1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/ADT/CombinationGenerator.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/ValueTracking.h"
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/AsmParser/Parser.h"
15 #include "llvm/IR/BasicBlock.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DebugInfoMetadata.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/FPEnv.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/NoFolder.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/SourceMgr.h"
30 #include "llvm-c/Core.h"
31 #include "gmock/gmock-matchers.h"
32 #include "gtest/gtest.h"
35 extern llvm::cl::opt
<bool> UseNewDbgInfoFormat
;
40 static std::unique_ptr
<Module
> parseIR(LLVMContext
&C
, const char *IR
) {
42 std::unique_ptr
<Module
> Mod
= parseAssemblyString(IR
, Err
, C
);
44 Err
.print("InstructionsTests", errs());
48 TEST(InstructionsTest
, ReturnInst
) {
52 const ReturnInst
* r0
= ReturnInst::Create(C
);
53 EXPECT_EQ(r0
->getNumOperands(), 0U);
54 EXPECT_EQ(r0
->op_begin(), r0
->op_end());
56 IntegerType
* Int1
= IntegerType::get(C
, 1);
57 Constant
* One
= ConstantInt::get(Int1
, 1, true);
58 const ReturnInst
* r1
= ReturnInst::Create(C
, One
);
59 EXPECT_EQ(1U, r1
->getNumOperands());
60 User::const_op_iterator
b(r1
->op_begin());
61 EXPECT_NE(r1
->op_end(), b
);
63 EXPECT_EQ(One
, r1
->getOperand(0));
65 EXPECT_EQ(r1
->op_end(), b
);
72 // Test fixture that provides a module and a single function within it. Useful
73 // for tests that need to refer to the function in some way.
74 class ModuleWithFunctionTest
: public testing::Test
{
76 ModuleWithFunctionTest() : M(new Module("MyModule", Ctx
)) {
77 FArgTypes
.push_back(Type::getInt8Ty(Ctx
));
78 FArgTypes
.push_back(Type::getInt32Ty(Ctx
));
79 FArgTypes
.push_back(Type::getInt64Ty(Ctx
));
81 FunctionType::get(Type::getVoidTy(Ctx
), FArgTypes
, false);
82 F
= Function::Create(FTy
, Function::ExternalLinkage
, "", M
.get());
86 std::unique_ptr
<Module
> M
;
87 SmallVector
<Type
*, 3> FArgTypes
;
91 TEST_F(ModuleWithFunctionTest
, CallInst
) {
92 Value
*Args
[] = {ConstantInt::get(Type::getInt8Ty(Ctx
), 20),
93 ConstantInt::get(Type::getInt32Ty(Ctx
), 9999),
94 ConstantInt::get(Type::getInt64Ty(Ctx
), 42)};
95 std::unique_ptr
<CallInst
> Call(CallInst::Create(F
, Args
));
97 // Make sure iteration over a call's arguments works as expected.
99 for (Value
*Arg
: Call
->args()) {
100 EXPECT_EQ(FArgTypes
[Idx
], Arg
->getType());
101 EXPECT_EQ(Call
->getArgOperand(Idx
)->getType(), Arg
->getType());
105 Call
->addRetAttr(Attribute::get(Call
->getContext(), "test-str-attr"));
106 EXPECT_TRUE(Call
->hasRetAttr("test-str-attr"));
107 EXPECT_FALSE(Call
->hasRetAttr("not-on-call"));
109 Call
->addFnAttr(Attribute::get(Call
->getContext(), "test-str-fn-attr"));
110 ASSERT_TRUE(Call
->hasFnAttr("test-str-fn-attr"));
111 Call
->removeFnAttr("test-str-fn-attr");
112 EXPECT_FALSE(Call
->hasFnAttr("test-str-fn-attr"));
115 TEST_F(ModuleWithFunctionTest
, InvokeInst
) {
116 BasicBlock
*BB1
= BasicBlock::Create(Ctx
, "", F
);
117 BasicBlock
*BB2
= BasicBlock::Create(Ctx
, "", F
);
119 Value
*Args
[] = {ConstantInt::get(Type::getInt8Ty(Ctx
), 20),
120 ConstantInt::get(Type::getInt32Ty(Ctx
), 9999),
121 ConstantInt::get(Type::getInt64Ty(Ctx
), 42)};
122 std::unique_ptr
<InvokeInst
> Invoke(InvokeInst::Create(F
, BB1
, BB2
, Args
));
124 // Make sure iteration over invoke's arguments works as expected.
126 for (Value
*Arg
: Invoke
->args()) {
127 EXPECT_EQ(FArgTypes
[Idx
], Arg
->getType());
128 EXPECT_EQ(Invoke
->getArgOperand(Idx
)->getType(), Arg
->getType());
133 TEST(InstructionsTest
, BranchInst
) {
136 // Make a BasicBlocks
137 BasicBlock
* bb0
= BasicBlock::Create(C
);
138 BasicBlock
* bb1
= BasicBlock::Create(C
);
140 // Mandatory BranchInst
141 const BranchInst
* b0
= BranchInst::Create(bb0
);
143 EXPECT_TRUE(b0
->isUnconditional());
144 EXPECT_FALSE(b0
->isConditional());
145 EXPECT_EQ(1U, b0
->getNumSuccessors());
147 // check num operands
148 EXPECT_EQ(1U, b0
->getNumOperands());
150 EXPECT_NE(b0
->op_begin(), b0
->op_end());
151 EXPECT_EQ(b0
->op_end(), std::next(b0
->op_begin()));
153 EXPECT_EQ(b0
->op_end(), std::next(b0
->op_begin()));
155 IntegerType
* Int1
= IntegerType::get(C
, 1);
156 Constant
* One
= ConstantInt::get(Int1
, 1, true);
158 // Conditional BranchInst
159 BranchInst
* b1
= BranchInst::Create(bb0
, bb1
, One
);
161 EXPECT_FALSE(b1
->isUnconditional());
162 EXPECT_TRUE(b1
->isConditional());
163 EXPECT_EQ(2U, b1
->getNumSuccessors());
165 // check num operands
166 EXPECT_EQ(3U, b1
->getNumOperands());
168 User::const_op_iterator
b(b1
->op_begin());
171 EXPECT_NE(b
, b1
->op_end());
173 EXPECT_EQ(One
, b1
->getOperand(0));
174 EXPECT_EQ(One
, b1
->getCondition());
179 EXPECT_EQ(bb1
, b1
->getOperand(1));
180 EXPECT_EQ(bb1
, b1
->getSuccessor(1));
185 EXPECT_EQ(bb0
, b1
->getOperand(2));
186 EXPECT_EQ(bb0
, b1
->getSuccessor(0));
189 EXPECT_EQ(b1
->op_end(), b
);
199 TEST(InstructionsTest
, CastInst
) {
202 Type
*Int8Ty
= Type::getInt8Ty(C
);
203 Type
*Int16Ty
= Type::getInt16Ty(C
);
204 Type
*Int32Ty
= Type::getInt32Ty(C
);
205 Type
*Int64Ty
= Type::getInt64Ty(C
);
206 Type
*V8x8Ty
= FixedVectorType::get(Int8Ty
, 8);
207 Type
*V8x64Ty
= FixedVectorType::get(Int64Ty
, 8);
208 Type
*X86MMXTy
= Type::getX86_MMXTy(C
);
210 Type
*HalfTy
= Type::getHalfTy(C
);
211 Type
*FloatTy
= Type::getFloatTy(C
);
212 Type
*DoubleTy
= Type::getDoubleTy(C
);
214 Type
*V2Int32Ty
= FixedVectorType::get(Int32Ty
, 2);
215 Type
*V2Int64Ty
= FixedVectorType::get(Int64Ty
, 2);
216 Type
*V4Int16Ty
= FixedVectorType::get(Int16Ty
, 4);
217 Type
*V1Int16Ty
= FixedVectorType::get(Int16Ty
, 1);
219 Type
*VScaleV2Int32Ty
= ScalableVectorType::get(Int32Ty
, 2);
220 Type
*VScaleV2Int64Ty
= ScalableVectorType::get(Int64Ty
, 2);
221 Type
*VScaleV4Int16Ty
= ScalableVectorType::get(Int16Ty
, 4);
222 Type
*VScaleV1Int16Ty
= ScalableVectorType::get(Int16Ty
, 1);
224 Type
*Int32PtrTy
= PointerType::get(Int32Ty
, 0);
225 Type
*Int64PtrTy
= PointerType::get(Int64Ty
, 0);
227 Type
*Int32PtrAS1Ty
= PointerType::get(Int32Ty
, 1);
228 Type
*Int64PtrAS1Ty
= PointerType::get(Int64Ty
, 1);
230 Type
*V2Int32PtrAS1Ty
= FixedVectorType::get(Int32PtrAS1Ty
, 2);
231 Type
*V2Int64PtrAS1Ty
= FixedVectorType::get(Int64PtrAS1Ty
, 2);
232 Type
*V4Int32PtrAS1Ty
= FixedVectorType::get(Int32PtrAS1Ty
, 4);
233 Type
*VScaleV4Int32PtrAS1Ty
= ScalableVectorType::get(Int32PtrAS1Ty
, 4);
234 Type
*V4Int64PtrAS1Ty
= FixedVectorType::get(Int64PtrAS1Ty
, 4);
236 Type
*V2Int64PtrTy
= FixedVectorType::get(Int64PtrTy
, 2);
237 Type
*V2Int32PtrTy
= FixedVectorType::get(Int32PtrTy
, 2);
238 Type
*VScaleV2Int32PtrTy
= ScalableVectorType::get(Int32PtrTy
, 2);
239 Type
*V4Int32PtrTy
= FixedVectorType::get(Int32PtrTy
, 4);
240 Type
*VScaleV4Int32PtrTy
= ScalableVectorType::get(Int32PtrTy
, 4);
241 Type
*VScaleV4Int64PtrTy
= ScalableVectorType::get(Int64PtrTy
, 4);
243 const Constant
* c8
= Constant::getNullValue(V8x8Ty
);
244 const Constant
* c64
= Constant::getNullValue(V8x64Ty
);
246 const Constant
*v2ptr32
= Constant::getNullValue(V2Int32PtrTy
);
248 EXPECT_EQ(CastInst::Trunc
, CastInst::getCastOpcode(c64
, true, V8x8Ty
, true));
249 EXPECT_EQ(CastInst::SExt
, CastInst::getCastOpcode(c8
, true, V8x64Ty
, true));
251 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty
, X86MMXTy
));
252 EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy
, V8x8Ty
));
253 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty
, X86MMXTy
));
254 EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty
, V8x8Ty
));
255 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty
, V8x64Ty
));
257 // Check address space casts are rejected since we don't know the sizes here
258 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy
, Int32PtrAS1Ty
));
259 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty
, Int32PtrTy
));
260 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy
, V2Int32PtrAS1Ty
));
261 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty
, V2Int32PtrTy
));
262 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty
, V2Int64PtrAS1Ty
));
263 EXPECT_EQ(CastInst::AddrSpaceCast
, CastInst::getCastOpcode(v2ptr32
, true,
267 // Test mismatched number of elements for pointers
268 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty
, V4Int64PtrAS1Ty
));
269 EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty
, V2Int32PtrAS1Ty
));
270 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty
, V4Int32PtrAS1Ty
));
271 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy
, V2Int32PtrTy
));
272 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy
, Int32PtrTy
));
274 EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy
, Int64PtrTy
));
275 EXPECT_FALSE(CastInst::isBitCastable(DoubleTy
, FloatTy
));
276 EXPECT_FALSE(CastInst::isBitCastable(FloatTy
, DoubleTy
));
277 EXPECT_TRUE(CastInst::isBitCastable(FloatTy
, FloatTy
));
278 EXPECT_TRUE(CastInst::isBitCastable(FloatTy
, FloatTy
));
279 EXPECT_TRUE(CastInst::isBitCastable(FloatTy
, Int32Ty
));
280 EXPECT_TRUE(CastInst::isBitCastable(Int16Ty
, HalfTy
));
281 EXPECT_TRUE(CastInst::isBitCastable(Int32Ty
, FloatTy
));
282 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty
, Int64Ty
));
284 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty
, V4Int16Ty
));
285 EXPECT_FALSE(CastInst::isBitCastable(Int32Ty
, Int64Ty
));
286 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty
, Int32Ty
));
288 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy
, Int64Ty
));
289 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty
, V2Int32PtrTy
));
290 EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy
, V2Int32PtrTy
));
291 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy
, V2Int64PtrTy
));
292 EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty
, V2Int64Ty
));
293 EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty
, V2Int32Ty
));
296 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
297 Constant::getNullValue(V4Int32PtrTy
),
299 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
300 Constant::getNullValue(V2Int32PtrTy
),
303 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast
,
304 Constant::getNullValue(V4Int32PtrAS1Ty
),
306 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast
,
307 Constant::getNullValue(V2Int32PtrTy
),
310 // Address space cast of fixed/scalable vectors of pointers to scalable/fixed
311 // vector of pointers.
