1 //===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Support/Casting.h"
10 #include "llvm/IR/User.h"
11 #include "llvm/Support/Debug.h"
12 #include "llvm/Support/raw_ostream.h"
13 #include "gtest/gtest.h"
17 // Used to test illegal cast. If a cast doesn't match any of the "real" ones,
18 // it will match this one.
20 template <typename T
> IllegalCast
*cast(...) { return nullptr; }
22 // set up two example classes
23 // with conversion facility
44 struct derived
: public base
{
45 static bool classof(const base
*B
) { return true; }
48 struct derived_nocast
: public base
{
49 static bool classof(const base
*B
) { return false; }
52 template <> struct isa_impl
<foo
, bar
> {
53 static inline bool doit(const bar
&Val
) {
54 dbgs() << "Classof: " << &Val
<< "\n";
59 // Note for the future - please don't do this. isa_impl is an internal template
60 // for the implementation of `isa` and should not be exposed this way.
61 // Completely unrelated types *should* result in compiler errors if you try to
63 template <typename T
> struct isa_impl
<foo
, T
> {
64 static inline bool doit(const T
&Val
) { return false; }
67 foo
*bar::baz() { return cast
<foo
>(this); }
69 foo
*bar::caz() { return cast_or_null
<foo
>(this); }
71 foo
*bar::daz() { return dyn_cast
<foo
>(this); }
73 foo
*bar::naz() { return dyn_cast_or_null
<foo
>(this); }
77 template <> struct simplify_type
<foo
> {
78 typedef int SimpleType
;
79 static SimpleType
getSimplifiedValue(foo
&Val
) { return 0; }
86 static bool classof(const T1
*x
) { return true; }
89 template <> struct CastInfo
<T2
, T1
> : public OptionalValueCast
<T2
, T1
> {};
92 T3(const T1
*x
) : hasValue(x
!= nullptr) {}
94 static bool classof(const T1
*x
) { return true; }
95 bool hasValue
= false;
98 // T3 is convertible from a pointer to T1.
99 template <> struct CastInfo
<T3
, T1
*> : public ValueFromPointerCast
<T3
, T1
> {};
102 T4() : hasValue(false) {}
103 T4(const T3
&x
) : hasValue(true) {}
105 static bool classof(const T3
*x
) { return true; }
106 bool hasValue
= false;
109 template <> struct ValueIsPresent
<T3
> {
110 using UnwrappedType
= T3
;
111 static inline bool isPresent(const T3
&t
) { return t
.hasValue
; }
112 static inline const T3
&unwrapValue(const T3
&t
) { return t
; }
115 template <> struct CastInfo
<T4
, T3
> {
116 using CastResultType
= T4
;
117 static inline CastResultType
doCast(const T3
&t
) { return T4(t
); }
118 static inline CastResultType
castFailed() { return CastResultType(); }
119 static inline CastResultType
doCastIfPossible(const T3
&f
) {
126 using namespace llvm
;
128 // Test the peculiar behavior of Use in simplify_type.
129 static_assert(std::is_same_v
<simplify_type
<Use
>::SimpleType
, Value
*>,
130 "Use doesn't simplify correctly!");
131 static_assert(std::is_same_v
<simplify_type
<Use
*>::SimpleType
, Value
*>,
132 "Use doesn't simplify correctly!");
134 // Test that a regular class behaves as expected.
