well!).
8177 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8178 /// multiple of a constant (which is also the case if the trip count is simply
8179 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8180 /// if the trip count is very large (>= 2^32).
8182 /// As explained in the comments for getSmallConstantTripCount, this assumes
8183 /// that control exits the loop via ExitingBlock.
8184 unsigned
8185 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8186 const BasicBlock *ExitingBlock) {
8187 assert(ExitingBlock && "Must pass a non-null exiting block!");
8188 assert(L->isLoopExiting(ExitingBlock) &&
8189 "Exiting block must actually branch out of the loop!");
8190 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8191 return getSmallConstantTripMultiple(L, ExitCount);
8194 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8195 const BasicBlock *ExitingBlock,
8196 ExitCountKind Kind) {
8197 switch (Kind) {
8198 case Exact:
8199 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8200 case SymbolicMaximum:
8201 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
8202 case ConstantMaximum:
8203 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8205 llvm_unreachable("Invalid ExitCountKind!");
8208 const SCEV *
8209 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8210 SmallVector<const SCEVPredicate *, 4> &Preds) {
8211 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8214 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8215 ExitCountKind Kind) {
8216 switch (Kind) {
8217 case Exact:
8218 return getBackedgeTakenInfo(L).getExact(L, this);
8219 case ConstantMaximum:
8220 return getBackedgeTakenInfo(L).getConstantMax(this);
8221 case SymbolicMaximum:
8222 return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8224 llvm_unreachable("Invalid ExitCountKind!");
8227 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8228 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8231 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8232 static void PushLoopPHIs(const Loop *L,
8233 SmallVectorImpl<Instruction *> &Worklist,
8234 SmallPtrSetImpl<Instruction *> &Visited) {
8235 BasicBlock *Header = L->getHeader();
8237 // Push all Loop-header PHIs onto the Worklist stack.
8238 for (PHINode &PN : Header->phis())
8239 if (Visited.insert(&PN).second)
8240 Worklist.push_back(&PN);
8243 const ScalarEvolution::BackedgeTakenInfo &
8244 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8245 auto &BTI = getBackedgeTakenInfo(L);
8246 if (BTI.hasFullInfo())
8247 return BTI;
8249 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8251 if (!Pair.second)
8252 return Pair.first->second;
8254 BackedgeTakenInfo Result =
8255 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8257 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8260 ScalarEvolution::BackedgeTakenInfo &
8261 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8262 // Initially insert an invalid entry for this loop. If the insertion
8263 // succeeds, proceed to actually compute a backedge-taken count and
8264 // update the value. The temporary CouldNotCompute value tells SCEV
8265 // code elsewhere that it shouldn't attempt to request a new
8266 // backedge-taken count, which could result in infinite recursion.
8267 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8268 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8269 if (!Pair.second)
8270 return Pair.first->second;
8272 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8273 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8274 // must be cleared in this scope.
8275 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8277 // Now that we know more about the trip count for this loop, forget any
8278 // existing SCEV values for PHI nodes in this loop since they are only
8279 // conservative estimates made without the benefit of trip count
8280 // information. This invalidation is not necessary for correctness, and is
8281 // only done to produce more precise results.
8282 if (Result.hasAnyInfo()) {
8283 // Invalidate any expression using an addrec in this loop.
8284 SmallVector<const SCEV *, 8> ToForget;
8285 auto LoopUsersIt = LoopUsers.find(L);
8286 if (LoopUsersIt != LoopUsers.end())
8287 append_range(ToForget, LoopUsersIt->second);
8288 forgetMemoizedResults(ToForget);
8290 // Invalidate constant-evolved loop header phis.
8291 for (PHINode &PN : L->getHeader()->phis())
8292 ConstantEvolutionLoopExitValue.erase(&PN);
8295 // Re-lookup the insert position, since the call to
8296 // computeBackedgeTakenCount above could result in a
8297 // recusive call to getBackedgeTakenInfo (on a different
8298 // loop), which would invalidate the iterator computed
8299 // earlier.
8300 return BackedgeTakenCounts.find(L)->second = std::move(Result);
8303 void ScalarEvolution::forgetAllLoops() {
8304 // This method is intended to forget all info about loops. It should
8305 // invalidate caches as if the following happened:
8306 // - The trip counts of all loops have changed arbitrarily
8307 // - Every llvm::Value has been updated in place to produce a different
8308 // result.
8309 BackedgeTakenCounts.clear();
8310 PredicatedBackedgeTakenCounts.clear();
8311 BECountUsers.clear();
8312 LoopPropertiesCache.clear();
8313 ConstantEvolutionLoopExitValue.clear();
8314 ValueExprMap.clear();
8315 ValuesAtScopes.clear();
8316 ValuesAtScopesUsers.clear();
8317 LoopDispositions.clear();
8318 BlockDispositions.clear();
8319 UnsignedRanges.clear();
8320 SignedRanges.clear();
8321 ExprValueMap.clear();
8322 HasRecMap.clear();
8323 ConstantMultipleCache.clear();
8324 PredicatedSCEVRewrites.clear();
8325 FoldCache.clear();
8326 FoldCacheUser.clear();
8328 void ScalarEvolution::visitAndClearUsers(
8329 SmallVectorImpl<Instruction *> &Worklist,
8330 SmallPtrSetImpl<Instruction *> &Visited,
8331 SmallVectorImpl<const SCEV *> &ToForget) {
8332 while (!Worklist.empty()) {
8333 Instruction *I = Worklist.pop_back_val();
8334 if (!isSCEVable(I->getType()))
8335 continue;
8337 ValueExprMapType::iterator It =
8338 ValueExprMap.find_as(static_cast<Value *>(I));
8339 if (It != ValueExprMap.end()) {
8340 eraseValueFromMap(It->first);
8341 ToForget.push_back(It->second);
8342 if (PHINode *PN = dyn_cast<PHINode>(I))
8343 ConstantEvolutionLoopExitValue.erase(PN);
8346 PushDefUseChildren(I, Worklist, Visited);
8350 void ScalarEvolution::forgetLoop(const Loop *L) {
8351 SmallVector<const Loop *, 16> LoopWorklist(1, L);
8352 SmallVector<Instruction *, 32> Worklist;
8353 SmallPtrSet<Instruction *, 16> Visited;
8354 SmallVector<const SCEV *, 16> ToForget;
8356 // Iterate over all the loops and sub-loops to drop SCEV information.
8357 while (!LoopWorklist.empty()) {
8358 auto *CurrL = LoopWorklist.pop_back_val();
8360 // Drop any stored trip count value.
8361 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8362 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8364 // Drop information about predicated SCEV rewrites for this loop.
8365 for (auto I = PredicatedSCEVRewrites.begin();
8366 I != PredicatedSCEVRewrites.end();) {
8367 std::pair<const SCEV *, const Loop *> Entry = I->first;
8368 if (Entry.second == CurrL)
8369 PredicatedSCEVRewrites.erase(I++);
8370 else
8371 ++I;
8374 auto LoopUsersItr = LoopUsers.find(CurrL);
8375 if (LoopUsersItr != LoopUsers.end()) {
8376 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8377 LoopUsersItr->second.end());
8380 // Drop information about expressions based on loop-header PHIs.
8381 PushLoopPHIs(CurrL, Worklist, Visited);
8382 visitAndClearUsers(Worklist, Visited, ToForget);
8384 LoopPropertiesCache.erase(CurrL);
8385 // Forget all contained loops too, to avoid dangling entries in the
8386 // ValuesAtScopes map.
8387 LoopWorklist.append(CurrL->begin(), CurrL->end());
8389 forgetMemoizedResults(ToForget);
8392 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8393 forgetLoop(L->getOutermostLoop());
8396 void ScalarEvolution::forgetValue(Value *V) {
8397 Instruction *I = dyn_cast<Instruction>(V);
8398 if (!I) return;
8400 // Drop information about expressions based on loop-header PHIs.
8401 SmallVector<Instruction *, 16> Worklist;
8402 SmallPtrSet<Instruction *, 8> Visited;
8403 SmallVector<const SCEV *, 8> ToForget;
8404 Worklist.push_back(I);
8405 Visited.insert(I);
8406 visitAndClearUsers(Worklist, Visited, ToForget);
8408 forgetMemoizedResults(ToForget);
8411 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V) {
8412 if (!isSCEVable(V->getType()))
8413 return;
8415 // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's
8416 // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an
8417 // extra predecessor is added, this is no longer valid. Find all Unknowns and
8418 // AddRecs defined in the loop and invalidate any SCEV's making use of them.
8419 if (const SCEV *S = getExistingSCEV(V)) {
8420 struct InvalidationRootCollector {
8421 Loop *L;
8422 SmallVector<const SCEV *, 8> Roots;
8424 InvalidationRootCollector(Loop *L) : L(L) {}
8426 bool follow(const SCEV *S) {
8427 if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
8428 if (auto *I = dyn_cast<Instruction>(SU->getValue()))
8429 if (L->contains(I))
8430 Roots.push_back(S);
8431 } else if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
8432 if (L->contains(AddRec->getLoop()))
8433 Roots.push_back(S);
8435 return true;
8437 bool isDone() const { return false; }
8440 InvalidationRootCollector C(L);
8441 visitAll(S, C);
8442 forgetMemoizedResults(C.Roots);
8445 // Also perform the normal invalidation.
8446 forgetValue(V);
8449 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8451 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8452 // Unless a specific value is passed to invalidation, completely clear both
8453 // caches.
8454 if (!V) {
8455 BlockDispositions.clear();
8456 LoopDispositions.clear();
8457 return;
8460 if (!isSCEVable(V->getType()))
8461 return;
8463 const SCEV *S = getExistingSCEV(V);
8464 if (!S)
8465 return;
8467 // Invalidate the block and loop dispositions cached for S. Dispositions of
8468 // S's users may change if S's disposition changes (i.e. a user may change to
8469 // loop-invariant, if S changes to loop invariant), so also invalidate
8470 // dispositions of S's users recursively.
8471 SmallVector<const SCEV *, 8> Worklist = {S};
8472 SmallPtrSet<const SCEV *, 8> Seen = {S};
8473 while (!Worklist.empty()) {
8474 const SCEV *Curr = Worklist.pop_back_val();
8475 bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8476 bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8477 if (!LoopDispoRemoved && !BlockDispoRemoved)
8478 continue;
8479 auto Users = SCEVUsers.find(Curr);
8480 if (Users != SCEVUsers.end())
8481 for (const auto *User : Users->second)
8482 if (Seen.insert(User).second)
8483 Worklist.push_back(User);
8487 /// Get the exact loop backedge taken count considering all loop exits. A
8488 /// computable result can only be returned for loops with all exiting blocks
8489 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8490 /// is never skipped. This is a valid assumption as long as the loop exits via
8491 /// that test. For precise results, it is the caller's responsibility to specify
8492 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8493 const SCEV *
8494 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8495 SmallVector<const SCEVPredicate *, 4> *Preds) const {
8496 // If any exits were not computable, the loop is not computable.
8497 if (!isComplete() || ExitNotTaken.empty())
8498 return SE->getCouldNotCompute();
8500 const BasicBlock *Latch = L->getLoopLatch();
8501 // All exiting blocks we have collected must dominate the only backedge.
8502 if (!Latch)
8503 return SE->getCouldNotCompute();
8505 // All exiting blocks we have gathered dominate loop's latch, so exact trip
8506 // count is simply a minimum out of all these calculated exit counts.
8507 SmallVector<const SCEV *, 2> Ops;
8508 for (const auto &ENT : ExitNotTaken) {
8509 const SCEV *BECount = ENT.ExactNotTaken;
8510 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8511 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8512 "We should only have known counts for exiting blocks that dominate "
8513 "latch!");
8515 Ops.push_back(BECount);
8517 if (Preds)
8518 for (const auto *P : ENT.Predicates)
8519 Preds->push_back(P);
8521 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8522 "Predicate should be always true!");
8525 // If an earlier exit exits on the first iteration (exit count zero), then
8526 // a later poison exit count should not propagate into the result. This are
8527 // exactly the semantics provided by umin_seq.
8528 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8531 /// Get the exact not taken count for this loop exit.
8532 const SCEV *
8533 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8534 ScalarEvolution *SE) const {
8535 for (const auto &ENT : ExitNotTaken)
8536 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8537 return ENT.ExactNotTaken;
8539 return SE->getCouldNotCompute();
8542 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8543 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8544 for (const auto &ENT : ExitNotTaken)
8545 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8546 return ENT.ConstantMaxNotTaken;
8548 return SE->getCouldNotCompute();
8551 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8552 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8553 for (const auto &ENT : ExitNotTaken)
8554 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8555 return ENT.SymbolicMaxNotTaken;
8557 return SE->getCouldNotCompute();
8560 /// getConstantMax - Get the constant max backedge taken count for the loop.
8561 const SCEV *
8562 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8563 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8564 return !ENT.hasAlwaysTruePredicate();
8567 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8568 return SE->getCouldNotCompute();
8570 assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8571 isa<SCEVConstant>(getConstantMax())) &&
8572 "No point in having a non-constant max backedge taken count!");
8573 return getConstantMax();
8576 const SCEV *
8577 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8578 ScalarEvolution *SE) {
8579 if (!SymbolicMax)
8580 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8581 return SymbolicMax;
8584 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8585 ScalarEvolution *SE) const {
8586 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8587 return !ENT.hasAlwaysTruePredicate();
8589 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8592 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8593 : ExitLimit(E, E, E, false, std::nullopt) {}
8595 ScalarEvolution::ExitLimit::ExitLimit(
8596 const SCEV *E, const SCEV *ConstantMaxNotTaken,
8597 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8598 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8599 : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8600 SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8601 // If we prove the max count is zero, so is the symbolic bound. This happens
8602 // in practice due to differences in a) how context sensitive we've chosen
8603 // to be and b) how we reason about bounds implied by UB.
8604 if (ConstantMaxNotTaken->isZero()) {
8605 this->ExactNotTaken = E = ConstantMaxNotTaken;
8606 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8609 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8610 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8611 "Exact is not allowed to be less precise than Constant Max");
8612 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8613 !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8614 "Exact is not allowed to be less precise than Symbolic Max");
8615 assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8616 !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8617 "Symbolic Max is not allowed to be less precise than Constant Max");
8618 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8619 isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8620 "No point in having a non-constant max backedge taken count!");
8621 for (const auto *PredSet : PredSetList)
8622 for (const auto *P : *PredSet)
8623 addPredicate(P);
8624 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8625 "Backedge count should be int");
8626 assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8627 !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8628 "Max backedge count should be int");
8631 ScalarEvolution::ExitLimit::ExitLimit(
8632 const SCEV *E, const SCEV *ConstantMaxNotTaken,
8633 const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8634 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8635 : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8636 { &PredSet }) {}
8638 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8639 /// computable exit into a persistent ExitNotTakenInfo array.
8640 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8641 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8642 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8643 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8644 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8646 ExitNotTaken.reserve(ExitCounts.size());
8647 std::transform(ExitCounts.begin(), ExitCounts.end(),
8648 std::back_inserter(ExitNotTaken),
8649 [&](const EdgeExitInfo &EEI) {
8650 BasicBlock *ExitBB = EEI.first;
8651 const ExitLimit &EL = EEI.second;
8652 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8653 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8654 EL.Predicates);
8656 assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8657 isa<SCEVConstant>(ConstantMax)) &&
8658 "No point in having a non-constant max backedge taken count!");
8661 /// Compute the number of times the backedge of the specified loop will execute.
8662 ScalarEvolution::BackedgeTakenInfo
8663 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8664 bool AllowPredicates) {
8665 SmallVector<BasicBlock *, 8> ExitingBlocks;
8666 L->getExitingBlocks(ExitingBlocks);
8668 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8670 SmallVector<EdgeExitInfo, 4> ExitCounts;
8671 bool CouldComputeBECount = true;
8672 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8673 const SCEV *MustExitMaxBECount = nullptr;
8674 const SCEV *MayExitMaxBECount = nullptr;
8675 bool MustExitMaxOrZero = false;
8677 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8678 // and compute maxBECount.
8679 // Do a union of all the predicates here.
8680 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8681 BasicBlock *ExitBB = ExitingBlocks[i];
8683 // We canonicalize untaken exits to br (constant), ignore them so that
8684 // proving an exit untaken doesn't negatively impact our ability to reason
8685 // about the loop as whole.
8686 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8687 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8688 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8689 if (ExitIfTrue == CI->isZero())
8690 continue;
8693 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8695 assert((AllowPredicates || EL.Predicates.empty()) &&
8696 "Predicated exit limit when predicates are not allowed!");
8698 // 1. For each exit that can be computed, add an entry to ExitCounts.
8699 // CouldComputeBECount is true only if all exits can be computed.
8700 if (EL.ExactNotTaken != getCouldNotCompute())
8701 ++NumExitCountsComputed;
8702 else
8703 // We couldn't compute an exact value for this exit, so
8704 // we won't be able to compute an exact value for the loop.
8705 CouldComputeBECount = false;
8706 // Remember exit count if either exact or symbolic is known. Because
8707 // Exact always implies symbolic, only check symbolic.
8708 if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8709 ExitCounts.emplace_back(ExitBB, EL);
8710 else {
8711 assert(EL.ExactNotTaken == getCouldNotCompute() &&
8712 "Exact is known but symbolic isn't?");
8713 ++NumExitCountsNotComputed;
8716 // 2. Derive the loop's MaxBECount from each exit's max number of
8717 // non-exiting iterations. Partition the loop exits into two kinds:
8718 // LoopMustExits and LoopMayExits.
8720 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8721 // is a LoopMayExit. If any computable LoopMustExit is found, then
8722 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8723 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8724 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8725 // any
8726 // computable EL.ConstantMaxNotTaken.
8727 if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8728 DT.dominates(ExitBB, Latch)) {
8729 if (!MustExitMaxBECount) {
8730 MustExitMaxBECount = EL.ConstantMaxNotTaken;
8731 MustExitMaxOrZero = EL.MaxOrZero;
8732 } else {
8733 MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
8734 EL.ConstantMaxNotTaken);
8736 } else if (MayExitMaxBECount != getCouldNotCompute()) {
8737 if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8738 MayExitMaxBECount = EL.ConstantMaxNotTaken;
8739 else {
8740 MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
8741 EL.ConstantMaxNotTaken);
8745 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8746 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8747 // The loop backedge will be taken the maximum or zero times if there's
8748 // a single exit that must be taken the maximum or zero times.
8749 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8751 // Remember which SCEVs are used in exit limits for invalidation purposes.
8752 // We only care about non-constant SCEVs here, so we can ignore
8753 // EL.ConstantMaxNotTaken
8754 // and MaxBECount, which must be SCEVConstant.
8755 for (const auto &Pair : ExitCounts) {
8756 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8757 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8758 if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
8759 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8760 {L, AllowPredicates});
8762 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8763 MaxBECount, MaxOrZero);
8766 ScalarEvolution::ExitLimit
8767 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8768 bool AllowPredicates) {
8769 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8770 // If our exiting block does not dominate the latch, then its connection with
8771 // loop's exit limit may be far from trivial.
8772 const BasicBlock *Latch = L->getLoopLatch();
8773 if (!Latch || !DT.dominates(ExitingBlock, Latch))
8774 return getCouldNotCompute();
8776 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8777 Instruction *Term = ExitingBlock->getTerminator();
8778 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8779 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8780 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8781 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8782 "It should have one successor in loop and one exit block!");
8783 // Proceed to the next level to examine the exit condition expression.
8784 return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
8785 /*ControlsOnlyExit=*/IsOnlyExit,
8786 AllowPredicates);
8789 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8790 // For switch, make sure that there is a single exit from the loop.
8791 BasicBlock *Exit = nullptr;
8792 for (auto *SBB : successors(ExitingBlock))
8793 if (!L->contains(SBB)) {
8794 if (Exit) // Multiple exit successors.
8795 return getCouldNotCompute();
8796 Exit = SBB;
8798 assert(Exit && "Exiting block must have at least one exit");
8799 return computeExitLimitFromSingleExitSwitch(
8800 L, SI, Exit,
8801 /*ControlsOnlyExit=*/IsOnlyExit);
8804 return getCouldNotCompute();
8807 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8808 const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8809 bool AllowPredicates) {
8810 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8811 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8812 ControlsOnlyExit, AllowPredicates);
8815 std::optional<ScalarEvolution::ExitLimit>
8816 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8817 bool ExitIfTrue, bool ControlsOnlyExit,
8818 bool AllowPredicates) {
8819 (void)this->L;
8820 (void)this->ExitIfTrue;
8821 (void)this->AllowPredicates;
8823 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8824 this->AllowPredicates == AllowPredicates &&
8825 "Variance in assumed invariant key components!");
8826 auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit});
8827 if (Itr == TripCountMap.end())
8828 return std::nullopt;
8829 return Itr->second;
8832 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8833 bool ExitIfTrue,
8834 bool ControlsOnlyExit,
8835 bool AllowPredicates,
8836 const ExitLimit &EL) {
8837 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8838 this->AllowPredicates == AllowPredicates &&
8839 "Variance in assumed invariant key components!");
8841 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL});
8842 assert(InsertResult.second && "Expected successful insertion!");
8843 (void)InsertResult;
8844 (void)ExitIfTrue;
8847 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8848 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8849 bool ControlsOnlyExit, bool AllowPredicates) {
8851 if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
8852 AllowPredicates))
8853 return *MaybeEL;
8855 ExitLimit EL = computeExitLimitFromCondImpl(
8856 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
8857 Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
8858 return EL;
8861 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8862 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8863 bool ControlsOnlyExit, bool AllowPredicates) {
8864 // Handle BinOp conditions (And, Or).
8865 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8866 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
8867 return *LimitFromBinOp;
8869 // With an icmp, it may be feasible to compute an exact backedge-taken count.
8870 // Proceed to the next level to examine the icmp.
8871 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8872 ExitLimit EL =
8873 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit);
8874 if (EL.hasFullInfo() || !AllowPredicates)
8875 return EL;
8877 // Try again, but use SCEV predicates this time.
8878 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue,
8879 ControlsOnlyExit,
8880 /*AllowPredicates=*/true);
8883 // Check for a constant condition. These are normally stripped out by
8884 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8885 // preserve the CFG and is temporarily leaving constant conditions
8886 // in place.
8887 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8888 if (ExitIfTrue == !CI->getZExtValue())
8889 // The backedge is always taken.
8890 return getCouldNotCompute();
8891 // The backedge is never taken.
8892 return getZero(CI->getType());
8895 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8896 // with a constant step, we can form an equivalent icmp predicate and figure
8897 // out how many iterations will be taken before we exit.
8898 const WithOverflowInst *WO;
8899 const APInt *C;
8900 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8901 match(WO->getRHS(), m_APInt(C))) {
8902 ConstantRange NWR =
8903 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8904 WO->getNoWrapKind());
8905 CmpInst::Predicate Pred;
8906 APInt NewRHSC, Offset;
8907 NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8908 if (!ExitIfTrue)
8909 Pred = ICmpInst::getInversePredicate(Pred);
8910 auto *LHS = getSCEV(WO->getLHS());
8911 if (Offset != 0)
8912 LHS = getAddExpr(LHS, getConstant(Offset));
8913 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8914 ControlsOnlyExit, AllowPredicates);
8915 if (EL.hasAnyInfo())
8916 return EL;
8919 // If it's not an integer or pointer comparison then compute it the hard way.
8920 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8923 std::optional<ScalarEvolution::ExitLimit>
8924 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8925 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8926 bool ControlsOnlyExit, bool AllowPredicates) {
8927 // Check if the controlling expression for this loop is an And or Or.
8928 Value *Op0, *Op1;
8929 bool IsAnd = false;
8930 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8931 IsAnd = true;
8932 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8933 IsAnd = false;
8934 else
8935 return std::nullopt;
8937 // EitherMayExit is true in these two cases:
8938 // br (and Op0 Op1), loop, exit
8939 // br (or Op0 Op1), exit, loop
8940 bool EitherMayExit = IsAnd ^ ExitIfTrue;
8941 ExitLimit EL0 = computeExitLimitFromCondCached(
8942 Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
8943 AllowPredicates);
8944 ExitLimit EL1 = computeExitLimitFromCondCached(
8945 Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
8946 AllowPredicates);
8948 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8949 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8950 if (isa<ConstantInt>(Op1))
8951 return Op1 == NeutralElement ? EL0 : EL1;
8952 if (isa<ConstantInt>(Op0))
8953 return Op0 == NeutralElement ? EL1 : EL0;
8955 const SCEV *BECount = getCouldNotCompute();
8956 const SCEV *ConstantMaxBECount = getCouldNotCompute();
8957 const SCEV *SymbolicMaxBECount = getCouldNotCompute();
8958 if (EitherMayExit) {
8959 bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
8960 // Both conditions must be same for the loop to continue executing.
8961 // Choose the less conservative count.
8962 if (EL0.ExactNotTaken != getCouldNotCompute() &&
8963 EL1.ExactNotTaken != getCouldNotCompute()) {
8964 BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
8965 UseSequentialUMin);
8967 if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
8968 ConstantMaxBECount = EL1.ConstantMaxNotTaken;
8969 else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
8970 ConstantMaxBECount = EL0.ConstantMaxNotTaken;
8971 else
8972 ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
8973 EL1.ConstantMaxNotTaken);
8974 if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
8975 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
8976 else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
8977 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
8978 else
8979 SymbolicMaxBECount = getUMinFromMismatchedTypes(
8980 EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
8981 } else {
8982 // Both conditions must be same at the same time for the loop to exit.
8983 // For now, be conservative.
8984 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8985 BECount = EL0.ExactNotTaken;
8988 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8989 // to be more aggressive when computing BECount than when computing
8990 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken
8991 // and
8992 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
8993 // EL1.ConstantMaxNotTaken to not.
8994 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
8995 !isa<SCEVCouldNotCompute>(BECount))
8996 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
8997 if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
8998 SymbolicMaxBECount =
8999 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
9000 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
9001 { &EL0.Predicates, &EL1.Predicates });
9004 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9005 const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
9006 bool AllowPredicates) {
9007 // If the condition was exit on true, convert the condition to exit on false
9008 ICmpInst::Predicate Pred;
9009 if (!ExitIfTrue)
9010 Pred = ExitCond->getPredicate();
9011 else
9012 Pred = ExitCond->getInversePredicate();
9013 const ICmpInst::Predicate OriginalPred = Pred;
9015 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
9016 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
9018 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit,
9019 AllowPredicates);
9020 if (EL.hasAnyInfo())
9021 return EL;
9023 auto *ExhaustiveCount =
9024 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9026 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
9027 return ExhaustiveCount;
9029 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
9030 ExitCond->getOperand(1), L, OriginalPred);
9032 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9033 const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9034 bool ControlsOnlyExit, bool AllowPredicates) {
9036 // Try to evaluate any dependencies out of the loop.
9037 LHS = getSCEVAtScope(LHS, L);
9038 RHS = getSCEVAtScope(RHS, L);
9040 // At this point, we would like to compute how many iterations of the
9041 // loop the predicate will return true for these inputs.
9042 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
9043 // If there is a loop-invariant, force it into the RHS.
