1 //===- SparsePropagation.cpp - Unit tests for the generic solver ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/SparsePropagation.h"
10 #include "llvm/ADT/PointerIntPair.h"
11 #include "llvm/IR/IRBuilder.h"
12 #include "llvm/IR/Module.h"
13 #include "gtest/gtest.h"
17 /// To enable interprocedural analysis, we assign LLVM values to the following
18 /// groups. The register group represents SSA registers, the return group
19 /// represents the return values of functions, and the memory group represents
20 /// in-memory values. An LLVM Value can technically be in more than one group.
21 /// It's necessary to distinguish these groups so we can, for example, track a
22 /// global variable separately from the value stored at its location.
23 enum class IPOGrouping
{ Register
, Return
, Memory
};
25 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
26 /// The PointerIntPair header provides a DenseMapInfo specialization, so using
27 /// these as LatticeKeys is fine.
28 using TestLatticeKey
= PointerIntPair
<Value
*, 2, IPOGrouping
>;
32 /// A specialization of LatticeKeyInfo for TestLatticeKeys. The generic solver
33 /// must translate between LatticeKeys and LLVM Values when adding Values to
34 /// its work list and inspecting the state of control-flow related values.
35 template <> struct LatticeKeyInfo
<TestLatticeKey
> {
36 static inline Value
*getValueFromLatticeKey(TestLatticeKey Key
) {
37 return Key
.getPointer();
39 static inline TestLatticeKey
getLatticeKeyFromValue(Value
*V
) {
40 return TestLatticeKey(V
, IPOGrouping::Register
);
46 /// This class defines a simple test lattice value that could be used for
47 /// solving problems similar to constant propagation. The value is maintained
48 /// as a PointerIntPair.
49 class TestLatticeVal
{
51 /// The states of the lattices value. Only the ConstantVal state is
52 /// interesting; the rest are special states used by the generic solver. The
53 /// UntrackedVal state differs from the other three in that the generic
54 /// solver uses it to avoid doing unnecessary work. In particular, when a
55 /// value moves to the UntrackedVal state, it's users are not notified.
56 enum TestLatticeStateTy
{
63 TestLatticeVal() : LatticeVal(nullptr, UndefinedVal
) {}
64 TestLatticeVal(Constant
*C
, TestLatticeStateTy State
)
65 : LatticeVal(C
, State
) {}
67 /// Return true if this lattice value is in the Constant state. This is used
68 /// for checking the solver results.
69 bool isConstant() const { return LatticeVal
.getInt() == ConstantVal
; }
71 /// Return true if this lattice value is in the Overdefined state. This is
72 /// used for checking the solver results.
73 bool isOverdefined() const { return LatticeVal
.getInt() == OverdefinedVal
; }
75 bool operator==(const TestLatticeVal
&RHS
) const {
76 return LatticeVal
== RHS
.LatticeVal
;
79 bool operator!=(const TestLatticeVal
&RHS
) const {
80 return LatticeVal
!= RHS
.LatticeVal
;
84 /// A simple lattice value type for problems similar to constant propagation.
85 /// It holds the constant value and the lattice state.
86 PointerIntPair
<const Constant
*, 2, TestLatticeStateTy
> LatticeVal
;
89 /// This class defines a simple test lattice function that could be used for
90 /// solving problems similar to constant propagation. The test lattice differs
91 /// from a "real" lattice in a few ways. First, it initializes all return
92 /// values, values stored in global variables, and arguments in the undefined
93 /// state. This means that there are no limitations on what we can track
94 /// interprocedurally. For simplicity, all global values in the tests will be
95 /// given internal linkage, since this is not something this lattice function
96 /// tracks. Second, it only handles the few instructions necessary for the
99 : public AbstractLatticeFunction
<TestLatticeKey
, TestLatticeVal
> {
101 /// Construct a new test lattice function with special values for the
102 /// Undefined, Overdefined, and Untracked states.
104 : AbstractLatticeFunction(
105 TestLatticeVal(nullptr, TestLatticeVal::UndefinedVal
),
106 TestLatticeVal(nullptr, TestLatticeVal::OverdefinedVal
),
107 TestLatticeVal(nullptr, TestLatticeVal::UntrackedVal
)) {}
109 /// Compute and return a TestLatticeVal for the given TestLatticeKey. For the
110 /// test analysis, a LatticeKey will begin in the undefined state, unless it
111 /// represents an LLVM Constant in the register grouping.