135 static_assert(std::is_same_v
<simplify_type
<foo
>::SimpleType
, int>,
136 "Unexpected simplify_type result!");
137 static_assert(std::is_same_v
<simplify_type
<foo
*>::SimpleType
, foo
*>,
138 "Unexpected simplify_type result!");
142 const foo
*null_foo
= nullptr;
147 extern const bar
*B2
;
148 // test various configurations of const
150 const bar
*const B4
= B2
;
152 TEST(CastingTest
, isa
) {
153 EXPECT_TRUE(isa
<foo
>(B1
));
154 EXPECT_TRUE(isa
<foo
>(B2
));
155 EXPECT_TRUE(isa
<foo
>(B3
));
156 EXPECT_TRUE(isa
<foo
>(B4
));
159 TEST(CastingTest
, isa_and_nonnull
) {
160 EXPECT_TRUE(isa_and_nonnull
<foo
>(B2
));
161 EXPECT_TRUE(isa_and_nonnull
<foo
>(B4
));
162 EXPECT_FALSE(isa_and_nonnull
<foo
>(fub()));
165 TEST(CastingTest
, cast
) {
166 foo
&F1
= cast
<foo
>(B1
);
167 EXPECT_NE(&F1
, null_foo
);
168 const foo
*F3
= cast
<foo
>(B2
);
169 EXPECT_NE(F3
, null_foo
);
170 const foo
*F4
= cast
<foo
>(B2
);
171 EXPECT_NE(F4
, null_foo
);
172 const foo
&F5
= cast
<foo
>(B3
);
173 EXPECT_NE(&F5
, null_foo
);
174 const foo
*F6
= cast
<foo
>(B4
);
175 EXPECT_NE(F6
, null_foo
);
176 // Can't pass null pointer to cast<>.
177 // foo *F7 = cast<foo>(fub());
178 // EXPECT_EQ(F7, null_foo);
180 EXPECT_NE(F8
, null_foo
);
182 std::unique_ptr
<const bar
> BP(B2
);
183 auto FP
= cast
<foo
>(std::move(BP
));
184 static_assert(std::is_same_v
<std::unique_ptr
<const foo
>, decltype(FP
)>,
185 "Incorrect deduced return type!");
186 EXPECT_NE(FP
.get(), null_foo
);
190 TEST(CastingTest
, cast_or_null
) {
191 const foo
*F11
= cast_or_null
<foo
>(B2
);
192 EXPECT_NE(F11
, null_foo
);
193 const foo
*F12
= cast_or_null
<foo
>(B2
);
194 EXPECT_NE(F12
, null_foo
);
195 const foo
*F13
= cast_or_null
<foo
>(B4
);
196 EXPECT_NE(F13
, null_foo
);
197 const foo
*F14
= cast_or_null
<foo
>(fub()); // Shouldn't print.
198 EXPECT_EQ(F14
, null_foo
);
200 EXPECT_NE(F15
, null_foo
);
202 std::unique_ptr
<const bar
> BP(fub());
203 auto FP
= cast_or_null
<foo
>(std::move(BP
));
204 EXPECT_EQ(FP
.get(), null_foo
);
207 TEST(CastingTest
, dyn_cast
) {
208 const foo
*F1
= dyn_cast
<foo
>(B2
);
209 EXPECT_NE(F1
, null_foo
);
210 const foo
*F2
= dyn_cast
<foo
>(B2
);
211 EXPECT_NE(F2
, null_foo
);
212 const foo
*F3
= dyn_cast
<foo
>(B4
);
213 EXPECT_NE(F3
, null_foo
);
214 // Can't pass null pointer to dyn_cast<>.
215 // foo *F4 = dyn_cast<foo>(fub());
216 // EXPECT_EQ(F4, null_foo);
218 EXPECT_NE(F5
, null_foo
);
220 auto BP
= std::make_unique
<const bar
>();
221 auto FP
= dyn_cast
<foo
>(BP
);
222 static_assert(std::is_same_v
<std::unique_ptr
<const foo
>, decltype(FP
)>,
223 "Incorrect deduced return type!");
224 EXPECT_NE(FP
.get(), nullptr);
225 EXPECT_EQ(BP
.get(), nullptr);
227 auto BP2
= std::make_unique
<base
>();
228 auto DP
= dyn_cast
<derived_nocast
>(BP2
);
229 EXPECT_EQ(DP
.get(), nullptr);
230 EXPECT_NE(BP2
.get(), nullptr);
233 // All these tests forward to dyn_cast_if_present, so they also provde an
234 // effective test for its use cases.
