Bump version to 19.1.0-rc3
[llvm-project.git] / llvm / test / Transforms / LoopUnroll / scevunroll.ll
blobb6b14e365cc1d9fed16febf3dacc940ca74525d2
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -S -passes='loop(indvars),loop-unroll' -verify-loop-info | FileCheck %s
4 ; Unit tests for loop unrolling using ScalarEvolution to compute trip counts.
6 ; Indvars is run first to generate an "old" SCEV result. Some unit
7 ; tests may check that SCEV is properly invalidated between passes.
9 ; Completely unroll loops without a canonical IV.
10 define i32 @sansCanonical(ptr %base) nounwind {
11 ; CHECK-LABEL: @sansCanonical(
12 ; CHECK-NEXT:  entry:
13 ; CHECK-NEXT:    br label [[WHILE_BODY:%.*]]
14 ; CHECK:       while.body:
15 ; CHECK-NEXT:    [[ADR:%.*]] = getelementptr inbounds i32, ptr [[BASE:%.*]], i64 9
16 ; CHECK-NEXT:    [[TMP:%.*]] = load i32, ptr [[ADR]], align 8
17 ; CHECK-NEXT:    [[ADR_1:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 8
18 ; CHECK-NEXT:    [[TMP_1:%.*]] = load i32, ptr [[ADR_1]], align 8
19 ; CHECK-NEXT:    [[SUM_NEXT_1:%.*]] = add i32 [[TMP]], [[TMP_1]]
20 ; CHECK-NEXT:    [[ADR_2:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 7
21 ; CHECK-NEXT:    [[TMP_2:%.*]] = load i32, ptr [[ADR_2]], align 8
22 ; CHECK-NEXT:    [[SUM_NEXT_2:%.*]] = add i32 [[SUM_NEXT_1]], [[TMP_2]]
23 ; CHECK-NEXT:    [[ADR_3:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 6
24 ; CHECK-NEXT:    [[TMP_3:%.*]] = load i32, ptr [[ADR_3]], align 8
25 ; CHECK-NEXT:    [[SUM_NEXT_3:%.*]] = add i32 [[SUM_NEXT_2]], [[TMP_3]]
26 ; CHECK-NEXT:    [[ADR_4:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 5
27 ; CHECK-NEXT:    [[TMP_4:%.*]] = load i32, ptr [[ADR_4]], align 8
28 ; CHECK-NEXT:    [[SUM_NEXT_4:%.*]] = add i32 [[SUM_NEXT_3]], [[TMP_4]]
29 ; CHECK-NEXT:    [[ADR_5:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 4
30 ; CHECK-NEXT:    [[TMP_5:%.*]] = load i32, ptr [[ADR_5]], align 8
31 ; CHECK-NEXT:    [[SUM_NEXT_5:%.*]] = add i32 [[SUM_NEXT_4]], [[TMP_5]]
32 ; CHECK-NEXT:    [[ADR_6:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 3
33 ; CHECK-NEXT:    [[TMP_6:%.*]] = load i32, ptr [[ADR_6]], align 8
34 ; CHECK-NEXT:    [[SUM_NEXT_6:%.*]] = add i32 [[SUM_NEXT_5]], [[TMP_6]]
35 ; CHECK-NEXT:    [[ADR_7:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 2
36 ; CHECK-NEXT:    [[TMP_7:%.*]] = load i32, ptr [[ADR_7]], align 8
37 ; CHECK-NEXT:    [[SUM_NEXT_7:%.*]] = add i32 [[SUM_NEXT_6]], [[TMP_7]]
38 ; CHECK-NEXT:    [[ADR_8:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 1
39 ; CHECK-NEXT:    [[TMP_8:%.*]] = load i32, ptr [[ADR_8]], align 8
40 ; CHECK-NEXT:    [[SUM_NEXT_8:%.*]] = add i32 [[SUM_NEXT_7]], [[TMP_8]]
41 ; CHECK-NEXT:    ret i32 [[SUM_NEXT_8]]
43 entry:
44   br label %while.body
46 while.body:
47   %iv = phi i64 [ 10, %entry ], [ %iv.next, %while.body ]
48   %sum = phi i32 [ 0, %entry ], [ %sum.next, %while.body ]
49   %iv.next = add i64 %iv, -1
50   %adr = getelementptr inbounds i32, ptr %base, i64 %iv.next
51   %tmp = load i32, ptr %adr, align 8
52   %sum.next = add i32 %sum, %tmp
53   %iv.narrow = trunc i64 %iv.next to i32
54   %cmp.i65 = icmp sgt i32 %iv.narrow, 0
55   br i1 %cmp.i65, label %while.body, label %exit
57 exit:
58   ret i32 %sum
61 ; SCEV unrolling properly handles loops with multiple exits. In this
62 ; case, the computed trip count based on a canonical IV is *not* for a
63 ; latch block.