312 EXPECT_FALSE(CastInst::castIsValid(
313 Instruction::AddrSpaceCast
, Constant::getNullValue(VScaleV4Int32PtrAS1Ty
),
315 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast
,
316 Constant::getNullValue(V4Int32PtrTy
),
317 VScaleV4Int32PtrAS1Ty
));
318 // Address space cast of scalable vectors of pointers to scalable vector of
320 EXPECT_FALSE(CastInst::castIsValid(
321 Instruction::AddrSpaceCast
, Constant::getNullValue(VScaleV4Int32PtrAS1Ty
),
322 VScaleV2Int32PtrTy
));
323 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast
,
324 Constant::getNullValue(VScaleV2Int32PtrTy
),
325 VScaleV4Int32PtrAS1Ty
));
326 EXPECT_TRUE(CastInst::castIsValid(Instruction::AddrSpaceCast
,
327 Constant::getNullValue(VScaleV4Int64PtrTy
),
328 VScaleV4Int32PtrAS1Ty
));
329 // Same number of lanes, different address space.
330 EXPECT_TRUE(CastInst::castIsValid(
331 Instruction::AddrSpaceCast
, Constant::getNullValue(VScaleV4Int32PtrAS1Ty
),
332 VScaleV4Int32PtrTy
));
333 // Same number of lanes, same address space.
334 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast
,
335 Constant::getNullValue(VScaleV4Int64PtrTy
),
336 VScaleV4Int32PtrTy
));
338 // Bit casting fixed/scalable vector to scalable/fixed vectors.
339 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
340 Constant::getNullValue(V2Int32Ty
),
342 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
343 Constant::getNullValue(V2Int64Ty
),
345 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
346 Constant::getNullValue(V4Int16Ty
),
348 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
349 Constant::getNullValue(VScaleV2Int32Ty
),
351 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
352 Constant::getNullValue(VScaleV2Int64Ty
),
354 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
355 Constant::getNullValue(VScaleV4Int16Ty
),
358 // Bit casting scalable vectors to scalable vectors.
359 EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast
,
360 Constant::getNullValue(VScaleV4Int16Ty
),
362 EXPECT_TRUE(CastInst::castIsValid(Instruction::BitCast
,
363 Constant::getNullValue(VScaleV2Int32Ty
),
365 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
366 Constant::getNullValue(VScaleV2Int64Ty
),
368 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
369 Constant::getNullValue(VScaleV2Int32Ty
),
372 // Bitcasting to/from <vscale x 1 x Ty>
373 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
374 Constant::getNullValue(VScaleV1Int16Ty
),
376 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast
,
377 Constant::getNullValue(V1Int16Ty
),
380 // Check that assertion is not hit when creating a cast with a vector of
383 BasicBlock
*BB
= BasicBlock::Create(C
);
384 Constant
*NullV2I32Ptr
= Constant::getNullValue(V2Int32PtrTy
);
385 auto Inst1
= CastInst::CreatePointerCast(NullV2I32Ptr
, V2Int32Ty
, "foo", BB
);
387 Constant
*NullVScaleV2I32Ptr
= Constant::getNullValue(VScaleV2Int32PtrTy
);
388 auto Inst1VScale
= CastInst::CreatePointerCast(
389 NullVScaleV2I32Ptr
, VScaleV2Int32Ty
, "foo.vscale", BB
);
392 auto Inst2
= CastInst::CreatePointerCast(NullV2I32Ptr
, V2Int32Ty
);
394 CastInst::CreatePointerCast(NullVScaleV2I32Ptr
, VScaleV2Int32Ty
);
398 Inst1
->eraseFromParent();
399 Inst1VScale
->eraseFromParent();
403 TEST(InstructionsTest
, CastCAPI
) {
406 Type
*Int8Ty
= Type::getInt8Ty(C
);
407 Type
*Int32Ty
= Type::getInt32Ty(C
);
408 Type
*Int64Ty
= Type::getInt64Ty(C
);
410 Type
*FloatTy
= Type::getFloatTy(C
);
411 Type
*DoubleTy
= Type::getDoubleTy(C
);
413 Type
*Int8PtrTy
= PointerType::get(Int8Ty
, 0);
414 Type
*Int32PtrTy
= PointerType::get(Int32Ty
, 0);
416 const Constant
*C8
= Constant::getNullValue(Int8Ty
);
417 const Constant
*C64
= Constant::getNullValue(Int64Ty
);
419 EXPECT_EQ(LLVMBitCast
,
420 LLVMGetCastOpcode(wrap(C64
), true, wrap(Int64Ty
), true));
421 EXPECT_EQ(LLVMTrunc
, LLVMGetCastOpcode(wrap(C64
), true, wrap(Int8Ty
), true));
422 EXPECT_EQ(LLVMSExt
, LLVMGetCastOpcode(wrap(C8
), true, wrap(Int64Ty
), true));
423 EXPECT_EQ(LLVMZExt
, LLVMGetCastOpcode(wrap(C8
), false, wrap(Int64Ty
), true));
425 const Constant
*CF32
= Constant::getNullValue(FloatTy
);
426 const Constant
*CF64
= Constant::getNullValue(DoubleTy
);
428 EXPECT_EQ(LLVMFPToUI
,
429 LLVMGetCastOpcode(wrap(CF32
), true, wrap(Int8Ty
), false));
430 EXPECT_EQ(LLVMFPToSI
,
431 LLVMGetCastOpcode(wrap(CF32
), true, wrap(Int8Ty
), true));
432 EXPECT_EQ(LLVMUIToFP
,
433 LLVMGetCastOpcode(wrap(C8
), false, wrap(FloatTy
), true));
434 EXPECT_EQ(LLVMSIToFP
, LLVMGetCastOpcode(wrap(C8
), true, wrap(FloatTy
), true));
435 EXPECT_EQ(LLVMFPTrunc
,
436 LLVMGetCastOpcode(wrap(CF64
), true, wrap(FloatTy
), true));
438 LLVMGetCastOpcode(wrap(CF32
), true, wrap(DoubleTy
), true));
440 const Constant
*CPtr8
= Constant::getNullValue(Int8PtrTy
);
442 EXPECT_EQ(LLVMPtrToInt
,
443 LLVMGetCastOpcode(wrap(CPtr8
), true, wrap(Int8Ty
), true));
444 EXPECT_EQ(LLVMIntToPtr
,
445 LLVMGetCastOpcode(wrap(C8
), true, wrap(Int8PtrTy
), true));
447 Type
*V8x8Ty
= FixedVectorType::get(Int8Ty
, 8);
448 Type
*V8x64Ty
= FixedVectorType::get(Int64Ty
, 8);
449 const Constant
*CV8
= Constant::getNullValue(V8x8Ty
);
450 const Constant
*CV64
= Constant::getNullValue(V8x64Ty
);
452 EXPECT_EQ(LLVMTrunc
, LLVMGetCastOpcode(wrap(CV64
), true, wrap(V8x8Ty
), true));
453 EXPECT_EQ(LLVMSExt
, LLVMGetCastOpcode(wrap(CV8
), true, wrap(V8x64Ty
), true));
455 Type
*Int32PtrAS1Ty
= PointerType::get(Int32Ty
, 1);
456 Type
*V2Int32PtrAS1Ty
= FixedVectorType::get(Int32PtrAS1Ty
, 2);
457 Type
*V2Int32PtrTy
= FixedVectorType::get(Int32PtrTy
, 2);
458 const Constant
*CV2ptr32
= Constant::getNullValue(V2Int32PtrTy
);
460 EXPECT_EQ(LLVMAddrSpaceCast
, LLVMGetCastOpcode(wrap(CV2ptr32
), true,
461 wrap(V2Int32PtrAS1Ty
), true));
464 TEST(InstructionsTest
, VectorGep
) {
468 Type
*I8Ty
= IntegerType::get(C
, 8);
469 Type
*I32Ty
= IntegerType::get(C
, 32);
470 PointerType
*Ptri8Ty
= PointerType::get(I8Ty
, 0);
471 PointerType
*Ptri32Ty
= PointerType::get(I32Ty
, 0);
473 VectorType
*V2xi8PTy
= FixedVectorType::get(Ptri8Ty
, 2);
474 VectorType
*V2xi32PTy
= FixedVectorType::get(Ptri32Ty
, 2);
476 // Test different aspects of the vector-of-pointers type
477 // and GEPs which use this type.
478 ConstantInt
*Ci32a
= ConstantInt::get(C
, APInt(32, 1492));
479 ConstantInt
*Ci32b
= ConstantInt::get(C
, APInt(32, 1948));
480 std::vector
<Constant
*> ConstVa(2, Ci32a
);
481 std::vector
<Constant
*> ConstVb(2, Ci32b
);
482 Constant
*C2xi32a
= ConstantVector::get(ConstVa
);
483 Constant
*C2xi32b
= ConstantVector::get(ConstVb
);
485 CastInst
*PtrVecA
= new IntToPtrInst(C2xi32a
, V2xi32PTy
);
486 CastInst
*PtrVecB
= new IntToPtrInst(C2xi32b
, V2xi32PTy
);
488 ICmpInst
*ICmp0
= new ICmpInst(ICmpInst::ICMP_SGT
, PtrVecA
, PtrVecB
);
489 ICmpInst
*ICmp1
= new ICmpInst(ICmpInst::ICMP_ULT
, PtrVecA
, PtrVecB
);
490 EXPECT_NE(ICmp0
, ICmp1
); // suppress warning.
