Bump version to 19.1.0-rc3
[llvm-project.git] / llvm / unittests / Support / KnownBitsTest.cpp
blob84882550117d8302f01a68ce60de512ec776154d
1 //===- llvm/unittest/Support/KnownBitsTest.cpp - KnownBits tests ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements unit tests for KnownBits functions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Support/KnownBits.h"
14 #include "KnownBitsTest.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Twine.h"
18 #include "gtest/gtest.h"
20 using namespace llvm;
22 using UnaryBitsFn = llvm::function_ref<KnownBits(const KnownBits &)>;
23 using UnaryIntFn = llvm::function_ref<std::optional<APInt>(const APInt &)>;
25 using BinaryBitsFn =
26 llvm::function_ref<KnownBits(const KnownBits &, const KnownBits &)>;
27 using BinaryIntFn =
28 llvm::function_ref<std::optional<APInt>(const APInt &, const APInt &)>;
30 static testing::AssertionResult checkResult(Twine Name, const KnownBits &Exact,
31 const KnownBits &Computed,
32 ArrayRef<KnownBits> Inputs,
33 bool CheckOptimality) {
34 if (CheckOptimality) {
35 // We generally don't want to return conflicting known bits, even if it is
36 // legal for always poison results.
37 if (Exact.hasConflict() || Computed == Exact)
38 return testing::AssertionSuccess();
39 } else {
40 if (Computed.Zero.isSubsetOf(Exact.Zero) &&
41 Computed.One.isSubsetOf(Exact.One))
42 return testing::AssertionSuccess();
45 testing::AssertionResult Result = testing::AssertionFailure();
46 Result << Name << ": ";
47 Result << "Inputs = ";
48 for (const KnownBits &Input : Inputs)
49 Result << Input << ", ";
50 Result << "Computed = " << Computed << ", Exact = " << Exact;
51 return Result;
54 static void testUnaryOpExhaustive(StringRef Name, UnaryBitsFn BitsFn,
55 UnaryIntFn IntFn,
56 bool CheckOptimality = true) {
57 for (unsigned Bits : {1, 4}) {
58 ForeachKnownBits(Bits, [&](const KnownBits &Known) {
59 KnownBits Computed = BitsFn(Known);
60 KnownBits Exact(Bits);
61 Exact.Zero.setAllBits();
62 Exact.One.setAllBits();
64 ForeachNumInKnownBits(Known, [&](const APInt &N) {
65 if (std::optional<APInt> Res = IntFn(N)) {
66 Exact.One &= *Res;
67 Exact.Zero &= ~*Res;
69 });
71 if (!Exact.hasConflict()) {
72 EXPECT_TRUE(checkResult(Name, Exact, Computed, Known, CheckOptimality));
74 });
78 static void testBinaryOpExhaustive(StringRef Name, BinaryBitsFn BitsFn,
79 BinaryIntFn IntFn,
80 bool CheckOptimality = true,
81 bool RefinePoisonToZero = false) {
82 for (unsigned Bits : {1, 4}) {
83 ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
84 ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
85 KnownBits Computed = BitsFn(Known1, Known2);
86 KnownBits Exact(Bits);
87 Exact.Zero.setAllBits();
88 Exact.One.setAllBits();
90 ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
91 ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
92 if (std::optional<APInt> Res = IntFn(N1, N2)) {
93 Exact.One &= *Res;
94 Exact.Zero &= ~*Res;
96 });
97 });
99 if (!Exact.hasConflict()) {
100 EXPECT_TRUE(checkResult(Name, Exact, Computed, {Known1, Known2},
101 CheckOptimality));
103 // In some cases we choose to return zero if the result is always
104 // poison.
105 if (RefinePoisonToZero && Exact.hasConflict() &&
106 !Known1.hasConflict() && !Known2.hasConflict()) {
107 EXPECT_TRUE(Computed.isZero());
114 namespace {
116 TEST(KnownBitsTest, AddCarryExhaustive) {
117 unsigned Bits = 4;
118 ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
119 ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
120 ForeachKnownBits(1, [&](const KnownBits &KnownCarry) {
121 // Explicitly compute known bits of the addition by trying all
122 // possibilities.
