Bump version to 19.1.0-rc3
[llvm-project.git] / llvm / unittests / IR / InstructionsTest.cpp
blob4c1e9a9acb29ac268c5ff50ca6ec6007c31cc13a
1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/ADT/CombinationGenerator.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/ValueTracking.h"
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/AsmParser/Parser.h"
15 #include "llvm/IR/BasicBlock.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/FPEnv.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/NoFolder.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/SourceMgr.h"
30 #include "llvm-c/Core.h"
31 #include "gmock/gmock-matchers.h"
32 #include "gtest/gtest.h"
33 #include <memory>
35 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
37 namespace llvm {
38 namespace {
40 static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
41 SMDiagnostic Err;
42 std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
43 if (!Mod)
44 Err.print("InstructionsTests", errs());
45 return Mod;
48 TEST(InstructionsTest, ReturnInst) {
49 LLVMContext C;
51 // test for PR6589
52 const ReturnInst* r0 = ReturnInst::Create(C);
53 EXPECT_EQ(r0->getNumOperands(), 0U);
54 EXPECT_EQ(r0->op_begin(), r0->op_end());
56 IntegerType* Int1 = IntegerType::get(C, 1);
57 Constant* One = ConstantInt::get(Int1, 1, true);
58 const ReturnInst* r1 = ReturnInst::Create(C, One);
59 EXPECT_EQ(1U, r1->getNumOperands());
60 User::const_op_iterator b(r1->op_begin());
61 EXPECT_NE(r1->op_end(), b);
62 EXPECT_EQ(One, *b);
63 EXPECT_EQ(One, r1->getOperand(0));
64 ++b;
65 EXPECT_EQ(r1->op_end(), b);
67 // clean up
68 delete r0;
69 delete r1;
72 // Test fixture that provides a module and a single function within it. Useful
73 // for tests that need to refer to the function in some way.
74 class ModuleWithFunctionTest : public testing::Test {
75 protected:
76 ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
77 FArgTypes.push_back(Type::getInt8Ty(Ctx));
78 FArgTypes.push_back(Type::getInt32Ty(Ctx));
79 FArgTypes.push_back(Type::getInt64Ty(Ctx));
80 FunctionType *FTy =
81 FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
82 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
85 LLVMContext Ctx;
86 std::unique_ptr<Module> M;
87 SmallVector<Type *, 3> FArgTypes;
88 Function *F;
91 TEST_F(ModuleWithFunctionTest, CallInst) {
92 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
93 ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
94 ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
95 std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
97 // Make sure iteration over a call's arguments works as expected.
98 unsigned Idx = 0;
99 for (Value *Arg : Call->args()) {
100 EXPECT_EQ(FArgTypes[Idx], Arg->getType());
101 EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
102 Idx++;
105 Call->addRetAttr(Attribute::get(Call->getContext(), "test-str-attr"));
106 EXPECT_TRUE(Call->hasRetAttr("test-str-attr"));
107 EXPECT_FALSE(Call->hasRetAttr("not-on-call"));
109 Call->addFnAttr(Attribute::get(Call->getContext(), "test-str-fn-attr"));
110 ASSERT_TRUE(Call->hasFnAttr("test-str-fn-attr"));
111 Call->removeFnAttr("test-str-fn-attr");
112 EXPECT_FALSE(Call->hasFnAttr("test-str-fn-attr"));
115 TEST_F(ModuleWithFunctionTest, InvokeInst) {
116 BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
117 BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
119 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
120 ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
121 ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
122 std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
124 // Make sure iteration over invoke's arguments works as expected.
125 unsigned Idx = 0;
126 for (Value *Arg : Invoke->args()) {
127 EXPECT_EQ(FArgTypes[Idx], Arg->getType());
128 EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
129 Idx++;
133 TEST(InstructionsTest, BranchInst) {
134 LLVMContext C;
136 // Make a BasicBlocks
137 BasicBlock* bb0 = BasicBlock::Create(C);
138 BasicBlock* bb1 = BasicBlock::Create(C);
140 // Mandatory BranchInst
141 const BranchInst* b0 = BranchInst::Create(bb0);
143 EXPECT_TRUE(b0->isUnconditional());
144 EXPECT_FALSE(b0->isConditional());
145 EXPECT_EQ(1U, b0->getNumSuccessors());
147 // check num operands
148 EXPECT_EQ(1U, b0->getNumOperands());
150 EXPECT_NE(b0->op_begin(), b0->op_end());
151 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
153 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
155 IntegerType* Int1 = IntegerType::get(C, 1);
156 Constant* One = ConstantInt::get(Int1, 1, true);
158 // Conditional BranchInst
159 BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
161 EXPECT_FALSE(b1->isUnconditional());
162 EXPECT_TRUE(b1->isConditional());
163 EXPECT_EQ(2U, b1->getNumSuccessors());
165 // check num operands
166 EXPECT_EQ(3U, b1->getNumOperands());
168 User::const_op_iterator b(b1->op_begin());
170 // check COND
171 EXPECT_NE(b, b1->op_end());
172 EXPECT_EQ(One, *b);
173 EXPECT_EQ(One, b1->getOperand(0));
174 EXPECT_EQ(One, b1->getCondition());
175 ++b;
177 // check ELSE
178 EXPECT_EQ(bb1, *b);
179 EXPECT_EQ(bb1, b1->getOperand(1));
180 EXPECT_EQ(bb1, b1->getSuccessor(1));
181 ++b;
183 // check THEN
184 EXPECT_EQ(bb0, *b);
185 EXPECT_EQ(bb0, b1->getOperand(2));
186 EXPECT_EQ(bb0, b1->getSuccessor(0));
187 ++b;
189 EXPECT_EQ(b1->op_end(), b);
191 // clean up
192 delete b0;
193 delete b1;
195 delete bb0;
196 delete bb1;
199 TEST(InstructionsTest, CastInst) {
200 LLVMContext C;
202 Type *Int8Ty = Type::getInt8Ty(C);
203 Type *Int16Ty = Type::getInt16Ty(C);
204 Type *Int32Ty = Type::getInt32Ty(C);
205 Type *Int64Ty = Type::getInt64Ty(C);
206 Type *V8x8Ty = FixedVectorType::get(Int8Ty, 8);
207 Type *V8x64Ty = FixedVectorType::get(Int64Ty, 8);
208 Type *X86MMXTy = Type::getX86_MMXTy(C);
210 Type *HalfTy = Type::getHalfTy(C);
211 Type *FloatTy = Type::getFloatTy(C);
212 Type *DoubleTy = Type::getDoubleTy(C);
214 Type *V2Int32Ty = FixedVectorType::get(Int32Ty, 2);
215 Type *V2Int64Ty = FixedVectorType::get(Int64Ty, 2);
216 Type *V4Int16Ty = FixedVectorType::get(Int16Ty, 4);
217 Type *V1Int16Ty = FixedVectorType::get(Int16Ty, 1);
219 Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2);
220 Type *VScaleV2Int64Ty = ScalableVectorType::get(Int64Ty, 2);
221 Type *VScaleV4Int16Ty = ScalableVectorType::get(Int16Ty, 4);
222 Type *VScaleV1Int16Ty = ScalableVectorType::get(Int16Ty, 1);
224 Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
225 Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
227 Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
228 Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
230 Type *V2Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 2);
231 Type *V2Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 2);
232 Type *V4Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 4);
233 Type *VScaleV4Int32PtrAS1Ty = ScalableVectorType::get(Int32PtrAS1Ty, 4);
234 Type *V4Int64PtrAS1Ty = FixedVectorType::get(Int64PtrAS1Ty, 4);
236 Type *V2Int64PtrTy = FixedVectorType::get(Int64PtrTy, 2);
237 Type *V2Int32PtrTy = FixedVectorType::get(Int32PtrTy, 2);
238 Type *VScaleV2Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 2);
239 Type *V4Int32PtrTy = FixedVectorType::get(Int32PtrTy, 4);
240 Type *VScaleV4Int32PtrTy = ScalableVectorType::get(Int32PtrTy, 4);
241 Type *VScaleV4Int64PtrTy = ScalableVectorType::get(Int64PtrTy, 4);
243 const Constant* c8 = Constant::getNullValue(V8x8Ty);
244 const Constant* c64 = Constant::getNullValue(V8x64Ty);
246 const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
248 EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
249 EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
251 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
252 EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
253 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
254 EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
255 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
257 // Check address space casts are rejected since we don't know the sizes here
258 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
259 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
260 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
261 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
262 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
263 EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
264 V2Int32PtrAS1Ty,
265 true));
267 // Test mismatched number of elements for pointers
268 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
269 EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
270 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
271 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
272 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
274 EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
275 EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
276 EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
277 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
278 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
279 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
280 EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
281 EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
282 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
284 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
285 EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
286 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
288 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
289 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
290 EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
291 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
292 EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
293 EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
296 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
297 Constant::getNullValue(V4Int32PtrTy),
298 V2Int32PtrTy));
299 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
300 Constant::getNullValue(V2Int32PtrTy),
301 V4Int32PtrTy));
303 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
304 Constant::getNullValue(V4Int32PtrAS1Ty),
305 V2Int32PtrTy));
306 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
307 Constant::getNullValue(V2Int32PtrTy),
308 V4Int32PtrAS1Ty));
310 // Address space cast of fixed/scalable vectors of pointers to scalable/fixed
311 // vector of pointers.