492 BasicBlock
* BB0
= BasicBlock::Create(C
);
493 // Test InsertAtEnd ICmpInst constructor.
494 ICmpInst
*ICmp2
= new ICmpInst(BB0
, ICmpInst::ICMP_SGE
, PtrVecA
, PtrVecB
);
495 EXPECT_NE(ICmp0
, ICmp2
); // suppress warning.
497 GetElementPtrInst
*Gep0
= GetElementPtrInst::Create(I32Ty
, PtrVecA
, C2xi32a
);
498 GetElementPtrInst
*Gep1
= GetElementPtrInst::Create(I32Ty
, PtrVecA
, C2xi32b
);
499 GetElementPtrInst
*Gep2
= GetElementPtrInst::Create(I32Ty
, PtrVecB
, C2xi32a
);
500 GetElementPtrInst
*Gep3
= GetElementPtrInst::Create(I32Ty
, PtrVecB
, C2xi32b
);
502 CastInst
*BTC0
= new BitCastInst(Gep0
, V2xi8PTy
);
503 CastInst
*BTC1
= new BitCastInst(Gep1
, V2xi8PTy
);
504 CastInst
*BTC2
= new BitCastInst(Gep2
, V2xi8PTy
);
505 CastInst
*BTC3
= new BitCastInst(Gep3
, V2xi8PTy
);
507 Value
*S0
= BTC0
->stripPointerCasts();
508 Value
*S1
= BTC1
->stripPointerCasts();
509 Value
*S2
= BTC2
->stripPointerCasts();
510 Value
*S3
= BTC3
->stripPointerCasts();
518 DataLayout
TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
519 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
520 ":128:128-n8:16:32:64-S128");
521 // Make sure we don't crash
522 GetPointerBaseWithConstantOffset(Gep0
, Offset
, TD
);
523 GetPointerBaseWithConstantOffset(Gep1
, Offset
, TD
);
524 GetPointerBaseWithConstantOffset(Gep2
, Offset
, TD
);
525 GetPointerBaseWithConstantOffset(Gep3
, Offset
, TD
);
528 GetElementPtrInst
*GepII0
= GetElementPtrInst::Create(I32Ty
, Gep0
, C2xi32b
);
529 GetElementPtrInst
*GepII1
= GetElementPtrInst::Create(I32Ty
, Gep1
, C2xi32a
);
530 GetElementPtrInst
*GepII2
= GetElementPtrInst::Create(I32Ty
, Gep2
, C2xi32b
);
531 GetElementPtrInst
*GepII3
= GetElementPtrInst::Create(I32Ty
, Gep3
, C2xi32a
);
533 EXPECT_EQ(GepII0
->getNumIndices(), 1u);
534 EXPECT_EQ(GepII1
->getNumIndices(), 1u);
535 EXPECT_EQ(GepII2
->getNumIndices(), 1u);
536 EXPECT_EQ(GepII3
->getNumIndices(), 1u);
538 EXPECT_FALSE(GepII0
->hasAllZeroIndices());
539 EXPECT_FALSE(GepII1
->hasAllZeroIndices());
540 EXPECT_FALSE(GepII2
->hasAllZeroIndices());
541 EXPECT_FALSE(GepII3
->hasAllZeroIndices());
558 ICmp2
->eraseFromParent();
567 TEST(InstructionsTest
, FPMathOperator
) {
569 IRBuilder
<> Builder(Context
);
570 MDBuilder
MDHelper(Context
);
571 Instruction
*I
= Builder
.CreatePHI(Builder
.getDoubleTy(), 0);
572 MDNode
*MD1
= MDHelper
.createFPMath(1.0);
573 Value
*V1
= Builder
.CreateFAdd(I
, I
, "", MD1
);
574 EXPECT_TRUE(isa
<FPMathOperator
>(V1
));
575 FPMathOperator
*O1
= cast
<FPMathOperator
>(V1
);
576 EXPECT_EQ(O1
->getFPAccuracy(), 1.0);
581 TEST(InstructionTest
, ConstrainedTrans
) {
583 std::unique_ptr
<Module
> M(new Module("MyModule", Context
));
585 FunctionType::get(Type::getVoidTy(Context
),
586 {Type::getFloatTy(Context
), Type::getFloatTy(Context
),
587 Type::getInt32Ty(Context
)},
589 auto *F
= Function::Create(FTy
, Function::ExternalLinkage
, "", M
.get());
590 auto *BB
= BasicBlock::Create(Context
, "bb", F
);
591 IRBuilder
<> Builder(Context
);
592 Builder
.SetInsertPoint(BB
);
593 auto *Arg0
= F
->arg_begin();
594 auto *Arg1
= F
->arg_begin() + 1;
597 auto *I
= cast
<Instruction
>(Builder
.CreateFAdd(Arg0
, Arg1
));
598 EXPECT_EQ(Intrinsic::experimental_constrained_fadd
,
599 getConstrainedIntrinsicID(*I
));
603 auto *I
= cast
<Instruction
>(
604 Builder
.CreateFPToSI(Arg0
, Type::getInt32Ty(Context
)));
605 EXPECT_EQ(Intrinsic::experimental_constrained_fptosi
,
606 getConstrainedIntrinsicID(*I
));
610 auto *I
= cast
<Instruction
>(Builder
.CreateIntrinsic(
611 Intrinsic::ceil
, {Type::getFloatTy(Context
)}, {Arg0
}));
612 EXPECT_EQ(Intrinsic::experimental_constrained_ceil
,
613 getConstrainedIntrinsicID(*I
));
617 auto *I
= cast
<Instruction
>(Builder
.CreateFCmpOEQ(Arg0
, Arg1
));
618 EXPECT_EQ(Intrinsic::experimental_constrained_fcmp
,
619 getConstrainedIntrinsicID(*I
));
623 auto *Arg2
= F
->arg_begin() + 2;
624 auto *I
= cast
<Instruction
>(Builder
.CreateAdd(Arg2
, Arg2
));
625 EXPECT_EQ(Intrinsic::not_intrinsic
, getConstrainedIntrinsicID(*I
));
629 auto *I
= cast
<Instruction
>(Builder
.CreateConstrainedFPBinOp(
630 Intrinsic::experimental_constrained_fadd
, Arg0
, Arg0
));
631 EXPECT_EQ(Intrinsic::not_intrinsic
, getConstrainedIntrinsicID(*I
));
635 TEST(InstructionsTest
, isEliminableCastPair
) {
638 Type
* Int16Ty
= Type::getInt16Ty(C
);
639 Type
* Int32Ty
= Type::getInt32Ty(C
);
640 Type
* Int64Ty
= Type::getInt64Ty(C
);
641 Type
*Int64PtrTy
= PointerType::get(C
, 0);
643 // Source and destination pointers have same size -> bitcast.
644 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt
,
646 Int64PtrTy
, Int64Ty
, Int64PtrTy
,
647 Int32Ty
, nullptr, Int32Ty
),
650 // Source and destination have unknown sizes, but the same address space and
651 // the intermediate int is the maximum pointer size -> bitcast
652 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt
,
654 Int64PtrTy
, Int64Ty
, Int64PtrTy
,
655 nullptr, nullptr, nullptr),
658 // Source and destination have unknown sizes, but the same address space and
659 // the intermediate int is not the maximum pointer size -> nothing
660 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt
,
662 Int64PtrTy
, Int32Ty
, Int64PtrTy
,
663 nullptr, nullptr, nullptr),
666 // Middle pointer big enough -> bitcast.
667 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr
,
669 Int64Ty
, Int64PtrTy
, Int64Ty
,
670 nullptr, Int64Ty
, nullptr),
673 // Middle pointer too small -> fail.
674 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr
,
676 Int64Ty
, Int64PtrTy
, Int64Ty
,
677 nullptr, Int32Ty
, nullptr),
680 // Test that we don't eliminate bitcasts between different address spaces,
681 // or if we don't have available pointer size information.
682 DataLayout
DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
683 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
684 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
686 Type
*Int64PtrTyAS1
= PointerType::get(C
, 1);
687 Type
*Int64PtrTyAS2
= PointerType::get(C
, 2);
689 IntegerType
*Int16SizePtr
= DL
.getIntPtrType(C
, 1);
690 IntegerType
*Int64SizePtr
= DL
.getIntPtrType(C
, 2);
692 // Cannot simplify inttoptr, addrspacecast
693 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr
,
694 CastInst::AddrSpaceCast
,
695 Int16Ty
, Int64PtrTyAS1
, Int64PtrTyAS2
,
696 nullptr, Int16SizePtr
, Int64SizePtr
),
699 // Cannot simplify addrspacecast, ptrtoint
700 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast
,
702 Int64PtrTyAS1
, Int64PtrTyAS2
, Int16Ty
,
703 Int64SizePtr
, Int16SizePtr
, nullptr),
706 // Pass since the bitcast address spaces are the same
707 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr
,
709 Int16Ty
, Int64PtrTyAS1
, Int64PtrTyAS1
,
710 nullptr, nullptr, nullptr),
715 TEST(InstructionsTest
, CloneCall
) {
717 Type
*Int32Ty
= Type::getInt32Ty(C
);
718 Type
*ArgTys
[] = {Int32Ty
, Int32Ty
, Int32Ty
};
719 FunctionType
*FnTy
= FunctionType::get(Int32Ty
, ArgTys
, /*isVarArg=*/false);
720 Value
*Callee
= Constant::getNullValue(PointerType::getUnqual(C
));
722 ConstantInt::get(Int32Ty
, 1),
723 ConstantInt::get(Int32Ty
, 2),
724 ConstantInt::get(Int32Ty
, 3)
726 std::unique_ptr
<CallInst
> Call(
727 CallInst::Create(FnTy
, Callee
, Args
, "result"));
729 // Test cloning the tail call kind.
730 CallInst::TailCallKind Kinds
[] = {CallInst::TCK_None
, CallInst::TCK_Tail
,
731 CallInst::TCK_MustTail
};
732 for (CallInst::TailCallKind TCK
: Kinds
) {
733 Call
->setTailCallKind(TCK
);
734 std::unique_ptr
<CallInst
> Clone(cast
<CallInst
>(Call
->clone()));
735 EXPECT_EQ(Call
->getTailCallKind(), Clone
->getTailCallKind());
737 Call
->setTailCallKind(CallInst::TCK_None
);
739 // Test cloning an attribute.