9044 std::swap(LHS, RHS);
9045 Pred = ICmpInst::getSwappedPredicate(Pred);
9048 bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) &&
9049 loopIsFiniteByAssumption(L);
9050 // Simplify the operands before analyzing them.
9051 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0);
9053 // If we have a comparison of a chrec against a constant, try to use value
9054 // ranges to answer this query.
9055 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
9056 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
9057 if (AddRec->getLoop() == L) {
9058 // Form the constant range.
9059 ConstantRange CompRange =
9060 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
9062 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
9063 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
9066 // If this loop must exit based on this condition (or execute undefined
9067 // behaviour), and we can prove the test sequence produced must repeat
9068 // the same values on self-wrap of the IV, then we can infer that IV
9069 // doesn't self wrap because if it did, we'd have an infinite (undefined)
9070 // loop.
9071 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
9072 // TODO: We can peel off any functions which are invertible *in L*. Loop
9073 // invariant terms are effectively constants for our purposes here.
9074 auto *InnerLHS = LHS;
9075 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
9076 InnerLHS = ZExt->getOperand();
9077 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
9078 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
9079 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9080 StrideC && StrideC->getAPInt().isPowerOf2()) {
9081 auto Flags = AR->getNoWrapFlags();
9082 Flags = setFlags(Flags, SCEV::FlagNW);
9083 SmallVector<const SCEV*> Operands{AR->operands()};
9084 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9085 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9090 switch (Pred) {
9091 case ICmpInst::ICMP_NE: { // while (X != Y)
9092 // Convert to: while (X-Y != 0)
9093 if (LHS->getType()->isPointerTy()) {
9094 LHS = getLosslessPtrToIntExpr(LHS);
9095 if (isa<SCEVCouldNotCompute>(LHS))
9096 return LHS;
9098 if (RHS->getType()->isPointerTy()) {
9099 RHS = getLosslessPtrToIntExpr(RHS);
9100 if (isa<SCEVCouldNotCompute>(RHS))
9101 return RHS;
9103 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit,
9104 AllowPredicates);
9105 if (EL.hasAnyInfo())
9106 return EL;
9107 break;
9109 case ICmpInst::ICMP_EQ: { // while (X == Y)
9110 // Convert to: while (X-Y == 0)
9111 if (LHS->getType()->isPointerTy()) {
9112 LHS = getLosslessPtrToIntExpr(LHS);
9113 if (isa<SCEVCouldNotCompute>(LHS))
9114 return LHS;
9116 if (RHS->getType()->isPointerTy()) {
9117 RHS = getLosslessPtrToIntExpr(RHS);
9118 if (isa<SCEVCouldNotCompute>(RHS))
9119 return RHS;
9121 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
9122 if (EL.hasAnyInfo()) return EL;
9123 break;
9125 case ICmpInst::ICMP_SLE:
9126 case ICmpInst::ICMP_ULE:
9127 // Since the loop is finite, an invariant RHS cannot include the boundary
9128 // value, otherwise it would loop forever.
9129 if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9130 !isLoopInvariant(RHS, L))
9131 break;
9132 RHS = getAddExpr(getOne(RHS->getType()), RHS);
9133 [[fallthrough]];
9134 case ICmpInst::ICMP_SLT:
9135 case ICmpInst::ICMP_ULT: { // while (X < Y)
9136 bool IsSigned = ICmpInst::isSigned(Pred);
9137 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9138 AllowPredicates);
9139 if (EL.hasAnyInfo())
9140 return EL;
9141 break;
9143 case ICmpInst::ICMP_SGE:
9144 case ICmpInst::ICMP_UGE:
9145 // Since the loop is finite, an invariant RHS cannot include the boundary
9146 // value, otherwise it would loop forever.
9147 if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9148 !isLoopInvariant(RHS, L))
9149 break;
9150 RHS = getAddExpr(getMinusOne(RHS->getType()), RHS);
9151 [[fallthrough]];
9152 case ICmpInst::ICMP_SGT:
9153 case ICmpInst::ICMP_UGT: { // while (X > Y)
9154 bool IsSigned = ICmpInst::isSigned(Pred);
9155 ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9156 AllowPredicates);
9157 if (EL.hasAnyInfo())
9158 return EL;
9159 break;
9161 default:
9162 break;
9165 return getCouldNotCompute();
9168 ScalarEvolution::ExitLimit
9169 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9170 SwitchInst *Switch,
9171 BasicBlock *ExitingBlock,
9172 bool ControlsOnlyExit) {
9173 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9175 // Give up if the exit is the default dest of a switch.
9176 if (Switch->getDefaultDest() == ExitingBlock)
9177 return getCouldNotCompute();
9179 assert(L->contains(Switch->getDefaultDest()) &&
9180 "Default case must not exit the loop!");
9181 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
9182 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
9184 // while (X != Y) --> while (X-Y != 0)
9185 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit);
9186 if (EL.hasAnyInfo())
9187 return EL;
9189 return getCouldNotCompute();
9192 static ConstantInt *
9193 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9194 ScalarEvolution &SE) {
9195 const SCEV *InVal = SE.getConstant(C);
9196 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9197 assert(isa<SCEVConstant>(Val) &&
9198 "Evaluation of SCEV at constant didn't fold correctly?");
9199 return cast<SCEVConstant>(Val)->getValue();
9202 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9203 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9204 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9205 if (!RHS)
9206 return getCouldNotCompute();
9208 const BasicBlock *Latch = L->getLoopLatch();
9209 if (!Latch)
9210 return getCouldNotCompute();
9212 const BasicBlock *Predecessor = L->getLoopPredecessor();
9213 if (!Predecessor)
9214 return getCouldNotCompute();
9216 // Return true if V is of the form "LHS `shift_op` <positive constant>".
9217 // Return LHS in OutLHS and shift_opt in OutOpCode.
9218 auto MatchPositiveShift =
9219 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9221 using namespace PatternMatch;
9223 ConstantInt *ShiftAmt;
9224 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9225 OutOpCode = Instruction::LShr;
9226 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9227 OutOpCode = Instruction::AShr;
9228 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9229 OutOpCode = Instruction::Shl;
9230 else
9231 return false;
9233 return ShiftAmt->getValue().isStrictlyPositive();
9236 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9238 // loop:
9239 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9240 // %iv.shifted = lshr i32 %iv, <positive constant>
9242 // Return true on a successful match. Return the corresponding PHI node (%iv
9243 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9244 auto MatchShiftRecurrence =
9245 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9246 std::optional<Instruction::BinaryOps> PostShiftOpCode;
9249 Instruction::BinaryOps OpC;
9250 Value *V;
9252 // If we encounter a shift instruction, "peel off" the shift operation,
9253 // and remember that we did so. Later when we inspect %iv's backedge
9254 // value, we will make sure that the backedge value uses the same
9255 // operation.
9257 // Note: the peeled shift operation does not have to be the same
9258 // instruction as the one feeding into the PHI's backedge value. We only
9259 // really care about it being the same *kind* of shift instruction --
9260 // that's all that is required for our later inferences to hold.
9261 if (MatchPositiveShift(LHS, V, OpC)) {
9262 PostShiftOpCode = OpC;
9263 LHS = V;
9267 PNOut = dyn_cast<PHINode>(LHS);
9268 if (!PNOut || PNOut->getParent() != L->getHeader())
9269 return false;
9271 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9272 Value *OpLHS;
9274 return
9275 // The backedge value for the PHI node must be a shift by a positive
9276 // amount
9277 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9279 // of the PHI node itself
9280 OpLHS == PNOut &&
9282 // and the kind of shift should be match the kind of shift we peeled
9283 // off, if any.
9284 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9287 PHINode *PN;
9288 Instruction::BinaryOps OpCode;
9289 if (!MatchShiftRecurrence(LHS, PN, OpCode))
9290 return getCouldNotCompute();
9292 const DataLayout &DL = getDataLayout();
9294 // The key rationale for this optimization is that for some kinds of shift
9295 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9296 // within a finite number of iterations. If the condition guarding the
9297 // backedge (in the sense that the backedge is taken if the condition is true)
9298 // is false for the value the shift recurrence stabilizes to, then we know
9299 // that the backedge is taken only a finite number of times.
9301 ConstantInt *StableValue = nullptr;
9302 switch (OpCode) {
9303 default:
9304 llvm_unreachable("Impossible case!");
9306 case Instruction::AShr: {
9307 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9308 // bitwidth(K) iterations.
9309 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9310 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9311 Predecessor->getTerminator(), &DT);
9312 auto *Ty = cast<IntegerType>(RHS->getType());
9313 if (Known.isNonNegative())
9314 StableValue = ConstantInt::get(Ty, 0);
9315 else if (Known.isNegative())
9316 StableValue = ConstantInt::get(Ty, -1, true);
9317 else
9318 return getCouldNotCompute();
9320 break;
9322 case Instruction::LShr:
9323 case Instruction::Shl:
9324 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9325 // stabilize to 0 in at most bitwidth(K) iterations.
9326 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9327 break;
9330 auto *Result =
9331 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9332 assert(Result->getType()->isIntegerTy(1) &&
9333 "Otherwise cannot be an operand to a branch instruction");
9335 if (Result->isZeroValue()) {
9336 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9337 const SCEV *UpperBound =
9338 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9339 return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9342 return getCouldNotCompute();
9345 /// Return true if we can constant fold an instruction of the specified type,
9346 /// assuming that all operands were constants.
9347 static bool CanConstantFold(const Instruction *I) {
9348 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9349 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9350 isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9351 return true;
9353 if (const CallInst *CI = dyn_cast<CallInst>(I))
9354 if (const Function *F = CI->getCalledFunction())
9355 return canConstantFoldCallTo(CI, F);
9356 return false;
9359 /// Determine whether this instruction can constant evolve within this loop
9360 /// assuming its operands can all constant evolve.
9361 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9362 // An instruction outside of the loop can't be derived from a loop PHI.
9363 if (!L->contains(I)) return false;
9365 if (isa<PHINode>(I)) {
9366 // We don't currently keep track of the control flow needed to evaluate
9367 // PHIs, so we cannot handle PHIs inside of loops.
9368 return L->getHeader() == I->getParent();
9371 // If we won't be able to constant fold this expression even if the operands
9372 // are constants, bail early.
9373 return CanConstantFold(I);
9376 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9377 /// recursing through each instruction operand until reaching a loop header phi.
9378 static PHINode *
9379 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9380 DenseMap<Instruction *, PHINode *> &PHIMap,
9381 unsigned Depth) {
9382 if (Depth > MaxConstantEvolvingDepth)
9383 return nullptr;
9385 // Otherwise, we can evaluate this instruction if all of its operands are
9386 // constant or derived from a PHI node themselves.
9387 PHINode *PHI = nullptr;
9388 for (Value *Op : UseInst->operands()) {
9389 if (isa<Constant>(Op)) continue;
9391 Instruction *OpInst = dyn_cast<Instruction>(Op);
9392 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9394 PHINode *P = dyn_cast<PHINode>(OpInst);
9395 if (!P)
9396 // If this operand is already visited, reuse the prior result.
9397 // We may have P != PHI if this is the deepest point at which the
9398 // inconsistent paths meet.
9399 P = PHIMap.lookup(OpInst);
9400 if (!P) {
9401 // Recurse and memoize the results, whether a phi is found or not.
9402 // This recursive call invalidates pointers into PHIMap.
9403 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9404 PHIMap[OpInst] = P;
9406 if (!P)
9407 return nullptr; // Not evolving from PHI
9408 if (PHI && PHI != P)
9409 return nullptr; // Evolving from multiple different PHIs.
9410 PHI = P;
9412 // This is a expression evolving from a constant PHI!
9413 return PHI;
9416 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9417 /// in the loop that V is derived from. We allow arbitrary operations along the
9418 /// way, but the operands of an operation must either be constants or a value
9419 /// derived from a constant PHI. If this expression does not fit with these
9420 /// constraints, return null.
9421 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9422 Instruction *I = dyn_cast<Instruction>(V);
9423 if (!I || !canConstantEvolve(I, L)) return nullptr;
9425 if (PHINode *PN = dyn_cast<PHINode>(I))
9426 return PN;
9428 // Record non-constant instructions contained by the loop.
9429 DenseMap<Instruction *, PHINode *> PHIMap;
9430 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9433 /// EvaluateExpression - Given an expression that passes the
9434 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9435 /// in the loop has the value PHIVal. If we can't fold this expression for some
9436 /// reason, return null.
9437 static Constant *EvaluateExpression(Value *V, const Loop *L,
9438 DenseMap<Instruction *, Constant *> &Vals,
9439 const DataLayout &DL,
9440 const TargetLibraryInfo *TLI) {
9441 // Convenient constant check, but redundant for recursive calls.
9442 if (Constant *C = dyn_cast<Constant>(V)) return C;
9443 Instruction *I = dyn_cast<Instruction>(V);
9444 if (!I) return nullptr;
9446 if (Constant *C = Vals.lookup(I)) return C;
9448 // An instruction inside the loop depends on a value outside the loop that we
9449 // weren't given a mapping for, or a value such as a call inside the loop.
9450 if (!canConstantEvolve(I, L)) return nullptr;
9452 // An unmapped PHI can be due to a branch or another loop inside this loop,
9453 // or due to this not being the initial iteration through a loop where we
9454 // couldn't compute the evolution of this particular PHI last time.
9455 if (isa<PHINode>(I)) return nullptr;
9457 std::vector<Constant*> Operands(I->getNumOperands());
9459 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9460 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9461 if (!Operand) {
9462 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9463 if (!Operands[i]) return nullptr;
9464 continue;
9466 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9467 Vals[Operand] = C;
9468 if (!C) return nullptr;
9469 Operands[i] = C;
9472 return ConstantFoldInstOperands(I, Operands, DL, TLI);
9476 // If every incoming value to PN except the one for BB is a specific Constant,
9477 // return that, else return nullptr.
9478 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9479 Constant *IncomingVal = nullptr;
9481 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9482 if (PN->getIncomingBlock(i) == BB)
9483 continue;
9485 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9486 if (!CurrentVal)
9487 return nullptr;
9489 if (IncomingVal != CurrentVal) {
9490 if (IncomingVal)
9491 return nullptr;
9492 IncomingVal = CurrentVal;
9496 return IncomingVal;
9499 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9500 /// in the header of its containing loop, we know the loop executes a
9501 /// constant number of times, and the PHI node is just a recurrence
9502 /// involving constants, fold it.
9503 Constant *
9504 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9505 const APInt &BEs,
9506 const Loop *L) {
9507 auto I = ConstantEvolutionLoopExitValue.find(PN);
9508 if (I != ConstantEvolutionLoopExitValue.end())
9509 return I->second;
9511 if (BEs.ugt(MaxBruteForceIterations))
9512 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
9514 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9516 DenseMap<Instruction *, Constant *> CurrentIterVals;
9517 BasicBlock *Header = L->getHeader();
9518 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9520 BasicBlock *Latch = L->getLoopLatch();
9521 if (!Latch)
9522 return nullptr;
9524 for (PHINode &PHI : Header->phis()) {
9525 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9526 CurrentIterVals[&PHI] = StartCST;
9528 if (!CurrentIterVals.count(PN))
9529 return RetVal = nullptr;
9531 Value *BEValue = PN->getIncomingValueForBlock(Latch);
9533 // Execute the loop symbolically to determine the exit value.
9534 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9535 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9537 unsigned NumIterations = BEs.getZExtValue(); // must be in range
9538 unsigned IterationNum = 0;
9539 const DataLayout &DL = getDataLayout();
9540 for (; ; ++IterationNum) {
9541 if (IterationNum == NumIterations)
9542 return RetVal = CurrentIterVals[PN]; // Got exit value!
9544 // Compute the value of the PHIs for the next iteration.
9545 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9546 DenseMap<Instruction *, Constant *> NextIterVals;
9547 Constant *NextPHI =
9548 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9549 if (!NextPHI)
9550 return nullptr; // Couldn't evaluate!
9551 NextIterVals[PN] = NextPHI;
9553 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9555 // Also evaluate the other PHI nodes. However, we don't get to stop if we
9556 // cease to be able to evaluate one of them or if they stop evolving,
9557 // because that doesn't necessarily prevent us from computing PN.
9558 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9559 for (const auto &I : CurrentIterVals) {
9560 PHINode *PHI = dyn_cast<PHINode>(I.first);
9561 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9562 PHIsToCompute.emplace_back(PHI, I.second);
9564 // We use two distinct loops because EvaluateExpression may invalidate any
9565 // iterators into CurrentIterVals.
9566 for (const auto &I : PHIsToCompute) {
9567 PHINode *PHI = I.first;
9568 Constant *&NextPHI = NextIterVals[PHI];
9569 if (!NextPHI) { // Not already computed.
9570 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9571 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9573 if (NextPHI != I.second)
9574 StoppedEvolving = false;
9577 // If all entries in CurrentIterVals == NextIterVals then we can stop
9578 // iterating, the loop can't continue to change.
9579 if (StoppedEvolving)
9580 return RetVal = CurrentIterVals[PN];
9582 CurrentIterVals.swap(NextIterVals);
9586 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9587 Value *Cond,
9588 bool ExitWhen) {
9589 PHINode *PN = getConstantEvolvingPHI(Cond, L);
9590 if (!PN) return getCouldNotCompute();
9592 // If the loop is canonicalized, the PHI will have exactly two entries.
9593 // That's the only form we support here.
9594 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9596 DenseMap<Instruction *, Constant *> CurrentIterVals;
9597 BasicBlock *Header = L->getHeader();
9598 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9600 BasicBlock *Latch = L->getLoopLatch();
9601 assert(Latch && "Should follow from NumIncomingValues == 2!");
9603 for (PHINode &PHI : Header->phis()) {
9604 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9605 CurrentIterVals[&PHI] = StartCST;
9607 if (!CurrentIterVals.count(PN))
9608 return getCouldNotCompute();
9610 // Okay, we find a PHI node that defines the trip count of this loop. Execute
9611 // the loop symbolically to determine when the condition gets a value of
9612 // "ExitWhen".
9613 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
9614 const DataLayout &DL = getDataLayout();
9615 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9616 auto *CondVal = dyn_cast_or_null<ConstantInt>(
9617 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9619 // Couldn't symbolically evaluate.
9620 if (!CondVal) return getCouldNotCompute();
9622 if (CondVal->getValue() == uint64_t(ExitWhen)) {
9623 ++NumBruteForceTripCountsComputed;
9624 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9627 // Update all the PHI nodes for the next iteration.
9628 DenseMap<Instruction *, Constant *> NextIterVals;
9630 // Create a list of which PHIs we need to compute. We want to do this before
9631 // calling EvaluateExpression on them because that may invalidate iterators
9632 // into CurrentIterVals.
9633 SmallVector<PHINode *, 8> PHIsToCompute;
9634 for (const auto &I : CurrentIterVals) {
9635 PHINode *PHI = dyn_cast<PHINode>(I.first);
9636 if (!PHI || PHI->getParent() != Header) continue;
9637 PHIsToCompute.push_back(PHI);
9639 for (PHINode *PHI : PHIsToCompute) {
9640 Constant *&NextPHI = NextIterVals[PHI];
9641 if (NextPHI) continue; // Already computed!
9643 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9644 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9646 CurrentIterVals.swap(NextIterVals);
9649 // Too many iterations were needed to evaluate.
9650 return getCouldNotCompute();
9653 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9654 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9655 ValuesAtScopes[V];
9656 // Check to see if we've folded this expression at this loop before.
9657 for (auto &LS : Values)
9658 if (LS.first == L)
9659 return LS.second ? LS.second : V;
9661 Values.emplace_back(L, nullptr);
9663 // Otherwise compute it.
9664 const SCEV *C = computeSCEVAtScope(V, L);
9665 for (auto &LS : reverse(ValuesAtScopes[V]))
9666 if (LS.first == L) {
9667 LS.second = C;
9668 if (!isa<SCEVConstant>(C))
9669 ValuesAtScopesUsers[C].push_back({L, V});
9670 break;
9672 return C;
9675 /// This builds up a Constant using the ConstantExpr interface. That way, we
9676 /// will return Constants for objects which aren't represented by a
9677 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9678 /// Returns NULL if the SCEV isn't representable as a Constant.
9679 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9680 switch (V->getSCEVType()) {
9681 case scCouldNotCompute:
9682 case scAddRecExpr:
9683 case scVScale:
9684 return nullptr;
9685 case scConstant:
9686 return cast<SCEVConstant>(V)->getValue();
9687 case scUnknown:
9688 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9689 case scPtrToInt: {
9690 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9691 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9692 return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9694 return nullptr;
9696 case scTruncate: {
9697 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9698 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9699 return ConstantExpr::getTrunc(CastOp, ST->getType());
9700 return nullptr;
9702 case scAddExpr: {
9703 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9704 Constant *C = nullptr;
9705 for (const SCEV *Op : SA->operands()) {
9706 Constant *OpC = BuildConstantFromSCEV(Op);
9707 if (!OpC)
9708 return nullptr;
9709 if (!C) {
9710 C = OpC;
9711 continue;
9713 assert(!C->getType()->isPointerTy() &&
9714 "Can only have one pointer, and it must be last");
9715 if (OpC->getType()->isPointerTy()) {
9716 // The offsets have been converted to bytes. We can add bytes using
9717 // an i8 GEP.
9718 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9719 OpC, C);
9720 } else {
9721 C = ConstantExpr::getAdd(C, OpC);
9724 return C;
9726 case scMulExpr:
9727 case scSignExtend:
9728 case scZeroExtend:
9729 case scUDivExpr:
9730 case scSMaxExpr:
9731 case scUMaxExpr:
9732 case scSMinExpr:
9733 case scUMinExpr:
9734 case scSequentialUMinExpr:
9735 return nullptr;
9737 llvm_unreachable("Unknown SCEV kind!");
9740 const SCEV *
9741 ScalarEvolution::getWithOperands(const SCEV *S,
9742 SmallVectorImpl<const SCEV *> &NewOps) {
9743 switch (S->getSCEVType()) {
9744 case scTruncate:
9745 case scZeroExtend:
9746 case scSignExtend:
9747 case scPtrToInt:
9748 return getCastExpr(S->getSCEVType(), NewOps[0], S->getType());
9749 case scAddRecExpr: {
9750 auto *AddRec = cast<SCEVAddRecExpr>(S);
9751 return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags());
9753 case scAddExpr:
9754 return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags());
9755 case scMulExpr:
9756 return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags());
9757 case scUDivExpr:
9758 return getUDivExpr(NewOps[0], NewOps[1]);
9759 case scUMaxExpr:
9760 case scSMaxExpr:
9761 case scUMinExpr:
9762 case scSMinExpr:
9763 return getMinMaxExpr(S->getSCEVType(), NewOps);
9764 case scSequentialUMinExpr:
9765 return getSequentialMinMaxExpr(S->getSCEVType(), NewOps);
9766 case scConstant:
9767 case scVScale:
9768 case scUnknown:
9769 return S;
9770 case scCouldNotCompute:
9771 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9773 llvm_unreachable("Unknown SCEV kind!");
9776 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9777 switch (V->getSCEVType()) {
9778 case scConstant:
9779 case scVScale:
9780 return V;
9781 case scAddRecExpr: {
9782 // If this is a loop recurrence for a loop that does not contain L, then we
9783 // are dealing with the final value computed by the loop.
9784 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V);
9785 // First, attempt to evaluate each operand.
9786 // Avoid performing the look-up in the common case where the specified
9787 // expression has no loop-variant portions.
9788 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9789 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9790 if (OpAtScope == AddRec->getOperand(i))
9791 continue;
9793 // Okay, at least one of these operands is loop variant but might be
9794 // foldable. Build a new instance of the folded commutative expression.
9795 SmallVector<const SCEV *, 8> NewOps;
9796 NewOps.reserve(AddRec->getNumOperands());
9797 append_range(NewOps, AddRec->operands().take_front(i));
9798 NewOps.push_back(OpAtScope);
9799 for (++i; i != e; ++i)
9800 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9802 const SCEV *FoldedRec = getAddRecExpr(
9803 NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW));
9804 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9805 // The addrec may be folded to a nonrecurrence, for example, if the
9806 // induction variable is multiplied by zero after constant folding. Go
9807 // ahead and return the folded value.
9808 if (!AddRec)
9809 return FoldedRec;
9810 break;
9813 // If the scope is outside the addrec's loop, evaluate it by using the
9814 // loop exit value of the addrec.
9815 if (!AddRec->getLoop()->contains(L)) {
9816 // To evaluate this recurrence, we need to know how many times the AddRec
9817 // loop iterates. Compute this now.
9818 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9819 if (BackedgeTakenCount == getCouldNotCompute())
9820 return AddRec;
9822 // Then, evaluate the AddRec.
9823 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9826 return AddRec;
9828 case scTruncate:
9829 case scZeroExtend:
9830 case scSignExtend:
9831 case scPtrToInt:
9832 case scAddExpr:
9833 case scMulExpr:
9834 case scUDivExpr:
9835 case scUMaxExpr:
9836 case scSMaxExpr:
9837 case scUMinExpr:
9838 case scSMinExpr:
9839 case scSequentialUMinExpr: {
9840 ArrayRef<const SCEV *> Ops = V->operands();
9841 // Avoid performing the look-up in the common case where the specified
9842 // expression has no loop-variant portions.
9843 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
9844 const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L);
9845 if (OpAtScope != Ops[i]) {
9846 // Okay, at least one of these operands is loop variant but might be
9847 // foldable. Build a new instance of the folded commutative expression.
9848 SmallVector<const SCEV *, 8> NewOps;
9849 NewOps.reserve(Ops.size());
9850 append_range(NewOps, Ops.take_front(i));
9851 NewOps.push_back(OpAtScope);
9853 for (++i; i != e; ++i) {
9854 OpAtScope = getSCEVAtScope(Ops[i], L);
9855 NewOps.push_back(OpAtScope);
9858 return getWithOperands(V, NewOps);
9861 // If we got here, all operands are loop invariant.
9862 return V;
9864 case scUnknown: {
9865 // If this instruction is evolved from a constant-evolving PHI, compute the
9866 // exit value from the loop without using SCEVs.
9867 const SCEVUnknown *SU = cast<SCEVUnknown>(V);
9868 Instruction *I = dyn_cast<Instruction>(SU->getValue());
9869 if (!I)
9870 return V; // This is some other type of SCEVUnknown, just return it.
9872 if (PHINode *PN = dyn_cast<PHINode>(I)) {
9873 const Loop *CurrLoop = this->LI[I->getParent()];
9874 // Looking for loop exit value.
9875 if (CurrLoop && CurrLoop->getParentLoop() == L &&
9876 PN->getParent() == CurrLoop->getHeader()) {
9877 // Okay, there is no closed form solution for the PHI node. Check
9878 // to see if the loop that contains it has a known backedge-taken
9879 // count. If so, we may be able to force computation of the exit
9880 // value.
9881 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9882 // This trivial case can show up in some degenerate cases where
9883 // the incoming IR has not yet been fully simplified.