123 KnownBits Exact(Bits);
124 Exact.Zero.setAllBits();
125 Exact.One.setAllBits();
126 ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
127 ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
128 ForeachNumInKnownBits(KnownCarry, [&](const APInt &Carry) {
129 APInt Add = N1 + N2;
130 if (Carry.getBoolValue())
131 ++Add;
133 Exact.One &= Add;
134 Exact.Zero &= ~Add;
139 KnownBits Computed =
140 KnownBits::computeForAddCarry(Known1, Known2, KnownCarry);
141 if (!Exact.hasConflict()) {
142 EXPECT_EQ(Exact, Computed);
149 static void TestAddSubExhaustive(bool IsAdd) {
150 Twine Name = IsAdd ? "add" : "sub";
151 unsigned Bits = 4;
152 ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
153 ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
154 KnownBits Exact(Bits), ExactNSW(Bits), ExactNUW(Bits),
155 ExactNSWAndNUW(Bits);
156 Exact.Zero.setAllBits();
157 Exact.One.setAllBits();
158 ExactNSW.Zero.setAllBits();
159 ExactNSW.One.setAllBits();
160 ExactNUW.Zero.setAllBits();
161 ExactNUW.One.setAllBits();
162 ExactNSWAndNUW.Zero.setAllBits();
163 ExactNSWAndNUW.One.setAllBits();
165 ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
166 ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
167 bool SignedOverflow;
168 bool UnsignedOverflow;
169 APInt Res;
170 if (IsAdd) {
171 Res = N1.uadd_ov(N2, UnsignedOverflow);
172 Res = N1.sadd_ov(N2, SignedOverflow);
173 } else {
174 Res = N1.usub_ov(N2, UnsignedOverflow);
175 Res = N1.ssub_ov(N2, SignedOverflow);
178 Exact.One &= Res;
179 Exact.Zero &= ~Res;
181 if (!SignedOverflow) {
182 ExactNSW.One &= Res;
183 ExactNSW.Zero &= ~Res;
186 if (!UnsignedOverflow) {
187 ExactNUW.One &= Res;
188 ExactNUW.Zero &= ~Res;
191 if (!UnsignedOverflow && !SignedOverflow) {
192 ExactNSWAndNUW.One &= Res;
193 ExactNSWAndNUW.Zero &= ~Res;
198 KnownBits Computed = KnownBits::computeForAddSub(
199 IsAdd, /*NSW=*/false, /*NUW=*/false, Known1, Known2);
200 EXPECT_TRUE(checkResult(Name, Exact, Computed, {Known1, Known2},
201 /*CheckOptimality=*/true));
203 KnownBits ComputedNSW = KnownBits::computeForAddSub(
204 IsAdd, /*NSW=*/true, /*NUW=*/false, Known1, Known2);
205 EXPECT_TRUE(checkResult(Name + " nsw", ExactNSW, ComputedNSW,
206 {Known1, Known2},
207 /*CheckOptimality=*/true));
209 KnownBits ComputedNUW = KnownBits::computeForAddSub(
210 IsAdd, /*NSW=*/false, /*NUW=*/true, Known1, Known2);
211 EXPECT_TRUE(checkResult(Name + " nuw", ExactNUW, ComputedNUW,
212 {Known1, Known2},
213 /*CheckOptimality=*/true));
215 KnownBits ComputedNSWAndNUW = KnownBits::computeForAddSub(
216 IsAdd, /*NSW=*/true, /*NUW=*/true, Known1, Known2);
217 EXPECT_TRUE(checkResult(Name + " nsw nuw", ExactNSWAndNUW,
218 ComputedNSWAndNUW, {Known1, Known2},
219 /*CheckOptimality=*/true));
224 TEST(KnownBitsTest, AddSubExhaustive) {
225 TestAddSubExhaustive(true);
226 TestAddSubExhaustive(false);
229 TEST(KnownBitsTest, SubBorrowExhaustive) {
230 unsigned Bits = 4;
231 ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
232 ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
233 ForeachKnownBits(1, [&](const KnownBits &KnownBorrow) {
234 // Explicitly compute known bits of the subtraction by trying all
235 // possibilities.