312 EXPECT_FALSE(CastInst::castIsValid(
313 Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
314 V4Int32PtrTy));
315 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
316 Constant::getNullValue(V4Int32PtrTy),
317 VScaleV4Int32PtrAS1Ty));
318 // Address space cast of scalable vectors of pointers to scalable vector of
319 // pointers.
320 EXPECT_FALSE(CastInst::castIsValid(
321 Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
322 VScaleV2Int32PtrTy));
323 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
324 Constant::getNullValue(VScaleV2Int32PtrTy),
325 VScaleV4Int32PtrAS1Ty));
326 EXPECT_TRUE(CastInst::castIsValid(Instruction::AddrSpaceCast,
327 Constant::getNullValue(VScaleV4Int64PtrTy),
328 VScaleV4Int32PtrAS1Ty));
329 // Same number of lanes, different address space.
330 EXPECT_TRUE(CastInst::castIsValid(
331 Instruction::AddrSpaceCast, Constant::getNullValue(VScaleV4Int32PtrAS1Ty),
332 VScaleV4Int32PtrTy));
333 // Same number of lanes, same address space.
334 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
335 Constant::getNullValue(VScaleV4Int64PtrTy),
336 VScaleV4Int32PtrTy));
338 // Bit casting fixed/scalable vector to scalable/fixed vectors.
339 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
340 Constant::getNullValue(V2Int32Ty),
341 VScaleV2Int32Ty));
342 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
343 Constant::getNullValue(V2Int64Ty),
344 VScaleV2Int64Ty));
345 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
346 Constant::getNullValue(V4Int16Ty),
347 VScaleV4Int16Ty));
348 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
349 Constant::getNullValue(VScaleV2Int32Ty),
350 V2Int32Ty));
351 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
352 Constant::getNullValue(VScaleV2Int64Ty),
353 V2Int64Ty));
354 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
355 Constant::getNullValue(VScaleV4Int16Ty),
356 V4Int16Ty));
358 // Bit casting scalable vectors to scalable vectors.
359 EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast,
360 Constant::getNullValue(VScaleV4Int16Ty),
361 VScaleV2Int32Ty));
362 EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast,
363 Constant::getNullValue(VScaleV2Int32Ty),
364 VScaleV4Int16Ty));
365 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
366 Constant::getNullValue(VScaleV2Int64Ty),
367 VScaleV2Int32Ty));
368 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
369 Constant::getNullValue(VScaleV2Int32Ty),
370 VScaleV2Int64Ty));
372 // Bitcasting to/from <vscale x 1 x Ty>
373 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
374 Constant::getNullValue(VScaleV1Int16Ty),
375 V1Int16Ty));
376 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
377 Constant::getNullValue(V1Int16Ty),
378 VScaleV1Int16Ty));
380 // Check that assertion is not hit when creating a cast with a vector of
381 // pointers
382 // First form
383 BasicBlock *BB = BasicBlock::Create(C);
384 Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
385 auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
387 Constant *NullVScaleV2I32Ptr = Constant::getNullValue(VScaleV2Int32PtrTy);
388 auto Inst1VScale = CastInst::CreatePointerCast(
389 NullVScaleV2I32Ptr, VScaleV2Int32Ty, "foo.vscale", BB);
391 // Second form
392 auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
393 auto Inst2VScale =
394 CastInst::CreatePointerCast(NullVScaleV2I32Ptr, VScaleV2Int32Ty);
396 delete Inst2;
397 delete Inst2VScale;
398 Inst1->eraseFromParent();
399 Inst1VScale->eraseFromParent();
400 delete BB;
403 TEST(InstructionsTest, CastCAPI) {
404 LLVMContext C;
406 Type *Int8Ty = Type::getInt8Ty(C);
407 Type *Int32Ty = Type::getInt32Ty(C);
408 Type *Int64Ty = Type::getInt64Ty(C);
410 Type *FloatTy = Type::getFloatTy(C);
411 Type *DoubleTy = Type::getDoubleTy(C);
413 Type *Int8PtrTy = PointerType::get(Int8Ty, 0);
414 Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
416 const Constant *C8 = Constant::getNullValue(Int8Ty);
417 const Constant *C64 = Constant::getNullValue(Int64Ty);
419 EXPECT_EQ(LLVMBitCast,
420 LLVMGetCastOpcode(wrap(C64), true, wrap(Int64Ty), true));
421 EXPECT_EQ(LLVMTrunc, LLVMGetCastOpcode(wrap(C64), true, wrap(Int8Ty), true));
422 EXPECT_EQ(LLVMSExt, LLVMGetCastOpcode(wrap(C8), true, wrap(Int64Ty), true));
423 EXPECT_EQ(LLVMZExt, LLVMGetCastOpcode(wrap(C8), false, wrap(Int64Ty), true));
425 const Constant *CF32 = Constant::getNullValue(FloatTy);
426 const Constant *CF64 = Constant::getNullValue(DoubleTy);
428 EXPECT_EQ(LLVMFPToUI,
429 LLVMGetCastOpcode(wrap(CF32), true, wrap(Int8Ty), false));
430 EXPECT_EQ(LLVMFPToSI,
431 LLVMGetCastOpcode(wrap(CF32), true, wrap(Int8Ty), true));
432 EXPECT_EQ(LLVMUIToFP,
433 LLVMGetCastOpcode(wrap(C8), false, wrap(FloatTy), true));
434 EXPECT_EQ(LLVMSIToFP, LLVMGetCastOpcode(wrap(C8), true, wrap(FloatTy), true));
435 EXPECT_EQ(LLVMFPTrunc,
436 LLVMGetCastOpcode(wrap(CF64), true, wrap(FloatTy), true));
437 EXPECT_EQ(LLVMFPExt,
438 LLVMGetCastOpcode(wrap(CF32), true, wrap(DoubleTy), true));
440 const Constant *CPtr8 = Constant::getNullValue(Int8PtrTy);
442 EXPECT_EQ(LLVMPtrToInt,
443 LLVMGetCastOpcode(wrap(CPtr8), true, wrap(Int8Ty), true));
444 EXPECT_EQ(LLVMIntToPtr,
445 LLVMGetCastOpcode(wrap(C8), true, wrap(Int8PtrTy), true));
447 Type *V8x8Ty = FixedVectorType::get(Int8Ty, 8);
448 Type *V8x64Ty = FixedVectorType::get(Int64Ty, 8);
449 const Constant *CV8 = Constant::getNullValue(V8x8Ty);
450 const Constant *CV64 = Constant::getNullValue(V8x64Ty);
452 EXPECT_EQ(LLVMTrunc, LLVMGetCastOpcode(wrap(CV64), true, wrap(V8x8Ty), true));
453 EXPECT_EQ(LLVMSExt, LLVMGetCastOpcode(wrap(CV8), true, wrap(V8x64Ty), true));
455 Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
456 Type *V2Int32PtrAS1Ty = FixedVectorType::get(Int32PtrAS1Ty, 2);
457 Type *V2Int32PtrTy = FixedVectorType::get(Int32PtrTy, 2);
458 const Constant *CV2ptr32 = Constant::getNullValue(V2Int32PtrTy);
460 EXPECT_EQ(LLVMAddrSpaceCast, LLVMGetCastOpcode(wrap(CV2ptr32), true,
461 wrap(V2Int32PtrAS1Ty), true));
464 TEST(InstructionsTest, VectorGep) {
465 LLVMContext C;
467 // Type Definitions
468 Type *I8Ty = IntegerType::get(C, 8);
469 Type *I32Ty = IntegerType::get(C, 32);
470 PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
471 PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
473 VectorType *V2xi8PTy = FixedVectorType::get(Ptri8Ty, 2);
474 VectorType *V2xi32PTy = FixedVectorType::get(Ptri32Ty, 2);
476 // Test different aspects of the vector-of-pointers type
477 // and GEPs which use this type.
478 ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
479 ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
480 std::vector<Constant*> ConstVa(2, Ci32a);
481 std::vector<Constant*> ConstVb(2, Ci32b);
482 Constant *C2xi32a = ConstantVector::get(ConstVa);
483 Constant *C2xi32b = ConstantVector::get(ConstVb);
485 CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
486 CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
488 ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
489 ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
490 EXPECT_NE(ICmp0, ICmp1); // suppress warning.
492 BasicBlock* BB0 = BasicBlock::Create(C);
493 // Test InsertAtEnd ICmpInst constructor.