235 TEST(CastingTest
, dyn_cast_or_null
) {
236 const foo
*F1
= dyn_cast_or_null
<foo
>(B2
);
237 EXPECT_NE(F1
, null_foo
);
238 const foo
*F2
= dyn_cast_or_null
<foo
>(B2
);
239 EXPECT_NE(F2
, null_foo
);
240 const foo
*F3
= dyn_cast_or_null
<foo
>(B4
);
241 EXPECT_NE(F3
, null_foo
);
242 foo
*F4
= dyn_cast_or_null
<foo
>(fub());
243 EXPECT_EQ(F4
, null_foo
);
245 EXPECT_NE(F5
, null_foo
);
246 // dyn_cast_if_present should have exactly the same behavior as
248 const foo
*F6
= dyn_cast_if_present
<foo
>(B2
);
252 TEST(CastingTest
, dyn_cast_value_types
) {
254 std::optional
<T2
> t2
= dyn_cast
<T2
>(t1
);
257 T2
*t2ptr
= dyn_cast
<T2
>(&t1
);
258 EXPECT_TRUE(t2ptr
!= nullptr);
260 T3 t3
= dyn_cast
<T3
>(&t1
);
261 EXPECT_TRUE(t3
.hasValue
);
264 TEST(CastingTest
, dyn_cast_if_present
) {
265 std::optional
<T1
> empty
{};
266 std::optional
<T2
> F1
= dyn_cast_if_present
<T2
>(empty
);
267 EXPECT_FALSE(F1
.has_value());
270 std::optional
<T2
> F2
= dyn_cast_if_present
<T2
>(t1
);
271 EXPECT_TRUE(F2
.has_value());
273 T1
*t1Null
= nullptr;
275 // T3 should have hasValue == false because t1Null is nullptr.
276 T3 t3
= dyn_cast_if_present
<T3
>(t1Null
);
277 EXPECT_FALSE(t3
.hasValue
);
279 // Now because of that, T4 should receive the castFailed implementation of its
280 // FallibleCastTraits, which default-constructs a T4, which has no value.
281 T4 t4
= dyn_cast_if_present
<T4
>(t3
);
282 EXPECT_FALSE(t4
.hasValue
);
285 TEST(CastingTest
, isa_check_predicates
) {
286 auto IsaFoo
= IsaPred
<foo
>;
287 EXPECT_TRUE(IsaFoo(B1
));
288 EXPECT_TRUE(IsaFoo(B2
));
289 EXPECT_TRUE(IsaFoo(B3
));
290 EXPECT_TRUE(IsaPred
<foo
>(B4
));
291 EXPECT_TRUE((IsaPred
<foo
, bar
>(B4
)));
293 auto IsaAndPresentFoo
= IsaAndPresentPred
<foo
>;
294 EXPECT_TRUE(IsaAndPresentFoo(B2
));
295 EXPECT_TRUE(IsaAndPresentFoo(B4
));
296 EXPECT_FALSE(IsaAndPresentPred
<foo
>(fub()));
297 EXPECT_FALSE((IsaAndPresentPred
<foo
, bar
>(fub())));
300 std::unique_ptr
<derived
> newd() { return std::make_unique
<derived
>(); }
301 std::unique_ptr
<base
> newb() { return std::make_unique
<derived
>(); }
303 TEST(CastingTest
, unique_dyn_cast
) {
304 derived
*OrigD
= nullptr;
305 auto D
= std::make_unique
<derived
>();
308 // Converting from D to itself is valid, it should return a new unique_ptr
309 // and the old one should become nullptr.
310 auto NewD
= unique_dyn_cast
<derived
>(D
);
311 ASSERT_EQ(OrigD
, NewD
.get());
312 ASSERT_EQ(nullptr, D
);
314 // Converting from D to B is valid, B should have a value and D should be
316 auto B
= unique_dyn_cast
<base
>(NewD
);
317 ASSERT_EQ(OrigD
, B
.get());
318 ASSERT_EQ(nullptr, NewD
);
320 // Converting from B to itself is valid, it should return a new unique_ptr
321 // and the old one should become nullptr.