742 AB
.addAttribute(Attribute::NoUnwind
);
744 AttributeList::get(C
, AttributeList::FunctionIndex
, AB
));
745 std::unique_ptr
<CallInst
> Clone(cast
<CallInst
>(Call
->clone()));
746 EXPECT_TRUE(Clone
->doesNotThrow());
750 TEST(InstructionsTest
, AlterCallBundles
) {
752 Type
*Int32Ty
= Type::getInt32Ty(C
);
753 FunctionType
*FnTy
= FunctionType::get(Int32Ty
, Int32Ty
, /*isVarArg=*/false);
754 Value
*Callee
= Constant::getNullValue(PointerType::getUnqual(C
));
755 Value
*Args
[] = {ConstantInt::get(Int32Ty
, 42)};
756 OperandBundleDef
OldBundle("before", UndefValue::get(Int32Ty
));
757 std::unique_ptr
<CallInst
> Call(
758 CallInst::Create(FnTy
, Callee
, Args
, OldBundle
, "result"));
759 Call
->setTailCallKind(CallInst::TailCallKind::TCK_NoTail
);
761 AB
.addAttribute(Attribute::Cold
);
762 Call
->setAttributes(AttributeList::get(C
, AttributeList::FunctionIndex
, AB
));
763 Call
->setDebugLoc(DebugLoc(MDNode::get(C
, std::nullopt
)));
765 OperandBundleDef
NewBundle("after", ConstantInt::get(Int32Ty
, 7));
766 std::unique_ptr
<CallInst
> Clone(CallInst::Create(Call
.get(), NewBundle
));
767 EXPECT_EQ(Call
->arg_size(), Clone
->arg_size());
768 EXPECT_EQ(Call
->getArgOperand(0), Clone
->getArgOperand(0));
769 EXPECT_EQ(Call
->getCallingConv(), Clone
->getCallingConv());
770 EXPECT_EQ(Call
->getTailCallKind(), Clone
->getTailCallKind());
771 EXPECT_TRUE(Clone
->hasFnAttr(Attribute::AttrKind::Cold
));
772 EXPECT_EQ(Call
->getDebugLoc(), Clone
->getDebugLoc());
773 EXPECT_EQ(Clone
->getNumOperandBundles(), 1U);
774 EXPECT_TRUE(Clone
->getOperandBundle("after"));
777 TEST(InstructionsTest
, AlterInvokeBundles
) {
779 Type
*Int32Ty
= Type::getInt32Ty(C
);
780 FunctionType
*FnTy
= FunctionType::get(Int32Ty
, Int32Ty
, /*isVarArg=*/false);
781 Value
*Callee
= Constant::getNullValue(PointerType::getUnqual(C
));
782 Value
*Args
[] = {ConstantInt::get(Int32Ty
, 42)};
783 std::unique_ptr
<BasicBlock
> NormalDest(BasicBlock::Create(C
));
784 std::unique_ptr
<BasicBlock
> UnwindDest(BasicBlock::Create(C
));
785 OperandBundleDef
OldBundle("before", UndefValue::get(Int32Ty
));
786 std::unique_ptr
<InvokeInst
> Invoke(
787 InvokeInst::Create(FnTy
, Callee
, NormalDest
.get(), UnwindDest
.get(), Args
,
788 OldBundle
, "result"));
790 AB
.addAttribute(Attribute::Cold
);
791 Invoke
->setAttributes(
792 AttributeList::get(C
, AttributeList::FunctionIndex
, AB
));
793 Invoke
->setDebugLoc(DebugLoc(MDNode::get(C
, std::nullopt
)));
795 OperandBundleDef
NewBundle("after", ConstantInt::get(Int32Ty
, 7));
796 std::unique_ptr
<InvokeInst
> Clone(
797 InvokeInst::Create(Invoke
.get(), NewBundle
));
798 EXPECT_EQ(Invoke
->getNormalDest(), Clone
->getNormalDest());
799 EXPECT_EQ(Invoke
->getUnwindDest(), Clone
->getUnwindDest());
800 EXPECT_EQ(Invoke
->arg_size(), Clone
->arg_size());
801 EXPECT_EQ(Invoke
->getArgOperand(0), Clone
->getArgOperand(0));
802 EXPECT_EQ(Invoke
->getCallingConv(), Clone
->getCallingConv());
803 EXPECT_TRUE(Clone
->hasFnAttr(Attribute::AttrKind::Cold
));
804 EXPECT_EQ(Invoke
->getDebugLoc(), Clone
->getDebugLoc());
805 EXPECT_EQ(Clone
->getNumOperandBundles(), 1U);
806 EXPECT_TRUE(Clone
->getOperandBundle("after"));
809 TEST_F(ModuleWithFunctionTest
, DropPoisonGeneratingFlags
) {
810 auto *OnlyBB
= BasicBlock::Create(Ctx
, "bb", F
);
811 auto *Arg0
= &*F
->arg_begin();
813 IRBuilder
<NoFolder
> B(Ctx
);
814 B
.SetInsertPoint(OnlyBB
);
818 cast
<Instruction
>(B
.CreateUDiv(Arg0
, Arg0
, "", /*isExact*/ true));
819 ASSERT_TRUE(UI
->isExact());
820 UI
->dropPoisonGeneratingFlags();
821 ASSERT_FALSE(UI
->isExact());
826 cast
<Instruction
>(B
.CreateLShr(Arg0
, Arg0
, "", /*isExact*/ true));
827 ASSERT_TRUE(ShrI
->isExact());
828 ShrI
->dropPoisonGeneratingFlags();
829 ASSERT_FALSE(ShrI
->isExact());
833 auto *AI
= cast
<Instruction
>(
834 B
.CreateAdd(Arg0
, Arg0
, "", /*HasNUW*/ true, /*HasNSW*/ false));
835 ASSERT_TRUE(AI
->hasNoUnsignedWrap());
836 AI
->dropPoisonGeneratingFlags();
837 ASSERT_FALSE(AI
->hasNoUnsignedWrap());
838 ASSERT_FALSE(AI
->hasNoSignedWrap());
842 auto *SI
= cast
<Instruction
>(
843 B
.CreateAdd(Arg0
, Arg0
, "", /*HasNUW*/ false, /*HasNSW*/ true));
844 ASSERT_TRUE(SI
->hasNoSignedWrap());
845 SI
->dropPoisonGeneratingFlags();
846 ASSERT_FALSE(SI
->hasNoUnsignedWrap());
847 ASSERT_FALSE(SI
->hasNoSignedWrap());
851 auto *ShlI
= cast
<Instruction
>(
852 B
.CreateShl(Arg0
, Arg0
, "", /*HasNUW*/ true, /*HasNSW*/ true));
853 ASSERT_TRUE(ShlI
->hasNoSignedWrap());
854 ASSERT_TRUE(ShlI
->hasNoUnsignedWrap());
855 ShlI
->dropPoisonGeneratingFlags();
856 ASSERT_FALSE(ShlI
->hasNoUnsignedWrap());
857 ASSERT_FALSE(ShlI
->hasNoSignedWrap());
861 Value
*GEPBase
= Constant::getNullValue(B
.getPtrTy());
862 auto *GI
= cast
<GetElementPtrInst
>(
863 B
.CreateInBoundsGEP(B
.getInt8Ty(), GEPBase
, Arg0
));
864 ASSERT_TRUE(GI
->isInBounds());
865 GI
->dropPoisonGeneratingFlags();
866 ASSERT_FALSE(GI
->isInBounds());
870 TEST(InstructionsTest
, GEPIndices
) {
872 IRBuilder
<NoFolder
> Builder(Context
);
873 Type
*ElementTy
= Builder
.getInt8Ty();
874 Type
*ArrTy
= ArrayType::get(ArrayType::get(ElementTy
, 64), 64);
877 Builder
.getInt32(13),
878 Builder
.getInt32(42) };
880 Value
*V
= Builder
.CreateGEP(ArrTy
, UndefValue::get(PointerType::getUnqual(ArrTy
)),
882 ASSERT_TRUE(isa
<GetElementPtrInst
>(V
));
884 auto *GEPI
= cast
<GetElementPtrInst
>(V
);
885 ASSERT_NE(GEPI
->idx_begin(), GEPI
->idx_end());
886 ASSERT_EQ(GEPI
->idx_end(), std::next(GEPI
->idx_begin(), 3));
887 EXPECT_EQ(Indices
[0], GEPI
->idx_begin()[0]);
888 EXPECT_EQ(Indices
[1], GEPI
->idx_begin()[1]);
889 EXPECT_EQ(Indices
[2], GEPI
->idx_begin()[2]);
890 EXPECT_EQ(GEPI
->idx_begin(), GEPI
->indices().begin());
891 EXPECT_EQ(GEPI
->idx_end(), GEPI
->indices().end());
893 const auto *CGEPI
= GEPI
;
894 ASSERT_NE(CGEPI
->idx_begin(), CGEPI
->idx_end());
895 ASSERT_EQ(CGEPI
->idx_end(), std::next(CGEPI
->idx_begin(), 3));
896 EXPECT_EQ(Indices
[0], CGEPI
->idx_begin()[0]);
897 EXPECT_EQ(Indices
[1], CGEPI
->idx_begin()[1]);
898 EXPECT_EQ(Indices
[2], CGEPI
->idx_begin()[2]);
899 EXPECT_EQ(CGEPI
->idx_begin(), CGEPI
->indices().begin());
900 EXPECT_EQ(CGEPI
->idx_end(), CGEPI
->indices().end());
905 TEST(InstructionsTest
, SwitchInst
) {
908 std::unique_ptr
<BasicBlock
> BB1
, BB2
, BB3
;
909 BB1
.reset(BasicBlock::Create(C
));
910 BB2
.reset(BasicBlock::Create(C
));
911 BB3
.reset(BasicBlock::Create(C
));
913 // We create block 0 after the others so that it gets destroyed first and
914 // clears the uses of the other basic blocks.
915 std::unique_ptr
<BasicBlock
> BB0(BasicBlock::Create(C
));
917 auto *Int32Ty
= Type::getInt32Ty(C
);
920 SwitchInst::Create(UndefValue::get(Int32Ty
), BB0
.get(), 3, BB0
.get());
921 SI
->addCase(ConstantInt::get(Int32Ty
, 1), BB1
.get());
922 SI
->addCase(ConstantInt::get(Int32Ty
, 2), BB2
.get());
923 SI
->addCase(ConstantInt::get(Int32Ty
, 3), BB3
.get());
925 auto CI
= SI
->case_begin();
926 ASSERT_NE(CI
, SI
->case_end());
927 EXPECT_EQ(1, CI
->getCaseValue()->getSExtValue());
928 EXPECT_EQ(BB1
.get(), CI
->getCaseSuccessor());
929 EXPECT_EQ(2, (CI
+ 1)->getCaseValue()->getSExtValue());
930 EXPECT_EQ(BB2
.get(), (CI
+ 1)->getCaseSuccessor());
931 EXPECT_EQ(3, (CI
+ 2)->getCaseValue()->getSExtValue());
932 EXPECT_EQ(BB3
.get(), (CI
+ 2)->getCaseSuccessor());
933 EXPECT_EQ(CI
+ 1, std::next(CI
));
934 EXPECT_EQ(CI
+ 2, std::next(CI
, 2));
935 EXPECT_EQ(CI
+ 3, std::next(CI
, 3));
936 EXPECT_EQ(SI
->case_end(), CI
+ 3);
937 EXPECT_EQ(0, CI
- CI
);
938 EXPECT_EQ(1, (CI
+ 1) - CI
);
939 EXPECT_EQ(2, (CI
+ 2) - CI
);
940 EXPECT_EQ(3, SI
->case_end() - CI
);
941 EXPECT_EQ(3, std::distance(CI
, SI
->case_end()));
943 auto CCI
= const_cast<const SwitchInst
*>(SI
)->case_begin();
944 SwitchInst::ConstCaseIt CCE
= SI
->case_end();
945 ASSERT_NE(CCI
, SI
->case_end());
946 EXPECT_EQ(1, CCI
->getCaseValue()->getSExtValue());
947 EXPECT_EQ(BB1
.get(), CCI
->getCaseSuccessor());
948 EXPECT_EQ(2, (CCI
+ 1)->getCaseValue()->getSExtValue());
949 EXPECT_EQ(BB2
.get(), (CCI
+ 1)->getCaseSuccessor());
950 EXPECT_EQ(3, (CCI
+ 2)->getCaseValue()->getSExtValue());
951 EXPECT_EQ(BB3
.get(), (CCI
+ 2)->getCaseSuccessor());
952 EXPECT_EQ(CCI
+ 1, std::next(CCI
));
953 EXPECT_EQ(CCI
+ 2, std::next(CCI
, 2));
954 EXPECT_EQ(CCI
+ 3, std::next(CCI
, 3));
955 EXPECT_EQ(CCE
, CCI
+ 3);
956 EXPECT_EQ(0, CCI
- CCI
);
957 EXPECT_EQ(1, (CCI
+ 1) - CCI
);
958 EXPECT_EQ(2, (CCI
+ 2) - CCI
);
959 EXPECT_EQ(3, CCE
- CCI
);
960 EXPECT_EQ(3, std::distance(CCI
, CCE
));
962 // Make sure that the const iterator is compatible with a const auto ref.