64 define i64 @earlyLoopTest(ptr %base) nounwind {
65 ; CHECK-LABEL: @earlyLoopTest(
66 ; CHECK-NEXT:  entry:
67 ; CHECK-NEXT:    br label [[LOOP:%.*]]
68 ; CHECK:       loop:
69 ; CHECK-NEXT:    [[VAL:%.*]] = load i64, ptr [[BASE:%.*]], align 4
70 ; CHECK-NEXT:    br label [[TAIL:%.*]]
71 ; CHECK:       tail:
72 ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ne i64 [[VAL]], 0
73 ; CHECK-NEXT:    br i1 [[CMP2]], label [[LOOP_1:%.*]], label [[EXIT2:%.*]]
74 ; CHECK:       loop.1:
75 ; CHECK-NEXT:    [[ADR_1:%.*]] = getelementptr i64, ptr [[BASE]], i64 1
76 ; CHECK-NEXT:    [[VAL_1:%.*]] = load i64, ptr [[ADR_1]], align 4
77 ; CHECK-NEXT:    [[S_NEXT_1:%.*]] = add i64 [[VAL]], [[VAL_1]]
78 ; CHECK-NEXT:    br label [[TAIL_1:%.*]]
79 ; CHECK:       tail.1:
80 ; CHECK-NEXT:    [[CMP2_1:%.*]] = icmp ne i64 [[VAL_1]], 0
81 ; CHECK-NEXT:    br i1 [[CMP2_1]], label [[LOOP_2:%.*]], label [[EXIT2]]
82 ; CHECK:       loop.2:
83 ; CHECK-NEXT:    [[ADR_2:%.*]] = getelementptr i64, ptr [[BASE]], i64 2
84 ; CHECK-NEXT:    [[VAL_2:%.*]] = load i64, ptr [[ADR_2]], align 4
85 ; CHECK-NEXT:    [[S_NEXT_2:%.*]] = add i64 [[S_NEXT_1]], [[VAL_2]]
86 ; CHECK-NEXT:    br label [[TAIL_2:%.*]]
87 ; CHECK:       tail.2:
88 ; CHECK-NEXT:    [[CMP2_2:%.*]] = icmp ne i64 [[VAL_2]], 0
89 ; CHECK-NEXT:    br i1 [[CMP2_2]], label [[LOOP_3:%.*]], label [[EXIT2]]
90 ; CHECK:       loop.3:
91 ; CHECK-NEXT:    [[ADR_3:%.*]] = getelementptr i64, ptr [[BASE]], i64 3
92 ; CHECK-NEXT:    [[VAL_3:%.*]] = load i64, ptr [[ADR_3]], align 4
93 ; CHECK-NEXT:    [[S_NEXT_3:%.*]] = add i64 [[S_NEXT_2]], [[VAL_3]]
94 ; CHECK-NEXT:    br i1 false, label [[TAIL_3:%.*]], label [[EXIT1:%.*]]
95 ; CHECK:       tail.3:
96 ; CHECK-NEXT:    br label [[EXIT2]]
97 ; CHECK:       exit1:
98 ; CHECK-NEXT:    [[S_LCSSA:%.*]] = phi i64 [ [[S_NEXT_2]], [[LOOP_3]] ]
99 ; CHECK-NEXT:    ret i64 [[S_LCSSA]]
100 ; CHECK:       exit2:
101 ; CHECK-NEXT:    [[S_NEXT_LCSSA1:%.*]] = phi i64 [ [[VAL]], [[TAIL]] ], [ [[S_NEXT_1]], [[TAIL_1]] ], [ [[S_NEXT_2]], [[TAIL_2]] ], [ [[S_NEXT_3]], [[TAIL_3]] ]
102 ; CHECK-NEXT:    ret i64 [[S_NEXT_LCSSA1]]
104 entry:
105   br label %loop
107 loop:
108   %iv = phi i64 [ 0, %entry ], [ %inc, %tail ]
109   %s = phi i64 [ 0, %entry ], [ %s.next, %tail ]
110   %adr = getelementptr i64, ptr %base, i64 %iv
111   %val = load i64, ptr %adr
112   %s.next = add i64 %s, %val
113   %inc = add i64 %iv, 1
114   %cmp = icmp ne i64 %inc, 4
115   br i1 %cmp, label %tail, label %exit1
117 tail:
118   %cmp2 = icmp ne i64 %val, 0
119   br i1 %cmp2, label %loop, label %exit2
121 exit1:
122   ret i64 %s
124 exit2:
125   ret i64 %s.next
128 ; SCEV properly unrolls multi-exit loops.