112 TestLatticeVal
ComputeLatticeVal(TestLatticeKey Key
) override
{
113 if (Key
.getInt() == IPOGrouping::Register
)
114 if (auto *C
= dyn_cast
<Constant
>(Key
.getPointer()))
115 return TestLatticeVal(C
, TestLatticeVal::ConstantVal
);
116 return getUndefVal();
119 /// Merge the two given lattice values. This merge should be equivalent to
120 /// what is done for constant propagation. That is, the resulting lattice
121 /// value is constant only if the two given lattice values are constant and
122 /// hold the same value.
123 TestLatticeVal
MergeValues(TestLatticeVal X
, TestLatticeVal Y
) override
{
124 if (X
== getUntrackedVal() || Y
== getUntrackedVal())
125 return getUntrackedVal();
126 if (X
== getOverdefinedVal() || Y
== getOverdefinedVal())
127 return getOverdefinedVal();
128 if (X
== getUndefVal() && Y
== getUndefVal())
129 return getUndefVal();
130 if (X
== getUndefVal())
132 if (Y
== getUndefVal())
136 return getOverdefinedVal();
139 /// Compute the lattice values that change as a result of executing the given
140 /// instruction. We only handle the few instructions needed for the tests.
141 void ComputeInstructionState(
142 Instruction
&I
, DenseMap
<TestLatticeKey
, TestLatticeVal
> &ChangedValues
,
143 SparseSolver
<TestLatticeKey
, TestLatticeVal
> &SS
) override
{
144 switch (I
.getOpcode()) {
145 case Instruction::Call
:
146 return visitCallBase(cast
<CallBase
>(I
), ChangedValues
, SS
);
147 case Instruction::Ret
:
148 return visitReturn(*cast
<ReturnInst
>(&I
), ChangedValues
, SS
);
149 case Instruction::Store
:
150 return visitStore(*cast
<StoreInst
>(&I
), ChangedValues
, SS
);
152 return visitInst(I
, ChangedValues
, SS
);
157 /// Handle call sites. The state of a called function's argument is the merge
158 /// of the current formal argument state with the call site's corresponding
159 /// actual argument state. The call site state is the merge of the call site
160 /// state with the returned value state of the called function.
161 void visitCallBase(CallBase
&I
,
162 DenseMap
<TestLatticeKey
, TestLatticeVal
> &ChangedValues
,
163 SparseSolver
<TestLatticeKey
, TestLatticeVal
> &SS
) {
164 Function
*F
= I
.getCalledFunction();
165 auto RegI
= TestLatticeKey(&I
, IPOGrouping::Register
);
167 ChangedValues
[RegI
] = getOverdefinedVal();
170 SS
.MarkBlockExecutable(&F
->front());
171 for (Argument
&A
: F
->args()) {
172 auto RegFormal
= TestLatticeKey(&A
, IPOGrouping::Register
);
174 TestLatticeKey(I
.getArgOperand(A
.getArgNo()), IPOGrouping::Register
);
175 ChangedValues
[RegFormal
] =
176 MergeValues(SS
.getValueState(RegFormal
), SS
.getValueState(RegActual
));
178 auto RetF
= TestLatticeKey(F
, IPOGrouping::Return
);
179 ChangedValues
[RegI
] =
180 MergeValues(SS
.getValueState(RegI
), SS
.getValueState(RetF
));
183 /// Handle return instructions. The function's return state is the merge of
184 /// the returned value state and the function's current return state.
185 void visitReturn(ReturnInst
&I
,
186 DenseMap
<TestLatticeKey
, TestLatticeVal
> &ChangedValues
,
187 SparseSolver
<TestLatticeKey
, TestLatticeVal
> &SS
) {
188 Function
*F
= I
.getParent()->getParent();
189 if (F
->getReturnType()->isVoidTy())
191 auto RegR
= TestLatticeKey(I
.getReturnValue(), IPOGrouping::Register
);
192 auto RetF
= TestLatticeKey(F
, IPOGrouping::Return
);
193 ChangedValues
[RetF
] =
194 MergeValues(SS
.getValueState(RegR
), SS
.getValueState(RetF
));
197 /// Handle store instructions. If the pointer operand of the store is a
198 /// global variable, we attempt to track the value. The global variable state
199 /// is the merge of the stored value state with the current global variable
201 void visitStore(StoreInst
&I
,
202 DenseMap
<TestLatticeKey
, TestLatticeVal
> &ChangedValues
,
203 SparseSolver
<TestLatticeKey
, TestLatticeVal
> &SS
) {
204 auto *GV
= dyn_cast
<GlobalVariable
>(I
.getPointerOperand());
207 auto RegVal
= TestLatticeKey(I
.getValueOperand(), IPOGrouping::Register
);
208 auto MemPtr
= TestLatticeKey(GV
, IPOGrouping::Memory
);
209 ChangedValues
[MemPtr
] =
210 MergeValues(SS
.getValueState(RegVal
), SS
.getValueState(MemPtr
));
213 /// Handle all other instructions. All other instructions are marked
215 void visitInst(Instruction
&I
,
216 DenseMap
<TestLatticeKey
, TestLatticeVal
> &ChangedValues
,
217 SparseSolver
<TestLatticeKey
, TestLatticeVal
> &SS
) {
218 auto RegI
= TestLatticeKey(&I
, IPOGrouping::Register
);
219 ChangedValues
[RegI
] = getOverdefinedVal();
223 /// This class defines the common data used for all of the tests. The tests
224 /// should add code to the module and then run the solver.
