Bump version to 19.1.0-rc3
[llvm-project.git] / llvm / test / Transforms / SLPVectorizer / X86 / minimum-sizes.ll
bloba316415dcc6b527bb326358034e50699630e2482
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -slp-threshold=-6 -passes=slp-vectorizer,instcombine -mattr=+sse2     -S | FileCheck %s --check-prefix=SSE
3 ; RUN: opt < %s -slp-threshold=-6 -passes=slp-vectorizer,instcombine -mattr=+avx      -S | FileCheck %s --check-prefix=AVX
4 ; RUN: opt < %s -slp-threshold=-6 -passes=slp-vectorizer,instcombine -mattr=+avx2     -S | FileCheck %s --check-prefix=AVX
5 ; RUN: opt < %s -slp-threshold=-6 -passes=slp-vectorizer,instcombine -mattr=+avx512f  -S | FileCheck %s --check-prefix=AVX
6 ; RUN: opt < %s -slp-threshold=-6 -passes=slp-vectorizer,instcombine -mattr=+avx512vl -S | FileCheck %s --check-prefix=AVX
8 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
9 target triple = "x86_64-unknown-linux-gnu"
11 ; These tests ensure that we do not regress due to PR31243. Note that we set
12 ; the SLP threshold to force vectorization even when not profitable.
14 ; When computing minimum sizes, if we can prove the sign bit is zero, we can
15 ; zero-extend the roots back to their original sizes.
17 define i8 @PR31243_zext(i8 %v0, i8 %v1, i8 %v2, i8 %v3, ptr %ptr) {
18 ; SSE-LABEL: @PR31243_zext(
19 ; SSE-NEXT:  entry:
20 ; SSE-NEXT:    [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i64 0
21 ; SSE-NEXT:    [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i64 1
22 ; SSE-NEXT:    [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1>
23 ; SSE-NEXT:    [[TMP3:%.*]] = extractelement <2 x i8> [[TMP2]], i64 0
24 ; SSE-NEXT:    [[TMP4:%.*]] = zext i8 [[TMP3]] to i64
25 ; SSE-NEXT:    [[T4:%.*]] = getelementptr inbounds i8, ptr [[PTR:%.*]], i64 [[TMP4]]
26 ; SSE-NEXT:    [[TMP5:%.*]] = extractelement <2 x i8> [[TMP2]], i64 1
27 ; SSE-NEXT:    [[TMP6:%.*]] = zext i8 [[TMP5]] to i64
28 ; SSE-NEXT:    [[T5:%.*]] = getelementptr inbounds i8, ptr [[PTR]], i64 [[TMP6]]
29 ; SSE-NEXT:    [[T6:%.*]] = load i8, ptr [[T4]], align 1
30 ; SSE-NEXT:    [[T7:%.*]] = load i8, ptr [[T5]], align 1
31 ; SSE-NEXT:    [[T8:%.*]] = add i8 [[T6]], [[T7]]
32 ; SSE-NEXT:    ret i8 [[T8]]
34 ; AVX-LABEL: @PR31243_zext(
35 ; AVX-NEXT:  entry:
36 ; AVX-NEXT:    [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i64 0
37 ; AVX-NEXT:    [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i64 1
38 ; AVX-NEXT:    [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1>
39 ; AVX-NEXT:    [[TMP3:%.*]] = extractelement <2 x i8> [[TMP2]], i64 0
40 ; AVX-NEXT:    [[TMP4:%.*]] = zext i8 [[TMP3]] to i64
41 ; AVX-NEXT:    [[T4:%.*]] = getelementptr inbounds i8, ptr [[PTR:%.*]], i64 [[TMP4]]
42 ; AVX-NEXT:    [[TMP5:%.*]] = extractelement <2 x i8> [[TMP2]], i64 1
43 ; AVX-NEXT:    [[TMP6:%.*]] = zext i8 [[TMP5]] to i64
44 ; AVX-NEXT:    [[T5:%.*]] = getelementptr inbounds i8, ptr [[PTR]], i64 [[TMP6]]
45 ; AVX-NEXT:    [[T6:%.*]] = load i8, ptr [[T4]], align 1
46 ; AVX-NEXT:    [[T7:%.*]] = load i8, ptr [[T5]], align 1
47 ; AVX-NEXT:    [[T8:%.*]] = add i8 [[T6]], [[T7]]
48 ; AVX-NEXT:    ret i8 [[T8]]
50 entry:
51   %t0 = zext i8 %v0 to i32
52   %t1 = zext i8 %v1 to i32
53   %t2 = or i32 %t0, 1
54   %t3 = or i32 %t1, 1
55   %t4 = getelementptr inbounds i8, ptr %ptr, i32 %t2
56   %t5 = getelementptr inbounds i8, ptr %ptr, i32 %t3
57   %t6 = load i8, ptr %t4
58   %t7 = load i8, ptr %t5
59   %t8 = add i8 %t6, %t7
60   ret i8 %t8
63 ; When computing minimum sizes, if we cannot prove the sign bit is zero, we
64 ; have to include one extra bit for signedness since we will sign-extend the
65 ; roots.
