1 //===- MachineFunction.cpp ------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/TargetFrameLowering.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/EHPersonalities.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetMachine.h"
73 #include <type_traits>
77 #include "LiveDebugValues/LiveDebugValues.h"
81 #define DEBUG_TYPE "codegen"
83 static cl::opt
<unsigned> AlignAllFunctions(
84 "align-all-functions",
85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86 "means align on 16B boundaries)."),
87 cl::init(0), cl::Hidden
);
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop
) {
90 using P
= MachineFunctionProperties::Property
;
94 case P::FailedISel
: return "FailedISel";
95 case P::IsSSA
: return "IsSSA";
96 case P::Legalized
: return "Legalized";
97 case P::NoPHIs
: return "NoPHIs";
98 case P::NoVRegs
: return "NoVRegs";
99 case P::RegBankSelected
: return "RegBankSelected";
100 case P::Selected
: return "Selected";
101 case P::TracksLiveness
: return "TracksLiveness";
102 case P::TiedOpsRewritten
: return "TiedOpsRewritten";
103 case P::FailsVerification
: return "FailsVerification";
104 case P::TracksDebugUserValues
: return "TracksDebugUserValues";
107 llvm_unreachable("Invalid machine function property");
110 void setUnsafeStackSize(const Function
&F
, MachineFrameInfo
&FrameInfo
) {
111 if (!F
.hasFnAttribute(Attribute::SafeStack
))
115 dyn_cast_or_null
<MDTuple
>(F
.getMetadata(LLVMContext::MD_annotation
));
117 if (!Existing
|| Existing
->getNumOperands() != 2)
120 auto *MetadataName
= "unsafe-stack-size";
121 if (auto &N
= Existing
->getOperand(0)) {
122 if (cast
<MDString
>(N
.get())->getString() == MetadataName
) {
123 if (auto &Op
= Existing
->getOperand(1)) {
124 auto Val
= mdconst::extract
<ConstantInt
>(Op
)->getZExtValue();
125 FrameInfo
.setUnsafeStackSize(Val
);
131 // Pin the vtable to this file.
132 void MachineFunction::Delegate::anchor() {}
134 void MachineFunctionProperties::print(raw_ostream
&OS
) const {
135 const char *Separator
= "";
136 for (BitVector::size_type I
= 0; I
< Properties
.size(); ++I
) {
139 OS
<< Separator
<< getPropertyName(static_cast<Property
>(I
));
144 //===----------------------------------------------------------------------===//
145 // MachineFunction implementation
146 //===----------------------------------------------------------------------===//
148 // Out-of-line virtual method.
149 MachineFunctionInfo::~MachineFunctionInfo() = default;
151 void ilist_alloc_traits
<MachineBasicBlock
>::deleteNode(MachineBasicBlock
*MBB
) {
152 MBB
->getParent()->deleteMachineBasicBlock(MBB
);
155 static inline Align
getFnStackAlignment(const TargetSubtargetInfo
*STI
,
157 if (auto MA
= F
.getFnStackAlign())
159 return STI
->getFrameLowering()->getStackAlign();
162 MachineFunction::MachineFunction(Function
&F
, const LLVMTargetMachine
&Target
,
163 const TargetSubtargetInfo
&STI
,
164 unsigned FunctionNum
, MachineModuleInfo
&mmi
)
165 : F(F
), Target(Target
), STI(&STI
), Ctx(mmi
.getContext()), MMI(mmi
) {
166 FunctionNumber
= FunctionNum
;
170 void MachineFunction::handleInsertion(MachineInstr
&MI
) {
172 TheDelegate
->MF_HandleInsertion(MI
);
175 void MachineFunction::handleRemoval(MachineInstr
&MI
) {
177 TheDelegate
->MF_HandleRemoval(MI
);
180 void MachineFunction::init() {
181 // Assume the function starts in SSA form with correct liveness.
182 Properties
.set(MachineFunctionProperties::Property::IsSSA
);
183 Properties
.set(MachineFunctionProperties::Property::TracksLiveness
);
184 if (STI
->getRegisterInfo())
185 RegInfo
= new (Allocator
) MachineRegisterInfo(this);
191 // We can realign the stack if the target supports it and the user hasn't
192 // explicitly asked us not to.
193 bool CanRealignSP
= STI
->getFrameLowering()->isStackRealignable() &&
194 !F
.hasFnAttribute("no-realign-stack");
195 FrameInfo
= new (Allocator
) MachineFrameInfo(
196 getFnStackAlignment(STI
, F
), /*StackRealignable=*/CanRealignSP
,
197 /*ForcedRealign=*/CanRealignSP
&&
198 F
.hasFnAttribute(Attribute::StackAlignment
));
200 setUnsafeStackSize(F
, *FrameInfo
);
202 if (F
.hasFnAttribute(Attribute::StackAlignment
))
203 FrameInfo
->ensureMaxAlignment(*F
.getFnStackAlign());
205 ConstantPool
= new (Allocator
) MachineConstantPool(getDataLayout());
206 Alignment
= STI
->getTargetLowering()->getMinFunctionAlignment();
208 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
209 // FIXME: Use Function::hasOptSize().
210 if (!F
.hasFnAttribute(Attribute::OptimizeForSize
))
211 Alignment
= std::max(Alignment
,
212 STI
->getTargetLowering()->getPrefFunctionAlignment());
214 if (AlignAllFunctions
)
215 Alignment
= Align(1ULL << AlignAllFunctions
);
217 JumpTableInfo
= nullptr;
219 if (isFuncletEHPersonality(classifyEHPersonality(
220 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
221 WinEHInfo
= new (Allocator
) WinEHFuncInfo();
224 if (isScopedEHPersonality(classifyEHPersonality(
225 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
226 WasmEHInfo
= new (Allocator
) WasmEHFuncInfo();
229 assert(Target
.isCompatibleDataLayout(getDataLayout()) &&
230 "Can't create a MachineFunction using a Module with a "
231 "Target-incompatible DataLayout attached\n");
233 PSVManager
= std::make_unique
<PseudoSourceValueManager
>(getTarget());
236 void MachineFunction::initTargetMachineFunctionInfo(
237 const TargetSubtargetInfo
&STI
) {
238 assert(!MFInfo
&& "MachineFunctionInfo already set");
239 MFInfo
= Target
.createMachineFunctionInfo(Allocator
, F
, &STI
);
242 MachineFunction::~MachineFunction() {
246 void MachineFunction::clear() {
248 // Don't call destructors on MachineInstr and MachineOperand. All of their
249 // memory comes from the BumpPtrAllocator which is about to be purged.
251 // Do call MachineBasicBlock destructors, it contains std::vectors.