963 const auto &Handle
= *CCI
;
964 EXPECT_EQ(1, Handle
.getCaseValue()->getSExtValue());
965 EXPECT_EQ(BB1
.get(), Handle
.getCaseSuccessor());
968 TEST(InstructionsTest
, SwitchInstProfUpdateWrapper
) {
971 std::unique_ptr
<BasicBlock
> BB1
, BB2
, BB3
;
972 BB1
.reset(BasicBlock::Create(C
));
973 BB2
.reset(BasicBlock::Create(C
));
974 BB3
.reset(BasicBlock::Create(C
));
976 // We create block 0 after the others so that it gets destroyed first and
977 // clears the uses of the other basic blocks.
978 std::unique_ptr
<BasicBlock
> BB0(BasicBlock::Create(C
));
980 auto *Int32Ty
= Type::getInt32Ty(C
);
983 SwitchInst::Create(UndefValue::get(Int32Ty
), BB0
.get(), 4, BB0
.get());
984 SI
->addCase(ConstantInt::get(Int32Ty
, 1), BB1
.get());
985 SI
->addCase(ConstantInt::get(Int32Ty
, 2), BB2
.get());
986 SI
->setMetadata(LLVMContext::MD_prof
,
987 MDBuilder(C
).createBranchWeights({ 9, 1, 22 }));
990 SwitchInstProfUpdateWrapper
SIW(*SI
);
991 EXPECT_EQ(*SIW
.getSuccessorWeight(0), 9u);
992 EXPECT_EQ(*SIW
.getSuccessorWeight(1), 1u);
993 EXPECT_EQ(*SIW
.getSuccessorWeight(2), 22u);
994 SIW
.setSuccessorWeight(0, 99u);
995 SIW
.setSuccessorWeight(1, 11u);
996 EXPECT_EQ(*SIW
.getSuccessorWeight(0), 99u);
997 EXPECT_EQ(*SIW
.getSuccessorWeight(1), 11u);
998 EXPECT_EQ(*SIW
.getSuccessorWeight(2), 22u);
1001 { // Create another wrapper and check that the data persist.
1002 SwitchInstProfUpdateWrapper
SIW(*SI
);
1003 EXPECT_EQ(*SIW
.getSuccessorWeight(0), 99u);
1004 EXPECT_EQ(*SIW
.getSuccessorWeight(1), 11u);
1005 EXPECT_EQ(*SIW
.getSuccessorWeight(2), 22u);
1009 TEST(InstructionsTest
, CommuteShuffleMask
) {
1010 SmallVector
<int, 16> Indices({-1, 0, 7});
1011 ShuffleVectorInst::commuteShuffleMask(Indices
, 4);
1012 EXPECT_THAT(Indices
, testing::ContainerEq(ArrayRef
<int>({-1, 4, 3})));
1015 TEST(InstructionsTest
, ShuffleMaskQueries
) {
1016 // Create the elements for various constant vectors.
1018 Type
*Int32Ty
= Type::getInt32Ty(Ctx
);
1019 Constant
*CU
= UndefValue::get(Int32Ty
);
1020 Constant
*C0
= ConstantInt::get(Int32Ty
, 0);
1021 Constant
*C1
= ConstantInt::get(Int32Ty
, 1);
1022 Constant
*C2
= ConstantInt::get(Int32Ty
, 2);
1023 Constant
*C3
= ConstantInt::get(Int32Ty
, 3);
1024 Constant
*C4
= ConstantInt::get(Int32Ty
, 4);
1025 Constant
*C5
= ConstantInt::get(Int32Ty
, 5);
1026 Constant
*C6
= ConstantInt::get(Int32Ty
, 6);
1027 Constant
*C7
= ConstantInt::get(Int32Ty
, 7);
1029 Constant
*Identity
= ConstantVector::get({C0
, CU
, C2
, C3
, C4
});
1030 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1031 Identity
, cast
<FixedVectorType
>(Identity
->getType())->getNumElements()));
1032 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1034 cast
<FixedVectorType
>(Identity
->getType())
1035 ->getNumElements())); // identity is distinguished from select
1036 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1037 Identity
, cast
<FixedVectorType
>(Identity
->getType())->getNumElements()));
1038 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1039 Identity
, cast
<FixedVectorType
>(Identity
->getType())
1040 ->getNumElements())); // identity is always single source
1041 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1042 Identity
, cast
<FixedVectorType
>(Identity
->getType())->getNumElements()));
1043 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1044 Identity
, cast
<FixedVectorType
>(Identity
->getType())->getNumElements()));
1046 Constant
*Select
= ConstantVector::get({CU
, C1
, C5
});
1047 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1048 Select
, cast
<FixedVectorType
>(Select
->getType())->getNumElements()));
1049 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1050 Select
, cast
<FixedVectorType
>(Select
->getType())->getNumElements()));
1051 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1052 Select
, cast
<FixedVectorType
>(Select
->getType())->getNumElements()));
1053 EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(
1054 Select
, cast
<FixedVectorType
>(Select
->getType())->getNumElements()));
1055 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1056 Select
, cast
<FixedVectorType
>(Select
->getType())->getNumElements()));
1057 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1058 Select
, cast
<FixedVectorType
>(Select
->getType())->getNumElements()));
1060 Constant
*Reverse
= ConstantVector::get({C3
, C2
, C1
, CU
});
1061 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1062 Reverse
, cast
<FixedVectorType
>(Reverse
->getType())->getNumElements()));
1063 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1064 Reverse
, cast
<FixedVectorType
>(Reverse
->getType())->getNumElements()));
1065 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1066 Reverse
, cast
<FixedVectorType
>(Reverse
->getType())->getNumElements()));
1067 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1068 Reverse
, cast
<FixedVectorType
>(Reverse
->getType())
1069 ->getNumElements())); // reverse is always single source
1070 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1071 Reverse
, cast
<FixedVectorType
>(Reverse
->getType())->getNumElements()));
1072 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1073 Reverse
, cast
<FixedVectorType
>(Reverse
->getType())->getNumElements()));
1075 Constant
*SingleSource
= ConstantVector::get({C2
, C2
, C0
, CU
});
1076 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1078 cast
<FixedVectorType
>(SingleSource
->getType())->getNumElements()));
1079 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1081 cast
<FixedVectorType
>(SingleSource
->getType())->getNumElements()));
1082 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1084 cast
<FixedVectorType
>(SingleSource
->getType())->getNumElements()));
1085 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1087 cast
<FixedVectorType
>(SingleSource
->getType())->getNumElements()));
1088 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1090 cast
<FixedVectorType
>(SingleSource
->getType())->getNumElements()));
1091 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1093 cast
<FixedVectorType
>(SingleSource
->getType())->getNumElements()));
1095 Constant
*ZeroEltSplat
= ConstantVector::get({C0
, C0
, CU
, C0
});
1096 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1098 cast
<FixedVectorType
>(ZeroEltSplat
->getType())->getNumElements()));
1099 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1101 cast
<FixedVectorType
>(ZeroEltSplat
->getType())->getNumElements()));
1102 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1104 cast
<FixedVectorType
>(ZeroEltSplat
->getType())->getNumElements()));
1105 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1106 ZeroEltSplat
, cast
<FixedVectorType
>(ZeroEltSplat
->getType())
1107 ->getNumElements())); // 0-splat is always single source
1108 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1110 cast
<FixedVectorType
>(ZeroEltSplat
->getType())->getNumElements()));
1111 EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(
1113 cast
<FixedVectorType
>(ZeroEltSplat
->getType())->getNumElements()));
1115 Constant
*Transpose
= ConstantVector::get({C0
, C4
, C2
, C6
});
1116 EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(
1118 cast
<FixedVectorType
>(Transpose
->getType())->getNumElements()));
1119 EXPECT_FALSE(ShuffleVectorInst::isSelectMask(
1121 cast
<FixedVectorType
>(Transpose
->getType())->getNumElements()));
1122 EXPECT_FALSE(ShuffleVectorInst::isReverseMask(
1124 cast
<FixedVectorType
>(Transpose
->getType())->getNumElements()));
1125 EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(
1127 cast
<FixedVectorType
>(Transpose
->getType())->getNumElements()));
1128 EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(
1130 cast
<FixedVectorType
>(Transpose
->getType())->getNumElements()));
1131 EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(
1133 cast
<FixedVectorType
>(Transpose
->getType())->getNumElements()));
1135 // More tests to make sure the logic is/stays correct...
1136 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1137 ConstantVector::get({CU
, C1
, CU
, C3
}), 4));
1138 EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(
1139 ConstantVector::get({C4
, CU
, C6
, CU
}), 4));
1141 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1142 ConstantVector::get({C4
, C1
, C6
, CU
}), 4));
1143 EXPECT_TRUE(ShuffleVectorInst::isSelectMask(
1144 ConstantVector::get({CU
, C1
, C6
, C3
}), 4));
1146 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1147 ConstantVector::get({C7
, C6
, CU
, C4
}), 4));
1148 EXPECT_TRUE(ShuffleVectorInst::isReverseMask(
1149 ConstantVector::get({C3
, CU
, C1
, CU
}), 4));
1151 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1152 ConstantVector::get({C7
, C5
, CU
, C7
}), 4));
1153 EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(
1154 ConstantVector::get({C3
, C0
, CU
, C3
}), 4));
1156 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1157 ConstantVector::get({C4
, CU
, CU
, C4
}), 4));
1158 EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(
1159 ConstantVector::get({CU
, C0
, CU
, C0
}), 4));
1161 EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(
1162 ConstantVector::get({C1
, C5
, C3
, C7
}), 4));
1164 ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1
, C3
}), 2));
1166 // Nothing special about the values here - just re-using inputs to reduce code.