494 ICmpInst *ICmp2 = new ICmpInst(BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
495 EXPECT_NE(ICmp0, ICmp2); // suppress warning.
497 GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
498 GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
499 GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
500 GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
502 CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
503 CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
504 CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
505 CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
507 Value *S0 = BTC0->stripPointerCasts();
508 Value *S1 = BTC1->stripPointerCasts();
509 Value *S2 = BTC2->stripPointerCasts();
510 Value *S3 = BTC3->stripPointerCasts();
512 EXPECT_NE(S0, Gep0);
513 EXPECT_NE(S1, Gep1);
514 EXPECT_NE(S2, Gep2);
515 EXPECT_NE(S3, Gep3);
517 int64_t Offset;
518 DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
519 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
520 ":128:128-n8:16:32:64-S128");
521 // Make sure we don't crash
522 GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
523 GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
524 GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
525 GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
527 // Gep of Geps
528 GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
529 GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
530 GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
531 GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
533 EXPECT_EQ(GepII0->getNumIndices(), 1u);
534 EXPECT_EQ(GepII1->getNumIndices(), 1u);
535 EXPECT_EQ(GepII2->getNumIndices(), 1u);
536 EXPECT_EQ(GepII3->getNumIndices(), 1u);
538 EXPECT_FALSE(GepII0->hasAllZeroIndices());
539 EXPECT_FALSE(GepII1->hasAllZeroIndices());
540 EXPECT_FALSE(GepII2->hasAllZeroIndices());
541 EXPECT_FALSE(GepII3->hasAllZeroIndices());
543 delete GepII0;
544 delete GepII1;
545 delete GepII2;
546 delete GepII3;
548 delete BTC0;
549 delete BTC1;
550 delete BTC2;
551 delete BTC3;
553 delete Gep0;
554 delete Gep1;
555 delete Gep2;
556 delete Gep3;
558 ICmp2->eraseFromParent();
559 delete BB0;
561 delete ICmp0;
562 delete ICmp1;
563 delete PtrVecA;
564 delete PtrVecB;
567 TEST(InstructionsTest, FPMathOperator) {
568 LLVMContext Context;
569 IRBuilder<> Builder(Context);
570 MDBuilder MDHelper(Context);
571 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
572 MDNode *MD1 = MDHelper.createFPMath(1.0);
573 Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
574 EXPECT_TRUE(isa<FPMathOperator>(V1));
575 FPMathOperator *O1 = cast<FPMathOperator>(V1);
576 EXPECT_EQ(O1->getFPAccuracy(), 1.0);
577 V1->deleteValue();
578 I->deleteValue();
581 TEST(InstructionTest, ConstrainedTrans) {
582 LLVMContext Context;
583 std::unique_ptr<Module> M(new Module("MyModule", Context));
584 FunctionType *FTy =
585 FunctionType::get(Type::getVoidTy(Context),
586 {Type::getFloatTy(Context), Type::getFloatTy(Context),
587 Type::getInt32Ty(Context)},
588 false);
589 auto *F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
590 auto *BB = BasicBlock::Create(Context, "bb", F);
591 IRBuilder<> Builder(Context);
592 Builder.SetInsertPoint(BB);
593 auto *Arg0 = F->arg_begin();
594 auto *Arg1 = F->arg_begin() + 1;
597 auto *I = cast<Instruction>(Builder.CreateFAdd(Arg0, Arg1));
598 EXPECT_EQ(Intrinsic::experimental_constrained_fadd,
599 getConstrainedIntrinsicID(*I));
603 auto *I = cast<Instruction>(
604 Builder.CreateFPToSI(Arg0, Type::getInt32Ty(Context)));
605 EXPECT_EQ(Intrinsic::experimental_constrained_fptosi,
606 getConstrainedIntrinsicID(*I));
610 auto *I = cast<Instruction>(Builder.CreateIntrinsic(
611 Intrinsic::ceil, {Type::getFloatTy(Context)}, {Arg0}));
612 EXPECT_EQ(Intrinsic::experimental_constrained_ceil,
613 getConstrainedIntrinsicID(*I));
617 auto *I = cast<Instruction>(Builder.CreateFCmpOEQ(Arg0, Arg1));
618 EXPECT_EQ(Intrinsic::experimental_constrained_fcmp,
619 getConstrainedIntrinsicID(*I));
623 auto *Arg2 = F->arg_begin() + 2;
624 auto *I = cast<Instruction>(Builder.CreateAdd(Arg2, Arg2));
625 EXPECT_EQ(Intrinsic::not_intrinsic, getConstrainedIntrinsicID(*I));
629 auto *I = cast<Instruction>(Builder.CreateConstrainedFPBinOp(
630 Intrinsic::experimental_constrained_fadd, Arg0, Arg0));
631 EXPECT_EQ(Intrinsic::not_intrinsic, getConstrainedIntrinsicID(*I));
635 TEST(InstructionsTest, isEliminableCastPair) {
636 LLVMContext C;
638 Type* Int16Ty = Type::getInt16Ty(C);
639 Type* Int32Ty = Type::getInt32Ty(C);
640 Type* Int64Ty = Type::getInt64Ty(C);
641 Type *Int64PtrTy = PointerType::get(C, 0);
643 // Source and destination pointers have same size -> bitcast.
644 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
645 CastInst::IntToPtr,
646 Int64PtrTy, Int64Ty, Int64PtrTy,
647 Int32Ty, nullptr, Int32Ty),
648 CastInst::BitCast);
650 // Source and destination have unknown sizes, but the same address space and
651 // the intermediate int is the maximum pointer size -> bitcast
652 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
653 CastInst::IntToPtr,
654 Int64PtrTy, Int64Ty, Int64PtrTy,
655 nullptr, nullptr, nullptr),
656 CastInst::BitCast);
658 // Source and destination have unknown sizes, but the same address space and
659 // the intermediate int is not the maximum pointer size -> nothing
660 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
661 CastInst::IntToPtr,
662 Int64PtrTy, Int32Ty, Int64PtrTy,
663 nullptr, nullptr, nullptr),
664 0U);
666 // Middle pointer big enough -> bitcast.
667 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
668 CastInst::PtrToInt,
669 Int64Ty, Int64PtrTy, Int64Ty,
670 nullptr, Int64Ty, nullptr),
671 CastInst::BitCast);
673 // Middle pointer too small -> fail.
674 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
675 CastInst::PtrToInt,
676 Int64Ty, Int64PtrTy, Int64Ty,
677 nullptr, Int32Ty, nullptr),
678 0U);
680 // Test that we don't eliminate bitcasts between different address spaces,
681 // or if we don't have available pointer size information.
682 DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
683 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
684 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
686 Type *Int64PtrTyAS1 = PointerType::get(C, 1);
687 Type *Int64PtrTyAS2 = PointerType::get(C, 2);
689 IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
690 IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
692 // Cannot simplify inttoptr, addrspacecast
693 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
694 CastInst::AddrSpaceCast,
695 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
696 nullptr, Int16SizePtr, Int64SizePtr),
697 0U);
699 // Cannot simplify addrspacecast, ptrtoint
700 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
701 CastInst::PtrToInt,
702 Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
703 Int64SizePtr, Int16SizePtr, nullptr),
704 0U);
706 // Pass since the bitcast address spaces are the same
707 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
708 CastInst::BitCast,
709 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
710 nullptr, nullptr, nullptr),
711 CastInst::IntToPtr);
715 TEST(InstructionsTest, CloneCall) {
716 LLVMContext C;
717 Type *Int32Ty = Type::getInt32Ty(C);
718 Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
719 FunctionType *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
720 Value *Callee = Constant::getNullValue(PointerType::getUnqual(C));
721 Value *Args[] = {
722 ConstantInt::get(Int32Ty, 1),
723 ConstantInt::get(Int32Ty, 2),
724 ConstantInt::get(Int32Ty, 3)
726 std::unique_ptr<CallInst> Call(
727 CallInst::Create(FnTy, Callee, Args, "result"));
729 // Test cloning the tail call kind.
730 CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
731 CallInst::TCK_MustTail};
732 for (CallInst::TailCallKind TCK : Kinds) {
733 Call->setTailCallKind(TCK);
734 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
735 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
737 Call->setTailCallKind(CallInst::TCK_None);
739 // Test cloning an attribute.
