1 ; RUN: opt -S -passes=deadargelim %s | FileCheck %s
3 ; Case 0: the basic example: an entire aggregate use is returned, but it's
4 ; actually only used in ways we can eliminate. We gain benefit from analysing
5 ; the "use" and applying its results to all sub-values.
7 ; CHECK-LABEL: define internal void @agguse_dead()
9 define internal { i32, i32 } @agguse_dead() {
10 ret { i32, i32 } { i32 0, i32 1 }
13 define internal { i32, i32 } @test_agguse_dead() {
14 %val = call { i32, i32 } @agguse_dead()
20 ; Case 1: an opaque use of the aggregate exists (in this case dead). Otherwise
21 ; only one value is used, so function can be simplified.
23 ; CHECK-LABEL: define internal i32 @rets_independent_if_agguse_dead()
24 ; CHECK: [[RET:%.*]] = extractvalue { i32, i32 } { i32 0, i32 1 }, 1
25 ; CHECK: ret i32 [[RET]]
27 define internal { i32, i32 } @rets_independent_if_agguse_dead() {
28 ret { i32, i32 } { i32 0, i32 1 }
31 define internal { i32, i32 } @test_rets_independent_if_agguse_dead(i1 %tst) {
32 %val = call { i32, i32 } @rets_independent_if_agguse_dead()
33 br i1 %tst, label %use_1, label %use_aggregate
36 ; This use can be classified as applying only to ret 1.
37 %val0 = extractvalue { i32, i32 } %val, 1
38 call void @callee(i32 %val0)
39 ret { i32, i32 } poison
42 ; This use is assumed to apply to both 0 and 1.
46 ; Case 2: an opaque use of the aggregate exists (in this case *live*). Other
47 ; uses shouldn't matter.
49 ; CHECK-LABEL: define internal { i32, i32 } @rets_live_agguse()
50 ; CHECK: ret { i32, i32 } { i32 0, i32 1 }
52 define internal { i32, i32 } @rets_live_agguse() {
53 ret { i32, i32} { i32 0, i32 1 }
56 define { i32, i32 } @test_rets_live_aggues(i1 %tst) {
57 %val = call { i32, i32 } @rets_live_agguse()
58 br i1 %tst, label %use_1, label %use_aggregate
61 ; This use can be classified as applying only to ret 1.
62 %val0 = extractvalue { i32, i32 } %val, 1
63 call void @callee(i32 %val0)
64 ret { i32, i32 } poison
67 ; This use is assumed to apply to both 0 and 1.
71 declare void @callee(i32)
73 ; Case 3: the insertvalue meant %in was live if ret-slot-1 was, but we were only
74 ; tracking multiple ret-slots for struct types. So %in was eliminated
77 ; CHECK-LABEL: define internal [2 x i32] @array_rets_have_multiple_slots(i32 %in)
79 define internal [2 x i32] @array_rets_have_multiple_slots(i32 %in) {
80 %ret = insertvalue [2 x i32] poison, i32 %in, 1
84 define [2 x i32] @test_array_rets_have_multiple_slots() {
85 %res = call [2 x i32] @array_rets_have_multiple_slots(i32 42)
89 ; Case 4: we can remove some retvals from the array. It's nice to produce an
90 ; array again having done so (rather than converting it to a struct).
92 ; CHECK-LABEL: define internal [2 x i32] @can_shrink_arrays()
93 ; CHECK: [[VAL0:%.*]] = extractvalue [3 x i32] [i32 42, i32 43, i32 44], 0
94 ; CHECK: [[RESTMP:%.*]] = insertvalue [2 x i32] poison, i32 [[VAL0]], 0
95 ; CHECK: [[VAL2:%.*]] = extractvalue [3 x i32] [i32 42, i32 43, i32 44], 2
96 ; CHECK: [[RES:%.*]] = insertvalue [2 x i32] [[RESTMP]], i32 [[VAL2]], 1
97 ; CHECK: ret [2 x i32] [[RES]]
99 ; CHECK-LABEL: define void @test_can_shrink_arrays()
101 define internal [3 x i32] @can_shrink_arrays() {
102 ret [3 x i32] [i32 42, i32 43, i32 44]
105 define void @test_can_shrink_arrays() {
106 %res = call [3 x i32] @can_shrink_arrays()
108 %res.0 = extractvalue [3 x i32] %res, 0
109 call void @callee(i32 %res.0)
111 %res.2 = extractvalue [3 x i32] %res, 2
112 call void @callee(i32 %res.2)
117 ; Case 5: %in gets passed directly to the return. It should mark be marked as
118 ; used if *any* of the return values are, not just if value 0 is.
120 ; CHECK-LABEL: define internal i32 @ret_applies_to_all({ i32, i32 } %in)
121 ; CHECK: [[RET:%.*]] = extractvalue { i32, i32 } %in, 1
122 ; CHECK: ret i32 [[RET]]
124 define internal {i32, i32} @ret_applies_to_all({i32, i32} %in) {
128 define i32 @test_ret_applies_to_all() {
129 %val = call {i32, i32} @ret_applies_to_all({i32, i32} {i32 42, i32 43})
130 %ret = extractvalue {i32, i32} %val, 1
134 ; Case 6: When considering @mid, the return instruciton has sub-value 0
135 ; unconditionally live, but 1 only conditionally live. Since at that level we're
136 ; applying the results to the whole of %res, this means %res is live and cannot
137 ; be reduced. There is scope for further optimisation here (though not visible
138 ; in this test-case).
140 ; CHECK-LABEL: define internal { ptr, i32 } @inner()
142 define internal {ptr, i32} @mid() {
143 %res = call {ptr, i32} @inner()
144 %intval = extractvalue {ptr, i32} %res, 1
145 %tst = icmp eq i32 %intval, 42
146 br i1 %tst, label %true, label %true
152 define internal {ptr, i32} @inner() {
153 ret {ptr, i32} {ptr null, i32 42}
156 define internal i8 @outer() {
157 %res = call {ptr, i32} @mid()
158 %resptr = extractvalue {ptr, i32} %res, 0
160 %val = load i8, ptr %resptr
164 define internal { i32 } @agg_ret() {
169 ; CHECK-LABEL: define void @PR24906
170 ; CHECK: %[[invoke:.*]] = invoke i32 @agg_ret()
171 ; CHECK: %[[oldret:.*]] = insertvalue { i32 } poison, i32 %[[invoke]], 0
172 ; CHECK: phi { i32 } [ %[[oldret]],
173 define void @PR24906() personality ptr poison {
175 %tmp2 = invoke { i32 } @agg_ret()
176 to label %bb3 unwind label %bb4
179 %tmp3 = phi { i32 } [ %tmp2, %entry ]
183 %tmp4 = landingpad { ptr, i32 }