Bump version to 19.1.0-rc3
[llvm-project.git] / llvm / test / Transforms / Inline / cgscc-cycle.ll
blobfc9823c067ae2b188670ba2ccbb142d73bc47640
1 ; This test contains extremely tricky call graph structures for the inliner to
2 ; handle correctly. They form cycles where the inliner introduces code that is
3 ; immediately or can eventually be transformed back into the original code. And
4 ; each step changes the call graph and so will trigger iteration. This requires
5 ; some out-of-band way to prevent infinitely re-inlining and re-transforming the
6 ; code.
8 ; RUN: opt < %s -passes='cgscc(inline,function(sroa,instcombine))' -inline-threshold=50 -S | FileCheck %s
11 ; The `test1_*` collection of functions form a directly cycling pattern.
13 define void @test1_a(ptr %ptr) {
14 ; CHECK-LABEL: define void @test1_a(
15 entry:
16   call void @test1_b(ptr @test1_b, i1 false, i32 0)
17 ; Inlining and simplifying this call will reliably produce the exact same call,
18 ; over and over again. However, each inlining increments the count, and so we
19 ; expect this test case to stop after one round of inlining with a final
20 ; argument of '1'.
21 ; CHECK-NOT:     call
22 ; CHECK:         call void @test1_b(ptr nonnull @test1_b, i1 false, i32 1)
23 ; CHECK-NOT:     call
25   ret void
28 define void @test1_b(ptr %arg, i1 %flag, i32 %inline_count) {
29 ; CHECK-LABEL: define void @test1_b(
30 entry:
31   %a = alloca ptr
32   store ptr %arg, ptr %a
33 ; This alloca and store should remain through any optimization.
34 ; CHECK:         %[[A:.*]] = alloca
35 ; CHECK:         store ptr %arg, ptr %[[A]]
37   br i1 %flag, label %bb1, label %bb2
39 bb1:
40   call void @test1_a(ptr %a) noinline
41   br label %bb2
43 bb2:
44   %p = load ptr, ptr %a
45   %inline_count_inc = add i32 %inline_count, 1
46   call void %p(ptr %arg, i1 %flag, i32 %inline_count_inc)
47 ; And we should continue to load and call indirectly through optimization.
48 ; CHECK:         %[[P:.*]] = load ptr, ptr %[[A]]
49 ; CHECK:         call void %[[P]](
51   ret void
54 define void @test2_a(ptr %ptr) {
55 ; CHECK-LABEL: define void @test2_a(
56 entry:
57   call void @test2_b(ptr @test2_b, ptr @test2_c, i1 false, i32 0)
58 ; Inlining and simplifying this call will reliably produce the exact same call,
59 ; but only after doing two rounds if inlining, first from @test2_b then
60 ; @test2_c. We check the exact number of inlining rounds before we cut off to
61 ; break the cycle by inspecting the last paramater that gets incremented with
62 ; each inlined function body.
63 ; CHECK-NOT:     call
64 ; CHECK:         call void @test2_b(ptr nonnull @test2_b, ptr nonnull @test2_c, i1 false, i32 2)
65 ; CHECK-NOT:     call
66   ret void
69 define void @test2_b(ptr %arg1, ptr %arg2, i1 %flag, i32 %inline_count) {
70 ; CHECK-LABEL: define void @test2_b(
71 entry:
72   %a = alloca ptr
73   store ptr %arg2, ptr %a
74 ; This alloca and store should remain through any optimization.
75 ; CHECK:         %[[A:.*]] = alloca
76 ; CHECK:         store ptr %arg2, ptr %[[A]]
78   br i1 %flag, label %bb1, label %bb2
80 bb1:
81   call void @test2_a(ptr %a) noinline
82   br label %bb2
84 bb2:
85   %p = load ptr, ptr %a
86   %inline_count_inc = add i32 %inline_count, 1
87   call void %p(ptr %arg1, ptr %arg2, i1 %flag, i32 %inline_count_inc)
88 ; And we should continue to load and call indirectly through optimization.
89 ; CHECK:         %[[P:.*]] = load ptr, ptr %[[A]]
90 ; CHECK:         call void %[[P]](
92   ret void
95 define void @test2_c(ptr %arg1, ptr %arg2, i1 %flag, i32 %inline_count) {
96 ; CHECK-LABEL: define void @test2_c(
97 entry:
98   %a = alloca ptr
99   store ptr %arg1, ptr %a
100 ; This alloca and store should remain through any optimization.