9884 if (BackedgeTakenCount->isZero()) {
9885 Value *InitValue = nullptr;
9886 bool MultipleInitValues = false;
9887 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9888 if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9889 if (!InitValue)
9890 InitValue = PN->getIncomingValue(i);
9891 else if (InitValue != PN->getIncomingValue(i)) {
9892 MultipleInitValues = true;
9893 break;
9897 if (!MultipleInitValues && InitValue)
9898 return getSCEV(InitValue);
9900 // Do we have a loop invariant value flowing around the backedge
9901 // for a loop which must execute the backedge?
9902 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9903 isKnownNonZero(BackedgeTakenCount) &&
9904 PN->getNumIncomingValues() == 2) {
9906 unsigned InLoopPred =
9907 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9908 Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9909 if (CurrLoop->isLoopInvariant(BackedgeVal))
9910 return getSCEV(BackedgeVal);
9912 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9913 // Okay, we know how many times the containing loop executes. If
9914 // this is a constant evolving PHI node, get the final value at
9915 // the specified iteration number.
9916 Constant *RV =
9917 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
9918 if (RV)
9919 return getSCEV(RV);
9924 // Okay, this is an expression that we cannot symbolically evaluate
9925 // into a SCEV. Check to see if it's possible to symbolically evaluate
9926 // the arguments into constants, and if so, try to constant propagate the
9927 // result. This is particularly useful for computing loop exit values.
9928 if (!CanConstantFold(I))
9929 return V; // This is some other type of SCEVUnknown, just return it.
9931 SmallVector<Constant *, 4> Operands;
9932 Operands.reserve(I->getNumOperands());
9933 bool MadeImprovement = false;
9934 for (Value *Op : I->operands()) {
9935 if (Constant *C = dyn_cast<Constant>(Op)) {
9936 Operands.push_back(C);
9937 continue;
9940 // If any of the operands is non-constant and if they are
9941 // non-integer and non-pointer, don't even try to analyze them
9942 // with scev techniques.
9943 if (!isSCEVable(Op->getType()))
9944 return V;
9946 const SCEV *OrigV = getSCEV(Op);
9947 const SCEV *OpV = getSCEVAtScope(OrigV, L);
9948 MadeImprovement |= OrigV != OpV;
9950 Constant *C = BuildConstantFromSCEV(OpV);
9951 if (!C)
9952 return V;
9953 assert(C->getType() == Op->getType() && "Type mismatch");
9954 Operands.push_back(C);
9957 // Check to see if getSCEVAtScope actually made an improvement.
9958 if (!MadeImprovement)
9959 return V; // This is some other type of SCEVUnknown, just return it.
9961 Constant *C = nullptr;
9962 const DataLayout &DL = getDataLayout();
9963 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9964 if (!C)
9965 return V;
9966 return getSCEV(C);
9968 case scCouldNotCompute:
9969 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9971 llvm_unreachable("Unknown SCEV type!");
9974 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9975 return getSCEVAtScope(getSCEV(V), L);
9978 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9979 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9980 return stripInjectiveFunctions(ZExt->getOperand());
9981 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9982 return stripInjectiveFunctions(SExt->getOperand());
9983 return S;
9986 /// Finds the minimum unsigned root of the following equation:
9988 /// A * X = B (mod N)
9990 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9991 /// A and B isn't important.
9993 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9994 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9995 ScalarEvolution &SE) {
9996 uint32_t BW = A.getBitWidth();
9997 assert(BW == SE.getTypeSizeInBits(B->getType()));
9998 assert(A != 0 && "A must be non-zero.");
10000 // 1. D = gcd(A, N)
10002 // The gcd of A and N may have only one prime factor: 2. The number of
10003 // trailing zeros in A is its multiplicity
10004 uint32_t Mult2 = A.countr_zero();
10005 // D = 2^Mult2
10007 // 2. Check if B is divisible by D.
10009 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10010 // is not less than multiplicity of this prime factor for D.
10011 if (SE.getMinTrailingZeros(B) < Mult2)
10012 return SE.getCouldNotCompute();
10014 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10015 // modulo (N / D).
10017 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10018 // (N / D) in general. The inverse itself always fits into BW bits, though,
10019 // so we immediately truncate it.
10020 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
10021 APInt Mod(BW + 1, 0);
10022 Mod.setBit(BW - Mult2); // Mod = N / D
10023 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
10025 // 4. Compute the minimum unsigned root of the equation:
10026 // I * (B / D) mod (N / D)
10027 // To simplify the computation, we factor out the divide by D:
10028 // (I * B mod N) / D
10029 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
10030 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
10033 /// For a given quadratic addrec, generate coefficients of the corresponding
10034 /// quadratic equation, multiplied by a common value to ensure that they are
10035 /// integers.
10036 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10037 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10038 /// were multiplied by, and BitWidth is the bit width of the original addrec
10039 /// coefficients.
10040 /// This function returns std::nullopt if the addrec coefficients are not
10041 /// compile- time constants.
10042 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10043 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10044 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10045 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
10046 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
10047 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
10048 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10049 << *AddRec << '\n');
10051 // We currently can only solve this if the coefficients are constants.
10052 if (!LC || !MC || !NC) {
10053 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10054 return std::nullopt;
10057 APInt L = LC->getAPInt();
10058 APInt M = MC->getAPInt();
10059 APInt N = NC->getAPInt();
10060 assert(!N.isZero() && "This is not a quadratic addrec");
10062 unsigned BitWidth = LC->getAPInt().getBitWidth();
10063 unsigned NewWidth = BitWidth + 1;
10064 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10065 << BitWidth << '\n');
10066 // The sign-extension (as opposed to a zero-extension) here matches the
10067 // extension used in SolveQuadraticEquationWrap (with the same motivation).
10068 N = N.sext(NewWidth);
10069 M = M.sext(NewWidth);
10070 L = L.sext(NewWidth);
10072 // The increments are M, M+N, M+2N, ..., so the accumulated values are
10073 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10074 // L+M, L+2M+N, L+3M+3N, ...
10075 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10077 // The equation Acc = 0 is then
10078 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
10079 // In a quadratic form it becomes:
10080 // N n^2 + (2M-N) n + 2L = 0.
10082 APInt A = N;
10083 APInt B = 2 * M - A;
10084 APInt C = 2 * L;
10085 APInt T = APInt(NewWidth, 2);
10086 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10087 << "x + " << C << ", coeff bw: " << NewWidth
10088 << ", multiplied by " << T << '\n');
10089 return std::make_tuple(A, B, C, T, BitWidth);
10092 /// Helper function to compare optional APInts:
10093 /// (a) if X and Y both exist, return min(X, Y),
10094 /// (b) if neither X nor Y exist, return std::nullopt,
10095 /// (c) if exactly one of X and Y exists, return that value.
10096 static std::optional<APInt> MinOptional(std::optional<APInt> X,
10097 std::optional<APInt> Y) {
10098 if (X && Y) {
10099 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
10100 APInt XW = X->sext(W);
10101 APInt YW = Y->sext(W);
10102 return XW.slt(YW) ? *X : *Y;
10104 if (!X && !Y)
10105 return std::nullopt;
10106 return X ? *X : *Y;
10109 /// Helper function to truncate an optional APInt to a given BitWidth.
10110 /// When solving addrec-related equations, it is preferable to return a value
10111 /// that has the same bit width as the original addrec's coefficients. If the
10112 /// solution fits in the original bit width, truncate it (except for i1).
10113 /// Returning a value of a different bit width may inhibit some optimizations.
10115 /// In general, a solution to a quadratic equation generated from an addrec
10116 /// may require BW+1 bits, where BW is the bit width of the addrec's
10117 /// coefficients. The reason is that the coefficients of the quadratic
10118 /// equation are BW+1 bits wide (to avoid truncation when converting from
10119 /// the addrec to the equation).
10120 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10121 unsigned BitWidth) {
10122 if (!X)
10123 return std::nullopt;
10124 unsigned W = X->getBitWidth();
10125 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
10126 return X->trunc(BitWidth);
10127 return X;
10130 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10131 /// iterations. The values L, M, N are assumed to be signed, and they
10132 /// should all have the same bit widths.
10133 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10134 /// where BW is the bit width of the addrec's coefficients.
10135 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10136 /// returned as such, otherwise the bit width of the returned value may
10137 /// be greater than BW.
10139 /// This function returns std::nullopt if
10140 /// (a) the addrec coefficients are not constant, or
10141 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10142 /// like x^2 = 5, no integer solutions exist, in other cases an integer
10143 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10144 static std::optional<APInt>
10145 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10146 APInt A, B, C, M;
10147 unsigned BitWidth;
10148 auto T = GetQuadraticEquation(AddRec);
10149 if (!T)
10150 return std::nullopt;
10152 std::tie(A, B, C, M, BitWidth) = *T;
10153 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10154 std::optional<APInt> X =
10155 APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
10156 if (!X)
10157 return std::nullopt;
10159 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
10160 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
10161 if (!V->isZero())
10162 return std::nullopt;
10164 return TruncIfPossible(X, BitWidth);
10167 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10168 /// iterations. The values M, N are assumed to be signed, and they
10169 /// should all have the same bit widths.
10170 /// Find the least n such that c(n) does not belong to the given range,
10171 /// while c(n-1) does.
10173 /// This function returns std::nullopt if
10174 /// (a) the addrec coefficients are not constant, or
10175 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10176 /// bounds of the range.
10177 static std::optional<APInt>
10178 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10179 const ConstantRange &Range, ScalarEvolution &SE) {
10180 assert(AddRec->getOperand(0)->isZero() &&
10181 "Starting value of addrec should be 0");
10182 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10183 << Range << ", addrec " << *AddRec << '\n');
10184 // This case is handled in getNumIterationsInRange. Here we can assume that
10185 // we start in the range.
10186 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10187 "Addrec's initial value should be in range");
10189 APInt A, B, C, M;
10190 unsigned BitWidth;
10191 auto T = GetQuadraticEquation(AddRec);
10192 if (!T)
10193 return std::nullopt;
10195 // Be careful about the return value: there can be two reasons for not
10196 // returning an actual number. First, if no solutions to the equations
10197 // were found, and second, if the solutions don't leave the given range.
10198 // The first case means that the actual solution is "unknown", the second
10199 // means that it's known, but not valid. If the solution is unknown, we
10200 // cannot make any conclusions.
10201 // Return a pair: the optional solution and a flag indicating if the
10202 // solution was found.
10203 auto SolveForBoundary =
10204 [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10205 // Solve for signed overflow and unsigned overflow, pick the lower
10206 // solution.
10207 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10208 << Bound << " (before multiplying by " << M << ")\n");
10209 Bound *= M; // The quadratic equation multiplier.
10211 std::optional<APInt> SO;
10212 if (BitWidth > 1) {
10213 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10214 "signed overflow\n");
10215 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10217 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10218 "unsigned overflow\n");
10219 std::optional<APInt> UO =
10220 APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
10222 auto LeavesRange = [&] (const APInt &X) {
10223 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10224 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10225 if (Range.contains(V0->getValue()))
10226 return false;
10227 // X should be at least 1, so X-1 is non-negative.
10228 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10229 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10230 if (Range.contains(V1->getValue()))
10231 return true;
10232 return false;
10235 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10236 // can be a solution, but the function failed to find it. We cannot treat it
10237 // as "no solution".
10238 if (!SO || !UO)
10239 return {std::nullopt, false};
10241 // Check the smaller value first to see if it leaves the range.
10242 // At this point, both SO and UO must have values.
10243 std::optional<APInt> Min = MinOptional(SO, UO);
10244 if (LeavesRange(*Min))
10245 return { Min, true };
10246 std::optional<APInt> Max = Min == SO ? UO : SO;
10247 if (LeavesRange(*Max))
10248 return { Max, true };
10250 // Solutions were found, but were eliminated, hence the "true".
10251 return {std::nullopt, true};
10254 std::tie(A, B, C, M, BitWidth) = *T;
10255 // Lower bound is inclusive, subtract 1 to represent the exiting value.
10256 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10257 APInt Upper = Range.getUpper().sext(A.getBitWidth());
10258 auto SL = SolveForBoundary(Lower);
10259 auto SU = SolveForBoundary(Upper);
10260 // If any of the solutions was unknown, no meaninigful conclusions can
10261 // be made.
10262 if (!SL.second || !SU.second)
10263 return std::nullopt;
10265 // Claim: The correct solution is not some value between Min and Max.
10267 // Justification: Assuming that Min and Max are different values, one of
10268 // them is when the first signed overflow happens, the other is when the
10269 // first unsigned overflow happens. Crossing the range boundary is only
10270 // possible via an overflow (treating 0 as a special case of it, modeling
10271 // an overflow as crossing k*2^W for some k).
10273 // The interesting case here is when Min was eliminated as an invalid
10274 // solution, but Max was not. The argument is that if there was another
10275 // overflow between Min and Max, it would also have been eliminated if
10276 // it was considered.
10278 // For a given boundary, it is possible to have two overflows of the same
10279 // type (signed/unsigned) without having the other type in between: this
10280 // can happen when the vertex of the parabola is between the iterations
10281 // corresponding to the overflows. This is only possible when the two
10282 // overflows cross k*2^W for the same k. In such case, if the second one
10283 // left the range (and was the first one to do so), the first overflow
10284 // would have to enter the range, which would mean that either we had left
10285 // the range before or that we started outside of it. Both of these cases
10286 // are contradictions.
10288 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10289 // solution is not some value between the Max for this boundary and the
10290 // Min of the other boundary.
10292 // Justification: Assume that we had such Max_A and Min_B corresponding
10293 // to range boundaries A and B and such that Max_A < Min_B. If there was
10294 // a solution between Max_A and Min_B, it would have to be caused by an
10295 // overflow corresponding to either A or B. It cannot correspond to B,
10296 // since Min_B is the first occurrence of such an overflow. If it
10297 // corresponded to A, it would have to be either a signed or an unsigned
10298 // overflow that is larger than both eliminated overflows for A. But
10299 // between the eliminated overflows and this overflow, the values would
10300 // cover the entire value space, thus crossing the other boundary, which
10301 // is a contradiction.
10303 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10306 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V,
10307 const Loop *L,
10308 bool ControlsOnlyExit,
10309 bool AllowPredicates) {
10311 // This is only used for loops with a "x != y" exit test. The exit condition
10312 // is now expressed as a single expression, V = x-y. So the exit test is
10313 // effectively V != 0. We know and take advantage of the fact that this
10314 // expression only being used in a comparison by zero context.
10316 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10317 // If the value is a constant
10318 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10319 // If the value is already zero, the branch will execute zero times.
10320 if (C->getValue()->isZero()) return C;
10321 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10324 const SCEVAddRecExpr *AddRec =
10325 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10327 if (!AddRec && AllowPredicates)
10328 // Try to make this an AddRec using runtime tests, in the first X
10329 // iterations of this loop, where X is the SCEV expression found by the
10330 // algorithm below.
10331 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10333 if (!AddRec || AddRec->getLoop() != L)
10334 return getCouldNotCompute();
10336 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10337 // the quadratic equation to solve it.
10338 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10339 // We can only use this value if the chrec ends up with an exact zero
10340 // value at this index. When solving for "X*X != 5", for example, we
10341 // should not accept a root of 2.
10342 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10343 const auto *R = cast<SCEVConstant>(getConstant(*S));
10344 return ExitLimit(R, R, R, false, Predicates);
10346 return getCouldNotCompute();
10349 // Otherwise we can only handle this if it is affine.
10350 if (!AddRec->isAffine())
10351 return getCouldNotCompute();
10353 // If this is an affine expression, the execution count of this branch is
10354 // the minimum unsigned root of the following equation:
10356 // Start + Step*N = 0 (mod 2^BW)
10358 // equivalent to:
10360 // Step*N = -Start (mod 2^BW)
10362 // where BW is the common bit width of Start and Step.
10364 // Get the initial value for the loop.
10365 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10366 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10368 // For now we handle only constant steps.
10370 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
10371 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
10372 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10373 // We have not yet seen any such cases.
10374 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10375 if (!StepC || StepC->getValue()->isZero())
10376 return getCouldNotCompute();
10378 // For positive steps (counting up until unsigned overflow):
10379 // N = -Start/Step (as unsigned)
10380 // For negative steps (counting down to zero):
10381 // N = Start/-Step
10382 // First compute the unsigned distance from zero in the direction of Step.
10383 bool CountDown = StepC->getAPInt().isNegative();
10384 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10386 // Handle unitary steps, which cannot wraparound.
10387 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10388 // N = Distance (as unsigned)
10389 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
10390 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
10391 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10393 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10394 // we end up with a loop whose backedge-taken count is n - 1. Detect this
10395 // case, and see if we can improve the bound.
10397 // Explicitly handling this here is necessary because getUnsignedRange
10398 // isn't context-sensitive; it doesn't know that we only care about the
10399 // range inside the loop.
10400 const SCEV *Zero = getZero(Distance->getType());
10401 const SCEV *One = getOne(Distance->getType());
10402 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10403 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10404 // If Distance + 1 doesn't overflow, we can compute the maximum distance
10405 // as "unsigned_max(Distance + 1) - 1".
10406 ConstantRange CR = getUnsignedRange(DistancePlusOne);
10407 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10409 return ExitLimit(Distance, getConstant(MaxBECount), Distance, false,
10410 Predicates);
10413 // If the condition controls loop exit (the loop exits only if the expression
10414 // is true) and the addition is no-wrap we can use unsigned divide to
10415 // compute the backedge count. In this case, the step may not divide the
10416 // distance, but we don't care because if the condition is "missed" the loop
10417 // will have undefined behavior due to wrapping.
10418 if (ControlsOnlyExit && AddRec->hasNoSelfWrap() &&
10419 loopHasNoAbnormalExits(AddRec->getLoop())) {
10420 const SCEV *Exact =
10421 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10422 const SCEV *ConstantMax = getCouldNotCompute();
10423 if (Exact != getCouldNotCompute()) {
10424 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
10425 ConstantMax =
10426 getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10428 const SCEV *SymbolicMax =
10429 isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact;
10430 return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10433 // Solve the general equation.
10434 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10435 getNegativeSCEV(Start), *this);
10437 const SCEV *M = E;
10438 if (E != getCouldNotCompute()) {
10439 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
10440 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10442 auto *S = isa<SCEVCouldNotCompute>(E) ? M : E;
10443 return ExitLimit(E, M, S, false, Predicates);
10446 ScalarEvolution::ExitLimit
10447 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10448 // Loops that look like: while (X == 0) are very strange indeed. We don't
10449 // handle them yet except for the trivial case. This could be expanded in the
10450 // future as needed.
10452 // If the value is a constant, check to see if it is known to be non-zero
10453 // already. If so, the backedge will execute zero times.
10454 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10455 if (!C->getValue()->isZero())
10456 return getZero(C->getType());
10457 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10460 // We could implement others, but I really doubt anyone writes loops like
10461 // this, and if they did, they would already be constant folded.
10462 return getCouldNotCompute();
10465 std::pair<const BasicBlock *, const BasicBlock *>
10466 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10467 const {
10468 // If the block has a unique predecessor, then there is no path from the
10469 // predecessor to the block that does not go through the direct edge
10470 // from the predecessor to the block.
10471 if (const BasicBlock *Pred = BB->getSinglePredecessor())
10472 return {Pred, BB};
10474 // A loop's header is defined to be a block that dominates the loop.
10475 // If the header has a unique predecessor outside the loop, it must be
10476 // a block that has exactly one successor that can reach the loop.
10477 if (const Loop *L = LI.getLoopFor(BB))
10478 return {L->getLoopPredecessor(), L->getHeader()};
10480 return {nullptr, nullptr};
10483 /// SCEV structural equivalence is usually sufficient for testing whether two
10484 /// expressions are equal, however for the purposes of looking for a condition
10485 /// guarding a loop, it can be useful to be a little more general, since a
10486 /// front-end may have replicated the controlling expression.
10487 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10488 // Quick check to see if they are the same SCEV.
10489 if (A == B) return true;
10491 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10492 // Not all instructions that are "identical" compute the same value. For
10493 // instance, two distinct alloca instructions allocating the same type are
10494 // identical and do not read memory; but compute distinct values.
10495 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10498 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10499 // two different instructions with the same value. Check for this case.
10500 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10501 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10502 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10503 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10504 if (ComputesEqualValues(AI, BI))
10505 return true;
10507 // Otherwise assume they may have a different value.
10508 return false;
10511 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10512 const SCEV *&LHS, const SCEV *&RHS,
10513 unsigned Depth) {
10514 bool Changed = false;
10515 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10516 // '0 != 0'.
10517 auto TrivialCase = [&](bool TriviallyTrue) {
10518 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10519 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10520 return true;
10522 // If we hit the max recursion limit bail out.
10523 if (Depth >= 3)
10524 return false;
10526 // Canonicalize a constant to the right side.
10527 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10528 // Check for both operands constant.
10529 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10530 if (ConstantExpr::getICmp(Pred,
10531 LHSC->getValue(),
10532 RHSC->getValue())->isNullValue())
10533 return TrivialCase(false);
10534 return TrivialCase(true);
10536 // Otherwise swap the operands to put the constant on the right.
10537 std::swap(LHS, RHS);
10538 Pred = ICmpInst::getSwappedPredicate(Pred);
10539 Changed = true;
10542 // If we're comparing an addrec with a value which is loop-invariant in the
10543 // addrec's loop, put the addrec on the left. Also make a dominance check,
10544 // as both operands could be addrecs loop-invariant in each other's loop.
10545 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10546 const Loop *L = AR->getLoop();
10547 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10548 std::swap(LHS, RHS);
10549 Pred = ICmpInst::getSwappedPredicate(Pred);
10550 Changed = true;
10554 // If there's a constant operand, canonicalize comparisons with boundary
10555 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10556 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10557 const APInt &RA = RC->getAPInt();
10559 bool SimplifiedByConstantRange = false;
10561 if (!ICmpInst::isEquality(Pred)) {
10562 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10563 if (ExactCR.isFullSet())
10564 return TrivialCase(true);
10565 if (ExactCR.isEmptySet())
10566 return TrivialCase(false);
10568 APInt NewRHS;
10569 CmpInst::Predicate NewPred;
10570 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10571 ICmpInst::isEquality(NewPred)) {
10572 // We were able to convert an inequality to an equality.
10573 Pred = NewPred;
10574 RHS = getConstant(NewRHS);
10575 Changed = SimplifiedByConstantRange = true;
10579 if (!SimplifiedByConstantRange) {
10580 switch (Pred) {
10581 default:
10582 break;
10583 case ICmpInst::ICMP_EQ:
10584 case ICmpInst::ICMP_NE:
10585 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10586 if (!RA)
10587 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10588 if (const SCEVMulExpr *ME =
10589 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10590 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10591 ME->getOperand(0)->isAllOnesValue()) {
10592 RHS = AE->getOperand(1);
10593 LHS = ME->getOperand(1);
10594 Changed = true;
10596 break;
10599 // The "Should have been caught earlier!" messages refer to the fact
10600 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10601 // should have fired on the corresponding cases, and canonicalized the
10602 // check to trivial case.
10604 case ICmpInst::ICMP_UGE:
10605 assert(!RA.isMinValue() && "Should have been caught earlier!");
10606 Pred = ICmpInst::ICMP_UGT;
10607 RHS = getConstant(RA - 1);
10608 Changed = true;
10609 break;
10610 case ICmpInst::ICMP_ULE:
10611 assert(!RA.isMaxValue() && "Should have been caught earlier!");
10612 Pred = ICmpInst::ICMP_ULT;
10613 RHS = getConstant(RA + 1);
10614 Changed = true;
10615 break;
10616 case ICmpInst::ICMP_SGE:
10617 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10618 Pred = ICmpInst::ICMP_SGT;
10619 RHS = getConstant(RA - 1);
10620 Changed = true;
10621 break;
10622 case ICmpInst::ICMP_SLE:
10623 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10624 Pred = ICmpInst::ICMP_SLT;
10625 RHS = getConstant(RA + 1);
10626 Changed = true;
10627 break;
10632 // Check for obvious equality.
10633 if (HasSameValue(LHS, RHS)) {
10634 if (ICmpInst::isTrueWhenEqual(Pred))
10635 return TrivialCase(true);
10636 if (ICmpInst::isFalseWhenEqual(Pred))
10637 return TrivialCase(false);
10640 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10641 // adding or subtracting 1 from one of the operands.
10642 switch (Pred) {
10643 case ICmpInst::ICMP_SLE:
10644 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
10645 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10646 SCEV::FlagNSW);
10647 Pred = ICmpInst::ICMP_SLT;
10648 Changed = true;
10649 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10650 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10651 SCEV::FlagNSW);
10652 Pred = ICmpInst::ICMP_SLT;
10653 Changed = true;
10655 break;
10656 case ICmpInst::ICMP_SGE:
10657 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
10658 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10659 SCEV::FlagNSW);
10660 Pred = ICmpInst::ICMP_SGT;
10661 Changed = true;
10662 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10663 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10664 SCEV::FlagNSW);
10665 Pred = ICmpInst::ICMP_SGT;
10666 Changed = true;
10668 break;
10669 case ICmpInst::ICMP_ULE:
10670 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
10671 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10672 SCEV::FlagNUW);
10673 Pred = ICmpInst::ICMP_ULT;
10674 Changed = true;
10675 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10676 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10677 Pred = ICmpInst::ICMP_ULT;
10678 Changed = true;
10680 break;
10681 case ICmpInst::ICMP_UGE:
10682 if (!getUnsignedRangeMin(RHS).isMinValue()) {
10683 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10684 Pred = ICmpInst::ICMP_UGT;
10685 Changed = true;
10686 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10687 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10688 SCEV::FlagNUW);
10689 Pred = ICmpInst::ICMP_UGT;
10690 Changed = true;
10692 break;
10693 default:
10694 break;
10697 // TODO: More simplifications are possible here.
10699 // Recursively simplify until we either hit a recursion limit or nothing
10700 // changes.
10701 if (Changed)
10702 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1);
10704 return Changed;
10707 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10708 return getSignedRangeMax(S).isNegative();
10711 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10712 return getSignedRangeMin(S).isStrictlyPositive();
10715 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10716 return !getSignedRangeMin(S).isNegative();
10719 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10720 return !getSignedRangeMax(S).isStrictlyPositive();
10723 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10724 return getUnsignedRangeMin(S) != 0;
10727 std::pair<const SCEV *, const SCEV *>
10728 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10729 // Compute SCEV on entry of loop L.
10730 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10731 if (Start == getCouldNotCompute())
10732 return { Start, Start };
10733 // Compute post increment SCEV for loop L.
10734 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10735 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10736 return { Start, PostInc };
10739 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10740 const SCEV *LHS, const SCEV *RHS) {
10741 // First collect all loops.
10742 SmallPtrSet<const Loop *, 8> LoopsUsed;
10743 getUsedLoops(LHS, LoopsUsed);
10744 getUsedLoops(RHS, LoopsUsed);
10746 if (LoopsUsed.empty())
10747 return false;
10749 // Domination relationship must be a linear order on collected loops.