129 define i32 @multiExit(ptr %base) nounwind {
130 ; CHECK-LABEL: @multiExit(
131 ; CHECK-NEXT:  entry:
132 ; CHECK-NEXT:    br label [[L1:%.*]]
133 ; CHECK:       l1:
134 ; CHECK-NEXT:    [[VAL:%.*]] = load i32, ptr [[BASE:%.*]], align 4
135 ; CHECK-NEXT:    br i1 false, label [[L2:%.*]], label [[EXIT1:%.*]]
136 ; CHECK:       l2:
137 ; CHECK-NEXT:    ret i32 [[VAL]]
138 ; CHECK:       exit1:
139 ; CHECK-NEXT:    ret i32 1
141 entry:
142   br label %l1
144   %iv1 = phi i32 [ 0, %entry ], [ %inc1, %l2 ]
145   %iv2 = phi i32 [ 0, %entry ], [ %inc2, %l2 ]
146   %inc1 = add i32 %iv1, 1
147   %inc2 = add i32 %iv2, 1
148   %adr = getelementptr i32, ptr %base, i32 %iv1
149   %val = load i32, ptr %adr
150   %cmp1 = icmp slt i32 %iv1, 5
151   br i1 %cmp1, label %l2, label %exit1
153   %cmp2 = icmp slt i32 %iv2, 10
154   br i1 %cmp2, label %l1, label %exit2
155 exit1:
156   ret i32 1
157 exit2:
158   ret i32 %val
162 ; SCEV can unroll a multi-exit loops even if the latch block has no
163 ; known trip count, but an early exit has a known trip count. In this
164 ; case we must be careful not to optimize the latch branch away.
165 define i32 @multiExitIncomplete(ptr %base) nounwind {
166 ; CHECK-LABEL: @multiExitIncomplete(
167 ; CHECK-NEXT:  entry:
168 ; CHECK-NEXT:    br label [[L1:%.*]]
169 ; CHECK:       l1:
170 ; CHECK-NEXT:    [[VAL:%.*]] = load i32, ptr [[BASE:%.*]], align 4
171 ; CHECK-NEXT:    br label [[L2:%.*]]
172 ; CHECK:       l2:
173 ; CHECK-NEXT:    br label [[L3:%.*]]
174 ; CHECK:       l3:
175 ; CHECK-NEXT:    [[CMP3:%.*]] = icmp ne i32 [[VAL]], 0
176 ; CHECK-NEXT:    br i1 [[CMP3]], label [[L1_1:%.*]], label [[EXIT3:%.*]]
177 ; CHECK:       l1.1:
178 ; CHECK-NEXT:    [[ADR_1:%.*]] = getelementptr i32, ptr [[BASE]], i32 1
179 ; CHECK-NEXT:    [[VAL_1:%.*]] = load i32, ptr [[ADR_1]], align 4
180 ; CHECK-NEXT:    br label [[L2_1:%.*]]
181 ; CHECK:       l2.1:
182 ; CHECK-NEXT:    br label [[L3_1:%.*]]
183 ; CHECK:       l3.1:
184 ; CHECK-NEXT:    [[CMP3_1:%.*]] = icmp ne i32 [[VAL_1]], 0
185 ; CHECK-NEXT:    br i1 [[CMP3_1]], label [[L1_2:%.*]], label [[EXIT3]]
186 ; CHECK:       l1.2:
187 ; CHECK-NEXT:    [[ADR_2:%.*]] = getelementptr i32, ptr [[BASE]], i32 2
188 ; CHECK-NEXT:    [[VAL_2:%.*]] = load i32, ptr [[ADR_2]], align 4