101 ; CHECK:         %[[A:.*]] = alloca
102 ; CHECK:         store ptr %arg1, ptr %[[A]]
104   br i1 %flag, label %bb1, label %bb2
106 bb1:
107   call void @test2_a(ptr %a) noinline
108   br label %bb2
110 bb2:
111   %p = load ptr, ptr %a
112   %inline_count_inc = add i32 %inline_count, 1
113   call void %p(ptr %arg1, ptr %arg2, i1 %flag, i32 %inline_count_inc)
114 ; And we should continue to load and call indirectly through optimization.
115 ; CHECK:         %[[P:.*]] = load ptr, ptr %[[A]]
116 ; CHECK:         call void %[[P]](
118   ret void
121 ; Another infinite inlining case. The initial callgraph is like following:
123 ;         test3_a <---> test3_b
124 ;             |         ^
125 ;             v         |
126 ;         test3_c <---> test3_d
128 ; For all the call edges in the call graph, only test3_c and test3_d can be
129 ; inlined into test3_a, and no other call edge can be inlined.
131 ; After test3_c is inlined into test3_a, the original call edge test3_a->test3_c
132 ; will be removed, a new call edge will be added and the call graph becomes:
134 ;            test3_a <---> test3_b
135 ;                  \      ^
136 ;                   v    /
137 ;     test3_c <---> test3_d
138 ; But test3_a, test3_b, test3_c and test3_d still belong to the same SCC.
140 ; Then after test3_a->test3_d is inlined, when test3_a->test3_d is converted to
141 ; a ref edge, the original SCC will be split into two: {test3_c, test3_d} and
142 ; {test3_a, test3_b}, immediately after the newly added ref edge
143 ; test3_a->test3_c will be converted to a call edge, and the two SCCs will be
144 ; merged into the original one again. During this cycle, the original SCC will
145 ; be added into UR.CWorklist again and this creates an infinite loop.
147 @a = global i64 0
148 @b = global i64 0
150 ; Check test3_c is inlined into test3_a once and only once.
151 ; CHECK-LABEL: @test3_a(
152 ; CHECK: tail call void @test3_b()
153 ; CHECK-NEXT: tail call void @test3_d(i32 5)
154 ; CHECK-NEXT: %[[LD1:.*]] = load i64, ptr @a
155 ; CHECK-NEXT: %[[ADD1:.*]] = add nsw i64 %[[LD1]], 1
156 ; CHECK-NEXT: store i64 %[[ADD1]], ptr @a
157 ; CHECK-NEXT: %[[LD2:.*]] = load i64, ptr @b
158 ; CHECK-NEXT: %[[ADD2:.*]] = add nsw i64 %[[LD2]], 5
159 ; CHECK-NEXT: store i64 %[[ADD2]], ptr @b
160 ; CHECK-NEXT: ret void
162 ; Function Attrs: noinline
163 define void @test3_a() #0 {
164 entry:
165   tail call void @test3_b()
166   tail call void @test3_c(i32 5)
167   %t0 = load i64, ptr @b
168   %add = add nsw i64 %t0, 5
169   store i64 %add, ptr @b
170   ret void
173 ; Function Attrs: noinline
174 define void @test3_b() #0 {
175 entry:
176   tail call void @test3_a()
177   %t0 = load i64, ptr @a
178   %add = add nsw i64 %t0, 2
179   store i64 %add, ptr @a
180   ret void
183 define void @test3_d(i32 %i) {
184 entry:
185   %cmp = icmp eq i32 %i, 5
186   br i1 %cmp, label %if.end, label %if.then
188 if.then:                                          ; preds = %entry
189   %call = tail call i64 @random()
190   %t0 = load i64, ptr @a
191   %add = add nsw i64 %t0, %call
192   store i64 %add, ptr @a
193   br label %if.end
195 if.end:                                           ; preds = %entry, %if.then
196   tail call void @test3_c(i32 %i)
197   tail call void @test3_b()
198   %t6 = load i64, ptr @a
199   %add79 = add nsw i64 %t6, 3
200   store i64 %add79, ptr @a
201   ret void
204 define void @test3_c(i32 %i) {
205 entry:
206   %cmp = icmp eq i32 %i, 5
207   br i1 %cmp, label %if.end, label %if.then
209 if.then:                                          ; preds = %entry
210   %call = tail call i64 @random()
211   %t0 = load i64, ptr @a
212   %add = add nsw i64 %t0, %call
213   store i64 %add, ptr @a
214   br label %if.end
216 if.end:                                           ; preds = %entry, %if.then
217   tail call void @test3_d(i32 %i)
218   %t6 = load i64, ptr @a
219   %add85 = add nsw i64 %t6, 1
220   store i64 %add85, ptr @a
221   ret void
224 declare i64 @random()
226 attributes #0 = { noinline }