252 for (iterator I
= begin(), E
= end(); I
!= E
; I
= BasicBlocks
.erase(I
))
253 I
->Insts
.clearAndLeakNodesUnsafely();
254 MBBNumbering
.clear();
256 InstructionRecycler
.clear(Allocator
);
257 OperandRecycler
.clear(Allocator
);
258 BasicBlockRecycler
.clear(Allocator
);
259 CodeViewAnnotations
.clear();
260 VariableDbgInfos
.clear();
262 RegInfo
->~MachineRegisterInfo();
263 Allocator
.Deallocate(RegInfo
);
266 MFInfo
->~MachineFunctionInfo();
267 Allocator
.Deallocate(MFInfo
);
270 FrameInfo
->~MachineFrameInfo();
271 Allocator
.Deallocate(FrameInfo
);
273 ConstantPool
->~MachineConstantPool();
274 Allocator
.Deallocate(ConstantPool
);
277 JumpTableInfo
->~MachineJumpTableInfo();
278 Allocator
.Deallocate(JumpTableInfo
);
282 WinEHInfo
->~WinEHFuncInfo();
283 Allocator
.Deallocate(WinEHInfo
);
287 WasmEHInfo
->~WasmEHFuncInfo();
288 Allocator
.Deallocate(WasmEHInfo
);
292 const DataLayout
&MachineFunction::getDataLayout() const {
293 return F
.getParent()->getDataLayout();
296 /// Get the JumpTableInfo for this function.
297 /// If it does not already exist, allocate one.
298 MachineJumpTableInfo
*MachineFunction::
299 getOrCreateJumpTableInfo(unsigned EntryKind
) {
300 if (JumpTableInfo
) return JumpTableInfo
;
302 JumpTableInfo
= new (Allocator
)
303 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind
)EntryKind
);
304 return JumpTableInfo
;
307 DenormalMode
MachineFunction::getDenormalMode(const fltSemantics
&FPType
) const {
308 return F
.getDenormalMode(FPType
);
311 /// Should we be emitting segmented stack stuff for the function
312 bool MachineFunction::shouldSplitStack() const {
313 return getFunction().hasFnAttribute("split-stack");
316 [[nodiscard
]] unsigned
317 MachineFunction::addFrameInst(const MCCFIInstruction
&Inst
) {
318 FrameInstructions
.push_back(Inst
);
319 return FrameInstructions
.size() - 1;
322 /// This discards all of the MachineBasicBlock numbers and recomputes them.
323 /// This guarantees that the MBB numbers are sequential, dense, and match the
324 /// ordering of the blocks within the function. If a specific MachineBasicBlock
325 /// is specified, only that block and those after it are renumbered.
326 void MachineFunction::RenumberBlocks(MachineBasicBlock
*MBB
) {
327 if (empty()) { MBBNumbering
.clear(); return; }
328 MachineFunction::iterator MBBI
, E
= end();
332 MBBI
= MBB
->getIterator();
334 // Figure out the block number this should have.
335 unsigned BlockNo
= 0;
337 BlockNo
= std::prev(MBBI
)->getNumber() + 1;
339 for (; MBBI
!= E
; ++MBBI
, ++BlockNo
) {
340 if (MBBI
->getNumber() != (int)BlockNo
) {
341 // Remove use of the old number.
342 if (MBBI
->getNumber() != -1) {
343 assert(MBBNumbering
[MBBI
->getNumber()] == &*MBBI
&&
344 "MBB number mismatch!");
345 MBBNumbering
[MBBI
->getNumber()] = nullptr;
348 // If BlockNo is already taken, set that block's number to -1.
349 if (MBBNumbering
[BlockNo
])
350 MBBNumbering
[BlockNo
]->setNumber(-1);
352 MBBNumbering
[BlockNo
] = &*MBBI
;
353 MBBI
->setNumber(BlockNo
);
357 // Okay, all the blocks are renumbered. If we have compactified the block
358 // numbering, shrink MBBNumbering now.
359 assert(BlockNo
<= MBBNumbering
.size() && "Mismatch!");
360 MBBNumbering
.resize(BlockNo
);
363 /// This method iterates over the basic blocks and assigns their IsBeginSection
364 /// and IsEndSection fields. This must be called after MBB layout is finalized
365 /// and the SectionID's are assigned to MBBs.
366 void MachineFunction::assignBeginEndSections() {
367 front().setIsBeginSection();
368 auto CurrentSectionID
= front().getSectionID();
369 for (auto MBBI
= std::next(begin()), E
= end(); MBBI
!= E
; ++MBBI
) {
370 if (MBBI
->getSectionID() == CurrentSectionID
)
372 MBBI
->setIsBeginSection();
373 std::prev(MBBI
)->setIsEndSection();
374 CurrentSectionID
= MBBI
->getSectionID();
376 back().setIsEndSection();
379 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
380 MachineInstr
*MachineFunction::CreateMachineInstr(const MCInstrDesc
&MCID
,
383 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
384 MachineInstr(*this, MCID
, std::move(DL
), NoImplicit
);
387 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
388 /// identical in all ways except the instruction has no parent, prev, or next.
390 MachineFunction::CloneMachineInstr(const MachineInstr
*Orig
) {
391 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
392 MachineInstr(*this, *Orig
);
395 MachineInstr
&MachineFunction::cloneMachineInstrBundle(
396 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertBefore
,
397 const MachineInstr
&Orig
) {
398 MachineInstr
*FirstClone
= nullptr;
399 MachineBasicBlock::const_instr_iterator I
= Orig
.getIterator();
401 MachineInstr
*Cloned
= CloneMachineInstr(&*I
);
402 MBB
.insert(InsertBefore
, Cloned
);
403 if (FirstClone
== nullptr) {
406 Cloned
->bundleWithPred();
409 if (!I
->isBundledWithSucc())
413 // Copy over call site info to the cloned instruction if needed. If Orig is in
414 // a bundle, copyCallSiteInfo takes care of finding the call instruction in
416 if (Orig
.shouldUpdateCallSiteInfo())
417 copyCallSiteInfo(&Orig
, FirstClone
);
421 /// Delete the given MachineInstr.
423 /// This function also serves as the MachineInstr destructor - the real
424 /// ~MachineInstr() destructor must be empty.
425 void MachineFunction::deleteMachineInstr(MachineInstr
*MI
) {
426 // Verify that a call site info is at valid state. This assertion should
427 // be triggered during the implementation of support for the
428 // call site info of a new architecture. If the assertion is triggered,
429 // back trace will tell where to insert a call to updateCallSiteInfo().