741 AttrBuilder AB(C);
742 AB.addAttribute(Attribute::NoUnwind);
743 Call->setAttributes(
744 AttributeList::get(C, AttributeList::FunctionIndex, AB));
745 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
746 EXPECT_TRUE(Clone->doesNotThrow());
750 TEST(InstructionsTest, AlterCallBundles) {
751 LLVMContext C;
752 Type *Int32Ty = Type::getInt32Ty(C);
753 FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
754 Value *Callee = Constant::getNullValue(PointerType::getUnqual(C));
755 Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
756 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
757 std::unique_ptr<CallInst> Call(
758 CallInst::Create(FnTy, Callee, Args, OldBundle, "result"));
759 Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
760 AttrBuilder AB(C);
761 AB.addAttribute(Attribute::Cold);
762 Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB));
763 Call->setDebugLoc(DebugLoc(MDNode::get(C, std::nullopt)));
765 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
766 std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
767 EXPECT_EQ(Call->arg_size(), Clone->arg_size());
768 EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
769 EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
770 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
771 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
772 EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
773 EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
774 EXPECT_TRUE(Clone->getOperandBundle("after"));
777 TEST(InstructionsTest, AlterInvokeBundles) {
778 LLVMContext C;
779 Type *Int32Ty = Type::getInt32Ty(C);
780 FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
781 Value *Callee = Constant::getNullValue(PointerType::getUnqual(C));
782 Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
783 std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
784 std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
785 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
786 std::unique_ptr<InvokeInst> Invoke(
787 InvokeInst::Create(FnTy, Callee, NormalDest.get(), UnwindDest.get(), Args,
788 OldBundle, "result"));
789 AttrBuilder AB(C);
790 AB.addAttribute(Attribute::Cold);
791 Invoke->setAttributes(
792 AttributeList::get(C, AttributeList::FunctionIndex, AB));
793 Invoke->setDebugLoc(DebugLoc(MDNode::get(C, std::nullopt)));
795 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
796 std::unique_ptr<InvokeInst> Clone(
797 InvokeInst::Create(Invoke.get(), NewBundle));
798 EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
799 EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
800 EXPECT_EQ(Invoke->arg_size(), Clone->arg_size());
801 EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
802 EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
803 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
804 EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
805 EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
806 EXPECT_TRUE(Clone->getOperandBundle("after"));
809 TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) {
810 auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F);
811 auto *Arg0 = &*F->arg_begin();
813 IRBuilder<NoFolder> B(Ctx);
814 B.SetInsertPoint(OnlyBB);
817 auto *UI =
818 cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true));
819 ASSERT_TRUE(UI->isExact());
820 UI->dropPoisonGeneratingFlags();
821 ASSERT_FALSE(UI->isExact());
825 auto *ShrI =
826 cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true));
827 ASSERT_TRUE(ShrI->isExact());
828 ShrI->dropPoisonGeneratingFlags();
829 ASSERT_FALSE(ShrI->isExact());
833 auto *AI = cast<Instruction>(
834 B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false));
835 ASSERT_TRUE(AI->hasNoUnsignedWrap());
836 AI->dropPoisonGeneratingFlags();
837 ASSERT_FALSE(AI->hasNoUnsignedWrap());
838 ASSERT_FALSE(AI->hasNoSignedWrap());
842 auto *SI = cast<Instruction>(
843 B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true));
844 ASSERT_TRUE(SI->hasNoSignedWrap());
845 SI->dropPoisonGeneratingFlags();
846 ASSERT_FALSE(SI->hasNoUnsignedWrap());
847 ASSERT_FALSE(SI->hasNoSignedWrap());
851 auto *ShlI = cast<Instruction>(
852 B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true));
853 ASSERT_TRUE(ShlI->hasNoSignedWrap());
854 ASSERT_TRUE(ShlI->hasNoUnsignedWrap());
855 ShlI->dropPoisonGeneratingFlags();
856 ASSERT_FALSE(ShlI->hasNoUnsignedWrap());
857 ASSERT_FALSE(ShlI->hasNoSignedWrap());
861 Value *GEPBase = Constant::getNullValue(B.getPtrTy());
862 auto *GI = cast<GetElementPtrInst>(
863 B.CreateInBoundsGEP(B.getInt8Ty(), GEPBase, Arg0));
864 ASSERT_TRUE(GI->isInBounds());
865 GI->dropPoisonGeneratingFlags();
866 ASSERT_FALSE(GI->isInBounds());
870 TEST(InstructionsTest, GEPIndices) {
871 LLVMContext Context;
872 IRBuilder<NoFolder> Builder(Context);
873 Type *ElementTy = Builder.getInt8Ty();
874 Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64);
875 Value *Indices[] = {
876 Builder.getInt32(0),
877 Builder.getInt32(13),
878 Builder.getInt32(42) };
880 Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)),
881 Indices);
882 ASSERT_TRUE(isa<GetElementPtrInst>(V));
884 auto *GEPI = cast<GetElementPtrInst>(V);
885 ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end());
886 ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3));
887 EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]);
888 EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]);
889 EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]);
890 EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin());
891 EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end());
893 const auto *CGEPI = GEPI;
894 ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end());
895 ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3));
896 EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]);
897 EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]);
898 EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]);
899 EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin());
900 EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end());
902 delete GEPI;
905 TEST(InstructionsTest, SwitchInst) {
906 LLVMContext C;
908 std::unique_ptr<BasicBlock> BB1, BB2, BB3;
909 BB1.reset(BasicBlock::Create(C));
910 BB2.reset(BasicBlock::Create(C));
911 BB3.reset(BasicBlock::Create(C));
913 // We create block 0 after the others so that it gets destroyed first and
914 // clears the uses of the other basic blocks.
915 std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
917 auto *Int32Ty = Type::getInt32Ty(C);
919 SwitchInst *SI =
920 SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get());
921 SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
922 SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
923 SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get());
925 auto CI = SI->case_begin();
926 ASSERT_NE(CI, SI->case_end());
927 EXPECT_EQ(1, CI->getCaseValue()->getSExtValue());
928 EXPECT_EQ(BB1.get(), CI->getCaseSuccessor());
929 EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue());
930 EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor());
931 EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue());
932 EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor());
933 EXPECT_EQ(CI + 1, std::next(CI));
934 EXPECT_EQ(CI + 2, std::next(CI, 2));
935 EXPECT_EQ(CI + 3, std::next(CI, 3));
936 EXPECT_EQ(SI->case_end(), CI + 3);
937 EXPECT_EQ(0, CI - CI);
938 EXPECT_EQ(1, (CI + 1) - CI);
939 EXPECT_EQ(2, (CI + 2) - CI);
940 EXPECT_EQ(3, SI->case_end() - CI);
941 EXPECT_EQ(3, std::distance(CI, SI->case_end()));
943 auto CCI = const_cast<const SwitchInst *>(SI)->case_begin();
944 SwitchInst::ConstCaseIt CCE = SI->case_end();
945 ASSERT_NE(CCI, SI->case_end());
946 EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue());
947 EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor());
948 EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue());
949 EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor());
950 EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue());
951 EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor());
952 EXPECT_EQ(CCI + 1, std::next(CCI));
953 EXPECT_EQ(CCI + 2, std::next(CCI, 2));
954 EXPECT_EQ(CCI + 3, std::next(CCI, 3));
955 EXPECT_EQ(CCE, CCI + 3);
956 EXPECT_EQ(0, CCI - CCI);
957 EXPECT_EQ(1, (CCI + 1) - CCI);
958 EXPECT_EQ(2, (CCI + 2) - CCI);
959 EXPECT_EQ(3, CCE - CCI);
960 EXPECT_EQ(3, std::distance(CCI, CCE));
962 // Make sure that the const iterator is compatible with a const auto ref.
963 const auto &Handle = *CCI;
964 EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue());
965 EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor());
968 TEST(InstructionsTest, SwitchInstProfUpdateWrapper) {
969 LLVMContext C;
971 std::unique_ptr<BasicBlock> BB1, BB2, BB3;
972 BB1.reset(BasicBlock::Create(C));
973 BB2.reset(BasicBlock::Create(C));
974 BB3.reset(BasicBlock::Create(C));
976 // We create block 0 after the others so that it gets destroyed first and
977 // clears the uses of the other basic blocks.
978 std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
980 auto *Int32Ty = Type::getInt32Ty(C);
982 SwitchInst *SI =
983 SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 4, BB0.get());
984 SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
985 SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
986 SI->setMetadata(LLVMContext::MD_prof,
987 MDBuilder(C).createBranchWeights({ 9, 1, 22 }));
990 SwitchInstProfUpdateWrapper SIW(*SI);
991 EXPECT_EQ(*SIW.getSuccessorWeight(0), 9u);
992 EXPECT_EQ(*SIW.getSuccessorWeight(1), 1u);
993 EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
994 SIW.setSuccessorWeight(0, 99u);
995 SIW.setSuccessorWeight(1, 11u);
996 EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
997 EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
998 EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
1001 { // Create another wrapper and check that the data persist.
1002 SwitchInstProfUpdateWrapper SIW(*SI);
1003 EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
1004 EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
1005 EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
1009 TEST(InstructionsTest, CommuteShuffleMask) {
1010 SmallVector<int, 16> Indices({-1, 0, 7});
1011 ShuffleVectorInst::commuteShuffleMask(Indices, 4);
1012 EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3})));
1015 TEST(InstructionsTest, ShuffleMaskQueries) {
1016 // Create the elements for various constant vectors.