1167 Constant
*V0
= ConstantVector::get({C0
, C1
, C2
, C3
});
1168 Constant
*V1
= ConstantVector::get({C3
, C2
, C1
, C0
});
1170 // Identity with undef elts.
1171 ShuffleVectorInst
*Id1
= new ShuffleVectorInst(V0
, V1
,
1172 ConstantVector::get({C0
, C1
, CU
, CU
}));
1173 EXPECT_TRUE(Id1
->isIdentity());
1174 EXPECT_FALSE(Id1
->isIdentityWithPadding());
1175 EXPECT_FALSE(Id1
->isIdentityWithExtract());
1176 EXPECT_FALSE(Id1
->isConcat());
1179 // Result has less elements than operands.
1180 ShuffleVectorInst
*Id2
= new ShuffleVectorInst(V0
, V1
,
1181 ConstantVector::get({C0
, C1
, C2
}));
1182 EXPECT_FALSE(Id2
->isIdentity());
1183 EXPECT_FALSE(Id2
->isIdentityWithPadding());
1184 EXPECT_TRUE(Id2
->isIdentityWithExtract());
1185 EXPECT_FALSE(Id2
->isConcat());
1188 // Result has less elements than operands; choose from Op1.
1189 ShuffleVectorInst
*Id3
= new ShuffleVectorInst(V0
, V1
,
1190 ConstantVector::get({C4
, CU
, C6
}));
1191 EXPECT_FALSE(Id3
->isIdentity());
1192 EXPECT_FALSE(Id3
->isIdentityWithPadding());
1193 EXPECT_TRUE(Id3
->isIdentityWithExtract());
1194 EXPECT_FALSE(Id3
->isConcat());
1197 // Result has less elements than operands; choose from Op0 and Op1 is not identity.
1198 ShuffleVectorInst
*Id4
= new ShuffleVectorInst(V0
, V1
,
1199 ConstantVector::get({C4
, C1
, C6
}));
1200 EXPECT_FALSE(Id4
->isIdentity());
1201 EXPECT_FALSE(Id4
->isIdentityWithPadding());
1202 EXPECT_FALSE(Id4
->isIdentityWithExtract());
1203 EXPECT_FALSE(Id4
->isConcat());
1206 // Result has more elements than operands, and extra elements are undef.
1207 ShuffleVectorInst
*Id5
= new ShuffleVectorInst(V0
, V1
,
1208 ConstantVector::get({CU
, C1
, C2
, C3
, CU
, CU
}));
1209 EXPECT_FALSE(Id5
->isIdentity());
1210 EXPECT_TRUE(Id5
->isIdentityWithPadding());
1211 EXPECT_FALSE(Id5
->isIdentityWithExtract());
1212 EXPECT_FALSE(Id5
->isConcat());
1215 // Result has more elements than operands, and extra elements are undef; choose from Op1.
1216 ShuffleVectorInst
*Id6
= new ShuffleVectorInst(V0
, V1
,
1217 ConstantVector::get({C4
, C5
, C6
, CU
, CU
, CU
}));
1218 EXPECT_FALSE(Id6
->isIdentity());
1219 EXPECT_TRUE(Id6
->isIdentityWithPadding());
1220 EXPECT_FALSE(Id6
->isIdentityWithExtract());
1221 EXPECT_FALSE(Id6
->isConcat());
1224 // Result has more elements than operands, but extra elements are not undef.
1225 ShuffleVectorInst
*Id7
= new ShuffleVectorInst(V0
, V1
,
1226 ConstantVector::get({C0
, C1
, C2
, C3
, CU
, C1
}));
1227 EXPECT_FALSE(Id7
->isIdentity());
1228 EXPECT_FALSE(Id7
->isIdentityWithPadding());
1229 EXPECT_FALSE(Id7
->isIdentityWithExtract());
1230 EXPECT_FALSE(Id7
->isConcat());
1233 // Result has more elements than operands; choose from Op0 and Op1 is not identity.
1234 ShuffleVectorInst
*Id8
= new ShuffleVectorInst(V0
, V1
,
1235 ConstantVector::get({C4
, CU
, C2
, C3
, CU
, CU
}));
1236 EXPECT_FALSE(Id8
->isIdentity());
1237 EXPECT_FALSE(Id8
->isIdentityWithPadding());
1238 EXPECT_FALSE(Id8
->isIdentityWithExtract());
1239 EXPECT_FALSE(Id8
->isConcat());
1242 // Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
1243 ShuffleVectorInst
*Id9
= new ShuffleVectorInst(V0
, V1
,
1244 ConstantVector::get({C0
, CU
, C2
, C3
, CU
, CU
, C6
, C7
}));
1245 EXPECT_FALSE(Id9
->isIdentity());
1246 EXPECT_FALSE(Id9
->isIdentityWithPadding());
1247 EXPECT_FALSE(Id9
->isIdentityWithExtract());
1248 EXPECT_TRUE(Id9
->isConcat());
1251 // Result has less than twice as many elements as operands, so not a concat.
1252 ShuffleVectorInst
*Id10
= new ShuffleVectorInst(V0
, V1
,
1253 ConstantVector::get({C0
, CU
, C2
, C3
, CU
, CU
, C6
}));
1254 EXPECT_FALSE(Id10
->isIdentity());
1255 EXPECT_FALSE(Id10
->isIdentityWithPadding());
1256 EXPECT_FALSE(Id10
->isIdentityWithExtract());
1257 EXPECT_FALSE(Id10
->isConcat());
1260 // Result has more than twice as many elements as operands, so not a concat.
1261 ShuffleVectorInst
*Id11
= new ShuffleVectorInst(V0
, V1
,
1262 ConstantVector::get({C0
, CU
, C2
, C3
, CU
, CU
, C6
, C7
, CU
}));
1263 EXPECT_FALSE(Id11
->isIdentity());
1264 EXPECT_FALSE(Id11
->isIdentityWithPadding());
1265 EXPECT_FALSE(Id11
->isIdentityWithExtract());
1266 EXPECT_FALSE(Id11
->isConcat());
1269 // If an input is undef, it's not a concat.
1270 // TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
1271 ShuffleVectorInst
*Id12
= new ShuffleVectorInst(V0
, ConstantVector::get({CU
, CU
, CU
, CU
}),
1272 ConstantVector::get({C0
, CU
, C2
, C3
, CU
, CU
, C6
, C7
}));
1273 EXPECT_FALSE(Id12
->isIdentity());
1274 EXPECT_FALSE(Id12
->isIdentityWithPadding());
1275 EXPECT_FALSE(Id12
->isIdentityWithExtract());
1276 EXPECT_FALSE(Id12
->isConcat());
1279 // Not possible to express shuffle mask for scalable vector for extract
1281 Type
*VScaleV4Int32Ty
= ScalableVectorType::get(Int32Ty
, 4);
1282 ShuffleVectorInst
*Id13
=
1283 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV4Int32Ty
),
1284 UndefValue::get(VScaleV4Int32Ty
),
1285 Constant::getNullValue(VScaleV4Int32Ty
));
1287 EXPECT_FALSE(Id13
->isExtractSubvectorMask(Index
));
1288 EXPECT_FALSE(Id13
->changesLength());
1289 EXPECT_FALSE(Id13
->increasesLength());
1292 // Result has twice as many operands.
1293 Type
*VScaleV2Int32Ty
= ScalableVectorType::get(Int32Ty
, 2);
1294 ShuffleVectorInst
*Id14
=
1295 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty
),
1296 UndefValue::get(VScaleV2Int32Ty
),
1297 Constant::getNullValue(VScaleV4Int32Ty
));
1298 EXPECT_TRUE(Id14
->changesLength());
1299 EXPECT_TRUE(Id14
->increasesLength());
1302 // Not possible to express these masks for scalable vectors, make sure we
1304 ShuffleVectorInst
*Id15
=
1305 new ShuffleVectorInst(Constant::getAllOnesValue(VScaleV2Int32Ty
),
1306 Constant::getNullValue(VScaleV2Int32Ty
),
1307 Constant::getNullValue(VScaleV2Int32Ty
));
1308 EXPECT_FALSE(Id15
->isIdentityWithPadding());
1309 EXPECT_FALSE(Id15
->isIdentityWithExtract());
1310 EXPECT_FALSE(Id15
->isConcat());
1314 TEST(InstructionsTest
, ShuffleMaskIsReplicationMask
) {
1315 for (int ReplicationFactor
: seq_inclusive(1, 8)) {
1316 for (int VF
: seq_inclusive(1, 8)) {
1317 const auto ReplicatedMask
= createReplicatedMask(ReplicationFactor
, VF
);
1318 int GuessedReplicationFactor
= -1, GuessedVF
= -1;
1319 EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
1320 ReplicatedMask
, GuessedReplicationFactor
, GuessedVF
));
1321 EXPECT_EQ(GuessedReplicationFactor
, ReplicationFactor
);
1322 EXPECT_EQ(GuessedVF
, VF
);
1324 for (int OpVF
: seq_inclusive(VF
, 2 * VF
+ 1)) {
1326 Type
*OpVFTy
= FixedVectorType::get(IntegerType::getInt1Ty(Ctx
), OpVF
);
1327 Value
*Op
= ConstantVector::getNullValue(OpVFTy
);
1328 ShuffleVectorInst
*SVI
= new ShuffleVectorInst(Op
, Op
, ReplicatedMask
);
1329 EXPECT_EQ(SVI
->isReplicationMask(GuessedReplicationFactor
, GuessedVF
),
1337 TEST(InstructionsTest
, ShuffleMaskIsReplicationMask_undef
) {
1338 for (int ReplicationFactor
: seq_inclusive(1, 4)) {
1339 for (int VF
: seq_inclusive(1, 4)) {
1340 const auto ReplicatedMask
= createReplicatedMask(ReplicationFactor
, VF
);
1341 int GuessedReplicationFactor
= -1, GuessedVF
= -1;
1343 // If we change some mask elements to undef, we should still match.
1345 SmallVector
<SmallVector
<bool>> ElementChoices(ReplicatedMask
.size(),
1348 CombinationGenerator
<bool, decltype(ElementChoices
)::value_type
,
1349 /*variable_smallsize=*/4>
1352 G
.generate([&](ArrayRef
<bool> UndefOverrides
) -> bool {
1353 SmallVector
<int> AdjustedMask
;
1354 AdjustedMask
.reserve(ReplicatedMask
.size());
1355 for (auto I
: zip(ReplicatedMask
, UndefOverrides
))
1356 AdjustedMask
.emplace_back(std::get
<1>(I
) ? -1 : std::get
<0>(I
));
1357 assert(AdjustedMask
.size() == ReplicatedMask
.size() &&
1358 "Size misprediction");
1360 EXPECT_TRUE(ShuffleVectorInst::isReplicationMask(
1361 AdjustedMask
, GuessedReplicationFactor
, GuessedVF
));
1362 // Do not check GuessedReplicationFactor and GuessedVF,
1363 // with enough undef's we may deduce a different tuple.