10750 #ifndef NDEBUG
10751 for (const auto *L1 : LoopsUsed)
10752 for (const auto *L2 : LoopsUsed)
10753 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10754 DT.dominates(L2->getHeader(), L1->getHeader())) &&
10755 "Domination relationship is not a linear order");
10756 #endif
10758 const Loop *MDL =
10759 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10760 [&](const Loop *L1, const Loop *L2) {
10761 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10764 // Get init and post increment value for LHS.
10765 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10766 // if LHS contains unknown non-invariant SCEV then bail out.
10767 if (SplitLHS.first == getCouldNotCompute())
10768 return false;
10769 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10770 // Get init and post increment value for RHS.
10771 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10772 // if RHS contains unknown non-invariant SCEV then bail out.
10773 if (SplitRHS.first == getCouldNotCompute())
10774 return false;
10775 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10776 // It is possible that init SCEV contains an invariant load but it does
10777 // not dominate MDL and is not available at MDL loop entry, so we should
10778 // check it here.
10779 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10780 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10781 return false;
10783 // It seems backedge guard check is faster than entry one so in some cases
10784 // it can speed up whole estimation by short circuit
10785 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10786 SplitRHS.second) &&
10787 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10790 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10791 const SCEV *LHS, const SCEV *RHS) {
10792 // Canonicalize the inputs first.
10793 (void)SimplifyICmpOperands(Pred, LHS, RHS);
10795 if (isKnownViaInduction(Pred, LHS, RHS))
10796 return true;
10798 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10799 return true;
10801 // Otherwise see what can be done with some simple reasoning.
10802 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10805 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10806 const SCEV *LHS,
10807 const SCEV *RHS) {
10808 if (isKnownPredicate(Pred, LHS, RHS))
10809 return true;
10810 if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10811 return false;
10812 return std::nullopt;
10815 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10816 const SCEV *LHS, const SCEV *RHS,
10817 const Instruction *CtxI) {
10818 // TODO: Analyze guards and assumes from Context's block.
10819 return isKnownPredicate(Pred, LHS, RHS) ||
10820 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10823 std::optional<bool>
10824 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
10825 const SCEV *RHS, const Instruction *CtxI) {
10826 std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10827 if (KnownWithoutContext)
10828 return KnownWithoutContext;
10830 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10831 return true;
10832 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10833 ICmpInst::getInversePredicate(Pred),
10834 LHS, RHS))
10835 return false;
10836 return std::nullopt;
10839 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10840 const SCEVAddRecExpr *LHS,
10841 const SCEV *RHS) {
10842 const Loop *L = LHS->getLoop();
10843 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10844 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10847 std::optional<ScalarEvolution::MonotonicPredicateType>
10848 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10849 ICmpInst::Predicate Pred) {
10850 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10852 #ifndef NDEBUG
10853 // Verify an invariant: inverting the predicate should turn a monotonically
10854 // increasing change to a monotonically decreasing one, and vice versa.
10855 if (Result) {
10856 auto ResultSwapped =
10857 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10859 assert(*ResultSwapped != *Result &&
10860 "monotonicity should flip as we flip the predicate");
10862 #endif
10864 return Result;
10867 std::optional<ScalarEvolution::MonotonicPredicateType>
10868 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10869 ICmpInst::Predicate Pred) {
10870 // A zero step value for LHS means the induction variable is essentially a
10871 // loop invariant value. We don't really depend on the predicate actually
10872 // flipping from false to true (for increasing predicates, and the other way
10873 // around for decreasing predicates), all we care about is that *if* the
10874 // predicate changes then it only changes from false to true.
10876 // A zero step value in itself is not very useful, but there may be places
10877 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10878 // as general as possible.
10880 // Only handle LE/LT/GE/GT predicates.
10881 if (!ICmpInst::isRelational(Pred))
10882 return std::nullopt;
10884 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10885 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10886 "Should be greater or less!");
10888 // Check that AR does not wrap.
10889 if (ICmpInst::isUnsigned(Pred)) {
10890 if (!LHS->hasNoUnsignedWrap())
10891 return std::nullopt;
10892 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10894 assert(ICmpInst::isSigned(Pred) &&
10895 "Relational predicate is either signed or unsigned!");
10896 if (!LHS->hasNoSignedWrap())
10897 return std::nullopt;
10899 const SCEV *Step = LHS->getStepRecurrence(*this);
10901 if (isKnownNonNegative(Step))
10902 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10904 if (isKnownNonPositive(Step))
10905 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10907 return std::nullopt;
10910 std::optional<ScalarEvolution::LoopInvariantPredicate>
10911 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10912 const SCEV *LHS, const SCEV *RHS,
10913 const Loop *L,
10914 const Instruction *CtxI) {
10915 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10916 if (!isLoopInvariant(RHS, L)) {
10917 if (!isLoopInvariant(LHS, L))
10918 return std::nullopt;
10920 std::swap(LHS, RHS);
10921 Pred = ICmpInst::getSwappedPredicate(Pred);
10924 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10925 if (!ArLHS || ArLHS->getLoop() != L)
10926 return std::nullopt;
10928 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10929 if (!MonotonicType)
10930 return std::nullopt;
10931 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10932 // true as the loop iterates, and the backedge is control dependent on
10933 // "ArLHS `Pred` RHS" == true then we can reason as follows:
10935 // * if the predicate was false in the first iteration then the predicate
10936 // is never evaluated again, since the loop exits without taking the
10937 // backedge.
10938 // * if the predicate was true in the first iteration then it will
10939 // continue to be true for all future iterations since it is
10940 // monotonically increasing.
10942 // For both the above possibilities, we can replace the loop varying
10943 // predicate with its value on the first iteration of the loop (which is
10944 // loop invariant).
10946 // A similar reasoning applies for a monotonically decreasing predicate, by
10947 // replacing true with false and false with true in the above two bullets.
10948 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10949 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10951 if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10952 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
10953 RHS);
10955 if (!CtxI)
10956 return std::nullopt;
10957 // Try to prove via context.
10958 // TODO: Support other cases.
10959 switch (Pred) {
10960 default:
10961 break;
10962 case ICmpInst::ICMP_ULE:
10963 case ICmpInst::ICMP_ULT: {
10964 assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
10965 // Given preconditions
10966 // (1) ArLHS does not cross the border of positive and negative parts of
10967 // range because of:
10968 // - Positive step; (TODO: lift this limitation)
10969 // - nuw - does not cross zero boundary;
10970 // - nsw - does not cross SINT_MAX boundary;
10971 // (2) ArLHS <s RHS
10972 // (3) RHS >=s 0
10973 // we can replace the loop variant ArLHS <u RHS condition with loop
10974 // invariant Start(ArLHS) <u RHS.
10976 // Because of (1) there are two options:
10977 // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
10978 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
10979 // It means that ArLHS <s RHS <=> ArLHS <u RHS.
10980 // Because of (2) ArLHS <u RHS is trivially true.
10981 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
10982 // We can strengthen this to Start(ArLHS) <u RHS.
10983 auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred);
10984 if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
10985 isKnownPositive(ArLHS->getStepRecurrence(*this)) &&
10986 isKnownNonNegative(RHS) &&
10987 isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI))
10988 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
10989 RHS);
10993 return std::nullopt;
10996 std::optional<ScalarEvolution::LoopInvariantPredicate>
10997 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10998 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10999 const Instruction *CtxI, const SCEV *MaxIter) {
11000 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11001 Pred, LHS, RHS, L, CtxI, MaxIter))
11002 return LIP;
11003 if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter))
11004 // Number of iterations expressed as UMIN isn't always great for expressing
11005 // the value on the last iteration. If the straightforward approach didn't
11006 // work, try the following trick: if the a predicate is invariant for X, it
11007 // is also invariant for umin(X, ...). So try to find something that works
11008 // among subexpressions of MaxIter expressed as umin.
11009 for (auto *Op : UMin->operands())
11010 if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
11011 Pred, LHS, RHS, L, CtxI, Op))
11012 return LIP;
11013 return std::nullopt;
11016 std::optional<ScalarEvolution::LoopInvariantPredicate>
11017 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11018 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
11019 const Instruction *CtxI, const SCEV *MaxIter) {
11020 // Try to prove the following set of facts:
11021 // - The predicate is monotonic in the iteration space.
11022 // - If the check does not fail on the 1st iteration:
11023 // - No overflow will happen during first MaxIter iterations;
11024 // - It will not fail on the MaxIter'th iteration.
11025 // If the check does fail on the 1st iteration, we leave the loop and no
11026 // other checks matter.
11028 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11029 if (!isLoopInvariant(RHS, L)) {
11030 if (!isLoopInvariant(LHS, L))
11031 return std::nullopt;
11033 std::swap(LHS, RHS);
11034 Pred = ICmpInst::getSwappedPredicate(Pred);
11037 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
11038 if (!AR || AR->getLoop() != L)
11039 return std::nullopt;
11041 // The predicate must be relational (i.e. <, <=, >=, >).
11042 if (!ICmpInst::isRelational(Pred))
11043 return std::nullopt;
11045 // TODO: Support steps other than +/- 1.
11046 const SCEV *Step = AR->getStepRecurrence(*this);
11047 auto *One = getOne(Step->getType());
11048 auto *MinusOne = getNegativeSCEV(One);
11049 if (Step != One && Step != MinusOne)
11050 return std::nullopt;
11052 // Type mismatch here means that MaxIter is potentially larger than max
11053 // unsigned value in start type, which mean we cannot prove no wrap for the
11054 // indvar.
11055 if (AR->getType() != MaxIter->getType())
11056 return std::nullopt;
11058 // Value of IV on suggested last iteration.
11059 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
11060 // Does it still meet the requirement?
11061 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
11062 return std::nullopt;
11063 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11064 // not exceed max unsigned value of this type), this effectively proves
11065 // that there is no wrap during the iteration. To prove that there is no
11066 // signed/unsigned wrap, we need to check that
11067 // Start <= Last for step = 1 or Start >= Last for step = -1.
11068 ICmpInst::Predicate NoOverflowPred =
11069 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11070 if (Step == MinusOne)
11071 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
11072 const SCEV *Start = AR->getStart();
11073 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
11074 return std::nullopt;
11076 // Everything is fine.
11077 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11080 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11081 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
11082 if (HasSameValue(LHS, RHS))
11083 return ICmpInst::isTrueWhenEqual(Pred);
11085 // This code is split out from isKnownPredicate because it is called from
11086 // within isLoopEntryGuardedByCond.
11088 auto CheckRanges = [&](const ConstantRange &RangeLHS,
11089 const ConstantRange &RangeRHS) {
11090 return RangeLHS.icmp(Pred, RangeRHS);
11093 // The check at the top of the function catches the case where the values are
11094 // known to be equal.
11095 if (Pred == CmpInst::ICMP_EQ)
11096 return false;
11098 if (Pred == CmpInst::ICMP_NE) {
11099 auto SL = getSignedRange(LHS);
11100 auto SR = getSignedRange(RHS);
11101 if (CheckRanges(SL, SR))
11102 return true;
11103 auto UL = getUnsignedRange(LHS);
11104 auto UR = getUnsignedRange(RHS);
11105 if (CheckRanges(UL, UR))
11106 return true;
11107 auto *Diff = getMinusSCEV(LHS, RHS);
11108 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
11111 if (CmpInst::isSigned(Pred)) {
11112 auto SL = getSignedRange(LHS);
11113 auto SR = getSignedRange(RHS);
11114 return CheckRanges(SL, SR);
11117 auto UL = getUnsignedRange(LHS);
11118 auto UR = getUnsignedRange(RHS);
11119 return CheckRanges(UL, UR);
11122 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
11123 const SCEV *LHS,
11124 const SCEV *RHS) {
11125 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11126 // C1 and C2 are constant integers. If either X or Y are not add expressions,
11127 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11128 // OutC1 and OutC2.
11129 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11130 APInt &OutC1, APInt &OutC2,
11131 SCEV::NoWrapFlags ExpectedFlags) {
11132 const SCEV *XNonConstOp, *XConstOp;
11133 const SCEV *YNonConstOp, *YConstOp;
11134 SCEV::NoWrapFlags XFlagsPresent;
11135 SCEV::NoWrapFlags YFlagsPresent;
11137 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
11138 XConstOp = getZero(X->getType());
11139 XNonConstOp = X;
11140 XFlagsPresent = ExpectedFlags;
11142 if (!isa<SCEVConstant>(XConstOp) ||
11143 (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11144 return false;
11146 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11147 YConstOp = getZero(Y->getType());
11148 YNonConstOp = Y;
11149 YFlagsPresent = ExpectedFlags;
11152 if (!isa<SCEVConstant>(YConstOp) ||
11153 (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11154 return false;
11156 if (YNonConstOp != XNonConstOp)
11157 return false;
11159 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
11160 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
11162 return true;
11165 APInt C1;
11166 APInt C2;
11168 switch (Pred) {
11169 default:
11170 break;
11172 case ICmpInst::ICMP_SGE:
11173 std::swap(LHS, RHS);
11174 [[fallthrough]];
11175 case ICmpInst::ICMP_SLE:
11176 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11177 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
11178 return true;
11180 break;
11182 case ICmpInst::ICMP_SGT:
11183 std::swap(LHS, RHS);
11184 [[fallthrough]];
11185 case ICmpInst::ICMP_SLT:
11186 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11187 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
11188 return true;
11190 break;
11192 case ICmpInst::ICMP_UGE:
11193 std::swap(LHS, RHS);
11194 [[fallthrough]];
11195 case ICmpInst::ICMP_ULE:
11196 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11197 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
11198 return true;
11200 break;
11202 case ICmpInst::ICMP_UGT:
11203 std::swap(LHS, RHS);
11204 [[fallthrough]];
11205 case ICmpInst::ICMP_ULT:
11206 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11207 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
11208 return true;
11209 break;
11212 return false;
11215 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
11216 const SCEV *LHS,
11217 const SCEV *RHS) {
11218 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11219 return false;
11221 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11222 // the stack can result in exponential time complexity.
11223 SaveAndRestore Restore(ProvingSplitPredicate, true);
11225 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11227 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11228 // isKnownPredicate. isKnownPredicate is more powerful, but also more
11229 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11230 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
11231 // use isKnownPredicate later if needed.
11232 return isKnownNonNegative(RHS) &&
11233 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
11234 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
11237 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
11238 ICmpInst::Predicate Pred,
11239 const SCEV *LHS, const SCEV *RHS) {
11240 // No need to even try if we know the module has no guards.
11241 if (!HasGuards)
11242 return false;
11244 return any_of(*BB, [&](const Instruction &I) {
11245 using namespace llvm::PatternMatch;
11247 Value *Condition;
11248 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11249 m_Value(Condition))) &&
11250 isImpliedCond(Pred, LHS, RHS, Condition, false);
11254 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11255 /// protected by a conditional between LHS and RHS. This is used to
11256 /// to eliminate casts.
11257 bool
11258 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11259 ICmpInst::Predicate Pred,
11260 const SCEV *LHS, const SCEV *RHS) {
11261 // Interpret a null as meaning no loop, where there is obviously no guard
11262 // (interprocedural conditions notwithstanding). Do not bother about
11263 // unreachable loops.
11264 if (!L || !DT.isReachableFromEntry(L->getHeader()))
11265 return true;
11267 if (VerifyIR)
11268 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11269 "This cannot be done on broken IR!");
11272 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11273 return true;
11275 BasicBlock *Latch = L->getLoopLatch();
11276 if (!Latch)
11277 return false;
11279 BranchInst *LoopContinuePredicate =
11280 dyn_cast<BranchInst>(Latch->getTerminator());
11281 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11282 isImpliedCond(Pred, LHS, RHS,
11283 LoopContinuePredicate->getCondition(),
11284 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11285 return true;
11287 // We don't want more than one activation of the following loops on the stack
11288 // -- that can lead to O(n!) time complexity.
11289 if (WalkingBEDominatingConds)
11290 return false;
11292 SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11294 // See if we can exploit a trip count to prove the predicate.
11295 const auto &BETakenInfo = getBackedgeTakenInfo(L);
11296 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11297 if (LatchBECount != getCouldNotCompute()) {
11298 // We know that Latch branches back to the loop header exactly
11299 // LatchBECount times. This means the backdege condition at Latch is
11300 // equivalent to "{0,+,1} u< LatchBECount".
11301 Type *Ty = LatchBECount->getType();
11302 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11303 const SCEV *LoopCounter =
11304 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11305 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11306 LatchBECount))
11307 return true;
11310 // Check conditions due to any @llvm.assume intrinsics.
11311 for (auto &AssumeVH : AC.assumptions()) {
11312 if (!AssumeVH)
11313 continue;
11314 auto *CI = cast<CallInst>(AssumeVH);
11315 if (!DT.dominates(CI, Latch->getTerminator()))
11316 continue;
11318 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11319 return true;
11322 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11323 return true;
11325 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11326 DTN != HeaderDTN; DTN = DTN->getIDom()) {
11327 assert(DTN && "should reach the loop header before reaching the root!");
11329 BasicBlock *BB = DTN->getBlock();
11330 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11331 return true;
11333 BasicBlock *PBB = BB->getSinglePredecessor();
11334 if (!PBB)
11335 continue;
11337 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11338 if (!ContinuePredicate || !ContinuePredicate->isConditional())
11339 continue;
11341 Value *Condition = ContinuePredicate->getCondition();
11343 // If we have an edge `E` within the loop body that dominates the only
11344 // latch, the condition guarding `E` also guards the backedge. This
11345 // reasoning works only for loops with a single latch.
11347 BasicBlockEdge DominatingEdge(PBB, BB);
11348 if (DominatingEdge.isSingleEdge()) {
11349 // We're constructively (and conservatively) enumerating edges within the
11350 // loop body that dominate the latch. The dominator tree better agree
11351 // with us on this:
11352 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11354 if (isImpliedCond(Pred, LHS, RHS, Condition,
11355 BB != ContinuePredicate->getSuccessor(0)))
11356 return true;
11360 return false;
11363 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11364 ICmpInst::Predicate Pred,
11365 const SCEV *LHS,
11366 const SCEV *RHS) {
11367 // Do not bother proving facts for unreachable code.
11368 if (!DT.isReachableFromEntry(BB))
11369 return true;
11370 if (VerifyIR)
11371 assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11372 "This cannot be done on broken IR!");
11374 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11375 // the facts (a >= b && a != b) separately. A typical situation is when the
11376 // non-strict comparison is known from ranges and non-equality is known from
11377 // dominating predicates. If we are proving strict comparison, we always try
11378 // to prove non-equality and non-strict comparison separately.
11379 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11380 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11381 bool ProvedNonStrictComparison = false;
11382 bool ProvedNonEquality = false;
11384 auto SplitAndProve =
11385 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11386 if (!ProvedNonStrictComparison)
11387 ProvedNonStrictComparison = Fn(NonStrictPredicate);
11388 if (!ProvedNonEquality)
11389 ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11390 if (ProvedNonStrictComparison && ProvedNonEquality)
11391 return true;
11392 return false;
11395 if (ProvingStrictComparison) {
11396 auto ProofFn = [&](ICmpInst::Predicate P) {
11397 return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11399 if (SplitAndProve(ProofFn))
11400 return true;
11403 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11404 auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11405 const Instruction *CtxI = &BB->front();
11406 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11407 return true;
11408 if (ProvingStrictComparison) {
11409 auto ProofFn = [&](ICmpInst::Predicate P) {
11410 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11412 if (SplitAndProve(ProofFn))
11413 return true;
11415 return false;
11418 // Starting at the block's predecessor, climb up the predecessor chain, as long
11419 // as there are predecessors that can be found that have unique successors
11420 // leading to the original block.
11421 const Loop *ContainingLoop = LI.getLoopFor(BB);
11422 const BasicBlock *PredBB;
11423 if (ContainingLoop && ContainingLoop->getHeader() == BB)
11424 PredBB = ContainingLoop->getLoopPredecessor();
11425 else
11426 PredBB = BB->getSinglePredecessor();
11427 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11428 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11429 const BranchInst *BlockEntryPredicate =
11430 dyn_cast<BranchInst>(Pair.first->getTerminator());
11431 if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11432 continue;
11434 if (ProveViaCond(BlockEntryPredicate->getCondition(),
11435 BlockEntryPredicate->getSuccessor(0) != Pair.second))
11436 return true;
11439 // Check conditions due to any @llvm.assume intrinsics.
11440 for (auto &AssumeVH : AC.assumptions()) {
11441 if (!AssumeVH)
11442 continue;
11443 auto *CI = cast<CallInst>(AssumeVH);
11444 if (!DT.dominates(CI, BB))
11445 continue;
11447 if (ProveViaCond(CI->getArgOperand(0), false))
11448 return true;
11451 // Check conditions due to any @llvm.experimental.guard intrinsics.
11452 auto *GuardDecl = F.getParent()->getFunction(
11453 Intrinsic::getName(Intrinsic::experimental_guard));
11454 if (GuardDecl)
11455 for (const auto *GU : GuardDecl->users())
11456 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11457 if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11458 if (ProveViaCond(Guard->getArgOperand(0), false))
11459 return true;
11460 return false;
11463 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11464 ICmpInst::Predicate Pred,
11465 const SCEV *LHS,
11466 const SCEV *RHS) {
11467 // Interpret a null as meaning no loop, where there is obviously no guard
11468 // (interprocedural conditions notwithstanding).
11469 if (!L)
11470 return false;
11472 // Both LHS and RHS must be available at loop entry.
11473 assert(isAvailableAtLoopEntry(LHS, L) &&
11474 "LHS is not available at Loop Entry");
11475 assert(isAvailableAtLoopEntry(RHS, L) &&
11476 "RHS is not available at Loop Entry");
11478 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11479 return true;
11481 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11484 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11485 const SCEV *RHS,
11486 const Value *FoundCondValue, bool Inverse,
11487 const Instruction *CtxI) {
11488 // False conditions implies anything. Do not bother analyzing it further.
11489 if (FoundCondValue ==
11490 ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11491 return true;
11493 if (!PendingLoopPredicates.insert(FoundCondValue).second)
11494 return false;
11496 auto ClearOnExit =
11497 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11499 // Recursively handle And and Or conditions.
11500 const Value *Op0, *Op1;
11501 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11502 if (!Inverse)
11503 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11504 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11505 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11506 if (Inverse)
11507 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11508 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11511 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11512 if (!ICI) return false;
11514 // Now that we found a conditional branch that dominates the loop or controls
11515 // the loop latch. Check to see if it is the comparison we are looking for.
11516 ICmpInst::Predicate FoundPred;
11517 if (Inverse)
11518 FoundPred = ICI->getInversePredicate();
11519 else
11520 FoundPred = ICI->getPredicate();
11522 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11523 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11525 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11528 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11529 const SCEV *RHS,
11530 ICmpInst::Predicate FoundPred,
11531 const SCEV *FoundLHS, const SCEV *FoundRHS,
11532 const Instruction *CtxI) {
11533 // Balance the types.
11534 if (getTypeSizeInBits(LHS->getType()) <
11535 getTypeSizeInBits(FoundLHS->getType())) {
11536 // For unsigned and equality predicates, try to prove that both found
11537 // operands fit into narrow unsigned range. If so, try to prove facts in
11538 // narrow types.
11539 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11540 !FoundRHS->getType()->isPointerTy()) {
11541 auto *NarrowType = LHS->getType();
11542 auto *WideType = FoundLHS->getType();
11543 auto BitWidth = getTypeSizeInBits(NarrowType);
11544 const SCEV *MaxValue = getZeroExtendExpr(
11545 getConstant(APInt::getMaxValue(BitWidth)), WideType);
11546 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11547 MaxValue) &&
11548 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11549 MaxValue)) {
11550 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11551 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11552 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11553 TruncFoundRHS, CtxI))
11554 return true;
11558 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11559 return false;
11560 if (CmpInst::isSigned(Pred)) {
11561 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11562 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11563 } else {
11564 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11565 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11567 } else if (getTypeSizeInBits(LHS->getType()) >
11568 getTypeSizeInBits(FoundLHS->getType())) {
11569 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11570 return false;
11571 if (CmpInst::isSigned(FoundPred)) {
11572 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11573 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11574 } else {
11575 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11576 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11579 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11580 FoundRHS, CtxI);
11583 bool ScalarEvolution::isImpliedCondBalancedTypes(
11584 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11585 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11586 const Instruction *CtxI) {
11587 assert(getTypeSizeInBits(LHS->getType()) ==
11588 getTypeSizeInBits(FoundLHS->getType()) &&
11589 "Types should be balanced!");
11590 // Canonicalize the query to match the way instcombine will have
11591 // canonicalized the comparison.
11592 if (SimplifyICmpOperands(Pred, LHS, RHS))
11593 if (LHS == RHS)
11594 return CmpInst::isTrueWhenEqual(Pred);
11595 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11596 if (FoundLHS == FoundRHS)
11597 return CmpInst::isFalseWhenEqual(FoundPred);
11599 // Check to see if we can make the LHS or RHS match.
11600 if (LHS == FoundRHS || RHS == FoundLHS) {
11601 if (isa<SCEVConstant>(RHS)) {
11602 std::swap(FoundLHS, FoundRHS);
11603 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11604 } else {
11605 std::swap(LHS, RHS);
11606 Pred = ICmpInst::getSwappedPredicate(Pred);
11610 // Check whether the found predicate is the same as the desired predicate.
11611 if (FoundPred == Pred)
11612 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11614 // Check whether swapping the found predicate makes it the same as the
11615 // desired predicate.
11616 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11617 // We can write the implication
11618 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS
11619 // using one of the following ways:
11620 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS
11621 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS
11622 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS
11623 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS
11624 // Forms 1. and 2. require swapping the operands of one condition. Don't
11625 // do this if it would break canonical constant/addrec ordering.
11626 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11627 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11628 CtxI);
11629 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11630 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11632 // There's no clear preference between forms 3. and 4., try both. Avoid
11633 // forming getNotSCEV of pointer values as the resulting subtract is
11634 // not legal.
11635 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11636 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11637 FoundLHS, FoundRHS, CtxI))
11638 return true;
11640 if (!FoundLHS->getType()->isPointerTy() &&
11641 !FoundRHS->getType()->isPointerTy() &&
11642 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11643 getNotSCEV(FoundRHS), CtxI))
11644 return true;
11646 return false;
11649 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11650 CmpInst::Predicate P2) {
11651 assert(P1 != P2 && "Handled earlier!");
11652 return CmpInst::isRelational(P2) &&
11653 P1 == CmpInst::getFlippedSignednessPredicate(P2);
11655 if (IsSignFlippedPredicate(Pred, FoundPred)) {
11656 // Unsigned comparison is the same as signed comparison when both the
11657 // operands are non-negative or negative.
11658 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11659 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11660 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11661 // Create local copies that we can freely swap and canonicalize our
11662 // conditions to "le/lt".
11663 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11664 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11665 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11666 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11667 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11668 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11669 std::swap(CanonicalLHS, CanonicalRHS);
11670 std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11672 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11673 "Must be!");
11674 assert((ICmpInst::isLT(CanonicalFoundPred) ||
11675 ICmpInst::isLE(CanonicalFoundPred)) &&
11676 "Must be!");
11677 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11678 // Use implication:
11679 // x <u y && y >=s 0 --> x <s y.
11680 // If we can prove the left part, the right part is also proven.