322 auto NewB
= unique_dyn_cast
<base
>(B
);
323 ASSERT_EQ(OrigD
, NewB
.get());
324 ASSERT_EQ(nullptr, B
);
326 // Converting from B to D is valid, D should have a value and B should be
328 D
= unique_dyn_cast
<derived
>(NewB
);
329 ASSERT_EQ(OrigD
, D
.get());
330 ASSERT_EQ(nullptr, NewB
);
332 // This is a very contrived test, casting between completely unrelated types
333 // should generally fail to compile. See the classof shenanigans we have in
334 // the definition of `foo` above.
335 auto F
= unique_dyn_cast
<foo
>(D
);
336 ASSERT_EQ(nullptr, F
);
337 ASSERT_EQ(OrigD
, D
.get());
339 // All of the above should also hold for temporaries.
340 auto D2
= unique_dyn_cast
<derived
>(newd());
341 EXPECT_NE(nullptr, D2
);
343 auto B2
= unique_dyn_cast
<derived
>(newb());
344 EXPECT_NE(nullptr, B2
);
346 auto B3
= unique_dyn_cast
<base
>(newb());
347 EXPECT_NE(nullptr, B3
);
349 // This is a very contrived test, casting between completely unrelated types
350 // should generally fail to compile. See the classof shenanigans we have in
351 // the definition of `foo` above.
352 auto F2
= unique_dyn_cast
<foo
>(newb());
353 EXPECT_EQ(nullptr, F2
);
356 // These lines are errors...
357 // foo *F20 = cast<foo>(B2); // Yields const foo*
358 // foo &F21 = cast<foo>(B3); // Yields const foo&
359 // foo *F22 = cast<foo>(B4); // Yields const foo*
360 // foo &F23 = cast_or_null<foo>(B1);
361 // const foo &F24 = cast_or_null<foo>(B3);
364 } // anonymous namespace
366 bar
*llvm::fub() { return nullptr; }
369 namespace inferred_upcasting
{
370 // This test case verifies correct behavior of inferred upcasts when the
371 // types are statically known to be OK to upcast. This is the case when,
372 // for example, Derived inherits from Base, and we do `isa<Base>(Derived)`.
374 // Note: This test will actually fail to compile without inferred
379 // No classof. We are testing that the upcast is inferred.
383 class Derived
: public Base
{
388 // Even with no explicit classof() in Base, we should still be able to cast
389 // Derived to its base class.
390 TEST(CastingTest
, UpcastIsInferred
) {
392 EXPECT_TRUE(isa
<Base
>(D
));
393 Base
*BP
= dyn_cast
<Base
>(&D
);
394 EXPECT_NE(BP
, nullptr);
397 // This test verifies that the inferred upcast takes precedence over an
398 // explicitly written one. This is important because it verifies that the
399 // dynamic check gets optimized away.
400 class UseInferredUpcast
{
403 static bool classof(const UseInferredUpcast
*) { return false; }
406 TEST(CastingTest
, InferredUpcastTakesPrecedence
) {
407 UseInferredUpcast UIU
;
408 // Since the explicit classof() returns false, this will fail if the
409 // explicit one is used.
410 EXPECT_TRUE(isa
<UseInferredUpcast
>(&UIU
));
413 } // end namespace inferred_upcasting
414 } // end anonymous namespace
417 namespace pointer_wrappers
{
421 Base(bool IsDerived
= false) : IsDerived(IsDerived
) {}
424 struct Derived
: Base
{
425 Derived() : Base(true) {}
426 static bool classof(const Base
*B
) { return B
->IsDerived
; }
433 PTy(Base
*B
) : B(B
) {}
434 explicit operator bool() const { return get(); }
435 Base
*get() const { return B
; }
438 } // end namespace pointer_wrappers
443 template <> struct ValueIsPresent
<pointer_wrappers::PTy
> {
444 using UnwrappedType
= pointer_wrappers::PTy
;
445 static inline bool isPresent(const pointer_wrappers::PTy
&P
) {
446 return P
.get() != nullptr;
448 static UnwrappedType
&unwrapValue(pointer_wrappers::PTy
&P
) { return P
; }
451 template <> struct ValueIsPresent
<const pointer_wrappers::PTy
> {
452 using UnwrappedType
= pointer_wrappers::PTy
;
453 static inline bool isPresent(const pointer_wrappers::PTy
&P
) {
454 return P
.get() != nullptr;
457 static UnwrappedType
&unwrapValue(const pointer_wrappers::PTy
&P
) {
458 return const_cast<UnwrappedType
&>(P
);
462 template <> struct simplify_type
<pointer_wrappers::PTy
> {
463 typedef pointer_wrappers::Base
*SimpleType
;
464 static SimpleType
getSimplifiedValue(pointer_wrappers::PTy
&P
) {
468 template <> struct simplify_type
<const pointer_wrappers::PTy
> {
469 typedef pointer_wrappers::Base
*SimpleType
;
470 static SimpleType
getSimplifiedValue(const pointer_wrappers::PTy
&P
) {
475 } // end namespace llvm
478 namespace pointer_wrappers
{
481 pointer_wrappers::Base B
;
482 pointer_wrappers::Derived D
;
484 // Mutable "smart" pointers.