1017 LLVMContext Ctx;
1018 Type *Int32Ty = Type::getInt32Ty(Ctx);
1019 Constant *CU = UndefValue::get(Int32Ty);
1020 Constant *C0 = ConstantInt::get(Int32Ty, 0);
1021 Constant *C1 = ConstantInt::get(Int32Ty, 1);
1022 Constant *C2 = ConstantInt::get(Int32Ty, 2);
1023 Constant *C3 = ConstantInt::get(Int32Ty, 3);
1024 Constant *C4 = ConstantInt::get(Int32Ty, 4);
1025 Constant *C5 = ConstantInt::get(Int32Ty, 5);
1026 Constant *C6 = ConstantInt::get(Int32Ty, 6);
1027 Constant *C7 = ConstantInt::get(Int32Ty, 7);
1029 Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4});
1030 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1031 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1032 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1033 Identity,
1034 cast<FixedVectorType>(Identity->getType())
1035 ->getNumElements())); // identity is distinguished from select
1036 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1037 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1038 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1039 Identity, cast<FixedVectorType>(Identity->getType())
1040 ->getNumElements())); // identity is always single source
1041 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1042 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1043 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1044 Identity, cast<FixedVectorType>(Identity->getType())->getNumElements()));
1046 Constant *Select = ConstantVector::get({CU, C1, C5});
1047 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1048 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1049 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1050 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1051 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1052 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1053 EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(
1054 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1055 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1056 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1057 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1058 Select, cast<FixedVectorType>(Select->getType())->getNumElements()));
1060 Constant *Reverse = ConstantVector::get({C3, C2, C1, CU});
1061 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1062 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1063 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1064 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1065 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1066 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1067 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1068 Reverse, cast<FixedVectorType>(Reverse->getType())
1069 ->getNumElements())); // reverse is always single source
1070 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1071 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1072 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1073 Reverse, cast<FixedVectorType>(Reverse->getType())->getNumElements()));
1075 Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU});
1076 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1077 SingleSource,
1078 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1079 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1080 SingleSource,
1081 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1082 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1083 SingleSource,
1084 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1085 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1086 SingleSource,
1087 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1088 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1089 SingleSource,
1090 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1091 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1092 SingleSource,
1093 cast<FixedVectorType>(SingleSource->getType())->getNumElements()));
1095 Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0});
1096 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1097 ZeroEltSplat,
1098 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1099 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1100 ZeroEltSplat,
1101 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1102 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1103 ZeroEltSplat,
1104 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1105 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1106 ZeroEltSplat, cast<FixedVectorType>(ZeroEltSplat->getType())
1107 ->getNumElements())); // 0-splat is always single source
1108 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1109 ZeroEltSplat,
1110 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1111 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1112 ZeroEltSplat,
1113 cast<FixedVectorType>(ZeroEltSplat->getType())->getNumElements()));
1115 Constant *Transpose = ConstantVector::get({C0, C4, C2, C6});
1116 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1117 Transpose,
1118 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1119 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1120 Transpose,
1121 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1122 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1123 Transpose,
1124 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1125 EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(
1126 Transpose,
1127 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1128 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1129 Transpose,
1130 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1131 EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(
1132 Transpose,
1133 cast<FixedVectorType>(Transpose->getType())->getNumElements()));
1135 // More tests to make sure the logic is/stays correct...
1136 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1137 ConstantVector::get({CU, C1, CU, C3}), 4));
1138 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1139 ConstantVector::get({C4, CU, C6, CU}), 4));
1141 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1142 ConstantVector::get({C4, C1, C6, CU}), 4));
1143 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1144 ConstantVector::get({CU, C1, C6, C3}), 4));
1146 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1147 ConstantVector::get({C7, C6, CU, C4}), 4));
1148 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1149 ConstantVector::get({C3, CU, C1, CU}), 4));
1151 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1152 ConstantVector::get({C7, C5, CU, C7}), 4));
1153 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1154 ConstantVector::get({C3, C0, CU, C3}), 4));
1156 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1157 ConstantVector::get({C4, CU, CU, C4}), 4));
1158 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1159 ConstantVector::get({CU, C0, CU, C0}), 4));
1161 EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(
1162 ConstantVector::get({C1, C5, C3, C7}), 4));
1163 EXPECT_TRUE(
1164 ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3}), 2));
1166 // Nothing special about the values here - just re-using inputs to reduce code.
1167 Constant *V0 = ConstantVector::get({C0, C1, C2, C3});
1168 Constant *V1 = ConstantVector::get({C3, C2, C1, C0});
1170 // Identity with undef elts.
1171 ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1,
1172 ConstantVector::get({C0, C1, CU, CU}));
1173 EXPECT_TRUE(Id1->isIdentity());
1174 EXPECT_FALSE(Id1->isIdentityWithPadding());
1175 EXPECT_FALSE(Id1->isIdentityWithExtract());
1176 EXPECT_FALSE(Id1->isConcat());
1177 delete Id1;
1179 // Result has less elements than operands.
1180 ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1,
1181 ConstantVector::get({C0, C1, C2}));
1182 EXPECT_FALSE(Id2->isIdentity());
1183 EXPECT_FALSE(Id2->isIdentityWithPadding());
1184 EXPECT_TRUE(Id2->isIdentityWithExtract());
1185 EXPECT_FALSE(Id2->isConcat());
1186 delete Id2;
1188 // Result has less elements than operands; choose from Op1.
1189 ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1,
1190 ConstantVector::get({C4, CU, C6}));
1191 EXPECT_FALSE(Id3->isIdentity());
1192 EXPECT_FALSE(Id3->isIdentityWithPadding());
1193 EXPECT_TRUE(Id3->isIdentityWithExtract());
1194 EXPECT_FALSE(Id3->isConcat());
1195 delete Id3;
1197 // Result has less elements than operands; choose from Op0 and Op1 is not identity.
1198 ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1,
1199 ConstantVector::get({C4, C1, C6}));
1200 EXPECT_FALSE(Id4->isIdentity());
1201 EXPECT_FALSE(Id4->isIdentityWithPadding());
1202 EXPECT_FALSE(Id4->isIdentityWithExtract());
1203 EXPECT_FALSE(Id4->isConcat());
1204 delete Id4;
1206 // Result has more elements than operands, and extra elements are undef.
1207 ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1,
1208 ConstantVector::get({CU, C1, C2, C3, CU, CU}));
1209 EXPECT_FALSE(Id5->isIdentity());
1210 EXPECT_TRUE(Id5->isIdentityWithPadding());
1211 EXPECT_FALSE(Id5->isIdentityWithExtract());
1212 EXPECT_FALSE(Id5->isConcat());
1213 delete Id5;
1215 // Result has more elements than operands, and extra elements are undef; choose from Op1.
1216 ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1,
1217 ConstantVector::get({C4, C5, C6, CU, CU, CU}));
1218 EXPECT_FALSE(Id6->isIdentity());
1219 EXPECT_TRUE(Id6->isIdentityWithPadding());
1220 EXPECT_FALSE(Id6->isIdentityWithExtract());
1221 EXPECT_FALSE(Id6->isConcat());
1222 delete Id6;
1224 // Result has more elements than operands, but extra elements are not undef.
1225 ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1,
1226 ConstantVector::get({C0, C1, C2, C3, CU, C1}));
1227 EXPECT_FALSE(Id7->isIdentity());
1228 EXPECT_FALSE(Id7->isIdentityWithPadding());
1229 EXPECT_FALSE(Id7->isIdentityWithExtract());
1230 EXPECT_FALSE(Id7->isConcat());
1231 delete Id7;
1233 // Result has more elements than operands; choose from Op0 and Op1 is not identity.
1234 ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1,
1235 ConstantVector::get({C4, CU, C2, C3, CU, CU}));
1236 EXPECT_FALSE(Id8->isIdentity());
1237 EXPECT_FALSE(Id8->isIdentityWithPadding());
1238 EXPECT_FALSE(Id8->isIdentityWithExtract());
1239 EXPECT_FALSE(Id8->isConcat());
1240 delete Id8;
1242 // Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
1243 ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1,
1244 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
1245 EXPECT_FALSE(Id9->isIdentity());
1246 EXPECT_FALSE(Id9->isIdentityWithPadding());
1247 EXPECT_FALSE(Id9->isIdentityWithExtract());
1248 EXPECT_TRUE(Id9->isConcat());
1249 delete Id9;
1251 // Result has less than twice as many elements as operands, so not a concat.
1252 ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1,
1253 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6}));
1254 EXPECT_FALSE(Id10->isIdentity());
1255 EXPECT_FALSE(Id10->isIdentityWithPadding());
1256 EXPECT_FALSE(Id10->isIdentityWithExtract());
1257 EXPECT_FALSE(Id10->isConcat());
1258 delete Id10;
1260 // Result has more than twice as many elements as operands, so not a concat.