430 assert((!MI
->isCandidateForCallSiteEntry() ||
431 CallSitesInfo
.find(MI
) == CallSitesInfo
.end()) &&
432 "Call site info was not updated!");
433 // Strip it for parts. The operand array and the MI object itself are
434 // independently recyclable.
436 deallocateOperandArray(MI
->CapOperands
, MI
->Operands
);
437 // Don't call ~MachineInstr() which must be trivial anyway because
438 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
440 InstructionRecycler
.Deallocate(Allocator
, MI
);
443 /// Allocate a new MachineBasicBlock. Use this instead of
444 /// `new MachineBasicBlock'.
446 MachineFunction::CreateMachineBasicBlock(const BasicBlock
*bb
) {
447 MachineBasicBlock
*MBB
=
448 new (BasicBlockRecycler
.Allocate
<MachineBasicBlock
>(Allocator
))
449 MachineBasicBlock(*this, bb
);
450 // Set BBID for `-basic-block=sections=labels` and
451 // `-basic-block-sections=list` to allow robust mapping of profiles to basic
453 if (Target
.getBBSectionsType() == BasicBlockSection::Labels
||
454 Target
.getBBSectionsType() == BasicBlockSection::List
)
455 MBB
->setBBID(NextBBID
++);
459 /// Delete the given MachineBasicBlock.
460 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock
*MBB
) {
461 assert(MBB
->getParent() == this && "MBB parent mismatch!");
462 // Clean up any references to MBB in jump tables before deleting it.
464 JumpTableInfo
->RemoveMBBFromJumpTables(MBB
);
465 MBB
->~MachineBasicBlock();
466 BasicBlockRecycler
.Deallocate(Allocator
, MBB
);
469 MachineMemOperand
*MachineFunction::getMachineMemOperand(
470 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, uint64_t s
,
471 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
472 SyncScope::ID SSID
, AtomicOrdering Ordering
,
473 AtomicOrdering FailureOrdering
) {
474 return new (Allocator
)
475 MachineMemOperand(PtrInfo
, f
, s
, base_alignment
, AAInfo
, Ranges
,
476 SSID
, Ordering
, FailureOrdering
);
479 MachineMemOperand
*MachineFunction::getMachineMemOperand(
480 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, LLT MemTy
,
481 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
482 SyncScope::ID SSID
, AtomicOrdering Ordering
,
483 AtomicOrdering FailureOrdering
) {
484 return new (Allocator
)
485 MachineMemOperand(PtrInfo
, f
, MemTy
, base_alignment
, AAInfo
, Ranges
, SSID
,
486 Ordering
, FailureOrdering
);
489 MachineMemOperand
*MachineFunction::getMachineMemOperand(
490 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, uint64_t Size
) {
491 return new (Allocator
)
492 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Size
, MMO
->getBaseAlign(),
493 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
494 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
497 MachineMemOperand
*MachineFunction::getMachineMemOperand(
498 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, LLT Ty
) {
499 return new (Allocator
)
500 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Ty
, MMO
->getBaseAlign(),
501 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
502 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
506 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
507 int64_t Offset
, LLT Ty
) {
508 const MachinePointerInfo
&PtrInfo
= MMO
->getPointerInfo();
510 // If there is no pointer value, the offset isn't tracked so we need to adjust
511 // the base alignment.
512 Align Alignment
= PtrInfo
.V
.isNull()
513 ? commonAlignment(MMO
->getBaseAlign(), Offset
)
514 : MMO
->getBaseAlign();
516 // Do not preserve ranges, since we don't necessarily know what the high bits
518 return new (Allocator
) MachineMemOperand(
519 PtrInfo
.getWithOffset(Offset
), MMO
->getFlags(), Ty
, Alignment
,
520 MMO
->getAAInfo(), nullptr, MMO
->getSyncScopeID(),
521 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
525 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
526 const AAMDNodes
&AAInfo
) {
527 MachinePointerInfo MPI
= MMO
->getValue() ?
528 MachinePointerInfo(MMO
->getValue(), MMO
->getOffset()) :
529 MachinePointerInfo(MMO
->getPseudoValue(), MMO
->getOffset());
531 return new (Allocator
) MachineMemOperand(
532 MPI
, MMO
->getFlags(), MMO
->getSize(), MMO
->getBaseAlign(), AAInfo
,
533 MMO
->getRanges(), MMO
->getSyncScopeID(), MMO
->getSuccessOrdering(),
534 MMO
->getFailureOrdering());
538 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
539 MachineMemOperand::Flags Flags
) {
540 return new (Allocator
) MachineMemOperand(
541 MMO
->getPointerInfo(), Flags
, MMO
->getSize(), MMO
->getBaseAlign(),
542 MMO
->getAAInfo(), MMO
->getRanges(), MMO
->getSyncScopeID(),
543 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
546 MachineInstr::ExtraInfo
*MachineFunction::createMIExtraInfo(
547 ArrayRef
<MachineMemOperand
*> MMOs
, MCSymbol
*PreInstrSymbol
,
548 MCSymbol
*PostInstrSymbol
, MDNode
*HeapAllocMarker
, MDNode
*PCSections
,
550 return MachineInstr::ExtraInfo::create(Allocator
, MMOs
, PreInstrSymbol
,
551 PostInstrSymbol
, HeapAllocMarker
,
552 PCSections
, CFIType
);
555 const char *MachineFunction::createExternalSymbolName(StringRef Name
) {
556 char *Dest
= Allocator
.Allocate
<char>(Name
.size() + 1);
557 llvm::copy(Name
, Dest
);
558 Dest
[Name
.size()] = 0;
562 uint32_t *MachineFunction::allocateRegMask() {
563 unsigned NumRegs
= getSubtarget().getRegisterInfo()->getNumRegs();
564 unsigned Size
= MachineOperand::getRegMaskSize(NumRegs
);
565 uint32_t *Mask
= Allocator
.Allocate
<uint32_t>(Size
);
566 memset(Mask
, 0, Size
* sizeof(Mask
[0]));
570 ArrayRef
<int> MachineFunction::allocateShuffleMask(ArrayRef
<int> Mask
) {
571 int* AllocMask
= Allocator
.Allocate
<int>(Mask
.size());
572 copy(Mask
, AllocMask
);
573 return {AllocMask
, Mask
.size()};
576 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
577 LLVM_DUMP_METHOD
void MachineFunction::dump() const {
582 StringRef
MachineFunction::getName() const {
583 return getFunction().getName();
586 void MachineFunction::print(raw_ostream
&OS
, const SlotIndexes
*Indexes
) const {
587 OS
<< "# Machine code for function " << getName() << ": ";
588 getProperties().print(OS
);
591 // Print Frame Information
592 FrameInfo
->print(*this, OS
);
594 // Print JumpTable Information
596 JumpTableInfo
->print(OS
);
598 // Print Constant Pool
599 ConstantPool
->print(OS
);
601 const TargetRegisterInfo
*TRI
= getSubtarget().getRegisterInfo();
603 if (RegInfo
&& !RegInfo
->livein_empty()) {
604 OS
<< "Function Live Ins: ";
605 for (MachineRegisterInfo::livein_iterator
606 I
= RegInfo
->livein_begin(), E
= RegInfo
->livein_end(); I
!= E
; ++I
) {
607 OS
<< printReg(I
->first
, TRI
);
609 OS
<< " in " << printReg(I
->second
, TRI
);
610 if (std::next(I
) != E
)
616 ModuleSlotTracker
MST(getFunction().getParent());
617 MST
.incorporateFunction(getFunction());
618 for (const auto &BB
: *this) {
620 // If we print the whole function, print it at its most verbose level.