236 KnownBits Exact(Bits);
237 Exact.Zero.setAllBits();
238 Exact.One.setAllBits();
239 ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
240 ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
241 ForeachNumInKnownBits(KnownBorrow, [&](const APInt &Borrow) {
242 APInt Sub = N1 - N2;
243 if (Borrow.getBoolValue())
244 --Sub;
246 Exact.One &= Sub;
247 Exact.Zero &= ~Sub;
252 KnownBits Computed =
253 KnownBits::computeForSubBorrow(Known1, Known2, KnownBorrow);
254 if (!Exact.hasConflict()) {
255 EXPECT_EQ(Exact, Computed);
262 TEST(KnownBitsTest, SignBitUnknown) {
263 KnownBits Known(2);
264 EXPECT_TRUE(Known.isSignUnknown());
265 Known.Zero.setBit(0);
266 EXPECT_TRUE(Known.isSignUnknown());
267 Known.Zero.setBit(1);
268 EXPECT_FALSE(Known.isSignUnknown());
269 Known.Zero.clearBit(0);
270 EXPECT_FALSE(Known.isSignUnknown());
271 Known.Zero.clearBit(1);
272 EXPECT_TRUE(Known.isSignUnknown());
274 Known.One.setBit(0);
275 EXPECT_TRUE(Known.isSignUnknown());
276 Known.One.setBit(1);
277 EXPECT_FALSE(Known.isSignUnknown());
278 Known.One.clearBit(0);
279 EXPECT_FALSE(Known.isSignUnknown());
280 Known.One.clearBit(1);
281 EXPECT_TRUE(Known.isSignUnknown());
284 TEST(KnownBitsTest, BinaryExhaustive) {
285 testBinaryOpExhaustive(
286 "and",
287 [](const KnownBits &Known1, const KnownBits &Known2) {
288 return Known1 & Known2;
290 [](const APInt &N1, const APInt &N2) { return N1 & N2; });
291 testBinaryOpExhaustive(
292 "or",
293 [](const KnownBits &Known1, const KnownBits &Known2) {
294 return Known1 | Known2;
296 [](const APInt &N1, const APInt &N2) { return N1 | N2; });
297 testBinaryOpExhaustive(
298 "xor",
299 [](const KnownBits &Known1, const KnownBits &Known2) {
300 return Known1 ^ Known2;
302 [](const APInt &N1, const APInt &N2) { return N1 ^ N2; });
303 testBinaryOpExhaustive("umax", KnownBits::umax, APIntOps::umax);
304 testBinaryOpExhaustive("umin", KnownBits::umin, APIntOps::umin);
305 testBinaryOpExhaustive("smax", KnownBits::smax, APIntOps::smax);
306 testBinaryOpExhaustive("smin", KnownBits::smin, APIntOps::smin);
307 testBinaryOpExhaustive("abdu", KnownBits::abdu, APIntOps::abdu);
308 testBinaryOpExhaustive("abds", KnownBits::abds, APIntOps::abds);
309 testBinaryOpExhaustive(
310 "udiv",
311 [](const KnownBits &Known1, const KnownBits &Known2) {
312 return KnownBits::udiv(Known1, Known2);
314 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
315 if (N2.isZero())
316 return std::nullopt;
317 return N1.udiv(N2);
319 /*CheckOptimality=*/false);
320 testBinaryOpExhaustive(
321 "udiv exact",
322 [](const KnownBits &Known1, const KnownBits &Known2) {
323 return KnownBits::udiv(Known1, Known2, /*Exact=*/true);
325 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
326 if (N2.isZero() || !N1.urem(N2).isZero())
327 return std::nullopt;
328 return N1.udiv(N2);
330 /*CheckOptimality=*/false);
331 testBinaryOpExhaustive(
332 "sdiv",
333 [](const KnownBits &Known1, const KnownBits &Known2) {
334 return KnownBits::sdiv(Known1, Known2);
336 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
337 if (N2.isZero() || (N1.isMinSignedValue() && N2.isAllOnes()))
338 return std::nullopt;