1261 ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1,
1262 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU}));
1263 EXPECT_FALSE(Id11->isIdentity());
1264 EXPECT_FALSE(Id11->isIdentityWithPadding());
1265 EXPECT_FALSE(Id11->isIdentityWithExtract());
1266 EXPECT_FALSE(Id11->isConcat());
1267 delete Id11;
1269 // If an input is undef, it's not a concat.
1270 // TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
1271 ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}),
1272 ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
1273 EXPECT_FALSE(Id12->isIdentity());
1274 EXPECT_FALSE(Id12->isIdentityWithPadding());
1275 EXPECT_FALSE(Id12->isIdentityWithExtract());
1276 EXPECT_FALSE(Id12->isConcat());
1277 delete Id12;
1279 // Not possible to express shuffle mask for scalable vector for extract
1280 // subvector.
1281 Type *VScaleV4Int32Ty = ScalableVectorType::get(Int32Ty, 4);
1282 ShuffleVectorInst *Id13 =
1283 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV4Int32Ty),
1284 UndefValue::get(VScaleV4Int32Ty),
1285 Constant::getNullValue(VScaleV4Int32Ty));
1286 int Index = 0;
1287 EXPECT_FALSE(Id13->isExtractSubvectorMask(Index));
1288 EXPECT_FALSE(Id13->changesLength());
1289 EXPECT_FALSE(Id13->increasesLength());
1290 delete Id13;
1292 // Result has twice as many operands.
1293 Type *VScaleV2Int32Ty = ScalableVectorType::get(Int32Ty, 2);
1294 ShuffleVectorInst *Id14 =
1295 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty),
1296 UndefValue::get(VScaleV2Int32Ty),
1297 Constant::getNullValue(VScaleV4Int32Ty));
1298 EXPECT_TRUE(Id14->changesLength());
1299 EXPECT_TRUE(Id14->increasesLength());
1300 delete Id14;
1302 // Not possible to express these masks for scalable vectors, make sure we
1303 // don't crash.
1304 ShuffleVectorInst *Id15 =
1305 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty),
1306 Constant::getNullValue(VScaleV2Int32Ty),
1307 Constant::getNullValue(VScaleV2Int32Ty));
1308 EXPECT_FALSE(Id15->isIdentityWithPadding());
1309 EXPECT_FALSE(Id15->isIdentityWithExtract());
1310 EXPECT_FALSE(Id15->isConcat());
1311 delete Id15;
1314 TEST(InstructionsTest, ShuffleMaskIsReplicationMask) {
1315 for (int ReplicationFactor : seq_inclusive(1, 8)) {
1316 for (int VF : seq_inclusive(1, 8)) {
1317 const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF);
1318 int GuessedReplicationFactor = -1, GuessedVF = -1;
1319 EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
1320 ReplicatedMask, GuessedReplicationFactor, GuessedVF));
1321 EXPECT_EQ(GuessedReplicationFactor, ReplicationFactor);
1322 EXPECT_EQ(GuessedVF, VF);
1324 for (int OpVF : seq_inclusive(VF, 2 * VF + 1)) {
1325 LLVMContext Ctx;
1326 Type *OpVFTy = FixedVectorType::get(IntegerType::getInt1Ty(Ctx), OpVF);
1327 Value *Op = ConstantVector::getNullValue(OpVFTy);
1328 ShuffleVectorInst *SVI = new ShuffleVectorInst(Op, Op, ReplicatedMask);
1329 EXPECT_EQ(SVI->isReplicationMask(GuessedReplicationFactor, GuessedVF),
1330 OpVF == VF);
1331 delete SVI;
1337 TEST(InstructionsTest, ShuffleMaskIsReplicationMask_undef) {
1338 for (int ReplicationFactor : seq_inclusive(1, 4)) {
1339 for (int VF : seq_inclusive(1, 4)) {
1340 const auto ReplicatedMask = createReplicatedMask(ReplicationFactor, VF);
1341 int GuessedReplicationFactor = -1, GuessedVF = -1;
1343 // If we change some mask elements to undef, we should still match.
1345 SmallVector<SmallVector<bool>> ElementChoices(ReplicatedMask.size(),
1346 {false, true});
1348 CombinationGenerator<bool, decltype(ElementChoices)::value_type,
1349 /*variable_smallsize=*/4>
1350 G(ElementChoices);
1352 G.generate([&](ArrayRef<bool> UndefOverrides) -> bool {
1353 SmallVector<int> AdjustedMask;
1354 AdjustedMask.reserve(ReplicatedMask.size());
1355 for (auto I : zip(ReplicatedMask, UndefOverrides))
1356 AdjustedMask.emplace_back(std::get<1>(I) ? -1 : std::get<0>(I));
1357 assert(AdjustedMask.size() == ReplicatedMask.size() &&
1358 "Size misprediction");
1360 EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
1361 AdjustedMask, GuessedReplicationFactor, GuessedVF));
1362 // Do not check GuessedReplicationFactor and GuessedVF,
1363 // with enough undef's we may deduce a different tuple.
1365 return /*Abort=*/false;
1371 TEST(InstructionsTest, ShuffleMaskIsReplicationMask_Exhaustive_Correctness) {
1372 for (int ShufMaskNumElts : seq_inclusive(1, 6)) {
1373 SmallVector<int> PossibleShufMaskElts;
1374 PossibleShufMaskElts.reserve(ShufMaskNumElts + 2);
1375 for (int PossibleShufMaskElt : seq_inclusive(-1, ShufMaskNumElts))
1376 PossibleShufMaskElts.emplace_back(PossibleShufMaskElt);
1377 assert(PossibleShufMaskElts.size() == ShufMaskNumElts + 2U &&
1378 "Size misprediction");
1380 SmallVector<SmallVector<int>> ElementChoices(ShufMaskNumElts,
1381 PossibleShufMaskElts);
1383 CombinationGenerator<int, decltype(ElementChoices)::value_type,
1384 /*variable_smallsize=*/4>
1385 G(ElementChoices);
1387 G.generate([&](ArrayRef<int> Mask) -> bool {
1388 int GuessedReplicationFactor = -1, GuessedVF = -1;
1389 bool Match = ShuffleVectorInst::isReplicationMask(
1390 Mask, GuessedReplicationFactor, GuessedVF);
1391 if (!Match)
1392 return /*Abort=*/false;
1394 const auto ActualMask =
1395 createReplicatedMask(GuessedReplicationFactor, GuessedVF);
1396 EXPECT_EQ(Mask.size(), ActualMask.size());
1397 for (auto I : zip(Mask, ActualMask)) {
1398 int Elt = std::get<0>(I);
1399 int ActualElt = std::get<0>(I);
1401 if (Elt != -1) {
1402 EXPECT_EQ(Elt, ActualElt);
1406 return /*Abort=*/false;
1411 TEST(InstructionsTest, GetSplat) {
1412 // Create the elements for various constant vectors.
1413 LLVMContext Ctx;
1414 Type *Int32Ty = Type::getInt32Ty(Ctx);
1415 Constant *CU = UndefValue::get(Int32Ty);
1416 Constant *CP = PoisonValue::get(Int32Ty);
1417 Constant *C0 = ConstantInt::get(Int32Ty, 0);
1418 Constant *C1 = ConstantInt::get(Int32Ty, 1);
1420 Constant *Splat0 = ConstantVector::get({C0, C0, C0, C0});
1421 Constant *Splat1 = ConstantVector::get({C1, C1, C1, C1 ,C1});
1422 Constant *Splat0Undef = ConstantVector::get({C0, CU, C0, CU});
1423 Constant *Splat1Undef = ConstantVector::get({CU, CU, C1, CU});
1424 Constant *NotSplat = ConstantVector::get({C1, C1, C0, C1 ,C1});
1425 Constant *NotSplatUndef = ConstantVector::get({CU, C1, CU, CU ,C0});
1426 Constant *Splat0Poison = ConstantVector::get({C0, CP, C0, CP});
1427 Constant *Splat1Poison = ConstantVector::get({CP, CP, C1, CP});
1428 Constant *NotSplatPoison = ConstantVector::get({CP, C1, CP, CP, C0});
1430 // Default - undef/poison is not allowed.
1431 EXPECT_EQ(Splat0->getSplatValue(), C0);
1432 EXPECT_EQ(Splat1->getSplatValue(), C1);
1433 EXPECT_EQ(Splat0Undef->getSplatValue(), nullptr);
1434 EXPECT_EQ(Splat1Undef->getSplatValue(), nullptr);
1435 EXPECT_EQ(Splat0Poison->getSplatValue(), nullptr);
1436 EXPECT_EQ(Splat1Poison->getSplatValue(), nullptr);
1437 EXPECT_EQ(NotSplat->getSplatValue(), nullptr);
1438 EXPECT_EQ(NotSplatUndef->getSplatValue(), nullptr);
1439 EXPECT_EQ(NotSplatPoison->getSplatValue(), nullptr);
1441 // Disallow poison explicitly.