225 class SparsePropagationTest
: public testing::Test
{
230 TestLatticeFunc Lattice
;
231 SparseSolver
<TestLatticeKey
, TestLatticeVal
> Solver
;
234 SparsePropagationTest()
235 : M("", Context
), Builder(Context
), Solver(&Lattice
) {}
239 /// Test that we mark discovered functions executable.
241 /// define internal void @f() {
246 /// define internal void @g() {
251 /// For this test, we initially mark "f" executable, and the solver discovers
252 /// "g" because of the call in "f". The mutually recursive call in "g" also
253 /// tests that we don't add a block to the basic block work list if it is
254 /// already executable. Doing so would put the solver into an infinite loop.
255 TEST_F(SparsePropagationTest
, MarkBlockExecutable
) {
256 Function
*F
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
257 GlobalValue::InternalLinkage
, "f", &M
);
258 Function
*G
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
259 GlobalValue::InternalLinkage
, "g", &M
);
260 BasicBlock
*FEntry
= BasicBlock::Create(Context
, "", F
);
261 BasicBlock
*GEntry
= BasicBlock::Create(Context
, "", G
);
262 Builder
.SetInsertPoint(FEntry
);
263 Builder
.CreateCall(G
);
264 Builder
.CreateRetVoid();
265 Builder
.SetInsertPoint(GEntry
);
266 Builder
.CreateCall(F
);
267 Builder
.CreateRetVoid();
269 Solver
.MarkBlockExecutable(FEntry
);
272 EXPECT_TRUE(Solver
.isBlockExecutable(GEntry
));
275 /// Test that we propagate information through global variables.
277 /// @gv = internal global i64
279 /// define internal void @f() {
280 /// store i64 1, i64* @gv
284 /// define internal void @g() {
285 /// store i64 1, i64* @gv
289 /// For this test, we initially mark both "f" and "g" executable, and the
290 /// solver computes the lattice state of the global variable as constant.
291 TEST_F(SparsePropagationTest
, GlobalVariableConstant
) {
292 Function
*F
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
293 GlobalValue::InternalLinkage
, "f", &M
);
294 Function
*G
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
295 GlobalValue::InternalLinkage
, "g", &M
);
297 new GlobalVariable(M
, Builder
.getInt64Ty(), false,
298 GlobalValue::InternalLinkage
, nullptr, "gv");
299 BasicBlock
*FEntry
= BasicBlock::Create(Context
, "", F
);
300 BasicBlock
*GEntry
= BasicBlock::Create(Context
, "", G
);
301 Builder
.SetInsertPoint(FEntry
);
302 Builder
.CreateStore(Builder
.getInt64(1), GV
);
303 Builder
.CreateRetVoid();
304 Builder
.SetInsertPoint(GEntry
);
305 Builder
.CreateStore(Builder
.getInt64(1), GV
);
306 Builder
.CreateRetVoid();
308 Solver
.MarkBlockExecutable(FEntry
);
309 Solver
.MarkBlockExecutable(GEntry
);
312 auto MemGV
= TestLatticeKey(GV
, IPOGrouping::Memory
);
313 EXPECT_TRUE(Solver
.getExistingValueState(MemGV
).isConstant());
316 /// Test that we propagate information through global variables.
318 /// @gv = internal global i64
320 /// define internal void @f() {
321 /// store i64 0, i64* @gv
325 /// define internal void @g() {
326 /// store i64 1, i64* @gv
330 /// For this test, we initially mark both "f" and "g" executable, and the
331 /// solver computes the lattice state of the global variable as overdefined.
