Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / bolt / lib / Passes / HFSort.cpp
blob6569de7d6258f452d78203cf86e5df82b806af39
1 //===- bolt/Passes/HFSort.cpp - Cluster functions by hotness --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of HFSort algorithm for function ordering:
10 // https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
12 //===----------------------------------------------------------------------===//
14 #include "bolt/Passes/HFSort.h"
15 #include "llvm/Support/CommandLine.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/Format.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include <unordered_set>
21 #define DEBUG_TYPE "hfsort"
23 namespace opts {
24 extern llvm::cl::opt<unsigned> Verbosity;
27 namespace llvm {
28 namespace bolt {
30 using NodeId = CallGraph::NodeId;
31 using Arc = CallGraph::Arc;
32 using Node = CallGraph::Node;
34 namespace {
36 // The number of pages to reserve for the functions with highest
37 // density (samples / size). The functions put in these pages are not
38 // considered for clustering.
39 constexpr uint32_t FrozenPages = 0;
41 // The minimum approximate probability of a callee being called from a
42 // particular arc to consider merging with the caller's cluster.
43 constexpr double MinArcProbability = 0.1;
45 // This is a factor to determine by how much a caller cluster is
46 // willing to degrade it's density by merging a callee.
47 constexpr int CallerDegradeFactor = 8;
49 } // namespace
51 ////////////////////////////////////////////////////////////////////////////////
53 Cluster::Cluster(NodeId Id, const Node &Func)
54 : Samples(Func.samples()), Size(Func.size()),
55 Density((double)Samples / Size) {
56 Targets.push_back(Id);
59 Cluster::Cluster(const std::vector<NodeId> &Nodes, const CallGraph &Cg) {
60 Samples = 0;
61 Size = 0;
62 for (NodeId TargetId : Nodes) {
63 Targets.push_back(TargetId);
64 Samples += Cg.samples(TargetId);
65 Size += Cg.size(TargetId);
67 Density = (double)Samples / Size;
70 std::string Cluster::toString() const {
71 std::string Str;
72 raw_string_ostream CS(Str);
73 bool PrintComma = false;
74 CS << "funcs = [";
75 for (const NodeId &Target : Targets) {
76 if (PrintComma)
77 CS << ", ";
78 CS << Target;
79 PrintComma = true;
81 CS << "]";
82 return CS.str();
85 namespace {
87 void freezeClusters(const CallGraph &Cg, std::vector<Cluster> &Clusters) {
88 uint32_t TotalSize = 0;
89 llvm::sort(Clusters, compareClustersDensity);
90 for (Cluster &C : Clusters) {
91 uint32_t NewSize = TotalSize + C.size();
92 if (NewSize > FrozenPages * HugePageSize)
93 break;
94 C.freeze();
95 TotalSize = NewSize;
96 LLVM_DEBUG(NodeId Fid = C.target(0);
97 dbgs() << format(
98 "freezing cluster for func %d, size = %u, samples = %lu)\n",
99 Fid, Cg.size(Fid), Cg.samples(Fid)););
103 } // namespace
105 void Cluster::reverseTargets() { std::reverse(Targets.begin(), Targets.end()); }
107 void Cluster::merge(const Cluster &Other, const double Aw) {
108 Targets.insert(Targets.end(), Other.Targets.begin(), Other.Targets.end());
109 Size += Other.Size;
110 Samples += Other.Samples;
111 Density = (double)Samples / Size;
114 void Cluster::merge(const Cluster &Other,
115 const std::vector<CallGraph::NodeId> &Targets_) {
116 Targets = Targets_;
117 Size += Other.Size;
118 Samples += Other.Samples;
119 Density = (double)Samples / Size;
122 void Cluster::clear() {
123 Id = -1u;
124 Size = 0;
125 Samples = 0;
126 Density = 0.0;
127 Targets.clear();
128 Frozen = false;
131 std::vector<Cluster> clusterize(const CallGraph &Cg) {
132 std::vector<NodeId> SortedFuncs;
134 // indexed by NodeId, keeps it's current cluster
135 std::vector<Cluster *> FuncCluster(Cg.numNodes(), nullptr);
136 std::vector<Cluster> Clusters;
137 Clusters.reserve(Cg.numNodes());
139 for (NodeId F = 0; F < Cg.numNodes(); F++) {
140 if (Cg.samples(F) == 0)
141 continue;
142 Clusters.emplace_back(F, Cg.getNode(F));
143 SortedFuncs.push_back(F);
146 freezeClusters(Cg, Clusters);
148 // The size and order of Clusters is fixed until we reshuffle it immediately
149 // before returning.