485 pointer_wrappers::PTy
MN(nullptr);
486 pointer_wrappers::PTy
MB(&B
);
487 pointer_wrappers::PTy
MD(&D
);
489 // Const "smart" pointers.
490 const pointer_wrappers::PTy
CN(nullptr);
491 const pointer_wrappers::PTy
CB(&B
);
492 const pointer_wrappers::PTy
CD(&D
);
494 TEST(CastingTest
, smart_isa
) {
495 EXPECT_TRUE(!isa
<pointer_wrappers::Derived
>(MB
));
496 EXPECT_TRUE(!isa
<pointer_wrappers::Derived
>(CB
));
497 EXPECT_TRUE(isa
<pointer_wrappers::Derived
>(MD
));
498 EXPECT_TRUE(isa
<pointer_wrappers::Derived
>(CD
));
501 TEST(CastingTest
, smart_cast
) {
502 EXPECT_EQ(cast
<pointer_wrappers::Derived
>(MD
), &D
);
503 EXPECT_EQ(cast
<pointer_wrappers::Derived
>(CD
), &D
);
506 TEST(CastingTest
, smart_cast_or_null
) {
507 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(MN
), nullptr);
508 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(CN
), nullptr);
509 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(MD
), &D
);
510 EXPECT_EQ(cast_or_null
<pointer_wrappers::Derived
>(CD
), &D
);
513 TEST(CastingTest
, smart_dyn_cast
) {
514 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(MB
), nullptr);
515 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(CB
), nullptr);
516 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(MD
), &D
);
517 EXPECT_EQ(dyn_cast
<pointer_wrappers::Derived
>(CD
), &D
);
520 TEST(CastingTest
, smart_dyn_cast_or_null
) {
521 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(MN
), nullptr);
522 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(CN
), nullptr);
523 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(MB
), nullptr);
524 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(CB
), nullptr);
525 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(MD
), &D
);
526 EXPECT_EQ(dyn_cast_or_null
<pointer_wrappers::Derived
>(CD
), &D
);
529 } // end namespace pointer_wrappers
532 namespace assertion_checks
{
537 struct Derived
: public Base
{
538 static bool classof(const Base
*B
) { return false; }
541 TEST(CastingTest
, assertion_check_const_ref
) {
543 EXPECT_DEATH((void)cast
<Derived
>(B
), "argument of incompatible type")
544 << "Invalid cast of const ref did not cause an abort()";
547 TEST(CastingTest
, assertion_check_ref
) {
549 EXPECT_DEATH((void)cast
<Derived
>(B
), "argument of incompatible type")
550 << "Invalid cast of const ref did not cause an abort()";
553 TEST(CastingTest
, assertion_check_ptr
) {
555 EXPECT_DEATH((void)cast
<Derived
>(&B
), "argument of incompatible type")
556 << "Invalid cast of const ref did not cause an abort()";
559 TEST(CastingTest
, assertion_check_unique_ptr
) {
560 auto B
= std::make_unique
<Base
>();
561 EXPECT_DEATH((void)cast
<Derived
>(std::move(B
)),
562 "argument of incompatible type")
563 << "Invalid cast of const ref did not cause an abort()";
566 } // end namespace assertion_checks