1365 return /*Abort=*/false;
1371 TEST(InstructionsTest
, ShuffleMaskIsReplicationMask_Exhaustive_Correctness
) {
1372 for (int ShufMaskNumElts
: seq_inclusive(1, 6)) {
1373 SmallVector
<int> PossibleShufMaskElts
;
1374 PossibleShufMaskElts
.reserve(ShufMaskNumElts
+ 2);
1375 for (int PossibleShufMaskElt
: seq_inclusive(-1, ShufMaskNumElts
))
1376 PossibleShufMaskElts
.emplace_back(PossibleShufMaskElt
);
1377 assert(PossibleShufMaskElts
.size() == ShufMaskNumElts
+ 2U &&
1378 "Size misprediction");
1380 SmallVector
<SmallVector
<int>> ElementChoices(ShufMaskNumElts
,
1381 PossibleShufMaskElts
);
1383 CombinationGenerator
<int, decltype(ElementChoices
)::value_type
,
1384 /*variable_smallsize=*/4>
1387 G
.generate([&](ArrayRef
<int> Mask
) -> bool {
1388 int GuessedReplicationFactor
= -1, GuessedVF
= -1;
1389 bool Match
= ShuffleVectorInst::isReplicationMask(
1390 Mask
, GuessedReplicationFactor
, GuessedVF
);
1392 return /*Abort=*/false;
1394 const auto ActualMask
=
1395 createReplicatedMask(GuessedReplicationFactor
, GuessedVF
);
1396 EXPECT_EQ(Mask
.size(), ActualMask
.size());
1397 for (auto I
: zip(Mask
, ActualMask
)) {
1398 int Elt
= std::get
<0>(I
);
1399 int ActualElt
= std::get
<0>(I
);
1402 EXPECT_EQ(Elt
, ActualElt
);
1406 return /*Abort=*/false;
1411 TEST(InstructionsTest
, GetSplat
) {
1412 // Create the elements for various constant vectors.
1414 Type
*Int32Ty
= Type::getInt32Ty(Ctx
);
1415 Constant
*CU
= UndefValue::get(Int32Ty
);
1416 Constant
*CP
= PoisonValue::get(Int32Ty
);
1417 Constant
*C0
= ConstantInt::get(Int32Ty
, 0);
1418 Constant
*C1
= ConstantInt::get(Int32Ty
, 1);
1420 Constant
*Splat0
= ConstantVector::get({C0
, C0
, C0
, C0
});
1421 Constant
*Splat1
= ConstantVector::get({C1
, C1
, C1
, C1
,C1
});
1422 Constant
*Splat0Undef
= ConstantVector::get({C0
, CU
, C0
, CU
});
1423 Constant
*Splat1Undef
= ConstantVector::get({CU
, CU
, C1
, CU
});
1424 Constant
*NotSplat
= ConstantVector::get({C1
, C1
, C0
, C1
,C1
});
1425 Constant
*NotSplatUndef
= ConstantVector::get({CU
, C1
, CU
, CU
,C0
});
1426 Constant
*Splat0Poison
= ConstantVector::get({C0
, CP
, C0
, CP
});
1427 Constant
*Splat1Poison
= ConstantVector::get({CP
, CP
, C1
, CP
});
1428 Constant
*NotSplatPoison
= ConstantVector::get({CP
, C1
, CP
, CP
, C0
});
1430 // Default - undef/poison is not allowed.
1431 EXPECT_EQ(Splat0
->getSplatValue(), C0
);
1432 EXPECT_EQ(Splat1
->getSplatValue(), C1
);
1433 EXPECT_EQ(Splat0Undef
->getSplatValue(), nullptr);
1434 EXPECT_EQ(Splat1Undef
->getSplatValue(), nullptr);
1435 EXPECT_EQ(Splat0Poison
->getSplatValue(), nullptr);
1436 EXPECT_EQ(Splat1Poison
->getSplatValue(), nullptr);
1437 EXPECT_EQ(NotSplat
->getSplatValue(), nullptr);
1438 EXPECT_EQ(NotSplatUndef
->getSplatValue(), nullptr);
1439 EXPECT_EQ(NotSplatPoison
->getSplatValue(), nullptr);
1441 // Disallow poison explicitly.
1442 EXPECT_EQ(Splat0
->getSplatValue(false), C0
);
1443 EXPECT_EQ(Splat1
->getSplatValue(false), C1
);
1444 EXPECT_EQ(Splat0Undef
->getSplatValue(false), nullptr);
1445 EXPECT_EQ(Splat1Undef
->getSplatValue(false), nullptr);
1446 EXPECT_EQ(Splat0Poison
->getSplatValue(false), nullptr);
1447 EXPECT_EQ(Splat1Poison
->getSplatValue(false), nullptr);
1448 EXPECT_EQ(NotSplat
->getSplatValue(false), nullptr);
1449 EXPECT_EQ(NotSplatUndef
->getSplatValue(false), nullptr);
1450 EXPECT_EQ(NotSplatPoison
->getSplatValue(false), nullptr);
1452 // Allow poison but not undef.
1453 EXPECT_EQ(Splat0
->getSplatValue(true), C0
);
1454 EXPECT_EQ(Splat1
->getSplatValue(true), C1
);
1455 EXPECT_EQ(Splat0Undef
->getSplatValue(true), nullptr);
1456 EXPECT_EQ(Splat1Undef
->getSplatValue(true), nullptr);
1457 EXPECT_EQ(Splat0Poison
->getSplatValue(true), C0
);
1458 EXPECT_EQ(Splat1Poison
->getSplatValue(true), C1
);
1459 EXPECT_EQ(NotSplat
->getSplatValue(true), nullptr);
1460 EXPECT_EQ(NotSplatUndef
->getSplatValue(true), nullptr);
1461 EXPECT_EQ(NotSplatPoison
->getSplatValue(true), nullptr);
1464 TEST(InstructionsTest
, SkipDebug
) {
1466 bool OldDbgValueMode
= UseNewDbgInfoFormat
;
1467 UseNewDbgInfoFormat
= false;
1468 std::unique_ptr
<Module
> M
= parseIR(C
,
1470 declare void @llvm.dbg.value(metadata, metadata, metadata)
1474 call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
1478 !llvm.dbg.cu = !{!0}
1479 !llvm.module.flags = !{!3, !4}
1480 !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version
6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
1481 !1 = !DIFile(filename: "t2
.c
", directory: "foo
")
1483 !3 = !{i32 2, !"Dwarf Version
", i32 4}
1484 !4 = !{i32 2, !"Debug Info Version
", i32 3}
1485 !8 = distinct !DISubprogram(name: "f
", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
1486 !9 = !DISubroutineType(types: !10)
1488 !11 = !DILocalVariable(name: "x
", scope: !8, file: !1, line: 2, type: !12)
1489 !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
1490 !13 = !DILocation(line: 2, column: 7, scope: !8)
1493 Function
*F
= cast
<Function
>(M
->getNamedValue("f"));
1494 BasicBlock
&BB
= F
->front();
1496 // The first non-debug instruction is the terminator.
1497 auto *Term
= BB
.getTerminator();
1498 EXPECT_EQ(Term
, BB
.begin()->getNextNonDebugInstruction());
1499 EXPECT_EQ(Term
->getIterator(), skipDebugIntrinsics(BB
.begin()));
1501 // After the terminator, there are no non-debug instructions.
1502 EXPECT_EQ(nullptr, Term
->getNextNonDebugInstruction());
1503 UseNewDbgInfoFormat
= OldDbgValueMode
;
1506 TEST(InstructionsTest
, PhiMightNotBeFPMathOperator
) {
1507 LLVMContext Context
;
1508 IRBuilder
<> Builder(Context
);
1509 MDBuilder
MDHelper(Context
);
1510 Instruction
*I
= Builder
.CreatePHI(Builder
.getInt32Ty(), 0);
1511 EXPECT_FALSE(isa
<FPMathOperator
>(I
));
1513 Instruction
*FP
= Builder
.CreatePHI(Builder
.getDoubleTy(), 0);
1514 EXPECT_TRUE(isa
<FPMathOperator
>(FP
));
1518 TEST(InstructionsTest
, FPCallIsFPMathOperator
) {
1521 Type
*ITy
= Type::getInt32Ty(C
);
1522 FunctionType
*IFnTy
= FunctionType::get(ITy
, {});
1523 PointerType
*PtrTy
= PointerType::getUnqual(C
);
1524 Value
*ICallee
= Constant::getNullValue(PtrTy
);
1525 std::unique_ptr
<CallInst
> ICall(CallInst::Create(IFnTy
, ICallee
, {}, ""));
1526 EXPECT_FALSE(isa
<FPMathOperator
>(ICall
));
1528 Type
*VITy
= FixedVectorType::get(ITy
, 2);
1529 FunctionType
*VIFnTy
= FunctionType::get(VITy
, {});
1530 Value
*VICallee
= Constant::getNullValue(PtrTy
);
1531 std::unique_ptr
<CallInst
> VICall(CallInst::Create(VIFnTy
, VICallee
, {}, ""));
1532 EXPECT_FALSE(isa
<FPMathOperator
>(VICall
));
1534 Type
*AITy
= ArrayType::get(ITy
, 2);
1535 FunctionType
*AIFnTy
= FunctionType::get(AITy
, {});
1536 Value
*AICallee
= Constant::getNullValue(PtrTy
);
1537 std::unique_ptr
<CallInst
> AICall(CallInst::Create(AIFnTy
, AICallee
, {}, ""));
1538 EXPECT_FALSE(isa
<FPMathOperator
>(AICall
));
1540 Type
*FTy
= Type::getFloatTy(C
);
1541 FunctionType
*FFnTy
= FunctionType::get(FTy
, {});
1542 Value
*FCallee
= Constant::getNullValue(PtrTy
);
1543 std::unique_ptr
<CallInst
> FCall(CallInst::Create(FFnTy
, FCallee
, {}, ""));
1544 EXPECT_TRUE(isa
<FPMathOperator
>(FCall
));
1546 Type
*VFTy
= FixedVectorType::get(FTy
, 2);
1547 FunctionType
*VFFnTy
= FunctionType::get(VFTy
, {});
1548 Value
*VFCallee
= Constant::getNullValue(PtrTy
);
1549 std::unique_ptr
<CallInst
> VFCall(CallInst::Create(VFFnTy
, VFCallee
, {}, ""));
1550 EXPECT_TRUE(isa
<FPMathOperator
>(VFCall
));
1552 Type
*AFTy
= ArrayType::get(FTy
, 2);
1553 FunctionType
*AFFnTy
= FunctionType::get(AFTy
, {});
1554 Value
*AFCallee
= Constant::getNullValue(PtrTy
);
1555 std::unique_ptr
<CallInst
> AFCall(CallInst::Create(AFFnTy
, AFCallee
, {}, ""));
1556 EXPECT_TRUE(isa
<FPMathOperator
>(AFCall
));
1558 Type
*AVFTy
= ArrayType::get(VFTy
, 2);
1559 FunctionType
*AVFFnTy
= FunctionType::get(AVFTy
, {});
1560 Value
*AVFCallee
= Constant::getNullValue(PtrTy
);
1561 std::unique_ptr
<CallInst
> AVFCall(