332 TEST_F(SparsePropagationTest
, GlobalVariableOverDefined
) {
333 Function
*F
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
334 GlobalValue::InternalLinkage
, "f", &M
);
335 Function
*G
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
336 GlobalValue::InternalLinkage
, "g", &M
);
338 new GlobalVariable(M
, Builder
.getInt64Ty(), false,
339 GlobalValue::InternalLinkage
, nullptr, "gv");
340 BasicBlock
*FEntry
= BasicBlock::Create(Context
, "", F
);
341 BasicBlock
*GEntry
= BasicBlock::Create(Context
, "", G
);
342 Builder
.SetInsertPoint(FEntry
);
343 Builder
.CreateStore(Builder
.getInt64(0), GV
);
344 Builder
.CreateRetVoid();
345 Builder
.SetInsertPoint(GEntry
);
346 Builder
.CreateStore(Builder
.getInt64(1), GV
);
347 Builder
.CreateRetVoid();
349 Solver
.MarkBlockExecutable(FEntry
);
350 Solver
.MarkBlockExecutable(GEntry
);
353 auto MemGV
= TestLatticeKey(GV
, IPOGrouping::Memory
);
354 EXPECT_TRUE(Solver
.getExistingValueState(MemGV
).isOverdefined());
357 /// Test that we propagate information through function returns.
359 /// define internal i64 @f(i1* %cond) {
361 /// %0 = load i1, i1* %cond
362 /// br i1 %0, label %then, label %else
371 /// For this test, we initially mark "f" executable, and the solver computes
372 /// the return value of the function as constant.
373 TEST_F(SparsePropagationTest
, FunctionDefined
) {
375 Function::Create(FunctionType::get(Builder
.getInt64Ty(),
376 {PointerType::get(Context
, 0)}, false),
377 GlobalValue::InternalLinkage
, "f", &M
);
378 BasicBlock
*If
= BasicBlock::Create(Context
, "if", F
);
379 BasicBlock
*Then
= BasicBlock::Create(Context
, "then", F
);
380 BasicBlock
*Else
= BasicBlock::Create(Context
, "else", F
);
381 F
->arg_begin()->setName("cond");
382 Builder
.SetInsertPoint(If
);
383 LoadInst
*Cond
= Builder
.CreateLoad(Type::getInt1Ty(Context
), F
->arg_begin());
384 Builder
.CreateCondBr(Cond
, Then
, Else
);
385 Builder
.SetInsertPoint(Then
);
386 Builder
.CreateRet(Builder
.getInt64(1));
387 Builder
.SetInsertPoint(Else
);
388 Builder
.CreateRet(Builder
.getInt64(1));
390 Solver
.MarkBlockExecutable(If
);
393 auto RetF
= TestLatticeKey(F
, IPOGrouping::Return
);
394 EXPECT_TRUE(Solver
.getExistingValueState(RetF
).isConstant());
397 /// Test that we propagate information through function returns.
399 /// define internal i64 @f(i1* %cond) {
401 /// %0 = load i1, i1* %cond
402 /// br i1 %0, label %then, label %else
411 /// For this test, we initially mark "f" executable, and the solver computes
412 /// the return value of the function as overdefined.
413 TEST_F(SparsePropagationTest
, FunctionOverDefined
) {
415 Function::Create(FunctionType::get(Builder
.getInt64Ty(),
416 {PointerType::get(Context
, 0)}, false),
417 GlobalValue::InternalLinkage
, "f", &M
);
418 BasicBlock
*If
= BasicBlock::Create(Context
, "if", F
);
419 BasicBlock
*Then
= BasicBlock::Create(Context
, "then", F
);
420 BasicBlock
*Else
= BasicBlock::Create(Context
, "else", F
);
421 F
->arg_begin()->setName("cond");
422 Builder
.SetInsertPoint(If
);
423 LoadInst
*Cond
= Builder
.CreateLoad(Type::getInt1Ty(Context
), F
->arg_begin());
424 Builder
.CreateCondBr(Cond
, Then
, Else
);
425 Builder
.SetInsertPoint(Then
);
426 Builder
.CreateRet(Builder
.getInt64(0));
427 Builder
.SetInsertPoint(Else
);
428 Builder
.CreateRet(Builder
.getInt64(1));
430 Solver
.MarkBlockExecutable(If
);
433 auto RetF
= TestLatticeKey(F
, IPOGrouping::Return
);
434 EXPECT_TRUE(Solver
.getExistingValueState(RetF
).isOverdefined());
437 /// Test that we propagate information through arguments.