621 BB
.print(OS
, MST
, Indexes
, /*IsStandalone=*/true);
624 OS
<< "\n# End machine code for function " << getName() << ".\n\n";
627 /// True if this function needs frame moves for debug or exceptions.
628 bool MachineFunction::needsFrameMoves() const {
629 return getMMI().hasDebugInfo() ||
630 getTarget().Options
.ForceDwarfFrameSection
||
631 F
.needsUnwindTableEntry();
637 struct DOTGraphTraits
<const MachineFunction
*> : public DefaultDOTGraphTraits
{
638 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
640 static std::string
getGraphName(const MachineFunction
*F
) {
641 return ("CFG for '" + F
->getName() + "' function").str();
644 std::string
getNodeLabel(const MachineBasicBlock
*Node
,
645 const MachineFunction
*Graph
) {
648 raw_string_ostream
OSS(OutStr
);
651 OSS
<< printMBBReference(*Node
);
652 if (const BasicBlock
*BB
= Node
->getBasicBlock())
653 OSS
<< ": " << BB
->getName();
658 if (OutStr
[0] == '\n') OutStr
.erase(OutStr
.begin());
660 // Process string output to make it nicer...
661 for (unsigned i
= 0; i
!= OutStr
.length(); ++i
)
662 if (OutStr
[i
] == '\n') { // Left justify
664 OutStr
.insert(OutStr
.begin()+i
+1, 'l');
670 } // end namespace llvm
672 void MachineFunction::viewCFG() const
675 ViewGraph(this, "mf" + getName());
677 errs() << "MachineFunction::viewCFG is only available in debug builds on "
678 << "systems with Graphviz or gv!\n";
682 void MachineFunction::viewCFGOnly() const
685 ViewGraph(this, "mf" + getName(), true);
687 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
688 << "systems with Graphviz or gv!\n";
692 /// Add the specified physical register as a live-in value and
693 /// create a corresponding virtual register for it.
694 Register
MachineFunction::addLiveIn(MCRegister PReg
,
695 const TargetRegisterClass
*RC
) {
696 MachineRegisterInfo
&MRI
= getRegInfo();
697 Register VReg
= MRI
.getLiveInVirtReg(PReg
);
699 const TargetRegisterClass
*VRegRC
= MRI
.getRegClass(VReg
);
701 // A physical register can be added several times.
702 // Between two calls, the register class of the related virtual register
703 // may have been constrained to match some operation constraints.
704 // In that case, check that the current register class includes the
705 // physical register and is a sub class of the specified RC.
706 assert((VRegRC
== RC
|| (VRegRC
->contains(PReg
) &&
707 RC
->hasSubClassEq(VRegRC
))) &&
708 "Register class mismatch!");
711 VReg
= MRI
.createVirtualRegister(RC
);
712 MRI
.addLiveIn(PReg
, VReg
);
716 /// Return the MCSymbol for the specified non-empty jump table.
717 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
718 /// normal 'L' label is returned.
719 MCSymbol
*MachineFunction::getJTISymbol(unsigned JTI
, MCContext
&Ctx
,
720 bool isLinkerPrivate
) const {
721 const DataLayout
&DL
= getDataLayout();
722 assert(JumpTableInfo
&& "No jump tables");
723 assert(JTI
< JumpTableInfo
->getJumpTables().size() && "Invalid JTI!");
725 StringRef Prefix
= isLinkerPrivate
? DL
.getLinkerPrivateGlobalPrefix()
726 : DL
.getPrivateGlobalPrefix();
727 SmallString
<60> Name
;
728 raw_svector_ostream(Name
)
729 << Prefix
<< "JTI" << getFunctionNumber() << '_' << JTI
;
730 return Ctx
.getOrCreateSymbol(Name
);
733 /// Return a function-local symbol to represent the PIC base.
734 MCSymbol
*MachineFunction::getPICBaseSymbol() const {
735 const DataLayout
&DL
= getDataLayout();
736 return Ctx
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
737 Twine(getFunctionNumber()) + "$pb");
740 /// \name Exception Handling
744 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock
*LandingPad
) {
745 unsigned N
= LandingPads
.size();
746 for (unsigned i
= 0; i
< N
; ++i
) {
747 LandingPadInfo
&LP
= LandingPads
[i
];
748 if (LP
.LandingPadBlock
== LandingPad
)
752 LandingPads
.push_back(LandingPadInfo(LandingPad
));
753 return LandingPads
[N
];
756 void MachineFunction::addInvoke(MachineBasicBlock
*LandingPad
,
757 MCSymbol
*BeginLabel
, MCSymbol
*EndLabel
) {
758 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
759 LP
.BeginLabels
.push_back(BeginLabel
);
760 LP
.EndLabels
.push_back(EndLabel
);
763 MCSymbol
*MachineFunction::addLandingPad(MachineBasicBlock
*LandingPad
) {
764 MCSymbol
*LandingPadLabel
= Ctx
.createTempSymbol();
765 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
766 LP
.LandingPadLabel
= LandingPadLabel
;
768 const Instruction
*FirstI
= LandingPad
->getBasicBlock()->getFirstNonPHI();
769 if (const auto *LPI
= dyn_cast
<LandingPadInst
>(FirstI
)) {
770 // If there's no typeid list specified, then "cleanup" is implicit.
771 // Otherwise, id 0 is reserved for the cleanup action.
772 if (LPI
->isCleanup() && LPI
->getNumClauses() != 0)
773 LP
.TypeIds
.push_back(0);
775 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
776 // correct, but we need to do it this way because of how the DWARF EH
777 // emitter processes the clauses.
778 for (unsigned I
= LPI
->getNumClauses(); I
!= 0; --I
) {
779 Value
*Val
= LPI
->getClause(I
- 1);
780 if (LPI
->isCatch(I
- 1)) {
781 LP
.TypeIds
.push_back(
782 getTypeIDFor(dyn_cast
<GlobalValue
>(Val
->stripPointerCasts())));
784 // Add filters in a list.