1562 CallInst::Create(AVFFnTy
, AVFCallee
, {}, ""));
1563 EXPECT_TRUE(isa
<FPMathOperator
>(AVFCall
));
1565 Type
*AAVFTy
= ArrayType::get(AVFTy
, 2);
1566 FunctionType
*AAVFFnTy
= FunctionType::get(AAVFTy
, {});
1567 Value
*AAVFCallee
= Constant::getNullValue(PtrTy
);
1568 std::unique_ptr
<CallInst
> AAVFCall(
1569 CallInst::Create(AAVFFnTy
, AAVFCallee
, {}, ""));
1570 EXPECT_TRUE(isa
<FPMathOperator
>(AAVFCall
));
1573 TEST(InstructionsTest
, FNegInstruction
) {
1574 LLVMContext Context
;
1575 Type
*FltTy
= Type::getFloatTy(Context
);
1576 Constant
*One
= ConstantFP::get(FltTy
, 1.0);
1577 BinaryOperator
*FAdd
= BinaryOperator::CreateFAdd(One
, One
);
1578 FAdd
->setHasNoNaNs(true);
1579 UnaryOperator
*FNeg
= UnaryOperator::CreateFNegFMF(One
, FAdd
);
1580 EXPECT_TRUE(FNeg
->hasNoNaNs());
1581 EXPECT_FALSE(FNeg
->hasNoInfs());
1582 EXPECT_FALSE(FNeg
->hasNoSignedZeros());
1583 EXPECT_FALSE(FNeg
->hasAllowReciprocal());
1584 EXPECT_FALSE(FNeg
->hasAllowContract());
1585 EXPECT_FALSE(FNeg
->hasAllowReassoc());
1586 EXPECT_FALSE(FNeg
->hasApproxFunc());
1587 FAdd
->deleteValue();
1588 FNeg
->deleteValue();
1591 TEST(InstructionsTest
, CallBrInstruction
) {
1592 LLVMContext Context
;
1593 std::unique_ptr
<Module
> M
= parseIR(Context
, R
"(
1594 define void @foo() {
1596 callbr void asm sideeffect "// XXX: ${0:l}", "!i"()
1597 to label
%land
.rhs
.i
[label
%branch_test
.exit
]
1600 br label
%branch_test
.exit
1603 %0 = phi i1
[ true, %entry
], [ false, %land
.rhs
.i
]
1604 br i1
%0, label
%if.end
, label
%if.then
1613 Function *Foo = M->getFunction("foo
");
1614 auto BBs = Foo->begin();
1615 CallBrInst &CBI = cast<CallBrInst>(BBs->front());
1618 BasicBlock &BranchTestExit = *BBs;
1620 BasicBlock &IfThen = *BBs;
1622 // Test that setting the first indirect destination of callbr updates the dest
1623 EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0));
1624 CBI.setIndirectDest(0, &IfThen);
1625 EXPECT_EQ(&IfThen, CBI.getIndirectDest(0));
1628 TEST(InstructionsTest, UnaryOperator) {
1629 LLVMContext Context;
1630 IRBuilder<> Builder(Context);
1631 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
1632 Value *F = Builder.CreateFNeg(I);
1634 EXPECT_TRUE(isa<Value>(F));
1635 EXPECT_TRUE(isa<Instruction>(F));
1636 EXPECT_TRUE(isa<UnaryInstruction>(F));
1637 EXPECT_TRUE(isa<UnaryOperator>(F));
1638 EXPECT_FALSE(isa<BinaryOperator>(F));
1644 TEST(InstructionsTest, DropLocation) {
1646 std::unique_ptr<Module> M = parseIR(C,
1648 declare
void @
callee()
1650 define
void @
no_parent_scope() {
1651 call
void @
callee() ; I1
: Call with no location
.
1652 call
void @
callee(), !dbg
!11 ; I2
: Call with location
.
1653 ret
void, !dbg
!11 ; I3
: Non
-call with location
.
1656 define
void @
with_parent_scope() !dbg
!8 {
1657 call
void @
callee() ; I1
: Call with no location
.
1658 call
void @
callee(), !dbg
!11 ; I2
: Call with location
.
1659 ret
void, !dbg
!11 ; I3
: Non
-call with location
.
1662 !llvm
.dbg
.cu
= !{!0}
1663 !llvm
.module
.flags
= !{!3, !4}
1664 !0 = distinct
!DICompileUnit(language
: DW_LANG_C99
, file
: !1, producer
: "", isOptimized
: false, runtimeVersion
: 0, emissionKind
: FullDebug
, enums
: !2)
1665 !1 = !DIFile(filename
: "t2.c", directory
: "foo")
1667 !3 = !{i32
2, !"Dwarf Version", i32
4}
1668 !4 = !{i32
2, !"Debug Info Version", i32
3}
1669 !8 = distinct
!DISubprogram(name
: "f", scope
: !1, file
: !1, line
: 1, type
: !9, isLocal
: false, isDefinition
: true, scopeLine
: 1, isOptimized
: false, unit
: !0, retainedNodes
: !2)
1670 !9 = !DISubroutineType(types
: !10)
1672 !11 = !DILocation(line
: 2, column
: 7, scope
: !8, inlinedAt
: !12)
1673 !12 = !DILocation(line
: 3, column
: 8, scope
: !8)
1678 Function *NoParentScopeF =
1679 cast<Function>(M->getNamedValue("no_parent_scope
"));
1680 BasicBlock &BB = NoParentScopeF->front();
1682 auto *I1 = BB.getFirstNonPHI();
1683 auto *I2 = I1->getNextNode();
1684 auto *I3 = BB.getTerminator();
1686 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1688 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1690 EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
1692 EXPECT_EQ(I1->getDebugLoc(), DebugLoc());
1694 EXPECT_EQ(I3->getDebugLoc().getLine(), 2U);
1696 EXPECT_EQ(I3->getDebugLoc(), DebugLoc());
1700 Function *WithParentScopeF =
1701 cast<Function>(M->getNamedValue("with_parent_scope
"));
1702 BasicBlock &BB = WithParentScopeF->front();
1704 auto *I2 = BB.getFirstNonPHI()->getNextNode();
1706 MDNode *Scope = cast<MDNode>(WithParentScopeF->getSubprogram());
1707 EXPECT_EQ(I2->getDebugLoc().getLine(), 2U);
1709 EXPECT_EQ(I2->getDebugLoc().getLine(), 0U);
1710 EXPECT_EQ(I2->getDebugLoc().getScope(), Scope);
1711 EXPECT_EQ(I2->getDebugLoc().getInlinedAt(), nullptr);
1715 TEST(InstructionsTest, BranchWeightOverflow) {
1717 std::unique_ptr<Module> M = parseIR(C,
1719 declare
void @
callee()
1721 define
void @
caller() {
1722 call
void @
callee(), !prof
!1
1726 !1 = !{!"branch_weights", i32
20000}
1730 cast<CallInst>(&M->getFunction("caller
")->getEntryBlock().front());
1731 uint64_t ProfWeight;
1732 CI->extractProfTotalWeight(ProfWeight);
1733 ASSERT_EQ(ProfWeight, 20000U);
1734 CI->updateProfWeight(10000000, 1);
1735 CI->extractProfTotalWeight(ProfWeight);
1736 ASSERT_EQ(ProfWeight, UINT32_MAX);
1739 TEST(InstructionsTest, AllocaInst) {
1741 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1742 %T
= type
{ i64
, [3 x i32
]}
1743 define
void @
f(i32
%n
) {
1745 %A
= alloca i32
, i32
1
1746 %B
= alloca i32
, i32
4
1747 %C
= alloca i32
, i32
%n
1748 %D
= alloca
<8 x
double>
1749 %E
= alloca
<vscale x
8 x
double>
1750 %F
= alloca
[2 x half
]
1751 %G
= alloca
[2 x
[3 x i128
]]
1753 %I
= alloca i32
, i64
9223372036854775807
1757 const DataLayout &DL = M->getDataLayout();
1759 Function *Fun = cast<Function>(M->getNamedValue("f
"));
1760 BasicBlock &BB = Fun->front();
1761 auto It = BB.begin();
1762 AllocaInst &A = cast<AllocaInst>(*It++);
1763 AllocaInst &B = cast<AllocaInst>(*It++);
1764 AllocaInst &C = cast<AllocaInst>(*It++);
1765 AllocaInst &D = cast<AllocaInst>(*It++);
1766 AllocaInst &E = cast<AllocaInst>(*It++);
1767 AllocaInst &F = cast<AllocaInst>(*It++);
1768 AllocaInst &G = cast<AllocaInst>(*It++);
1769 AllocaInst &H = cast<AllocaInst>(*It++);
1770 AllocaInst &I = cast<AllocaInst>(*It++);
1771 EXPECT_EQ(A.getAllocationSizeInBits(DL), TypeSize::getFixed(32));
1772 EXPECT_EQ(B.getAllocationSizeInBits(DL), TypeSize::getFixed(128));
1773 EXPECT_FALSE(C.getAllocationSizeInBits(DL));
1774 EXPECT_EQ(D.getAllocationSizeInBits(DL), TypeSize::getFixed(512));
1775 EXPECT_EQ(E.getAllocationSizeInBits(DL), TypeSize::getScalable(512));
1776 EXPECT_EQ(F.getAllocationSizeInBits(DL), TypeSize::getFixed(32));
1777 EXPECT_EQ(G.getAllocationSizeInBits(DL), TypeSize::getFixed(768));
1778 EXPECT_EQ(H.getAllocationSizeInBits(DL), TypeSize::getFixed(160));
1779 EXPECT_FALSE(I.getAllocationSizeInBits(DL));
1782 TEST(InstructionsTest, InsertAtBegin) {
1784 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1785 define
void @
f(i32
%a
, i32
%b
) {
1790 Function *F = &*M->begin();
1791 Argument *ArgA = F->getArg(0);
1792 Argument *ArgB = F->getArg(1);
1793 BasicBlock *BB = &*F->begin();
1794 Instruction *Ret = &*BB->begin();
1795 Instruction *I = BinaryOperator::CreateAdd(ArgA, ArgB);
1796 auto It = I->insertInto(BB, BB->begin());
1798 EXPECT_EQ(I->getNextNode(), Ret);
1801 TEST(InstructionsTest, InsertAtEnd) {
1803 std::unique_ptr<Module> M = parseIR(Ctx, R"(
1804 define
void @
f(i32
%a
, i32
%b
) {
1809 Function *F = &*M->begin();
1810 Argument *ArgA = F->getArg(0);
1811 Argument *ArgB = F->getArg(1);
1812 BasicBlock *BB = &*F->begin();
1813 Instruction *Ret = &*BB->begin();
1814 Instruction *I = BinaryOperator::CreateAdd(ArgA, ArgB);
1815 auto It = I->insertInto(BB, BB->end());
1817 EXPECT_EQ(Ret->getNextNode(), I);
1820 } // end anonymous namespace
1821 } // end namespace llvm