439 /// define internal void @f() {
440 /// call void @g(i64 0, i64 1)
441 /// call void @g(i64 1, i64 1)
445 /// define internal void @g(i64 %a, i64 %b) {
449 /// For this test, we initially mark "f" executable, and the solver discovers
450 /// "g" because of the calls in "f". The solver computes the state of argument
451 /// "a" as overdefined and the state of "b" as constant.
453 /// In addition, this test demonstrates that ComputeInstructionState can alter
454 /// the state of multiple lattice values, in addition to the one associated
455 /// with the instruction definition. Each call instruction in this test updates
456 /// the state of arguments "a" and "b".
457 TEST_F(SparsePropagationTest
, ComputeInstructionState
) {
458 Function
*F
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
459 GlobalValue::InternalLinkage
, "f", &M
);
460 Function
*G
= Function::Create(
461 FunctionType::get(Builder
.getVoidTy(),
462 {Builder
.getInt64Ty(), Builder
.getInt64Ty()}, false),
463 GlobalValue::InternalLinkage
, "g", &M
);
464 Argument
*A
= G
->arg_begin();
465 Argument
*B
= std::next(G
->arg_begin());
468 BasicBlock
*FEntry
= BasicBlock::Create(Context
, "", F
);
469 BasicBlock
*GEntry
= BasicBlock::Create(Context
, "", G
);
470 Builder
.SetInsertPoint(FEntry
);
471 Builder
.CreateCall(G
, {Builder
.getInt64(0), Builder
.getInt64(1)});
472 Builder
.CreateCall(G
, {Builder
.getInt64(1), Builder
.getInt64(1)});
473 Builder
.CreateRetVoid();
474 Builder
.SetInsertPoint(GEntry
);
475 Builder
.CreateRetVoid();
477 Solver
.MarkBlockExecutable(FEntry
);
480 auto RegA
= TestLatticeKey(A
, IPOGrouping::Register
);
481 auto RegB
= TestLatticeKey(B
, IPOGrouping::Register
);
482 EXPECT_TRUE(Solver
.getExistingValueState(RegA
).isOverdefined());
483 EXPECT_TRUE(Solver
.getExistingValueState(RegB
).isConstant());
486 /// Test that we can handle exceptional terminator instructions.
488 /// declare internal void @p()
490 /// declare internal void @g()
492 /// define internal void @f() personality ptr @p {
495 /// to label %exit unwind label %catch.pad
498 /// %0 = catchswitch within none [label %catch.body] unwind to caller
501 /// %1 = catchpad within %0 []
502 /// catchret from %1 to label %exit
508 /// For this test, we initially mark the entry block executable. The solver
509 /// then discovers the rest of the blocks in the function are executable.
510 TEST_F(SparsePropagationTest
, ExceptionalTerminatorInsts
) {
511 Function
*P
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
512 GlobalValue::InternalLinkage
, "p", &M
);
513 Function
*G
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
514 GlobalValue::InternalLinkage
, "g", &M
);
515 Function
*F
= Function::Create(FunctionType::get(Builder
.getVoidTy(), false),
516 GlobalValue::InternalLinkage
, "f", &M
);
517 F
->setPersonalityFn(P
);
518 BasicBlock
*Entry
= BasicBlock::Create(Context
, "entry", F
);
519 BasicBlock
*Pad
= BasicBlock::Create(Context
, "catch.pad", F
);
520 BasicBlock
*Body
= BasicBlock::Create(Context
, "catch.body", F
);
521 BasicBlock
*Exit
= BasicBlock::Create(Context
, "exit", F
);
522 Builder
.SetInsertPoint(Entry
);
523 Builder
.CreateInvoke(G
, Exit
, Pad
);
524 Builder
.SetInsertPoint(Pad
);
525 CatchSwitchInst
*CatchSwitch
=
526 Builder
.CreateCatchSwitch(ConstantTokenNone::get(Context
), nullptr, 1);
527 CatchSwitch
->addHandler(Body
);
528 Builder
.SetInsertPoint(Body
);
529 CatchPadInst
*CatchPad
= Builder
.CreateCatchPad(CatchSwitch
, {});
530 Builder
.CreateCatchRet(CatchPad
, Exit
);
531 Builder
.SetInsertPoint(Exit
);
532 Builder
.CreateRetVoid();
534 Solver
.MarkBlockExecutable(Entry
);
537 EXPECT_TRUE(Solver
.isBlockExecutable(Pad
));
538 EXPECT_TRUE(Solver
.isBlockExecutable(Body
));
539 EXPECT_TRUE(Solver
.isBlockExecutable(Exit
));