189 ; CHECK-NEXT:    br label [[L2_2:%.*]]
190 ; CHECK:       l2.2:
191 ; CHECK-NEXT:    br label [[L3_2:%.*]]
192 ; CHECK:       l3.2:
193 ; CHECK-NEXT:    [[CMP3_2:%.*]] = icmp ne i32 [[VAL_2]], 0
194 ; CHECK-NEXT:    br i1 [[CMP3_2]], label [[L1_3:%.*]], label [[EXIT3]]
195 ; CHECK:       l1.3:
196 ; CHECK-NEXT:    [[ADR_3:%.*]] = getelementptr i32, ptr [[BASE]], i32 3
197 ; CHECK-NEXT:    [[VAL_3:%.*]] = load i32, ptr [[ADR_3]], align 4
198 ; CHECK-NEXT:    br label [[L2_3:%.*]]
199 ; CHECK:       l2.3:
200 ; CHECK-NEXT:    br label [[L3_3:%.*]]
201 ; CHECK:       l3.3:
202 ; CHECK-NEXT:    [[CMP3_3:%.*]] = icmp ne i32 [[VAL_3]], 0
203 ; CHECK-NEXT:    br i1 [[CMP3_3]], label [[L1_4:%.*]], label [[EXIT3]]
204 ; CHECK:       l1.4:
205 ; CHECK-NEXT:    [[ADR_4:%.*]] = getelementptr i32, ptr [[BASE]], i32 4
206 ; CHECK-NEXT:    [[VAL_4:%.*]] = load i32, ptr [[ADR_4]], align 4
207 ; CHECK-NEXT:    br label [[L2_4:%.*]]
208 ; CHECK:       l2.4:
209 ; CHECK-NEXT:    br label [[L3_4:%.*]]
210 ; CHECK:       l3.4:
211 ; CHECK-NEXT:    [[CMP3_4:%.*]] = icmp ne i32 [[VAL_4]], 0
212 ; CHECK-NEXT:    br i1 [[CMP3_4]], label [[L1_5:%.*]], label [[EXIT3]]
213 ; CHECK:       l1.5:
214 ; CHECK-NEXT:    br i1 false, label [[L2_5:%.*]], label [[EXIT1:%.*]]
215 ; CHECK:       l2.5:
216 ; CHECK-NEXT:    br i1 true, label [[L3_5:%.*]], label [[EXIT2:%.*]]
217 ; CHECK:       l3.5:
218 ; CHECK-NEXT:    br label [[EXIT3]]
219 ; CHECK:       exit1:
220 ; CHECK-NEXT:    ret i32 1
221 ; CHECK:       exit2:
222 ; CHECK-NEXT:    ret i32 2
223 ; CHECK:       exit3:
224 ; CHECK-NEXT:    ret i32 3
226 entry:
227   br label %l1
229   %iv1 = phi i32 [ 0, %entry ], [ %inc1, %l3 ]
230   %iv2 = phi i32 [ 0, %entry ], [ %inc2, %l3 ]
231   %inc1 = add i32 %iv1, 1
232   %inc2 = add i32 %iv2, 1
233   %adr = getelementptr i32, ptr %base, i32 %iv1
234   %val = load i32, ptr %adr
235   %cmp1 = icmp slt i32 %iv1, 5
236   br i1 %cmp1, label %l2, label %exit1
238   %cmp2 = icmp slt i32 %iv2, 10
239   br i1 %cmp2, label %l3, label %exit2
241   %cmp3 = icmp ne i32 %val, 0
242   br i1 %cmp3, label %l1, label %exit3
244 exit1:
245   ret i32 1
246 exit2:
247   ret i32 2
248 exit3:
249   ret i32 3
252 ; When loop unroll merges a loop exit with one of its parent loop's
253 ; exits, SCEV must forget its ExitNotTaken info.