67 ; FIXME: This test is suboptimal since the compuation can be performed in i8.
68 ;        In general, we need to add an extra bit to the maximum bit width only
69 ;        if we can't prove that the upper bit of the original type is equal to
70 ;        the upper bit of the proposed smaller type. If these two bits are the
71 ;        same (either zero or one) we know that sign-extending from the smaller
72 ;        type will result in the same value. Since we don't yet perform this
73 ;        optimization, we make the proposed smaller type (i8) larger (i16) to
74 ;        ensure correctness.
76 define i8 @PR31243_sext(i8 %v0, i8 %v1, i8 %v2, i8 %v3, ptr %ptr) {
77 ; SSE-LABEL: @PR31243_sext(
78 ; SSE-NEXT:  entry:
79 ; SSE-NEXT:    [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i64 0
80 ; SSE-NEXT:    [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i64 1
81 ; SSE-NEXT:    [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1>
82 ; SSE-NEXT:    [[TMP3:%.*]] = extractelement <2 x i8> [[TMP2]], i64 0
83 ; SSE-NEXT:    [[TMP4:%.*]] = sext i8 [[TMP3]] to i64
84 ; SSE-NEXT:    [[T4:%.*]] = getelementptr inbounds i8, ptr [[PTR:%.*]], i64 [[TMP4]]
85 ; SSE-NEXT:    [[TMP5:%.*]] = extractelement <2 x i8> [[TMP2]], i64 1
86 ; SSE-NEXT:    [[TMP6:%.*]] = sext i8 [[TMP5]] to i64
87 ; SSE-NEXT:    [[T5:%.*]] = getelementptr inbounds i8, ptr [[PTR]], i64 [[TMP6]]
88 ; SSE-NEXT:    [[T6:%.*]] = load i8, ptr [[T4]], align 1
89 ; SSE-NEXT:    [[T7:%.*]] = load i8, ptr [[T5]], align 1
90 ; SSE-NEXT:    [[T8:%.*]] = add i8 [[T6]], [[T7]]
91 ; SSE-NEXT:    ret i8 [[T8]]
93 ; AVX-LABEL: @PR31243_sext(
94 ; AVX-NEXT:  entry:
95 ; AVX-NEXT:    [[TMP0:%.*]] = insertelement <2 x i8> poison, i8 [[V0:%.*]], i64 0
96 ; AVX-NEXT:    [[TMP1:%.*]] = insertelement <2 x i8> [[TMP0]], i8 [[V1:%.*]], i64 1
97 ; AVX-NEXT:    [[TMP2:%.*]] = or <2 x i8> [[TMP1]], <i8 1, i8 1>
98 ; AVX-NEXT:    [[TMP3:%.*]] = extractelement <2 x i8> [[TMP2]], i64 0
99 ; AVX-NEXT:    [[TMP4:%.*]] = sext i8 [[TMP3]] to i64
100 ; AVX-NEXT:    [[T4:%.*]] = getelementptr inbounds i8, ptr [[PTR:%.*]], i64 [[TMP4]]
101 ; AVX-NEXT:    [[TMP5:%.*]] = extractelement <2 x i8> [[TMP2]], i64 1
102 ; AVX-NEXT:    [[TMP6:%.*]] = sext i8 [[TMP5]] to i64
103 ; AVX-NEXT:    [[T5:%.*]] = getelementptr inbounds i8, ptr [[PTR]], i64 [[TMP6]]
104 ; AVX-NEXT:    [[T6:%.*]] = load i8, ptr [[T4]], align 1
105 ; AVX-NEXT:    [[T7:%.*]] = load i8, ptr [[T5]], align 1
106 ; AVX-NEXT:    [[T8:%.*]] = add i8 [[T6]], [[T7]]
107 ; AVX-NEXT:    ret i8 [[T8]]
109 entry:
110   %t0 = sext i8 %v0 to i32
111   %t1 = sext i8 %v1 to i32
112   %t2 = or i32 %t0, 1
113   %t3 = or i32 %t1, 1
114   %t4 = getelementptr inbounds i8, ptr %ptr, i32 %t2
115   %t5 = getelementptr inbounds i8, ptr %ptr, i32 %t3
116   %t6 = load i8, ptr %t4
117   %t7 = load i8, ptr %t5
118   %t8 = add i8 %t6, %t7
119   ret i8 %t8