785 auto *CVal
= cast
<Constant
>(Val
);
786 SmallVector
<unsigned, 4> FilterList
;
787 for (const Use
&U
: CVal
->operands())
788 FilterList
.push_back(
789 getTypeIDFor(cast
<GlobalValue
>(U
->stripPointerCasts())));
791 LP
.TypeIds
.push_back(getFilterIDFor(FilterList
));
795 } else if (const auto *CPI
= dyn_cast
<CatchPadInst
>(FirstI
)) {
796 for (unsigned I
= CPI
->arg_size(); I
!= 0; --I
) {
798 dyn_cast
<GlobalValue
>(CPI
->getArgOperand(I
- 1)->stripPointerCasts());
799 LP
.TypeIds
.push_back(getTypeIDFor(TypeInfo
));
803 assert(isa
<CleanupPadInst
>(FirstI
) && "Invalid landingpad!");
806 return LandingPadLabel
;
809 void MachineFunction::setCallSiteLandingPad(MCSymbol
*Sym
,
810 ArrayRef
<unsigned> Sites
) {
811 LPadToCallSiteMap
[Sym
].append(Sites
.begin(), Sites
.end());
814 unsigned MachineFunction::getTypeIDFor(const GlobalValue
*TI
) {
815 for (unsigned i
= 0, N
= TypeInfos
.size(); i
!= N
; ++i
)
816 if (TypeInfos
[i
] == TI
) return i
+ 1;
818 TypeInfos
.push_back(TI
);
819 return TypeInfos
.size();
822 int MachineFunction::getFilterIDFor(ArrayRef
<unsigned> TyIds
) {
823 // If the new filter coincides with the tail of an existing filter, then
824 // re-use the existing filter. Folding filters more than this requires
825 // re-ordering filters and/or their elements - probably not worth it.
826 for (unsigned i
: FilterEnds
) {
827 unsigned j
= TyIds
.size();
830 if (FilterIds
[--i
] != TyIds
[--j
])
834 // The new filter coincides with range [i, end) of the existing filter.
840 // Add the new filter.
841 int FilterID
= -(1 + FilterIds
.size());
842 FilterIds
.reserve(FilterIds
.size() + TyIds
.size() + 1);
843 llvm::append_range(FilterIds
, TyIds
);
844 FilterEnds
.push_back(FilterIds
.size());
845 FilterIds
.push_back(0); // terminator
849 MachineFunction::CallSiteInfoMap::iterator
850 MachineFunction::getCallSiteInfo(const MachineInstr
*MI
) {
851 assert(MI
->isCandidateForCallSiteEntry() &&
852 "Call site info refers only to call (MI) candidates");
854 if (!Target
.Options
.EmitCallSiteInfo
)
855 return CallSitesInfo
.end();
856 return CallSitesInfo
.find(MI
);
859 /// Return the call machine instruction or find a call within bundle.
860 static const MachineInstr
*getCallInstr(const MachineInstr
*MI
) {
864 for (const auto &BMI
: make_range(getBundleStart(MI
->getIterator()),
865 getBundleEnd(MI
->getIterator())))
866 if (BMI
.isCandidateForCallSiteEntry())
869 llvm_unreachable("Unexpected bundle without a call site candidate");
872 void MachineFunction::eraseCallSiteInfo(const MachineInstr
*MI
) {
873 assert(MI
->shouldUpdateCallSiteInfo() &&
874 "Call site info refers only to call (MI) candidates or "
875 "candidates inside bundles");
877 const MachineInstr
*CallMI
= getCallInstr(MI
);
878 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(CallMI
);
879 if (CSIt
== CallSitesInfo
.end())
881 CallSitesInfo
.erase(CSIt
);
884 void MachineFunction::copyCallSiteInfo(const MachineInstr
*Old
,
885 const MachineInstr
*New
) {
886 assert(Old
->shouldUpdateCallSiteInfo() &&
887 "Call site info refers only to call (MI) candidates or "
888 "candidates inside bundles");
890 if (!New
->isCandidateForCallSiteEntry())
891 return eraseCallSiteInfo(Old
);
893 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
894 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
895 if (CSIt
== CallSitesInfo
.end())
898 CallSiteInfo CSInfo
= CSIt
->second
;
899 CallSitesInfo
[New
] = CSInfo
;
902 void MachineFunction::moveCallSiteInfo(const MachineInstr
*Old
,
903 const MachineInstr
*New
) {
904 assert(Old
->shouldUpdateCallSiteInfo() &&
905 "Call site info refers only to call (MI) candidates or "
906 "candidates inside bundles");
908 if (!New
->isCandidateForCallSiteEntry())
909 return eraseCallSiteInfo(Old
);
911 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
912 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
913 if (CSIt
== CallSitesInfo
.end())
916 CallSiteInfo CSInfo
= std::move(CSIt
->second
);
917 CallSitesInfo
.erase(CSIt
);
918 CallSitesInfo
[New
] = CSInfo
;
921 void MachineFunction::setDebugInstrNumberingCount(unsigned Num
) {
922 DebugInstrNumberingCount
= Num
;
925 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A
,
926 DebugInstrOperandPair B
,
928 // Catch any accidental self-loops.
929 assert(A
.first
!= B
.first
);
930 // Don't allow any substitutions _from_ the memory operand number.
931 assert(A
.second
!= DebugOperandMemNumber
);
933 DebugValueSubstitutions
.push_back({A
, B
, Subreg
});
936 void MachineFunction::substituteDebugValuesForInst(const MachineInstr
&Old
,
938 unsigned MaxOperand
) {
939 // If the Old instruction wasn't tracked at all, there is no work to do.
940 unsigned OldInstrNum
= Old
.peekDebugInstrNum();
944 // Iterate over all operands looking for defs to create substitutions for.
945 // Avoid creating new instr numbers unless we create a new substitution.
946 // While this has no functional effect, it risks confusing someone reading
948 // Examine all the operands, or the first N specified by the caller.