11681 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11682 CanonicalRHS, CanonicalFoundLHS,
11683 CanonicalFoundRHS);
11684 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11685 // Use implication:
11686 // x <s y && y <s 0 --> x <u y.
11687 // If we can prove the left part, the right part is also proven.
11688 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11689 CanonicalRHS, CanonicalFoundLHS,
11690 CanonicalFoundRHS);
11693 // Check if we can make progress by sharpening ranges.
11694 if (FoundPred == ICmpInst::ICMP_NE &&
11695 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11697 const SCEVConstant *C = nullptr;
11698 const SCEV *V = nullptr;
11700 if (isa<SCEVConstant>(FoundLHS)) {
11701 C = cast<SCEVConstant>(FoundLHS);
11702 V = FoundRHS;
11703 } else {
11704 C = cast<SCEVConstant>(FoundRHS);
11705 V = FoundLHS;
11708 // The guarding predicate tells us that C != V. If the known range
11709 // of V is [C, t), we can sharpen the range to [C + 1, t). The
11710 // range we consider has to correspond to same signedness as the
11711 // predicate we're interested in folding.
11713 APInt Min = ICmpInst::isSigned(Pred) ?
11714 getSignedRangeMin(V) : getUnsignedRangeMin(V);
11716 if (Min == C->getAPInt()) {
11717 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11718 // This is true even if (Min + 1) wraps around -- in case of
11719 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11721 APInt SharperMin = Min + 1;
11723 switch (Pred) {
11724 case ICmpInst::ICMP_SGE:
11725 case ICmpInst::ICMP_UGE:
11726 // We know V `Pred` SharperMin. If this implies LHS `Pred`
11727 // RHS, we're done.
11728 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11729 CtxI))
11730 return true;
11731 [[fallthrough]];
11733 case ICmpInst::ICMP_SGT:
11734 case ICmpInst::ICMP_UGT:
11735 // We know from the range information that (V `Pred` Min ||
11736 // V == Min). We know from the guarding condition that !(V
11737 // == Min). This gives us
11739 // V `Pred` Min || V == Min && !(V == Min)
11740 // => V `Pred` Min
11742 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11744 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11745 return true;
11746 break;
11748 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11749 case ICmpInst::ICMP_SLE:
11750 case ICmpInst::ICMP_ULE:
11751 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11752 LHS, V, getConstant(SharperMin), CtxI))
11753 return true;
11754 [[fallthrough]];
11756 case ICmpInst::ICMP_SLT:
11757 case ICmpInst::ICMP_ULT:
11758 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11759 LHS, V, getConstant(Min), CtxI))
11760 return true;
11761 break;
11763 default:
11764 // No change
11765 break;
11770 // Check whether the actual condition is beyond sufficient.
11771 if (FoundPred == ICmpInst::ICMP_EQ)
11772 if (ICmpInst::isTrueWhenEqual(Pred))
11773 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11774 return true;
11775 if (Pred == ICmpInst::ICMP_NE)
11776 if (!ICmpInst::isTrueWhenEqual(FoundPred))
11777 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11778 return true;
11780 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS))
11781 return true;
11783 // Otherwise assume the worst.
11784 return false;
11787 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11788 const SCEV *&L, const SCEV *&R,
11789 SCEV::NoWrapFlags &Flags) {
11790 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11791 if (!AE || AE->getNumOperands() != 2)
11792 return false;
11794 L = AE->getOperand(0);
11795 R = AE->getOperand(1);
11796 Flags = AE->getNoWrapFlags();
11797 return true;
11800 std::optional<APInt>
11801 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
11802 // We avoid subtracting expressions here because this function is usually
11803 // fairly deep in the call stack (i.e. is called many times).
11805 // X - X = 0.
11806 if (More == Less)
11807 return APInt(getTypeSizeInBits(More->getType()), 0);
11809 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11810 const auto *LAR = cast<SCEVAddRecExpr>(Less);
11811 const auto *MAR = cast<SCEVAddRecExpr>(More);
11813 if (LAR->getLoop() != MAR->getLoop())
11814 return std::nullopt;
11816 // We look at affine expressions only; not for correctness but to keep
11817 // getStepRecurrence cheap.
11818 if (!LAR->isAffine() || !MAR->isAffine())
11819 return std::nullopt;
11821 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11822 return std::nullopt;
11824 Less = LAR->getStart();
11825 More = MAR->getStart();
11827 // fall through
11830 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11831 const auto &M = cast<SCEVConstant>(More)->getAPInt();
11832 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11833 return M - L;
11836 SCEV::NoWrapFlags Flags;
11837 const SCEV *LLess = nullptr, *RLess = nullptr;
11838 const SCEV *LMore = nullptr, *RMore = nullptr;
11839 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11840 // Compare (X + C1) vs X.
11841 if (splitBinaryAdd(Less, LLess, RLess, Flags))
11842 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11843 if (RLess == More)
11844 return -(C1->getAPInt());
11846 // Compare X vs (X + C2).
11847 if (splitBinaryAdd(More, LMore, RMore, Flags))
11848 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11849 if (RMore == Less)
11850 return C2->getAPInt();
11852 // Compare (X + C1) vs (X + C2).
11853 if (C1 && C2 && RLess == RMore)
11854 return C2->getAPInt() - C1->getAPInt();
11856 return std::nullopt;
11859 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11860 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11861 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11862 // Try to recognize the following pattern:
11864 // FoundRHS = ...
11865 // ...
11866 // loop:
11867 // FoundLHS = {Start,+,W}
11868 // context_bb: // Basic block from the same loop
11869 // known(Pred, FoundLHS, FoundRHS)
11871 // If some predicate is known in the context of a loop, it is also known on
11872 // each iteration of this loop, including the first iteration. Therefore, in
11873 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11874 // prove the original pred using this fact.
11875 if (!CtxI)
11876 return false;
11877 const BasicBlock *ContextBB = CtxI->getParent();
11878 // Make sure AR varies in the context block.
11879 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11880 const Loop *L = AR->getLoop();
11881 // Make sure that context belongs to the loop and executes on 1st iteration
11882 // (if it ever executes at all).
11883 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11884 return false;
11885 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11886 return false;
11887 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11890 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11891 const Loop *L = AR->getLoop();
11892 // Make sure that context belongs to the loop and executes on 1st iteration
11893 // (if it ever executes at all).
11894 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11895 return false;
11896 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11897 return false;
11898 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11901 return false;
11904 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11905 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11906 const SCEV *FoundLHS, const SCEV *FoundRHS) {
11907 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11908 return false;
11910 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11911 if (!AddRecLHS)
11912 return false;
11914 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11915 if (!AddRecFoundLHS)
11916 return false;
11918 // We'd like to let SCEV reason about control dependencies, so we constrain
11919 // both the inequalities to be about add recurrences on the same loop. This
11920 // way we can use isLoopEntryGuardedByCond later.
11922 const Loop *L = AddRecFoundLHS->getLoop();
11923 if (L != AddRecLHS->getLoop())
11924 return false;
11926 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
11928 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11929 // ... (2)
11931 // Informal proof for (2), assuming (1) [*]:
11933 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11935 // Then
11937 // FoundLHS s< FoundRHS s< INT_MIN - C
11938 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
11939 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11940 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
11941 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11942 // <=> FoundLHS + C s< FoundRHS + C
11944 // [*]: (1) can be proved by ruling out overflow.
11946 // [**]: This can be proved by analyzing all the four possibilities:
11947 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11948 // (A s>= 0, B s>= 0).
11950 // Note:
11951 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11952 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
11953 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
11954 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
11955 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11956 // C)".
11958 std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11959 std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11960 if (!LDiff || !RDiff || *LDiff != *RDiff)
11961 return false;
11963 if (LDiff->isMinValue())
11964 return true;
11966 APInt FoundRHSLimit;
11968 if (Pred == CmpInst::ICMP_ULT) {
11969 FoundRHSLimit = -(*RDiff);
11970 } else {
11971 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11972 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11975 // Try to prove (1) or (2), as needed.
11976 return isAvailableAtLoopEntry(FoundRHS, L) &&
11977 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11978 getConstant(FoundRHSLimit));
11981 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11982 const SCEV *LHS, const SCEV *RHS,
11983 const SCEV *FoundLHS,
11984 const SCEV *FoundRHS, unsigned Depth) {
11985 const PHINode *LPhi = nullptr, *RPhi = nullptr;
11987 auto ClearOnExit = make_scope_exit([&]() {
11988 if (LPhi) {
11989 bool Erased = PendingMerges.erase(LPhi);
11990 assert(Erased && "Failed to erase LPhi!");
11991 (void)Erased;
11993 if (RPhi) {
11994 bool Erased = PendingMerges.erase(RPhi);
11995 assert(Erased && "Failed to erase RPhi!");
11996 (void)Erased;
12000 // Find respective Phis and check that they are not being pending.
12001 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
12002 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
12003 if (!PendingMerges.insert(Phi).second)
12004 return false;
12005 LPhi = Phi;
12007 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
12008 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
12009 // If we detect a loop of Phi nodes being processed by this method, for
12010 // example:
12012 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12013 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12015 // we don't want to deal with a case that complex, so return conservative
12016 // answer false.
12017 if (!PendingMerges.insert(Phi).second)
12018 return false;
12019 RPhi = Phi;
12022 // If none of LHS, RHS is a Phi, nothing to do here.
12023 if (!LPhi && !RPhi)
12024 return false;
12026 // If there is a SCEVUnknown Phi we are interested in, make it left.
12027 if (!LPhi) {
12028 std::swap(LHS, RHS);
12029 std::swap(FoundLHS, FoundRHS);
12030 std::swap(LPhi, RPhi);
12031 Pred = ICmpInst::getSwappedPredicate(Pred);
12034 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
12035 const BasicBlock *LBB = LPhi->getParent();
12036 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12038 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
12039 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
12040 isImpliedCondOperandsViaRanges(Pred, S1, S2, Pred, FoundLHS, FoundRHS) ||
12041 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
12044 if (RPhi && RPhi->getParent() == LBB) {
12045 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12046 // If we compare two Phis from the same block, and for each entry block
12047 // the predicate is true for incoming values from this block, then the
12048 // predicate is also true for the Phis.
12049 for (const BasicBlock *IncBB : predecessors(LBB)) {
12050 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12051 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12052 if (!ProvedEasily(L, R))
12053 return false;
12055 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12056 // Case two: RHS is also a Phi from the same basic block, and it is an
12057 // AddRec. It means that there is a loop which has both AddRec and Unknown
12058 // PHIs, for it we can compare incoming values of AddRec from above the loop
12059 // and latch with their respective incoming values of LPhi.
12060 // TODO: Generalize to handle loops with many inputs in a header.
12061 if (LPhi->getNumIncomingValues() != 2) return false;
12063 auto *RLoop = RAR->getLoop();
12064 auto *Predecessor = RLoop->getLoopPredecessor();
12065 assert(Predecessor && "Loop with AddRec with no predecessor?");
12066 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
12067 if (!ProvedEasily(L1, RAR->getStart()))
12068 return false;
12069 auto *Latch = RLoop->getLoopLatch();
12070 assert(Latch && "Loop with AddRec with no latch?");
12071 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
12072 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
12073 return false;
12074 } else {
12075 // In all other cases go over inputs of LHS and compare each of them to RHS,
12076 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12077 // At this point RHS is either a non-Phi, or it is a Phi from some block
12078 // different from LBB.
12079 for (const BasicBlock *IncBB : predecessors(LBB)) {
12080 // Check that RHS is available in this block.
12081 if (!dominates(RHS, IncBB))
12082 return false;
12083 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12084 // Make sure L does not refer to a value from a potentially previous
12085 // iteration of a loop.
12086 if (!properlyDominates(L, LBB))
12087 return false;
12088 if (!ProvedEasily(L, RHS))
12089 return false;
12092 return true;
12095 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
12096 const SCEV *LHS,
12097 const SCEV *RHS,
12098 const SCEV *FoundLHS,
12099 const SCEV *FoundRHS) {
12100 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make
12101 // sure that we are dealing with same LHS.
12102 if (RHS == FoundRHS) {
12103 std::swap(LHS, RHS);
12104 std::swap(FoundLHS, FoundRHS);
12105 Pred = ICmpInst::getSwappedPredicate(Pred);
12107 if (LHS != FoundLHS)
12108 return false;
12110 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
12111 if (!SUFoundRHS)
12112 return false;
12114 Value *Shiftee, *ShiftValue;
12116 using namespace PatternMatch;
12117 if (match(SUFoundRHS->getValue(),
12118 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
12119 auto *ShifteeS = getSCEV(Shiftee);
12120 // Prove one of the following:
12121 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12122 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12123 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12124 // ---> LHS <s RHS
12125 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12126 // ---> LHS <=s RHS
12127 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12128 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
12129 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12130 if (isKnownNonNegative(ShifteeS))
12131 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
12134 return false;
12137 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
12138 const SCEV *LHS, const SCEV *RHS,
12139 const SCEV *FoundLHS,
12140 const SCEV *FoundRHS,
12141 const Instruction *CtxI) {
12142 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, Pred, FoundLHS, FoundRHS))
12143 return true;
12145 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12146 return true;
12148 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12149 return true;
12151 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12152 CtxI))
12153 return true;
12155 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12156 FoundLHS, FoundRHS);
12159 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12160 template <typename MinMaxExprType>
12161 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12162 const SCEV *Candidate) {
12163 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12164 if (!MinMaxExpr)
12165 return false;
12167 return is_contained(MinMaxExpr->operands(), Candidate);
12170 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12171 ICmpInst::Predicate Pred,
12172 const SCEV *LHS, const SCEV *RHS) {
12173 // If both sides are affine addrecs for the same loop, with equal
12174 // steps, and we know the recurrences don't wrap, then we only
12175 // need to check the predicate on the starting values.
12177 if (!ICmpInst::isRelational(Pred))
12178 return false;
12180 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
12181 if (!LAR)
12182 return false;
12183 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12184 if (!RAR)
12185 return false;
12186 if (LAR->getLoop() != RAR->getLoop())
12187 return false;
12188 if (!LAR->isAffine() || !RAR->isAffine())
12189 return false;
12191 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12192 return false;
12194 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
12195 SCEV::FlagNSW : SCEV::FlagNUW;
12196 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
12197 return false;
12199 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
12202 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12203 /// expression?
12204 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
12205 ICmpInst::Predicate Pred,
12206 const SCEV *LHS, const SCEV *RHS) {
12207 switch (Pred) {
12208 default:
12209 return false;
12211 case ICmpInst::ICMP_SGE:
12212 std::swap(LHS, RHS);
12213 [[fallthrough]];
12214 case ICmpInst::ICMP_SLE:
12215 return
12216 // min(A, ...) <= A
12217 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
12218 // A <= max(A, ...)
12219 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
12221 case ICmpInst::ICMP_UGE:
12222 std::swap(LHS, RHS);
12223 [[fallthrough]];
12224 case ICmpInst::ICMP_ULE:
12225 return
12226 // min(A, ...) <= A
12227 // FIXME: what about umin_seq?
12228 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
12229 // A <= max(A, ...)
12230 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
12233 llvm_unreachable("covered switch fell through?!");
12236 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
12237 const SCEV *LHS, const SCEV *RHS,
12238 const SCEV *FoundLHS,
12239 const SCEV *FoundRHS,
12240 unsigned Depth) {
12241 assert(getTypeSizeInBits(LHS->getType()) ==
12242 getTypeSizeInBits(RHS->getType()) &&
12243 "LHS and RHS have different sizes?");
12244 assert(getTypeSizeInBits(FoundLHS->getType()) ==
12245 getTypeSizeInBits(FoundRHS->getType()) &&
12246 "FoundLHS and FoundRHS have different sizes?");
12247 // We want to avoid hurting the compile time with analysis of too big trees.
12248 if (Depth > MaxSCEVOperationsImplicationDepth)
12249 return false;
12251 // We only want to work with GT comparison so far.
12252 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12253 Pred = CmpInst::getSwappedPredicate(Pred);
12254 std::swap(LHS, RHS);
12255 std::swap(FoundLHS, FoundRHS);
12258 // For unsigned, try to reduce it to corresponding signed comparison.
12259 if (Pred == ICmpInst::ICMP_UGT)
12260 // We can replace unsigned predicate with its signed counterpart if all
12261 // involved values are non-negative.
12262 // TODO: We could have better support for unsigned.
12263 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12264 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12265 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12266 // use this fact to prove that LHS and RHS are non-negative.
12267 const SCEV *MinusOne = getMinusOne(LHS->getType());
12268 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12269 FoundRHS) &&
12270 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12271 FoundRHS))
12272 Pred = ICmpInst::ICMP_SGT;
12275 if (Pred != ICmpInst::ICMP_SGT)
12276 return false;
12278 auto GetOpFromSExt = [&](const SCEV *S) {
12279 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12280 return Ext->getOperand();
12281 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12282 // the constant in some cases.
12283 return S;
12286 // Acquire values from extensions.
12287 auto *OrigLHS = LHS;
12288 auto *OrigFoundLHS = FoundLHS;
12289 LHS = GetOpFromSExt(LHS);
12290 FoundLHS = GetOpFromSExt(FoundLHS);
12292 // Is the SGT predicate can be proved trivially or using the found context.
12293 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12294 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12295 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12296 FoundRHS, Depth + 1);
12299 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12300 // We want to avoid creation of any new non-constant SCEV. Since we are
12301 // going to compare the operands to RHS, we should be certain that we don't
12302 // need any size extensions for this. So let's decline all cases when the
12303 // sizes of types of LHS and RHS do not match.
12304 // TODO: Maybe try to get RHS from sext to catch more cases?
12305 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12306 return false;
12308 // Should not overflow.
12309 if (!LHSAddExpr->hasNoSignedWrap())
12310 return false;
12312 auto *LL = LHSAddExpr->getOperand(0);
12313 auto *LR = LHSAddExpr->getOperand(1);
12314 auto *MinusOne = getMinusOne(RHS->getType());
12316 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12317 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12318 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12320 // Try to prove the following rule:
12321 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12322 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12323 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12324 return true;
12325 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12326 Value *LL, *LR;
12327 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12329 using namespace llvm::PatternMatch;
12331 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12332 // Rules for division.
12333 // We are going to perform some comparisons with Denominator and its
12334 // derivative expressions. In general case, creating a SCEV for it may
12335 // lead to a complex analysis of the entire graph, and in particular it
12336 // can request trip count recalculation for the same loop. This would
12337 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12338 // this, we only want to create SCEVs that are constants in this section.
12339 // So we bail if Denominator is not a constant.
12340 if (!isa<ConstantInt>(LR))
12341 return false;
12343 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12345 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12346 // then a SCEV for the numerator already exists and matches with FoundLHS.
12347 auto *Numerator = getExistingSCEV(LL);
12348 if (!Numerator || Numerator->getType() != FoundLHS->getType())
12349 return false;
12351 // Make sure that the numerator matches with FoundLHS and the denominator
12352 // is positive.
12353 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12354 return false;
12356 auto *DTy = Denominator->getType();
12357 auto *FRHSTy = FoundRHS->getType();
12358 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12359 // One of types is a pointer and another one is not. We cannot extend
12360 // them properly to a wider type, so let us just reject this case.
12361 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12362 // to avoid this check.
12363 return false;
12365 // Given that:
12366 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12367 auto *WTy = getWiderType(DTy, FRHSTy);
12368 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12369 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12371 // Try to prove the following rule:
12372 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12373 // For example, given that FoundLHS > 2. It means that FoundLHS is at
12374 // least 3. If we divide it by Denominator < 4, we will have at least 1.
12375 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12376 if (isKnownNonPositive(RHS) &&
12377 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12378 return true;
12380 // Try to prove the following rule:
12381 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12382 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12383 // If we divide it by Denominator > 2, then:
12384 // 1. If FoundLHS is negative, then the result is 0.
12385 // 2. If FoundLHS is non-negative, then the result is non-negative.
12386 // Anyways, the result is non-negative.
12387 auto *MinusOne = getMinusOne(WTy);
12388 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12389 if (isKnownNegative(RHS) &&
12390 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12391 return true;
12395 // If our expression contained SCEVUnknown Phis, and we split it down and now
12396 // need to prove something for them, try to prove the predicate for every
12397 // possible incoming values of those Phis.
12398 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12399 return true;
12401 return false;
12404 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12405 const SCEV *LHS, const SCEV *RHS) {
12406 // zext x u<= sext x, sext x s<= zext x
12407 switch (Pred) {
12408 case ICmpInst::ICMP_SGE:
12409 std::swap(LHS, RHS);
12410 [[fallthrough]];
12411 case ICmpInst::ICMP_SLE: {
12412 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
12413 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
12414 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
12415 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12416 return true;
12417 break;
12419 case ICmpInst::ICMP_UGE:
12420 std::swap(LHS, RHS);
12421 [[fallthrough]];
12422 case ICmpInst::ICMP_ULE: {
12423 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
12424 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
12425 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
12426 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12427 return true;
12428 break;
12430 default:
12431 break;
12433 return false;
12436 bool
12437 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12438 const SCEV *LHS, const SCEV *RHS) {
12439 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12440 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12441 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12442 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12443 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12446 bool
12447 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12448 const SCEV *LHS, const SCEV *RHS,
12449 const SCEV *FoundLHS,
12450 const SCEV *FoundRHS) {
12451 switch (Pred) {
12452 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12453 case ICmpInst::ICMP_EQ:
12454 case ICmpInst::ICMP_NE:
12455 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12456 return true;
12457 break;
12458 case ICmpInst::ICMP_SLT:
12459 case ICmpInst::ICMP_SLE:
12460 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12461 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12462 return true;
12463 break;
12464 case ICmpInst::ICMP_SGT:
12465 case ICmpInst::ICMP_SGE:
12466 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12467 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12468 return true;
12469 break;
12470 case ICmpInst::ICMP_ULT:
12471 case ICmpInst::ICMP_ULE:
12472 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12473 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12474 return true;
12475 break;
12476 case ICmpInst::ICMP_UGT:
12477 case ICmpInst::ICMP_UGE:
12478 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12479 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12480 return true;
12481 break;
12484 // Maybe it can be proved via operations?
12485 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12486 return true;
12488 return false;
12491 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12492 const SCEV *LHS,
12493 const SCEV *RHS,
12494 ICmpInst::Predicate FoundPred,
12495 const SCEV *FoundLHS,
12496 const SCEV *FoundRHS) {
12497 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12498 // The restriction on `FoundRHS` be lifted easily -- it exists only to
12499 // reduce the compile time impact of this optimization.
12500 return false;
12502 std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12503 if (!Addend)
12504 return false;
12506 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12508 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12509 // antecedent "`FoundLHS` `FoundPred` `FoundRHS`".
12510 ConstantRange FoundLHSRange =
12511 ConstantRange::makeExactICmpRegion(FoundPred, ConstFoundRHS);
12513 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12514 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12516 // We can also compute the range of values for `LHS` that satisfy the
12517 // consequent, "`LHS` `Pred` `RHS`":
12518 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12519 // The antecedent implies the consequent if every value of `LHS` that
12520 // satisfies the antecedent also satisfies the consequent.
12521 return LHSRange.icmp(Pred, ConstRHS);
12524 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12525 bool IsSigned) {
12526 assert(isKnownPositive(Stride) && "Positive stride expected!");
12528 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12529 const SCEV *One = getOne(Stride->getType());
12531 if (IsSigned) {
12532 APInt MaxRHS = getSignedRangeMax(RHS);
12533 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12534 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12536 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12537 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12540 APInt MaxRHS = getUnsignedRangeMax(RHS);
12541 APInt MaxValue = APInt::getMaxValue(BitWidth);
12542 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12544 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12545 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12548 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12549 bool IsSigned) {
12551 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12552 const SCEV *One = getOne(Stride->getType());
12554 if (IsSigned) {
12555 APInt MinRHS = getSignedRangeMin(RHS);
12556 APInt MinValue = APInt::getSignedMinValue(BitWidth);
12557 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12559 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12560 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12563 APInt MinRHS = getUnsignedRangeMin(RHS);
12564 APInt MinValue = APInt::getMinValue(BitWidth);
12565 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12567 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12568 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12571 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12572 // umin(N, 1) + floor((N - umin(N, 1)) / D)
12573 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12574 // expression fixes the case of N=0.
12575 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12576 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12577 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12580 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12581 const SCEV *Stride,
12582 const SCEV *End,
12583 unsigned BitWidth,
12584 bool IsSigned) {
12585 // The logic in this function assumes we can represent a positive stride.
12586 // If we can't, the backedge-taken count must be zero.
12587 if (IsSigned && BitWidth == 1)
12588 return getZero(Stride->getType());
12590 // This code below only been closely audited for negative strides in the
12591 // unsigned comparison case, it may be correct for signed comparison, but
12592 // that needs to be established.
12593 if (IsSigned && isKnownNegative(Stride))
12594 return getCouldNotCompute();
12596 // Calculate the maximum backedge count based on the range of values
12597 // permitted by Start, End, and Stride.
12598 APInt MinStart =
12599 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12601 APInt MinStride =
12602 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12604 // We assume either the stride is positive, or the backedge-taken count
12605 // is zero. So force StrideForMaxBECount to be at least one.
12606 APInt One(BitWidth, 1);
12607 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12608 : APIntOps::umax(One, MinStride);
12610 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12611 : APInt::getMaxValue(BitWidth);
12612 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12614 // Although End can be a MAX expression we estimate MaxEnd considering only
12615 // the case End = RHS of the loop termination condition. This is safe because
12616 // in the other case (End - Start) is zero, leading to a zero maximum backedge
12617 // taken count.
12618 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12619 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12621 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12622 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12623 : APIntOps::umax(MaxEnd, MinStart);
12625 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12626 getConstant(StrideForMaxBECount) /* Step */);
12629 ScalarEvolution::ExitLimit
12630 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12631 const Loop *L, bool IsSigned,
12632 bool ControlsOnlyExit, bool AllowPredicates) {
12633 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12635 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12636 bool PredicatedIV = false;
12638 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12639 // Can we prove this loop *must* be UB if overflow of IV occurs?
12640 // Reasoning goes as follows:
12641 // * Suppose the IV did self wrap.
12642 // * If Stride evenly divides the iteration space, then once wrap
12643 // occurs, the loop must revisit the same values.
12644 // * We know that RHS is invariant, and that none of those values
12645 // caused this exit to be taken previously. Thus, this exit is
12646 // dynamically dead.
12647 // * If this is the sole exit, then a dead exit implies the loop
12648 // must be infinite if there are no abnormal exits.
12649 // * If the loop were infinite, then it must either not be mustprogress
12650 // or have side effects. Otherwise, it must be UB.
12651 // * It can't (by assumption), be UB so we have contradicted our
12652 // premise and can conclude the IV did not in fact self-wrap.
12653 if (!isLoopInvariant(RHS, L))
12654 return false;
12656 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12657 if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12658 return false;
12660 if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L))
12661 return false;
12663 return loopIsFiniteByAssumption(L);
12666 if (!IV) {
12667 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12668 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12669 if (AR && AR->getLoop() == L && AR->isAffine()) {
12670 auto canProveNUW = [&]() {
12671 // We can use the comparison to infer no-wrap flags only if it fully
12672 // controls the loop exit.