1442 EXPECT_EQ(Splat0->getSplatValue(false), C0);
1443 EXPECT_EQ(Splat1->getSplatValue(false), C1);
1444 EXPECT_EQ(Splat0Undef->getSplatValue(false), nullptr);
1445 EXPECT_EQ(Splat1Undef->getSplatValue(false), nullptr);
1446 EXPECT_EQ(Splat0Poison->getSplatValue(false), nullptr);
1447 EXPECT_EQ(Splat1Poison->getSplatValue(false), nullptr);
1448 EXPECT_EQ(NotSplat->getSplatValue(false), nullptr);
1449 EXPECT_EQ(NotSplatUndef->getSplatValue(false), nullptr);
1450 EXPECT_EQ(NotSplatPoison->getSplatValue(false), nullptr);
1452 // Allow poison but not undef.
1453 EXPECT_EQ(Splat0->getSplatValue(true), C0);
1454 EXPECT_EQ(Splat1->getSplatValue(true), C1);
1455 EXPECT_EQ(Splat0Undef->getSplatValue(true), nullptr);
1456 EXPECT_EQ(Splat1Undef->getSplatValue(true), nullptr);
1457 EXPECT_EQ(Splat0Poison->getSplatValue(true), C0);
1458 EXPECT_EQ(Splat1Poison->getSplatValue(true), C1);
1459 EXPECT_EQ(NotSplat->getSplatValue(true), nullptr);
1460 EXPECT_EQ(NotSplatUndef->getSplatValue(true), nullptr);
1461 EXPECT_EQ(NotSplatPoison->getSplatValue(true), nullptr);
1464 TEST(InstructionsTest, SkipDebug) {
1465 LLVMContext C;
1466 bool OldDbgValueMode = UseNewDbgInfoFormat;
1467 UseNewDbgInfoFormat = false;
1468 std::unique_ptr<Module> M = parseIR(C,
1470 declare void @llvm.dbg.value(metadata, metadata, metadata)
1472 define void @f() {
1473 entry:
1474 call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
1475 ret void
1478 !llvm.dbg.cu = !{!0}
1479 !llvm.module.flags = !{!3, !4}
1480 !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
1481 !1 = !DIFile(filename: "t2.c", directory: "foo")
1482 !2 = !{}
1483 !3 = !{i32 2, !"Dwarf Version", i32 4}
1484 !4 = !{i32 2, !"Debug Info Version", i32 3}
1485 !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
1486 !9 = !DISubroutineType(types: !10)
1487 !10 = !{null}
1488 !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12)
1489 !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
1490 !13 = !DILocation(line: 2, column: 7, scope: !8)
1491 )");
1492 ASSERT_TRUE(M);
1493 Function *F = cast<Function>(M->getNamedValue("f"));
1494 BasicBlock &BB = F->front();
1496 // The first non-debug instruction is the terminator.
1497 auto *Term = BB.getTerminator();
1498 EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction());
1499 EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin()));
1501 // After the terminator, there are no non-debug instructions.
1502 EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction());
1503 UseNewDbgInfoFormat = OldDbgValueMode;
1506 TEST(InstructionsTest, PhiMightNotBeFPMathOperator) {
1507 LLVMContext Context;
1508 IRBuilder<> Builder(Context);
1509 MDBuilder MDHelper(Context);
1510 Instruction *I = Builder.CreatePHI(Builder.getInt32Ty(), 0);
1511 EXPECT_FALSE(isa<FPMathOperator>(I));
1512 I->deleteValue();
1513 Instruction *FP = Builder.CreatePHI(Builder.getDoubleTy(), 0);
1514 EXPECT_TRUE(isa<FPMathOperator>(FP));
1515 FP->deleteValue();
1518 TEST(InstructionsTest, FPCallIsFPMathOperator) {
1519 LLVMContext C;
1521 Type *ITy = Type::getInt32Ty(C);
1522 FunctionType *IFnTy = FunctionType::get(ITy, {});
1523 PointerType *PtrTy = PointerType::getUnqual(C);
1524 Value *ICallee = Constant::getNullValue(PtrTy);
1525 std::unique_ptr<CallInst> ICall(CallInst::Create(IFnTy, ICallee, {}, ""));
1526 EXPECT_FALSE(isa<FPMathOperator>(ICall));
1528 Type *VITy = FixedVectorType::get(ITy, 2);
1529 FunctionType *VIFnTy = FunctionType::get(VITy, {});
1530 Value *VICallee = Constant::getNullValue(PtrTy);
1531 std::unique_ptr<CallInst> VICall(CallInst::Create(VIFnTy, VICallee, {}, ""));
1532 EXPECT_FALSE(isa<FPMathOperator>(VICall));
1534 Type *AITy = ArrayType::get(ITy, 2);
1535 FunctionType *AIFnTy = FunctionType::get(AITy, {});
1536 Value *AICallee = Constant::getNullValue(PtrTy);
1537 std::unique_ptr<CallInst> AICall(CallInst::Create(AIFnTy, AICallee, {}, ""));
1538 EXPECT_FALSE(isa<FPMathOperator>(AICall));
1540 Type *FTy = Type::getFloatTy(C);
1541 FunctionType *FFnTy = FunctionType::get(FTy, {});
1542 Value *FCallee = Constant::getNullValue(PtrTy);
1543 std::unique_ptr<CallInst> FCall(CallInst::Create(FFnTy, FCallee, {}, ""));
1544 EXPECT_TRUE(isa<FPMathOperator>(FCall));
1546 Type *VFTy = FixedVectorType::get(FTy, 2);
1547 FunctionType *VFFnTy = FunctionType::get(VFTy, {});
1548 Value *VFCallee = Constant::getNullValue(PtrTy);
1549 std::unique_ptr<CallInst> VFCall(CallInst::Create(VFFnTy, VFCallee, {}, ""));
1550 EXPECT_TRUE(isa<FPMathOperator>(VFCall));
1552 Type *AFTy = ArrayType::get(FTy, 2);
1553 FunctionType *AFFnTy = FunctionType::get(AFTy, {});
1554 Value *AFCallee = Constant::getNullValue(PtrTy);
1555 std::unique_ptr<CallInst> AFCall(CallInst::Create(AFFnTy, AFCallee, {}, ""));
1556 EXPECT_TRUE(isa<FPMathOperator>(AFCall));
1558 Type *AVFTy = ArrayType::get(VFTy, 2);
1559 FunctionType *AVFFnTy = FunctionType::get(AVFTy, {});
1560 Value *AVFCallee = Constant::getNullValue(PtrTy);
1561 std::unique_ptr<CallInst> AVFCall(
1562 CallInst::Create(AVFFnTy, AVFCallee, {}, ""));
1563 EXPECT_TRUE(isa<FPMathOperator>(AVFCall));
1565 Type *AAVFTy = ArrayType::get(AVFTy, 2);
1566 FunctionType *AAVFFnTy = FunctionType::get(AAVFTy, {});
1567 Value *AAVFCallee = Constant::getNullValue(PtrTy);
1568 std::unique_ptr<CallInst> AAVFCall(
1569 CallInst::Create(AAVFFnTy, AAVFCallee, {}, ""));
1570 EXPECT_TRUE(isa<FPMathOperator>(AAVFCall));
1573 TEST(InstructionsTest, FNegInstruction) {
1574 LLVMContext Context;
1575 Type *FltTy = Type::getFloatTy(Context);
1576 Constant *One = ConstantFP::get(FltTy, 1.0);
1577 BinaryOperator *FAdd = BinaryOperator::CreateFAdd(One, One);
1578 FAdd->setHasNoNaNs(true);
1579 UnaryOperator *FNeg = UnaryOperator::CreateFNegFMF(One, FAdd);
1580 EXPECT_TRUE(FNeg->hasNoNaNs());
1581 EXPECT_FALSE(FNeg->hasNoInfs());
1582 EXPECT_FALSE(FNeg->hasNoSignedZeros());
1583 EXPECT_FALSE(FNeg->hasAllowReciprocal());
1584 EXPECT_FALSE(FNeg->hasAllowContract());
1585 EXPECT_FALSE(FNeg->hasAllowReassoc());
1586 EXPECT_FALSE(FNeg->hasApproxFunc());
1587 FAdd->deleteValue();
1588 FNeg->deleteValue();
1591 TEST(InstructionsTest, CallBrInstruction) {
1592 LLVMContext Context;
1593 std::unique_ptr<Module> M = parseIR(Context, R"(
1594 define void @foo() {
1595 entry:
1596 callbr void asm sideeffect "// XXX: ${0:l}", "!i"()
1597 to label %land.rhs.i [label %branch_test.exit]
1599 land.rhs.i:
1600 br label %branch_test.exit
1602 branch_test.exit:
1603 %0 = phi i1 [ true, %entry ], [ false, %land.rhs.i ]
1604 br i1 %0, label %if.end, label %if.then
1606 if.then:
1607 ret void
1609 if.end:
1610 ret void
1612 )");
1613 Function *Foo = M->getFunction("foo");
1614 auto BBs = Foo->begin();
1615 CallBrInst &CBI = cast<CallBrInst>(BBs->front());
1616 ++BBs;
1617 ++BBs;
1618 BasicBlock &BranchTestExit = *BBs;
1619 ++BBs;
1620 BasicBlock &IfThen = *BBs;
1622 // Test that setting the first indirect destination of callbr updates the dest
1623 EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0));
1624 CBI.setIndirectDest(0, &IfThen);
1625 EXPECT_EQ(&IfThen, CBI.getIndirectDest(0));
1628 TEST(InstructionsTest, UnaryOperator) {
1629 LLVMContext Context;
1630 IRBuilder<> Builder(Context);
1631 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
1632 Value *F = Builder.CreateFNeg(I);
1634 EXPECT_TRUE(isa<Value>(F));
1635 EXPECT_TRUE(isa<Instruction>(F));
1636 EXPECT_TRUE(isa<UnaryInstruction>(F));
1637 EXPECT_TRUE(isa<UnaryOperator>(F));
1638 EXPECT_FALSE(isa<BinaryOperator>(F));
1640 F->deleteValue();
1641 I->deleteValue();
1644 TEST(InstructionsTest, DropLocation) {
1645 LLVMContext C;
1646 std::unique_ptr<Module> M = parseIR(C,
1648 declare void @callee()
1650 define void @no_parent_scope() {
1651 call void @callee() ; I1: Call with no location.