339 return N1.sdiv(N2);
341 /*CheckOptimality=*/false);
342 testBinaryOpExhaustive(
343 "sdiv exact",
344 [](const KnownBits &Known1, const KnownBits &Known2) {
345 return KnownBits::sdiv(Known1, Known2, /*Exact=*/true);
347 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
348 if (N2.isZero() || (N1.isMinSignedValue() && N2.isAllOnes()) ||
349 !N1.srem(N2).isZero())
350 return std::nullopt;
351 return N1.sdiv(N2);
353 /*CheckOptimality=*/false);
354 testBinaryOpExhaustive(
355 "urem", KnownBits::urem,
356 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
357 if (N2.isZero())
358 return std::nullopt;
359 return N1.urem(N2);
361 /*CheckOptimality=*/false);
362 testBinaryOpExhaustive(
363 "srem", KnownBits::srem,
364 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
365 if (N2.isZero())
366 return std::nullopt;
367 return N1.srem(N2);
369 /*CheckOptimality=*/false);
370 testBinaryOpExhaustive(
371 "sadd_sat", KnownBits::sadd_sat,
372 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
373 return N1.sadd_sat(N2);
375 /*CheckOptimality=*/false);
376 testBinaryOpExhaustive(
377 "uadd_sat", KnownBits::uadd_sat,
378 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
379 return N1.uadd_sat(N2);
381 /*CheckOptimality=*/false);
382 testBinaryOpExhaustive(
383 "ssub_sat", KnownBits::ssub_sat,
384 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
385 return N1.ssub_sat(N2);
387 /*CheckOptimality=*/false);
388 testBinaryOpExhaustive(
389 "usub_sat", KnownBits::usub_sat,
390 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
391 return N1.usub_sat(N2);
393 /*CheckOptimality=*/false);
394 testBinaryOpExhaustive(
395 "shl",
396 [](const KnownBits &Known1, const KnownBits &Known2) {
397 return KnownBits::shl(Known1, Known2);
399 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
400 if (N2.uge(N2.getBitWidth()))
401 return std::nullopt;
402 return N1.shl(N2);
404 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
405 testBinaryOpExhaustive(
406 "ushl_ov",
407 [](const KnownBits &Known1, const KnownBits &Known2) {
408 return KnownBits::shl(Known1, Known2, /*NUW=*/true);
410 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
411 bool Overflow;
412 APInt Res = N1.ushl_ov(N2, Overflow);
413 if (Overflow)
414 return std::nullopt;
415 return Res;
417 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
418 testBinaryOpExhaustive(
419 "shl nsw",
420 [](const KnownBits &Known1, const KnownBits &Known2) {
421 return KnownBits::shl(Known1, Known2, /*NUW=*/false, /*NSW=*/true);
423 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
424 bool Overflow;
425 APInt Res = N1.sshl_ov(N2, Overflow);
426 if (Overflow)
427 return std::nullopt;
428 return Res;
430 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
431 testBinaryOpExhaustive(
432 "shl nuw",
433 [](const KnownBits &Known1, const KnownBits &Known2) {
434 return KnownBits::shl(Known1, Known2, /*NUW=*/true, /*NSW=*/true);
436 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
437 bool OverflowUnsigned, OverflowSigned;
438 APInt Res = N1.ushl_ov(N2, OverflowUnsigned);
439 (void)N1.sshl_ov(N2, OverflowSigned);