12673 if (!ControlsOnlyExit)
12674 return false;
12676 if (!isLoopInvariant(RHS, L))
12677 return false;
12679 if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12680 // We need the sequence defined by AR to strictly increase in the
12681 // unsigned integer domain for the logic below to hold.
12682 return false;
12684 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12685 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12686 // If RHS <=u Limit, then there must exist a value V in the sequence
12687 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12688 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned
12689 // overflow occurs. This limit also implies that a signed comparison
12690 // (in the wide bitwidth) is equivalent to an unsigned comparison as
12691 // the high bits on both sides must be zero.
12692 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12693 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12694 Limit = Limit.zext(OuterBitWidth);
12695 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12697 auto Flags = AR->getNoWrapFlags();
12698 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12699 Flags = setFlags(Flags, SCEV::FlagNUW);
12701 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12702 if (AR->hasNoUnsignedWrap()) {
12703 // Emulate what getZeroExtendExpr would have done during construction
12704 // if we'd been able to infer the fact just above at that time.
12705 const SCEV *Step = AR->getStepRecurrence(*this);
12706 Type *Ty = ZExt->getType();
12707 auto *S = getAddRecExpr(
12708 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12709 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12710 IV = dyn_cast<SCEVAddRecExpr>(S);
12717 if (!IV && AllowPredicates) {
12718 // Try to make this an AddRec using runtime tests, in the first X
12719 // iterations of this loop, where X is the SCEV expression found by the
12720 // algorithm below.
12721 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12722 PredicatedIV = true;
12725 // Avoid weird loops
12726 if (!IV || IV->getLoop() != L || !IV->isAffine())
12727 return getCouldNotCompute();
12729 // A precondition of this method is that the condition being analyzed
12730 // reaches an exiting branch which dominates the latch. Given that, we can
12731 // assume that an increment which violates the nowrap specification and
12732 // produces poison must cause undefined behavior when the resulting poison
12733 // value is branched upon and thus we can conclude that the backedge is
12734 // taken no more often than would be required to produce that poison value.
12735 // Note that a well defined loop can exit on the iteration which violates
12736 // the nowrap specification if there is another exit (either explicit or
12737 // implicit/exceptional) which causes the loop to execute before the
12738 // exiting instruction we're analyzing would trigger UB.
12739 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12740 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
12741 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12743 const SCEV *Stride = IV->getStepRecurrence(*this);
12745 bool PositiveStride = isKnownPositive(Stride);
12747 // Avoid negative or zero stride values.
12748 if (!PositiveStride) {
12749 // We can compute the correct backedge taken count for loops with unknown
12750 // strides if we can prove that the loop is not an infinite loop with side
12751 // effects. Here's the loop structure we are trying to handle -
12753 // i = start
12754 // do {
12755 // A[i] = i;
12756 // i += s;
12757 // } while (i < end);
12759 // The backedge taken count for such loops is evaluated as -
12760 // (max(end, start + stride) - start - 1) /u stride
12762 // The additional preconditions that we need to check to prove correctness
12763 // of the above formula is as follows -
12765 // a) IV is either nuw or nsw depending upon signedness (indicated by the
12766 // NoWrap flag).
12767 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12768 // no side effects within the loop)
12769 // c) loop has a single static exit (with no abnormal exits)
12771 // Precondition a) implies that if the stride is negative, this is a single
12772 // trip loop. The backedge taken count formula reduces to zero in this case.
12774 // Precondition b) and c) combine to imply that if rhs is invariant in L,
12775 // then a zero stride means the backedge can't be taken without executing
12776 // undefined behavior.
12778 // The positive stride case is the same as isKnownPositive(Stride) returning
12779 // true (original behavior of the function).
12781 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12782 !loopHasNoAbnormalExits(L))
12783 return getCouldNotCompute();
12785 if (!isKnownNonZero(Stride)) {
12786 // If we have a step of zero, and RHS isn't invariant in L, we don't know
12787 // if it might eventually be greater than start and if so, on which
12788 // iteration. We can't even produce a useful upper bound.
12789 if (!isLoopInvariant(RHS, L))
12790 return getCouldNotCompute();
12792 // We allow a potentially zero stride, but we need to divide by stride
12793 // below. Since the loop can't be infinite and this check must control
12794 // the sole exit, we can infer the exit must be taken on the first
12795 // iteration (e.g. backedge count = 0) if the stride is zero. Given that,
12796 // we know the numerator in the divides below must be zero, so we can
12797 // pick an arbitrary non-zero value for the denominator (e.g. stride)
12798 // and produce the right result.
12799 // FIXME: Handle the case where Stride is poison?
12800 auto wouldZeroStrideBeUB = [&]() {
12801 // Proof by contradiction. Suppose the stride were zero. If we can
12802 // prove that the backedge *is* taken on the first iteration, then since
12803 // we know this condition controls the sole exit, we must have an
12804 // infinite loop. We can't have a (well defined) infinite loop per
12805 // check just above.
12806 // Note: The (Start - Stride) term is used to get the start' term from
12807 // (start' + stride,+,stride). Remember that we only care about the
12808 // result of this expression when stride == 0 at runtime.
12809 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12810 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12812 if (!wouldZeroStrideBeUB()) {
12813 Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12816 } else if (!Stride->isOne() && !NoWrap) {
12817 auto isUBOnWrap = [&]() {
12818 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This
12819 // follows trivially from the fact that every (un)signed-wrapped, but
12820 // not self-wrapped value must be LT than the last value before
12821 // (un)signed wrap. Since we know that last value didn't exit, nor
12822 // will any smaller one.
12823 return canAssumeNoSelfWrap(IV);
12826 // Avoid proven overflow cases: this will ensure that the backedge taken
12827 // count will not generate any unsigned overflow. Relaxed no-overflow
12828 // conditions exploit NoWrapFlags, allowing to optimize in presence of
12829 // undefined behaviors like the case of C language.
12830 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12831 return getCouldNotCompute();
12834 // On all paths just preceeding, we established the following invariant:
12835 // IV can be assumed not to overflow up to and including the exiting
12836 // iteration. We proved this in one of two ways:
12837 // 1) We can show overflow doesn't occur before the exiting iteration
12838 // 1a) canIVOverflowOnLT, and b) step of one
12839 // 2) We can show that if overflow occurs, the loop must execute UB
12840 // before any possible exit.
12841 // Note that we have not yet proved RHS invariant (in general).
12843 const SCEV *Start = IV->getStart();
12845 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12846 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12847 // Use integer-typed versions for actual computation; we can't subtract
12848 // pointers in general.
12849 const SCEV *OrigStart = Start;
12850 const SCEV *OrigRHS = RHS;
12851 if (Start->getType()->isPointerTy()) {
12852 Start = getLosslessPtrToIntExpr(Start);
12853 if (isa<SCEVCouldNotCompute>(Start))
12854 return Start;
12856 if (RHS->getType()->isPointerTy()) {
12857 RHS = getLosslessPtrToIntExpr(RHS);
12858 if (isa<SCEVCouldNotCompute>(RHS))
12859 return RHS;
12862 // When the RHS is not invariant, we do not know the end bound of the loop and
12863 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12864 // calculate the MaxBECount, given the start, stride and max value for the end
12865 // bound of the loop (RHS), and the fact that IV does not overflow (which is
12866 // checked above).
12867 if (!isLoopInvariant(RHS, L)) {
12868 const SCEV *MaxBECount = computeMaxBECountForLT(
12869 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12870 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12871 MaxBECount, false /*MaxOrZero*/, Predicates);
12874 // We use the expression (max(End,Start)-Start)/Stride to describe the
12875 // backedge count, as if the backedge is taken at least once max(End,Start)
12876 // is End and so the result is as above, and if not max(End,Start) is Start
12877 // so we get a backedge count of zero.
12878 const SCEV *BECount = nullptr;
12879 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12880 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12881 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12882 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12883 // Can we prove (max(RHS,Start) > Start - Stride?
12884 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12885 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12886 // In this case, we can use a refined formula for computing backedge taken
12887 // count. The general formula remains:
12888 // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12889 // We want to use the alternate formula:
12890 // "((End - 1) - (Start - Stride)) /u Stride"
12891 // Let's do a quick case analysis to show these are equivalent under
12892 // our precondition that max(RHS,Start) > Start - Stride.
12893 // * For RHS <= Start, the backedge-taken count must be zero.
12894 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12895 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12896 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12897 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing
12898 // this to the stride of 1 case.
12899 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12900 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12901 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12902 // "((RHS - (Start - Stride) - 1) /u Stride".
12903 // Our preconditions trivially imply no overflow in that form.
12904 const SCEV *MinusOne = getMinusOne(Stride->getType());
12905 const SCEV *Numerator =
12906 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12907 BECount = getUDivExpr(Numerator, Stride);
12910 const SCEV *BECountIfBackedgeTaken = nullptr;
12911 if (!BECount) {
12912 auto canProveRHSGreaterThanEqualStart = [&]() {
12913 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12914 const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L);
12915 const SCEV *GuardedStart = applyLoopGuards(OrigStart, L);
12917 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) ||
12918 isKnownPredicate(CondGE, GuardedRHS, GuardedStart))
12919 return true;
12921 // (RHS > Start - 1) implies RHS >= Start.
12922 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12923 // "Start - 1" doesn't overflow.
12924 // * For signed comparison, if Start - 1 does overflow, it's equal
12925 // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12926 // * For unsigned comparison, if Start - 1 does overflow, it's equal
12927 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12929 // FIXME: Should isLoopEntryGuardedByCond do this for us?
12930 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12931 auto *StartMinusOne = getAddExpr(OrigStart,
12932 getMinusOne(OrigStart->getType()));
12933 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12936 // If we know that RHS >= Start in the context of loop, then we know that
12937 // max(RHS, Start) = RHS at this point.
12938 const SCEV *End;
12939 if (canProveRHSGreaterThanEqualStart()) {
12940 End = RHS;
12941 } else {
12942 // If RHS < Start, the backedge will be taken zero times. So in
12943 // general, we can write the backedge-taken count as:
12945 // RHS >= Start ? ceil(RHS - Start) / Stride : 0
12947 // We convert it to the following to make it more convenient for SCEV:
12949 // ceil(max(RHS, Start) - Start) / Stride
12950 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12952 // See what would happen if we assume the backedge is taken. This is
12953 // used to compute MaxBECount.
12954 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12957 // At this point, we know:
12959 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12960 // 2. The index variable doesn't overflow.
12962 // Therefore, we know N exists such that
12963 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12964 // doesn't overflow.
12966 // Using this information, try to prove whether the addition in
12967 // "(Start - End) + (Stride - 1)" has unsigned overflow.
12968 const SCEV *One = getOne(Stride->getType());
12969 bool MayAddOverflow = [&] {
12970 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12971 if (StrideC->getAPInt().isPowerOf2()) {
12972 // Suppose Stride is a power of two, and Start/End are unsigned
12973 // integers. Let UMAX be the largest representable unsigned
12974 // integer.
12976 // By the preconditions of this function, we know
12977 // "(Start + Stride * N) >= End", and this doesn't overflow.
12978 // As a formula:
12980 // End <= (Start + Stride * N) <= UMAX
12982 // Subtracting Start from all the terms:
12984 // End - Start <= Stride * N <= UMAX - Start
12986 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
12988 // End - Start <= Stride * N <= UMAX
12990 // Stride * N is a multiple of Stride. Therefore,
12992 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12994 // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12995 // Therefore, UMAX mod Stride == Stride - 1. So we can write:
12997 // End - Start <= Stride * N <= UMAX - Stride - 1
12999 // Dropping the middle term:
13001 // End - Start <= UMAX - Stride - 1
13003 // Adding Stride - 1 to both sides:
13005 // (End - Start) + (Stride - 1) <= UMAX
13007 // In other words, the addition doesn't have unsigned overflow.
13009 // A similar proof works if we treat Start/End as signed values.
13010 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
13011 // use signed max instead of unsigned max. Note that we're trying
13012 // to prove a lack of unsigned overflow in either case.
13013 return false;
13016 if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
13017 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
13018 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
13019 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
13021 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
13022 return false;
13024 return true;
13025 }();
13027 const SCEV *Delta = getMinusSCEV(End, Start);
13028 if (!MayAddOverflow) {
13029 // floor((D + (S - 1)) / S)
13030 // We prefer this formulation if it's legal because it's fewer operations.
13031 BECount =
13032 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
13033 } else {
13034 BECount = getUDivCeilSCEV(Delta, Stride);
13038 const SCEV *ConstantMaxBECount;
13039 bool MaxOrZero = false;
13040 if (isa<SCEVConstant>(BECount)) {
13041 ConstantMaxBECount = BECount;
13042 } else if (BECountIfBackedgeTaken &&
13043 isa<SCEVConstant>(BECountIfBackedgeTaken)) {
13044 // If we know exactly how many times the backedge will be taken if it's
13045 // taken at least once, then the backedge count will either be that or
13046 // zero.
13047 ConstantMaxBECount = BECountIfBackedgeTaken;
13048 MaxOrZero = true;
13049 } else {
13050 ConstantMaxBECount = computeMaxBECountForLT(
13051 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
13054 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
13055 !isa<SCEVCouldNotCompute>(BECount))
13056 ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
13058 const SCEV *SymbolicMaxBECount =
13059 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13060 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13061 Predicates);
13064 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13065 const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned,
13066 bool ControlsOnlyExit, bool AllowPredicates) {
13067 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
13068 // We handle only IV > Invariant
13069 if (!isLoopInvariant(RHS, L))
13070 return getCouldNotCompute();
13072 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
13073 if (!IV && AllowPredicates)
13074 // Try to make this an AddRec using runtime tests, in the first X
13075 // iterations of this loop, where X is the SCEV expression found by the
13076 // algorithm below.
13077 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13079 // Avoid weird loops
13080 if (!IV || IV->getLoop() != L || !IV->isAffine())
13081 return getCouldNotCompute();
13083 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13084 bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
13085 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13087 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
13089 // Avoid negative or zero stride values
13090 if (!isKnownPositive(Stride))
13091 return getCouldNotCompute();
13093 // Avoid proven overflow cases: this will ensure that the backedge taken count
13094 // will not generate any unsigned overflow. Relaxed no-overflow conditions
13095 // exploit NoWrapFlags, allowing to optimize in presence of undefined
13096 // behaviors like the case of C language.
13097 if (!Stride->isOne() && !NoWrap)
13098 if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13099 return getCouldNotCompute();
13101 const SCEV *Start = IV->getStart();
13102 const SCEV *End = RHS;
13103 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
13104 // If we know that Start >= RHS in the context of loop, then we know that
13105 // min(RHS, Start) = RHS at this point.
13106 if (isLoopEntryGuardedByCond(
13107 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
13108 End = RHS;
13109 else
13110 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
13113 if (Start->getType()->isPointerTy()) {
13114 Start = getLosslessPtrToIntExpr(Start);
13115 if (isa<SCEVCouldNotCompute>(Start))
13116 return Start;
13118 if (End->getType()->isPointerTy()) {
13119 End = getLosslessPtrToIntExpr(End);
13120 if (isa<SCEVCouldNotCompute>(End))
13121 return End;
13124 // Compute ((Start - End) + (Stride - 1)) / Stride.
13125 // FIXME: This can overflow. Holding off on fixing this for now;
13126 // howManyGreaterThans will hopefully be gone soon.
13127 const SCEV *One = getOne(Stride->getType());
13128 const SCEV *BECount = getUDivExpr(
13129 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
13131 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
13132 : getUnsignedRangeMax(Start);
13134 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
13135 : getUnsignedRangeMin(Stride);
13137 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
13138 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
13139 : APInt::getMinValue(BitWidth) + (MinStride - 1);
13141 // Although End can be a MIN expression we estimate MinEnd considering only
13142 // the case End = RHS. This is safe because in the other case (Start - End)
13143 // is zero, leading to a zero maximum backedge taken count.
13144 APInt MinEnd =
13145 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
13146 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
13148 const SCEV *ConstantMaxBECount =
13149 isa<SCEVConstant>(BECount)
13150 ? BECount
13151 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
13152 getConstant(MinStride));
13154 if (isa<SCEVCouldNotCompute>(ConstantMaxBECount))
13155 ConstantMaxBECount = BECount;
13156 const SCEV *SymbolicMaxBECount =
13157 isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13159 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13160 Predicates);
13163 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13164 ScalarEvolution &SE) const {
13165 if (Range.isFullSet()) // Infinite loop.
13166 return SE.getCouldNotCompute();
13168 // If the start is a non-zero constant, shift the range to simplify things.
13169 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
13170 if (!SC->getValue()->isZero()) {
13171 SmallVector<const SCEV *, 4> Operands(operands());
13172 Operands[0] = SE.getZero(SC->getType());
13173 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
13174 getNoWrapFlags(FlagNW));
13175 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
13176 return ShiftedAddRec->getNumIterationsInRange(
13177 Range.subtract(SC->getAPInt()), SE);
13178 // This is strange and shouldn't happen.
13179 return SE.getCouldNotCompute();
13182 // The only time we can solve this is when we have all constant indices.
13183 // Otherwise, we cannot determine the overflow conditions.
13184 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
13185 return SE.getCouldNotCompute();
13187 // Okay at this point we know that all elements of the chrec are constants and
13188 // that the start element is zero.
13190 // First check to see if the range contains zero. If not, the first
13191 // iteration exits.
13192 unsigned BitWidth = SE.getTypeSizeInBits(getType());
13193 if (!Range.contains(APInt(BitWidth, 0)))
13194 return SE.getZero(getType());
13196 if (isAffine()) {
13197 // If this is an affine expression then we have this situation:
13198 // Solve {0,+,A} in Range === Ax in Range
13200 // We know that zero is in the range. If A is positive then we know that
13201 // the upper value of the range must be the first possible exit value.
13202 // If A is negative then the lower of the range is the last possible loop
13203 // value. Also note that we already checked for a full range.
13204 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
13205 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
13207 // The exit value should be (End+A)/A.
13208 APInt ExitVal = (End + A).udiv(A);
13209 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
13211 // Evaluate at the exit value. If we really did fall out of the valid
13212 // range, then we computed our trip count, otherwise wrap around or other
13213 // things must have happened.
13214 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
13215 if (Range.contains(Val->getValue()))
13216 return SE.getCouldNotCompute(); // Something strange happened
13218 // Ensure that the previous value is in the range.
13219 assert(Range.contains(
13220 EvaluateConstantChrecAtConstant(this,
13221 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13222 "Linear scev computation is off in a bad way!");
13223 return SE.getConstant(ExitValue);
13226 if (isQuadratic()) {
13227 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
13228 return SE.getConstant(*S);
13231 return SE.getCouldNotCompute();
13234 const SCEVAddRecExpr *
13235 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13236 assert(getNumOperands() > 1 && "AddRec with zero step?");
13237 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13238 // but in this case we cannot guarantee that the value returned will be an
13239 // AddRec because SCEV does not have a fixed point where it stops
13240 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13241 // may happen if we reach arithmetic depth limit while simplifying. So we
13242 // construct the returned value explicitly.
13243 SmallVector<const SCEV *, 3> Ops;
13244 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13245 // (this + Step) is {A+B,+,B+C,+...,+,N}.
13246 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13247 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
13248 // We know that the last operand is not a constant zero (otherwise it would
13249 // have been popped out earlier). This guarantees us that if the result has
13250 // the same last operand, then it will also not be popped out, meaning that
13251 // the returned value will be an AddRec.
13252 const SCEV *Last = getOperand(getNumOperands() - 1);
13253 assert(!Last->isZero() && "Recurrency with zero step?");
13254 Ops.push_back(Last);
13255 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13256 SCEV::FlagAnyWrap));
13259 // Return true when S contains at least an undef value.
13260 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13261 return SCEVExprContains(S, [](const SCEV *S) {
13262 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13263 return isa<UndefValue>(SU->getValue());
13264 return false;
13268 // Return true when S contains a value that is a nullptr.
13269 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13270 return SCEVExprContains(S, [](const SCEV *S) {
13271 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13272 return SU->getValue() == nullptr;
13273 return false;
13277 /// Return the size of an element read or written by Inst.
13278 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13279 Type *Ty;
13280 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13281 Ty = Store->getValueOperand()->getType();
13282 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13283 Ty = Load->getType();
13284 else
13285 return nullptr;
13287 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
13288 return getSizeOfExpr(ETy, Ty);
13291 //===----------------------------------------------------------------------===//
13292 // SCEVCallbackVH Class Implementation
13293 //===----------------------------------------------------------------------===//
13295 void ScalarEvolution::SCEVCallbackVH::deleted() {
13296 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13297 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13298 SE->ConstantEvolutionLoopExitValue.erase(PN);
13299 SE->eraseValueFromMap(getValPtr());
13300 // this now dangles!
13303 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13304 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13306 // Forget all the expressions associated with users of the old value,
13307 // so that future queries will recompute the expressions using the new
13308 // value.
13309 SE->forgetValue(getValPtr());
13310 // this now dangles!
13313 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13314 : CallbackVH(V), SE(se) {}
13316 //===----------------------------------------------------------------------===//
13317 // ScalarEvolution Class Implementation
13318 //===----------------------------------------------------------------------===//
13320 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13321 AssumptionCache &AC, DominatorTree &DT,
13322 LoopInfo &LI)
13323 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
13324 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13325 LoopDispositions(64), BlockDispositions(64) {
13326 // To use guards for proving predicates, we need to scan every instruction in
13327 // relevant basic blocks, and not just terminators. Doing this is a waste of
13328 // time if the IR does not actually contain any calls to
13329 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13331 // This pessimizes the case where a pass that preserves ScalarEvolution wants
13332 // to _add_ guards to the module when there weren't any before, and wants
13333 // ScalarEvolution to optimize based on those guards. For now we prefer to be
13334 // efficient in lieu of being smart in that rather obscure case.
13336 auto *GuardDecl = F.getParent()->getFunction(
13337 Intrinsic::getName(Intrinsic::experimental_guard));
13338 HasGuards = GuardDecl && !GuardDecl->use_empty();
13341 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13342 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
13343 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13344 ValueExprMap(std::move(Arg.ValueExprMap)),
13345 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13346 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13347 PendingMerges(std::move(Arg.PendingMerges)),
13348 ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)),
13349 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13350 PredicatedBackedgeTakenCounts(
13351 std::move(Arg.PredicatedBackedgeTakenCounts)),
13352 BECountUsers(std::move(Arg.BECountUsers)),
13353 ConstantEvolutionLoopExitValue(
13354 std::move(Arg.ConstantEvolutionLoopExitValue)),
13355 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13356 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13357 LoopDispositions(std::move(Arg.LoopDispositions)),
13358 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13359 BlockDispositions(std::move(Arg.BlockDispositions)),
13360 SCEVUsers(std::move(Arg.SCEVUsers)),
13361 UnsignedRanges(std::move(Arg.UnsignedRanges)),
13362 SignedRanges(std::move(Arg.SignedRanges)),
13363 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13364 UniquePreds(std::move(Arg.UniquePreds)),
13365 SCEVAllocator(std::move(Arg.SCEVAllocator)),
13366 LoopUsers(std::move(Arg.LoopUsers)),
13367 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13368 FirstUnknown(Arg.FirstUnknown) {
13369 Arg.FirstUnknown = nullptr;
13372 ScalarEvolution::~ScalarEvolution() {
13373 // Iterate through all the SCEVUnknown instances and call their
13374 // destructors, so that they release their references to their values.
13375 for (SCEVUnknown *U = FirstUnknown; U;) {
13376 SCEVUnknown *Tmp = U;
13377 U = U->Next;
13378 Tmp->~SCEVUnknown();
13380 FirstUnknown = nullptr;
13382 ExprValueMap.clear();
13383 ValueExprMap.clear();
13384 HasRecMap.clear();
13385 BackedgeTakenCounts.clear();
13386 PredicatedBackedgeTakenCounts.clear();
13388 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13389 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13390 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13391 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13392 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13395 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13396 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13399 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13400 const Loop *L) {
13401 // Print all inner loops first
13402 for (Loop *I : *L)
13403 PrintLoopInfo(OS, SE, I);
13405 OS << "Loop ";
13406 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13407 OS << ": ";
13409 SmallVector<BasicBlock *, 8> ExitingBlocks;
13410 L->getExitingBlocks(ExitingBlocks);
13411 if (ExitingBlocks.size() != 1)
13412 OS << "<multiple exits> ";
13414 if (SE->hasLoopInvariantBackedgeTakenCount(L))
13415 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
13416 else
13417 OS << "Unpredictable backedge-taken count.\n";
13419 if (ExitingBlocks.size() > 1)
13420 for (BasicBlock *ExitingBlock : ExitingBlocks) {
13421 OS << " exit count for " << ExitingBlock->getName() << ": "
13422 << *SE->getExitCount(L, ExitingBlock) << "\n";
13425 OS << "Loop ";
13426 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13427 OS << ": ";
13429 auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13430 if (!isa<SCEVCouldNotCompute>(ConstantBTC)) {
13431 OS << "constant max backedge-taken count is " << *ConstantBTC;
13432 if (SE->isBackedgeTakenCountMaxOrZero(L))
13433 OS << ", actual taken count either this or zero.";
13434 } else {
13435 OS << "Unpredictable constant max backedge-taken count. ";
13438 OS << "\n"
13439 "Loop ";
13440 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13441 OS << ": ";
13443 auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13444 if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) {
13445 OS << "symbolic max backedge-taken count is " << *SymbolicBTC;
13446 if (SE->isBackedgeTakenCountMaxOrZero(L))
13447 OS << ", actual taken count either this or zero.";
13448 } else {
13449 OS << "Unpredictable symbolic max backedge-taken count. ";
13452 OS << "\n";
13453 if (ExitingBlocks.size() > 1)
13454 for (BasicBlock *ExitingBlock : ExitingBlocks) {
13455 OS << " symbolic max exit count for " << ExitingBlock->getName() << ": "
13456 << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum)
13457 << "\n";
13460 OS << "Loop ";
13461 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13462 OS << ": ";
13464 SmallVector<const SCEVPredicate *, 4> Preds;
13465 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13466 if (!isa<SCEVCouldNotCompute>(PBT)) {
13467 OS << "Predicated backedge-taken count is " << *PBT << "\n";
13468 OS << " Predicates:\n";
13469 for (const auto *P : Preds)
13470 P->print(OS, 4);
13471 } else {
13472 OS << "Unpredictable predicated backedge-taken count.\n";
13475 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13476 OS << "Loop ";
13477 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13478 OS << ": ";
13479 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13483 namespace llvm {
13484 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) {
13485 switch (LD) {
13486 case ScalarEvolution::LoopVariant:
13487 OS << "Variant";
13488 break;
13489 case ScalarEvolution::LoopInvariant:
13490 OS << "Invariant";
13491 break;
13492 case ScalarEvolution::LoopComputable:
13493 OS << "Computable";
13494 break;
13496 return OS;
13499 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) {
13500 switch (BD) {
13501 case ScalarEvolution::DoesNotDominateBlock:
13502 OS << "DoesNotDominate";
13503 break;
13504 case ScalarEvolution::DominatesBlock:
13505 OS << "Dominates";
13506 break;
13507 case ScalarEvolution::ProperlyDominatesBlock:
13508 OS << "ProperlyDominates";
13509 break;
13511 return OS;
13515 void ScalarEvolution::print(raw_ostream &OS) const {
13516 // ScalarEvolution's implementation of the print method is to print
13517 // out SCEV values of all instructions that are interesting. Doing
13518 // this potentially causes it to create new SCEV objects though,
13519 // which technically conflicts with the const qualifier. This isn't
13520 // observable from outside the class though, so casting away the
13521 // const isn't dangerous.