949 MaxOperand
= std::min(MaxOperand
, Old
.getNumOperands());
950 for (unsigned int I
= 0; I
< MaxOperand
; ++I
) {
951 const auto &OldMO
= Old
.getOperand(I
);
952 auto &NewMO
= New
.getOperand(I
);
955 if (!OldMO
.isReg() || !OldMO
.isDef())
957 assert(NewMO
.isDef());
959 unsigned NewInstrNum
= New
.getDebugInstrNum();
960 makeDebugValueSubstitution(std::make_pair(OldInstrNum
, I
),
961 std::make_pair(NewInstrNum
, I
));
965 auto MachineFunction::salvageCopySSA(
966 MachineInstr
&MI
, DenseMap
<Register
, DebugInstrOperandPair
> &DbgPHICache
)
967 -> DebugInstrOperandPair
{
968 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
970 // Check whether this copy-like instruction has already been salvaged into
973 if (auto CopyDstSrc
= TII
.isCopyInstr(MI
)) {
974 Dest
= CopyDstSrc
->Destination
->getReg();
976 assert(MI
.isSubregToReg());
977 Dest
= MI
.getOperand(0).getReg();
980 auto CacheIt
= DbgPHICache
.find(Dest
);
981 if (CacheIt
!= DbgPHICache
.end())
982 return CacheIt
->second
;
984 // Calculate the instruction number to use, or install a DBG_PHI.
985 auto OperandPair
= salvageCopySSAImpl(MI
);
986 DbgPHICache
.insert({Dest
, OperandPair
});
990 auto MachineFunction::salvageCopySSAImpl(MachineInstr
&MI
)
991 -> DebugInstrOperandPair
{
992 MachineRegisterInfo
&MRI
= getRegInfo();
993 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
994 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
996 // Chase the value read by a copy-like instruction back to the instruction
997 // that ultimately _defines_ that value. This may pass:
998 // * Through multiple intermediate copies, including subregister moves /
1000 // * Copies from physical registers that must then be traced back to the
1001 // defining instruction,
1002 // * Or, physical registers may be live-in to (only) the entry block, which
1003 // requires a DBG_PHI to be created.
1004 // We can pursue this problem in that order: trace back through copies,
1005 // optionally through a physical register, to a defining instruction. We
1006 // should never move from physreg to vreg. As we're still in SSA form, no need
1007 // to worry about partial definitions of registers.
1009 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1010 // returns the register read and any subregister identifying which part is
1012 auto GetRegAndSubreg
=
1013 [&](const MachineInstr
&Cpy
) -> std::pair
<Register
, unsigned> {
1014 Register NewReg
, OldReg
;
1017 OldReg
= Cpy
.getOperand(0).getReg();
1018 NewReg
= Cpy
.getOperand(1).getReg();
1019 SubReg
= Cpy
.getOperand(1).getSubReg();
1020 } else if (Cpy
.isSubregToReg()) {
1021 OldReg
= Cpy
.getOperand(0).getReg();
1022 NewReg
= Cpy
.getOperand(2).getReg();
1023 SubReg
= Cpy
.getOperand(3).getImm();
1025 auto CopyDetails
= *TII
.isCopyInstr(Cpy
);
1026 const MachineOperand
&Src
= *CopyDetails
.Source
;
1027 const MachineOperand
&Dest
= *CopyDetails
.Destination
;
1028 OldReg
= Dest
.getReg();
1029 NewReg
= Src
.getReg();
1030 SubReg
= Src
.getSubReg();
1033 return {NewReg
, SubReg
};
1036 // First seek either the defining instruction, or a copy from a physreg.
1037 // During search, the current state is the current copy instruction, and which
1038 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1039 // deal with those later.
1040 auto State
= GetRegAndSubreg(MI
);
1041 auto CurInst
= MI
.getIterator();
1042 SmallVector
<unsigned, 4> SubregsSeen
;
1044 // If we've found a copy from a physreg, first portion of search is over.
1045 if (!State
.first
.isVirtual())
1048 // Record any subregister qualifier.
1050 SubregsSeen
.push_back(State
.second
);
1052 assert(MRI
.hasOneDef(State
.first
));
1053 MachineInstr
&Inst
= *MRI
.def_begin(State
.first
)->getParent();
1054 CurInst
= Inst
.getIterator();
1056 // Any non-copy instruction is the defining instruction we're seeking.
1057 if (!Inst
.isCopyLike() && !TII
.isCopyInstr(Inst
))
1059 State
= GetRegAndSubreg(Inst
);
1062 // Helper lambda to apply additional subregister substitutions to a known
1063 // instruction/operand pair. Adds new (fake) substitutions so that we can
1064 // record the subregister. FIXME: this isn't very space efficient if multiple
1065 // values are tracked back through the same copies; cache something later.
1066 auto ApplySubregisters
=
1067 [&](DebugInstrOperandPair P
) -> DebugInstrOperandPair
{
1068 for (unsigned Subreg
: reverse(SubregsSeen
)) {
1069 // Fetch a new instruction number, not attached to an actual instruction.
1070 unsigned NewInstrNumber
= getNewDebugInstrNum();
1071 // Add a substitution from the "new" number to the known one, with a
1072 // qualifying subreg.
1073 makeDebugValueSubstitution({NewInstrNumber
, 0}, P
, Subreg
);
1074 // Return the new number; to find the underlying value, consumers need to
1075 // deal with the qualifying subreg.
1076 P
= {NewInstrNumber
, 0};
1081 // If we managed to find the defining instruction after COPYs, return an
1082 // instruction / operand pair after adding subregister qualifiers.
1083 if (State
.first
.isVirtual()) {
1084 // Virtual register def -- we can just look up where this happens.
1085 MachineInstr
*Inst
= MRI
.def_begin(State
.first
)->getParent();
1086 for (auto &MO
: Inst
->operands()) {
1087 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != State
.first
)
1089 return ApplySubregisters(
1090 {Inst
->getDebugInstrNum(), Inst
->getOperandNo(&MO
)});
1093 llvm_unreachable("Vreg def with no corresponding operand?");
1096 // Our search ended in a copy from a physreg: walk back up the function
1097 // looking for whatever defines the physreg.
1098 assert(CurInst
->isCopyLike() || TII
.isCopyInstr(*CurInst
));
1099 State
= GetRegAndSubreg(*CurInst
);
1100 Register RegToSeek
= State
.first
;
1102 auto RMII
= CurInst
->getReverseIterator();
1103 auto PrevInstrs
= make_range(RMII
, CurInst
->getParent()->instr_rend());
1104 for (auto &ToExamine
: PrevInstrs
) {
1105 for (auto &MO
: ToExamine
.operands()) {
1106 // Test for operand that defines something aliasing RegToSeek.
1107 if (!MO
.isReg() || !MO
.isDef() ||
1108 !TRI
.regsOverlap(RegToSeek
, MO
.getReg()))
1111 return ApplySubregisters(
1112 {ToExamine
.getDebugInstrNum(), ToExamine
.getOperandNo(&MO
)});
1116 MachineBasicBlock
&InsertBB
= *CurInst
->getParent();
1118 // We reached the start of the block before finding a defining instruction.