440 if (OverflowUnsigned || OverflowSigned)
441 return std::nullopt;
442 return Res;
444 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
446 testBinaryOpExhaustive(
447 "lshr",
448 [](const KnownBits &Known1, const KnownBits &Known2) {
449 return KnownBits::lshr(Known1, Known2);
451 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
452 if (N2.uge(N2.getBitWidth()))
453 return std::nullopt;
454 return N1.lshr(N2);
456 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
457 testBinaryOpExhaustive(
458 "lshr exact",
459 [](const KnownBits &Known1, const KnownBits &Known2) {
460 return KnownBits::lshr(Known1, Known2, /*ShAmtNonZero=*/false,
461 /*Exact=*/true);
463 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
464 if (N2.uge(N2.getBitWidth()))
465 return std::nullopt;
466 if (!N1.extractBits(N2.getZExtValue(), 0).isZero())
467 return std::nullopt;
468 return N1.lshr(N2);
470 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
471 testBinaryOpExhaustive(
472 "ashr",
473 [](const KnownBits &Known1, const KnownBits &Known2) {
474 return KnownBits::ashr(Known1, Known2);
476 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
477 if (N2.uge(N2.getBitWidth()))
478 return std::nullopt;
479 return N1.ashr(N2);
481 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
482 testBinaryOpExhaustive(
483 "ashr exact",
484 [](const KnownBits &Known1, const KnownBits &Known2) {
485 return KnownBits::ashr(Known1, Known2, /*ShAmtNonZero=*/false,
486 /*Exact=*/true);
488 [](const APInt &N1, const APInt &N2) -> std::optional<APInt> {
489 if (N2.uge(N2.getBitWidth()))
490 return std::nullopt;
491 if (!N1.extractBits(N2.getZExtValue(), 0).isZero())
492 return std::nullopt;
493 return N1.ashr(N2);
495 /*CheckOptimality=*/true, /*RefinePoisonToZero=*/true);
496 testBinaryOpExhaustive(
497 "mul",
498 [](const KnownBits &Known1, const KnownBits &Known2) {
499 return KnownBits::mul(Known1, Known2);
501 [](const APInt &N1, const APInt &N2) { return N1 * N2; },
502 /*CheckOptimality=*/false);
503 testBinaryOpExhaustive(
504 "mulhs", KnownBits::mulhs,
505 [](const APInt &N1, const APInt &N2) { return APIntOps::mulhs(N1, N2); },
506 /*CheckOptimality=*/false);
507 testBinaryOpExhaustive(
508 "mulhu", KnownBits::mulhu,
509 [](const APInt &N1, const APInt &N2) { return APIntOps::mulhu(N1, N2); },
510 /*CheckOptimality=*/false);
512 testBinaryOpExhaustive("avgFloorS", KnownBits::avgFloorS, APIntOps::avgFloorS,
513 false);
515 testBinaryOpExhaustive("avgFloorU", KnownBits::avgFloorU, APIntOps::avgFloorU,
516 false);
518 testBinaryOpExhaustive("avgCeilU", KnownBits::avgCeilU, APIntOps::avgCeilU,
519 false);
521 testBinaryOpExhaustive("avgCeilS", KnownBits::avgCeilS, APIntOps::avgCeilS,
522 false);
525 TEST(KnownBitsTest, UnaryExhaustive) {
526 testUnaryOpExhaustive(
527 "abs", [](const KnownBits &Known) { return Known.abs(); },
528 [](const APInt &N) { return N.abs(); });
530 testUnaryOpExhaustive(
531 "abs(true)", [](const KnownBits &Known) { return Known.abs(true); },
532 [](const APInt &N) -> std::optional<APInt> {
533 if (N.isMinSignedValue())
534 return std::nullopt;