13522 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13524 if (ClassifyExpressions) {
13525 OS << "Classifying expressions for: ";
13526 F.printAsOperand(OS, /*PrintType=*/false);
13527 OS << "\n";
13528 for (Instruction &I : instructions(F))
13529 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13530 OS << I << '\n';
13531 OS << " --> ";
13532 const SCEV *SV = SE.getSCEV(&I);
13533 SV->print(OS);
13534 if (!isa<SCEVCouldNotCompute>(SV)) {
13535 OS << " U: ";
13536 SE.getUnsignedRange(SV).print(OS);
13537 OS << " S: ";
13538 SE.getSignedRange(SV).print(OS);
13541 const Loop *L = LI.getLoopFor(I.getParent());
13543 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13544 if (AtUse != SV) {
13545 OS << " --> ";
13546 AtUse->print(OS);
13547 if (!isa<SCEVCouldNotCompute>(AtUse)) {
13548 OS << " U: ";
13549 SE.getUnsignedRange(AtUse).print(OS);
13550 OS << " S: ";
13551 SE.getSignedRange(AtUse).print(OS);
13555 if (L) {
13556 OS << "\t\t" "Exits: ";
13557 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13558 if (!SE.isLoopInvariant(ExitValue, L)) {
13559 OS << "<<Unknown>>";
13560 } else {
13561 OS << *ExitValue;
13564 bool First = true;
13565 for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13566 if (First) {
13567 OS << "\t\t" "LoopDispositions: { ";
13568 First = false;
13569 } else {
13570 OS << ", ";
13573 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13574 OS << ": " << SE.getLoopDisposition(SV, Iter);
13577 for (const auto *InnerL : depth_first(L)) {
13578 if (InnerL == L)
13579 continue;
13580 if (First) {
13581 OS << "\t\t" "LoopDispositions: { ";
13582 First = false;
13583 } else {
13584 OS << ", ";
13587 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13588 OS << ": " << SE.getLoopDisposition(SV, InnerL);
13591 OS << " }";
13594 OS << "\n";
13598 OS << "Determining loop execution counts for: ";
13599 F.printAsOperand(OS, /*PrintType=*/false);
13600 OS << "\n";
13601 for (Loop *I : LI)
13602 PrintLoopInfo(OS, &SE, I);
13605 ScalarEvolution::LoopDisposition
13606 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13607 auto &Values = LoopDispositions[S];
13608 for (auto &V : Values) {
13609 if (V.getPointer() == L)
13610 return V.getInt();
13612 Values.emplace_back(L, LoopVariant);
13613 LoopDisposition D = computeLoopDisposition(S, L);
13614 auto &Values2 = LoopDispositions[S];
13615 for (auto &V : llvm::reverse(Values2)) {
13616 if (V.getPointer() == L) {
13617 V.setInt(D);
13618 break;
13621 return D;
13624 ScalarEvolution::LoopDisposition
13625 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13626 switch (S->getSCEVType()) {
13627 case scConstant:
13628 case scVScale:
13629 return LoopInvariant;
13630 case scAddRecExpr: {
13631 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13633 // If L is the addrec's loop, it's computable.
13634 if (AR->getLoop() == L)
13635 return LoopComputable;
13637 // Add recurrences are never invariant in the function-body (null loop).
13638 if (!L)
13639 return LoopVariant;
13641 // Everything that is not defined at loop entry is variant.
13642 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13643 return LoopVariant;
13644 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13645 " dominate the contained loop's header?");
13647 // This recurrence is invariant w.r.t. L if AR's loop contains L.
13648 if (AR->getLoop()->contains(L))
13649 return LoopInvariant;
13651 // This recurrence is variant w.r.t. L if any of its operands
13652 // are variant.
13653 for (const auto *Op : AR->operands())
13654 if (!isLoopInvariant(Op, L))
13655 return LoopVariant;
13657 // Otherwise it's loop-invariant.
13658 return LoopInvariant;
13660 case scTruncate:
13661 case scZeroExtend:
13662 case scSignExtend:
13663 case scPtrToInt:
13664 case scAddExpr:
13665 case scMulExpr:
13666 case scUDivExpr:
13667 case scUMaxExpr:
13668 case scSMaxExpr:
13669 case scUMinExpr:
13670 case scSMinExpr:
13671 case scSequentialUMinExpr: {
13672 bool HasVarying = false;
13673 for (const auto *Op : S->operands()) {
13674 LoopDisposition D = getLoopDisposition(Op, L);
13675 if (D == LoopVariant)
13676 return LoopVariant;
13677 if (D == LoopComputable)
13678 HasVarying = true;
13680 return HasVarying ? LoopComputable : LoopInvariant;
13682 case scUnknown:
13683 // All non-instruction values are loop invariant. All instructions are loop
13684 // invariant if they are not contained in the specified loop.
13685 // Instructions are never considered invariant in the function body
13686 // (null loop) because they are defined within the "loop".
13687 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13688 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13689 return LoopInvariant;
13690 case scCouldNotCompute:
13691 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13693 llvm_unreachable("Unknown SCEV kind!");
13696 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13697 return getLoopDisposition(S, L) == LoopInvariant;
13700 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13701 return getLoopDisposition(S, L) == LoopComputable;
13704 ScalarEvolution::BlockDisposition
13705 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13706 auto &Values = BlockDispositions[S];
13707 for (auto &V : Values) {
13708 if (V.getPointer() == BB)
13709 return V.getInt();
13711 Values.emplace_back(BB, DoesNotDominateBlock);
13712 BlockDisposition D = computeBlockDisposition(S, BB);
13713 auto &Values2 = BlockDispositions[S];
13714 for (auto &V : llvm::reverse(Values2)) {
13715 if (V.getPointer() == BB) {
13716 V.setInt(D);
13717 break;
13720 return D;
13723 ScalarEvolution::BlockDisposition
13724 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13725 switch (S->getSCEVType()) {
13726 case scConstant:
13727 case scVScale:
13728 return ProperlyDominatesBlock;
13729 case scAddRecExpr: {
13730 // This uses a "dominates" query instead of "properly dominates" query
13731 // to test for proper dominance too, because the instruction which
13732 // produces the addrec's value is a PHI, and a PHI effectively properly
13733 // dominates its entire containing block.
13734 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13735 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13736 return DoesNotDominateBlock;
13738 // Fall through into SCEVNAryExpr handling.
13739 [[fallthrough]];
13741 case scTruncate:
13742 case scZeroExtend:
13743 case scSignExtend:
13744 case scPtrToInt:
13745 case scAddExpr:
13746 case scMulExpr:
13747 case scUDivExpr:
13748 case scUMaxExpr:
13749 case scSMaxExpr:
13750 case scUMinExpr:
13751 case scSMinExpr:
13752 case scSequentialUMinExpr: {
13753 bool Proper = true;
13754 for (const SCEV *NAryOp : S->operands()) {
13755 BlockDisposition D = getBlockDisposition(NAryOp, BB);
13756 if (D == DoesNotDominateBlock)
13757 return DoesNotDominateBlock;
13758 if (D == DominatesBlock)
13759 Proper = false;
13761 return Proper ? ProperlyDominatesBlock : DominatesBlock;
13763 case scUnknown:
13764 if (Instruction *I =
13765 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13766 if (I->getParent() == BB)
13767 return DominatesBlock;
13768 if (DT.properlyDominates(I->getParent(), BB))
13769 return ProperlyDominatesBlock;
13770 return DoesNotDominateBlock;
13772 return ProperlyDominatesBlock;
13773 case scCouldNotCompute:
13774 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13776 llvm_unreachable("Unknown SCEV kind!");
13779 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13780 return getBlockDisposition(S, BB) >= DominatesBlock;
13783 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13784 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13787 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13788 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13791 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13792 bool Predicated) {
13793 auto &BECounts =
13794 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13795 auto It = BECounts.find(L);
13796 if (It != BECounts.end()) {
13797 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13798 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
13799 if (!isa<SCEVConstant>(S)) {
13800 auto UserIt = BECountUsers.find(S);
13801 assert(UserIt != BECountUsers.end());
13802 UserIt->second.erase({L, Predicated});
13806 BECounts.erase(It);
13810 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13811 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13812 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13814 while (!Worklist.empty()) {
13815 const SCEV *Curr = Worklist.pop_back_val();
13816 auto Users = SCEVUsers.find(Curr);
13817 if (Users != SCEVUsers.end())
13818 for (const auto *User : Users->second)
13819 if (ToForget.insert(User).second)
13820 Worklist.push_back(User);
13823 for (const auto *S : ToForget)
13824 forgetMemoizedResultsImpl(S);
13826 for (auto I = PredicatedSCEVRewrites.begin();
13827 I != PredicatedSCEVRewrites.end();) {
13828 std::pair<const SCEV *, const Loop *> Entry = I->first;
13829 if (ToForget.count(Entry.first))
13830 PredicatedSCEVRewrites.erase(I++);
13831 else
13832 ++I;
13836 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13837 LoopDispositions.erase(S);
13838 BlockDispositions.erase(S);
13839 UnsignedRanges.erase(S);
13840 SignedRanges.erase(S);
13841 HasRecMap.erase(S);
13842 ConstantMultipleCache.erase(S);
13844 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) {
13845 UnsignedWrapViaInductionTried.erase(AR);
13846 SignedWrapViaInductionTried.erase(AR);
13849 auto ExprIt = ExprValueMap.find(S);
13850 if (ExprIt != ExprValueMap.end()) {
13851 for (Value *V : ExprIt->second) {
13852 auto ValueIt = ValueExprMap.find_as(V);
13853 if (ValueIt != ValueExprMap.end())
13854 ValueExprMap.erase(ValueIt);
13856 ExprValueMap.erase(ExprIt);
13859 auto ScopeIt = ValuesAtScopes.find(S);
13860 if (ScopeIt != ValuesAtScopes.end()) {
13861 for (const auto &Pair : ScopeIt->second)
13862 if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13863 llvm::erase(ValuesAtScopesUsers[Pair.second],
13864 std::make_pair(Pair.first, S));
13865 ValuesAtScopes.erase(ScopeIt);
13868 auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13869 if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13870 for (const auto &Pair : ScopeUserIt->second)
13871 llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13872 ValuesAtScopesUsers.erase(ScopeUserIt);
13875 auto BEUsersIt = BECountUsers.find(S);
13876 if (BEUsersIt != BECountUsers.end()) {
13877 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13878 auto Copy = BEUsersIt->second;
13879 for (const auto &Pair : Copy)
13880 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13881 BECountUsers.erase(BEUsersIt);
13884 auto FoldUser = FoldCacheUser.find(S);
13885 if (FoldUser != FoldCacheUser.end())
13886 for (auto &KV : FoldUser->second)
13887 FoldCache.erase(KV);
13888 FoldCacheUser.erase(S);
13891 void
13892 ScalarEvolution::getUsedLoops(const SCEV *S,
13893 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13894 struct FindUsedLoops {
13895 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13896 : LoopsUsed(LoopsUsed) {}
13897 SmallPtrSetImpl<const Loop *> &LoopsUsed;
13898 bool follow(const SCEV *S) {
13899 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13900 LoopsUsed.insert(AR->getLoop());
13901 return true;
13904 bool isDone() const { return false; }
13907 FindUsedLoops F(LoopsUsed);
13908 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13911 void ScalarEvolution::getReachableBlocks(
13912 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
13913 SmallVector<BasicBlock *> Worklist;
13914 Worklist.push_back(&F.getEntryBlock());
13915 while (!Worklist.empty()) {
13916 BasicBlock *BB = Worklist.pop_back_val();
13917 if (!Reachable.insert(BB).second)
13918 continue;
13920 Value *Cond;
13921 BasicBlock *TrueBB, *FalseBB;
13922 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
13923 m_BasicBlock(FalseBB)))) {
13924 if (auto *C = dyn_cast<ConstantInt>(Cond)) {
13925 Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
13926 continue;
13929 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13930 const SCEV *L = getSCEV(Cmp->getOperand(0));
13931 const SCEV *R = getSCEV(Cmp->getOperand(1));
13932 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
13933 Worklist.push_back(TrueBB);
13934 continue;
13936 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
13937 R)) {
13938 Worklist.push_back(FalseBB);
13939 continue;
13944 append_range(Worklist, successors(BB));
13948 void ScalarEvolution::verify() const {
13949 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13950 ScalarEvolution SE2(F, TLI, AC, DT, LI);
13952 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13954 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13955 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13956 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13958 const SCEV *visitConstant(const SCEVConstant *Constant) {
13959 return SE.getConstant(Constant->getAPInt());
13962 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13963 return SE.getUnknown(Expr->getValue());
13966 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13967 return SE.getCouldNotCompute();
13971 SCEVMapper SCM(SE2);
13972 SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
13973 SE2.getReachableBlocks(ReachableBlocks, F);
13975 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
13976 if (containsUndefs(Old) || containsUndefs(New)) {
13977 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13978 // not propagate undef aggressively). This means we can (and do) fail
13979 // verification in cases where a transform makes a value go from "undef"
13980 // to "undef+1" (say). The transform is fine, since in both cases the
13981 // result is "undef", but SCEV thinks the value increased by 1.
13982 return nullptr;
13985 // Unless VerifySCEVStrict is set, we only compare constant deltas.
13986 const SCEV *Delta = SE2.getMinusSCEV(Old, New);
13987 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
13988 return nullptr;
13990 return Delta;
13993 while (!LoopStack.empty()) {
13994 auto *L = LoopStack.pop_back_val();
13995 llvm::append_range(LoopStack, *L);
13997 // Only verify BECounts in reachable loops. For an unreachable loop,
13998 // any BECount is legal.
13999 if (!ReachableBlocks.contains(L->getHeader()))
14000 continue;
14002 // Only verify cached BECounts. Computing new BECounts may change the
14003 // results of subsequent SCEV uses.
14004 auto It = BackedgeTakenCounts.find(L);
14005 if (It == BackedgeTakenCounts.end())
14006 continue;
14008 auto *CurBECount =
14009 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
14010 auto *NewBECount = SE2.getBackedgeTakenCount(L);
14012 if (CurBECount == SE2.getCouldNotCompute() ||
14013 NewBECount == SE2.getCouldNotCompute()) {
14014 // NB! This situation is legal, but is very suspicious -- whatever pass
14015 // change the loop to make a trip count go from could not compute to
14016 // computable or vice-versa *should have* invalidated SCEV. However, we
14017 // choose not to assert here (for now) since we don't want false
14018 // positives.
14019 continue;
14022 if (SE.getTypeSizeInBits(CurBECount->getType()) >
14023 SE.getTypeSizeInBits(NewBECount->getType()))
14024 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
14025 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
14026 SE.getTypeSizeInBits(NewBECount->getType()))
14027 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
14029 const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14030 if (Delta && !Delta->isZero()) {
14031 dbgs() << "Trip Count for " << *L << " Changed!\n";
14032 dbgs() << "Old: " << *CurBECount << "\n";
14033 dbgs() << "New: " << *NewBECount << "\n";
14034 dbgs() << "Delta: " << *Delta << "\n";
14035 std::abort();
14039 // Collect all valid loops currently in LoopInfo.
14040 SmallPtrSet<Loop *, 32> ValidLoops;
14041 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14042 while (!Worklist.empty()) {
14043 Loop *L = Worklist.pop_back_val();
14044 if (ValidLoops.insert(L).second)
14045 Worklist.append(L->begin(), L->end());
14047 for (const auto &KV : ValueExprMap) {
14048 #ifndef NDEBUG
14049 // Check for SCEV expressions referencing invalid/deleted loops.
14050 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
14051 assert(ValidLoops.contains(AR->getLoop()) &&
14052 "AddRec references invalid loop");
14054 #endif
14056 // Check that the value is also part of the reverse map.
14057 auto It = ExprValueMap.find(KV.second);
14058 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14059 dbgs() << "Value " << *KV.first
14060 << " is in ValueExprMap but not in ExprValueMap\n";
14061 std::abort();
14064 if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
14065 if (!ReachableBlocks.contains(I->getParent()))
14066 continue;
14067 const SCEV *OldSCEV = SCM.visit(KV.second);
14068 const SCEV *NewSCEV = SE2.getSCEV(I);
14069 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14070 if (Delta && !Delta->isZero()) {
14071 dbgs() << "SCEV for value " << *I << " changed!\n"
14072 << "Old: " << *OldSCEV << "\n"
14073 << "New: " << *NewSCEV << "\n"
14074 << "Delta: " << *Delta << "\n";
14075 std::abort();
14080 for (const auto &KV : ExprValueMap) {
14081 for (Value *V : KV.second) {
14082 auto It = ValueExprMap.find_as(V);
14083 if (It == ValueExprMap.end()) {
14084 dbgs() << "Value " << *V
14085 << " is in ExprValueMap but not in ValueExprMap\n";
14086 std::abort();
14088 if (It->second != KV.first) {
14089 dbgs() << "Value " << *V << " mapped to " << *It->second
14090 << " rather than " << *KV.first << "\n";
14091 std::abort();
14096 // Verify integrity of SCEV users.
14097 for (const auto &S : UniqueSCEVs) {
14098 for (const auto *Op : S.operands()) {
14099 // We do not store dependencies of constants.
14100 if (isa<SCEVConstant>(Op))
14101 continue;
14102 auto It = SCEVUsers.find(Op);
14103 if (It != SCEVUsers.end() && It->second.count(&S))
14104 continue;
14105 dbgs() << "Use of operand " << *Op << " by user " << S
14106 << " is not being tracked!\n";
14107 std::abort();
14111 // Verify integrity of ValuesAtScopes users.
14112 for (const auto &ValueAndVec : ValuesAtScopes) {
14113 const SCEV *Value = ValueAndVec.first;
14114 for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14115 const Loop *L = LoopAndValueAtScope.first;
14116 const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14117 if (!isa<SCEVConstant>(ValueAtScope)) {
14118 auto It = ValuesAtScopesUsers.find(ValueAtScope);
14119 if (It != ValuesAtScopesUsers.end() &&
14120 is_contained(It->second, std::make_pair(L, Value)))
14121 continue;
14122 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14123 << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14124 std::abort();
14129 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14130 const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14131 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14132 const Loop *L = LoopAndValue.first;
14133 const SCEV *Value = LoopAndValue.second;
14134 assert(!isa<SCEVConstant>(Value));
14135 auto It = ValuesAtScopes.find(Value);
14136 if (It != ValuesAtScopes.end() &&
14137 is_contained(It->second, std::make_pair(L, ValueAtScope)))
14138 continue;
14139 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14140 << *ValueAtScope << " missing in ValuesAtScopes\n";
14141 std::abort();
14145 // Verify integrity of BECountUsers.
14146 auto VerifyBECountUsers = [&](bool Predicated) {
14147 auto &BECounts =
14148 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14149 for (const auto &LoopAndBEInfo : BECounts) {
14150 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14151 for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14152 if (!isa<SCEVConstant>(S)) {
14153 auto UserIt = BECountUsers.find(S);
14154 if (UserIt != BECountUsers.end() &&
14155 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14156 continue;
14157 dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14158 << " missing from BECountUsers\n";
14159 std::abort();
14165 VerifyBECountUsers(/* Predicated */ false);
14166 VerifyBECountUsers(/* Predicated */ true);
14168 // Verify intergity of loop disposition cache.
14169 for (auto &[S, Values] : LoopDispositions) {
14170 for (auto [Loop, CachedDisposition] : Values) {
14171 const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop);
14172 if (CachedDisposition != RecomputedDisposition) {
14173 dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14174 << " is incorrect: cached " << CachedDisposition << ", actual "
14175 << RecomputedDisposition << "\n";
14176 std::abort();
14181 // Verify integrity of the block disposition cache.
14182 for (auto &[S, Values] : BlockDispositions) {
14183 for (auto [BB, CachedDisposition] : Values) {
14184 const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14185 if (CachedDisposition != RecomputedDisposition) {
14186 dbgs() << "Cached disposition of " << *S << " for block %"
14187 << BB->getName() << " is incorrect: cached " << CachedDisposition
14188 << ", actual " << RecomputedDisposition << "\n";
14189 std::abort();
14194 // Verify FoldCache/FoldCacheUser caches.
14195 for (auto [FoldID, Expr] : FoldCache) {
14196 auto I = FoldCacheUser.find(Expr);
14197 if (I == FoldCacheUser.end()) {
14198 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14199 << "!\n";
14200 std::abort();
14202 if (!is_contained(I->second, FoldID)) {
14203 dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14204 std::abort();
14207 for (auto [Expr, IDs] : FoldCacheUser) {
14208 for (auto &FoldID : IDs) {
14209 auto I = FoldCache.find(FoldID);
14210 if (I == FoldCache.end()) {
14211 dbgs() << "Missing entry in FoldCache for expression " << *Expr
14212 << "!\n";
14213 std::abort();
14215 if (I->second != Expr) {
14216 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14217 << *I->second << " != " << *Expr << "!\n";
14218 std::abort();
14223 // Verify that ConstantMultipleCache computations are correct. We check that
14224 // cached multiples and recomputed multiples are multiples of each other to
14225 // verify correctness. It is possible that a recomputed multiple is different
14226 // from the cached multiple due to strengthened no wrap flags or changes in
14227 // KnownBits computations.
14228 for (auto [S, Multiple] : ConstantMultipleCache) {
14229 APInt RecomputedMultiple = SE2.getConstantMultiple(S);
14230 if ((Multiple != 0 && RecomputedMultiple != 0 &&
14231 Multiple.urem(RecomputedMultiple) != 0 &&
14232 RecomputedMultiple.urem(Multiple) != 0)) {
14233 dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14234 << *S << " : Computed " << RecomputedMultiple
14235 << " but cache contains " << Multiple << "!\n";
14236 std::abort();
14241 bool ScalarEvolution::invalidate(
14242 Function &F, const PreservedAnalyses &PA,
14243 FunctionAnalysisManager::Invalidator &Inv) {
14244 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14245 // of its dependencies is invalidated.
14246 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14247 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14248 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
14249 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
14250 Inv.invalidate<LoopAnalysis>(F, PA);
14253 AnalysisKey ScalarEvolutionAnalysis::Key;
14255 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14256 FunctionAnalysisManager &AM) {
14257 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
14258 auto &AC = AM.getResult<AssumptionAnalysis>(F);
14259 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
14260 auto &LI = AM.getResult<LoopAnalysis>(F);
14261 return ScalarEvolution(F, TLI, AC, DT, LI);
14264 PreservedAnalyses
14265 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14266 AM.getResult<ScalarEvolutionAnalysis>(F).verify();
14267 return PreservedAnalyses::all();
14270 PreservedAnalyses
14271 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14272 // For compatibility with opt's -analyze feature under legacy pass manager
14273 // which was not ported to NPM. This keeps tests using
14274 // update_analyze_test_checks.py working.
14275 OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14276 << F.getName() << "':\n";
14277 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
14278 return PreservedAnalyses::all();
14281 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14282 "Scalar Evolution Analysis", false, true)
14283 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14284 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14285 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14286 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14287 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14288 "Scalar Evolution Analysis", false, true)
14290 char ScalarEvolutionWrapperPass::ID = 0;
14292 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14293 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14296 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14297 SE.reset(new ScalarEvolution(
14298 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14299 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14300 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14301 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14302 return false;
14305 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14307 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14308 SE->print(OS);
14311 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14312 if (!VerifySCEV)
14313 return;
14315 SE->verify();
14318 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14319 AU.setPreservesAll();
14320 AU.addRequiredTransitive<AssumptionCacheTracker>();
14321 AU.addRequiredTransitive<LoopInfoWrapperPass>();
14322 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14323 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14326 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14327 const SCEV *RHS) {
14328 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
14331 const SCEVPredicate *
14332 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14333 const SCEV *LHS, const SCEV *RHS) {
14334 FoldingSetNodeID ID;
14335 assert(LHS->getType() == RHS->getType() &&
14336 "Type mismatch between LHS and RHS");
14337 // Unique this node based on the arguments
14338 ID.AddInteger(SCEVPredicate::P_Compare);
14339 ID.AddInteger(Pred);
14340 ID.AddPointer(LHS);
14341 ID.AddPointer(RHS);
14342 void *IP = nullptr;
14343 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14344 return S;
14345 SCEVComparePredicate *Eq = new (SCEVAllocator)
14346 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14347 UniquePreds.InsertNode(Eq, IP);
14348 return Eq;
14351 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14352 const SCEVAddRecExpr *AR,
14353 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14354 FoldingSetNodeID ID;
14355 // Unique this node based on the arguments
14356 ID.AddInteger(SCEVPredicate::P_Wrap);
14357 ID.AddPointer(AR);
14358 ID.AddInteger(AddedFlags);
14359 void *IP = nullptr;
14360 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14361 return S;
14362 auto *OF = new (SCEVAllocator)
14363 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14364 UniquePreds.InsertNode(OF, IP);
14365 return OF;
14368 namespace {
14370 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14371 public:
14373 /// Rewrites \p S in the context of a loop L and the SCEV predication
14374 /// infrastructure.
14376 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14377 /// equivalences present in \p Pred.
14379 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14380 /// \p NewPreds such that the result will be an AddRecExpr.
14381 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14382 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14383 const SCEVPredicate *Pred) {
14384 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14385 return Rewriter.visit(S);
14388 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14389 if (Pred) {
14390 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14391 for (const auto *Pred : U->getPredicates())
14392 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14393 if (IPred->getLHS() == Expr &&
14394 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14395 return IPred->getRHS();
14396 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14397 if (IPred->getLHS() == Expr &&
14398 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14399 return IPred->getRHS();
14402 return convertToAddRecWithPreds(Expr);
14405 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14406 const SCEV *Operand = visit(Expr->getOperand());
14407 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14408 if (AR && AR->getLoop() == L && AR->isAffine()) {
14409 // This couldn't be folded because the operand didn't have the nuw
14410 // flag. Add the nusw flag as an assumption that we could make.
14411 const SCEV *Step = AR->getStepRecurrence(SE);
14412 Type *Ty = Expr->getType();
14413 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14414 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14415 SE.getSignExtendExpr(Step, Ty), L,
14416 AR->getNoWrapFlags());
14418 return SE.getZeroExtendExpr(Operand, Expr->getType());
14421 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14422 const SCEV *Operand = visit(Expr->getOperand());
14423 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14424 if (AR && AR->getLoop() == L && AR->isAffine()) {
14425 // This couldn't be folded because the operand didn't have the nsw
14426 // flag. Add the nssw flag as an assumption that we could make.