1652 call void @callee(), !dbg !11 ; I2: Call with location.
1653 ret void, !dbg !11 ; I3: Non-call with location.
1656 define void @with_parent_scope() !dbg !8 {
1657 call void @callee() ; I1: Call with no location.
1658 call void @callee(), !dbg !11 ; I2: Call with location.
1659 ret void, !dbg !11 ; I3: Non-call with location.
1662 !llvm.dbg.cu = !{!0}
1663 !llvm.module.flags = !{!3, !4}
1664 !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
1665 !1 = !DIFile(filename: "t2.c", directory: "foo")
1666 !2 = !{}
1667 !3 = !{i32 2, !"Dwarf Version", i32 4}
1668 !4 = !{i32 2, !"Debug Info Version", i32 3}
1669 !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
1670 !9 = !DISubroutineType(types: !10)
1671 !10 = !{null}
1672 !11 = !DILocation(line: 2, column: 7, scope: !8, inlinedAt: !12)
1673 !12 = !DILocation(line: 3, column: 8, scope: !8)
1674 )");
1675 ASSERT_TRUE(M);
1678 Function *NoParentScopeF =
1679 cast<Function>(M->getNamedValue("no_parent_scope"));
1680 BasicBlock &BB = NoParentScopeF->front();
1682 auto *I1 = BB.getFirstNonPHI();
1683 auto *I2 = I1->getNextNode();
1684 auto *I3 = BB.getTerminator();
1686 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1687 I1->dropLocation();
1688 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1690 EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
1691 I2->dropLocation();
1692 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1694 EXPECT_EQ(I3->getDebugLoc().getLine(), 2U);
1695 I3->dropLocation();
1696 EXPECT_EQ(I3->getDebugLoc(), DebugLoc());
1700 Function *WithParentScopeF =
1701 cast<Function>(M->getNamedValue("with_parent_scope"));
1702 BasicBlock &BB = WithParentScopeF->front();
1704 auto *I2 = BB.getFirstNonPHI()->getNextNode();
1706 MDNode *Scope = cast<MDNode>(WithParentScopeF->getSubprogram());
1707 EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
1708 I2->dropLocation();
1709 EXPECT_EQ(I2->getDebugLoc().getLine(), 0U);
1710 EXPECT_EQ(I2->getDebugLoc().getScope(), Scope);
1711 EXPECT_EQ(I2->getDebugLoc().getInlinedAt(), nullptr);
1715 TEST(InstructionsTest, BranchWeightOverflow) {
1716 LLVMContext C;
1717 std::unique_ptr<Module> M = parseIR(C,
1719 declare void @callee()
1721 define void @caller() {
1722 call void @callee(), !prof !1
1723 ret void
1726 !1 = !{!"branch_weights", i32 20000}
1727 )");
1728 ASSERT_TRUE(M);
1729 CallInst *CI =
1730 cast<CallInst>(&M->getFunction("caller")->getEntryBlock().front());
1731 uint64_t ProfWeight;
1732 CI->extractProfTotalWeight(ProfWeight);
1733 ASSERT_EQ(ProfWeight, 20000U);
1734 CI->updateProfWeight(10000000, 1);
1735 CI->extractProfTotalWeight(ProfWeight);
1736 ASSERT_EQ(ProfWeight, UINT32_MAX);
1739 TEST(InstructionsTest, AllocaInst) {
1740 LLVMContext Ctx;
1741 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1742 %T = type { i64, [3 x i32]}
1743 define void @f(i32 %n) {
1744 entry:
1745 %A = alloca i32, i32 1
1746 %B = alloca i32, i32 4
1747 %C = alloca i32, i32 %n
1748 %D = alloca <8 x double>
1749 %E = alloca <vscale x 8 x double>
1750 %F = alloca [2 x half]
1751 %G = alloca [2 x [3 x i128]]
1752 %H = alloca %T
1753 %I = alloca i32, i64 9223372036854775807
1754 ret void
1756 )");
1757 const DataLayout &DL = M->getDataLayout();
1758 ASSERT_TRUE(M);
1759 Function *Fun = cast<Function>(M->getNamedValue("f"));
1760 BasicBlock &BB = Fun->front();
1761 auto It = BB.begin();
1762 AllocaInst &A = cast<AllocaInst>(*It++);
1763 AllocaInst &B = cast<AllocaInst>(*It++);
1764 AllocaInst &C = cast<AllocaInst>(*It++);
1765 AllocaInst &D = cast<AllocaInst>(*It++);
1766 AllocaInst &E = cast<AllocaInst>(*It++);
1767 AllocaInst &F = cast<AllocaInst>(*It++);
1768 AllocaInst &G = cast<AllocaInst>(*It++);
1769 AllocaInst &H = cast<AllocaInst>(*It++);
1770 AllocaInst &I = cast<AllocaInst>(*It++);
1771 EXPECT_EQ(A.getAllocationSizeInBits(DL), TypeSize::getFixed(32));
1772 EXPECT_EQ(B.getAllocationSizeInBits(DL), TypeSize::getFixed(128));
1773 EXPECT_FALSE(C.getAllocationSizeInBits(DL));
1774 EXPECT_EQ(D.getAllocationSizeInBits(DL), TypeSize::getFixed(512));
1775 EXPECT_EQ(E.getAllocationSizeInBits(DL), TypeSize::getScalable(512));
1776 EXPECT_EQ(F.getAllocationSizeInBits(DL), TypeSize::getFixed(32));
1777 EXPECT_EQ(G.getAllocationSizeInBits(DL), TypeSize::getFixed(768));
1778 EXPECT_EQ(H.getAllocationSizeInBits(DL), TypeSize::getFixed(160));
1779 EXPECT_FALSE(I.getAllocationSizeInBits(DL));
1782 TEST(InstructionsTest, InsertAtBegin) {
1783 LLVMContext Ctx;
1784 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1785 define void @f(i32 %a, i32 %b) {
1786 entry:
1787 ret void
1789 )");
1790 Function *F = &*M->begin();
1791 Argument *ArgA = F->getArg(0);
1792 Argument *ArgB = F->getArg(1);
1793 BasicBlock *BB = &*F->begin();
1794 Instruction *Ret = &*BB->begin();
1795 Instruction *I = BinaryOperator::CreateAdd(ArgA, ArgB);
1796 auto It = I->insertInto(BB, BB->begin());
1797 EXPECT_EQ(&*It, I);
1798 EXPECT_EQ(I->getNextNode(), Ret);
1801 TEST(InstructionsTest, InsertAtEnd) {
1802 LLVMContext Ctx;
1803 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1804 define void @f(i32 %a, i32 %b) {
1805 entry:
1806 ret void
1808 )");
1809 Function *F = &*M->begin();
1810 Argument *ArgA = F->getArg(0);
1811 Argument *ArgB = F->getArg(1);
1812 BasicBlock *BB = &*F->begin();
1813 Instruction *Ret = &*BB->begin();
1814 Instruction *I = BinaryOperator::CreateAdd(ArgA, ArgB);
1815 auto It = I->insertInto(BB, BB->end());
1816 EXPECT_EQ(&*It, I);
1817 EXPECT_EQ(Ret->getNextNode(), I);
1820 } // end anonymous namespace
1821 } // end namespace llvm