535 return N.abs();
538 testUnaryOpExhaustive(
539 "blsi", [](const KnownBits &Known) { return Known.blsi(); },
540 [](const APInt &N) { return N & -N; });
541 testUnaryOpExhaustive(
542 "blsmsk", [](const KnownBits &Known) { return Known.blsmsk(); },
543 [](const APInt &N) { return N ^ (N - 1); });
545 testUnaryOpExhaustive(
546 "mul self",
547 [](const KnownBits &Known) {
548 return KnownBits::mul(Known, Known, /*SelfMultiply=*/true);
550 [](const APInt &N) { return N * N; }, /*CheckOptimality=*/false);
553 TEST(KnownBitsTest, WideShifts) {
554 unsigned BitWidth = 128;
555 KnownBits Unknown(BitWidth);
556 KnownBits AllOnes = KnownBits::makeConstant(APInt::getAllOnes(BitWidth));
558 KnownBits ShlResult(BitWidth);
559 ShlResult.makeNegative();
560 EXPECT_EQ(KnownBits::shl(AllOnes, Unknown), ShlResult);
561 KnownBits LShrResult(BitWidth);
562 LShrResult.One.setBit(0);
563 EXPECT_EQ(KnownBits::lshr(AllOnes, Unknown), LShrResult);
564 EXPECT_EQ(KnownBits::ashr(AllOnes, Unknown), AllOnes);
567 TEST(KnownBitsTest, ICmpExhaustive) {
568 unsigned Bits = 4;
569 ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
570 ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
571 bool AllEQ = true, NoneEQ = true;
572 bool AllNE = true, NoneNE = true;
573 bool AllUGT = true, NoneUGT = true;
574 bool AllUGE = true, NoneUGE = true;
575 bool AllULT = true, NoneULT = true;
576 bool AllULE = true, NoneULE = true;
577 bool AllSGT = true, NoneSGT = true;
578 bool AllSGE = true, NoneSGE = true;
579 bool AllSLT = true, NoneSLT = true;
580 bool AllSLE = true, NoneSLE = true;
582 ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
583 ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
584 AllEQ &= N1.eq(N2);
585 AllNE &= N1.ne(N2);
586 AllUGT &= N1.ugt(N2);
587 AllUGE &= N1.uge(N2);
588 AllULT &= N1.ult(N2);
589 AllULE &= N1.ule(N2);
590 AllSGT &= N1.sgt(N2);
591 AllSGE &= N1.sge(N2);
592 AllSLT &= N1.slt(N2);
593 AllSLE &= N1.sle(N2);
594 NoneEQ &= !N1.eq(N2);
595 NoneNE &= !N1.ne(N2);
596 NoneUGT &= !N1.ugt(N2);
597 NoneUGE &= !N1.uge(N2);
598 NoneULT &= !N1.ult(N2);
599 NoneULE &= !N1.ule(N2);
600 NoneSGT &= !N1.sgt(N2);
601 NoneSGE &= !N1.sge(N2);
602 NoneSLT &= !N1.slt(N2);
603 NoneSLE &= !N1.sle(N2);
607 std::optional<bool> KnownEQ = KnownBits::eq(Known1, Known2);
608 std::optional<bool> KnownNE = KnownBits::ne(Known1, Known2);
609 std::optional<bool> KnownUGT = KnownBits::ugt(Known1, Known2);
610 std::optional<bool> KnownUGE = KnownBits::uge(Known1, Known2);
611 std::optional<bool> KnownULT = KnownBits::ult(Known1, Known2);
612 std::optional<bool> KnownULE = KnownBits::ule(Known1, Known2);
613 std::optional<bool> KnownSGT = KnownBits::sgt(Known1, Known2);
614 std::optional<bool> KnownSGE = KnownBits::sge(Known1, Known2);
615 std::optional<bool> KnownSLT = KnownBits::slt(Known1, Known2);
616 std::optional<bool> KnownSLE = KnownBits::sle(Known1, Known2);
618 if (Known1.hasConflict() || Known2.hasConflict())
619 return;
621 EXPECT_EQ(AllEQ || NoneEQ, KnownEQ.has_value());
622 EXPECT_EQ(AllNE || NoneNE, KnownNE.has_value());
623 EXPECT_EQ(AllUGT || NoneUGT, KnownUGT.has_value());