1119 // There are numerous scenarios where this can happen:
1120 // * Constant physical registers,
1121 // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1122 // * Arguments in the entry block,
1123 // * Exception handling landing pads.
1124 // Validating all of them is too difficult, so just insert a DBG_PHI reading
1125 // the variable value at this position, rather than checking it makes sense.
1127 // Create DBG_PHI for specified physreg.
1128 auto Builder
= BuildMI(InsertBB
, InsertBB
.getFirstNonPHI(), DebugLoc(),
1129 TII
.get(TargetOpcode::DBG_PHI
));
1130 Builder
.addReg(State
.first
);
1131 unsigned NewNum
= getNewDebugInstrNum();
1132 Builder
.addImm(NewNum
);
1133 return ApplySubregisters({NewNum
, 0u});
1136 void MachineFunction::finalizeDebugInstrRefs() {
1137 auto *TII
= getSubtarget().getInstrInfo();
1139 auto MakeUndefDbgValue
= [&](MachineInstr
&MI
) {
1140 const MCInstrDesc
&RefII
= TII
->get(TargetOpcode::DBG_VALUE_LIST
);
1142 MI
.setDebugValueUndef();
1145 DenseMap
<Register
, DebugInstrOperandPair
> ArgDbgPHIs
;
1146 for (auto &MBB
: *this) {
1147 for (auto &MI
: MBB
) {
1148 if (!MI
.isDebugRef())
1151 bool IsValidRef
= true;
1153 for (MachineOperand
&MO
: MI
.debug_operands()) {
1157 Register Reg
= MO
.getReg();
1159 // Some vregs can be deleted as redundant in the meantime. Mark those
1160 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1161 // quickly deleted, leaving dangling references to vregs with no def.
1162 if (Reg
== 0 || !RegInfo
->hasOneDef(Reg
)) {
1167 assert(Reg
.isVirtual());
1168 MachineInstr
&DefMI
= *RegInfo
->def_instr_begin(Reg
);
1170 // If we've found a copy-like instruction, follow it back to the
1171 // instruction that defines the source value, see salvageCopySSA docs
1172 // for why this is important.
1173 if (DefMI
.isCopyLike() || TII
->isCopyInstr(DefMI
)) {
1174 auto Result
= salvageCopySSA(DefMI
, ArgDbgPHIs
);
1175 MO
.ChangeToDbgInstrRef(Result
.first
, Result
.second
);
1177 // Otherwise, identify the operand number that the VReg refers to.
1178 unsigned OperandIdx
= 0;
1179 for (const auto &DefMO
: DefMI
.operands()) {
1180 if (DefMO
.isReg() && DefMO
.isDef() && DefMO
.getReg() == Reg
)
1184 assert(OperandIdx
< DefMI
.getNumOperands());
1186 // Morph this instr ref to point at the given instruction and operand.
1187 unsigned ID
= DefMI
.getDebugInstrNum();
1188 MO
.ChangeToDbgInstrRef(ID
, OperandIdx
);
1193 MakeUndefDbgValue(MI
);
1198 bool MachineFunction::shouldUseDebugInstrRef() const {
1199 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1200 // have optimized code inlined into this unoptimized code, however with
1201 // fewer and less aggressive optimizations happening, coverage and accuracy
1202 // should not suffer.
1203 if (getTarget().getOptLevel() == CodeGenOpt::None
)
1206 // Don't use instr-ref if this function is marked optnone.
1207 if (F
.hasFnAttribute(Attribute::OptimizeNone
))
1210 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1216 bool MachineFunction::useDebugInstrRef() const {
1217 return UseDebugInstrRef
;
1220 void MachineFunction::setUseDebugInstrRef(bool Use
) {
1221 UseDebugInstrRef
= Use
;
1224 // Use one million as a high / reserved number.
1225 const unsigned MachineFunction::DebugOperandMemNumber
= 1000000;
1229 //===----------------------------------------------------------------------===//
1230 // MachineJumpTableInfo implementation
1231 //===----------------------------------------------------------------------===//
1233 /// Return the size of each entry in the jump table.
1234 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout
&TD
) const {
1235 // The size of a jump table entry is 4 bytes unless the entry is just the
1236 // address of a block, in which case it is the pointer size.
1237 switch (getEntryKind()) {
1238 case MachineJumpTableInfo::EK_BlockAddress
:
1239 return TD
.getPointerSize();
1240 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1242 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1243 case MachineJumpTableInfo::EK_LabelDifference32
:
1244 case MachineJumpTableInfo::EK_Custom32
:
1246 case MachineJumpTableInfo::EK_Inline
:
1249 llvm_unreachable("Unknown jump table encoding!");
1252 /// Return the alignment of each entry in the jump table.
1253 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout
&TD
) const {
1254 // The alignment of a jump table entry is the alignment of int32 unless the
1255 // entry is just the address of a block, in which case it is the pointer
1257 switch (getEntryKind()) {
1258 case MachineJumpTableInfo::EK_BlockAddress
:
1259 return TD
.getPointerABIAlignment(0).value();
1260 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1261 return TD
.getABIIntegerTypeAlignment(64).value();
1262 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1263 case MachineJumpTableInfo::EK_LabelDifference32
:
1264 case MachineJumpTableInfo::EK_Custom32
:
1265 return TD
.getABIIntegerTypeAlignment(32).value();
1266 case MachineJumpTableInfo::EK_Inline
:
1269 llvm_unreachable("Unknown jump table encoding!");
1272 /// Create a new jump table entry in the jump table info.
1273 unsigned MachineJumpTableInfo::createJumpTableIndex(
1274 const std::vector
<MachineBasicBlock
*> &DestBBs
) {
1275 assert(!DestBBs
.empty() && "Cannot create an empty jump table!");
1276 JumpTables
.push_back(MachineJumpTableEntry(DestBBs
));
1277 return JumpTables
.size()-1;
1280 /// If Old is the target of any jump tables, update the jump tables to branch
1282 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock
*Old
,
1283 MachineBasicBlock
*New
) {
1284 assert(Old
!= New
&& "Not making a change?");
1285 bool MadeChange
= false;
1286 for (size_t i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
)
1287 ReplaceMBBInJumpTable(i
, Old
, New
);
1291 /// If MBB is present in any jump tables, remove it.