150 for (Cluster &Cluster : Clusters)
151 FuncCluster[Cluster.targets().front()] = &Cluster;
153 llvm::sort(SortedFuncs, [&](const NodeId F1, const NodeId F2) {
154 const CallGraph::Node &Func1 = Cg.getNode(F1);
155 const CallGraph::Node &Func2 = Cg.getNode(F2);
156 return Func1.samples() * Func2.size() > // TODO: is this correct?
157 Func2.samples() * Func1.size();
160 // Process each function, and consider merging its cluster with the
161 // one containing its most likely predecessor.
162 for (const NodeId Fid : SortedFuncs) {
163 Cluster *Cluster = FuncCluster[Fid];
164 if (Cluster->frozen())
165 continue;
167 // Find best predecessor.
168 NodeId BestPred = CallGraph::InvalidId;
169 double BestProb = 0;
171 for (const NodeId Src : Cg.predecessors(Fid)) {
172 const Arc &Arc = *Cg.findArc(Src, Fid);
173 if (BestPred == CallGraph::InvalidId ||
174 Arc.normalizedWeight() > BestProb) {
175 BestPred = Arc.src();
176 BestProb = Arc.normalizedWeight();
180 // Check if the merge is good for the callee.
181 // Don't merge if the probability of getting to the callee from the
182 // caller is too low.
183 if (BestProb < MinArcProbability)
184 continue;
186 assert(BestPred != CallGraph::InvalidId);
188 class Cluster *PredCluster = FuncCluster[BestPred];
190 // Skip if no predCluster (predecessor w/ no samples), or if same
191 // as cluster, of it's frozen.
192 if (PredCluster == nullptr || PredCluster == Cluster ||
193 PredCluster->frozen())
194 continue;
196 // Skip if merged cluster would be bigger than the threshold.
197 if (Cluster->size() + PredCluster->size() > MaxClusterSize)
198 continue;
200 // Check if the merge is good for the caller.
201 // Don't merge if the caller's density is significantly better
202 // than the density resulting from the merge.
203 const double NewDensity =
204 ((double)PredCluster->samples() + Cluster->samples()) /
205 (PredCluster->size() + Cluster->size());
206 if (PredCluster->density() > NewDensity * CallerDegradeFactor) {
207 continue;
210 LLVM_DEBUG(if (opts::Verbosity > 1) {
211 dbgs() << format("merging %s -> %s: %u\n",
212 PredCluster->toString().c_str(),
213 Cluster->toString().c_str(), Cg.samples(Fid));
216 for (NodeId F : Cluster->targets())
217 FuncCluster[F] = PredCluster;
219 PredCluster->merge(*Cluster);
220 Cluster->clear();
223 // Return the set of Clusters that are left, which are the ones that
224 // didn't get merged (so their first func is its original func).
225 std::vector<Cluster> SortedClusters;
226 std::unordered_set<Cluster *> Visited;
227 for (const NodeId Func : SortedFuncs) {
228 Cluster *Cluster = FuncCluster[Func];
229 if (!Cluster || Visited.count(Cluster) == 1 || Cluster->target(0) != Func)
230 continue;
232 SortedClusters.emplace_back(std::move(*Cluster));
233 Visited.insert(Cluster);
236 llvm::sort(SortedClusters, compareClustersDensity);
238 return SortedClusters;
241 std::vector<Cluster> randomClusters(const CallGraph &Cg) {
242 std::vector<NodeId> FuncIds(Cg.numNodes(), 0);
243 std::vector<Cluster> Clusters;
244 Clusters.reserve(Cg.numNodes());
246 for (NodeId F = 0; F < Cg.numNodes(); F++) {
247 if (Cg.samples(F) == 0)
248 continue;
249 Clusters.emplace_back(F, Cg.getNode(F));
252 llvm::sort(Clusters, [](const Cluster &A, const Cluster &B) {
253 return A.size() < B.size();
256 auto pickMergeCluster = [&Clusters](const size_t Idx) {
257 size_t MaxIdx = Idx + 1;
259 while (MaxIdx < Clusters.size() &&
260 Clusters[Idx].size() + Clusters[MaxIdx].size() <= MaxClusterSize)
261 ++MaxIdx;
263 if (MaxIdx - Idx > 1) {
264 size_t MergeIdx = (std::rand() % (MaxIdx - Idx - 1)) + Idx + 1;
265 assert(Clusters[MergeIdx].size() + Clusters[Idx].size() <=
266 MaxClusterSize);
267 return MergeIdx;
269 return Clusters.size();
272 size_t Idx = 0;
273 while (Idx < Clusters.size()) {
274 size_t MergeIdx = pickMergeCluster(Idx);
275 if (MergeIdx == Clusters.size()) {
276 ++Idx;
277 } else {
278 Clusters[Idx].merge(Clusters[MergeIdx]);
279 Clusters.erase(Clusters.begin() + MergeIdx);
283 return Clusters;
286 } // namespace bolt
287 } // namespace llvm