254 define void @nestedUnroll() nounwind {
255 ; CHECK-LABEL: @nestedUnroll(
256 ; CHECK-NEXT:  entry:
257 ; CHECK-NEXT:    br label [[FOR_INC:%.*]]
258 ; CHECK:       for.inc:
259 ; CHECK-NEXT:    br label [[FOR_BODY38:%.*]]
260 ; CHECK:       for.body38:
261 ; CHECK-NEXT:    br label [[FOR_BODY43:%.*]]
262 ; CHECK:       for.body43:
263 ; CHECK-NEXT:    br label [[FOR_BODY87:%.*]]
264 ; CHECK:       for.body87:
265 ; CHECK-NEXT:    br label [[FOR_BODY87]]
267 entry:
268   br label %for.inc
270 for.inc:
271   br i1 false, label %for.inc, label %for.body38.preheader
273 for.body38.preheader:
274   br label %for.body38
276 for.body38:
277   %i.113 = phi i32 [ %inc76, %for.inc74 ], [ 0, %for.body38.preheader ]
278   %mul48 = mul nsw i32 %i.113, 6
279   br label %for.body43
281 for.body43:
282   %j.011 = phi i32 [ 0, %for.body38 ], [ %inc72, %for.body43 ]
283   %add49 = add nsw i32 %j.011, %mul48
284   %sh_prom50 = zext i32 %add49 to i64
285   %inc72 = add nsw i32 %j.011, 1
286   br i1 false, label %for.body43, label %for.inc74
288 for.inc74:
289   %inc76 = add nsw i32 %i.113, 1
290   br i1 false, label %for.body38, label %for.body87.preheader
292 for.body87.preheader:
293   br label %for.body87
295 for.body87:
296   br label %for.body87
299 ; PR16130: clang produces incorrect code with loop/expression at -O2
300 ; rdar:14036816 loop-unroll makes assumptions about undefined behavior
302 ; The loop latch is assumed to exit after the first iteration because
303 ; of the induction variable's NSW flag. However, the loop latch's
304 ; equality test is skipped and the loop exits after the second
305 ; iteration via the early exit. So loop unrolling cannot assume that
306 ; the loop latch's exit count of zero is an upper bound on the number
307 ; of iterations.
308 define void @nsw_latch(ptr %a) nounwind {
309 ; CHECK-LABEL: @nsw_latch(
310 ; CHECK-NEXT:  entry:
311 ; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
312 ; CHECK:       for.body:
313 ; CHECK-NEXT:    br label [[FOR_COND:%.*]]
314 ; CHECK:       for.cond:
315 ; CHECK-NEXT:    br i1 false, label [[RETURN:%.*]], label [[FOR_BODY_1:%.*]]
316 ; CHECK:       for.body.1:
317 ; CHECK-NEXT:    br i1 false, label [[FOR_COND_1:%.*]], label [[RETURN]]
318 ; CHECK:       for.cond.1:
319 ; CHECK-NEXT:    br label [[RETURN]]
320 ; CHECK:       return:
321 ; CHECK-NEXT:    [[B_03_LCSSA:%.*]] = phi i32 [ 0, [[FOR_COND]] ], [ 8, [[FOR_BODY_1]] ], [ 0, [[FOR_COND_1]] ]
322 ; CHECK-NEXT:    [[RETVAL_0:%.*]] = phi i32 [ 0, [[FOR_COND]] ], [ 1, [[FOR_BODY_1]] ], [ 0, [[FOR_COND_1]] ]
323 ; CHECK-NEXT:    store i32 [[B_03_LCSSA]], ptr [[A:%.*]], align 4
324 ; CHECK-NEXT:    ret void
326 entry:
327   br label %for.body
329 for.body:                                         ; preds = %for.cond, %entry
330   %b.03 = phi i32 [ 0, %entry ], [ %add, %for.cond ]
331   %tobool = icmp eq i32 %b.03, 0
332   %add = add nsw i32 %b.03, 8
333   br i1 %tobool, label %for.cond, label %return
335 for.cond:                                         ; preds = %for.body
336   %cmp = icmp eq i32 %add, 13
337   br i1 %cmp, label %return, label %for.body
339 return:                                           ; preds = %for.body, %for.cond
340   %b.03.lcssa = phi i32 [ %b.03, %for.body ], [ %b.03, %for.cond ]
341   %retval.0 = phi i32 [ 1, %for.body ], [ 0, %for.cond ]
342   store i32 %b.03.lcssa, ptr %a, align 4
343   ret void
346 ; Test case for PR56044. Check that SCEVs for exit phis are properly invalidated.