1292 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock
*MBB
) {
1293 bool MadeChange
= false;
1294 for (MachineJumpTableEntry
&JTE
: JumpTables
) {
1295 auto removeBeginItr
= std::remove(JTE
.MBBs
.begin(), JTE
.MBBs
.end(), MBB
);
1296 MadeChange
|= (removeBeginItr
!= JTE
.MBBs
.end());
1297 JTE
.MBBs
.erase(removeBeginItr
, JTE
.MBBs
.end());
1302 /// If Old is a target of the jump tables, update the jump table to branch to
1304 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx
,
1305 MachineBasicBlock
*Old
,
1306 MachineBasicBlock
*New
) {
1307 assert(Old
!= New
&& "Not making a change?");
1308 bool MadeChange
= false;
1309 MachineJumpTableEntry
&JTE
= JumpTables
[Idx
];
1310 for (MachineBasicBlock
*&MBB
: JTE
.MBBs
)
1318 void MachineJumpTableInfo::print(raw_ostream
&OS
) const {
1319 if (JumpTables
.empty()) return;
1321 OS
<< "Jump Tables:\n";
1323 for (unsigned i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
) {
1324 OS
<< printJumpTableEntryReference(i
) << ':';
1325 for (const MachineBasicBlock
*MBB
: JumpTables
[i
].MBBs
)
1326 OS
<< ' ' << printMBBReference(*MBB
);
1334 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1335 LLVM_DUMP_METHOD
void MachineJumpTableInfo::dump() const { print(dbgs()); }
1338 Printable
llvm::printJumpTableEntryReference(unsigned Idx
) {
1339 return Printable([Idx
](raw_ostream
&OS
) { OS
<< "%jump-table." << Idx
; });
1342 //===----------------------------------------------------------------------===//
1343 // MachineConstantPool implementation
1344 //===----------------------------------------------------------------------===//
1346 void MachineConstantPoolValue::anchor() {}
1348 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout
&DL
) const {
1349 return DL
.getTypeAllocSize(Ty
);
1352 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout
&DL
) const {
1353 if (isMachineConstantPoolEntry())
1354 return Val
.MachineCPVal
->getSizeInBytes(DL
);
1355 return DL
.getTypeAllocSize(Val
.ConstVal
->getType());
1358 bool MachineConstantPoolEntry::needsRelocation() const {
1359 if (isMachineConstantPoolEntry())
1361 return Val
.ConstVal
->needsDynamicRelocation();
1365 MachineConstantPoolEntry::getSectionKind(const DataLayout
*DL
) const {
1366 if (needsRelocation())
1367 return SectionKind::getReadOnlyWithRel();
1368 switch (getSizeInBytes(*DL
)) {
1370 return SectionKind::getMergeableConst4();
1372 return SectionKind::getMergeableConst8();
1374 return SectionKind::getMergeableConst16();
1376 return SectionKind::getMergeableConst32();
1378 return SectionKind::getReadOnly();
1382 MachineConstantPool::~MachineConstantPool() {
1383 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1384 // so keep track of which we've deleted to avoid double deletions.
1385 DenseSet
<MachineConstantPoolValue
*> Deleted
;
1386 for (const MachineConstantPoolEntry
&C
: Constants
)
1387 if (C
.isMachineConstantPoolEntry()) {
1388 Deleted
.insert(C
.Val
.MachineCPVal
);
1389 delete C
.Val
.MachineCPVal
;
1391 for (MachineConstantPoolValue
*CPV
: MachineCPVsSharingEntries
) {
1392 if (Deleted
.count(CPV
) == 0)
1397 /// Test whether the given two constants can be allocated the same constant pool
1399 static bool CanShareConstantPoolEntry(const Constant
*A
, const Constant
*B
,
1400 const DataLayout
&DL
) {
1401 // Handle the trivial case quickly.
1402 if (A
== B
) return true;
1404 // If they have the same type but weren't the same constant, quickly
1406 if (A
->getType() == B
->getType()) return false;
1408 // We can't handle structs or arrays.
1409 if (isa
<StructType
>(A
->getType()) || isa
<ArrayType
>(A
->getType()) ||
1410 isa
<StructType
>(B
->getType()) || isa
<ArrayType
>(B
->getType()))
1413 // For now, only support constants with the same size.
1414 uint64_t StoreSize
= DL
.getTypeStoreSize(A
->getType());
1415 if (StoreSize
!= DL
.getTypeStoreSize(B
->getType()) || StoreSize
> 128)
1418 Type
*IntTy
= IntegerType::get(A
->getContext(), StoreSize
*8);
1420 // Try constant folding a bitcast of both instructions to an integer. If we
1421 // get two identical ConstantInt's, then we are good to share them. We use
1422 // the constant folding APIs to do this so that we get the benefit of
1424 if (isa
<PointerType
>(A
->getType()))
1425 A
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1426 const_cast<Constant
*>(A
), IntTy
, DL
);
1427 else if (A
->getType() != IntTy
)
1428 A
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(A
),
1430 if (isa
<PointerType
>(B
->getType()))
1431 B
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1432 const_cast<Constant
*>(B
), IntTy
, DL
);
1433 else if (B
->getType() != IntTy
)
1434 B
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(B
),
1440 /// Create a new entry in the constant pool or return an existing one.
1441 /// User must specify the log2 of the minimum required alignment for the object.
1442 unsigned MachineConstantPool::getConstantPoolIndex(const Constant
*C
,
1444 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1446 // Check to see if we already have this constant.
1448 // FIXME, this could be made much more efficient for large constant pools.
1449 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
)
1450 if (!Constants
[i
].isMachineConstantPoolEntry() &&
1451 CanShareConstantPoolEntry(Constants
[i
].Val
.ConstVal
, C
, DL
)) {
1452 if (Constants
[i
].getAlign() < Alignment
)
1453 Constants
[i
].Alignment
= Alignment
;
1457 Constants
.push_back(MachineConstantPoolEntry(C
, Alignment
));
1458 return Constants
.size()-1;
1461 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue
*V
,
1463 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1465 // Check to see if we already have this constant.
1467 // FIXME, this could be made much more efficient for large constant pools.
1468 int Idx
= V
->getExistingMachineCPValue(this, Alignment
);
1470 MachineCPVsSharingEntries
.insert(V
);
1471 return (unsigned)Idx
;
1474 Constants
.push_back(MachineConstantPoolEntry(V
, Alignment
));
1475 return Constants
.size()-1;
1478 void MachineConstantPool::print(raw_ostream
&OS
) const {
1479 if (Constants
.empty()) return;
1481 OS
<< "Constant Pool:\n";
1482 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
) {
1483 OS
<< " cp#" << i
<< ": ";
1484 if (Constants
[i
].isMachineConstantPoolEntry())
1485 Constants
[i
].Val
.MachineCPVal
->print(OS
);
1487 Constants
[i
].Val
.ConstVal
->printAsOperand(OS
, /*PrintType=*/false);
1488 OS
<< ", align=" << Constants
[i
].getAlign().value();
1493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1494 LLVM_DUMP_METHOD
void MachineConstantPool::dump() const { print(dbgs()); }