624 EXPECT_EQ(AllUGE || NoneUGE, KnownUGE.has_value());
625 EXPECT_EQ(AllULT || NoneULT, KnownULT.has_value());
626 EXPECT_EQ(AllULE || NoneULE, KnownULE.has_value());
627 EXPECT_EQ(AllSGT || NoneSGT, KnownSGT.has_value());
628 EXPECT_EQ(AllSGE || NoneSGE, KnownSGE.has_value());
629 EXPECT_EQ(AllSLT || NoneSLT, KnownSLT.has_value());
630 EXPECT_EQ(AllSLE || NoneSLE, KnownSLE.has_value());
632 EXPECT_EQ(AllEQ, KnownEQ.has_value() && *KnownEQ);
633 EXPECT_EQ(AllNE, KnownNE.has_value() && *KnownNE);
634 EXPECT_EQ(AllUGT, KnownUGT.has_value() && *KnownUGT);
635 EXPECT_EQ(AllUGE, KnownUGE.has_value() && *KnownUGE);
636 EXPECT_EQ(AllULT, KnownULT.has_value() && *KnownULT);
637 EXPECT_EQ(AllULE, KnownULE.has_value() && *KnownULE);
638 EXPECT_EQ(AllSGT, KnownSGT.has_value() && *KnownSGT);
639 EXPECT_EQ(AllSGE, KnownSGE.has_value() && *KnownSGE);
640 EXPECT_EQ(AllSLT, KnownSLT.has_value() && *KnownSLT);
641 EXPECT_EQ(AllSLE, KnownSLE.has_value() && *KnownSLE);
643 EXPECT_EQ(NoneEQ, KnownEQ.has_value() && !*KnownEQ);
644 EXPECT_EQ(NoneNE, KnownNE.has_value() && !*KnownNE);
645 EXPECT_EQ(NoneUGT, KnownUGT.has_value() && !*KnownUGT);
646 EXPECT_EQ(NoneUGE, KnownUGE.has_value() && !*KnownUGE);
647 EXPECT_EQ(NoneULT, KnownULT.has_value() && !*KnownULT);
648 EXPECT_EQ(NoneULE, KnownULE.has_value() && !*KnownULE);
649 EXPECT_EQ(NoneSGT, KnownSGT.has_value() && !*KnownSGT);
650 EXPECT_EQ(NoneSGE, KnownSGE.has_value() && !*KnownSGE);
651 EXPECT_EQ(NoneSLT, KnownSLT.has_value() && !*KnownSLT);
652 EXPECT_EQ(NoneSLE, KnownSLE.has_value() && !*KnownSLE);
657 TEST(KnownBitsTest, GetMinMaxVal) {
658 unsigned Bits = 4;
659 ForeachKnownBits(Bits, [&](const KnownBits &Known) {
660 APInt Min = APInt::getMaxValue(Bits);
661 APInt Max = APInt::getMinValue(Bits);
662 ForeachNumInKnownBits(Known, [&](const APInt &N) {
663 Min = APIntOps::umin(Min, N);
664 Max = APIntOps::umax(Max, N);
666 if (!Known.hasConflict()) {
667 EXPECT_EQ(Min, Known.getMinValue());
668 EXPECT_EQ(Max, Known.getMaxValue());
673 TEST(KnownBitsTest, GetSignedMinMaxVal) {
674 unsigned Bits = 4;
675 ForeachKnownBits(Bits, [&](const KnownBits &Known) {
676 APInt Min = APInt::getSignedMaxValue(Bits);
677 APInt Max = APInt::getSignedMinValue(Bits);
678 ForeachNumInKnownBits(Known, [&](const APInt &N) {
679 Min = APIntOps::smin(Min, N);
680 Max = APIntOps::smax(Max, N);
682 if (!Known.hasConflict()) {
683 EXPECT_EQ(Min, Known.getSignedMinValue());
684 EXPECT_EQ(Max, Known.getSignedMaxValue());
689 TEST(KnownBitsTest, CountMaxActiveBits) {
690 unsigned Bits = 4;
691 ForeachKnownBits(Bits, [&](const KnownBits &Known) {
692 unsigned Expected = 0;
693 ForeachNumInKnownBits(Known, [&](const APInt &N) {
694 Expected = std::max(Expected, N.getActiveBits());
696 if (!Known.hasConflict()) {
697 EXPECT_EQ(Expected, Known.countMaxActiveBits());
702 TEST(KnownBitsTest, CountMaxSignificantBits) {
703 unsigned Bits = 4;
704 ForeachKnownBits(Bits, [&](const KnownBits &Known) {
705 unsigned Expected = 0;
706 ForeachNumInKnownBits(Known, [&](const APInt &N) {
707 Expected = std::max(Expected, N.getSignificantBits());
709 if (!Known.hasConflict()) {
710 EXPECT_EQ(Expected, Known.countMaxSignificantBits());