347 define i32 @test_pr56044(ptr %src, i32 %a) {
348 ; CHECK-LABEL: @test_pr56044(
349 ; CHECK-NEXT:  entry:
350 ; CHECK-NEXT:    br label [[LOOP_1_PEEL_BEGIN:%.*]]
351 ; CHECK:       loop.1.peel.begin:
352 ; CHECK-NEXT:    br label [[LOOP_1_PEEL:%.*]]
353 ; CHECK:       loop.1.peel:
354 ; CHECK-NEXT:    call void @fn(i32 5)
355 ; CHECK-NEXT:    [[L_PEEL:%.*]] = load i64, ptr [[SRC:%.*]], align 8
356 ; CHECK-NEXT:    [[ADD_PEEL:%.*]] = add i64 [[L_PEEL]], [[L_PEEL]]
357 ; CHECK-NEXT:    [[EC_1_PEEL:%.*]] = icmp sgt i32 [[A:%.*]], 4
358 ; CHECK-NEXT:    br i1 [[EC_1_PEEL]], label [[MID:%.*]], label [[LOOP_1_PEEL_NEXT:%.*]]
359 ; CHECK:       loop.1.peel.next:
360 ; CHECK-NEXT:    br label [[LOOP_1_PEEL_NEXT1:%.*]]
361 ; CHECK:       loop.1.peel.next1:
362 ; CHECK-NEXT:    br label [[ENTRY_PEEL_NEWPH:%.*]]
363 ; CHECK:       entry.peel.newph:
364 ; CHECK-NEXT:    br label [[LOOP_1:%.*]]
365 ; CHECK:       loop.1:
366 ; CHECK-NEXT:    call void @fn(i32 18)
367 ; CHECK-NEXT:    [[L:%.*]] = load i64, ptr [[SRC]], align 8
368 ; CHECK-NEXT:    [[ADD:%.*]] = add i64 [[L]], [[L]]
369 ; CHECK-NEXT:    [[EC_1:%.*]] = icmp sgt i32 [[A]], 4
370 ; CHECK-NEXT:    br i1 [[EC_1]], label [[MID_LOOPEXIT:%.*]], label [[LOOP_1]], !llvm.loop [[LOOP0:![0-9]+]]
371 ; CHECK:       mid.loopexit:
372 ; CHECK-NEXT:    [[LCSSA_1_PH:%.*]] = phi i64 [ [[ADD]], [[LOOP_1]] ]
373 ; CHECK-NEXT:    br label [[MID]]
374 ; CHECK:       mid:
375 ; CHECK-NEXT:    [[LCSSA_1:%.*]] = phi i64 [ [[ADD_PEEL]], [[LOOP_1_PEEL]] ], [ [[LCSSA_1_PH]], [[MID_LOOPEXIT]] ]
376 ; CHECK-NEXT:    [[TRUNC:%.*]] = trunc i64 [[LCSSA_1]] to i32
377 ; CHECK-NEXT:    [[ADD_2:%.*]] = sub i32 [[A]], [[TRUNC]]
378 ; CHECK-NEXT:    br label [[LOOP_2_PEEL_BEGIN:%.*]]
379 ; CHECK:       loop.2.peel.begin:
380 ; CHECK-NEXT:    br label [[LOOP_2_PEEL:%.*]]
381 ; CHECK:       loop.2.peel:
382 ; CHECK-NEXT:    [[IV_2_NEXT_PEEL:%.*]] = add i32 0, [[ADD_2]]
383 ; CHECK-NEXT:    [[IV_1_NEXT_PEEL:%.*]] = add nuw nsw i32 0, 1
384 ; CHECK-NEXT:    [[EC_2_PEEL:%.*]] = icmp ult i32 [[IV_1_NEXT_PEEL]], 12345
385 ; CHECK-NEXT:    br i1 [[EC_2_PEEL]], label [[LOOP_2_PEEL_NEXT:%.*]], label [[EXIT:%.*]]