14427 const SCEV *Step = AR->getStepRecurrence(SE);
14428 Type *Ty = Expr->getType();
14429 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14430 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14431 SE.getSignExtendExpr(Step, Ty), L,
14432 AR->getNoWrapFlags());
14434 return SE.getSignExtendExpr(Operand, Expr->getType());
14437 private:
14438 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14439 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14440 const SCEVPredicate *Pred)
14441 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14443 bool addOverflowAssumption(const SCEVPredicate *P) {
14444 if (!NewPreds) {
14445 // Check if we've already made this assumption.
14446 return Pred && Pred->implies(P);
14448 NewPreds->insert(P);
14449 return true;
14452 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14453 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14454 auto *A = SE.getWrapPredicate(AR, AddedFlags);
14455 return addOverflowAssumption(A);
14458 // If \p Expr represents a PHINode, we try to see if it can be represented
14459 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14460 // to add this predicate as a runtime overflow check, we return the AddRec.
14461 // If \p Expr does not meet these conditions (is not a PHI node, or we
14462 // couldn't create an AddRec for it, or couldn't add the predicate), we just
14463 // return \p Expr.
14464 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14465 if (!isa<PHINode>(Expr->getValue()))
14466 return Expr;
14467 std::optional<
14468 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14469 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14470 if (!PredicatedRewrite)
14471 return Expr;
14472 for (const auto *P : PredicatedRewrite->second){
14473 // Wrap predicates from outer loops are not supported.
14474 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14475 if (L != WP->getExpr()->getLoop())
14476 return Expr;
14478 if (!addOverflowAssumption(P))
14479 return Expr;
14481 return PredicatedRewrite->first;
14484 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14485 const SCEVPredicate *Pred;
14486 const Loop *L;
14489 } // end anonymous namespace
14491 const SCEV *
14492 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14493 const SCEVPredicate &Preds) {
14494 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14497 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14498 const SCEV *S, const Loop *L,
14499 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14500 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14501 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14502 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14504 if (!AddRec)
14505 return nullptr;
14507 // Since the transformation was successful, we can now transfer the SCEV
14508 // predicates.
14509 for (const auto *P : TransformPreds)
14510 Preds.insert(P);
14512 return AddRec;
14515 /// SCEV predicates
14516 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14517 SCEVPredicateKind Kind)
14518 : FastID(ID), Kind(Kind) {}
14520 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14521 const ICmpInst::Predicate Pred,
14522 const SCEV *LHS, const SCEV *RHS)
14523 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14524 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14525 assert(LHS != RHS && "LHS and RHS are the same SCEV");
14528 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14529 const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14531 if (!Op)
14532 return false;
14534 if (Pred != ICmpInst::ICMP_EQ)
14535 return false;
14537 return Op->LHS == LHS && Op->RHS == RHS;
14540 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14542 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14543 if (Pred == ICmpInst::ICMP_EQ)
14544 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14545 else
14546 OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") "
14547 << *RHS << "\n";
14551 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14552 const SCEVAddRecExpr *AR,
14553 IncrementWrapFlags Flags)
14554 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14556 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14558 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14559 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14561 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14564 bool SCEVWrapPredicate::isAlwaysTrue() const {
14565 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14566 IncrementWrapFlags IFlags = Flags;
14568 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14569 IFlags = clearFlags(IFlags, IncrementNSSW);
14571 return IFlags == IncrementAnyWrap;
14574 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14575 OS.indent(Depth) << *getExpr() << " Added Flags: ";
14576 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14577 OS << "<nusw>";
14578 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14579 OS << "<nssw>";
14580 OS << "\n";
14583 SCEVWrapPredicate::IncrementWrapFlags
14584 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14585 ScalarEvolution &SE) {
14586 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14587 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14589 // We can safely transfer the NSW flag as NSSW.
14590 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14591 ImpliedFlags = IncrementNSSW;
14593 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14594 // If the increment is positive, the SCEV NUW flag will also imply the
14595 // WrapPredicate NUSW flag.
14596 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14597 if (Step->getValue()->getValue().isNonNegative())
14598 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14601 return ImpliedFlags;
14604 /// Union predicates don't get cached so create a dummy set ID for it.
14605 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14606 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14607 for (const auto *P : Preds)
14608 add(P);
14611 bool SCEVUnionPredicate::isAlwaysTrue() const {
14612 return all_of(Preds,
14613 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14616 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14617 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14618 return all_of(Set->Preds,
14619 [this](const SCEVPredicate *I) { return this->implies(I); });
14621 return any_of(Preds,
14622 [N](const SCEVPredicate *I) { return I->implies(N); });
14625 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14626 for (const auto *Pred : Preds)
14627 Pred->print(OS, Depth);
14630 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14631 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14632 for (const auto *Pred : Set->Preds)
14633 add(Pred);
14634 return;
14637 Preds.push_back(N);
14640 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14641 Loop &L)
14642 : SE(SE), L(L) {
14643 SmallVector<const SCEVPredicate*, 4> Empty;
14644 Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14647 void ScalarEvolution::registerUser(const SCEV *User,
14648 ArrayRef<const SCEV *> Ops) {
14649 for (const auto *Op : Ops)
14650 // We do not expect that forgetting cached data for SCEVConstants will ever
14651 // open any prospects for sharpening or introduce any correctness issues,
14652 // so we don't bother storing their dependencies.
14653 if (!isa<SCEVConstant>(Op))
14654 SCEVUsers[Op].insert(User);
14657 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14658 const SCEV *Expr = SE.getSCEV(V);
14659 RewriteEntry &Entry = RewriteMap[Expr];
14661 // If we already have an entry and the version matches, return it.
14662 if (Entry.second && Generation == Entry.first)
14663 return Entry.second;
14665 // We found an entry but it's stale. Rewrite the stale entry
14666 // according to the current predicate.
14667 if (Entry.second)
14668 Expr = Entry.second;
14670 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14671 Entry = {Generation, NewSCEV};
14673 return NewSCEV;
14676 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14677 if (!BackedgeCount) {
14678 SmallVector<const SCEVPredicate *, 4> Preds;
14679 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14680 for (const auto *P : Preds)
14681 addPredicate(*P);
14683 return BackedgeCount;
14686 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14687 if (Preds->implies(&Pred))
14688 return;
14690 auto &OldPreds = Preds->getPredicates();
14691 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14692 NewPreds.push_back(&Pred);
14693 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14694 updateGeneration();
14697 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14698 return *Preds;
14701 void PredicatedScalarEvolution::updateGeneration() {
14702 // If the generation number wrapped recompute everything.
14703 if (++Generation == 0) {
14704 for (auto &II : RewriteMap) {
14705 const SCEV *Rewritten = II.second.second;
14706 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14711 void PredicatedScalarEvolution::setNoOverflow(
14712 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14713 const SCEV *Expr = getSCEV(V);
14714 const auto *AR = cast<SCEVAddRecExpr>(Expr);
14716 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14718 // Clear the statically implied flags.
14719 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14720 addPredicate(*SE.getWrapPredicate(AR, Flags));
14722 auto II = FlagsMap.insert({V, Flags});
14723 if (!II.second)
14724 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14727 bool PredicatedScalarEvolution::hasNoOverflow(
14728 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14729 const SCEV *Expr = getSCEV(V);
14730 const auto *AR = cast<SCEVAddRecExpr>(Expr);
14732 Flags = SCEVWrapPredicate::clearFlags(
14733 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14735 auto II = FlagsMap.find(V);
14737 if (II != FlagsMap.end())
14738 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14740 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14743 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14744 const SCEV *Expr = this->getSCEV(V);
14745 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14746 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14748 if (!New)
14749 return nullptr;
14751 for (const auto *P : NewPreds)
14752 addPredicate(*P);
14754 RewriteMap[SE.getSCEV(V)] = {Generation, New};
14755 return New;
14758 PredicatedScalarEvolution::PredicatedScalarEvolution(
14759 const PredicatedScalarEvolution &Init)
14760 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14761 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14762 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14763 for (auto I : Init.FlagsMap)
14764 FlagsMap.insert(I);
14767 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14768 // For each block.
14769 for (auto *BB : L.getBlocks())
14770 for (auto &I : *BB) {
14771 if (!SE.isSCEVable(I.getType()))
14772 continue;
14774 auto *Expr = SE.getSCEV(&I);
14775 auto II = RewriteMap.find(Expr);
14777 if (II == RewriteMap.end())
14778 continue;
14780 // Don't print things that are not interesting.
14781 if (II->second.second == Expr)
14782 continue;
14784 OS.indent(Depth) << "[PSE]" << I << ":\n";
14785 OS.indent(Depth + 2) << *Expr << "\n";
14786 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14790 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14791 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14792 // for URem with constant power-of-2 second operands.
14793 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14794 // 4, A / B becomes X / 8).
14795 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14796 const SCEV *&RHS) {
14797 // Try to match 'zext (trunc A to iB) to iY', which is used
14798 // for URem with constant power-of-2 second operands. Make sure the size of
14799 // the operand A matches the size of the whole expressions.
14800 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14801 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14802 LHS = Trunc->getOperand();
14803 // Bail out if the type of the LHS is larger than the type of the
14804 // expression for now.
14805 if (getTypeSizeInBits(LHS->getType()) >
14806 getTypeSizeInBits(Expr->getType()))
14807 return false;
14808 if (LHS->getType() != Expr->getType())
14809 LHS = getZeroExtendExpr(LHS, Expr->getType());
14810 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14811 << getTypeSizeInBits(Trunc->getType()));
14812 return true;
14814 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14815 if (Add == nullptr || Add->getNumOperands() != 2)
14816 return false;
14818 const SCEV *A = Add->getOperand(1);
14819 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14821 if (Mul == nullptr)
14822 return false;
14824 const auto MatchURemWithDivisor = [&](const SCEV *B) {
14825 // (SomeExpr + (-(SomeExpr / B) * B)).
14826 if (Expr == getURemExpr(A, B)) {
14827 LHS = A;
14828 RHS = B;
14829 return true;
14831 return false;
14834 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14835 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14836 return MatchURemWithDivisor(Mul->getOperand(1)) ||
14837 MatchURemWithDivisor(Mul->getOperand(2));
14839 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14840 if (Mul->getNumOperands() == 2)
14841 return MatchURemWithDivisor(Mul->getOperand(1)) ||
14842 MatchURemWithDivisor(Mul->getOperand(0)) ||
14843 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14844 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14845 return false;
14848 const SCEV *
14849 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14850 SmallVector<BasicBlock*, 16> ExitingBlocks;
14851 L->getExitingBlocks(ExitingBlocks);
14853 // Form an expression for the maximum exit count possible for this loop. We
14854 // merge the max and exact information to approximate a version of
14855 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14856 SmallVector<const SCEV*, 4> ExitCounts;
14857 for (BasicBlock *ExitingBB : ExitingBlocks) {
14858 const SCEV *ExitCount =
14859 getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum);
14860 if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14861 assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14862 "We should only have known counts for exiting blocks that "
14863 "dominate latch!");
14864 ExitCounts.push_back(ExitCount);
14867 if (ExitCounts.empty())
14868 return getCouldNotCompute();
14869 return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true);
14872 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14873 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14874 /// replacement is loop invariant in the loop of the AddRec.
14875 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14876 const DenseMap<const SCEV *, const SCEV *> &Map;
14878 public:
14879 SCEVLoopGuardRewriter(ScalarEvolution &SE,
14880 DenseMap<const SCEV *, const SCEV *> &M)
14881 : SCEVRewriteVisitor(SE), Map(M) {}
14883 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14885 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14886 auto I = Map.find(Expr);
14887 if (I == Map.end())
14888 return Expr;
14889 return I->second;
14892 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14893 auto I = Map.find(Expr);
14894 if (I == Map.end()) {
14895 // If we didn't find the extact ZExt expr in the map, check if there's an
14896 // entry for a smaller ZExt we can use instead.
14897 Type *Ty = Expr->getType();
14898 const SCEV *Op = Expr->getOperand(0);
14899 unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
14900 while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
14901 Bitwidth > Op->getType()->getScalarSizeInBits()) {
14902 Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth);
14903 auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy);
14904 auto I = Map.find(NarrowExt);
14905 if (I != Map.end())
14906 return SE.getZeroExtendExpr(I->second, Ty);
14907 Bitwidth = Bitwidth / 2;
14910 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14911 Expr);
14913 return I->second;
14916 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14917 auto I = Map.find(Expr);
14918 if (I == Map.end())
14919 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr(
14920 Expr);
14921 return I->second;
14924 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
14925 auto I = Map.find(Expr);
14926 if (I == Map.end())
14927 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr);
14928 return I->second;
14931 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
14932 auto I = Map.find(Expr);
14933 if (I == Map.end())
14934 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr);
14935 return I->second;
14939 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14940 SmallVector<const SCEV *> ExprsToRewrite;
14941 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14942 const SCEV *RHS,
14943 DenseMap<const SCEV *, const SCEV *>
14944 &RewriteMap) {
14945 // WARNING: It is generally unsound to apply any wrap flags to the proposed
14946 // replacement SCEV which isn't directly implied by the structure of that
14947 // SCEV. In particular, using contextual facts to imply flags is *NOT*
14948 // legal. See the scoping rules for flags in the header to understand why.
14950 // If LHS is a constant, apply information to the other expression.
14951 if (isa<SCEVConstant>(LHS)) {
14952 std::swap(LHS, RHS);
14953 Predicate = CmpInst::getSwappedPredicate(Predicate);
14956 // Check for a condition of the form (-C1 + X < C2). InstCombine will
14957 // create this form when combining two checks of the form (X u< C2 + C1) and
14958 // (X >=u C1).
14959 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14960 &ExprsToRewrite]() {
14961 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14962 if (!AddExpr || AddExpr->getNumOperands() != 2)
14963 return false;
14965 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14966 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14967 auto *C2 = dyn_cast<SCEVConstant>(RHS);
14968 if (!C1 || !C2 || !LHSUnknown)
14969 return false;
14971 auto ExactRegion =
14972 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14973 .sub(C1->getAPInt());
14975 // Bail out, unless we have a non-wrapping, monotonic range.
14976 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
14977 return false;
14978 auto I = RewriteMap.find(LHSUnknown);
14979 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
14980 RewriteMap[LHSUnknown] = getUMaxExpr(
14981 getConstant(ExactRegion.getUnsignedMin()),
14982 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
14983 ExprsToRewrite.push_back(LHSUnknown);
14984 return true;
14986 if (MatchRangeCheckIdiom())
14987 return;
14989 // Return true if \p Expr is a MinMax SCEV expression with a non-negative
14990 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
14991 // the non-constant operand and in \p LHS the constant operand.
14992 auto IsMinMaxSCEVWithNonNegativeConstant =
14993 [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
14994 const SCEV *&RHS) {
14995 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
14996 if (MinMax->getNumOperands() != 2)
14997 return false;
14998 if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
14999 if (C->getAPInt().isNegative())
15000 return false;
15001 SCTy = MinMax->getSCEVType();
15002 LHS = MinMax->getOperand(0);
15003 RHS = MinMax->getOperand(1);
15004 return true;
15007 return false;
15010 // Checks whether Expr is a non-negative constant, and Divisor is a positive
15011 // constant, and returns their APInt in ExprVal and in DivisorVal.
15012 auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor,
15013 APInt &ExprVal, APInt &DivisorVal) {
15014 auto *ConstExpr = dyn_cast<SCEVConstant>(Expr);
15015 auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
15016 if (!ConstExpr || !ConstDivisor)
15017 return false;
15018 ExprVal = ConstExpr->getAPInt();
15019 DivisorVal = ConstDivisor->getAPInt();
15020 return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
15023 // Return a new SCEV that modifies \p Expr to the closest number divides by
15024 // \p Divisor and greater or equal than Expr.
15025 // For now, only handle constant Expr and Divisor.
15026 auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr,
15027 const SCEV *Divisor) {
15028 APInt ExprVal;
15029 APInt DivisorVal;
15030 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15031 return Expr;
15032 APInt Rem = ExprVal.urem(DivisorVal);
15033 if (!Rem.isZero())
15034 // return the SCEV: Expr + Divisor - Expr % Divisor
15035 return getConstant(ExprVal + DivisorVal - Rem);
15036 return Expr;
15039 // Return a new SCEV that modifies \p Expr to the closest number divides by
15040 // \p Divisor and less or equal than Expr.
15041 // For now, only handle constant Expr and Divisor.
15042 auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr,
15043 const SCEV *Divisor) {
15044 APInt ExprVal;
15045 APInt DivisorVal;
15046 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15047 return Expr;
15048 APInt Rem = ExprVal.urem(DivisorVal);
15049 // return the SCEV: Expr - Expr % Divisor
15050 return getConstant(ExprVal - Rem);
15053 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15054 // recursively. This is done by aligning up/down the constant value to the
15055 // Divisor.
15056 std::function<const SCEV *(const SCEV *, const SCEV *)>
15057 ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15058 const SCEV *Divisor) {
15059 const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15060 SCEVTypes SCTy;
15061 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15062 MinMaxRHS))
15063 return MinMaxExpr;
15064 auto IsMin =
15065 isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15066 assert(isKnownNonNegative(MinMaxLHS) &&
15067 "Expected non-negative operand!");
15068 auto *DivisibleExpr =
15069 IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15070 : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15071 SmallVector<const SCEV *> Ops = {
15072 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15073 return getMinMaxExpr(SCTy, Ops);
15076 // If we have LHS == 0, check if LHS is computing a property of some unknown
15077 // SCEV %v which we can rewrite %v to express explicitly.
15078 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
15079 if (Predicate == CmpInst::ICMP_EQ && RHSC &&
15080 RHSC->getValue()->isNullValue()) {
15081 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15082 // explicitly express that.
15083 const SCEV *URemLHS = nullptr;
15084 const SCEV *URemRHS = nullptr;
15085 if (matchURem(LHS, URemLHS, URemRHS)) {
15086 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
15087 auto I = RewriteMap.find(LHSUnknown);
15088 const SCEV *RewrittenLHS =
15089 I != RewriteMap.end() ? I->second : LHSUnknown;
15090 RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15091 const auto *Multiple =
15092 getMulExpr(getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
15093 RewriteMap[LHSUnknown] = Multiple;
15094 ExprsToRewrite.push_back(LHSUnknown);
15095 return;
15100 // Do not apply information for constants or if RHS contains an AddRec.
15101 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
15102 return;
15104 // If RHS is SCEVUnknown, make sure the information is applied to it.
15105 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
15106 std::swap(LHS, RHS);
15107 Predicate = CmpInst::getSwappedPredicate(Predicate);
15110 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15111 // and \p FromRewritten are the same (i.e. there has been no rewrite
15112 // registered for \p From), then puts this value in the list of rewritten
15113 // expressions.
15114 auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten,
15115 const SCEV *To) {
15116 if (From == FromRewritten)
15117 ExprsToRewrite.push_back(From);
15118 RewriteMap[From] = To;
15121 // Checks whether \p S has already been rewritten. In that case returns the
15122 // existing rewrite because we want to chain further rewrites onto the
15123 // already rewritten value. Otherwise returns \p S.
15124 auto GetMaybeRewritten = [&](const SCEV *S) {
15125 auto I = RewriteMap.find(S);
15126 return I != RewriteMap.end() ? I->second : S;
15129 // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15130 // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15131 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15132 // /u B) * B was found, and return the divisor B in \p DividesBy. For
15133 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15134 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15135 // DividesBy.
15136 std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo =
15137 [&](const SCEV *Expr, const SCEV *&DividesBy) {
15138 if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) {
15139 if (Mul->getNumOperands() != 2)
15140 return false;
15141 auto *MulLHS = Mul->getOperand(0);
15142 auto *MulRHS = Mul->getOperand(1);
15143 if (isa<SCEVConstant>(MulLHS))
15144 std::swap(MulLHS, MulRHS);
15145 if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS))
15146 if (Div->getOperand(1) == MulRHS) {
15147 DividesBy = MulRHS;
15148 return true;
15151 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15152 return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) ||
15153 HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy);
15154 return false;
15157 // Return true if Expr known to divide by \p DividesBy.
15158 std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy =
15159 [&](const SCEV *Expr, const SCEV *DividesBy) {
15160 if (getURemExpr(Expr, DividesBy)->isZero())
15161 return true;
15162 if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15163 return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) &&
15164 IsKnownToDivideBy(MinMax->getOperand(1), DividesBy);
15165 return false;
15168 const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15169 const SCEV *DividesBy = nullptr;
15170 if (HasDivisibiltyInfo(RewrittenLHS, DividesBy))
15171 // Check that the whole expression is divided by DividesBy
15172 DividesBy =
15173 IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr;
15175 // Collect rewrites for LHS and its transitive operands based on the
15176 // condition.
15177 // For min/max expressions, also apply the guard to its operands:
15178 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)',
15179 // 'min(a, b) > c' -> '(a > c) and (b > c)',
15180 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)',
15181 // 'max(a, b) < c' -> '(a < c) and (b < c)'.
15183 // We cannot express strict predicates in SCEV, so instead we replace them
15184 // with non-strict ones against plus or minus one of RHS depending on the
15185 // predicate.
15186 const SCEV *One = getOne(RHS->getType());
15187 switch (Predicate) {
15188 case CmpInst::ICMP_ULT:
15189 if (RHS->getType()->isPointerTy())
15190 return;
15191 RHS = getUMaxExpr(RHS, One);
15192 [[fallthrough]];
15193 case CmpInst::ICMP_SLT: {
15194 RHS = getMinusSCEV(RHS, One);
15195 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15196 break;
15198 case CmpInst::ICMP_UGT:
15199 case CmpInst::ICMP_SGT:
15200 RHS = getAddExpr(RHS, One);
15201 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15202 break;
15203 case CmpInst::ICMP_ULE:
15204 case CmpInst::ICMP_SLE:
15205 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15206 break;
15207 case CmpInst::ICMP_UGE:
15208 case CmpInst::ICMP_SGE:
15209 RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15210 break;
15211 default:
15212 break;
15215 SmallVector<const SCEV *, 16> Worklist(1, LHS);
15216 SmallPtrSet<const SCEV *, 16> Visited;
15218 auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) {
15219 append_range(Worklist, S->operands());
15222 while (!Worklist.empty()) {
15223 const SCEV *From = Worklist.pop_back_val();
15224 if (isa<SCEVConstant>(From))
15225 continue;
15226 if (!Visited.insert(From).second)
15227 continue;
15228 const SCEV *FromRewritten = GetMaybeRewritten(From);
15229 const SCEV *To = nullptr;
15231 switch (Predicate) {
15232 case CmpInst::ICMP_ULT:
15233 case CmpInst::ICMP_ULE:
15234 To = getUMinExpr(FromRewritten, RHS);
15235 if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten))
15236 EnqueueOperands(UMax);
15237 break;
15238 case CmpInst::ICMP_SLT:
15239 case CmpInst::ICMP_SLE:
15240 To = getSMinExpr(FromRewritten, RHS);
15241 if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten))
15242 EnqueueOperands(SMax);
15243 break;
15244 case CmpInst::ICMP_UGT:
15245 case CmpInst::ICMP_UGE:
15246 To = getUMaxExpr(FromRewritten, RHS);
15247 if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten))
15248 EnqueueOperands(UMin);
15249 break;
15250 case CmpInst::ICMP_SGT:
15251 case CmpInst::ICMP_SGE:
15252 To = getSMaxExpr(FromRewritten, RHS);
15253 if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten))
15254 EnqueueOperands(SMin);
15255 break;
15256 case CmpInst::ICMP_EQ:
15257 if (isa<SCEVConstant>(RHS))
15258 To = RHS;
15259 break;
15260 case CmpInst::ICMP_NE:
15261 if (isa<SCEVConstant>(RHS) &&
15262 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) {
15263 const SCEV *OneAlignedUp =
15264 DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15265 To = getUMaxExpr(FromRewritten, OneAlignedUp);
15267 break;
15268 default:
15269 break;
15272 if (To)
15273 AddRewrite(From, FromRewritten, To);
15277 BasicBlock *Header = L->getHeader();
15278 SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15279 // First, collect information from assumptions dominating the loop.
15280 for (auto &AssumeVH : AC.assumptions()) {
15281 if (!AssumeVH)
15282 continue;
15283 auto *AssumeI = cast<CallInst>(AssumeVH);
15284 if (!DT.dominates(AssumeI, Header))
15285 continue;
15286 Terms.emplace_back(AssumeI->getOperand(0), true);
15289 // Second, collect information from llvm.experimental.guards dominating the loop.
15290 auto *GuardDecl = F.getParent()->getFunction(
15291 Intrinsic::getName(Intrinsic::experimental_guard));
15292 if (GuardDecl)
15293 for (const auto *GU : GuardDecl->users())
15294 if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
15295 if (Guard->getFunction() == Header->getParent() && DT.dominates(Guard, Header))
15296 Terms.emplace_back(Guard->getArgOperand(0), true);
15298 // Third, collect conditions from dominating branches. Starting at the loop
15299 // predecessor, climb up the predecessor chain, as long as there are
15300 // predecessors that can be found that have unique successors leading to the
15301 // original header.
15302 // TODO: share this logic with isLoopEntryGuardedByCond.
15303 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
15304 L->getLoopPredecessor(), Header);
15305 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15307 const BranchInst *LoopEntryPredicate =
15308 dyn_cast<BranchInst>(Pair.first->getTerminator());
15309 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15310 continue;
15312 Terms.emplace_back(LoopEntryPredicate->getCondition(),
15313 LoopEntryPredicate->getSuccessor(0) == Pair.second);
15316 // Now apply the information from the collected conditions to RewriteMap.
15317 // Conditions are processed in reverse order, so the earliest conditions is
15318 // processed first. This ensures the SCEVs with the shortest dependency chains
15319 // are constructed first.
15320 DenseMap<const SCEV *, const SCEV *> RewriteMap;
15321 for (auto [Term, EnterIfTrue] : reverse(Terms)) {
15322 SmallVector<Value *, 8> Worklist;
15323 SmallPtrSet<Value *, 8> Visited;
15324 Worklist.push_back(Term);
15325 while (!Worklist.empty()) {
15326 Value *Cond = Worklist.pop_back_val();
15327 if (!Visited.insert(Cond).second)
15328 continue;
15330 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
15331 auto Predicate =
15332 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15333 const auto *LHS = getSCEV(Cmp->getOperand(0));
15334 const auto *RHS = getSCEV(Cmp->getOperand(1));
15335 CollectCondition(Predicate, LHS, RHS, RewriteMap);
15336 continue;
15339 Value *L, *R;
15340 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
15341 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
15342 Worklist.push_back(L);
15343 Worklist.push_back(R);
15348 if (RewriteMap.empty())
15349 return Expr;
15351 // Now that all rewrite information is collect, rewrite the collected
15352 // expressions with the information in the map. This applies information to
15353 // sub-expressions.
15354 if (ExprsToRewrite.size() > 1) {
15355 for (const SCEV *Expr : ExprsToRewrite) {
15356 const SCEV *RewriteTo = RewriteMap[Expr];
15357 RewriteMap.erase(Expr);
15358 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15359 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
15363 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15364 return Rewriter.visit(Expr);