715 TEST(KnownBitsTest, SExtOrTrunc) {
716 const unsigned NarrowerSize = 4;
717 const unsigned BaseSize = 6;
718 const unsigned WiderSize = 8;
719 APInt NegativeFitsNarrower(BaseSize, -4, /*isSigned=*/true);
720 APInt NegativeDoesntFitNarrower(BaseSize, -28, /*isSigned=*/true);
721 APInt PositiveFitsNarrower(BaseSize, 14);
722 APInt PositiveDoesntFitNarrower(BaseSize, 36);
723 auto InitKnownBits = [&](KnownBits &Res, const APInt &Input) {
724 Res = KnownBits(Input.getBitWidth());
725 Res.One = Input;
726 Res.Zero = ~Input;
729 for (unsigned Size : {NarrowerSize, BaseSize, WiderSize}) {
730 for (const APInt &Input :
731 {NegativeFitsNarrower, NegativeDoesntFitNarrower, PositiveFitsNarrower,
732 PositiveDoesntFitNarrower}) {
733 KnownBits Test;
734 InitKnownBits(Test, Input);
735 KnownBits Baseline;
736 InitKnownBits(Baseline, Input.sextOrTrunc(Size));
737 Test = Test.sextOrTrunc(Size);
738 EXPECT_EQ(Test, Baseline);
743 TEST(KnownBitsTest, SExtInReg) {
744 unsigned Bits = 4;
745 for (unsigned FromBits = 1; FromBits <= Bits; ++FromBits) {
746 ForeachKnownBits(Bits, [&](const KnownBits &Known) {
747 APInt CommonOne = APInt::getAllOnes(Bits);
748 APInt CommonZero = APInt::getAllOnes(Bits);
749 unsigned ExtBits = Bits - FromBits;
750 ForeachNumInKnownBits(Known, [&](const APInt &N) {
751 APInt Ext = N << ExtBits;
752 Ext.ashrInPlace(ExtBits);
753 CommonOne &= Ext;
754 CommonZero &= ~Ext;
756 KnownBits KnownSExtInReg = Known.sextInReg(FromBits);
757 if (!Known.hasConflict()) {
758 EXPECT_EQ(CommonOne, KnownSExtInReg.One);
759 EXPECT_EQ(CommonZero, KnownSExtInReg.Zero);
765 TEST(KnownBitsTest, CommonBitsSet) {
766 unsigned Bits = 4;
767 ForeachKnownBits(Bits, [&](const KnownBits &Known1) {
768 ForeachKnownBits(Bits, [&](const KnownBits &Known2) {
769 bool HasCommonBitsSet = false;
770 ForeachNumInKnownBits(Known1, [&](const APInt &N1) {
771 ForeachNumInKnownBits(Known2, [&](const APInt &N2) {
772 HasCommonBitsSet |= N1.intersects(N2);
775 if (!Known1.hasConflict() && !Known2.hasConflict()) {
776 EXPECT_EQ(!HasCommonBitsSet,
777 KnownBits::haveNoCommonBitsSet(Known1, Known2));
783 TEST(KnownBitsTest, ConcatBits) {
784 unsigned Bits = 4;
785 for (unsigned LoBits = 1; LoBits < Bits; ++LoBits) {
786 unsigned HiBits = Bits - LoBits;
787 ForeachKnownBits(LoBits, [&](const KnownBits &KnownLo) {
788 ForeachKnownBits(HiBits, [&](const KnownBits &KnownHi) {
789 KnownBits KnownAll = KnownHi.concat(KnownLo);
791 EXPECT_EQ(KnownLo.countMinPopulation() + KnownHi.countMinPopulation(),
792 KnownAll.countMinPopulation());
793 EXPECT_EQ(KnownLo.countMaxPopulation() + KnownHi.countMaxPopulation(),
794 KnownAll.countMaxPopulation());
796 KnownBits ExtractLo = KnownAll.extractBits(LoBits, 0);
797 KnownBits ExtractHi = KnownAll.extractBits(HiBits, LoBits);
799 EXPECT_EQ(KnownLo.One.getZExtValue(), ExtractLo.One.getZExtValue());
800 EXPECT_EQ(KnownHi.One.getZExtValue(), ExtractHi.One.getZExtValue());
801 EXPECT_EQ(KnownLo.Zero.getZExtValue(), ExtractLo.Zero.getZExtValue());
802 EXPECT_EQ(KnownHi.Zero.getZExtValue(), ExtractHi.Zero.getZExtValue());
808 } // end anonymous namespace