386 ; CHECK:       loop.2.peel.next:
387 ; CHECK-NEXT:    br label [[LOOP_2_PEEL_NEXT2:%.*]]
388 ; CHECK:       loop.2.peel.next2:
389 ; CHECK-NEXT:    br label [[MID_PEEL_NEWPH:%.*]]
390 ; CHECK:       mid.peel.newph:
391 ; CHECK-NEXT:    br label [[LOOP_2:%.*]]
392 ; CHECK:       loop.2:
393 ; CHECK-NEXT:    [[IV_1:%.*]] = phi i32 [ [[IV_1_NEXT_PEEL]], [[MID_PEEL_NEWPH]] ], [ [[IV_1_NEXT:%.*]], [[LOOP_2]] ]
394 ; CHECK-NEXT:    [[IV_2:%.*]] = phi i32 [ [[IV_2_NEXT_PEEL]], [[MID_PEEL_NEWPH]] ], [ [[IV_2_NEXT:%.*]], [[LOOP_2]] ]
395 ; CHECK-NEXT:    [[IV_2_NEXT]] = add i32 2, [[IV_2]]
396 ; CHECK-NEXT:    [[IV_1_NEXT]] = add nuw nsw i32 [[IV_1]], 1
397 ; CHECK-NEXT:    [[EC_2:%.*]] = icmp ult i32 [[IV_1_NEXT]], 12345
398 ; CHECK-NEXT:    br i1 [[EC_2]], label [[LOOP_2]], label [[EXIT_LOOPEXIT:%.*]], !llvm.loop [[LOOP2:![0-9]+]]
399 ; CHECK:       exit.loopexit:
400 ; CHECK-NEXT:    [[LCSSA_2_PH:%.*]] = phi i32 [ [[IV_2_NEXT]], [[LOOP_2]] ]
401 ; CHECK-NEXT:    br label [[EXIT]]
402 ; CHECK:       exit:
403 ; CHECK-NEXT:    [[LCSSA_2:%.*]] = phi i32 [ [[IV_2_NEXT_PEEL]], [[LOOP_2_PEEL]] ], [ [[LCSSA_2_PH]], [[EXIT_LOOPEXIT]] ]
404 ; CHECK-NEXT:    ret i32 [[LCSSA_2]]
406 entry:
407   br label %loop.1
409 loop.1:
410   %p.1 = phi i32 [ 5, %entry ], [ 18, %loop.1 ]
411   call void @fn(i32 %p.1)
412   %l = load i64, ptr %src, align 8
413   %add = add i64 %l, %l
414   %ec.1 = icmp sgt i32 %a, 4
415   br i1 %ec.1, label %mid, label %loop.1
417 mid:
418   %lcssa.1 = phi i64 [ %add, %loop.1 ]
419   %trunc = trunc i64 %lcssa.1 to i32
420   %add.2 = sub i32 %a, %trunc
421   br label %loop.2
423 loop.2:
424   %iv.1 = phi i32 [ 0, %mid ], [ %iv.1.next, %loop.2 ]
425   %iv.2 = phi i32 [ %add.2, %mid ], [ %iv.2.next, %loop.2 ]
426   %p.2 = phi i32 [ 0, %mid ], [ 2, %loop.2 ]
427   %iv.2.next = add i32 %p.2, %iv.2
428   %iv.1.next = add nuw nsw i32 %iv.1, 1
429   %ec.2 = icmp ult i32 %iv.1.next, 12345
430   br i1 %ec.2, label %loop.2, label %exit
432 exit:
433   %lcssa.2 = phi i32 [ %iv.2.next, %loop.2 ]
434   ret i32 %lcssa.2
437 declare void @fn(i32)